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Abstract

Since the advent of high-throughput genome sequencing methods in the mid-2000s, molecular biology has rapidly 
transitioned towards data-intensive science. Recent technological developments have increased the accessibility of 
omics experiments by decreasing the cost, while the concurrent design of new algorithms have improved the compu-
tational work-flow needed to analyse the large datasets generated. This has enabled the long standing idea of a systems 
approach to the cell, where molecular phenomena are no longer observed in isolation, but as parts of a tightly regu-
lated cell-wide system. However, large data biology is not without its challenges, many of which are directly related 
to how to store, handle and analyse ome-wide datasets. 
 The present thesis examines large data microbiology from a middle ground between metabolic engineering and  
in silico data management. The work was performed in the context of applied microbial lignocellulose valorisation 
with the end goal of generating improved cell factories for the production of value-added chemicals from renewable 
plant biomass. Three different challenges related to this feedstock were investigated from a large data-point of view: 
bacterial catabolism of lignin and its derived aromatic compounds; tolerance of baker’s yeast Saccharomyces cerevisiae 
to inhibitory compounds in lignocellulose hydrolysate; and the non-fermentable response to xylose in S. cerevisiae 
engineered for growth on this pentose sugar. 
 The bibliome of microbial lignin catabolism is vast and consists of a long-standing cohort of fundamental mi-
crobiology, and a more recent cohort of applied lignin bio-valorisation. Here, an online database was created with 
the long-term ambition of closing the gap between the two and make new connections that can fuel the generation 
of new knowledge. Whole-genome sequencing was used to investigate the genetic basis for observed phenotypes in 
bacterial isolates capable of growing on different kinds of lignin-derived aromatics. A whole-genome approach was 
also used to identify key sequence variants in the genotype of an industrial S. cerevisiae strain evolved for improved 
tolerance to inhibitors and high temperature. Finally, assessment of the sugar signalome of S. cerevisiae was enabled by 
the design and validation of a panel of in vivo fluorescent biosensors for single-cell cytometric analysis. It was found 
that xylose triggered a signal similar to that of low glucose in yeast cells engineered with xylose utilization pathways, 
and that introduction of deletions previously related to improved xylose utilization altered the signal towards that of 
high glucose. 
 Taken together, the present thesis illustrates how omics-approaches can aid design of laboratory experiments to 
increase the knowledge and understanding of microorganisms, and demonstrates the need for a combined knowledge 
of molecular and computational biology in large-scale data microbiology.  
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The only thing I know is that I know nothing

(The Socratic paradox)





Abstract

Since the advent of high-throughput genome sequencing methods in the mid-2000s,
molecular biology has rapidly transitioned towards data-intensive science. Recent
technological developments have increased the accessibility of omics experiments by
decreasing the cost, while the concurrent design of new algorithms have improved
the computational work-flow needed to analyse the large datasets generated. This
has enabled the long standing idea of a systems approach to the cell, where molecular
phenomena are no longer observed in isolation, but as parts of a tightly regulated
cell-wide system. However, large data biology is not without its challenges, many of
which are directly related to how to store, handle and analyse ome-wide datasets.

The present thesis examines large data microbiology from a middle ground be-
tween metabolic engineering and in silico data management. The work was performed
in the context of applied microbial lignocellulose valorisation with the end goal of
generating improved cell factories for the production of value-added chemicals from
renewable plant biomass. Three different challenges related to this feedstock were
investigated from a large data-point of view: bacterial catabolism of lignin and its
derived aromatic compounds; tolerance of baker’s yeast Saccharomyces cerevisiae to in-
hibitory compounds in lignocellulose hydrolysate; and the non-fermentable response
to xylose in S. cerevisiae engineered for growth on this pentose sugar.

The bibliome of microbial lignin catabolism is vast and consists of a long-standing
cohort of fundamental microbiology, and a more recent cohort of applied lignin bio-
valorisation. Here, an online database was created with the long-term ambition of
closing the gap between the two and make new connections that can fuel the gen-
eration of new knowledge. Whole-genome sequencing was used to investigate the
genetic basis for observed phenotypes in bacterial isolates capable of growing on dif-
ferent kinds of lignin-derived aromatics. A whole-genome approach was also used
to identify key sequence variants in the genotype of an industrial S. cerevisiae strain
evolved for improved tolerance to inhibitors and high temperature. Finally, assess-
ment of the sugar signalome of S. cerevisiae was enabled by the design and validation
of a panel of in vivo fluorescent biosensors for single-cell cytometric analysis. It was
found that xylose triggered a signal similar to that of low glucose in yeast cells engi-
neered with xylose utilization pathways, and that introduction of deletions previously
related to improved xylose utilization altered the signal towards that of high glucose.

Taken together, the present thesis illustrates how omics-approaches can aid design
of laboratory experiments to increase the knowledge and understanding of microor-
ganisms, and demonstrates the need for a combined knowledge of molecular and
computational biology in large-scale data microbiology.

i



Popular scientific summary

The t echnological a dvancements i n s ociety c ontinuously c hange h ow w e l ive and 
work. Over the last five decades, computers have helped us organize and process 
text and numbers, and the internet has given us access to a 24-7 wealth of informa-
tion and global communication. These developments have also changed how science 
is performed and disseminated. Specialized instruments can now make hundreds of 
thousands measurements of a sample in one go, immensely speeding up research out-
comes. As a result, some fields in contemporary cell biology are now as much about 
data handling and -understanding, as they are about the biology itself.

This type of so-called Large Data biology has opened up whole new possibilities on 
how the microbial cell can be investigated. While traditional molecular microbiology 
approaches the subject by studying a couple of elements in a cell such as genes and 
proteins on their own, the new technologies allow to study whole layers (so called 
omes) of the cell at once; for instance, the genome consists of all the genes in a cell, 
the transcriptome all the mRNA that have been expressed from the genes at a given 
time, the proteome all the proteins translated from said mRNA at a given time, and 
the metabolome all the chemical compounds (metabolites) produced by the proteins. 
The methods used to measure these omes are referred to as omics; for instance, the 
technique to identify the genome (all the genes in the cell) is called genomics.

The sheer size and complexity of the data generated by ome-wide studies calls for 
scientists to have simultaneous knowledge of the biology (here: the microbial cell) as 
well as the computational part. The process of handling large biological data is known 
as bioinformatics, and is together with data management and computer programming 
an invaluable tool for the modern molecular microbiologist.

In the present thesis, Large Data biology was applied to improve the knowledge 
and understanding of microbial cells designed for sustainable production of renewable 
chemicals. Central to the investigation was biological conversion of non-edible plant 
matter (so called lignocellulose), such as corn stover, wood chips and bagasse, into 
societally valuable products, e.g. bioethanol. The current work focused on the initial 
half of the microbial conversion: how lignocellulosic compounds can be better taken 
up and broken down by the cell.

Three case studies were considered: i) how to better assess the scientific literature; 
ii) how to determine the genome sequence of complex industrial microorganisms and 
new isolates (genomics); and iii) how to measure how the cell senses its nutrients (here: 
different sugars) and controls its breakdown.

In the first case, a web-based database was designed and developed that collects 
the large and slightly disjointed scientific literature on the microbial breakdown of 
lignin, one of the major components of lignocellulose. The goal of the database is to 
collect all current knowledge on lignin biodegradation in a single interactive platform 
in order to simplify the process of data retrieval for the scientific community.
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In the second case, the genomes of lignin-degrading bacteria and a lignocellu-
lose fermenting yeast were determined by whole-genome sequencing methods. This
method produces millions of small snippets of DNA that have to be assembled back
to the full genome – a process not unlike that of building a jigsaw puzzle, only that
the final picture often is unknown at the start. The assembled genomes were then
used to determine the presence of genes related to the ability to grow on lignin and
its related aromatic compounds. Genomics methods were also used to discover mu-
tations in a yeast strain that had acquired increased tolerance to stressful conditions
encountered in industrial lignocellulose fermentation, in order to explain why this
yeast had become more robust.

In the third case, the peculiar behavior of baker’s yeast Saccharomyces cerevisiae
to the five-carbon sugar xylose was investigated. This yeast cannot naturally grow on
xylose, and has to be genetically modified with genes from other organisms to do so.
Still, even after genetic engineering, the yeast grows much slower on xylose than on
its preferred sugar glucose, and produces ethanol at a lower rate. To investigate this
behavior, a set of green fluorescent markers were constructed that, once installed in the
yeast genome, allowed for the measurement of the sugar sensing and signaling network
in each cell in real time through fluorescence measurements. It was found that when
the cell sensed xylose, it resulted in the same signal as very low concentrations of
glucose (i.e. almost starvation) did, and that the modification of previously known
key genes for improved use of xylose changed the signal more towards that of regular
amounts of glucose.

This thesis illustrates that the use of different forms of Large Data biology allows
investigations of the microbial cell in ways that would not be possible or time-wise
reasonable with traditional microbial methods. It also shows that the sheer volume
of data these approaches generate quickly become a needle-in-the-haystack challenge,
where finding the relevant data in the large ocean that is the cellular omes is only
possible when molecular biology is combined with computational approaches.
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Preface

There are few buzzwords that describe our computerized, early 21st century world
better than the concept of Big Data. The idea that it is possible to measure massive
amounts of data points and run it through suitable computer algorithms in order to
reveal connections and predictions that were not possible in a ”small data world” has
infused our society and our behaviour, and is currently a key mechanism in everything
from social media to online shopping to science. Big datasets, especially the ones
generated in biology, are often complex, messy and noisy – just like the world it tries
to describe.

While I have focused the lion’s share of the last five years or so on the research that
has resulted in this doctoral thesis, my scientific interests has co-inhabited my mind
with my long-standing love of art and creativity, such as writing, reading, drawing,
designing. I am particularly interested in the interplay of science, literature and art,
and their boundaries. To me, science and the arts are two means to the same end: to
explore and understand the world that we live in. A 1000-page contemporary novel
is also a form of Big Data, in its own way.

These ideas have undeniably coloured this thesis Most notably, I have chosen
to preface each of the chapters of this thesis with excerpts from poetry, prose and
philosophy that I believe resonate with the content of each section. It is common to
see scientific ideas and methods applied to art, but possibly less common in the other
direction. It may well be that this approach only serves to make the message of this
thesis more messy. Which perhaps makes it not that dissimilar to Big Data?

Sometimes the answers you seek lie between the lines of the dataset. Sometimes
the data fails to capture the answer at all. Sometimes Big Data is too Small to answer
the question.

September 25th, 2019
Lund, Sweden
Daniel Brink
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The world is everything that is the case.
[Die Welt ist alles, was der Fall ist.]

LUDVIG WITTGENSTEIN
The first statement of
Tractatus Logico-Philosophicus (1922)



Chapter 1

Introduction

Modern biology is a data-intensive science. In some regards, this is not a recent phe-
nomenon, as certain sub-fields such as taxonomy and biodiversity, have a long history
of reliance on large datasets (Kelling et al., 2009; Leonelli, 2014). Nevertheless, the
advent of high-throughput technologies for system-wide assessment of the molecular
biology of the cell (such as whole-genome sequencing and liquid chromatography-
mass spectrometry) has rapidly changed the stage towards a more computationally
demanding biology that needs to handle Big Data as much as it needs to handle bio-
logical samples.

Big Data science can in short be said to consist of the capture, curation and
analysis of large datasets (Callebaut, 2012), and is often characterized with five V’s:
volume, velocity, variety, veracity and value (Gudivada et al., 2015; Herschel and
Miori, 2017). It has been proposed that Big Data is the fourth paradigm in science,
with empiricism, theory and computation being the previous three (Bell et al., 2009).
However, the concept of Big Data is not stringently defined, and what levels of data
quantity, complexity and technology that are needed for a dataset to be considered Big
Data may vary considerably between users. In fact, a recent review was able to identify
four different groups of definitions of Big Data in literature (De Mauro et al., 2016),
and therefore, given how popular as the concept currently is, Big Data will have dif-
ferent meaning depending on the context. This also leads to complications regarding
when a dataset can claim to be Big Data (Boyd and Crawford, 2012): is the raw data
from the sequencing of the genome of a microbe complex enough to fit the Big Data
concept, or does that dataset need to be combined with one or more equally complex
datasets (e.g. from transcriptome and proteome studies) before the term even can be
considered? Furthermore, Big Data is currently a strong buzzword in many sciences,
including biology (Dolinski and Troyanskaya, 2015), and, like other buzzwords, thus
tends to be overused. For these reasons, this thesis will instead use Large Data in order
to avoid getting entangled in the discourse on the semantics of Big Data.
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1.1 All cellular layers generate Large Data

The complexity of biology in general, and molecular and cellular biology in particu-
lar, makes it so that every attempt of a system wide screening will inevitably lead to
generation of Large Data. From a molecular point-of-view, the cell is normally di-
vided into sequential cellular layers according to Crick’s theory of the Central Dogma
(Crick, 1970): the genome (DNA), the transcriptome (mRNA) and the proteome
(proteins). In extension, the metabolome (metabolites) is often also considered here
despite not being part of Crick’s original proposal (Prohaska and Stadler, 2011), see
Figure 1. The -ome suffix is Latin for ”mass” or ”many”, and omics is accordingly de-
fined as the study of a whole ome (e.g. genomics, transcriptomics); due to the nature
of the omes, an omics experiment will intrinsically result in a mass of measurements per
sample (Lay Jr et al., 2006), i.e. Large Data. Omics is sometimes also referred to as
global analysis (Nielsen and Jewett, 2008), again illustrating their system-wide scope.
These methodologies are in fact so closely related to their dataset size that omics data
often is seen as the quintessential biological Large Data (Leonelli, 2014). The com-
plexity and temporal resolution increases with each sequential central ome (Figure 1):
with the genome being rather stable over time (in terms of e.g. half-life and mutation
rate) and the transcriptome, proteome and metabolome being in flux (Lay Jr et al.,
2006).

The ome concept has proven to be very useful for describing biological func-
tion. Since the word genome was first proposed in 1920 by Hans Winkler (Winkler,
1920)1, many additional omes outside of the Central Dogma have been defined, from
intracellular layers such as the lipidome, epigenome and signalome (the signalling net-
works of the cell), to extracellular layers such as the secretome, microbiome (e.g. gut
flora) and bibliome (the cumulative literature of a scientific discipline) (Grivell, 2002;
Prohaska and Stadler, 2011; Topol, 2014), to name a few. In terms of frequency, the
three omes of the Central Dogma (genome, transcriptome, proteome) are much more
commonly used in literature than the subsequent neologisms, though (Prohaska and
Stadler, 2011). The etymology of omics seems to have its root in 1986 when Tom
Roderick came up with Genomics as the name for the eponymous journal-to-be, with
proteomics following suit first in 1995 (Yadav, 2007).

As illustrated in Figure 1, the present thesis work combined methods traditionally
regarded as high-throughput (e.g. whole-genome sequencing) with alternative ome
assessments, such as single-cell biosensors, and database construction.

1It can be noted that a few biological concepts ending in -ome predate genome: e.g. biome, rhizome,
phyllome, and that words like these may have been the inspiration for Winkler’s proposal (Lederberg
and McCray, 2001).
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Figure 1: Schematic overview of the main cellular layers of the central dogma (genome, transciptome,
proteome, metabolome) and the signalome (all signalling networks in the cell), all of which generate
large data. The bottom half illustrates the different methodologies that were used in the thesis work to
assess the genome and signalome layer, and how a database was constructed to handle large bibliomes.

1.2 Large Data will always have system boundaries

One of the biggest strengths of Large Data is that it can be used to find new cor-
relations and insights that are not possible or visible in a ”small data” world, with a
famous example being how Google could predict the spread of the annual flu based on
peoples’ search queries (Ginsberg et al., 2009). However, every dataset has constraints
to what it can predict, which are intrinsically linked to how the data was collected.

A central concern of data-intensive biology is to be able to draw biologically and
physiologically relevant conclusions from patterns founds in large datasets (Li and
Chen, 2014). For instance, sequencing a genome of an evolved microbe with a novel
phenotype will give valuable information of the changes that have occurred in its ge-
netic make-up, but it is not necessarily possible to correlate which change in genotype
that results in the change in phenotype. Unlike the Google example above, the iden-
tification of the underlying causalities of a correlation is much more important in
biology, since it is a discipline concerned with understanding why something hap-
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pens (Mayer-Schönberger and Cukier, 2013). Therefore, when working with Large
Data biology and cellular networks (in the present work: metabolic and signalling
networks) we have to consider the system boundaries of our data collection method-
ologies in order to make biologically relevant claims – something that can be easily
forgotten among the tempting possibilities promised by the hype surrounding Large
Data (Boyd and Crawford, 2012), e.g. the belief that any scientific problem can be
solved if a huge enough dataset can be collected and analysed.

To further emphasise this, the thesis is framed by two quotations from Wittgen-
stein’s Tractatus Logico-Philosophicus: ”The world is everything that is the case” and
”Whereof one cannot speak, thereof one must be silent” (Wittgenstein, 1922). My inter-
pretation of these quotes is that they represent the system boundary of the world – or
the world as humans perceive it. Likewise, a Large Data biology experiment in itself
is everything that is the case: it is not possible to draw either systemic or mechanistic
conclusions from the assessment of a single of a few omes measured at a limited set
of environmental conditions; to that end, better spatio-temporal resolution will be
needed. Therefore, it is important to see conclusions from in silico biological Large
Data experiments as hypotheses until they are verified experimentally, and the Large
Data experiments themselves as powerful hypothesis generators.

1.3 Scope of the thesis

As the title implies, the scope of this thesis is to improve the understanding and engi-
neering of microbial cell factories by the means of different data-intensive methodolo-
gies. Nevertheless, the sheer width of that statement calls for some system boundaries
of its own. As illustrated in Figure 1, the present work will focus on three topics within
Large Data microbiology: data- and bibliome handling and its implications (Chapter
2), the genome (Chapter 3), and the signalome (Chapter 4). This will be bookended
by a reflection on how the present thesis work relate to and strive to increase the knowl-
edge of said topics (Chapter 5) and an outlook on their future prospects (Chapter 6).
Chapters 1-2 will discuss on the current state of large data biology and its benefits
and drawbacks, whereas Chapter 3 and 4 will go into the details of the works that are
presented in the respective papers.

