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Abstract 
Recent advances in information technologies and an increased environmental 
awareness have altered the prerequisites for successful logistics. For companies 
operating on a global market, inventory control of distribution systems is often an 
essential part of their logistics planning. In this context, the research objective of 
this thesis is:  
 

To develop exact methods for stochastic inventory control of multi-echelon 
distribution systems incorporating shipment decisions and/or detailed demand 
information. 

 
The thesis consists of five scientific papers (Paper I, II, III, IV and V) preceded by 
a summarizing introduction. All papers study systems with a central warehouse 
supplying a number of non-identical local warehouses (retailers) facing stochastic 
demand. For given replenishment policies, the papers provide exact expressions 
for evaluating the expected long-run system behavior (e.g., distributions of 
backorders, inventory levels, shipment sizes and expected costs) and present 
optimization procedures for the control variables. 
 Paper I and II consider systems where shipments from the central 
warehouse are consolidated to groups of retailers and dispatched periodically. By 
doing so, economies of scale for the transports can be reached, reducing both 
transportation costs and emissions. Paper I assumes Poisson customer demand 
and considers volume-dependent transportation costs and emissions. The model 
involves the possibility to reserve intermodal (train) capacity in combination with 
truck transports available on demand. For this system, the expected inventory 
costs, the expected transportation costs and the expected transport emissions are 
determined. Joint optimization procedures for the shipment intervals, the capacity 
reservation quantities, the reorder points and order-up-to levels in the system are 
provided, with or without emission considerations. Paper II analyses the expected 
costs of the same system for compound Poisson demand (where customer demand 
sizes may vary), but with only one transportation mode and fixed transportation 
costs per shipment. It also shows how to handle fill rate constraints. 
 Paper III studies a system where all stock points use installation stock 
(R,Q) ordering policies (batch ordering). This implies that situations can occur 
when only part of a requested retailer order is available at the central warehouse. 
In these situations, the models in existing literature predominantly assume that 
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available units are shipped immediately (partial delivery). An alternative is to 
wait until the entire order is available before dispatching (complete delivery). The 
paper introduces a cost for splitting the order and evaluates a system where 
optimal choices between partial and complete deliveries are made for all orders. 
In a numerical study it is shown that significant savings can be made by using this 
policy compared to systems which exclusively use either partial or complete 
deliveries. 
 Paper IV shows how companies can benefit from detailed information 
about their customer demand. In a continuous review base stock system, the 
customer demand is modeled with independent compound renewal processes at 
the retailers. This means that the customer inter-arrival times may follow any 
continuous distribution and the demand sizes may follow any discrete 
distribution. A numerical study shows that this model can achieve substantial 
savings compared to models using the common assumption of exponential 
customer inter-arrival times. 
 Paper V is a short technical note that extends the scope of analysis for 
several existing stochastic multi-echelon inventory models. These models analyze 
the expected costs without first determining the inventory level distribution. By 
showing how these distributions can be obtained from the expected cost 
functions, this note facilitates the analysis of several service measures, including 
the ready rate and the fill rate. 
 
Keywords: Inventory, Multi-echelon, Stochastic, Shipment decisions, Detailed 
demand information 
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2. Introduction 
Globalization, advances in information technologies and increased environmental 
awareness have transformed the prerequisites for logistics planning during the last 
decades. With geographically larger systems to control and an intensified focus 
on emissions, the need to control large distribution systems incorporating 
shipment aspects has increased. Developments in information technologies have 
also facilitated this control in many ways. It is now in the Big Data era cheaper 
and easier to share information within the supply chain and many companies also 
collect vast amount of detailed information about their businesses, including their 
customer demand patterns.  
 In this thesis, these issues are studied from an inventory control 
perspective. Inventory control is a crucial function in many companies. Product 
availability is a prerequisite for sales and shortages can decrease companies’ 
revenues directly by loss of revenues and increasing administrative costs, as well 
as indirectly by damaging the companies’ reputation. On the other hand, there are 
considerable costs associated with keeping materials and products in stock; cost 
of tied up capital, storage costs, costs obsolesce, etc. Creating sound rules and 
methods to balance these aspects is key to successful inventory management. For 
distribution systems, inventory control becomes challenging especially when 
future demand is uncertain. This stochasticity is present in most businesses, but it 
tends to be accentuated in distribution systems with expensive low demand items, 
such as spare parts. This thesis presents four inventory control models for 
distribution systems in four different research papers focusing on incorporating 
shipment decisions (papers I, II and III) and/or on incorporating more detailed 
demand information (paper II and IV). Paper V is a technical note that provides 
some general relationships between the costs and the distributions of the amount 
of inventory kept at a stock point for a group of existing inventory control models.  
 This introductory chapter describes and summarizes the background, the 
aim, the research performed and the main contributions of Papers I-V. One of the 
purposes of this chapter is to make the research in the papers comprehensible for 
a somewhat broader audience. Section 2.1 defines the research objectives. Section 
2.2 discusses the research methodology used to reach the results. In order for the 
reader to understand the context of the performed research, Section 2.3 presents a 
conceptual overview of the field of inventory control and Section 2.4 summarizes 
the most relevant existing contributions related to the performed research. Section 
2.5 describes the modelling features, Section 2.6 summarizes the contents of 
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Papers I-V and Section 2.7 highlights the contributions of the thesis. Finally 
Section 2.8 discusses future research. This introductory chapter is partly based on 
Stenius (2014), which is the licentiate thesis of the same author and includes 
earlier versions of Paper I, Paper II and Paper III.  

2.1 Research Objectives 
The research objective can be stated as follows: 
 

To develop exact methods for stochastic inventory control of multi-echelon 
distribution systems incorporating shipment decisions and/or detailed demand 
information. 

