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Abstract

With the advent of the Functional Mock-up Interface (FMI) standard, ex-
changing dynamic models between modeling and simulation tools has been
greatly simplified. At the core of it, FMI is a standardized and unified model
execution interface for dynamic models. FMI has gained widespread adoption
among users and numerous commercial and open source tools implement sup-
port for the standard. In this article, the Python package PyFMI is introduced.
PyFMI supports loading and execution of models compliant with the FMI stan-
dard, called Functional Mock-up Units (FMUs). It includes a master algorithm
for simulation of coupled FMUs together with connections to both Assimulo,
for simulation of single FMUs, and to SciPy, for performing parameter estima-
tion. Accessing models compliant with FMI in Python, which is an open and
accessible scripting language, is intended to further spread the standard and
also promote and facilitate future development of the standard. This is due
to Python being a convenient language for experimentation and prototyping of
numerical algorithms. PyFMI is also demonstrated on a number of problems
that highlights its viability for solving industrial grade simulation problems with
FMUs.

Keywords: Functional Mock-up Interface; FMI; Python; Simulation;
Co-Simulation; Ordinary differential equations; Parameter Estimation;

1. Introduction

Different simulation and modeling tools often use their own definition of how
a model is represented and how model data is stored. Complications arise when
trying to model parts in one tool and importing the resulting model in another
tool, or when trying to verify a result by using a different simulation tool. The
Functional Mock-up Interface (FMI) [1] is a standard to provide a unified model
execution interface for exchanging dynamic system models between modeling
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tools and simulation tools. The standard has been a great success as numerous
tools1, both open source and commercial have adopted it as well as having
gained widespread adoption among users.

In this article, the Python package PyFMI is introduced. PyFMI supports
loading and execution of models compatible with the FMI standard. Such mod-
els are called Functional Mock-up Units (FMUs). PyFMI is based on the open
source package FMI Library [2]. It is designed to provide a high-level, easy to
use, interface for working with FMUs. It connects the full set of methods in the
FMI specification in an object-oriented approach. The package is not only a
mapping of the FMI interface to Python, it provides much of the functionality
needed to perform various experiments for both evaluating the complex dynam-
ical system model by itself but also for evaluating the physics that the model
represents. The evaluation of the model could be to verify the model dynamics
by efficient simulation while evaluations of the physics could be to performing
parameter estimations. These experimentations requires an extensive tool be-
yond the low-level FMI interface which motivates the package. Furthermore,
with the FMI, simulation of coupled models in a co-simulation setting is pos-
sible. In this setting, the dynamics of each system is hidden and exchanging
information between systems is done through inputs and outputs. This is im-
portant as in many cases, with complex systems, this is the only viable option
due to that parts of the model is modeled in different tools. An algorithm for
performing a co-simulation is called a Master Algorithm and within PyFMI a
master algorithm has been implemented and made available.

PyFMI has been used successfully in a number of different applications such
as in [3] and [4] as well as in [5]. It is additionally an integral part of the open
source JModelica.org platform [6].

2. Motivation

The FMI standard fills a gap where before there has been costly custom
solutions for coupling specific simulation environments and exchanging models
between tools. In order to promote widespread use of the FMI standard and
make it easily accessible, there is a need for an open package in an open platform
for experimenting and working with FMUs. Furthermore, the FMI standard
specifies a low-level interface in C that while efficient, not very user friendly,
which means that there is a need for an high-level package for conveniently
working with FMUs.

PyFMI grew from [7] where there was a need for working with the standard
in the open source tool JModelica.org. It is written in the Python programming
language which is a powerful dynamic programming language with a clear and
readable syntax. The choice of using Python is motivated by the momentum the
language has in scientific computing due to the many freely available packages,
notably NumPy and SciPy [8], but also due to the fact that the language is easy

1https://www.fmi-standard.org/tools [accessed: 2016-03-18]

2



to learn, especially if the user has a background in Matlab. Moreover, together
with Cython [9], efficiency and high-performance can be achieved. By providing
an interface for working with FMUs from Python, the model is exposed to
the full ecosystem that Python has to offer. Visualization and animations of
simulation results can be done through matplotlib [10] and the flexibility that
Python offers make it suitable for prototyping. The choice of Python is further
motivated by the ease of connecting software written in different programming
languages, such as C.

PyFMI is commonly used with Assimulo [11]. Assimulo is a package that
provides solvers for solving dynamical systems, such as those represented by
FMUs. The packages complement each other as Assimulo provides the solvers
and PyFMI provides the problems.

PyFMI offers an open platform for working with FMUs and the algorithms
that are included are open and accessible for modifications and further ex-
perimentations. PyFMI includes an open and available master algorithm for
simulation of coupled FMUs. In a related work, the PySimulator [12], there
is also support for working with FMUs from Python. In their case they use a
different approach for coupling the FMUs to Python and are more focused on
post processing of simulation results. Furthermore, there is no included master
algorithm.

3. The Functional Mock-up Interface

The FMI standard is designed to provide a unified model execution interface
for dynamic system models between modeling tools and simulation tools, Fig-
ure 1. The generated models, FMUs, are distributed and shared as compressed

Functional 

Mock-up 

Interface 

Dymola 

JModelica.org 

SIMPACK 

SimulationX 

PyFMI 

JModelica.org 

FMI Toolbox for Matlab 

Custom User Environment 

Figure 1: Exchange of dynamical models following the Functional Mock-up Interface.

archives. They include a shared object file containing the model information
which is accessed through the FMI interface. The archive additionally contains
an XML file containing metadata of the model, such as the sizes of the dynamic
system and the names of the variables, parameters, constants and inputs. FMI
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specifies two types of models, one named model exchange FMU, exposing an,
possibly discontinuous, ordinary differential equation (Figure 2) while the other

DLL XML 

FMU Tool 

Solver Solver 

Figure 2: Overview of a model exchange FMU, note that an external solver is required by the
tool in order to solve the model.

type is co-simulation FMU, exposing only the ability to perform a step in time
(Figure 3). PyFMI supports both model types as-well as versions 1.0 [13, 14]
and 2.0 [1].

DLL XML 

FMU Tool 

Solver 

Figure 3: Overview of a co-simulation FMU, note that the solver in this case is within the
FMU.

The FMI standard specifies methods for interacting with a model, providing
variable values and retrieving values. Methods for computing the derivatives,
setting states and time are available for model exchange and for co-simulation,
a method for performing an internal step are available. Furthermore, there are
specific methods for initialization of a model. The interface is light-weight and
much of the information about the internals are contained in the metadata, i.e.
the XML file inside the FMU, which needs to be made available.

The standard describes a model exchange FMU with the following underlying
mathematical representation,

ẋ = f(t, x, u; p, d) (1a)

y = g(t, x, u; p, d) (1b)

where t is the time, x are the continuous states, u are the inputs, p are the
parameters and d are the discrete variables that are kept constant between
events. Furthermore, y are the outputs. Additionally, the standard supports
different types of events which can impact the model behavior. The three events
are:

• State Events
These events are dependent on the state solution profiles and thus not
known a prior. The model provides a set of event indicators, z, that the
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integrator monitors during the integration process,

z = hstate(t, x, u; d, p). (2)

If one of the event indicators, zi, switches domain, there is a state event.
The integrator is then responsible for finding the time when the event
occurred.

• Time Events
These events on the other hand are known a prior, meaning that for each
simulation segment it is known when the time event occur and thus this
time is set as the simulation end time for that segment. Given a previous
time event, Tpre (or the initial time, T0), the next time event is computed
using,

Tnext = htime(tTpre
, xTpre

, uTpre
; dTpre

, p). (3)

An example is that after a certain elapsed time in the integration, a force
is applied on the model.