Being a thesis in Applied Microbiology, all work was made with societal applica-
tion and impact in mind; in this case within the context of microbial lignocellulose
valorisation. The end goal of this field – to which the current work contributes – is
construction of improved microbial cell factories for sustainable production of value-
added compounds from renewable feedstocks. With the mind-set that Large Data
biology is foremost a hypothesis-generator, the present work will demonstrate the
benefit of combining in silico-approaches with physiological and molecular character-
izations.
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The bibliome studies are represented by Paper I, which regards the construction
of an online database that indexes the bibliome of microbial catabolism of lignin and
lignin-related aromatic compounds. The genome studies are presented in Papers II-
IV, and addresses different aspects of genome assembly, annotation and detection of
mutations, with examples from both bacteria and yeast. Finally, the signalome studies
are covered by Papers V-VII, and demonstrate the development and validation of a
panel of in vivo single-cell biosensors for real-time monitoring of the sugar signalling
networks in baker’s yeast Saccharomyces cerevisiae. Furthermore, the genomics and
signalomics chapters will each conclude with a case study on how these cellular layers
were applied for improved microbial utilization of lignocellulosic feedstocks: Chapter
3.4. discusses how comparative genomics was used to correlate the changes in pheno-
type to changes in genotype in an evolved yeast strain with improved tolerance to the
combined inhibition of lignocellulose hydrolysate and elevated temperature; Chap-
ter 4.3. discusses the paradoxical fermentation behaviour of xylose (one of the most
abundant sugars in lignocellulose) in S. cerevisiae engineered with exogenous xylose
catabolism.
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apricot trees exist, apricot trees exist

bracken exists; and blackberries, blackberries;
bromine exists; and hydrogen, hydrogen

cicadas exist; chicory, chromium,
citrus trees; cicadas exist;
cicadas, cedars, cypresses, cerebellum

doves exist, dreamers, and dolls;
killers exist, and doves, and doves;
haze, dioxin, and days; days
exist, days and death; and poems
exist; poems, days, death

INGER CHRISTENSEN
Excerpt from alfabet (1981)
(an example of alphabetical indexing as a system boundary in poetry)



Chapter 2

How to manage Large Data?

Everything is in a database nowadays. From your email login credentials to your tax
return, most information is stored in an electronic database to be accessed online at
your convenience. Though they may seem, databases are not by far a new thing,
neither in their analogue form – e.g. library index cards, parish registers or national
censuses – nor in their digital format – database management systems were invented
around the 1960s; (Haigh, 2009)). Nevertheless, with the last decade’s developments
in Internet connectivity, wireless mobile devices and social media, it is probably safe to
assume that there never before have been so many databases that we contact on a daily
basis. Digital databases are indeed one of the best ways to organize Large Data, since
it not only allows for archiving and indexing (just like an analogue database) but also
allows for a whole new level of data connectivity, pattern recognition and synthesis
through in silico processing. However, as will be discussed throughout the thesis, most
biological large datasets are noisy and will require several steps of processing before
they can be uploaded to a database.

2.1 Large Data and in silico-demanding biology

2.1.1 An explosion of biological data

The rapid developments in computer science and information technology have led to
a previously unseen data explosion both in society and in science. In biology, the hith-
erto biggest data explosion2 happened in the mid-2000s as a result of the advent of a
number of new high-throughput omics methods, especially for nucleotide sequencing
(Leonelli, 2014). As the volumes and types of Large Data increases over time with
new developments in technology, so does our views on what is large: there was a time
where expression data of a single microarray was considered large, which compared

2Some disciplines within molecular biology have had data explosions earlier than others due to specific
technological developments in their field: e.g. protein crystallography around 1990 (Sussman et al.,
1998)
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Figure 2: Cumulative number of nucleotide bases uploaded to NCBI GenBank from its launch in
1982 to the latest release in August 2019. A distinction is made between WGS (red), which are the
bases in the whole-genome shotgun (WGS) subsection of GenBank introduced in 2002, and GenBank
(blue) which does not include the WGS projects. Adapted from publicly available data from NCBI:
https://www.ncbi.nlm.nih.gov/genbank/statistics/.

to the throughput of present-day methods seem small in comparison (Dolinski and
Troyanskaya, 2015).

The NCBI GenBank database is one of the oldest and largest publically avail-
able biological repositories (Benson et al., 2017). Thanks to their open statistics, this
repository can be used as a good indicator of how molecular biology has grown since
GenBank launch in 1982. Figure 2 illustrates the historical growth of their dataset
in terms of number of stored nucleotide bases, which has been exponential since the
launch and with a doubling time of approximately 18 months3. The whole-genome
sequencing subset within GenBank (red line in Figure 2) is a good example of how new
technological achievements further contribute to data explosion (further discussed in
Chapter 3).

The technological advancements have opened many new possibilities for what can
be studied at a reasonably cost and time (a democratization that enables also smaller

3See: https://www.ncbi.nlm.nih.gov/genbank/statistics/
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labs to do Large Data biology), but the availability of data from published studies
has also become an asset in itself. There is an intrinsic value to many Large biolog-
ical datasets, as its sheer size and molecular complexity makes it possible to actually
conduct whole studies based on previously published data without having to generate
new data: so called data re-use (Marx, 2013; Leonelli, 2014). A few examples include:
genome comparisons (Borneman et al., 2011; Vernikos et al., 2015), expression stud-
ies (Rung and Brazma, 2013) and computational models of the cell (genome-scale
models, GEMs; Price et al. (2004)) – not to mention how database-driven tools such
as homology searches by BLAST (Altschul et al., 1990) have enabled and facilitated
innumerable amounts of biochemical and metabolic engineering studies. Indeed,
there are papers that are cited for their data and not so much for their research find-
ings (Dolinski and Troyanskaya, 2015), just like some papers are primarily cited for
their medium recipes (e.g. Verduyn et al. (1992)). Data re-use is however not a trivial
problem, since the complex spatio-temporal nature of biological data (what condi-
tion, what timespan etc.) complicate re-application and direct comparison. Re-use
also introduces new ethical challenges, especially related to authorship (Duke and
Porter, 2013) which calls for open data standards and licences (Molloy, 2011).

The benefit of being able to re-use data, perform meta-analysis or integrating mul-
tiple individually published datasets to a larger, more systemic analysis is at the end
of the day dependent on what raw data is available and the quality of its annotations
(Rung and Brazma, 2013). An recent opinion piece phrased the issue thusly: ”Too
much published data or too little published data?”(França and Monserrat, 2019), im-
plying both the issue of handling the large volumes of processed data, and the compa-
rably low amounts of available raw data. This is further complicated by how routines
around data sharing differ between disciplines, individual labs and journals. For in-
stance, most journals require raw data and genome assemblies from whole-genome
sequencing projects to be uploaded to the NCBI/EBI/DDBJ database consortium
prior to submission. Other high-throughput methodologies, such as flow cytome-
try, do not have established routines for (raw) data sharing, although initiatives have
emerged (Spidlen et al., 2012).

While biological data has become simple and cheap to collect, knowledge of data
management and -analysis seems to be lagging behind (Peng, 2015). It has for in-
stance been argued that the current ”reproducibility crisis” (the fact that very few
published studies can be repeated by scientists in other labs) in science (Peng, 2015)
is a result of the overwhelming data volumes and of overconfidence in the evidence-
power of statistical methods (in particular the commonly used p<0.05 threshold in
statistical hypothesis testing) (Goodman, 2016; Wasserstein and Lazar, 2016; França
and Monserrat, 2019).

There is currently in biology a dichotomy of data-driven research and theory-driven
research (Callebaut, 2012; O’Malley and Soyer, 2012; Dolinski and Troyanskaya,
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2015), where, in very general terms, the former uses analyses and modelling of large
datasets from cellular phenomena to come up with research ideas after the fact (a
posteriori), whereas the latter uses a priori knowledge from e.g. literature to design
experiments (which in themselves can be data-intensive). Nevertheless, it is imperative
to remember that

data ̸= knowledge4

and that only thorough experimental design based on previous knowledge and sys-
tematic data analysis with suitably large sample sets that are followed by experimental
verification can turn large datasets into knowledge. The strength of Large Data is to
find correlations, not causalities – but can as such be used as a guidance towards likely
causes (Mayer-Schönberger and Cukier, 2013), i.e. new hypotheses and experiments.
The present thesis will argue for a theory-driven research complemented by large data-
approaches, with the hypothesis generator-aspect of the large data methods operating
somewhere in the middle of the two.

2.1.2 Large Data requires large undertakings

In its raw, non-curated form, Large biological Data is often incomprehensible due to
its large volumes and varying formats. Managing and analysing the data is therefore
not a task suitable to do by hand due the sheer volume and the risk of introducing
human errors. This has led to an increased need for programming and heavy-duty
bioinformatics in molecular biology (discussed in Section 2.1.3) and researchers well
versed in both computer science and biology. In fact, it has become common in
data-intensive biology to allocate time on high-performance computing centres (su-
percomputers) to run more computationally heavy algorithms and pipelines, many of
which require programming know-how since there are often no graphical interfaces
(Yin et al., 2017). Not only are computations needed, but also methods and infras-
tructure for dissemination (e.g. public databases). Due to their indispensability in
modern molecular biology, Section 2.2 will be dedicated to these types of databases.
Like any other methodologies, Large Data biology and their databases come with its
benefits and challenges, a few of them being listed in Table 1.

Large Data science is a relatively new field, and some of its potential and accuracy
are yet to be confirmed in the long-run. The famous example of how Google Flu
Trends could predict the seasonal flu, has, while initially rather accurate, been shown
to overestimate the spread of the seasonal flu by a factor two in later years (Lazer et al.,
2014). Likewise, the sequencing of the human genome has yet to result in the long-

4See also Deming (2018):”...information, no matter how complete and speedy, is not knowledge.
Knowledge has temporal speed. Knowledge comes from theory.”
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standing ambition of a precision medicine tailored towards the individual patient
(Coveney et al., 2016). Contrary to what one might first think, these outcomes are
probably not caused by the complexity of large data volumes; in fact, the challenge of
Large Data biology is that the information volumes contained in contemporary large
biological datasets, are tiny in comparison to the information complexity of biological
systems (Coveney et al., 2016).

This insight aside, the size of e.g. an omics dataset is still massive and difficult to
overview. The human tendency of finding patterns where there are none and other
cognitive biases such as confirmation bias (the tendency to look for results that fits with
preconceived expectations) are challenging in science in general (Boyd and Crawford,
2012; Munafò et al., 2017), and in Large Data in particular. The sheer vastness and
intrinsic random appearance of Large Data make it more vulnerable to biased and
often unconscious analysis. Hypothesis-driven Large Data biology has been suggested
as a countermeasure (Lay Jr et al., 2006).

2.1.3 Programming and bioinformatics for microbiologists

Once a Large Data experiment has been suitable designed and the data has been col-
lected, the central challenge of Large Data biology is in silico handling. This has
thoroughly ushered in a need for biologists to have some level of proficiency in com-
putational biology and programming.

The majority of the state-of-the-art, free-for-academic-use bioinformatics algo-
rithms are implemented in so-called command-line interfaces (text-only terminals
where commands are executed by typing, c.f. IBM DOS or cmd in Windows), and
while this significantly shortens the development time for a new algorithms (no need
to develop graphical interfaces), this implementation demands a lot of computer profi-
ciency from the user (Kumar and Dudley, 2007). These command-line software are al-
most always implemented for use with Unix-systems (e.g. Linux, Mac OS), since this
is an environment that is well suited for handling large files (omics data, for instance,
is normally gigabytes in size) and has a long tradition of powerful command-line com-
mands for file-manipulation (Bradnam and Korf, 2012). Commercial software tend
to have graphical interfaces, but do seldom provide their algorithms (company se-
crets), leading to a less transparent bioinformatics work-flow. An in-between solution
that has proven quite successful is the Galaxy framework (https://galaxyproject.org/;
Goecks et al. (2010)) where many of the above-mentioned command-line tools have
been implemented in a graphical interface to facilitate for users with less experience
in programming. Although the merit of graphical interfaces is clear, as it will de-
crease the gap between the developers (often bioinformaticians and statisticians) and
the end-user scientists (Kumar and Dudley, 2007), a programming knowledge will
open many new possibilities for data analysis as custom scripts are often needed to do
specific operations, and to combine multiple pre-existing software in an automated
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Table 1: Examples of benefits and challenges of biological Large Data experiments and their correspond-
ing databases. Note that the table does not strive to be exhaustive.

Benefits Challenges

Large Data experiments in biology
• Enables ome-wide assessments of the cell

and can thus give holistic/systems views on
cellular phenomena

• Can foster discovery of new correlations
and insights; generates hypotheses that can
be further investigated with complemen-
tary experiments

• Published datasets can be large enough to
be re-used for new research, or as a driver
for new hypotheses (Marx, 2013; Peters et al.,
2014)

• Integration of multi-omics data sets can be
used to create in silico models of the cell
(Heath and Kavraki, 2009)

• The high complexity of the datasets may
encourace scientists to embrace the com-
plexity of the real world, instead of focus-
ing on isolated observations (Leonelli, 2014)

• Current bioinformatics algorithms are ma-
ture and established, and improvements
follow the technical developments of the
field

• Data volume and hetrogenous nature
makes processing, analysis and interpreta-
tion non-trivial and time-consuming

• Typically computationally heavy (due to
the above); requires dedicated infrastruc-
tures and trained users to process and dis-
seminate data (Yin et al., 2017)

• Noisy data (low signal-to-noise ratio);
quality pre-processing is therefore needed
(De Keersmaecker et al., 2006; Del Fabbro
et al., 2013)

• Biological large data needs to be annotated
to make sense, often using complementary
experiments (Prohaska and Stadler, 2011)

• Large data volumes are unavoidably prone
to inexactitude, compared to ”Small Data”
(Mayer-Schönberger and Cukier, 2013)

• Steep learning-curve for running the algo-
rithms; results may be difficult to repro-
duce with alternative algorithms
(Manzoni et al., 2016)

Biological databases
• Organization of large data and bibliomes

improve data accessibility
• Databases are ongoing projects and can

in contrast to published litterature reviews
grow and be improved over time

• Database management systems offers pow-
erful relational tools to connect data; in-
terconnections between databases further
simplifies information discovery

• Can facilitate data standardization by hav-
ing quality and format requirements prior
to upload

• Data sharing increases transparency and
collaboration in science

• Curation is needed and is a bottleneck
(manual labour intensive) (Howe et al.,
2008)

• The maturity of the chosen reference
databases directly impacts the quality of
the bioinformatics analyses (Manzoni et al.,
2016)

• Heterogeneous nomenclatures and data
collection approaches within different dis-
ciplines in biology complicates meta-data
curation (Leonelli, 2014; Manzoni et al.,
2016)

• Large amounts of existing data are unavail-
able (e.g. pre-digital studies and company
owned data) (Leonelli, 2014)

• Needs continuous maintenance and
funding (Bastow and Leonelli, 2010)
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work-flow, a so called pipeline (Leipzig, 2017). This is complicated by the fact that
the output format of a given algorithm is not necessarily compatible with the input
format of the next programme in the pipeline (Marx, 2013), meaning that time has
to be spent on developing custom scripts for converting between formats within the
pipeline.

A few programming languages keep getting recommended for use with biological
data (Table 2). Although there are plenty of debate over which language is the best
– in a similar manner to how people debate which car or which camera is the best
– there is no such thing as an universally superior language; instead they are good at
different tasks (Carey and Papin, 2018). Perl and Python do however have a strong
tradition within the bioinformatics community, and there is an abundance of docu-
mentation, tutorials and previously answered questions available for how to use these
languages in general and in biology (Bradnam and Korf, 2012). Both languages are
”general purpose languages”, meaning that they are versatile enough for many differ-
ent types of applications, and they both handle text well (which is exactly what DNA
data is: a string of text). Perl and Python are so called interpreted languages (as op-
posed to compiled languages, e.g. Java and C++) which means that there is little need
to consider implementation aspects such as CPU and memory allocation, with the
drawback that they are slower (Bradnam and Korf, 2012). Memory-intensive algo-
rithms like genome assembly are thus commonly written in compiled languages. The
terminology for a program created with an interpreted language is script, and hence
scripting is often used as a synonym to programming.

2.2 The importance of biological databases

As has been alluded to throughout this chapter, databases are a necessary infrastruc-
ture for handling, storing and sharing large biological data and is as such an important
driver for biological discovery (Zhulin, 2015). A database can be defined as a collec-
tion of persistent (non-transient) data (Date, 2004) and hence any structured collec-
tion of data, like a library catalogue or a set of spreadsheets can be called a database. In
the current context the word database will be used to imply a computerized database
system, i.e. the hardware and software that connects the data to the user by structuring
it in a systematic way. Benefits of database systems include compactness (no printed
papers and filing cabinets), access speed, data sharing, reduced redundancy and incon-
sistency (e.g. through standardization), data integrity (easy to update data and correct
errors) and data independence (can be accessed computationally from different angles
and needs) (Date, 2004).
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Table 2: List of programming languages and environments that are commonly applied in Large Data
biology (and used in the present thesis work). Adapted from Carey and Papin (2018).

Environment Features/comments

Scripting/programming languages

bash Very common Unix shell/command-line interpreter; needed to navigate
and execute commands in the Unix-terminal; versatile scripting language,
powerful for file manipulation. Essential for work in Unix.