 
To clarify, let us define the terminology and concepts used in this objective 
statement. “To develop… methods for stochastic inventory control” means that, 
for given assumptions regarding the system (including the stochastic demand and 
the replenishment policies) methods are developed to evaluate expected costs 
and/or service levels and to optimize defined control variables (e.g. reorder points 
or shipment intervals). The concept “exact” is defined so that for given 
assumptions, all mathematical expressions and relationships are obtained without 
introducing any simplifying approximations. The “distribution systems” 
considered in this work consist of a central warehouse supplying a group of local 
warehouses (referred to as retailers). Descriptions of how the models in the papers 
are “incorporating shipment decisions and/or detailed demand information” are 
provided below. 
 Shipment decisions are included in the thesis in two different ways. Paper I 
and II investigate how a distribution system can be controlled using a time-based 
shipment consolidation policy. In these models, the central warehouse 
consolidates shipments to groups of retailers and dispatches them periodically. 
The models determine how often shipments should be made, and how much stock 
should be kept at each location under different cost structures. Paper I considers 
the option to reserve capacity on a cheaper or more environmentally friendly 
transportation mode. Apart from the costs, Paper I also evaluates the emissions 
during transportations. These are considered in the cost optimization, for instance 
by adding a constraint on the maximum expected transport emissions allowed.  
 Paper III, also includes shipment decisions, but has a different focus. In a 
distribution system with batch ordering, it is investigated when partial or 
complete deliveries from the central warehouse should be used. This decision is 
explained by the following example: A retailer orders five units from the central 
warehouse. At this time, the warehouse only has three units available and a 
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replenishment is arriving in two days. The warehouse thus needs to make a 
decision between either shipping the three available units immediately (partial 
delivery), or waiting until all five units ordered are available for shipment 
(complete delivery). By introducing a cost for splitting the order, this delivery 
decision is optimized. The total system costs are then evaluated for the system 
where this decision is made for every retailer order, and these costs are compared 
to the costs when only partial or only complete deliveries are used.  
 Paper IV incorporates detailed demand information. More specifically, it 
focuses on systems that possess detailed information about the time between 
customer arrivals (the inter-arrival times) and customer demand sizes. The inter-
arrival times are allowed to follow any continuous distribution and the demand 
sizes follow any discrete distribution. Especially for the inter-arrival times, this 
constitutes a difference to the majority of existing literature on exact analysis of 
distribution inventory systems, which typically assume exponential inter-arrival 
times. The exponential distribution has many analytical advantages, but this paper 
shows that approximating the inter-arrival time distribution with exponential 
times can be costly.  
 Paper V does not present a new model. Instead, it shows how to obtain 
additional information from a group of existing inventory control models. More 
specifically, for a specific set of systems (analyzed in several previous research 
articles), this note shows how the inventory level distribution (i.e. the stock on 
hand minus the backorders) can be obtained from the cost function. Through this 
information, several performance measures can be determined. For instance, for 
many systems, it provides information about the proportion of demand that can be 
satisfied directly from stock (i.e. the fill rate). 

2.2 Research Methodology 
As stated in Section 2.1 above, the research objective is to develop exact methods 
for stochastic inventory control methods. For this purpose, mathematical models 
that characterize and solve real life problems are developed. Stochastic inventory 
control modeling is typically achieved by applying and expanding theories from 
the fields of probability theory, optimization, queuing theory, control theory, 
statistics, computer science and programming on problems formulated based on 
knowledge in logistics, economics and business administration. This is also the 
case for this thesis. 
 The modeling process is typically divided into three steps, which are 
repeated iteratively (see, for example, Hillier and Lieberman, 2010, and Axsäter 
and Marklund, 2010).  
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 In the first step, the structure of the system is determined and necessary 
assumptions made. The model can either aim at being general, describing a 
problem found in various companies, or be case-specific, i.e. adjusted to a certain 
environment. The models in this thesis are all general, aiming at being applicable 
in many distribution systems. Note however, that when applied, these general 
models usually need to be adapted to fit the company’s specific needs. In this first 
step, it is important to determine the level of detail, and decide on which features 
of reality that need to be captured in the model. If the model is too detailed and 
complex, it becomes very difficult to obtain any useful results. However, if the 
model is over-simplified, important characteristics of the problem are excluded 
and the results are misleading.   
 In the second step a solution to the problem is generated. This is done by 
applying and developing tools from the mathematical fields listed above. For the 
problems in this thesis, the main challenges for the analysis stem from the 
stochasticity of the demand. This uncertainty makes the relationships between 
different stochastic variables, such as customer demand at certain retailers and the 
amount of stock kept at a warehouse, rather complex. Numerous tools from the 
field of probability theory are used to analyze these relationships. In order to 
optimize the control parameters, methods from optimization theory are applied. 
  In the third step, the results are validated. In other words, it is assured that 
the presented model and results describe the original problem accurately. 
Validation can be separated into external and internal validation. The external 
validation concerns the extent to which the model makes a good representation of 
real world problems. In this thesis, the external validation is primarily based on 
validated models in existing literature. The relevance of the proposed models is 
assured by extending these inventory models in well-motivated, relevant 
directions, e.g. based on discussions with industry partners. The internal 
validation evaluates the correctness of the generated results of the model. Because 
all models in this thesis are analyzed exactly, the internal validation is primarily 
considered in the proofs of the mathematical expressions in the papers. Apart 
from the mathematical solutions in the papers, the models also consist of a 
computer program that solves the problems according to the presented solution. In 
order to verify that the programming is performed correctly, the analytical results 
are compared with simulated results for sufficiently many different kinds of 
problems. If the generated solution is incorrect, one has to correct the program, or 
in some cases, return to step 2 to correct the solution procedure or even to step 1 
and adjust the models. 
 When stated that the presented models are analyzed exactly, this means that 
after the system structure is determined and the assumptions describing the 
system behavior are set in step 1, no approximations are introduced to facilitate 
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the cost evaluation and optimization of the model in step 2. Exact models will 
obviously generate the best solution for the specified problem, but it is not an 
obvious choice for complex Operations Research problems. For large complex 
systems with e.g. many stock points, many different products and high demand 
rates, exact evaluation and optimization techniques can become too 
computationally cumbersome to implement. For these systems, fast and good 
heuristic (approximate) solutions can be preferable. The motivation for focusing 
on exact solutions, apart from the fact that they create stable implementable 
solutions for smaller systems, is that good heuristic solutions often are based on 
exact solutions and that the exact solution can serve as a point of reference for 
heuristic solutions. Exact solutions can also provide valuable insights on the 
dynamics of the system performance and optimality of different policies.  
 Apart from exact and heuristic solutions, another possible way to evaluate 
inventory systems is by simulation. Simulations have the advantage of being 
flexible in the sense that it is possible to model complex systems and policies. 
There are, however, also drawbacks with this methodology. Firstly, optimization 
via simulation search is often very time-consuming. The simulation run times 
tend to be quite long to get good solutions. Also, one simulation run will typically 
provide the result for one set of parameters only and the parameter sets grow 
rapidly as the systems become larger and more complex. As a result, finding the 
optimal policy through simulation is often not practical. Secondly, it is more 
difficult to achieve understanding of the dynamics in the system, when the 
mathematical relationships are left unexplored. Simulation is used as a tool also in 
this thesis, but only for the verification of the results. 