• Step Events
These last type of events are events that typically do not influence the
model behavior, instead they are events to ease the numerical integration.
For instance it can be a change of the continuous states in the model as the
current states are no longer appropriate numerically. After each successful
integrator step, Taccepted, the equation,

Estep = hstep(tTaccepted
, xTaccepted

, uTaccepted
; dTaccepted

, p) (4)

is evaluated and if Estep is True, a step event is triggered.

Further, Equation 1 is valid during continuous simulation and prior to this,
the FMI specifies that the FMU need to be initialized. The simulation and
initialization is separated as to allow a flexible definition of initial conditions.
An example could be that the initial values for the states are computed using
an initial equation, which is only active during the initialization. The initial
equations are described by,

x̂0, d̂0, p̂ = finit(t0, x̄0, u0; d̄0, p̄), (5)

where x̄0 are states with known initial values, d̄0 are the known discrete variables
and p̄ are known parameters. The complete initial states vector is x0 = [x̄0, x̂0],

and for discrete variables, d0 = [d̄0, d̂0], while the full parameter vector is p =
[p̄, p̂].

For full details about the mathematical representation, cf. [1] for version 2.0
and [13] for version 1.0.

For co-simulation, the standard rather describes a discrete interface to the
underlying dynamic model, i.e. given the current internal state, input un and
step size H of the model, return the outputs, yn+1, at a time Tn +H = Tn+1,

yn+1 = Φ(H,un; p), (6)
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where p are the parameters. The advancement of the states and time are com-
pletely hidden outside of the model and is also not specified by the standard, cf.
Figure 4. A consequence of this is that, if there are events, these are also handled
internally and are not visible from the outside. There is additionally the restric-
tion that the outputs, y, cannot be evaluated, during simulation, for different
inputs, u, without advancing the solution, i.e. performing a step with H > 0.
However, as the advancement is hidden, this allows for specialized solvers to be

DLL XML 

FMU Tool 

Solver 

Figure 4: A co-simulation FMU and the connection to a tool for simulation. Note that the
solver is inside the FMU.

used for the particular subsystem at hand, which may give an increased per-
formance and a more stable simulation. As in the model exchange case, the
initialization is done separately for co-simulation FMUs. The initialization is
defined by,

p̂ = finit(t0, u0; p̄). (7)

where p̄ are known parameters. The full parameter vector is p = [p̄, p̂].
For full details about the mathematical representation, cf. [1] for version 2.0

and [14] for version 1.0.
Between version 1.0 and version 2.0 of the standard, changes have been

made. The most significant changes are:

• Save/Get state: Methods for retrieving and restoring the internal state
of an FMU have been added.

• Dependency information: Information about which states and inputs
impact the derivatives and the outputs has been added.

• Directional derivatives: Methods for computing the directional deriva-
tives of Equation 1 and Equation 6 has been added.

• Separate initialization: The initialization of an FMU has been sepa-
rated into a state of the FMU instead of a single call to an initialization
method.

• Tunable parameters: Tunable parameters has been added which allow
these types of parameters to be changed at events.
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4. Overview and analyses

The FMI standard describes a light-weight interface for interacting with a
model which by itself does not include any analyses of the dynamic model.
In this section, the available capabilities of PyFMI is described and shown how
they can be used. The major features of the package is linearization of an FMU,
Section 4.1, simulation of an FMU, Section 4.2, simulation of coupled FMUs,
Section 4.3, and estimation of parameters within an FMU, Section 4.4.

These analyses are necessary in order to support model-based design work-
flows. Linearization of a model is useful when, for instance, designing control
systems using classical approaches and when analyzing stability of the model.
Simulation and simulation of coupled systems are vital to understanding the
dynamics and how the dynamics behave over time. With efficient simulation
and access to solvers that are appropriate for a given problem, the return time
is reduced resulting in more time for experimentations. Furthermore, a common
situation in a model of a system is that not all parameters are given, only an
approximation is known due to that the parameter can be hard to measure on a
physical system that the model represents. In these cases, parameter estimation
is key to make the model more representative of the physical system.

For illustration purposes, we consider a model of the van der Pol oscillator
given by,

ẋ1 = µ[(1− x22)x1 − x2] + u, x1(t0) = −0.6 (8a)

ẋ2 = x1, x2(t0) = 2 (8b)

where µ = 20 and u is the input signal. The Modelica code of the example is
shown in Appendix A and the model is compiled into an FMU named VDP.fmu.

As a first step for using PyFMI, the FMU needs to loading into Python. In
Example 4.1 this is explained. In Example 4.2, it is shown how to interact with
the FMU.

Example 4.1 (Loading an FMU). The first step for working with FMUs is to
load the model into Python, i.e. couple the binary from the FMU and read the
model description containing information about the variables etc.

#Convenience function for loading a general FMU

from pyfmi import load_fmu

#Loads the FMU and return a model object

model = load_fmu("VDP.fmu")

The FMU is automatically extracted and the metadata is read together with
coupling of memory handling. If the model is discarded, memory is automati-
cally handled and deallocated if necessary. No manual handling of memory is
necessary.

Example 4.2 (Interacting with a model). Once the model is loaded into Python,
values can be retrieved from the model using the high-level get/set methods.
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#Get the value of the variable ’mu’

mu = model.get("mu") #.set for setting values

print mu

>>> 20

For variable attributes, these can be obtained similarly,

#Get the start value of variable ’x1’

start_x1 = model.get_variable_start("x1")

print start_x1

>>> -0.6

All attributes such as min, max, nominal and start can just as easily be retrieved.

4.1. Linearization

For analyzing the dynamics of the system, linearizing the model (Equation 1)
is usually the first step. The linearized state space form for a model exchange
FMU is,

ẋ = Ax+Bu (9a)

y = Cx+Du. (9b)

In FMI there is no direct way of computing the matrices in the linearized
state space form (Equation 9). There are however, methods for computing the
directional derivatives, in FMI 2.0, with respect to a set of variables (here either
x, u or a subset of them) and a set of functions (f or g or a subset) together
with a seed vector. The definition of the directional derivatives are,

gz =
dg(z)

dz
v (10)

where g(z) is a vector-valued function, z is the vector of variables and v is
the seed vector. From the directional derivatives, the partial derivatives, the
matrices A,B,C,D in Equation 9, can directly be computed by a sequence of
calls with v replaced by unit vectors.

If structural information is available, e.g. if the structural dependency be-
tween xi, ui and ẋj is known and between xi,ui and yj , compression can be
employed such that the number of evaluations of either the directional deriva-
tives or evaluations of f (in case a finite difference approximations is used) is
reduced.

Consider the ODE in Equation 11,

ẋ1 = x1 (11a)

ẋ2 = x2 + x3 (11b)

ẋ3 = x1 + x3. (11c)

Now consider that the Jacobian, dẋ
dx , is computed using a first order finite dif-

ference scheme requiring 3 + 1 evaluations of the derivatives. However, due to
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the structure of the ODE, the partial derivatives ∂ẋ
∂x1

and ∂ẋ
∂x2

can be computed
simultaneously as ẋ1 and ẋ3 are independent of x2 and ẋ2 are independent of x1.
This leads to that the construction of the Jacobian only need 2 + 1 evaluations
of the derivatives. In general, an adjacency matrix, determining the structural
relation between the variables (states or inputs) and the functions (derivatives
or outputs), can be constructed, Equation 12 for the given ODE.

Aadj =

1 0 0
0 1 1
1 0 1

 . (12)

Given the adjacency matrix, a compression can be computed aimed at reduc-
ing the number of evaluations of the derivatives or outputs. In PyFMI, the
algorithm proposed in [15] is used.

With the growing size of models and due to that in general the state space
matrices are sparse, utilizing this information is essential in order for efficient
handling of the system. Using SciPy, the ability to represent these matrices is
available and supported by PyFMI.

For co-simulation FMUs, the derivatives are not exposed, cf. Equation 6.
However, the above applies to the outputs which are available.