Perl General-purpose scripting language, good for parsing strings (i.e. DNA
sequences, gene annotations, etc.); syntax can be a bit obtuse to read; wan-
ing community; in part succeeded by Python, but many bioinformatics
script is and have been implemented in Perl, meaning that the language
is still very relevant. Dedicated bioinformatics plugins available (BioPerl)

Python General-purpose scripting language; good for string manipulation; can be
used as a scripting languages for webpages; strong community (currently
very popular), dedicated plugins for scientific computing (e.g. numpy,
matlibplot) and bioinformatics available (BioPython)

Maths and statistics environments

Matlab Commercial, but all algorithms are open, large amounts of community
deposited scripts and resources are available

R Open source, community driven development with many bioinformatics
plugins (”packages”) available; popular alternative to Matlab, especially
since there are no licence costs

Database management

SQL Relational database language; ISO standard; many database management
systems that use SQL are available (e.g. MySQL, a popular open source
software). Good for management of large data; the relational model allows
for powerful linking of data, and pattern recognitions in datasets

2.2.1 A growing bibliome leads to a growing database demand

According to a recent bibliometric study, the global scientific output has grown ex-
ponentially between 1980 and 2012 at a growth rate of circa 3% per year (Bornmann
and Mutz, 2015). In addition, the coming of the Internet age has made scientific
literature more accessible for reading, assessing and mining. Although large data first
need to be structured in the files of individual researchers/labs in order to be anal-
ysed in the first place, for data to be shareable and useful, biological databases need
to index the data in ways that allow its users to access it in a comprehensible and
user-friendly way while annotating each data entry with its meta-data (”information
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about information”, e.g. data provenance) and with related data that the user may
want to consider (e.g. linking the known data on the protein to the gene that it is
expressed by). It should also be kept in mind that the bibliome is not only a vessel for
scientific data: the bibliome in itself can be analysed for trends and for forecasting of
innovation and research directions (Which labs? What type of science? How many
citations? How ”hot” is a topic?)(Daim et al., 2006; Watatani et al., 2013).

Databases can be classified as primary databases, where the data is curated from
literature or from direct data submissions from scientists, and as secondary (or meta-)
databases that integrate data from multiple databases into a single platform (Helmy
et al., 2016). Curation is an essential step towards data sharing, as it regulates how
users can find and access the data (Howe et al., 2008), but is a major bottleneck in
database development and maintenance, as it is very manual labour intensive (espe-
cially for primary databases). Although automation is possible to high degrees and
is becoming more advanced (Sehgal et al., 2011), the nature of biological data and
difference in tradition and approach between different biological disciplines makes
it difficult to implement sufficient automatic curation (Leonelli, 2014). Minimum
Information initiatives such as the Minimum Information about a Sequencing Ex-
periment (MINSEQE) (Rung and Brazma, 2013) and the Minimum Information
for Publication of Quantitative Real-Time PCR Experiments (MIQE) (Bustin et al.,
2009), facilitate meta-data standardization and thus potentially data re-use, but has
to be enforced by e.g. journals to reach a higher level of implementation.

Using Leonelli’s model of Large Data journeys in biology, data to be deposited
in a database goes through three curation-depending stages: de-contextualisation, re-
contextualisation and re-use (Leonelli, 2014). De-contextualisation is the process of ex-
tracting data from their original context (e.g. a scientific publication) and formatting
it to the standards of the database; re-contextualization is the process where the data
is becoming available for utilization in new research contexts, which requires good
quality meta-data annotations of the data provenance (e.g. experimental procedures,
measurements or simulations etc.); finally, re-use is when a dataset has passed through
the previous two steps and can be applied to discover new correlations (Leonelli, 2010,
2014). However, most data in biological databases do not reach the re-use phase due
to various reasons, e.g. insufficient levels of curation, meta-data and standardization
in the technologies used to collect the data (Leonelli, 2014).

Data curation is central for de-contextualization and for the annotation part of
re-contextualization. In biology especially, this is complicated by the high degrees
of non-standardized nomenclature and naming conventions (e.g. how gene name
formats differ between model organisms) and changing classifications over time (e.g.
in taxonomy). A countermeasure to this is the implementation of ontologies, a shared
model or vocabulary for a domain of discourse (Munir and Anjum, 2018), with the
seminal one in biology being Gene Ontology (GO) (Ashburner et al., 2000). In
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primary databases, the curators will need to extract the meta-data themselves from
experimental descriptions, which explains the high manual labour, and underlines
that curators need to not only be versed in data science, but also understand the
underlying biology. Annotations can also need to be corrected over time when new
data becomes available, e.g. functions of predicted genes (cf. calA in Paper III).

The biological database that was developed in the present thesis (Paper I) is a
small-scale biological database on microbial lignin valorisation – a growing bibliome
that has not been well indexed due to its many pre-digital publications. It was iden-
tified that the literature of biological lignin valorization consists of two cohorts: one
focusing on the fundamental microbiology of the breakdown of lignin and its related
aromatic compounds, with a legacy from at least the 1960s (Ornston and Stanier,
1966), and a second, more recent focused on applied lignin biovalorization that has
gained a lot of popularity in the recent decade (Abejón et al., 2018). The vast nature
of this bibliome, combined with the many taxonomical re-classifications that have oc-
curred in this niche over more than half a century, and the lack of good pre-existing
database functions for lignin-related microbiology makes this field challenging to
overview. The eLignin Microbial Database (Paper I; www.elignindatabase.com) was
therefore designed to facilitate the navigation of this bibliome by creating a searchable,
self-contained small scale biological database for use for scientists within the micro-
bial lignin community. Since a majority of the papers in this bibliome are pre-digital,
their indexing in eLignin is sometimes their first inclusion in a database system, which
means that their curation demanded extra amounts of manual labour.

It is often relatively easy to establish a biological database – e.g. as a part of a
bigger research project – but quite difficult is to ensure funding for long-term main-
tenance (Bastow and Leonelli, 2010). The post-launch period of a database life cy-
cle is therefore likely to be more challenging than the collection and curation of the
initial dataset, as it will require continuous maintenance and updates; this a point-
of-no-return where a choice has to be made to either ”maintain, update or retire”
the database (Helmy et al., 2016). In the case of the database discussed in Paper I,
the publication of the article served as a way to preserve the state of the database in
2018/2019 and its meta-analysis in printed form, should the future of the database
become uncertain.

2.2.2 Available biological databases

Given how many specialized databases there are and how new appear and some disap-
pear over time, listing all available biological databases is a near-impossible task. One
of the seminal publications on biological databases is the annual Database issue of
Nucleic Acids Research that has published papers on biological databases (including
human biology) since 1993, with the latest total count being 1613 databases (Rigden
and Fernández, 2018). This does however only include databases that have been pub-
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lished in this particular journal and within their inclusion criteria, meaning that the
actual number is higher. For the sake of orientation, a few examples of some of the
more common types of (micro)biological databases are presented in Table 3.

Table 3: A few categories and representative examples within the umbrella concept of biological
databases. Partly adapted from Zhulin (2015).

Category Representative examples Reference

Genome data

International Nucleotide Sequence
Database (GenBank, EMBL, DDBJ)

Cochrane et al. (2015)

MGnify (EBI Metagenomics) Mitchell et al. (2017)

Transcriptome data

NCBI GEO (Expression data) Barrett et al. (2012)

SILVA (small & large
subunit rRNA)

Quast et al. (2012)

Proteome data

Uniprot UniProt Consortium (2018)

RCSB Protein Databank Berman et al. (2000)

Brenda Jeske et al. (2018)

STRING protein-protein
associations

Szklarczyk et al. (2018)

Metabolic pathways
KEGG Kanehisa et al. (2016)

Metacyc Caspi et al. (2013)

Signalling pathways

Quorumpeps Wynendaele et al. (2012)

MiST (Microbial Signal
Transduction database)

Ulrich and Zhulin (2009)

Model organisms

Ecocyc (E. coli) Keseler et al. (2016)

Pseudomonas genome database Winsor et al. (2010)

Saccharomyces genome database Cherry et al. (2011)

Transporters TransportDB Elbourne et al. (2016)

Ontology databases

Gene Ontology Ashburner et al. (2000)

ExPASy-Enzyme
(enzyme classifications)

Bairoch (2000)

Transporter classification Saier Jr et al. (2015)

Bibliome
PubMed Central Roberts (2001)

The eLignin Microbial Database Paper I
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2.3 Large Data in Metabolic Engineering

It has been proposed that after the human genome project was completed in 2001,
biology shifted into a postgenomics era where the link between gene and phenotype
was no longer considered linear, but branched and multifaceted (Perbal, 2015), and
the cell began to be considered not only as a collection of genes and proteins, but as a
tightly regulated system that could only be understood when the cellular networks are
considered as a whole (Kitano, 2002). In parallel with the developments of ome-level
global analysis, genetic engineering also moved towards a more systemic world-view:
metabolic engineering. Metabolic engineering has been described as the ”improvement
of cellular activities by manipulation of enzymatic, transport and regulatory functions of
the cell with the use of recombinant DNA technology” (Bailey, 1991), and normally see
the molecular cell factory as the end-goal (Nielsen and Jewett, 2008). So far we have
discussed the philosophical implications of Large Data biology, what type of data it
regards and how data has to be handled, stored and annotated. This final section of
Chapter 2 will briefly comment on the changes large data has brought to in molecular
biology in general, and in metabolic engineering in particular.

2.3.1 Towards a systemic understanding of the cell

With the advent of high throughput techniques came new incentives to integrate
different datasets to better describe the cell. Thus, the systems biology discipline
emerged, where multi-omics approaches were integrated with the molecular biology
needed to understand the cell, the bioinformatics needed to handle the data, and the
computer science and mathematics to construct in silico models of cellular functions
(Heath and Kavraki, 2009). Whereas systems ideas in biology are not new (proposed
already in the 1950s, albeit in a slightly different form; von Bertalanffy (1950)), the
technological maturation of omics led to a breakthrough for systems biology in the
early 2000s (Powell et al., 2007).

A core value of systems biology is holism (”the whole is larger than the sum of
its parts”), which is in opposition to the traditional reductionist views on molecular
biology (”the whole can be understood by analysis of its parts”) (Fang and Casadevall,
2011). Two different movements have been identified within systems biology: the lo-
calists who are gene- and pathway-centric and reductionist in their approach, and the
globalists that are network-centric and use holism (Huang, 2004; Mazzocchi, 2012)5.
These approaches aside, it should not be interpreted as if molecular biology and phys-
iology has been rendered obsolete by the systems approaches (Gatherer, 2010), since
it is a pre-requisite.

5There are other characterizations of these two movements (reviewed in O’Malley and Dupré (2005)),
but they all seem to agree on that that this dichotomy exists.
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Figure 3: How ”dry” and ”wet” experiments come together in the iterative design-build-test-learn cycle
of metabolic engineering and systems biology. Adapted from Kitano (2002); Petzold et al. (2015);
Nielsen and Keasling (2016). Note how a complementary use of in silico and in vivo methods can
generate hypotheses and, eventually, knowledge.

Common to many projects in both systems biology and metabolic engineering is
the iterative work flow consisting of four phases: design, build, test, learn – with meth-
ods ranging from ”wet” experiments to ”dry” computer-aided analysis, modelling and
design, see Figure 3. The technical challenges of systems biology is largely connected
to the challenges of biological large data (Table 1). Notable examples include uneven
and unstandardized data quality and need for specialized tools to measure intracellular
events at high temporal resolution, preferably at a single-cell level so that population
dynamics can be captured (Aderem, 2005).

2.3.2 Data-intensive drivers in systems metabolic engineering

While the scope and ambition of systems biology is grand – e.g. to reach comprehen-
sive systems understanding of the cell that can be demonstrated as a functional in silico
model of the cell (Powell et al., 2007) – not all systems approaches need to be exten-
sive. For instance, data-intensive systems biology methodologies are often combined
with metabolic engineering – sometimes referred to systems metabolic engineering –
where large scale data are used to drive discoveries of new gene targets (Blazeck and
Alper, 2010; Lee et al., 2012) and convey forward momentum to metabolic engi-
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neering projects. Although algorithms and bioinformatics speed up the engineering
work-flow, they require specialist knowledge and thus call for multi-disciplinary re-
search teams.

Given its foundational role in the central dogma and the maturity of its tech-
niques, the genome is the focal point of systems biology and metabolic engineering.
Some genome-based methodologies in this discipline include: metabolic pathway re-
construction, genome scale models, flux balance analysis and reverse engineering of
evolved strains. Pathway reconstruction is the process of identifying the nodes of a
metabolic pathway (i.e. the enzymes) from assembled genomes and other biochemical
data (Schuster et al., 2000; Pinzon et al., 2018). Depending on the size of the path-
way and previous knowledge from other organisms (such as homologies and known
reactions), reconstruction can be small undertaking that can be done manually using
simple tools such as BLAST, or large projects requiring dedicated pipelines such as the
KEGG database annotation server (Moriya et al., 2007). Pathway reconstruction was
performed in Papers II-III in the present thesis work, where two so-called funnelling
pathways for aromatic degradation in two bacterial species were proposed, based on
their assembled and annotated genomes (cf. Chapter 3).

When pathway reconstructions of a given organism reach a critical, systemic level,
they can be used to produce genome scale models (GEMs) that can be used to math-
ematically model the biological functions of that cell (Palsson, 2015). For a GEM
to reach this level of sophistication, substantial fundamental knowledge is needed
from the system (knowledge-base). At the core of a GEM is a matrix that contains
the stoichiometry of every reaction of the reconstructed pathway. The large size of a
cell-wide stoichiometric matrix makes the system unsolvable unless constraints (i.e.
system boundaries) are put on the system, a method known as constraint-based mod-
elling (Palsson, 2015). Luckily, the cell naturally operates under a number of con-
straints (e.g. environmental, physico-chemical, evolutionary and regulatory) (Covert
et al., 2003) and many values that are mathematically possible are invalid in biolog-
ical systems, such as negative or infinitesimally large concentrations. The models are
typically evaluated using Flux Balance Analysis (FBA), where the fluxes in the system
are estimated using constraint-based linear algebra (Pinzon et al., 2018). Historically,
GEMs have been good at modelling well-known pathways (e.g. aerobic growth on
glucose) to the extent that they can be verified by experimental data (Feist et al., 2007;
Liao et al., 2011; Lopes and Rocha, 2017), but since all GEMs are reconstructions
of the current knowledge of an organism, there will always be pathways that are less
known or incomplete and thus result in inaccurate predictions (Orth and Palsson,
2010). GEMs have many potential applications in metabolic engineering, including
analysis of deletions and gene up-/down-regulation, engineering target identification
and pathway prediction (Kim et al., 2015; Palsson, 2015).

Another genome-centred methodology in metabolic engineering is to subject re-

20



combinant strains to Adaptive Laboratory Evolution (ALE) to attempt to generate
new and improved phenotypes through prolonged exposure to selection pressures
(Dragosits and Mattanovich, 2013). Evolution will likely result in mutations related
to the new phenotype, but also in an amount of un-related mutations that can po-
tentially be detrimental to the scope of the strain design (e.g. decreased fitness and
altered morphology). It is therefore often of interest to identify the relevant mutations
of the evolved strain and introduce them in the parent strain (so called reverse engineer-
ing) to prove that the putative mutations cause the novel phenotypes, and to decrease
the burden of all the non-desired mutations (Oud et al., 2012; Dragosits and Mat-
tanovich, 2013).Identification of key mutations correlated to the novel phenotypes
is a non-trivial task, but can be approached by the use of comparative genomics and
variant calling (cf. Chapter 3.4; Paper IV).

There are also Large Data approaches beyond the metabolic pathways and the
genome. An example in the present work is network monitoring of the sugar sig-
nalome (Paper V-VI), where a panel of in vivo biosensors were constructed to monitor
the cellular response in S. cerevisiae to sugars, using a single-cell flow cytometry ap-
proach. Commonly, the signals from 10 000 or 100 000 cells were collected, which
presents a data management challenge that is very similar to that of omics. The find-
ings of the signal network monitoring can further be applied to improve the response
of a cell factory to a desired production, an example of which was reported in Paper
VIII.

With the current chapter as a theoretical and philosophical springboard, the next
two chapters will detail how genomics and signalomics can be used to increase the
(systems) level understanding and apply that for building improved microbial cell
factories. 
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The only thing that is constant is change

A common misquote of:

Everything changes and nothing stands still
[πάντα χωρεῖ καὶ οὐδὲν μένει]

HERACLITUS OF EPHESUS
(As quoted by Plato in Cratylus, 402a)



Chapter 3

A closer look at genomics

The importance of DNA sequencing for biology can hardly be exaggerated. In fact,
most of the Large Data biology discussed in the previous chapter would not have ex-
isted without sequencing. Like how the genome is the foundational ome of the cell
(Figure 1), genomics is a requisite for modern biology. Whereas pre-cloning genetics
was concerned with observing phenotypes and looking for the responsible gene, mod-
ern genetics often reverse the process by altering genes and observing the phenotypes
(Brenner, 2000). Genomics have over the years expanded into different specialized
research areas with different levels of integration with data from higher omics, such
as metagenomics (Handelsman, 2004), structural genomics (Grabowski et al., 2016),
functional genomics (Werner, 2010) and epigenomics (Fazzari and Greally, 2004),
to name a few. The present chapter will focus on the ”original” aspect of genomics,
namely that of whole-genome sequencing (WGS). It will in particular discuss the im-
plications of the recent technological advancements in the field, the different options
for assembly of the sequencing data (reads) and how WGS can be used to compare
the genomes of multiple organisms (comparative genomics). Since the terminology of
genomics can become rather complex, key concepts will be explained in footnotes,
and in a glossary available in Appendix I.

3.1 Timeline of Whole-genome sequencing methods

Just as important as it is to know the provenance of data (cf. Section 2.2), is the
provenance of the techniques used to generate it. There are currently three generations
of DNA sequencing available, and interestingly enough, all of them are still in use,
thanks to their specific strengths and cost requirements.

3.1.1 First generation sequencing

The establishing method for DNA sequencing was the chain termination method (or,
more commonly: Sanger sequencing) that uses a DNA polymerase, deoxynucleotides
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(dNTPs) and elongation-terminating labelled dideoxy-nucleotides (ddNTPs) to de-
termine sequence composition (Sanger et al., 1977b). Incorporation of a ddNTPs
inhibits the strand elongation, and the base-pair can be measured thanks to its la-
bel, so called sequencing-by-synthesis (Heather and Chain, 2016). The first sequenced
genome, that of bacteriophageΦX174 (5386 bp) (Sanger et al., 1977a), was obtained
with the plus and minus method, which was the precursor to the chain termination
method (Sanger and Coulson, 1975). However, Sanger sequencing of larger genomes
is laborious, since it has low throughput and each read (raw nucleotide sequence) is
at most 1kb in size (Heather and Chain, 2016). The landmark WGS projects that
demonstrated the concept of WGS during the 1990s had to utilize variations of the
shotgun sequencing approach, where the genome was fragmented, the fragments cloned
into vectors, sequenced individually, and then assembled6 in silico to longer contigu-
ous sequences (contigs7) (Oliver et al., 1992; Fleischmann et al., 1995; Fraser et al.,
1995; Lander et al., 2001; Venter et al., 2001). These projects notably required the
combined efforts of multiple labs and took years to complete, which is evident from
the very long lists of authors on the resulting papers (cf. Reference section).