2.3 Overview of Basic Inventory Control Concepts and 
Theory 
In order to facilitate the reading of the papers in the thesis, this section introduces 
some of the basic concepts used in the field of inventory control theory. As the 
models in this thesis are based on stochastic demand (future demand is uncertain), 
this section is restricted to these types of models and problems. For a more 
thorough understanding of the broad field of inventory control/management we 
refer to, for example, Silver et al. (1998), Zipkin (2000) or Axsäter (2006). 
 The field of Inventory control deals with managing material flows in 
companies and supply chains and is traditionally focused on the questions; when 
should new material be ordered, produced or shipped? And how much material 
should be ordered/produced/shipped? One of the most commonly known 
inventory control problems is the newsvendor problem (Edgeworth, 1888). This 
problem studies a newsvendor, who wishes to optimize the number of newspapers 
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he should procure at the beginning of a day. The daily demand is uncertain and he 
wishes to sell as many papers as possible, while avoiding lots of excess papers 
unsold at the end of the day. This relatively simple inventory control problem 
considers a single period, and only deals with the question of how much material 
to order. However, when allowing for material to be stored and sold later, the 
decision space grows and includes the question of when to order as well. In the 
remainder of this section we will describe features that define different inventory 
control problems, with a focus on features characterizing the problems studied in 
this thesis.  

2.3.1 Structure 
The structure, or the topology, of the problem describes the stock points included 
in the system, and how they are connected. Namely, from where each stock point 
receives its replenishments and how material flows through the system. The 
simplest and most commonly studied structure is the single-echelon inventory 
system consisting of only a single stock point. A single-echelon system is 
illustrated in Figure 1, where the arrows illustrate the material flow and the 
triangle illustrates a stock point. This stock point receives demand from 
customers, satisfies this demand if possible, and replenishes stock from an outside 
supplier (or an internal production unit).  
 
 
 
Figure 1. Single-echelon system 
 
 Multi-echelon systems feature multiple connected stock points. The 
simplest multi-echelon system is the serial system. Here every stock point has 
only one immediate predecessor and one immediate successor. These types of 
systems can be seen in many production facilities, where the connections between 
the stock points can be seen as production processes. A three-echelon serial 
system is illustrated in Figure 2. 
 
 
 
Figure 2. Three-echelon serial system 
 
 The systems studied in this thesis are divergent distribution inventory 
systems. Here, each stock point has only one predecessor, but can have many 
successors. As the name indicates, distribution systems are common in companies 
handling physical distribution of products. Often they have central warehouses 
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located in conjunction to their production units, and local warehouses closer to the 
different markets. Conceptually, distribution systems can also be found in 
production units where a raw material or component is diversified to several 
products. In this case, the central warehouse corresponds to the stock of raw 
materials and the local warehouses to the stocks of each product. An example of a 
two-echelon distribution system is illustrated in Figure 3. 
 
 
 
 
 
 
 
Figure 3. Example of a two-echelon distribution system 
  
 Other multi-echelon systems include assembly systems, where different 
components are assembled to an end product. In assembly systems each stock 
point only has one successor but may have many predecessors. There also exist 
other, more general, multi-echelon structures, where stock points may have many 
predecessors as well as many successors. These systems exist for instance in 
production facilities where many different products are assembled from partly 
different components or in companies that both assembles and distributes 
products. Some systems allow for material flow between stock points at the same 
level. For instance, a retailer facing stock outs may receive units from another 
retailer nearby. This feature, referred to as lateral transshipments, is excluded 
from this thesis, but might be an interesting direction for future research. For an 
overview of models handling lateral transshipments, see, for example, Paterson et 
al. (2011). 

2.3.2 Lead Times 
The replenishment lead times are usually defined as the time it takes from a 
replenishment order is placed until the products are available at the ordering 
inventory location. A large part of the lead time often consists of transportation or 
production time, or a combination of the two. However, it also includes the time 
for order placement, picking, loading and receiving activities. Sometimes there 
exist restrictions on when transportation or production can take place, for instance 
periodic transportation/production schemes. The replenishment lead time then 
also includes the waiting time for capacity to become available. In multi-echelon 
systems the lead time also includes the time spent waiting for products or 
components to become available at stock points upstream. Sometimes the term 
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transportation lead time is used to define the time for order placement, picking, 
loading, transportation and receiving activities, thus excluding the time the system 
waits for units becoming available or the time until scheduled transportations 
leave. 
 Often, in practice, the lead time varies, but if the variation is small, it is 
common from an inventory modelling perspective to assume that the lead time is 
constant. This facilitates the analysis of more complex problems. The 
transportation lead time variation is also excluded from the models studied in this 
thesis. However, they do consider the waiting time for transportation capacity to 
become available and variation caused by and stock-outs at the preceding stock 
points, which in many multi-echelon systems cause a major part of the lead time 
variation. 