4.2. Simulation of single models

A key feature of the package is the connection to Assimulo, which provides
capabilities for performing simulations of model exchange FMUs using ODE
solvers interfaced with Assimulo. The coupling is made possible by extending

Functional Mock-up Unit

PyFMI ASSIMULO

Figure 5: Coupling between PyFMI and Assimulo.

the definition of the problem classes accepted by Assimulo, Figure 5. With the
extension, customizations related to FMI is made possible, such as exposing the
different events in FMI to the solver.

Assimulo separates between a problem, which contains the problem equa-
tions, and the actual solver used for the integration. The problem object is not
only limited to the derivatives equation, but it may also contain event functions
which is necessary in the FMI case. Furthermore, the problem object can be
used to define specific event handling and user defined result handling. All of
these features are necessary in order to couple a model exchange FMU to a
simulation environment. In Example 4.3, a simulation of an FMU is shown.
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Example 4.3 (Simulating an FMU). A simulation of an FMU, either a model
exchange or a co-simulation FMU, follows the same steps. First, the model is
loaded.

#Convenience function for loading a general FMU

from pyfmi import load_fmu

#Loads the FMU and return a model object

model = load_fmu("VDP.fmu")

Then, a simulation is performed by invoking the simulate method on the model
object.

#Simulate the model

res = model.simulate(final_time =2)

The simulation results are returned in the res object. In Figure 6, the simulation

0.0 0.5 1.0 1.5 2.0
Time [s]

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x2

Figure 6: Simulation result of the van der Pol oscillator from Example 4.3.

result for x2 is shown.

A dynamical model typically has control signals or external forces acting on
the model during a simulation. An example is the road profile for a vehicle. In
general, this data is a list of points connected to a point in time,

(ti, ui), i = 0, . . . , N. (13)

Within PyFMI, this data can be provided to the simulation setup and will
be evaluated during the simulation using linear interpolation between the data
points,

u(t) = ui + (t− ti)
ui+1 − ui
ti+1 − ti

, t ≥ ti ∧ t < ti+1, i ∈ [0, N ]. (14)

Another option is that the expression for the control signals are known and
for these cases providing a function, instead of data points,

u(t) = h(t) (15)
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is beneficial. The reason is that in the first case, discontinuities in higher deriva-
tives are introduced which may degrade the performance of the simulation. In
Example 4.4 an example using an input function is shown.

Example 4.4 (Inputs). In this example, an input function, f(t) = 100 sin(30t),
is defined which provides the input to the variable u in the van der Pol oscillator
model, Equation 8.

import numpy as np #Import numpy

#Define the function , need to be dependent on time

def f(time):

return 100*np.sin (30* time)

#Specify the input variable together with the function

input = (’u’, f)

#Provide the input object to the simulate method

res = model.simulate(final_time =2, input=input)

During the integration, the input will be invoked during each evaluation of the
model equations, for model exchange. For co-simulation FMUs, the input func-
tion will be evaluated at every step. In Figure 7, the simulation result for x2

3
2
1
0
1
2
3

x2

0.0 0.5 1.0 1.5 2.0
Time [s]

100

50

0

50

100
u

Figure 7: Simulation result of the van der Pol oscillator from Example 4.4 together with the
input function, u.

and the input, u, is shown.

Furthermore, general options for controlling the simulation are available.
In Example 4.5, changing options are shown and in Table 1, the options for
controlling a simulation of a model exchange FMU is shown.

A simulation of a co-simulation FMU follow the syntax as shown above.
However, as the simulation do not require an external solver, the options avail-
able are limited, cf. Table 2.

Example 4.5 (Providing options to the simulation). Setting options for con-
trolling the simulation can be done in two steps. First the available options are
retrieved from the model object.
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#Retrieves the options dictionary

opts = model.simulate_options ()

The opts object is a Python dictionary which contains the available options.
Setting an option is done using the normal Python dictionary syntax.

opts["ncp"] = 500 #Change the number of output points

For the simulation to use the options, these need to be provided when invoking
the simulation.

#Provide the options object to the simulate method

res = model.simulate(options=opts)

Table 1: Description of the options available in the default algorithm in order to control the
simulation of an model exchange FMU.

Option Description
solver The ODE solver to use. By default, all solvers from Assimulo can be

used.
ncp The number of communication points, i.e. the number of requested

(equally spaced) points to store the result.
initialize If the model should be initialized or not.
result handling Determines how the result should be stored, either on file or directly in

memory.
result handler Ability to specify a custom result handler.
filter A filter for choosing which variables to actually store result for.
extra equations Determines if additional equations should be solved together with the

model.
{solver} options Specifies additional solver specific options.

Table 2: Description of the options available in the default algorithm for simulation of a
co-simulation FMU.

Option Description
ncp The number of communication points, i.e. the number of requested

(equally spaced) points to store the result.
initialize If the model should be initialized or not.
result handling Determines how the result should be stored, either on file or directly in

memory.
result handler Ability to specify a custom result handler.
filter A filter for choosing which variables to actually store result for.

4.3. Simulation of coupled models

A second key feature of the package is the ability to simulate coupled sys-
tems, i.e. coupled FMUs. PyFMI implements a master algorithm which includes
the approaches used for co-simulation discussed and analyzed in [16]. The im-
plementation supports simulation of a coupled system via a parallel approach,

12



i.e. Jacobi-like, defined as (for M models),

y
[i]
n+1 = Φ[i](H,u[i]n ; p), i = 1, . . .M (16)

un+1 = c(yn+1). (17)

The algorithm proceeds by first providing inputs to a model and then performing

a global time step, for the ith model: y
[i]
n+1 = Φ[i](H,u

[i]
n ; p). This can be

done for all models simultaneously and once all models have performed the
step, information is exchanged between the models and inputs for the next step
are computed using the coupling equations, c(·). This is the commonly used
approach for simulation of coupled systems. In Example 4.6, a simulation of a
coupled system using PyFMI is explained.

Example 4.6 (Coupled system simulation). In order to simulate a coupled
system, first of all the models needs to be loaded and collected together,

sub_system1 = load_fmu("Subsystem1.fmu") #First model

sub_system2 = load_fmu("Subsystem2.fmu") #Second model

models = [sub_system1 , sub_system2] #List the models

This list may contain an arbitrary number of models and the ordering in the list
is irrelevant.

Secondly, the coupling needs to be specified. Here the following convention
is used. First, from which model is the variable data coming from? It should be
an reference to a model. Second, the name of the variable in the model where
data is coming from. Thirdly, the reference to the receiving model and finally
the name of the receiving variable.

#Connecting inputs / outputs from two models

connections = [( sub_system1 ,"x_chassi",sub_system2 ,"x_chassi"),

(sub_system2 ,"v_chassi",sub_system1 ,"v_chassi")]

The connection list can contain an arbitrary number of connections.
The main implementation and the user entry-point is the Master class for

a simulation of a coupled systems. This class needs to be imported from the
package.

#Import of the Master object

from pyfmi import Master

The models together with their connections can then be loaded into the Master

class.

#Create the simulator object

master_simulator = Master(models , connections)

Once the simulator object is created, a simulation is performed using the simulate
method.

master_simulator.simulate(start_time =0.0, final_time =1.0)

13



The simulation statistics are printed and the simulation result are returned in
the res object, just as in the case for a simulation of a single system.

Included in the master algorithm are variants of the above algorithm. Higher
order extrapolation is possible for the inputs, from using constant polynomials,
as is shown, up-to using quadratic polynomials for the inputs. Additionally,
the update of inputs between time steps introduces discontinuities in the input
signals due to the coupling equations. Using a smoothing approach on the in-
puts, continuity is preserved [16]. Another issue is the stability of the algorithm,
depending on the couplings between the models the algorithm may become un-
stable. Using the directional derivatives, a stabilization can be performed. For
details, cf. [16]. Both the smoothing and the stabilization is implemented in
the master algorithm.