The first fully sequenced organism was Haemophilus influenza Rd with a genome
size of 1.8 Mbp (Fleischmann et al., 1995), closely followed by Mycoplasma genitalium
G37, one of the smallest known genomes at 0.58Mbp (Fraser et al., 1995). A year
later followed the first sequenced eukaryote genome with baker’s yeast Saccharomyces
cerevisiae; 12Mbp (Goffeau et al., 1996), using strains isogenic to the now standard
reference genome S288c (Engel et al., 2014). Around this time, genome sequencing
really started to get moving, and a dozen of genomes were released or were underway
of release (Goffeau et al., 1996). Famously, the human genome project HUGO was
completed in 2001 at a size of 2910 Mbp (Venter et al., 2001).

3.1.2 Second generation sequencing

Soon after the human genome project was completed, high-throughput sequencing
methods began to emerge. To differentiate them from (Sanger) Shotgun sequenc-
ing, these methods are often referred to as Second Generation Sequencing or by a
number of other names: Next Generation Sequencing (NGS), MPS (Massive Par-
allel Sequencing) and HTS (High-throughput sequencing). Here MPS will be used
to refer to the second generation, whereas HTS will be used to refer to post-Sanger
methods in general (i.e. both the second and third generation).

6Assembly: the process of compiling a longer sequence (e.g. a whole-genome sequence) from smaller
sequences (reads). Can be done with or without a template genome (reference assembly and de novo
assembly, respectively).

7Contig : short for contiguous sequence. A coherent sequence of DNA that is generated in an assembly
by piecing together overlapping reads, supported by high confidence levels. Assemblies commonly
consists of multiple contigs.
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The first HTS method was the today often forgotten Massively Parallel Signature
Sequencing (MPSS) method by Lynx Therapeutics (Brenner et al., 2000), that due to
high costs never saw a market breakthrough (McPherson, 2014). Instead, the advent
of second generation sequencing is normally considered to be five years later in 2005,
when the 454 pyrosequencing platform was commercialized (Margulies et al., 2005;
Kircher and Kelso, 2010). Many different MPS methods followed suit, and quickly
led to a dramatic decrease in the cost of sequencing (Figure 4) and the time required
for a WGS run (Kircher and Kelso, 2010). The price drop is fitting with the long-
standing dream of the $1000 human genome set up by The National Institutes of
Health (Anderson, 2004). Illumina claims to have reached this goal (McPherson,
2014), but as has been pointed out, these estimates only account for the cost of the
sequencing run, and not for the costs of data management, storage and downstream
bioinformatics, which can be substantial (Sboner et al., 2011). MPS is also the reason
for the explosion of WGS-data in the mid-2000s (cf. Figure 2, Chapter 2).

Among the many competing MPS methods (for a review see e.g. Goodwin et al.
(2016)), Illumina emerged as the dominating technique, holding 60% of the market
share in 2013 (Mohamed and Syed, 2013; McPherson, 2014), which can be explained
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Figure 4: The cost (USD) of sequencing per Raw Megabase since 2001, as determined by the NIH
(National Human Genome Research Institute), adapted from (Wetterstrand, 2017). Moore’s Law de-
scribes how the number of transistors in an integrated circuit historically have doubled at a more or less
fixed rate of ~2 years, but can be used to describe other technologies as well (Mack, 2011; Sboner et al.,
2011). Technologies that develop according to Moore’s law are regarded as well performing (Wetter-
strand, 2017), and since the advent of High Throughput Sequencing in the mid-2000s, the cost per
mega-basepair has greatly outdone Moore’s Law.
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by their reasonable (MPS) read length, high throughput and low cost (Schirmer et al.,
2015). Given the strong presence in the field and the fact that it was the MPS method
of choice for this thesis work (Papers III-IV), a detailed description of the Illumina
method can be found in Box I.

Typical for MPS methods is that they generate much shorter reads (e.g. Illumina:
150-250bp in paired-end mode8) than traditional Sanger sequencing (~1kb) and with
higher base calling9 error rates (Goodwin et al., 2016). The PCR amplification steps
in the library preparation and cluster amplification contribute to the increased error
rates and amplification bias (Schadt et al., 2010). To compensate for the error rate,
MPS assembly requires higher redundancy for each base (coverage10) in order to pro-
duce assemblies with sufficient confidence, meaning that each fragment needs to be
sequenced multiple times (so called genome oversampling) (Schadt et al., 2010; Sims
et al., 2014). Theoretically, coverage (c) is a the average read length (L) times the
number of reads (N ) over the haploid (one copy of each chromosome) genome size
(G), c = L ∗ N/G, meaning that a desired coverage can, to a certain extent, be set
by adjusting instrument parameters (Sims et al., 2014)).

3.1.3 Third generation sequencing

The many developments in sequencing instrumentation since the arrival of MPS make
it clear that the latest HTS methods belong to a third generation of sequencing (TGS).
What criteria that differentiates this from the second generation has been a subject of
debate, but a common argument is the method should be capable of single molecule
real time sequencing, i.e. inspection of the DNA template without the need for PCR
amplification (Schadt et al., 2010; Heather and Chain, 2016).

Two main TGS methodologies have currently emerged, PacBio SMRT (single-
molecule real-time) and Oxford Nanopore, that both come with the selling point of
being able to produce dramatically longer reads than the generations of sequencers be-
fore them (Pacbio: ~10kb; Nanopore: claims to have achieved >150kb reads) (Good-
win et al., 2016; Jain et al., 2016). For in-depth descriptions of these two methods,
please see e.g. (Eid et al., 2009; Jain et al., 2016). The longer reads facilitate de novo
assemblies (Heather and Chain, 2016) and make it possible to resolve regions that
are otherwise difficult to determine; but like MPS methods, these TGS methods still
have problems with repeats (Liu et al., 2017). Also, these methods have high error
rates (~15%, compared to <1% of Illumina) (Berlin et al., 2015; Goodwin et al.,

8Paired-end refers to the sequencing of a DNA fragment from both directions (Lander et al., 2001). See
Box I for a description of paired-end Illumina sequencing.

9Base calling : the process of determining the identity and order of nucleotides during the sequencing.
10Coverage: the average number of sequenced fragments (reads) that support a certain nucleotide posi-

tion. For example, a coverage of 30x means that on average, each position in the contig was supported
by 30 overlapping reads.
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2016), which means that special experimental and computational considerations are
needed. For instance, since errors in PacBio are random, the DNA fragments can be
re-sequenced during the same run to correct for base calling errors (Rhoads and Au,
2015; Liu et al., 2017) – a standard approach for PacBio SMRT, called circular con-
sensus sequencing (Eid et al., 2009; Goodwin et al., 2016) – or combined with MPS
data (short-read, but lower error rate) in so-called hybrid assemblies (Bashir et al.,
2012; Koren et al., 2012; Goodwin et al., 2015) to compensate for the error rate.

PacBio is the slightly older and more established of the two methods and thus
more widely-used (Goodwin et al., 2016) and it was the methodology that was used
for the sequencing described in Paper II. The principle for de novo assembling SMRT
data is similar to that of MPS data, although special algorithms are needed to handle
the error rates (Berlin et al., 2015).

3.2 Considerations for genomics experiments

The current maturity and low cost of the WGS allows genomics to be more exten-
sively used to investigate specific research questions. WGS can in principle be done
in two ways: either by de novo sequencing (Papers II-III) or resequencing (Paper IV).
As the name implies, de novo means that a genome is determined and assembled with
sheer computer power without relying on a previous template assembly, whereas re-
sequencing consists in using the reads to determine a sequence (and its variants11)
relative to a pre-existing reference sequence (Gabaldón and Alioto, 2016). Note that
reference sequences can also be used for reference-guided de novo assembly (Lischer
and Shimizu, 2017), as a final step for reordering de novo contigs in biologically rel-
evant order (Del Angel et al. (2018); Paper III), or to resolve genetic material not
present in the reference (Paper IV).

It should be kept in mind that, contrary to what the name Whole Genome Sequenc-
ing implies, an assembly is always smaller and more fragmented than the biological
genome, due to various difficult-to-sequence or difficult-to-assemble regions (Keller
and Meese, 2015), including those with very high or low GC content (GC bias) and
complex repeats such as transposons (Chen et al., 2013; McCoy et al., 2014) –in
principle: if a repeat is longer than the read length it will be difficult to assemble
(Berlin et al., 2015). For most research applications, this incompleteness (often rang-
ing around a few percent; Wetterstrand (2017)) will not be an issue, since the men-
tioned problematic loci are assumed to be found in non-coding regions. Furthermore,
all genome assemblies, both draft and finished, will contain assembly errors, and man-

11(Sequence) variant: general term for changes in a sequence compared to a control sequence. Seman-
tically similar to mutation, but the term variant is preferred until experimental evidence is in place.
Variants can be synonymous (silent; no change in the polypeptide) or non-synonymous (non-silent;
changed polypeptide).
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Box I: The Illumina MPS method
Illumina uses a sequencing-by-synthesis method known as cyclic reversible termi-
nation (Goodwin et al., 2016). The process consists of three steps: library prepa-
ration, cluster amplification and sequencing-by-synthesis (Quail et al., 2008),
Figure B1.

The library preparation serves to make the DNA compatible with the Illu-
mina flow cell, a glass slide with a high density of covalently bound oligonu-
cleotides (Metzker, 2010). The DNA sample is fragmented (typically in pieces
of 0-1200 bp) and adapter oligonucleotides complementary to those on the flow
cell – as well as universal sequencing primer binding sites and barcodes – are lig-
ated in the 5’ and 3’ ends. The adapter-fragment library is filtered by size to select
for the optimal template size of the method (200-300bp) and the selected range
is PCR amplified (Quail et al., 2008; Kircher and Kelso, 2010; Aird et al., 2011).
Transposases capable of simultaneous fragmentation and adapter ligation have
been developed to speed up library preparation (Caruccio, 2011). The library is
denatured and the single-stranded fragments (ssDNA) are loaded on the flow cell
and immobilized by hybridization to the surface oligonucleotides (Kircher and
Kelso, 2010).

In the next phase, the cluster amplification, the adapter in the free end of
the strand hybridizes to complementary adapters on the flow cell (Fig B1-1). A
complementary strand is amplified (Fig B1-2) and the original hybridized frag-
ment is washed away. The adapter end of the complement strand hybridises to
another adapter on the flow-cell and forms a bridge (Fig B1-3). The template
is amplified (bridge amplification) and denatured (Fig B1-4), resulting in two
copies of the fragment that both are attached to the flow cell by their respective
adapter (Kircher and Kelso, 2010; Goodwin et al., 2016). This process is repeated
to achieve high density clusters with several thousand copies of the template in
close proximity (Fig B1-5), and is done for each fragment in parallel (Kircher and
Kelso, 2010). The cluster amplification ends with the cleaving and washing out
of the reverse strands of the templates (Figure B1-6), forming high density clus-
ters of forward strand ssDNA (Fig B1-6). It has been approximated that Illumina
cluster amplification results in 100-200 million template clusters across the flow
cell (Metzker, 2010).

The first round of sequencing is done with the forward strand ssDNA clus-
ters on the flow cell and will result in forward direction reads. Like in Sanger
Sequencing, primers and fluorescent-labelled nucleotides are added, and each
correct nucleotide incorporation results in a nucleotide-specific colour (one for
each of the four dNTPs) that is imaged, the fluorophore is removed, and the
process is iterated (Kircher and Kelso, 2010; Goodwin et al., 2016). Due to the
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formation of multiple clonal clusters on the flow cell, each fragment can be se-
quenced in parallel, hence the name Massive Parallel Sequencing.

Sequencing reads in general, and MPS reads in particular, are shorter than the
fragments they amplify. To improve MPS downstream bioinformatics (especially
assembly), so called pair-end sequencing can be used to increase the information
yielded from each fragment by basically sequencing each fragment from both
directions. Therefore, after the first read has been produced, the sequencing pro-
cess is repeated one more time but with the reverse strand as the template, which
results in two sequences per DNA fragment with a known distance from each
other (Quail et al., 2008). Paired-end data typically leads to better assemblies as
ambiguous regions can be better resolved with the information from paired-reads
compared to single reads.

-Genome fragmentation
-Adapter hybridization
-Fragment size filtering
-Library PCR amplification

-Incorporation of fluorescent 
reversible terminator nucleotides
-Removal of fluophores and blocking groups
-Iteration

Iterate

Flow cell clusters Iterate step 3-4

Library preparation

Cluster amplification

Massive Parallel
Sequencing-by-synthesis

Raw reads

1 2 3

6 5 4

Figure B1: Schematic overview of the Illumina sequencing process. The work-flow consists of three
steps: library preparation, cluster amplification and sequencing-by-synthesis. Library preparation
serves to ligate sequencing adapters to a fragmented DNA sample and select and amplify an optimal
template size. Immobilized clusters are generated across the flow cell in high density by bridge-
amplification (Blue = forward strands; Red = reverse strands). The actual sequencing is similar
to the chain-termination method in that fluorophore-labeled nucleotides are incorporated by a
polymerase one base at a time. However, as the name Massive Parallel Sequencing implies, this is
done simultaneously for all clusters on the flow cell, and imaged in real-time.
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ual and/or computational validation is very time consuming (Phillippy et al., 2008).
Should more completeness be required, hybrid assembly approaches combining short-
and long-read methods (e.g. Illumina-PacBio, Illumina-Sanger) will be needed (Bashir
et al., 2012; Koren et al., 2012).

Central to a good genomics experimental design is to consider the bioinformatics
early in the planning stages. De novo sequencing is a difficult scientific and mathemat-
ical problem (Pop and Salzberg, 2008; Baker, 2012), and if there is a reference genome
available it will facilitate the process and the downstream analyses. If not, de novo as-
sembly will have to be used. Resequencing is suitable for most types of comparative
approaches such as SNP- and structural variants discovery and genotyping (Olson
et al., 2015), and amplicon sequencing (Heyduk et al., 2016). Bacterial assembly is
generally more-straightforward than its eukaryotic counterpart due to their haploid
nature. With increased ploidy comes the complexity of multiple alleles, which affect
both assembly and variant calling12. As a rule of thumb, higher ploidy requires higher
coverage (Margarido and Heckerman, 2015), e.g. in order to statistically estimate if a
sequence variant is found in only some or in all alleles (hetero- and homozygous vari-
ants13) (Delaneau et al. (2013); Paper IV). For WGS applications with MPS data,
30-60x coverage are normally sufficient for most applications, with the exact depth
depending on the application (de novo assembly and variant calling requires higher
coverage) (Bentley et al., 2008; Desai et al., 2013; Fang et al., 2014). It is also im-
portant to assess the uniformity of coverage, i.e. the variation in coverage across the
genome (Sims et al., 2014). The MPS requirements can be compared to the 6-8x cov-
erage used for the Sanger shotgun WGS of the human genome (Lander et al., 2001),
which was possible due to the lower error rate of the method.

Since DNA in general is very stable (in terms of e.g. half-life, mutation rate),
only one technical replicate is normally needed for genomics studies, which can be
compared to transcriptomics, where the transient nature of mRNA means that a high
number of biological replicates are needed to reach statistically appropriate analyses
(Schurch et al., 2016). The number of biological replicates needed, will however be
dependent on the research question of each project, with comparative approaches and
population studies requiring more biological replicates.

The choice of sequencing platform also determines the downstream applications.
As could be expected of their different sequencing chemistry, some instruments are
better suited to some tasks than others. In short it can be said that data from methods

12Variant calling : The process of determining variants. Usually done by mapping reads to a reference
sequence and identifying statistically supported sequence variants.

13Haplotype estimation: A method to infer the sequence of alleles in polyploid genomes (more than one
copy of each chromosome), e.g. from sequencing reads. Can be used in connection with variant
calling in polyploid organisms to determine the allele frequency of the variants (homozygous and
heterozygous variants). Also known as haplotyping or haplotype phasing.
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that produce longer reads will be easier to process than those with shorter reads (e.g.
less coverage needed), but the error prone nature of current long-read methods (HTS)
is a drawback that require specific design considerations (Berlin et al., 2015). Also,
HTS methods are currently more costly than their MPS counterparts. Sometimes,
it can be considered altogether to use alternative DNA strategies instead (microarray,
qPCR) instead of HTS (Goodwin et al., 2016; Lavín et al., 2017).

3.3 Assembly, read mapping and annotation

Whereas sequencing itself used to be the bottleneck in genomics, with HTS the bioin-
formatics needed to assemble the genome has become the new bottleneck (Gabaldón
and Alioto, 2016). Assembling and mapping genomes from HTS reads is like solving
a jigsaw puzzle, only that each piece comes in multiple, semi-redundant variants and
that some pieces are missing altogether. The nature, volume and complexity of the
data demand computational support, meaning that genome assembly is done using
a number of established algorithms developed by specialist bioinformaticians. Biolo-
gists working with Large Data, however, should be more concerned with the hands-
on work on to assemble a genome, which is to run series of sequential algorithms (a
pipeline14) and tweak their parameters and settings depending on the characteristics
of the in-data. This is a complex task in itself that requires knowledge about the ex-
pected outcome of each algorithm and the data formats they use. This section will
therefore focus on points that the Large Data biologist needs to know, and less on the
mathematical basis of the assembly and alignment algorithms.