2.3.3 Customer Demand and Review Periods 
The representation of the customer demand differs depending on the type of 
problem investigated. In the single-period problem illustrated by the newsvendor 
problem, each day/period is controlled separately. In these systems the customer 
demand is characterized by the probability distribution of the demand in one 
period. This distribution is usually assumed to be known. Apart from the single-
period problems, the inventory control problems may be classified as periodic 
review problems or continuous review problems.  
 Periodic review problems indicate that the stock levels are examined 
periodically (e.g. once every day) and that replenishment orders only can be 
placed when a review is performed. The demand in periodic review problems is 
usually characterized by the distribution of the demand in one period, often with 
the assumption that the demands in different periods are independent.  
 The inventory problems considered in this thesis are so called continuous 
review problems. This means that demand is observed the moment it is received 
and necessary actions can be taken immediately. Even though the demand is 
monitored continuously in all models in this thesis, the problems in Paper I and 
Paper II are related to the periodic review models as shipments from the central 
warehouse to the retailers are performed periodically.  
 In continuous review systems the demand is often characterized by a 
stochastic process, which means that the probabilities of when customers will 
arrive and how much they will order are known (in some simpler systems, the 
distribution of the demand during a replenishment lead time is sufficient to 
analyze the system). The most commonly used process is the Poisson process. 
When customer demand follows a Poisson process, the time between consecutive 
customer arrivals (the inter-arrival times) are independent and exponentially 
distributed and each customer orders one unit. An important property of the 
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Poisson process is that the time until the next customer arrival is independent of 
the time since the previous customer arrived. Partially because of this 
independency, the Poisson process has several analytical advantages. The Poisson 
process is characterized by a single parameter; the arrival intensity (i.e. the 
expected amount of customers arriving per time unit). Moreover, the variance of 
the demand during a given period is always equal to the mean (the variance-to-
mean ratio is one). This may not always be a good representation of the actual 
demand, seen in the system. However, in many systems dealing with, for instance, 
spare parts, the Poisson process is known to describe the real demand process of 
some products quite well. The demand is assumed to follow a Poisson process in 
paper I and III of this thesis. 
 For a more flexible demand representation, the compound Poisson process 
can be used. Here, the customers still arrive independently with exponential inter-
arrival times. However, each customer can demand any number of units 
(independently of the quantity of the other customers). The compound Poisson 
distribution is characterized by the arrival intensity of the customers and the 
distribution of the amount of units demanded by an arbitrary customer (the 
demand sizes). The compound Poisson process can handle any variance-to-mean 
ratio of the demand per period larger than or equal to one. In Paper II of the 
thesis, the demand is assumed to follow a compound Poisson process.  
 An even more general demand structure is considered in Paper IV of the 
thesis. Here, the times between customer arrivals may follow any continuous 
distribution and the demand sizes follow any discrete distribution. The inter-
arrival times and demand sizes are still assumed to be independent of each other. 
This process corresponds to a compound renewal processes. This is a very 
flexible demand structure, and it can handle any variance-to-mean ratio of the 
demand per period. However, when the inter-arrival times are non-exponential, 
some of the analytical advantages of the Poisson process are lost. For instance, the 
demands during two consecutive time periods are no longer independent, which 
causes challenges when analyzing complex multi-echelon systems. 