Furthermore, the master algorithm may used together with an error es-
timation based on Richardson extrapolation [17]. The estimate is based on
performing a global integration step twice using different input. A first step is
performed using a step size H. This step is compared with two steps of step
size H/2 where inputs and outputs between the subsystems are updated before
taking the second step of step size H/2.

For initialization, the master algorithm supports initialization based on graph
cycle detection [16]. The idea is that the dependency information between inputs
and outputs are used to detect cycles and in so doing, computing an evaluation
order of the input / output variables of the separate models. This is done in
order to simplify the initialization problem.

Simulation of coupled systems are restricted to models following the co-
simulation interface for FMI 2 and as in the case of simulation of a single system,
options are available to control the mater algorithm and are shown in Table 3.

Table 3: Description of the options available in the master algorithm in order to control the
simulation of the coupled system.

Option Description
step size The global step size to be used when using the fixed step approach.
extrapolation order The order of the extrapolation for the coupling variables.
linear correction Defines if linear correction for the coupling variables should be used

during the simulation.
execution Defines if the models are to be evaluated in parallel or in serial.
smooth coupling Defines if the extrapolation should be smoothen, i.e. the coupling

variables are adapted so that they are C0 instead of C−1 in case the
extrapolation order is > 0.

num threads Specifies the number of threads to be used when the execution is set
to parallel.

error controlled Defines if the algorithm should adapt the step size during the sim-
ulation.

atol The absolute tolerance in case an error controlled simulation is
performed.

rtol The relative tolerance in case an error controlled simulation is per-
formed.

result handling Specifies how the result should be handled. Either stored to file or
stored in memory.

filter A filter for choosing which variables to actually store result for.
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4.4. Parameter estimation

Verifying the dynamics of a model usually requires that parameters are val-
idated against experimental data due to that not all parameters are known.
The parameters can either be tuned manually or by an optimization aimed at
minimizing the difference between experimental data and the model response.
In [18], PyFMI were extended with parameter estimation using derivative free
methods and which has since been further extended by coupling to SciPy’s min-
imization algorithms and with an improved user interface. In Example 4.7, an
example on how to perform parameter estimation is shown.

Example 4.7 (Parameter estimation). This example illustrates how parameter
estimation can be performed. As before, the model is loaded into Python using
the load_fmu method.

from pyfmi import load_fmu

# Load model

model = load_fmu("MyModel.fmu")

Second, the measurment data need to be stacked into a matrix. Here it assumed
that the data is stored in the arrays, t_meas, x1_meas and in x2_meas.

#Stack the measurement data into a matrix

#The measurments , x1_meas ,x2_meas , are 1-dim arrays

meas_data = np.vstack ((t_meas ,x1_meas ,x2_meas)).transpose ()

Following the same approach as in the simulation case, the estimation is per-
formed by invoking the estimation method on the model object.

#Invoke the estimation for the parameters k1 and k2

res_est = model.estimate(parameters =[’k1’,’k2’], measurements =([’

x1’,’x2’],meas_data))

Here, the parameters of interests, k1 and k2, are specified together with the mea-
surement data. The estimation is performed, by default, with SciPy’s Nelder-
Mead routine. The resulting parameters are returned in the res object.

The parameter estimation is coupled to SciPy’s optimization routine and
the default algorithm used is the Nelder-Mead method [19]. The method is a
derivative free method. The parameter estimation is available for all FMU types
using the same syntax as shown in the above example.

5. Implementation overview

The core of PyFMI is implemented in Cython [9] which is a static compiler
for Python. It allows to mix the programming languages C and Python inter-
changeably. The added benefit of mixing the languages is that the main part of
the package, where readability and scripting functionality matter, is based on
Python and performance critical parts are kept in C. In this way computational
performance is preserved as opposed to relying solely on Python. Not only does
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Cython allow to mix the languages, it also allow to connect to external C code
which is imperative due to the dependency on the FMI Library [2].

As shown in Example 4.2, the high-level methods commonly uses the names
of the variables instead of the value references which is an identifier for a variable,
used by the FMI interface. Using the names results in a convenient way for
working with variables although it introduces an overhead, cf. Figure 8.

PyFMI 

get(..) 

Metadata 

FMU 

Binary 

Python 

model.get(”x”) 

Valuereference of ’x’ ? 

Value of ’102’ ? 

FMI 
Library 

Figure 8: Overview of the functionality of the high-level method get. The variable name for
which the value is requested is sent to PyFMI. The variable name is translated into a value
reference by help of the metadata using FMI Library. Using the value reference, the value is
retrieved from the binary, also through FMI Library, and passed to the user.

The methods in the specification are connected via a high-level interface
as well as access to the metadata. For specific use cases, direct access to the
low-level methods are necessary and they have additionally been made available.

The algorithms implemented in the master algorithm are all based on a
Jacobi-like scheme where the individual models perform a global time-step and
then exchange information. A global time-step can be performed simultaneously
for all models and thus also be straightforwardly parallelized. In PyFMI this is
implemented, cf. Figure 9.

Do Step 

Model A 

𝑇𝑛 𝑇𝑛+1 

Model B 

Model C 

Exchange 
Information 

Model A 

Model B 

Model C 

Do Step 

Model A 

𝑇𝑛+1 𝑇𝑛+2 

Model B 

Model C 

Figure 9: Performing the global time steps in parallel when simulating a coupled system using
the implemented master algorithm. The exchange of information is done in serial.

5.1. Architecture

In PyFMI, each version and type of model defined in the standard is repre-
sented by its own Cython class, cf. Figure 10. The versions and model types
all contain their specific functionality and extensions. However, much of the
functionality between them are common motivating the structure.

A simulation, as previously shown, is performed by invoking the simulate
method on the model object.

# Definition of the simulate method
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Figure 10: Overview of the class diagram for the classes holding the FMUs.

model.simulate( start_time=’Default ’, final_time=’Default ’,

input =(), algorithm=’AssimuloFMIAlg ’, options ={}

)

The method allows a number of arguments such as defining the start and final
time of the simulation, inputs and specifying an algorithm. There are two algo-
rithms available in PyFMI, one with the coupling to Assimulo in order to gain
access to solvers and one for simulation of co-simulation FMUs. Additionally,
user defined algorithms may be used. In Figure 11, the relation between the
model objects and the algorithms together with algorithmic options are shown.

Figure 11: Overview of the class diagram and the coupling between model objects and algo-
rithms for simulation together with the algorithms options.

A simulation of a coupled system is different from simulating a single sys-
tem. This is due to that the coupled system needs to be defined. Specifically the
coupling between the models needs to be specified. An algorithm for simulating
a coupled system is usually called a master algorithm and here the implemen-
tation is contained in a Master class. In Figure 12, the relations between the
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classes are shown.

Figure 12: Coupling between the FMU model class, options and the master algorithm.

The interface for the parameter estimation follow that of the simulate method
where the method is invoked on a model object.

# Definition of the estimate method

model.estimate( parameters , measurements ,

input =(), algorithm=’SciEstAlg ’, options ={} )

The parameters are the parameters of interest to tune while the measurements
is the experimental data. Additionally, inputs can be set. In Figure 13, the
relation between the model objects and the algorithm for parameter estimation
is shown together with algorithmic options.

Figure 13: Overview of the class diagram and the coupling between model objects and algo-
rithms for parameter estimations together with the algorithms options.

5.2. Result handling

Within the package, simulation results are handled through a base class,
ResultHandler, that determines the interface for the underlying specific storage
types, cf. Figure 14. The possible options are to store the result to a specific
file format supported by for instance the Modelica tool, Dymola [20], store the
result in a CSV file or store the result directly in memory. Additionally, a
custom result handler can be provided to the simulation so that the result is
handled in a user defined way.
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Figure 14: Overview of the class diagram for the classes storing the result.