3.3.1 Pre-processing: data quality control and filtering

The first step in any assembly work-flow (de novo or not) is to assess the quality of
the data and adjust or filter bad reads. An abbreviated example of typical MPS data
is show in Figure 5, stored in the standard FASTQ-format. FASTQ is based on the
common FASTA format for DNA sequences (Pearson and Lipman, 1988) but in ad-
dition to the sequences of all the reads, FASTQ also stores read quality information
generated by the sequencing instrument (Figure 5-L4) (Cock et al., 2009), which
allows for filtering the data after the run has been completed. MPS read quality is
measured in the PHRED-score15 which gives the probability of an incorrect base call

14Pipeline: A computational work-flow consisting of a set of software combined in a chain; for instance,
the scripts and algortihms needed to run the assembly workflow in Figure 6. Normally consists of a
number of different programs that need to be connected, often by adapting the output format of one
program to fit with the input format of the next.

15The PHRED-score is the base calling quality expressed as the probability of an incorrect base call in a
given sequence. A score of 30 corresponds to a probability of 1 incorrect base call in 1000 bases, and
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...
@M00941:66:000000000-A4R0K:1:1101:15411:1518 1:N:0:2
TTCAGAGAAAATGAGTGGATAAGAGGGGGAAACAGCTCAGTTTCTT 
+
1>11131BFFCFGGBGGCBGGFFGFHGGCEGHHHGFFHGGHHHHHH 
@M00941:66:000000000-A4R0K:1:1101:15461:1551 1:N:0:2 
TTGCACAAGAGTACATTGTAAGTGAATTGGACGATGTTTTCTTACCA 
+
1>1>AD1>?CFFGGGGGGGGGGGHHHHHGHHHGGGGHHHHHHHH 
@M00941:66:000000000-A4R0K:1:1101:15642:1557 1:N:0:2
GTAATACCTGAGCACTTACTAAAATTCGACAATTGGATGTTGGAAGG  
+
3>A?AFFFFDFFGGGGGGGGGGHHHHHGHGGGHHHHHHHHHHHHH
...

...

...

...

...

...

...

L1: Sequence identifier
L2: Sequence
L3: Optional information
L4: Quality information

Figure 5: Example of a FASTQ-file containing raw data from an Illumina MPS run (here: Paper IV data
for S. cerevisiae ISO12; SRA accession number: SRR2002960). Each read has four lines of information
(L1-L4), with the second and fourth line containing the sequence and its quality data. The figure has
been truncated horizontally and vertically as indicated by the red ellipses. This particular file contains
the forward reads of a paired-end run that together with the reverse reads sum to over 12 million reads
(~4 GB total file size), illustrating that genome assembly is a demanding computational task.

(Cock et al., 2009). Low quality can e.g. be caused by method-dependent amplifica-
tion biases during the library preparation and the sequencing run (Aird et al., 2011;
Nakamura et al., 2011), or by accidental sequencing of the adapter sequences or PCR
primers (Bolger et al., 2014). The 3’-ends of the reads tend to accumulate errors as
well (Kelley et al., 2010). The removal of low quality bases is known as trimming,
and can be done with a number of algorithms such as trimmoatic and sickle (Bolger
et al., 2014), and has been shown to be beneficial for assembly and variant calling
(Del Fabbro et al., 2013). MPS primers and adapters are normally made public by
the instrument manufacturers and can thus easily be found and removed (trimmed).
Furthermore, thanks to the coverage redundancy in MPS, read errors can be corrected
by substituting low coverage k-mers16 (substrings of a read with size k) with those of
higher coverage (Kelley et al., 2010). Finally, reads can be filtered out completely if
they do not pass the desired quality threshold (Bolger et al., 2014).

3.3.2 De novo assembly

At its core, de novo assembly algorithms attempt to assemble a series of longer se-
quences (contigs and scaffolds17) from reads by finding redundant overlap. Since this
is a non-trivial mathematical problem (Pop and Salzberg, 2008), an assembly pipeline
(Figure 6) needs to include a number of iterative quality control (QC) steps.

a score of 40 (preferred threshold) corresponds to 1 in 10000.
16 See Box II for a short description of k-mers and de Bruijn graphs.
17Scaffold : A colletion of contigs and gaps that together describe a longer portion of a genome sequence.
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Early MPS assemblers used greedy algorithms to select which reads to merge by
always going for the overlap with the highest score (Miller et al., 2010), but was
e.g. prone to misassembly (chimeral contigs) in repeat regions (Schatz et al., 2010).
Nowadays the methods dedicated for short-read assembly are typically based on so-
called de Bruijn graphs16 for k-mers (Schatz et al., 2010; Compeau et al., 2011). The
choice of assembly method is thus largely dependent on read length, which in turn
is dependent on the method used to generate the reads. For bacterial MPS data, Vel-
vet (Zerbino and Birney, 2008) has long been considered one of the best assemblers
(Edwards and Holt, 2013), but have in some regards been surpassed by the newer
algorithm SPAdes (Bankevich et al. (2012); used in Paper III), as indicated by bench-
marking tests (Magoc et al., 2013; Al-okaily, 2016). Later versions of SPAdes are also
capable of hybrid assembly of short and long reads (Antipov et al., 2015).

De novo assemblies are contingent on quality control – possibly more so than re-
sequencing assemblies – since inaccuracies in the assembly will affect the downstream
assessments (Berlin et al., 2015). Quality assessment of an assembly can be done with
a number of different metrics, including the number of contigs, how many contigs
needed to describe 50% of the assembly when the contigs have been sorted by order
of descending length (L50), the size of the smallest of the sorted contigs that describe
50% of the assembly (N50), CG count, and the number of aligned bases and mis-
assemblies compared to a reference genome (if available) (Gurevich et al., 2013). As
a rule of thumb: the fewer and longer contigs/scaffolds, the better the assembly. A
popular quality control (QC) algorithm for assemblies is QUAST (Gurevich et al.,
2013).

Assemblies can potentially be improved computationally be re-running the assem-
bly with altered parameters or by gapfilling algorithms. The latter strives to resolve
gaps within contigs to reduce the number of ambiguous bases (Boetzer and Pirovano,
2012), see Figure 6. Algorithms such as Gapfiller, Sealer and AlignGraph use the
paired-end reads from the in-data to try to resolve gaps, the latter also capable of us-
ing closely related reference genomes (Boetzer and Pirovano, 2012; Bao et al., 2014;
Paulino et al., 2015). Finally, once a the user is pleased with the assembly metrics, it
is useful to reorder the otherwise randomly ordered contigs/scaffolds in a more bio-
logical relevant order with the help of a reference genome (Edwards and Holt, 2013);
this can e.g. be done with Mauve (Darling et al., 2004).

3.3.3 Resequencing examples: read mapping and variant calling

Resequencing is the alternative approach to de novo assembly and relies on align-
ing the reads to a previously assembled reference genome (read mapping). Following
pre-processing, the reads are aligned to the reference genome using an alignment al-
gorithm. Commonly utilized algorithms include bowtie (short reads; Langmead and
Salzberg (2012)), BWA (short reads; Li and Durbin (2009)) and blat (long reads; Kent
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Iterate if needed
(parameter tweaking)

Indata (reads) Pre-processing and quality control (QC)

de novo assembler

QC on contigs/scaffolds

Draft assembly (contigs/scaffolds)

Gap filling
(ATCGNNNNNNTGAC)

Sorting of scaffolds to reference genome
(if one is available)

“Final” assembly

Figure 6: Overview of the work-flow used for the de novo assembly in Paper III, based on recommenda-
tions from (Edwards and Holt, 2013). The final assembly should be considered as ”final” in quotation
marks, since it can always be improved by e.g. resequencing or hybrid assembly approaches. Gaps and
ambiguous bases are represented by N. For this particular assembly, a reference sequence from a related
Psedomonas species was available, but this is not always the case.

(2002)). Alignments are stored often in SAM format (called BAM when compressed)
(Li and Durbin, 2009). Alignment data can be used for many different applications,
for instance to calculate phylogeny (Paper II-III) and detect sequence variants (Paper
IV).

Sequence variants can roughly be classified in three types based on their length:
Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs) and
structural variants (e.g. copy number variations, duplications and translocations),
each of which tend to require their own specialized algorithms (Xu, 2018). SNP and
INDEL calling is done from SAM alignments, with popular software packages being
SAMtools (Li et al., 2009b) and GATK (McKenna et al., 2010). Both are probabilistic
variant callers that calculate a likelihood of a genotype at each base (Mielczarek and
Szyda, 2016). Human genome data has the benefit of SNP databases that can use
known SNP data to help the prediction (Sherry et al., 2001), but that is seldom the
case for microbial data. A sequencing error in an isolated read is indistinguishable
from a sequence variant, and therefore sufficient depth of coverage is needed in variant
calling (Sims et al., 2014). Due to the high occurrences of false positive and false
negative calls, the variants needs to be filtered to remove low quality calls, which can
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be done with SAMtools and GATK (Altmann et al., 2012). The final step of a variant
calling pipeline is to annotate18 the variants in order to facilitate interpretation and
to predict the effects of non-synonymous variants (Altmann et al., 2012). The UCSC
Genome browser is a good tool for annotation and variant effect prediction, but it
only supports a few model organisms (Rosenbloom et al., 2014). It can also be noted
that variant calling can be made from de novo assemblies, but since an assembly is a
consensus sequence with coverage 1x, it is statistically less strong than read mapping
(Olson et al., 2015).

3.3.4 Annotation: predicting and identifying open reading frames

The value of a genome sequence has been associated to the quality of its annotation
(Stein, 2001). Since ”complete” annotation requires molecular biology evidence of
gene expression and function, most annotated genes are putative. This is not a draw-
back per se as tentative ORFs and their potential sequence variants can be a good
fuel for hypothesis generation. An example is the draft pathway reconstruction and
gene cluster/operon discovery discussed in Paper II which could correlate putative
ORFs with growth phenotypes, and thus paves the way for future studies on aromatic
catabolism in Gram-positives.

Annotation can be divided in two categories: structural (identification of genetic
features, e.g. ORFs, ribosomes, CRISPR repeats, transposons) and functional (at-
tachment of meta-data to structural annotations) (Yandell and Ence, 2012). Whole
genome annotation is highly dependent on computational approaches, and contrary
to e.g. assembly and variant calling where the user commonly builds a custom pipeline
suited for the project, genome annotation normally needs to be done with established
pipelines (Tatusova et al., 2013) that combine ab inito predictors (mathematical ap-
proach) and evidence-driven predictions (e.g. alignment with data from related or-
ganisms) (Yandell and Ence, 2012; Tatusova et al., 2013).

Prokaryotic automated genome annotation is quite mature and benefits strongly
from the high number of sequenced and annotated bacterial genomes that are avail-
able today (Tatusova et al., 2013). Examples of common prokaryote pipelines in-
clude SEED/RAST (Overbeek et al., 2013), Prokka (Seemann, 2014), and the NCBI
prokaryotic genome annotation pipeline (PGAP). PGAP is developed by and inte-
grated within the NCBI databases, and thus has intrinsic access to the largest nu-
cleotide database worldwide (Tatusova et al., 2013). PGAP was the choice of anno-
tation pipeline for Papers II-III. A downside of PGAP is that it can only be run on
request when uploading a genome to the NCBI, but since it is considered best-practice
to upload assemblies to Genbank prior to submission of manuscripts to journals, this

18Annotation: the process of predicting and identifying features in a nucleotide or amino acid sequence.
Genome annotation can be used to identify features such as genes, rRNA, etc.
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Box II: k-mers and de Bruijn Graphs
Many modern genome assembly algorithms rely on a mathematical concept
known as de Bruijn Graphs for de novo assembly of short-read data. Here, each
read is divided into substrings of length k to facilitate identification of string
overlap. Example of k-mers in a short read for different values of k:

Read: ATGGCGTGCA (10bp)
3-mers: ATG, TGG, GGC, GCG, CGT, GTG, TGC, GCA
8-mers: ATGGCGTG, TGGCGTGC, GGCGTGCA
10-mers: ATGGCGTGCA

Let’s say that all reads from a MPS sequencing run are 100 bp = 100-mers. For
technical reasons, a MPS run cannot capture all 100-mers from the genome. By
instead performing the assembly on shorter k-mers from the same reads, com-
monly ~30-50 bp, the k-mers better represent the composition of the genome.
The assembly is calculated by constructing a de Bruijn Graph where each k-mer
is connected to two different nodes of size k-1 (one for each end of the k-mer;
”left” and ”right” k-1-mer) which eventually forms a graph of the relationships
of the k-mers in the genome (Figure B2). This circumvents the need for pairwise
alignment of each k-mer and significantly decreases the computational burden.
For further reading, please see Compeau et al. (2011); Miller et al. (2010).
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Set vertices (circles) as k-1 mers
Set edges (arrows) as k-mers
Solve by visiting each edge once 

Assembly: ATGGCGTGCAATG

(blue: repeated part of the sequence)

Figure B2: Schematic example of a de Bruijn graph of the example ”genome” ATGGCGTGCA.
In this example there is only one read for sake of simplicity. In a real case, each read from the
sequencing will be divided in its corresponding k-mers, and all unique k-mers will used to attempt
the genome assembly. Adapted from Compeau et al. (2011).
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could be considered a minor issue.
Eukaryotic annotation poses additional challenges, due to the larger size, introns

and high number of repeat-rich regions (Cantarel et al., 2008; Yandell and Ence,
2012). The intron/exon challenge can be assisted by the use of MPS expression data
(RNAseq) (Haas et al., 2011; Yandell and Ence, 2012); however, in the case of S. cere-
visiae – the subject of Papers IV-VII – and Candida yeasts, only about 5% of the genes
require splicing, making structural annotation more similar to that of prokaryotes
(Haas et al., 2011). Examples of eukaryotic annotations pipelines include MAKER
(Cantarel et al., 2008) and PASA (Haas et al., 2003).

3.4 Comparative genomics for Adaptive Laboratory Evolution

The closing section of this chapter on genomics relies on Paper IV as a case study to
illustrate on how comparative genomics can be used to identify mutations from evo-
lution experiments. Fermentation of inedible plant matter (lignocellulose) is a sus-
tainable way to produce value-added chemicals from renewable feedstocks (de Jong
and Jungmeier, 2015). Lignocellulose pretreatment (here: steam-explosion) results in
an hydrolysate rich in five- and six carbon sugars (pentoses and hexoses, respectably),
as well as inhibitory compounds such as furaldehydes (here: furfural and hydrox-
ymethylfurfural), weak acids and a number of lignin-derived aromatics (Taherzadeh
and Karimi, 2008). Baker’s yeast S. cerevisiae is commonly applied for lignocellulose
fermentation due to its inherent robustness and efficient ethanol production, but it
cannot naturally utilize pentose sugars (see Section 4.3; Papers V-VII) and it is neg-
atively affected by high concentrations of furaldehydes, aliphatic acids and phenols
(Almeida et al., 2007).

In the directly preceding study to Paper IV, the already robust industrial S. cere-
visiae strain Ethanol Red (ER) was subjected to Adaptive Laboratory Evolution (ALE)
by growth at elevated temperature (39°C) and in the presence of non-detoxified spruce
hydrolysate for ~300 generations, after which a stable clone named ISO12 was isolated
with improved tolerance to the two stressors (Wallace-Salinas and Gorwa-Grauslund,
2013). The aim of the Paper IV study was to use WGS and variant calling (Section
3.3.3) of the two strains to identify target mutations that could describe the novel
phenotype of ISO12. Although both strains were also de novo assembled, this project
made use of a relative variant calling strategy where the reads of both strains were
compared to the gold standard reference genome S288c (Engel et al., 2014) in or-
der to make use of its quality annotations. All variants common between each strain
and S288c were discarded, which left the variants that arose between ER and ISO12
(Paper IV). Genetic material in ER not present in S288c was extracted from the de
novo assembly and the reads from ISO12 were used for variant calling of the cor-
responding region(s). Functional analysis of the coding-region variants revealed 760
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Table 4: Candidate genes for reverse engineering of the novel ISO12 phenotype in wild type S. cerevisiae.

ORF Functional annotation Rationale

MTL1 Cell Wall Integrity sensor Positive selection in ISO12 (Ka/Ks >1). Belongs to
the cell wall integrity MAPK signalling pathways,
which is related to heat stress (Verghese et al., 2012)

FLO1/5
/9/11

Flocculation proteins Positive selection in ISO12 (FLO9/11); Homozy-
gous variants (FLO1/11); Significant CNV in-
crease in ISO12 (FLO1); High variant density: 25
non-syn. calls (FLO5)

CYC3 Cytochrome C heme lyase Positive selection in ISO12 (Ka/Ks >1)

GPR1 Extracellular glucose
sensor
(cAMP/PKA signalling)

Premature stop codon in amino acid 251 of 961;
heterozygous variant, detected in 59% of the alle-
les. The cAMP/PKA signalling pathway is related
to thermotolerance (Verghese et al., 2012)

ADH7 NADPH-dependent
alcohol dehydrogenase

Two-fold CNV increase in ISO12 in non-
reference genome regions (de novo assemblies)

ENA1/2 ATPase sodium pumps CNV increase in ISO12 in genetic regions not
present in the reference strain; such increases has
been associated with acetate and temperature ro-
bustness (Gilbert et al., 2009)

non-synonymous variants distributed over 347 ORFs. This illustrates that correlation
of genotype-phenotype is not trivial even in short-time ALE, especially when multiple
selection pressures are used.

The ISO12 genome was further analysed for copy number variations (CNVs) and
evolutionary selection pressure. CNVs are genetic variations where genes change in
number rather than in DNA sequence and affect phenotypes through gene dosage
effects (Zhang et al., 2013). The selection strength during DNA evolution can be
estimated with the ratio between the number of non-synonymous substitutions (Ka)
and non-synonymous substitutions (Ks) in an ORF, denoted asω or Ka/Ks; Ka/Ks >
1 implies a positive selection, Ka/Ks = 1 a neutral selection, and Ka/Ks < 1 a negative
selection (Zhang and Yu, 2006). When all these results were taken together, ten genes
emerged that seemed extra likely to be correlated to the new phenotype. A summary
of key target genes for the new phenotype in ISO12 is listed in Table 4. Although
that work focused primarily on non-synonymous mutations, the impact of the syn-
onymous mutations should not be forgotten since they can regulate expression rates
(Kudla et al., 2009).
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ALE experiments are also likely to result in accumulation of mutations that are not
related to improved tolerance to the selection pressure, so called hitchhiker mutations
(Lang et al., 2013), which make finding the true causative mutations behind novel
phenotypes very challenging. One approach is to sequence the genomes of clones
isolated during the ALE, and compare the genotype of clones with and without the
desired phenotype. In species capable of sexual reproduction (the case of S. cerevisiae)
it is possible to backcross clones with novel phenotypes to an ancestral strain and
sporulate the progeny to generate haploid cells with random allele distribution; vari-
ant calling of the different clones, progeny and parent can possibly resolve the causal
genotype (Koschwanez et al., 2013). However, neither of these approaches were pos-
sible in the ISO12-case because of the genetic instability of the earlier clones, and the
loss of sporulation in ISO12.