2.3.4 Performance Measures 
The performance measures assess the quality of a specific system setting, and 
thereby set the goal of the inventory control. In the example with the newsvendor 
it is commonly assumed that there is a fixed purchasing price and a fixed selling 
price per newspaper copy. The performance measure is thus the expected profit of 
the newsvendor. This type of measure is not unusual for inventory control 
problems, the objective is often either to maximize the profit or to minimize the 
costs (if the revenue is given). Common costs that are included in these 
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optimization problems are holding costs, ordering or setup costs, and backorder or 
shortage costs.  
 The holding cost includes all the costs for storing the product (e.g. 
opportunity cost for tied-up capital, material handling, storage, damage and 
obsolescence, insurance, and taxes). It is often assumed that the expected holding 
cost is proportional to the expected inventory on hand.  
 The ordering cost (or setup cost) is a fixed cost associated with placing a 
replenishment order. These fixed costs can occur, for instance, in production, 
during transportation or in administration of the order. The existence of ordering 
costs is one of the main reasons why production and transportation is performed 
in batches, but there can also be practical reasons for batching (for instance 
packaging sizes). 
 The backorder costs (or penalty/shortage costs) occur when the company is 
unable to fulfill customer demand. Consequences related to unsatisfied customer 
demands vary significantly between different companies and industries. There are 
situations when the customer will go to a competitor if the product is not available 
(lost sales), and others where the customer is willing to wait until the product 
becomes available (complete backordering). The models in Papers I-V all assume 
complete backordering. When a unit is backordered it incurs backorder costs for 
the company. These costs include administrative costs, possible price reductions 
offered to the customer, and the trade mark and brand damage caused by the 
shortage. Often these costs are increasing, the longer the customer has to wait. It 
is therefore common to assume that the expected backorder costs are proportional 
to the expected number of backorders.  
 The backorder cost per unit and time unit may be difficult to quantify in 
practice. Many companies therefore control their inventories using service levels 
instead. Common service levels include the ready rate and the fill rate. The ready 
rate is defined as proportion of time with positive stock on hand, while the fill rate 
is the proportion of demand that can be satisfied directly from stock. If service 
level constraints are used, the inventory control objective is typically to minimize 
the (holding and ordering) costs while assuring that the service constraints are 
met. Many performance measures, such as the ready rate and the fill rate, can be 
determined by first analyzing the inventory level distribution. The inventory level 
is commonly defined as the amount of stock on hand minus the amount of 
backordered units. Paper V focus on this aspect by generalizing a group of models 
that previously only analyzed the costs, to also obtaining the inventory level 
distribution. In the thesis, Papers I, III and IV are based on backorder costs, while 
Paper II allows for either backorder costs or fill rate constraints.   
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2.3.5 Replenishment Policies 
The replenishment policy specifies the rules according to which the 
replenishments are made. Sometimes the optimal replenishment policy is the 
result of the defined problem. For instance, in the newsvendor problem it can be 
shown that the optimal order quantity is q* = F–1((p–c)/p) papers each day. Here 
F–1 is the inverse cumulative distribution of the demand per day, p is the selling 
price and c is the purchase price (in this variation of the problem unsold products 
have no salvage value). In more complex systems the optimal ordering policy is 
often unknown and one has to settle for a predetermined replenishment policy 
(hopefully) performing close to optimal. 
 In continuous time systems, the simplest replenishment policy is the       
(S–1,S) policy, also referred to as the base stock policy, one-for-one 
replenishments (in systems facing unit demand) or the order-up-to S policy 
(predominantly in periodic review systems). For this policy, every customer 
demand immediately triggers an order of the same size (in the continuous review 
case). This replenishment policy is also optimal in many systems where the 
demand in consecutive time periods are independent and there are no ordering or 
setup costs.  
 For single-echelon systems with fixed ordering costs, it has been shown 
that the (s,S) policy is optimal under very general conditions, see Iglehart (1963), 
Veinott (1966), Porteus (1971) and Zheng (1991). The (s,S) policy implies that as 
soon as the inventory position (the stock on hand + outstanding orders – 
backorders) drops to or below the order point, s, an order is placed to bring the 
inventory position up to the order-up-to level, S.  
 In some systems, there exist practical reasons (sizes of packages and load 
carriers) for replenishing in fixed batches. These systems typically use (R,Q) 
ordering policies. This implies that an order of Q units is placed as soon as the 
inventory position drops to, or below, the reorder point, R. Sometimes, several (n) 
simultaneous orders of Q units may be required to bring the inventory position 
above R again. In these cases, the (R,Q) policy is often denoted (R,nQ). In this 
section, however, we will use the notation (R,Q) in both cases. Note that, in 
continuous review models where customers order one unit at a time, the (s,S) 
policy is equivalent to an (R,Q) policy (with R=s and R+Q=S). Also, if s = S–1 in 
the (s,S) policy or Q = 1 in the (R,Q) policy, both policies become equivalent to 
the base stock policy. 
 For multi-echelon systems facing stochastic demand, the optimal 
replenishment policy is known only for a restricted set of problems. In serial 
systems where there are ordering costs only at the most upstream facility, it has 
been shown that it is optimal to order with an (s,S) policy at this facility and with 
(S–1,S) policies at all other facilities, see Clark and Scarf (1960) and Federgruen 
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and Zipkin (1984). There also exist some optimality results for assembly systems 
(see, Rosling 1989), but for most multi-echelon systems facing stochastic 
demand, the optimal replenishment policy is unknown. The majority of the 
existing literature on multi-echelon inventory control is thus focused on 
determining the costs (exactly or by heuristics) and optimizing system parameters 
under reasonable replenishment policies. This is also the case in this thesis. 
 The terms replenishment policy and ordering policy are often used 
synonymously. However, in the first three papers of this thesis, the replenishment 
policy consists of both an ordering policy from the downstream facility and a 
delivery policy of the upstream facility. As the administrative costs of placing 
orders become smaller (due to the development of information systems), the 
incentives for batch ordering (i.e. batching information about demand that has 
decreased) decrease. However, the incentives for batching physical products into 
consolidated deliveries (or production activities) still exist and are accentuated by 
increasing transportation costs and environmental concerns. It might therefore be 
beneficial to let the downstream locations share all their demand information with 
the upstream location and let the upstream location handle the consolidation (or 
batching) decisions. The upstream location has more information and can for 
instance consolidate shipments of different units and products to different 
downstream locations together in an efficient way (as studied in Paper I and II of 
the thesis). 
 Another aspect affecting the replenishments in multi-echelon distribution 
systems is the allocation policy at upstream locations. When several downstream 
locations have requested units from the same upstream stock point and there is not 
enough inventory available to satisfy all requests, the upstream stock point is 
faced with an allocation decision. A simple allocation rule commonly used in 
practice is the First-Come-First-Served (FCFS) policy. Here, the downstream 
facility that order first receives the first replenishment. This allocation policy is 
popular among practitioners as it is rather easy to implement and it seems “fair”. 
The FCFS policy also has many analytical advantages and is the dominant 
allocation policy used in the literature on exact analysis of continuous review 
inventory systems. This is also the allocation policy chosen for the papers in this 
thesis. Howard and Marklund (2011) and Howard (2013) have investigated the 
benefits of using more sophisticated allocation policies in multi-echelon 
distribution systems with time-based shipment consolidation. The conclusion is 
that some savings can be attained, but in most cases the FCFS policy performs 
very well. 
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2.4 Literature Review 
In order to understand the context in which the contributions of this thesis are 
made, this chapter presents a short overview of the most relevant existing multi-
echelon inventory models. In line with the research in Papers I-V, we focus on 
exact analysis of stochastic models of distribution systems under continuous 
review. All of the papers discussed below study one-warehouse-multiple-retailer 
systems, but some of the models can be extended to several echelons.  
 One complicating matter in the analysis of these systems usually lies in the 
fact that the performance of the retailers is dependent on the central warehouse. 
More specifically, the stock outs (backorders) at the central warehouse cause 
delays in the replenishment lead time to the retailers. Analyzing this delay or the 
distribution of the backorders at the central warehouse is the key in most of the 
models below. 
 Simon (1971) analyzes a continuous review spare parts distribution system 
where the retailers face Poisson demand and all stock points applies (S-1,S) 
ordering policies. By analyzing the distribution of the amount of backorders at the 
central warehouse destined to a specific retailer at an arbitrary point in time, he is 
able to determine the distribution of the inventory level (the stock on hand – the 
backorders) at this retailer, and thereby the costs. Kruse (1979) extends this result 
to more than two echelons and Graves (1985) presents a framework for exact and 
approximate solutions based on this system. 
 Axsäter (1990) presents an alternative way to analyze the system in Simon 
(1971). His approach is however very different. He follows an arbitrary unit as it 
travels through the system and analyzes the expected holding and backorder costs 
that this unit incurs. He also presents a fast recursive procedure for evaluating the 
costs and optimizing the order-up-to levels. The drawback of his procedure is that 
it does not determine the inventory level distribution and thereby limits the range 
of alternative performance measures that may be considered. Paper V provides 
the inventory level distribution from the cost function of this system. The results 
of this note are also generalized to several other models that build on Axsäter 
(1990).  
 The base model in Axsäter (1990) is generalized to handle compound 
Poisson demand (customers can order more than one unit at the time) in Forsberg 
(1995). Paper IV analyzes a similar system, but for the case of compound renewal 
demand (when the customer inter-arrival times can follow a general distribution). 
Note however, that the analysis of Paper IV is based on a different methodology 
than Forsberg (1995), and also provides the inventory level distribution. 
 Systems where the stock points apply (R,Q) policies have also been widely 
studied. In these papers, two different central warehouse (R,Q)-policies have been 
considered; installation stock, and echelon stock policies. Installation stock 
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policies imply that all stock points place orders based on their own inventory 
position (stock on hand + outstanding orders – backorders). For stock points 
applying echelon stock policies, orders are placed based on the sum of the 
inventory position at your own stock point and all downstream stock points. For 
two-echelon systems this only differentiates the replenishment policy at the 
central warehouse. 
 Axsäter (1993a) studies an installation stock (R,Q) policy system where the 
retailers face Poisson demand. The exact solution is restricted to the case where 
the retailers are identical. This result is generalized to non-identical retailers in 
Forsberg (1997a) and Axsäter (1998). Forsberg (1997b) extends the result to the 
case where customer inter-arrival times are Erlang-distributed. Axsäter (2000) 
uses a different method for analysis, where he also determines the inventory level 
distributions, for a system where customer demand is compound Poisson 
distributed.  
 For echelon stock (R,Q) policies, systems facing compound Poisson 
demand are analyzed in Axsäter (1997). In a parallel work, Chen and Zheng 
(1997) use a method of analysis resembling the one in Simon (1971) and Graves 
(1985), and also analyze the inventory level distribution. This analysis is exact 
only in the case of Poisson demand. All of the (R,Q) systems cited above assume 
partial deliveries (available units are shipped as soon as possible from the central 
warehouse). Andersson (1999) relaxes this assumption by introducing a minimum 
delivery quantity from the central warehouse in an installation stock (R,Q) 
system. This is related to Paper III, that also analyzes delivery policies in 
installation stock (R,Q) systems.  
 During the last decades, the focus of exact analysis in distribution systems 
has shifted to more advanced replenishment policies. Marklund (2002) considers 
an alternative way of using the inventory information at the retailers. He 
introduces an (α0,Q0) ordering policy at the central warehouse, with the aim of 
synchronizing replenishments with future retailer orders. Also Moinzadeh (2002) 
uses the inventory information from the retailers when triggering orders at the 
central warehouse. His analysis is exact in the case of identical retailers and 
identical order quantities at all stock points. For this system he lets the central 
warehouse trigger orders based on when the inventory position at the retailers 
reaches a value s, which can be different from the retailer reorder point R. Axsäter 
and Marklund (2008) provide an optimal “position based” ordering policy, which 
means that they allow for any ordering policy at the central warehouse that is 
dependent on the inventory positions at all stock points in the system. Compared 
to the other systems cited in this section, this is the only analysis that relaxes the 
FCFS allocation assumption. However, also in this system, the allocation of a 
specific unit to a future demand is determined the moment this unit is ordered to 
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the central warehouse from the outside supplier (or production unit). The ordering 
policy in Axsäter and Marklund (2008) has a performance guarantee over all of 
the other policies cited above. A limitation of this policy is that the minimum 
order quantity at the central warehouse cannot be set larger than the smallest order 
quantity at any of the retailers. 
 Marklund (2006) examines a system where the retailers get advance 
information about future demands. More specifically, each customer demand 
entails a due date, when this specific demand should be satisfied. All stock points 
use base stock policies, but different allocation strategies are used in order to 
utilize the advance information.  
 More recently, Marklund (2011) studies consolidation of orders in a 
distribution system. The central warehouse use an (R,Q) ordering policy, while 
the retailers (facing Poisson demand) use (S-1,S) ordering policies to immediately 
transfer the demand to the central warehouse. The central warehouse consolidates 
the retailer orders across different products but also across different retailers 
within the same region in order to get economies of scale for the transports. This 
setting is also considered in Papers I and II in this thesis. In a related study, 
Gürbüz et al. (2007) considers a system where the central warehouse is in charge 
of ordering, allocations and distribution to the retailers, but it cannot keep stock 
itself, and acts as a cross-docking facility.  
 Of the papers studying periodic replenishments in distribution systems, 
Axsäter (1993b), Forsberg (1995), Graves (1996) and Shang et al. (2015) are 
more closely related to our work as they use FCFS allocations. For an overview of 
the literature on inventory control in distribution systems with periodic review, 
see, for example, Axsäter (2003) and Marklund and Rosling (2012). 