The simulation result is returned to the user after a successful simulation
in a general format, independent on how the result was actually stored. In
Example 5.1, accessing the simulation results are shown.

Example 5.1 (Result handling). Invoking the simulate method on a model
object result in that the computed simulation result is returned.

res = model.simulate ()

Trajectories for specific variables are easily retrieved by operations on the result
object.

res["x"] #Result trajectory the variable x

res["time"] #Result trajectory for the time

In case of a simulation of a coupled system, the result is returned as above.

res = master_simulator.simulate ()

However, accessing the individual variable trajectories, both the model from
which the variable is defined and the variable itself is needed.

res[sub_system1 ]["x"] #Result trajectory the variable x

#from the model object "sub_system1"

res[sub_system1 ]["time"] #Result trajectory for the time

#from the model object "sub_system1"

Visualization of the trajectories can easily by done using the matplotlib [10]
package.

For large industrial models, the stored result can easily be gigabytes of data
and the data handling can have a significant impact on the simulation perfor-
mance. Coupling the result handling with the filter option in Table 1,Table 2
and Table 3, i.e. storing only the variables of interest, reduces both.

6. Case studies

6.1. Simulation of a woodpecker

This example is intended to show how PyFMI can handle hybrid systems, as
model exchange FMUs from different sources, illustrated by a toy woodpecker,
[21]. The model consists of a vertical bar attached to the ground, a sleeve able
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Figure 15: Schematic figure of the woodpecker.

to slide along the bar and the woodpecker which is attached to the sleeve via a
spring, cf. Figure 15. Impact is modeled without friction for simplicity. In [11],
the woodpecker was defined in Python and simulated using Assimulo. Here,
the model is modeled in Modelica and exported as model exchange FMUs from
Dymola [20] and JModelica [6]. The Modelica code is shown in Appendix B.

The woodpecker is loaded into PyFMI and simulated with the solver CVode
[22] connected through Assimulo with absolute and relative tolerance set to
10−6.

model = load_fmu("Woody.fmu")

#Get the options

opts = model.simulate_options ()

#Specify tolerances

opts["CVode_options"]["atol"] = 1e-6

opts["CVode_options"]["rtol"] = 1e-6

#Simulate

res = model.simulate(final_time=tf, options=opts)

This was performed for the FMUs from the different tools. In Figure 16 the
simulation results are shown for the Dymola FMU. In Figure 17, a comparison
is made between an FMU generated from JModelica and Dymola, simulated
using CVode and tolerances set to 10−6. The reference used was computed
using the JModelica generated FMU with the Radau5 [23] solver connected
through Assimulo together with absolute and relative tolerance set to 10−10.

6.2. Co-simulation of a quarter car

In this example, a quarter car, cf. Figure 18, is simulated with step size
control. In a co-simulation setup, this example was discussed in [17] and the
intention with the example is to show that PyFMI are able to replicate the
results shown in that article. The quarter car is governed by the equations,

mcẍc = kc(xw − xc) + dc(ẋw − ẋc) (18a)

mwẍw = kw(0.1− xw) + kc(xw − xc) + dc(ẋw − ẋc) (18b)
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Figure 16: The height of the sleeve and the angle of both the sleeve and the bird of the
woodpecker from Section 6.1.

with the constants, mw = 40kg, mc = 400kg, kw = 150000N/m, kc = 15000N/m
and dc = 1000Ns/m.

The system is decoupled with the chassis being one sub-system and the wheel
another. The coupling is given by

y = I


xc
ẋc
xw
ẋw

 (19a)

u =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 y (19b)

where there is no direct feed-through.
FMUs of the subsystems were generated using Dymola [20] as co-simulation

FMUs with support for saving the internal state and setting the internal state
which allows for re-computation of a global step.

Using the implemented master algorithm, cf. Section 4.3, to simulate the
coupled system the algorithm itself needs to be imported together with methods
for loading the FMU into Python.

from pyfmi import load_fmu

from pyfmi.master import Master

The FMUs are then loaded into Python.

#Load the FMUs

model_wheel = load_fmu(fmu_wheel)

model_chassi = load_fmu(fmu_chassi)
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Figure 17: Comparison between a JModelica.org and a Dymola generated FMU of the toy
woodpecker in Section 6.1.

The coupling is specified by a connection matrix where the first object spec-
ifies the model from where the output should be retrieved from. The second
part specifies to what sub-system the values should be provided and to which
variable.

#Specify the coupling

connections = [( model_chassi ,"x_chassi",model_wheel ,"x_chassi"),

(model_chassi ,"v_chassi",model_wheel ,"v_chassi"),

(model_wheel ,"x_wheel",model_chassi ,"x_wheel"),

(model_wheel ,"v_wheel",model_chassi ,"v_wheel")]

The next step is to load the master algorithm with the models and the cou-
plings.

models = [model_chassi , model_wheel]

#Load the models into the master algorithm

master_simulator = Master(models , connections)

Specifying the options is done through the options dictionary.

opts = master_simulator.simulate_options ()

#(0 = Constant , 1 = Linear)

master_opts["extrapolation_order"] = 0

master_opts["error_controlled"] = True

master_opts["rtol"] = 1e-4

master_opts["atol"] = 1e-4
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Figure 18: The quarter car model from Section 6.2.

The use of Richardson for the error estimation is specified as well as both the
absolute and the relative tolerance. The tolerances was set to 10−4. Finally the
coupled system can be simulated using the simulate method.

#Simulate the coupled system

res = master_simulator.simulate(final_time =1)

In Figure 19 the result is shown for both the position and the velocity. The fig-
ures also show the reference trajectory which was calculated by simulating the
monolithic system using the solver CVode with a tolerance of 10−12. The mono-
lithic system was exported as an model exchange FMU using JModelica.org [6]
and simulated using PyFMI together with Assimulo. In Figure 20 the estimated
error is shown together with the global step size and the time points where a
step rejection occurred.
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Figure 19: The velocity and the position of the quarter car from Section 6.2 simulated using
constant extrapolation and a step size of 0.001 together with the reference solution.
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Figure 20: The normalized estimated error (solid) together with the global step size (dashed)
and the time points for where a step was rejected (cross) when simulating the quarter car
from Section 6.2. The simulation was carried out using constant extrapolation together with
a relative and an absolute tolerance of 10−4.

Simulations using higher order extrapolation was additionally carried out
to investigate the influence of the extrapolation order on the number of steps.
In Table 4, simulation statistics is shown for when using various order on the
extrapolation. As can be seen from the table, using a higher order extrapolation
polynomial results in a decrease of the number of steps.

Table 4: Simulation statistics for when simulating the Quarter Car in Section 6.2 using various
order on the extrapolation. The simulation was performed using the parallel approach together
with variable step size and an absolute and a relative tolerance of 10−4.

Extrapolation order 0 1 2
Number of global steps 300 92 71
Number of error test failures 4 1 5

The example show that we are able to reproduce the results in [17] using the
developed tools.

6.3. Parameter estimation in a quadruple tank

In this example, the parameter estimation capabilities within PyFMI is
demonstrated on a quadruple tank model [24]. The example is inspired by
the tank example in JModelica.org. The model consists of four coupled tanks,
stacked two by two, and coupled so that the third tank deposits water into
the first and the fourth tank deposits water into the second. The amount of
water deposited is dependent on the size of the tube, connecting the tanks. Fur-
thermore, tank one and two also have runoff dependent on the size of a tube,
although they are not connected any other tank. The input to the model are
voltages, controlling two pumps which pumps water into the system. Pump one
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pumps water into the first and fourth tank, while the second pump pumps water
into the second and third, cf Figure 21. The goal of the parameter estimation

Tank 4 

Tank 1 Tank 2 

Tank 3 

Pump 1 Pump 2 
𝑎1 𝑎2 

𝑎3 𝑎4 

𝑥3 

𝑥1 
𝑥2 

𝑥4 

𝛾1 𝛾2 

1 − 𝛾1 1 − 𝛾2 

Figure 21: Visualization of the quadruple tank in Section 6.3. The tanks all have runoff
determined by a1−4 and the top tank deposits water into the bottom tanks. Water enters the
tanks and is controlled via pumps one and two. The water level in the tanks is the variables,
x1−4.

is to estimate the size of the tubs for the water runoff. The quadruple tank
was modeled in Modelica and given in Appendix C, and compiled into an FMU
using JModelica.org.