There have been a number of studies that have used the ”evolve and resequence”
(Payen et al., 2016) approach to assess improved tolerance to inhibitors from hy-
drolysate in S. cerevisiae (Almario et al., 2013; Wang et al., 2017), and elevated tem-
perature (Caspeta et al., 2014; Satomura et al., 2016). However, it is noteworthy that
the suggested driver mutations of these studies were different from those described in
Paper IV19, with the exception of the cAMP/PKA pathway that was also a target in
one of the studies (Satomura et al., 2016). Although it has been demonstrated that
ALE in S. cerevisiae can have high repeatability (same key targets being susceptible to
mutation across multiple replicates; Lang et al. (2013)), the different outcome of the
aforementioned studies show that different experimental approaches and background
strains result in different genotypes. The use of temperature and inhibitor co-stressors
in the ALE study (Wallace-Salinas and Gorwa-Grauslund, 2013) that was the basis
for Paper IV also complicated the process of genotype discovery, as it is likely that
driver mutations that conveyed simultaneous tolerance to both stressors were selected
for in ISO12.

19Another study worth mentioning in the ISO12 context used TALEN genome editing instead of ALE
to generate a library of stress tolerant strains, and found enrichment of sequence variants in proteins in
the same Gene Ontology (GO) class (cell-periphery proteins) as in the ISO12 case (Gan et al., 2018).
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Chapter 4

A closer look at signalomics

Sensing and signal transduction – the means of cell communication – is a necessary
property of biological life (Bruni, 2008). The cellular system is regulated by a con-
stant input of signal cascades that form complex signalling networks ranging from
molecule-molecule interactions to species level interactions (Weng et al., 1999). Fol-
lowing the systems view of the cell, the term signalome has begun to refer to the
entire mass of the signals transmitted in the cumulative signalling networks of a cell.
As has been established in previous chapters, Large Data biology is often associated
with high-throughput omics methodologies, but, as will be evident in this chapter,
is not limited to them. The method of monitoring the S. cerevisiae sugar signalome
developed in this thesis work (Papers V-VII) instead relies of flow cytometry, a data-
intensive technology that can measure the fluorescent characteristics of single-cells in
quantities of tens of thousands cells per sample.

4.1 What is the signalome?

4.1.1 Towards a definition

In the wake of systems biology, a need to construct new nomenclature for a number
of additional system-wide, cellular omes has emerged. Linguistically, it is normally
easy to comprehend the meaning of such ome-neologisms (e.g. interactome, fluxome
and phenome, to name a few more recently coined omes; Baker (2013)), but it can
be more challenging to find formal scientific definitions. Compared to the other
omes (Figure 1) the concept of the signalome is something that has yet to definitively
catch on; it has however begun to make it onto lists of omes (Prohaska and Stadler,
2011). A proposed definition of the signalome is that it is a collection of all the
support molecules of all signalling networks active at a given point of time (Bruni,
2008). It is however noteworthy that a very similar concept named signalsome is
used to describe protein clusters in signalling networks (Wang and Malbon, 2011),
which further demonstrates that the naming conventions of the signal network-ome
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is not firmly established. A quick literature search reveals that the term signalome
is currently mostly used in medicine and cancer research (see e.g. Wicki-Stordeur
and Swayne (2014); Dasari et al. (2017); Haqshenas et al. (2017)), but that there
are microbial examples as well (Vihinen, 2001; Pitarch et al., 2003; Mhlongo et al.,
2018). In the present thesis work, the signalome concept was slightly altered to refer
to a smaller set of signalling pathways related to sugar sensing (discussed in Section
4.3.).

4.1.2 Intracellular signalling networks govern cellular functions

The role of signalling networks is to transduce signals that regulate the cellular re-
sponse to environmental and intracellular cues (Bruni, 2008). Unlike metabolic path-
ways, signalling pathways do not catalyse enzymatic conversions of a substrate into a
product (mass flow), but instead transduce signals through sensors, transducers and
actuators (signal flow) (Hyduke and Palsson, 2010). Signals are propagated in cas-
cades (Figure 7) that often start with signalling molecules binding to extracellular
receptors, and are transduced by means of post-translational modifications (PTMs),
e.g. phosphorylations (Fiedler et al., 2009), ubiquitinations (Woelk et al., 2007),
protein-protein interactions (Pawson and Nash, 2000), as well as cellular transloca-
tion (Teruel and Meyer, 2000) and second messenger molecules (dedicated signal
carriers, e.g. cAMP, calcium; Hofer and Lefkimmiatis (2007)).

It has been proposed that signalling networks should be differentiated from reg-
ulatory networks. Although similar in effect they differ in structure: signalling net-
works are perceptual of the environment and organized as input-intermediate-output
systems (Figure 7), while regulatory networks are typically organized as feedback loops
(Hyduke and Palsson, 2010). To complicate matters, signalling networks can elicit
heterogeneous responses across a cell population (Bruni, 2008), likely due to built-in
redundancies (e.g. multiple types of sensors that result in same outcome, usually gene
expression modulation) and multiple (sub-)pathways acting in parallel (e.g. two dif-
ferent outcomes to the same signal). While the present work will focus on the signal
events inside single cells, the importance of intercellular (cell-cell) signalling in micro-
biology – with typical examples being bacterial quorum sensing (Waters and Bassler,
2005) and yeast mating pheromones (Dohlman and Thorner, 2001) – should not be
underestimated.

There are a number of known signalling networks, many of which occur only in
multicellular organisms. For the sake of simplicity, all examples of signalling pathways
will here on out be taken from S. cerevisiae, unless specified. Being a model single-cell
eukaryote, the signalling networks in this yeast are among the most studied signalling
systems in microbes, and have also been used as a model for cancer research (e.g. since
tumour growth can be related to altered signalling) (Diaz-Ruiz et al., 2011; Cazzanelli
et al., 2018).
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Figure 7: Overview of signalling network function and organization. Black arrows: reactions; Arrow-
heads: induction; Hammerheads: repression. A: Schematic representation of a signalling cascade. In
this example, an extracellular signalling molecule (e.g. a nutrient) is sensed by a membrane receptor
(1) which passes on a signal to an intracellular signalling network (2). The signal is transduced in a
cascade of post-translational modifications and interactions between signal carriers, e.g. signal proteins
and second messengers (3) that eventually ends in a signal acctuation, which is often manifested by gene
expression regulation (4). As an outcome of the signal transduction, the cellular behaviour changes in
response to the original signal (5). B: Signalling networks are typically organized in complex, inter-
connected topologies. A characteristic of signalling networks is their high modularity, i.e. that sets of
network components are always expressed together (illustrated by the white, purple and green nodes);
modules can however interact with each other as an additional layer of signal modulation (cross-talk).
Adapted from Hyduke and Palsson (2010); Yao et al. (2015); Lee and Cho (2018).

43



According to current knowledge, the S. cerevisiae signalome consists of pathways
for nutrient, stress, apoptosis, cell growth and mating signals. Nutrients, such as
sugars (discussed in Section 4.3), nitrogen, phosphate and other carbon sources are
sensed by a number of pathways, including the Snf1/Rgt1, cAMP/PKA (cyclic AMP
and Protein Kinase A) and TOR (Target of Rapamycin) pathways (Conrad et al.,
2014). Stress signalling is a broad topic that includes the sensing of various kinds
of stressors, such as high osmolarity, high temperature, nutrient starvation and cell
wall stress. Most stress signalling is regulated by the MAPK (Mitogen-Activated Pro-
tein Kinase) and cAMP/PKA pathways; these pathways also cross-talk (send signals
to each other) (Thevelein and De Winde, 1999; Chen and Thorner, 2007; Tamaki,
2007). Closely related to these pathways is the ESR (Environmental Stress Response)
which is a panel of chaperons and heat shock proteins induced by Msn2p/4p, two pro-
teins which in turn are regulated by e.g. cAMP/PKA, MAPK and TOR (Gasch and
Werner-Washburne, 2002; Verghese et al., 2012). Finally, cell growth is controlled by
the TOR signalling pathway (Martin and Hall, 2005) and the mating signals are trans-
duced in the pheromone response MAPK pathway (Dohlman and Thorner, 2001).
As should be evident from this brief overview, there are a small number of signalling
pathways in S. cerevisiae that together handle multiple types of environmental cues.

4.2 Methods to analyse the signalome

The fact that signals are transduced with molecules makes it possible to assess the sig-
nalome with traditional omics methods. In particular, mass spectrometry (MS)-based
techniques such as proteomics and metabolomics have proved applicable to monitor
signal transduction (Zhao and Jensen, 2009; Yao et al., 2015). However, the highly
transient nature of the signalome (possibly more transient than the transcriptome,
which it commonly regulates) has called for real-time methods such as fluorescent
imaging and biosensors. As neither omics nor biosensors are currently on their own
able to capture the signalome at a simultaneously ome-wide and high temporal reso-
lution (Figure 8), the methods should be seen as complementary.

4.2.1 Omics approaches

Broadly speaking, two commonly used omics-approaches to assess the signalome are
molecular profiling (molecules and post-translational modifications (PTMs) that are
present at a given time) and molecular perturbation (changes over time, often com-
bined with genetic modifications) (Yao et al., 2015). A non-exhaustive list of pro-
teomic techniques that have been used to assess signal transduction include: chemo-
protomics (the interaction of proteins with small molecules), phosphoproteomics (to
assess phosphorylation PTMs), protein interactome studies (protein-protein interac-
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Figure 8: Venn diagram of the desired features of an ideal methodology for signalome assessment.
Current methods (omics, biosensors) have their own strenghts and weaknesses. Proteomics and
metabolomics can give ome-wide data on signalling, but their very labour-intensive nature (e.g. the
need to quench and lyse cells) make them less suitable for sampling at high temporal resolution. Biosen-
sors can be used for close-to-real-time monitoring of signalling processes and allow for subsequent use of
the measured cells by cell sorting approaches, but fail to capture the holistic complexity of the signalling
networks due to the limited number of sensors that can be simultaneously applied in a single cell.

tions and protein-complex formation), and ubiquitin-remnant profiling (Witze et al.,
2007; Xu and Jaffrey, 2013; Yao et al., 2015).

A challenge with PTM proteomics is that the desired proteins exist only in low
concentrations (as opposed to e.g. metabolic proteins); enrichment of PTM pep-
tides (e.g. removal of non-relevant peptides) is thus required after sample fragmen-
tation/proteolysis (Witze et al., 2007; Zhao and Jensen, 2009). Other challenges
include high rates of false positive PTM-peptide discovery and the fact that some pro-
teins have multiple PTMs and participate in signalling cross-talk, which complicates
the mechanistic elucidation (Zhao and Jensen, 2009). However, not all signalling
molecules are proteins, and not all of them are intracellular. To give an non-yeast
example, bacterial cell-cell and cell-plant communications largely rely on excreted sig-
nalling molecules such as volatile organic compounds and quorum sensing molecules
that constitute an ”extracellular signalome”, which can be assayed with metabolomics
methods (Mhlongo et al., 2018).

Molecular perturbations can e.g. be studied with integrative approaches such as
functional genomics. The idea of functional genomics is to correlate the genome with
expressed transcripts and proteins at a given time, and thus require multiple omics
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datasets, such as genomics, transcriptomics and proteomics data (Werner, 2010).
Genetic modifications are introduced and the resulting molecular and phenotypical
changes are monitored; the modifications can be done by various methods such as
traditional knockout and overexpression, and attenuating approaches such as RNA
interference (RNAi) or CRISPR interference (CRISPRi) (Yao et al., 2015).

Chromosome-related signalling mechanisms such as DNA-transcription factor
and DNA-protein binding can be assayed with ChIP (chromatin immunoprecip-
itation) methods (Park, 2009). In the ChIP work-flow, live cells are treated with
formaldehyde to fixate all proteins that are bound to DNA; the DNA is then frag-
mented and antibodies specific to the protein(s) of interest are used to select for the
fragments that contain protein binding sites (Kim and Ren, 2006). While origi-
nally used with Southern blotting methods, PCR and microarrays (ChIPchip), high-
throughput implementation that use MPS have been later developed, such as ChIPSeq
(Johnson et al., 2007; Park, 2009). Challenges of ChIP methods include availability
of antibodies of suitable specificity and sensitivity, pre-processing artefacts and getting
a statistically suitable depth of coverage (Park, 2009).

4.2.2 In vivo biosensor approaches

A general drawback of omics methods is that the data is typically an average over many
cells and thus cannot resolve single-cell variations and population heterogeneities
(Welch et al., 2011). Most omics methods are also intrusive, i.e. the sample prepa-
ration requires cell lysis, and highly dynamic omes like the transcriptome, proteome
and metabolome furthermore require quenching to ”freeze” the cellular state immedi-
ately after sampling (Canelas et al., 2008). This makes attempts at (pseudo)real-time
monitoring difficult. An alternative approach to study dynamic signalling processes
has instead been to use different forms of fluorescent biosensors for live cell imaging
(Newman et al., 2011).

Although fluorescence live-cell imaging methods such as FISH (fluorescence in
situ hybridization) were developed in the late 1960s (Levsky and Singer, 2003), mod-
ern in vivo fluorescent biosensors have their origins in a study demonstrating that a
gene encoding a green fluorescent protein (GFP) in jellyfish Aequorea victoria could
be expressed in other host organisms, was cofactor-independent (contrary to other
contemporary methods) and did not interfere with cellular functions (Chalfie et al.,
1994). Many different fluorescent proteins (FP) with similar properties but different
emission spectra (”colours”) have since been discovered and improved by engineering
(Newman et al., 2011). A common implementation of fluorescent reporter systems
is based on coupling the sequence of a single FP to a gene or its promoter. By adding
a FP sequence directly after the gene of interest (FP-fusion tagging) a gene product-FP
chimera will be formed that can e.g. identify the subcellular localization of the pro-
tein and measure protein turnover (Newman et al., 2011). Alternatively, placing the
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FP gene under control of a promoter allows for measurement of the expression levels
of the promoter during different conditions (FP-expression) (Paper V-VII). Another
type of biosensor design is to make use of FRET (Förster Resonance Energy Trans-
fer), which is the mechanism of energy transfer between two fluorophores (e.g. FPs)
in very close proximity, which can be used to monitor molecular interactions such as
protein-protein and protein-DNA interactions, and conformational changes (Zadran
et al., 2012). The general idea of FRET sensors is to design systems where the two
fluorophores either come together or are separated by the molecular event of interest
and thus results in a measurable change in signal (Newman et al., 2011; Zadran et al.,
2012). A number of studies have demonstrated that in vivo biosensors can be used to
monitor cellular signalling networks non-intrusively and in more or less real-time20

(Newman et al., 2011). Many, but not all of these use FRET sensors.
Assessment of fluorescent protein biosensors is based on excitation of the fluo-

rophore with a laser, followed by signal emission, and can thus be measured by a
number of different approaches such as fluorescent microscopy fluorimetry and flow
cytometry (Shapiro, 2005). The present work (Paper V-VII) used flow cytometry,
which is a single-cell method where cells are lined up with the help of a fluidics sys-
tem and measured individually21 with 10 000-100 000 cells commonly being mea-
sured per sample (Shapiro, 2005). Furthermore, cytometry can be combined with
Fluorescence-Activated Cell Sorting (FACS) to sort cells of interest based on fluores-
cent markers (Bonner et al., 1972), and thus used to select for cells with desired phe-
notypes. This can be beneficial for speeding up the iterative experimental work-flow
of metabolic engineering (Figure 3). Sorting can however have negative influence on
cell viability (e.g. due to sheath fluid chemistry and pressure) and system cleanliness
is crucial to avoid contaminations (Müller and Nebe-von Caron, 2010).

Although biosensors can successfully be used to monitor cellular signalling net-
works, and flow cytometry can be used for high-throughput assessment of population
dynamics, these biosensors are not an ome-wide method, and therefore it is likely that
multiple sensors will be needed (preferably within the same cell) to capture a larger
picture of the signalling. While the number of possible parallel fluorescent markers
per cell are limited by excitation and emission spectra overlap, technological develop-
ments have increased the throughput of multi-parameter flow cytometry, with exam-

20FPs often require some time to mature (Katranidis et al., 2009), meaning that FP-expression signals are
slightly delayed. The extent of the maturation is protein-dependent. Protein half-life is another con-
cern, with e.g. the S. cerevisiae yEGFP3 having a half-life of about 7.5h. Engineered alternatives with
shorter half-life exist, but tend to rely on degradation by ubiquitination which is an ATP-dependent
process and therefore intrusive (Mateus and Avery, 2000).

21It is noteworthy that so called Mass Cytometry methods have also been developed, where MS is used
to detect the signal instead of fluorescence emissions (Bandura et al., 2009; Spitzer and Nolan, 2016).
Cells are however destroyed during the process, meaning that this method cannot be used for cell
sorting (Saeys et al., 2016).
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ples from FCM with up to 18 markers per (immune) cell and from mass cytometry
with over 30 simultaneous (isotope-labelled rare-earth metal) markers (Chattopad-
hyay et al., 2008; Behbehani et al., 2012; O’Neill et al., 2013). Computational ap-
proaches to integrate multiple FCM datasets might also be able to increase the width
of the signalling information that can be captured by biosensors (Welch et al., 2011).