2.5 Modelling Features of Papers I-V 
This section summarizes the modelling characteristics of Papers I-V. It thereby 
positions the papers in relation to existing literature presented in Section 2.4 based 
on the model assumptions. As mentioned earlier, the models presented in this 
thesis extend the existing literature of exact stochastic divergent inventory models 
primarily in two directions; namely, including delivery decisions (Papers I, II and 
III) and incorporating detailed demand information Paper II and IV). Paper V is a 
technical note that extends the scope of analysis for several existing models 
focused only on cost analysis by showing how to obtain the inventory level 
distributions.  
  All of the models analyzed in this thesis have the same structure (a single 
central warehouse and multiple non-identical retailers). They all assume 
continuous review, FCFS allocations, linear holding costs and constant 
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transportation lead times. Table 1 summarizes other distinguishing modelling 
characteristics considered in this thesis. Recall that Poisson demand is a special 
case of compound Poisson demand, which in turn is a special case of the 
compound renewal demand. Similarly, the (S-1,S) policy is a special case of the 
(R,Q) policy.  

Table 1. Modelling charasteristics of papers I-V. 

Paper I II III IV V 
Demand structure 
 Poisson 
 Compound Poisson 
 Compound renewal 

 
X 

 
 

X 

 
X 

 
 
 

X 

 
X 
X 
X 

Ordering policies  
 (S-1,S) at all locations 
 (R,Q) at central warehouse and (S-1,S) at retailers  
 (R,Q) at all locations 

 
 

X 

 
 

X 

 
 
 

X 

 
X 

 
X 
X 
X 

Shipment policy from central warehouse 
 Time-based consolidation 
 Alternative transportation modes 
 Transport emissions considered 
 Optimizing partial/complete deliveries 

 
X 
X 
X 

 
X 

 
 
 
 

X 

  
X 

Service measures 
 Shortage costs 
 Fill rates 

 
X 

 
X 
X 

 
X 

 
X 

 
X 
X 

2.6 Summary of Papers I-V 
This section summarizes the most relevant aspects of Papers I, II, III, IV and V 
separately. For each paper the motivation of the study, the description of the 
problem, the key features of the analysis and the most relevant results and 
conclusions are provided. The main contributions are highlighted in Section 2.7.  