The input trajectories and measurement used in this example was recorded
on a experimental setup of the tank system2. In Figure 22, the input voltages
are shown. Furthermore, an initial estimate for the parameters controlling the
runoff (a[1−4]) are shown in Table 5.

Table 5: Initial parameters in Section 6.3.

a1 = 0.03 cm2 a2 = 0.03 cm2

a3 = 0.03 cm2 a4 = 0.03 cm2

Now, as a first step, the data needs to be imported into Python. The data
is stored in a Matlab format and using SciPy, this can be read.

from scipy.io.matlab.mio import loadmat

data = loadmat(’quadtank_measurements ’)

The measurement and input signals are extracted from the loaded data.

2The data was recorded at the Department of Automatic Control, Lund, Sweden by Kris-
tian Soltesz

25



0 10 20 30 40 50 60
Time [s]

5.0

5.2

5.4

5.6

5.8

6.0

V
o
lt

a
g
e
 [

V
]

u1

u2

Figure 22: Input signals in Section 6.3

#Time vector

t_meas = data[’t’][6000::100 ,0] -60

#Tank levels

x1_meas = data[’y1_f’][6000::100 ,0]/100

x2_meas = data[’y2_f’][6000::100 ,0]/100

x3_meas = data[’y3_d’][6000::100 ,0]/100

x4_meas = data[’y4_d’][6000::100 ,0]/100

#Input signals

u1 = data[’u1_d’][6000::100 ,0]

u2 = data[’u2_d’][6000::100 ,0]

With the loaded input signals and the initial parameter values, a simulation is
performed as below.

model = load_fmu("Quadtank.fmu") #Load the FMU

# Create the input matrix

u = N.transpose(N.vstack ((t_meas ,u1,u2)))

# Simulate the model response , given the initial parameters

res = model.simulate(final_time =60, input =([’u1’,’u2’],u))

The model response, for the simulation, is shown in Figure 23. As seen in the fig-
ure, there is a discrepancy between the simulated response and the measurement.
By performing the parameter estimation, the hope is that this discrepancy will
be decreased.

Performing the parameter estimation requires that the interested parameters
are specified, here a[1−4]. Furthermore, which variables that have measurements
need to be specified together with the measurement data. As in the simulation
case, the inputs need also be provided.
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Figure 23: A comparison of the measured data (dashed) together with the simulated response
(solid) given the initial values of the parameters. The trajectories are the tank levels. The
left top figure represents the third tank and the top right, the fourth tank. The left bottom
figure is the first tank while the right figure is the second.

meas_data = N.vstack ((t_meas ,N.vstack ((y1_meas ,y2_meas ,y3_meas ,

y4_meas)))).transpose ()

res_est = model.estimate(parameters =[’a1’,’a2’,’a3’,’a4’],

measurements =([’x1’,’x2’,’x3’,’x4’],

meas_data),

input =([’u1’,’u2’],u))

Using the default algorithm, the call to the estimate method will invoke the
Nelder-Mead algorithm [19], which is a derivative free optimization method,
included in SciPy. The returned object contains the estimated parameters which
are shown in Table 6. In order to verify the model response, the estimated
parameter values are set to the model and the model is simulated once more.

model = load_fmu("Quadtank.fmu") #Load the FMU

# Setting the estimated parameter values into the model

model.set([’a1’,’a2’,’a3’,’a4’],

[res_est["a1"], res_est["a2"],res_est["a3"],res_est["a4

"]])

# Simulate the model response , given the estimated parameters

res = model.simulate(final_time =60, input =([’u1’,’u2’],u))

The simulated response, given the estimated parameter values, are shown in
Figure 24. As seen in the figure, using the estimated parameters, the model
response has substantially been improved when compared to the simulation
with the initial parameter values, Figure 23.
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Table 6: Estimated parameters in Section 6.3.

a1 = 0.02660115 cm2 a2 = 0.0270179 cm2

a3 = 0.03008687 cm2 a4 = 0.02929907 cm2
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Figure 24: A comparison of the measured data (dashed) together with the simulated response
(solid) given the estimated values of the parameters. The trajectories are the tank levels. The
left top figure represents the third tank and the top right, the fourth tank. The left bottom
figure is the first tank while the right figure is the second.

6.4. Parallel co-simulation of a race car

In this example, a race car is modeled in Modelica using the commercial
Vehicle Dynamics Library [25]. In the example, the car is driven by a virtual
driver that tries to stay onto an eight shaped course with increasing velocity in
order to investigate the dynamic response of the car, especially when changing
the turning direction. The model is simulated as a coupled system in a co-
simulation setup where the model has been separated into wheels and chassis,
Figure 25. The intention of the example is to highlight the parallelization feature
in the implemented master algorithm. The model of the chassis was compiled
into a co-simulation FMU using Dymola [20] while the model of a wheel was
exported using JModelica.org [6]. The models contain about 90k parameters,
constants and variables in total.

An increase in performance using the parallelization can only be expected
if the majority of the simulation time is not spent in a single model. In this
example, more time is spent in the simulation of the chassis than for a wheel, cf.
Table 7. However, when considering the total simulation time and the chassis
part of it, a speedup is expected when using the parallelization.

In order to specify that global steps, in the master algorithm, should be
performed in parallel, the options need to be set.
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Figure 25: Visualization of the race car (left) and visualization of the couplings in the race
car from Section 6.4 in a co-simulation setup where the wheel and chassis has been divided
into separate models (right). c© Modelon.

Table 7: Normalized elapsed time, for each model, for a simulation of the race car from
Section 6.4. The overhead is time not spent in the separate models, storing the results for
example.

Total Chassis Wheels (each) Overhead
1.0 0.31 0.16 0.05

# Retrieve the simulation options

master_options = master_simulator.simulate_options ()

master_options["execution"] = "parallel"

master_options["num_threads"] = 1

Furthermore, due to the amount of variables and parameters in the models, the
filter is set so that only the interesting variables are stored.

master_options["filter"] = {model_chassi:"*summary*" ,

model_wheel_lf: "forces.f_*",

model_wheel_lb: "forces.f_*",

model_wheel_rf: "forces.f_*",

model_wheel_rb: "forces.f_*"}

The test was run on laptop with two cores. Using the two cores, the sim-
ulation time was reduced by 34%. While this is not optimal, this is still a
substantial decrease of the simulation time.

The full Python script can be found in Appendix D.

6.5. Sparsity exploitation in a chromatography separation process

In [3], the robustness of a high-pressure liquid chromatographic process (Fig-
ure 26) was investigated. Given a nominal input trajectory, the aim was to quan-
tify the robustness of the process with regards to disturbances in the input. The
process is described by an ODE with a scalar input,

ẋ = f(x, u), x ∈ R142, u ∈ R. (20)

An FMU for the process was generated from Dymola 2016.
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Figure 26: Visualization of the chromatography separation process used in Section 6.5. The
input, u, controls how much of buffer A and B enters the process through the mixing tank
(1). The feed enters the system through (2), where also the buffers passes. The separation
takes place in the separation column (3). The output from the process is collected in either
I, II, III or dumped as waste. The collection is determined using the detector (4) and the
valve (5).