4.2.3 Computational approaches

Since signalling networks connect the environment with the genome and the meta-
bolism, there is large interest in reconstructing genome-scale in silico models of sig-
nalling networks (Hyduke and Palsson, 2010). However, signalling pathway recon-
structions tend to be less mature than those of metabolic pathways (cf. Section 2.3.2),
since signalling entities are difficult to elucidate from genome annotations and because
there is a high heterogeneity in types and functions of signalling molecules (Hyduke
and Palsson, 2010; Palsson, 2015). Another issue is that the signalling molecule kinet-
ics needed to properly model signalling dynamics are mostly unknown (Imam et al.,
2015).

Although there are many mathematical approaches to signalling network mod-
elling (Rother et al., 2013), genome-scale approaches can generally be divided in sto-
ichiometric and Boolean approaches, where the former considers the stoichiometry
of the signalling reactions and latter sees the network as a series of switches and log-
ical statements that can be ”turned on or off” (Heath and Kavraki, 2009; Hyduke
and Palsson, 2010). The different approaches has their strengths and weaknesses, but
both seem to model small-scale signalling networks well, although a good method for
genome-scale signalling has yet to emerge (Hao et al., 2018).

Like most of the signalling examples so far in this chapter, a majority of the mod-
elling studies come from medicine, with a notable model for T cell signalling being
one with the largest signalling reconstructions made (Li et al., 2009a). Examples
of microbial signalling reconstructions include e.g. the glucose repression pathways
(Christensen et al., 2009; Lubitz et al., 2015) and osmotolerance pathways (Klipp
et al., 2005) in S. cerevisiae and chemotaxis signalling in Escherichia coli (Clausznitzer
et al., 2010). However, for microbes, it seems to be more common to see signalling
models integrated with reconstructions of metabolism and transcriptional regulation
(Hao et al., 2018). Examples include M. genitalium (Karr et al., 2012) – one of the
smallest known genomes (cf. Section 3.1.1) – and E. coli (Covert et al., 2008; Carrera
et al., 2014). One of many challenges with integrated models is that signalling and
metabolic reconstructions tend to rely on different mathematical approaches that can
be challenging to combine in one single model; an example is that molecule concentra-
tions are important in signalling models, but do not matter much for constraint-based
FBA models of the metabolism (Imam et al., 2015).
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4.3 Monitoring the sensing of xylose in S. cerevisiae

In the current thesis work, the subset of the signalome related to sugar sensing, uptake
and utilization in S. cerevisiae was investigated with a cytometric single-cell in vivo
biosensor approach (Papers V-VII). As such, the concept of the sugar signalome will
be from now used to describe the three cross-talking signalling pathways that together
govern sugar sensing in signalling in S. cerevisiae. The challenging nature of ome-
wide biosensor assessments of signalling networks discussed above, does necessitate
piecemeal-approaches such as this.

4.3.1 The xylose paradox and the S. cerevisiae sugar signalome

The present case study was performed in the same lignocellulose valorization context
as described in Section 3.4, and concerns the peculiar response to xylose in S. cerevisiae
strains genetically engineered to grow on this pentose sugar. Despite many successful
engineering strategies to improve the fermentation of xylose to ethanol (reviewed in
e.g. Moysés et al. (2016); Kim et al. (2013)), the cellular behaviour and previous tran-
scriptomics and metabolomics studies suggests S. cerevisiae cells engineered for xylose
utilization are tuned towards a non-fermentative response (Salusjärvi et al. (2008);
Klimacek et al. (2010); Paper VI). The contradictory combination of xylose uptake
and non-fermentable behaviour will hereby be referred to as the xylose paradox (Paper
VII).

Glucose sensing is transduced in three different pathways in S. cerevisiae: the
Snf3p/Rgt2p, SNF1/Mig1p and cAMP/PKA pathways (Santangelo, 2006); Figure
9. The Snf3p/Rgt2p pathway responds to extracellular glucose and induces expres-
sion of high- and low affinity hexose transporters (Ozcan and Johnston, 1995). The
SNF1/Mig1p pathway controls carbon catabolite repression and induces genes for uti-
lization of alternative carbon sources in the absence of glucose, the preferred sugar of
S. cerevisiae (Gancedo, 1998). Finally, the cAMP/PKA pathway is a multifunctional
signalling pathway that, in short, can be said to control cell homeostasis (by means
of e.g. cell cycle progression control and stress signalling) (Thevelein and De Winde,
1999). These three pathways are subject to involved cross-talk (Kaniak et al., 2004;
Gancedo et al., 2015), which emphasises the need to assess all three pathways together.
The cAMP/PKA pathway is furthermore interconnected to and/or have overlapping
targets with two other main signalling pathways, the TOR and MAPK pathways (Pe-
druzzi et al. (2003); Tamaki (2007); Paper VII).

4.3.2 The xylose signal in wild-type and recombinant S. cerevisiae

Glucose sensing is in general well-studied in S. cerevisiae (Santangelo, 2006), although
some mechanisms are still not fully elucidated. Less is however known about if and
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Figure 9: The three main sugar signalling pathways in S. cerevisiae, adapted from Paper VII. The
Snf3p/Rgt2p pathway (green) regulates expression of hexose transporters in response to extracellular
glucose. The SNF1/Mig1p pathway (pink) regulates expression of genes related to alternative (non-
glucose) carbon sources in response to intracellular phosphorylated glucose. The cAMP/PKA pathway
(blue) regulates a variety of responses, such as cellular growth, homeostasis and stress response.

how xylose affects the sugar signalome, since it is not part of the substrate-range of wild
type S. cerevisiae. This case study therefore proposes a challenging issue in metabolic
engineering: sensing and signalling of exogenously enabled substrates.

Sugar signalling in S. cerevisiae is rapid. It has for example been shown that, 20
minutes after addition of glucose to glycerol-grown cells, about 40% of the transcrip-
tome has changed expression at least 2-fold (Wang et al., 2004). Because of this, an in
vivo biosensor approach was chosen to examine the xylose signal in this yeast with a
higher temporal resolution than omics (Paper V). An integrative single-copy reporter
system based on FP-expression was designed where a yeast-enhanced GFP (yEGFP3)
was placed under the control of different endogenous yeast promoters known to be
regulated by each of the three sugar signalling pathways (Paper V).

In S. cerevisiae W303-1A laboratory strains lacking recombinant xylose pathways,
no induction was found on xylose (Paper V), which indicated that S. cerevisiae was
unable to sense extracellular xylose. However, population heterogeneities in some of
the biosensor signals (Paper V) led to a hypothesis that S. cerevisiae might respond
to xylose molecules that has been internalized by the cell with the help of glucose
transporters known to transport some levels of xylose (Hamacher et al., 2002).

Following this hypothesis, the biosensor strains were engineered with a mutated
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galactose transporter with improved affinity for xylose (Farwick et al., 2014) and an
oxidoreductive xylose pathway (XR/XDH; xylose reductase/xylitol dehydrogenase).
It was found that the previous ideas had some merit, as the engineered strains did
show a signalling response during growth on xylose. However, xylose resulted in the
opposite signal of that of glucose abundance (i.e. optimal glucose concentrations for
growth), suggesting that signalling was indeed part of the xylose paradox (Paper VI).
Following these results, a number of recently discovered deletions with positive impact
on xylose utilization in strains with a xylose isomerase (XI) pathway (Sato et al., 2016)
were introduced in the oxidoreductive pathway strains. It was found that most, but
not all, claims of improvements from the XI strains were reproducible in the XR/XDH
biosensor background, and that ira2Δisu2Δ altered the previous low-glucose signal of
xylose to a simultaneous signal of high- and low glucose, reinforcing that signalling
engineering is a promising strategy for improved xylose utilization (Paper VII).

Other xylose sensors have been developed for S. cerevisiae based on bacterial re-
pressor proteins (XylR) (Teo and Chang, 2015; Wang et al., 2016; Hector and Mertens,
2017). They consists of a two-component system where XylR is constitutively ex-
pressed and represses the expression of GFP by binding to recognition motifs in a
synthetic promoter; the addition of xylose to the cell results in repression of XylR,
and induction of GFP (Teo and Chang, 2015). However, rather than monitoring
endogenous signalling, these sensors have primarily been used to build synthetic cir-
cuits and library screening (Wang et al., 2016). From an applied point-of-view, a
combination of the sugar signalome reporter-approach and introduction of synthetic
signalling circuits could possibly be a powerful way to elucidate and engineer the sig-
nalling control points in xylose-utilizing S. cerevisiae.
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The apparition of these faces in the crowd;
Petals on a wet, black bough.

EZRA POUND
In a Station of the Metro
in Lustra (1917)

(Because metabolism is a subway map waiting for its trains)



Chapter 5

Reflections from this thesis work

The previous chapters have outlined the key aspects of Large Data biology with de-
tailed looks at the genome and signalome. This chapter will attempt to place the thesis
work into the larger context and discuss how the challenges of Large Data biology were
approached.

5.1 Large Data science and biology

While there is not a lack of examples of the benefits of Large Data science, this field is
still surrounded by an intense debate. During the research of the present thesis sum-
mary, two main discourses seemed to come up more frequently. On one hand is the
debate about the methodology itself, where for instance critical opinions have been
raised that the current implementation of the scientific method is not scalable to Large
Data (Peters et al., 2014). For instance that, at least in certain biological disciplines,
scientists are trained to collect small datasets of high quality rather than applying large
data methodologies, that re-use of existing large datasets is still quite uncommon, that
there is a lack of in silico tools to facilitate a move towards data-intensive applications
(Peters et al., 2014), and that a majority of the common statistical methods, such as
the p-value, were designed with small data in mind (Manzoni et al., 2016). On the
other hand is the debate of data-versus-theory (cf. Section 2.2.1). One data-centric
argument is that ”more data > better data”; this is based on the idea that the noise
in Large Data can be compensated for by increasing the data quantity, and that it is
enough to find the general correlations in a large dataset instead of the underlying phe-
nomena (Mayer-Schönberger and Cukier, 2013). This may be a valid mind set for e.g.
search engines and online shopping (common examples in Mayer-Schönberger and
Cukier (2013)), but is less attractive in biology since the mechanistic understanding is
often the end-goal (Leonelli, 2014). On top of this is the fact that the cell operates in
multiple dimensions with highly dynamic changes to environmental stimuli, which
makes the capture of high spatio-temporal resolution of the cell a massive experimen-
tal undertaking that requires interdisciplinary approaches (Figure 10); i.e. ”complete”
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data collection from the cell is difficult to achieve. This is in stark contrast to famous
cases such as Google’s prediction of the seasonal spread of the flu (Ginsberg et al.,
2009), which was based on one ”ome” – the search queries. This is not to say that
search engine data and the human psychology it conveys is a simpler problem than
cell biology, but it highlights that the complexity of the cellular network – which we
possibly only have started to grasp – makes Large Data biology extra challenging.

5.2 Bibliomes as part of Large Data biology

Biology is full of Large Data, from the different omes within the cells to each indi-
vidual cell living together in a population. So is also the collected knowledge about
these Large Data-generating layers – the bibliome. Paper I deals with an important
question in Large Data biology: how to handle the literature. Starting out as a smaller
microbial section in a review on lignin biovalorization (Abdelaziz et al., 2016), it was
quickly realized that it is not possible to present a bibliome in a review article in a
way which allows the readers to easily extract the desired information, and that a
computerized database which could be queried interactively would instead be prefer-
able. The challenges in database design and curation revolve around data quality
and -organization (Helmy et al., 2016). In the case of Paper I, the issue was that the
database was designed to store multiple type of information about microbial aromatic
catabolism, which makes the information more difficult to de-contextualize and stan-
dardize than if the database only concerned, say, DNA sequences. The varying level of
experimental description in different publications and the sometimes limited access
to pre-digital papers also complicated the curation, meaning that some of the data had
to be annotated with the caveat that the end-user must refer to the original reference
prior to drawing conclusions about the data.

The database discussed in Paper I is a useful resource for finding microbes holding
certain aromatic pathways, but also shows that it is difficult to get an understanding
from literature about how lignin degradation works in nature/in soil, since the ma-
jority of the reported studies are on single isolate level and not on community level.
Given that only about one percent of all soil bacteria have been estimated to be cul-
tivable (Pham and Kim, 2012), the current knowledge of microbial lignin catabolism
comes from a cohort so small that it seems unlikely to be representative of the aromatic
processes in microbial soil ecology. The database also illustrates the role of fashions
within the scientific community and how certain approaches and topics tend to be
favoured over others. Here bibliome studies of microbial ecology reach their limit,
and begin to say more about how research is conducted than the natural diversity of
microbes. This does not affect the usefulness of the database as a resource for the
current knowledge-base on the topic, though.

Although the database has a good potential to make an impact on the commu-
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bottom to top. The satellite orbs represent the various techniques that commonly comes together with
the content of the pyramid in data-intensive biology.

nity of this field, new challenges related to maintenance and upkeep emerge now that
launch-phase has been completed with the publication of Paper I. While more au-
tomation can be implemented, staff will always be needed for the final curation and
technical support. A desired end-goal would be to involve more community activity
in the platform, and a step towards that would be to involve other research groups in
the database work. Should the database need to be discontinued, the plan is to try to
integrate the data with other databases and to deposit the content of the database in
an online archive as per recommendation (Helmy et al., 2016). The publication of
Paper I also serves as an archive of the hitherto work, as it collects the main references
and meta-analysis from the database at the time of its publication.

5.3 Whole-Genome Sequencing

The statement that omics is the quintessential Large Data method in biology (Leonelli,
2014) also implies that omics comes with the typical challenges associated with large
data biology (Table 1). With the current maturity of HTS techniques, the central
issue in whole-genome sequencing is the assembly and read-mapping of the raw reads
(Section 3.3). Depending on the DNA source and choice of sequencing method,
different degrees of customization of the bioinformatics pipeline may be required,
which not only requires a general understanding of the algorithms, but also of pro-
gramming. In this thesis work, the latter part was approached by learning to program
in the scripting languages listed in Table 2, which later enabled the development of
the database (Paper I), since programming logic is applicable across languages.

Paper II shows that PacBio sequencing data is applicable for assembly of small
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genomes as long as it is performed at suitable coverage, and that the outcome of in
silico annotation pipelines can lead to powerful clues about putative pathways. That
study also illustrates the problem of experimentally verifying in silico predictions from
strains incapable of producing sufficient biomass in the conditions needed to confirm
the putative functionalities. In the current study it was not possible to do mRNA anal-
ysis (RT-qPCR or RNAseq), knockout studies or enzyme assays since the Microbac-
terium isolate did not produce enough biomass when grown on aromatic compounds.
Instead, the function of the proposed candidate genes would need to be confirmed
in an exogenous host, which would be a large study on its own. Within this thesis
work, another study (Paper III) demonstrates how a phenotype can be correlated to
a genotype by using custom genome assembly and annotation to find candidates that
can be validated experimentally. Paper III also shows how putative annotations in
databases might contain incorrectly predicted gene function, and that experimental
validation can lead to improved reannotations (here: calA from Pseudomonas putida).
Not only were the encoded enzyme activities assessed by overexpression in E. coli, but
gene deletions in a P. putida host strain also confirmed the new annotation.

The WGS described in Paper IV enabled us to show that the tolerance towards
lignocellulosic inhibitors and elevated temperature in the adapted isolate ISO12 was a
function of mutations in multiple genes, many of which related to cell periphery- and
stress mechanisms controlled in part by the cAMP/PKA signalling pathway. The fact
that this was a two-factor adaptation (temperature and inhibitors) complicated the
identification of driver mutations, and it is likely that some of the variants that were
selected for resulted in a combined change in phenotype to both selection pressures
at once. This could explain why other ALE resequencing projects with similar scope
seemed to have found slightly different genes than in this study.

A rather high amount of sequence variants were found between ISO12 and its
parental strain ER (Paper IV), and it would have been helpful to have sequenced some
of the intermediate clones lacking the desired phenotype in order to identify ”junk”
or hitchhiker mutations. Sadly, the clones isolated throughout the ALE experiment
did not have a stable phenotype, and thus this was not possible. Something that
could be reassessed with the existing data is however the intragenic variants. Granted,
it is much more challenging to functionally annotate intragenic variants compared
to ORF variants, but the substantial amount of intragenic polymorphisms in ISO12
(Paper IV) suggests that regulatory modifications in e.g. promoter and terminator
regions might have occurred in addition to the ORF variants.

Tolerance to lignocellulosic inhibitors is an important trait for industrial microbes
designed to ferment this feedstock. However, research on the pre-processing of ligno-
cellulose has shown that the levels of furans and phenols can be drastically decreased
by modified processing methods (Jönsson and Martín, 2016). It is also unlikely that
the adaptive capability of the yeast cell is infinite (despite the high plasticity of its
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genome). Therefore, a good approach to this problem would be to combine adapted
strains with inhibitor-sparse pre-processing methods. Since stress tolerance is strain
background dependent (Zhang et al., 2019), it would be interesting to conduct the
ALE again with multiple different parental strains to see whether there are any repro-
ducible driver mutations that would occur independent of strain background.

5.4 In vivo biosensors for signalling networks

As established in Chapter 4, omics methods have successfully been used for signalling
studies, but fail to capture the temporal dynamics of signalling since they are not
real-time methods. To study the overall sugar signalome response to xylose, in vivo
biosensors based on GFP-coupled endogenous promoters were chosen rather than
individual mechanisms in the signal cascade. This presented a number of challenges
in sensor design and data analysis.

The choice of promoters was based on known interactions and transcriptomics
data from literature. The Snf3p/Rgt2p and SNF1/Mig1p pathways have been well
studied (Santangelo, 2006) and thus their target promoters were easily identified.
The cAMP/PKA pathway however, proved more complex, since it regulates such a
broad range of genes and cellular responses (Thevelein and De Winde, 1999). Fi-
nally, two trehalose-6-P synthases (TPS1/2) and one translational elongation factor
(TEF4) genes were chosen based on transcription data (Apweiler et al., 2012). How-
ever, since the hypotheses about xylose signalling has gone more and more towards the
cAMP/PKA pathway (Papers VII-VII), it would be interesting to see if the biosensor
panel could be complemented with other types of cAMP/PKA sensors to increase res-
olution. Paper VI also showed the importance of performing xylose signalling studies
in yeast engineered for xylose utilization, since the addition of a transporter and the
oxidoreductive pathway enabled signals from intracellular xylose.