2.6.1 Paper I – Sustainable Multi-echelon Inventory Control with 
Shipment Consolidation and Volume Dependent Freight Costs 
Fluctuating fuel prices and environmental concern has led to an increased interest 
in railway transportations of goods. This paper is the result of discussions with 
several companies that have central warehouses in central Europe and aspirations 
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to ship goods by train to local warehouses in, for instance, Scandinavia. More 
specifically, they are interested in implementing intermodal truck-train-truck 
solutions (referred to as the primary transportation option) to groups of retailers 
within the same geographical area. Current market conditions for intermodal 
truck-train-truck transports typically dictate a solution where fixed capacity is 
reserved on trains with a preset shipment interval. This paper studies this issue by 
including realistic transportation costs and emissions in an inventory control 
model of a distribution system where shipments are consolidated periodically. 
 The considered model consists of a central warehouse supplying a number 
of retailers that each faces independent Poisson demand. The warehouse uses an 
(R,Q) policy to replenish from an outside supplier. The retailers use (S-1,S) 
ordering policies to immediately transfer the demand information to the 
warehouse. This is motivated by the diminishing costs of placing orders, as 
discussed earlier.  
 For economies of scale and to reduce the environmental impact, retailer 
orders are consolidated at the central warehouse and shipped to groups of retailers 
periodically. This means that available units ordered by retailers in a specific 
retailer group (retailer group k) are dispatched every Tk time units (where Tk 
denotes the shipment interval to this retailer group). For at least some of the 
retailer groups there is an opportunity to reserve capacity on a primary intermodal 
transportation option. When dispatched, this reserved capacity (wk) is used to 
maximum extent and excess units are shipped with an alternative transportation 
option (truck) directly to the retailers. Figure 4 illustrates an example of the 
structure of the model where there are three retailers belonging to two retailer 
groups. 
 
 
 
 
 
 
 
Figure 4. Example of the generic system considered in Paper I and Paper II. 
 
 Initially, a solution is presented for the single item case, where the 
transportation times of the two transportation options are equal. The analysis is 
then extended both to multi-item systems and systems where the transportation 
times are different for the two shipment options that may be used.  
 The model considers linear holding costs at each stock point (per unit and 
time unit) and linear backorder costs at the retailers. There are fixed costs 
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associated with each shipment leaving, depending on how much capacity that is 
reserved. There are also fixed costs for each truck in use (even if only part of this 
truck is used) and costs per unit for transporting with both transportation options. 
The transport emissions in the system are modeled by fixed emissions dependent 
on the capacity reservation, as well as emissions per unit transported and per load 
carrier in use, analogously to the cost parameters.  
 If the transportation times of the two shipment options are equal, the 
recursive method for exact evaluation of the expected inventory holding and 
backorder costs in Marklund (2011) is applicable. Marklund (2011) assumes a 
fixed cost for each shipment leaving, regardless of the amount of units shipped. In 
our work (presented in Paper I), we consider more general transportation costs 
and emissions, and allow for different transportation times. This is done by 
obtaining the distribution of the amount of units on each shipment. With this 
distribution known, it is straightforward to extend the model to handle any 
transportation structure where the transportation costs and emissions are 
dependent on the shipment size. 
 The paper presents a method to exactly evaluate the expected costs and 
transport emissions for this system. Based on this analysis, it is shown how to 
jointly optimize the shipment intervals to each retailer group (the Tk values), the 
amount of capacity to reserve on the intermodal train transports (the wk values), 
and the reorder points and order-up-to levels in the system (the R and the S 
values). The optimization is explained for three different scenarios; (i) the 
emissions are not considered, (ii) there is a fixed cost per unit of emission, and 
(iii) there is a constraint on the maximum expected amount of emission incurred 
in the system, θ. 
 In a numerical example based on realistic cost and emission figures it is 
illustrated how the expected total cost TC*(θ) depends on the emission target θ 
when optimizing scenario (iii) The example illustrates that relatively large 
emission reductions can be achieved with only marginal cost increases. However, 
larger emission decreases become expensive (see Figure 5).  

 
Figure 5. Expected total cost for varying θ values. 
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2.6.2 Paper II – Exact Analysis of Divergent Inventory Systems with 
Time-based Shipment Consolidation and Compound Poisson Demand 
This paper investigates a system similar to the one considered in Paper I and 
Marklund (2011). There is a central warehouse supplying N retailers and 
shipments are consolidated and dispatched to groups of retailers periodically (see 
Figure 4, above). The main distinction from Paper I and Marklund (2011) is that 
the demand is now assumed to follow a compound Poisson process (note that the 
Poisson process assumed in Paper I and Marklund, 2011, is a special case of the 
compound Poisson process). This demand process can handle different variance 
to mean ratios and is thereby applicable in a much broader array of real problems. 
This paper also generalizes the model to handle fill rate constraints (i.e. 
constraints on the proportion of demand satisfied immediately from stock on 
hand) apart from backorder costs.  
 Another distinction compared to Paper I is that the shipment costs now only 
consist of fixed costs for each scheduled shipment (independent of volume) and 
costs per unit for each transported unit. Also, it is assumed that there is only one 
transportation option per retailer group and thus no reservation of capacity or 
difference in transportation times. These assumptions are realistic in many cases 
where the transports are bought from an outside (third or fourth party) logistics 
provider. This transportation cost structure simplifies the analysis of the shipment 
costs significantly. The main analytical challenges therefore lie in the evaluation 
of the long run expected inventory levels, which will provide the systems holding 
costs, backorder costs and fill rates.  
 As mentioned earlier, the complicating matter in the analysis of inventory 
levels in distribution systems is that the performance of the central warehouse 
affects the retailers. A shortage at the central warehouse can delay the shipment to 
the retailer and the replenishment lead time for a retailer order thus depends on 
whether there are units available at the central warehouse or not. In this paper this 
dependency is considered by obtaining the exact distribution of the amount of 
backorders at the central warehouse destined to a specific retailer i, Bi (when a 
shipment is leaving to this retailer). This distribution has previously been 
determined for the Poisson case in e.g. Simon (1971). However, the customer 
demand sizes in the compound Poisson case add additional complexity. The 
analysis of the backorders at the central warehouse is performed using a new 
approach, which can be used to solve also other types of inventory control 
problems in distribution systems (for instance, versions of this methodology is 
used in Papers III and IV).  
 It is a well-known result that the inventory level at an arbitrary point in 
time t0 (= the stock on hand – the backorders) is equal to the inventory position (= 
inventory level + outstanding orders) at time t0 – L0 (a replenishment lead time, 



 

22 
 

L0, earlier) minus the demand in time interval (t0 – L0,t0]. The novelty in the 
proposed approach lies in tracking the nominal inventory position, which is a new 
concept introduced in the paper. The nominal inventory position is defined as the 
inventory position at t0 – L0 minus all demand at the central warehouse after t0 – 
L0. Thereby, the nominal inventory position (when positive) will serve as a 
measure of how many units the central warehouse still can satisfy before time t0. 
A possible sample path of the nominal inventory position is illustrated in Figure 6. 
When the inventory level is negative (equal to –x) at time t0, we know that there 
are exactly x backorders. Because of the FCFS assumption we also know that it 
will be the last x units ordered from the central warehouse before time t0 that will 
be backordered at time t0. By analyzing when the nominal inventory position is 
brought to a negative value (when the first backordered units at time t0 are ordered 
by a retailer), the distribution of the backorders at the central warehouse destined 
to a specific retailer, Bi, can be analyzed. This constitutes the backbone of the 
analysis in this paper. 