In order to quantify robustness towards disturbances, a Lyapunov equation
needs to be solved,

Ṗ = AP + PAT +BBT , P (t0) = B(t0)BT (t0) (21)

where, A = ∂f
∂x and B = ∂f

∂u . The primary focus of this section is to demon-
strate how sparsity information in FMUs can be used to significantly decrease
simulation times. For a full problem statement and results, cf. [3]. In Figure 27,
the structure of A is shown. As Equation 21 is matrix valued, we first vectorize
the equation which results in,

vec(Ṗ ) = (I ⊗A)vec(P ) + (A⊗ I)vec(P ) + vec(BTB), (22)

where ⊗ is the Kronecker product. The full system can then be formed as,[
ẋ

vec(Ṗ )

]
=

[
f(t, x, u)

(I ⊗A)vec(P ) + (A⊗ I)vec(P ) + vec(BTB)

]
. (23)

Furthermore, the process model results in a stiff problem which requires an
implicit solver. Thus, we need the Jacobian of Equation 23 which is defined as,

J =

[
A 0
0 I ⊗A+A⊗ I

]
. (24)

In Figure 28, the structure of the Jacobian is shown.
In order to solve the augmented system, Equation 23, PyFMI was extended

to be able to add equations that are solved together with the FMU. Furthermore,
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Figure 27: The structure of the matrix A from Section 6.5.

in order to efficiently solve the above problem, the structure of A needs to be
taking into account. By using the compression discussed in Section 4.1, the
number of calls to the directional derivatives was reduced by 90%. Furthermore,
with the connection to SuperLU [26] from CVode, the Jacobian can be provided
as a sparse matrix.

By using both the compression for computing A and by providing the Jaco-
bian (Equation 24) as a sparse matrix, the simulation time was reduced to only
4% of the original time where a dense representation of the Jacobian was used
and no compression.

In Appendix E, the full Python script for adding the Lyapunov equations to
a simulation of an FMU is shown.

7. Conclusions

In this article, we presented PyFMI, a software for working with models fol-
lowing the Functional Mock-up Interface. The package support models following
version 1.0 and 2.0 of the standard as well as the different model types, model
exchange and co-simulation. Interactions with the models are conveniently per-
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Figure 28: The structure of the Jacobian for the augmented system, Equation 24, used in
Section 6.5.

formed using high-level methods and if needed, access to the low-level methods
is additionally available.

With a connection to the simulation package Assimulo, simulation of model
exchange FMUs can be performed using state of the art integrators. For coupled
systems, PyFMI implements a master algorithm for simulation of coupled co-
simulation FMUs. Furthermore, the simulation analyses are complemented with
support for parameter estimation. Having these analyses easily available in an
open tool, we hope that the standard will continue to grow and spread even
further.

The package is demonstrated on a number of problems and show promising
results. PyFMI3 is freely available under the LGPL [27] license.

3http://www.pyfmi.org [accessed 2016-03-24]
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Appendix A. The van der Pol oscillator - Modelica

Modelica code representing the van der Pol oscillator used in the examples
in Section 4.

model VDP

// Parameters

parameter Real mu = 2e1;

// The states

Real x1(start =-0.6);

Real x2(start =2);

// The control signal

input Real u;

equation

der(x1) = mu*((1 - x2^2) * x1 - x2) + u;

der(x2) = x1;

end VDP;

Appendix B. Woodpecker - Modelica

Modelica code representing the toy woodpecker from Section 6.1 is shown
below.

model Woody

// Constants

constant Real g = 9.81;

// Parameters

parameter Real mS = 3.0 e-4, mB = 4.5e-3;

parameter Real r0 = 2.5 e-3, rS = 3.1e-3;

parameter Real JS = 5.0 e-9, JB = 7.0e-7;

parameter Real hS = 5.8 e-3, hB = 2.0e-2;

parameter Real lS = 1.0 e-2, lB = 2.01 e-2;

parameter Real masstotal = mS + mB;

parameter Real rM = rS - r0;

parameter Real cp = 5.6 e-3, lG = 1.5e-2;

// Continuous variables

Real z(start = 0.0), zp(start = 0.0);

Real phiS(start = -0.10344), phiSp(start = 0.0);

Real phiB(start = -0.65), phiBp(start = 0.0);

Real phiBpp(start = 1.40059 e2);

Real lam1(start = -0.6911), lam2(start = -0.1416);

Integer state(start = 2, fixed = true);

discrete Real last_update(start =0);
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equation

der(z) = zp;

der(phiS) = phiSp;

der(phiB) = phiBp;

phiBpp = der(phiBp);

if state == 1 then

masstotal * der(zp) + mB * lS * der(phiSp) + mB * lG * der(

phiBp) + masstotal * g = 0;

mB * lS * der(zp) + (JS + mB * lS * lS) * der(phiSp) + mB *

lS * lG * der(phiBp) - cp * (phiB - phiS) + mB * lS * g =

-lam1;

mB * lG * der(zp) + mB * lS * lG * der(phiSp) + (JB + mB * lG

* lG) * der(phiBp) - cp * (phiS - phiB) + mB * lG * g =

-lam2;

lam1 = 0;

lam2 = 0;

elseif state == 2 then

masstotal * der(zp) + mB * lS * der(phiSp) + mB * lG * der(

phiBp) + masstotal * g = -lam2;

mB * lS * der(zp) + (JS + mB * lS * lS) * der(phiSp) + mB *

lS * lG * der(phiBp) - cp * (phiB - phiS) + mB * lS * g =

(-hS * lam1) - rS * lam2;

mB * lG * der(zp) + mB * lS * lG * der(phiSp) + (JB + mB * lG

* lG) * der(phiBp) - cp * (phiS - phiB) + mB * lG * g =

0;

// Index 3

//0 = (rS-r0)+hS*phiS;

//0 = der(z)+rS*phiSp;

// Index 1

0 = hS * der(phiSp);

0 = der(zp) + rS * der(phiSp);

else

masstotal * der(zp) + mB * lS * der(phiSp) + mB * lG * der(

phiBp) + masstotal * g = -lam2;

mB * lS * der(zp) + (JS + mB * lS * lS) * der(phiSp) + mB *

lS * lG * der(phiBp) - cp * (phiB - phiS) + mB * lS * g =

hS * lam1 - rS * lam2;

mB * lG * der(zp) + mB * lS * lG * der(phiSp) + (JB + mB * lG

* lG) * der(phiBp) - cp * (phiS - phiB) + mB * lG * g =

0;

// Index 3

//0 = (rS-r0)-hS*phiS;

//0 = der(z)+rS*phiSp;

// Index 1

0 = -hS * der(phiSp);

0 = der(zp) + rS * der(phiSp);

end if;

algorithm

when {rM + hS * phiS < 0.0, rM - hS * phiS < 0.0} then

if state == 1 and phiBp < 0 then

state := 2;

last_update := time;

end if;

if state == 1 and phiBp > 0 then

state := 3;

last_update := time;
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end if;

elsewhen {lam1 > 1e-8, lam1 < -1e-8} then

if state == 2 and time - last_update > 0 then

last_update := time;

state := 1;

end if;

if state == 3 and time - last_update > 0 then

state := 1;

last_update := time;

end if;

end when;

equation

when {hB * phiB - (lS + lG - lB - r0) > 0 and phiBp > 0} then

reinit(phiBp, -pre(phiBp));

elsewhen state == 2 then

reinit(phiBp, (mB * lG * pre(zp) + mB * lS * lG * pre(phiSp)

+ (JB + mB * lG * lG) * pre(phiBp)) / (JB + mB * lG * lG)

);

reinit(phiSp, 0.0);

reinit(zp, 0.0);

elsewhen state == 3 then

reinit(phiBp, (mB * lG * pre(zp) + mB * lS * lG * pre(phiSp)

+ (JB + mB * lG * lG) * pre(phiBp)) / (JB + mB * lG * lG)