Central to the flow cytometry (FCM) data analysis is the concept of gating: divi-
sion of measured events (cells) in different groups/populations based on signal inten-
sity in two-dimensional scatter plots (O’Neill et al., 2013). Gating is traditionally a
manually-performed graphical method and will thus always contain human bias, sub-
jective selection of target cells and be difficult to reproduce (Saeys et al., 2016). Algo-
rithms are also biased since they are coded by humans, but can be automated, meaning
that they result in a systematic bias rather than the more random bias of manual gat-
ing. To this end, a cell size regression method (Knijnenburg et al., 2011) was used in
Paper V to compensate for differences in cell size and morphology when the biosen-
sor strains were grown on different carbons sources. A fully automated pipeline was
scripted in Matlab to systematically asses the FI of all samples collected in the project
in one run. However, signal normalization of this kind will disguise population het-
erogeneities, and the data was also run in a pipeline lacking the normalization step,
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which revealed the subpopulations when grown on xylose which led to the hypothesis
of endogenous xylose sensing that was investigated in Paper VI. This illustrates the
importance of comparing the outcome of a normalization with non-normalized data.
The regression model was discarded in Paper VI-VII in favour of overlay histogram
plots and subpopulation modelling (Gaussian mixture modelling; Paper VI) because
it concealed the population dynamics that turned out to be a central finding in these
three papers. Another emerging approach in FMC bioinformatics is to use machine
learning algorithms to e.g. identify populations in an automated manner, which may
be useful for future studies with these biosensors (Saeys et al., 2016). Algorithms
for multidimensional FCM data analysis exist, where every parameter measured by
the instrument is used instead of the normal step-wise two-parameter-approach of
traditional gating (Spear et al., 2017).

Functional as it has proven to be, the reporter system demonstrated in the present
thesis work is not without its limitations. The current generation of biosensor strains
only has one sensor per strain, meaning that simultaneous measurement of the three
pathways is currently not achievable in single-cell. This could be e.g. improved upon
by designing a system of multiple fluorophores with non-overlapping emission spec-
tra that could multiplex the sugar signalome, or to use the biosensors to screen for
conditions that generate interesting signals that that be further assessed by signalling
omics methods. Another limitation is that the system is based on the actuators of the
signalling pathway (i.e. the promoters that receive the signal), which means that this
reporter system only measure the end-point signalling. This is a fair approach from
a biological point-of-view, since the effect of xylose on the cellular behaviour was
the end-goal (i.e. protein expression), but it cannot resolve the upstream transduc-
tion mechanisms in the pathway. A compliment to the current biosensor setup could
therefore be to build FRET sensors for targets in the sugar signallome that are hypoth-
esised to be of extra importance for xylose signalling. Such an approach could possibly
elucidate if the signalling networks themselves need to be engineered to enable xylose
to be sensed in a manner equal to glucose. Finally, these biosensors are obviously not
capable of systems-wide screening (they only look at the sugar signalome), meaning
that other systems level effects, including cross-talk with other signalling pathways,
cannot be ruled out.

Other valuable information on how xylose signalling functions in yeast could
be obtained from applying the current biosensors on natural xylose utilizing yeasts
like Scheffersomyces (Pichia) stipitis and see how the signal differs. It is known from
metabolomics data that the sugar and energy metabolism differs between S. stipitis
and xylose pathway-engineered S. cerevisiae (Shin et al., 2019), which are also likely
to be reflected in the signaling. An engineering dream (possibly a pipe dream) would
be transplantation of the S. stipitis sugar signalome into S. cerevisiae, but that would
first require mechanistic elucidation of the S. stipitis sugar sensing networks to levels
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far beyond the current understanding. Hexose-pentose co-consumption is a crucial
trait for lignocellulose fermenting cell factories as it will dramatically reduce process
times, and signalling engineering is likely to be an important means to this end.

5.5 System boundaries

The division of the cellular activities into omes results in models that do not take the
whole system into account. It is therefore imperative to remember that the approaches
of this thesis, where cellular activities were investigated from a physiology, genome and
signalome point-of-view is a constrained approach to the biology of the cell. This does
not mean that said approaches are inadequate – on the contrary they have historically
been instrumental in reaching the current level of understanding of the cell – but
again shows that omics are not a silver bullet that can resolve the research questions of
the cell and that it as a technique has clear system boundaries of its own. The current
development of techniques and models for integration of multi-omics data (Macaulay
et al., 2017; Hao et al., 2018) is therefore an important move towards being able to
make more complete systemic observations of the cell.

Another central question is where the system boundaries for cell factory improve-
ments are. Whereas there is a consensus (this thesis included) that metabolic engineer-
ing and adaptive evolution can push the capabilities and capacities of a strain towards
more industrially desirable traits, there seems to be less work done on trying to predict
of how far they can be pushed and at what trade-off22. Take the case of Paper IV for
instance: the aim of isolating a strain with improved tolerance to temperature and
inhibitors was reached, but the strain was also highly flocculent and biofilm forming,
which are undesired traits for industrial fermentation. It is likely that the latter was
related to the former, meaning that it can be difficult to separate desirable pheno-
types from the undesired. The boundaries on how far a cell factory can be improved
have direct implications on the applicability and technology readiness levels of cell
factories. For instance, successful replacement of fossil fuels with renewable alterna-
tives (e.g. the bioethanol of Papers IV-VII) is contingent on fermentation processes
with minimized costs and high yield and productivity. The theoretical stoichiometric
yield is simple to calculate, but the equally important maximum theoretical produc-
tivity is much more elusive. However, a recent mathematical framework based on
dynamic FBA has demonstrated that maximum theoretical productivity in bacterial
succinate production can be predicted (John et al., 2017). Such models that pre-
dict the engineering/optimization boundaries of cell factories have large potential to
inform the choice of host and product, and estimate the potential of metabolic engi-
neering projects.

22Examples towards this end include e.g. thermodynamic-based FBA models (Henry et al., 2007)

59



Whereof one cannot speak, thereof one must be silent.
[Wovon man nicht sprechen kann, darüber muss man schweigen.]

LUDVIG WITTGENSTEIN
The final statement of
Tractatus Logico-Philosophicus (1922)



Chapter 6

Outlook and concluding remarks

The advent of high-throughput omics methods in the mid-2000s (at the time of writ-
ing, about 15 years ago) ushered in a new approach to molecular biology where the
cell has begun to be considered from a holistic point-of-view – begun in the sense
that although the systems view is now widely spread and accepted, the data collec-
tion, management and synthesis for systemic assessments of the whole cell (and not
just one or two omes) is still in its infancy. Whether this data-intensive approach has
changed biological research to the extent that it can be called a new paradigm is a
subject of debate (Callebaut, 2012; Leonelli, 2010), but it is clear that Large Data has
had big implications on molecular- and cell-biology. Most important of all is probably
how technical developments have dramatically cut the price of a high-throughput run
(especially for sequencing methods) and thus have democratized Large Data biology
by making it affordable to even the smallest labs (McPherson, 2014).

Furthermore, the data-intensive and systemic views of the cell clearly demonstrate
the immense complexity of cell biology and stresses that the system boundaries of the
current omics methods are more constrained than the system boundaries of the cell
– a realization that most scientists working with Large Data biology experience sooner
or later. As such, this approach to molecular and cellular biology can be seen as the
Socratic paradox in play: the more you learn, the more you understand how little
you know (i.e. how much more there is to learn). With new methods for single-
cell multi-omics (Macaulay et al., 2017) and initiatives to go from single-genome
to pan-genome to study species diversity (Vernikos et al., 2015), the knowledge of
cellular biology will only continue to increase in complexity, and so will our need to
comprehend the complexity of this research subject.

In terms of outlook, the three Large Data themes discussed in the present thesis
(databases, genomics and signalomics) are very likely to remain as central elements of
Large Data biology. Databases have always been intrinsic to science (irrespective of
the form they have taken: encyclopaedia of chemical constants, library catalogues or
online data repositories) and will become increasingly important as high-throughput
methods are developed and refined. As the scientific community is slowly moving to-
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wards increased transparency – with more emphasis from journals and funding agen-
cies to publish manuscripts, programming code and raw and processed data openly
accessible – improved database systems are inevitably needed. Throughout the present
thesis contributions, raw WGS data, genome assemblies and annotations have for in-
stance been deposited at NCBI and some of the flow cytometry data have also been
stored in a dedicated repository (Spidlen et al., 2012).

Genomics is the most standardized of the high-throughput methods (Leonelli,
2014), which is one of the reasons why analysis and storage of genomics data is so
mature. During the time of the present thesis work, the third generation of sequencers
have been commercially established and started to fill a well needed niche of super
long-reads that really complements the short-read MPS methods. Being a new and
hot method, TGS is currently about as expensive as MPS was when Paper IV was
written (>3000€), whereas the more recent MPS study described in Paper III was
just a couple of hundred Euros. The substantially lower cost and error rates of MPS
will likely ensure that MPS will not go out of fashion anywhere soon.

The development of the bioinformatics field is progressing in response and in
parallel to the instrument developments. Not only have the algorithms become bet-
ter, but more and more new software that fills niches that the user previously had to
script on their own have emerged. The scene for free-for-academic-use bioinformat-
ics software is thriving, which directly plays into the accessibility, affordability and
transparency required for a democratic Large Data biology. These software and algo-
rithms are also often highly validated and state-of-the-art, making many of them well
adapted to data-intensive projects.

Signalling studies have also benefited from omics and other high-throughput ap-
proaches. The highly transient nature of signal transfer calls for methods such as flu-
orescent reporter systems that can monitor the signal in higher temporal resolution
(preferably in real-time) than what is normally possibly labour-wise by assessment of
signalling molecules with proteomics and metabolomics. The drawback of fluorescent
reporters is however that they fail to capture the whole signalome, as only a limited
number of simultaneous fluorescence proteins are possible in one cell at once due to
spectral overlap of the emitted signal. Future systems biology ventures may possibly
act as drivers for technological developments of ”signalomics”; for instance, a fully
representative in silico model of the cell will require signalling modelling (Hao et al.,
2018), which implies the high significance of continued studies of the signalome, and
here integrative biosensor-omics methods could complement each other. Likewise,
the signalling approach to the xylose-paradox in S. cerevisiae has good potential to
be a substantial step towards the applicability of this yeast as a cell factory for lig-
nocellulose biovalorization; this view is supported by a recent review that called for
increased use of a systems regulations approach to xylose engineering in S. cerevisiae
(Gopinarayanan and Nair, 2019).
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In closing, this present thesis has illustrated how Large Data biology can be used
as a forward momentum in molecular biology to increase the understanding of mi-
crobial cells – especially when combined with the work and knowledge of specialists
from different fields (Figure 10). The present work has attempted to establish the
importance of using data-intensive biology in concert with traditional biological ap-
proaches: theory first; then experimental design, Large Data biology and data analysis;
then experimental verification. Large Data biology for the sake of Large Data biol-
ogy may have been important in the formative years of the respective methodologies
to demonstrate their possibilities and accuracies, but today, when the methods are
well-established, they should instead be anchored within the knowledge-base of cell
biology. This will be imperative for the sustainability of the research in this field in
the long-run, especially since one thing is certain: Large data biology is not leaving
anytime soon.
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No! I am not Prince Hamlet, nor was meant to be;
Am an attendant lord, one that will do
To swell a progress, start a scene or two,
Advise the prince; no doubt, an easy tool,
Deferential, glad to be of use,
Politic, cautious, and meticulous;
Full of high sentence, but a bit obtuse;
At times, indeed, almost ridiculous -
Almost, at times, the Fool.

T.S. ELIOT
The Love Song of J. Alfred Prufrock,
in Prufrock and Other Observations (1917)
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Appendix I - Bioinformatics glossary

Table A1: Glossary for some key concepts in the genomics terminology.

Term Explanation

Annotation The process of predicting and identifying features in a nucleotide or amino
acid sequence. Genome annotation can resolve features such as genes,
psueo-genes, rRNA, etc.

Assembly The process of compiling a longer sequence (e.g. a whole-genome se-
quence) from smaller sequences (reads). Can be done with or without
a template genome (reference assembly and de novo assembly, repspec-
tively).

Base calling The process of determining the identity and order of nucleotides during
the sequencing. Base calling quality is commonly measured as the proba-
bility of a incorrect base calls in a given sequence length (PHRED-score).

Contig Short for contiguous sequence. A coherent sequence of DNA that is gen-
erated in an assembly by piecing together overlapping reads, supported by
high confidence levels. Assemblies commonly consists of multiple contigs.

Coverage The average number of sequenced fragments (reads) that support a certain
nucleotide position. For example, a coverage of 30x means that on aver-
age, each position in the contig was supported by 30 overlapping reads. A
good assembly has an uniform coverage throughout the contigs. Regions
with overly high coverage are indicative of sequencing/assembly errors.
Calculated as c = L ∗ N/G, where coverage (c) is a the average read
length (L) times the number of reads (N) over the haploid (one copy of
each chromosome) genome size (G) (Sims et al., 2014).

de Bruijn
Graphs

A mathematical concept used in modern short-read genome assembly al-
gorithms. Very simplified (see also Box II): reads are divided into sub-
strings of length k (k-mers), and alignment is calculated based on con-
structing a de Bruijn Graph where each k-mer is connected to two dif-
ferent nodes of size k-1 (one for each end of the k-mer; ”left” and ”right”
k-1-mer) which eventually forms a graph of the relationships of the k-mers
in the genome. This cirumvents the need for pairwise alignment of each
k-mer and signficantly decreases the computational burden. Please refer
to Compeau et al. (2011) for an in-depth primer on de Bruijn Graphs in
genome assembly. Different implementations of this method in different
MPS assemblers have been reviewed in Miller et al. (2010).

Greedy
algorithms

An assembly method that finds read overlap based on always selecting the
optimal (highest scoring) overlap for each local alignment. Used in older
MPS assemblers (Miller et al., 2010)
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Haplotype
estimation

A method to infer the sequence of alleles in polyploid genomes, e.g. from
sequencing reads. Can be used in connection with variant calling in poly-
ploid organisms to determine the allele frequency of the variants (homozy-
gous and heterozygous variants). Also known as haplotyping or haplotype
phasing.

Ka/Ks Estimate of the selection strength during DNA evolution based on the
ratio of the number of non-synonymous substitutions (Ka) and synony-
mous substitutions (Ks) in an ORF. Ka/Ks > 1 implies a positive selection
strength, Ka/Ks = 1 a neutral selection strength, and Ka/Ks < 1 a negative
selection strength. Sometimes denoted as ω.

k-mers All possible substrings of length k found in a string. In genome sequenc-
ing: division of a read into smaller nucleotide sequences of size k to fa-
cilitate identification of overlap. Used in e.g. de Bruijn Graph assembly
(Box II). k is commonly around 30-50 bp. Example:
Read: ATGGCGTGCA (10bp)
3-mers: ATG, TGG, GGC, GCG, CGT, GTG, TGC, GCA
8-mers: ATGGCGTG, TGGCGTGC, GGCGTGCA
10-mers: ATGGCGTGCA

ORF Open Reading Frame. Used in genome annotation to descibe putative
genes/coding sequences (CDS).

PHRED-
score

A base calling quality metric, expressed as the probability of an incorrect
base call in a given sequence. A score of 30 corresponds to a probability of
1 incorrect base call in 1000 bases, and a score of 40 (preferred threshold)
corresponds to 1 in 10000.

Pipeline A computational work-flow consisting of a set of software combined in a
chain; for instance, the scripts and algortihms needed to run the assembly
workflow in Figure 6. Normally consists of a number of different pro-
grams that need to be connected, often by adapting the output format of
one program to fit with the input format of the next.

Read (Noun) A sequence of base pairs determined by the sequencer, corrspon-
ing to (a subset of ) the DNA fragment that was used as a template.

Scaffold A colletion of contigs and gaps that together descibe a longer portion of
a genome sequence.

Sequencing-
by-synthesis

Method that uses a DNA polymerase to incorporate nucleotides based on
a DNA template. Labeled-nucleotides allows monioring of the sequence
as it is elongated. Examples include Sanger sequencing, Illumina, 454 and
IonTorrent.
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Variant General term for a changes in a sequence compared to a control sequence.
Semantically similar to mutation, but the term variant is preferred until
experimental evidence is in place. Variants can be synonymous (silent;
no change in the polypeptide) or non-synonymous (non-silent; changed
polypeptide). On top of that, variants can be classified as e.g. Sin-
gle Nucleotide Polymorphism (SNP; point-mutations), INDELS (inser-
tions/deletions) and structural variants (e.g. copy number variations) de-
pending on the length and complexity of the variant. Other examples
include frameshift variants and premature stop codons.

Variant
calling

The process of determining variants. Usually done by mapping reads to
a reference sequence and identifying statistically supported sequence vari-
ants.
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Since the advent of high-throughput genome sequencing methods in 
the mid-2000s, molecular biology has rapidly transitioned towards data-
intensive science. Recent technological developments have increased 
the accessibility of omics experiments by decreasing the cost, while the 
concurrent design of new algorithms have improved the computational 
work-flow needed to analyse the large datasets generated. This has 
enabled the long standing idea of a systems approach to the cell, where 
molecular phenomena are no longer observed in isolation, but as parts 
of a tightly regulated cell-wide system. However, large data biology is 
not without its challenges, many of which are directly related to how to 
store, handle and analyse ome-wide datasets. 

The present thesis examines large data microbiology from a middle 
ground between metabolic engineering and in silico data management. 
The work was performed in the context of applied microbial ligno-
cellulose valorisation with the end goal of generating improved cell 
factories for the production of value-added chemicals from renewable 
plant biomass. Three different challenges related to this feedstock were 
investigated from a large data-point of view: bacterial catabolism of 
lignin and its derived aromatic compounds; tolerance of baker’s yeast 
Saccharomyces cerevisiae to inhibitory compounds in lignocellulose 
hydrolysate; and the non-fermentable response to xylose in S. cerevisiae 
engineered for growth on this pentose sugar.
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