);

reinit(phiSp, 0.0);

reinit(zp, 0.0);

end when;

end Woody;

Appendix C. Quadruple tank - Modelica

Modelica code representing the quadruple tank model from Section 6.3 is
shown below. Courtesy of JModelica.org.

model QuadTank

// Process parameters

parameter Modelica.SIunits.Area A1=4.9 e-4, A2=4.9 e-4, A3=4.9 e-4,

A4=4.9 e-4;

parameter Modelica.SIunits.Area a1(min=1 e-6,nominal =1e-6)=0.03

e-4, a2(nominal =1e-6)=0.03 e-4;

parameter Modelica.SIunits.Area a3(nominal =1e-6)=0.03 e-4, a4(

nominal =1e-6)=0.03 e-4;

parameter Modelica.SIunits.Acceleration g=9.81;

parameter Real k1_nmp(unit="m^3/s/V") = 0.56 e-6, k2_nmp(unit="m

^3/s/V") = 0.56 e-6;

parameter Real g1_nmp =0.30, g2_nmp =0.30;

// Tank levels

Modelica.SIunits.Length x1(start =0.0627);

Modelica.SIunits.Length x2(start =0.06044);

Modelica.SIunits.Length x3(start =0.024);

Modelica.SIunits.Length x4(start =0.023);

// Inputs

input Modelica.SIunits.Voltage u1;

input Modelica.SIunits.Voltage u2;
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equation

der(x1) = -a1/A1*sqrt (2*g*x1) + a3/A1*sqrt (2*g*x3) +

g1_nmp*k1_nmp/A1*u1;

der(x2) = -a2/A2*sqrt (2*g*x2) + a4/A2*sqrt (2*g*x4) +

g2_nmp*k2_nmp/A2*u2;

der(x3) = -a3/A3*sqrt (2*g*x3) + (1- g2_nmp)*k2_nmp/A3*u2;

der(x4) = -a4/A4*sqrt (2*g*x4) + (1- g1_nmp)*k1_nmp/A4*u1;

end QuadTank;

Appendix D. Race car - Python

The full Python script used in Section 6.4 is shown below.

from pyfmi import load_fmu
from pyfmi.master import Master

#Load the corresponding FMUs
model_chassi = load_fmu("Chassis.fmu")
model_wheel_lf = load_fmu("TyreForcesSlick.fmu")
model_wheel_lb = load_fmu("TyreForcesSlick.fmu")
model_wheel_rf = load_fmu("TyreForcesSlick.fmu")
model_wheel_rb = load_fmu("TyreForcesSlick.fmu")

for model_wheel in [model_wheel_lf ,model_wheel_lb ,model_wheel_rf ,
model_wheel_rb ]:
model_wheel.set("_cs_solver", 1) #Set the Explicit Euler solver
model_wheel.set("_cs_step_size", 2e-6) #Set the step size

#Define a list of loaded FMUs
models = [model_chassi , model_wheel_lf , model_wheel_lb ,

model_wheel_rf , model_wheel_rb]

#Specify the connections
connections = []
for i,wheel_number in enumerate ([1,2,3,4]):

connections.extend(
[( models[i+1], out , model_chassi ,
out.replace("1","%d"%wheel_number ,1))
for out in models[i+1]. get_output_list ().keys()])

for out in model_wheel_lf.get_input_list ().keys():
if out != "spinVelocity":

connections.append(
(model_chassi , out.replace(".", "%d."%wheel_number , 1),
models[i+1], out))

else:
connections.append(

(model_chassi , "spinVelocity%d"%wheel_number , models[i+1], out))

#Specify steering
model_chassi.set("steeringInEight.left_turn", 1)

#Create the Master simulator
master_simulator = Master(models , connections)

#Specify the simulation options
master_options = master_simulator.simulate_options ()
master_options["step_size"] = step_size
master_options["execution"] = "parallel"
master_options["num_threads"] = 2 #Set the number of threads
master_options["filter"] = {model_chassi:"*summary*" ,

model_wheel_lf: "forces.f_*",
model_wheel_lb: "forces.f_*",
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model_wheel_rf: "forces.f_*",
model_wheel_rb: "forces.f_*"}

master_options["initialize"] = True
master_options["block_initialization"] = True

#Simulate the coupled system
res = master_simulator.simulate(final_time =1.0, options = master_options)

#Retrieve the results
t = res[model_chassi ]["time"]
stearing_wheel = res[model_chassi ]["chassis.summary_p_sw"]
p_x = res[model_chassi ]["chassis.summary_r_0 [1]"]
p_y = res[model_chassi ]["chassis.summary_r_0 [2]"]

Appendix E. Chromatography separation process - Python

The Python script used for adding the Lyapunov equations in Section 6.5 to
a simulation using PyFMI.

import numpy as np
import scipy.sparse as sp
from assimulo.problem import Explicit_Problem

class AppendedODEs(Explicit_Problem):

def __init__(self , model):

assert model.get_version () == "2.0" #Assert the FMI version is 2.0
assert model.get_capability_flags ()["providesDirectionalDerivatives

"] == True #Assert directional derivatives are provided

self._model = model
self.setup()

self._res = []
self._res_C = []
self._res_CPCT = []
self._order = "F"
self._sparse_representation = True

self.f_nbr = self._nbr_states*self._nbr_states
self.y0 = np.zeros(self.f_nbr)

[derv_state_dep , derv_input_dep] = model.
get_derivatives_dependencies ()

self.jac_nnz = 2*self._nbr_states*np.sum([len(derv_state_dep[key])
for key in derv_state_dep.keys()])+self._nbr_states*self.
_nbr_states

def get_size(self):
return self.f_nbr

def setup(self):
self._nbr_states = len(self._model.get_states_list ())
self._nbr_inputs = len(self._model.get_input_list ())

#User defined extra right -hand -side
def rhs(self , P):

#A = df/dx , B = df/du
A,B,C,D = self._model.get_state_space_representation(C=False , D=

False)
A = A.toarray(order=self._order)
B = B.toarray(order=self._order)
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P = P.reshape(self._nbr_states ,self._nbr_states , order=self._order)

#dP = A P + P A^T + B B^T
dP = A.dot(P)+P.dot(A.transpose ())+B.dot(B.transpose ())

return dP.flatten(order=self._order)

def jac(self , P):

[A,B,C,D] = self._model.get_state_space_representation(A=True , B=
False , C=False , D=False)

data = []
row_ind = []
col_ind = []

Aco = A.tocoo ()
AjFull = [A[:,j] for j in range(self._nbr_states)]

for i in range(self._nbr_states):
data.extend(Aco.data)
row_ind.extend(i*self._nbr_states+Aco.row)
col_ind.extend(i*self._nbr_states+Aco.col)

col_ind_i = range(i*self._nbr_states ,(i+1)*self._nbr_states)

for j,val in enumerate(AjFull[i].data):
data.extend ([val]*self._nbr_states)
row_ind.extend(range(AjFull[i]. indices[j]*self._nbr_states

,( AjFull[i]. indices[j]+1)*self._nbr_states))
col_ind.extend(col_ind_i)

PJac = sp.coo_matrix ((data , (row_ind , col_ind)))

return PJac

#User defined handle result for the extra equations
def handle_result(self , export , P):

[A,B,C,D] = self._model.get_state_space_representation(A=False , B=
False , C=True , D=False)

C = C.toarray(order=self._order)

P = P.reshape(self._nbr_states ,self._nbr_states , order=self._order)
self._res_CPCT.append(np.dot(np.dot(C,P),np.transpose(C)).flatten(

order=self._order))
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for robust optimal control of batch chromatographic separation processes,
Processes 3 (3) (2015) 568. doi:10.3390/pr3030568.

[4] C. Andersson, J. Andreasson, C. Führer, J. Åkesson, A workbench for
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