 
Figure 6. A sample path of the nominal inventory position. 
 
 With the distribution of backorders destined to retailer i, Bi, known, it is 
possible to determine the distribution of the inventory levels at this retailer. By 
conditioning on Bi at the moment a shipment is leaving to this retailer, the 
inventory level distribution a transportation lead time later at retailer i can be 
determined. Analogously, the inventory level during the following replenishment 
interval can be determined conditioning on Bi. After obtaining the distribution of 
the inventory levels, it is straightforward to analyze the expected costs and fill 
rates in the system. Based on these results, an optimization procedure is presented 
where the control parameters (the shipment intervals, the reorder points and the 
order-up-to levels) are jointly optimized (the order quantities at the central 
warehouse is assumed given). The costs are proven to be convex in the retailer 
order-up-to levels for a given warehouse reorder point and fixed shipment 
intervals. The optimization procedure is thus based on finding lower and upper 
optimality bounds on the warehouse reorder point and the shipment intervals. The 
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optimal solution is found by searching within these bounds and using the 
convexity of the retailer order-up-to levels. The proposed analytical methods for 
cost evaluation and the optimization procedure are applicable in both single- and 
multi-item systems. 

2.6.3 Paper III – Partial or Complete Deliveries in Two-echelon 
Inventory Systems? 
This paper also focuses on the shipment strategies and the shipment cost structure 
at the central warehouse, but for a different system and from another perspective. 
Here, an inventory distribution system consisting of a central warehouse and a 
number of retailers facing Poisson demand, where all stock points use (R,Q) 
policies (an example of the structure can be seen in Figure 3, above) is examined. 
The (R,Q) policy (fixed batch ordering) is one of the most commonly used 
replenishment policies in practice and it has also been widely studied in the 
literature, see, for example, Axsäter (2000). In distribution systems with batch 
ordering, situations can occur where only part of a retailer order is available at the 
central warehouse. In these situations, the warehouse can choose to dispatch the 
available units immediately and dispatch the remaining units as soon as they 
arrive to the central warehouse. This is referred to as a partial delivery. If the 
majority of the ordering cost is connected with the placement of an order, this can 
be a reasonable choice. If, however, there are substantial costs associated with 
splitting the delivery of an order, it can be reasonable to wait until the entire order 
is available and ship all units at ones, i.e. a complete delivery. 
 This paper introduces a cost, θi, of splitting an order to retailer i, and 
analyzes and compares three different delivery policies; a Partial Delivery policy 
(PD policy), a Complete Delivery policies (CD policy), and a Mixed State-
Dependent policy (MSD policy). In the PD policy, only partial deliveries are 
used, and in the CD policy only complete deliveries are used. In the MSD policy, 
a cost optimization between a partial or a complete delivery is performed for each 
delivery. The cost optimization is based on information about how many units 
that are backordered and when the ordered units will become available for 
shipment. Note that, regardless of the delivery policies, the central warehouse 
allocates the units according to a FCFS policy. 
 The existing literature predominantly assumes PD policies, see Axsäter, 
(1993a, 1997, 1998, 2000), Chen and Zheng (1997) Forsberg (1997a,b) and 
Marklund (2002). In this current paper it is however proven that the MSD policy 
has a performance guarantee over both the PD and the CD policies (i.e. the costs 
for the MSD policy are at least as low as for the other policies). Also, it is shown 
that when the costs of splitting orders are sufficiently large, no partial deliveries 
will be made and the CD policy becomes equivalent to the MSD policy. Thus, the 
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CD policy has a performance guarantee over the PD policy in these situations. 
Note, however, that even if the cost of splitting orders is zero (θi = 0), situations 
can occur, when it is beneficial to use complete deliveries. 
 For all three policies, the expected costs in the system are evaluated 
exactly. Because the MSD policy contains a state-dependent decision (dependent 
on when outstanding orders will arrive to the warehouse), the cost analysis for 
this policy is more complex than for the stationary PD and CD policies. The 
analysis utilizes a modified version of the nominal inventory position introduced 
in paper II. By further exploring the properties of the nominal inventory position 
it is possible to keep track of when orders have been placed (and will arrive to the 
warehouse). This enables the evaluation of the probabilities for different delivery 
decisions to occur. As a result, the distributions of the inventory levels and, 
consequently, the expected costs of the system can be obtained. With the cost 
analysis in place, optimization procedures for the reorder points (the R values) for 
the three policies are attained.  
 In a small numerical study, the costs and control parameters for the 
different policies are evaluated (see Paper III for details of the study). The study 
consists of 32 problems, which are all optimized for all three policies. For these 
problems, the expected costs for the PD policy are on average 5.8 % higher than 
under the MSD policy and the costs for the CD policy is 5.9 % higher than for the 
MSD policy. The maximum cost increase of using the PD policy instead of the 
MSD policy is 26.6% and the corresponding value for the CD policy is 17.9 %. 
This implies that the costs for choosing the wrong delivery policy can be 
significant. The study also indicates that when the costs for splitting orders 
increases, there is a tendency to keep more inventory at the central warehouse 
(under the MSD policy). This can be explained by the fact that the handling cost 
penalizes situations when there is not enough stock at the central warehouse. This 
implies that under our more general cost structure, there should be more stock 
kept at the central warehouse than what the existing multi-echelon literature 
suggests (see e.g. Axsäter 2003). The majority of the inventory will, however, still 
be kept at the retailers. 

2.6.4 Paper IV – Divergent Two-echelon Inventory Systems with 
Compound Renewal Demand 
The fourth paper of the thesis focuses on detailed demand information in 
distribution systems. Many companies today have access to exhaustive 
information about their business. For logistics planning this means that they 
possess detailed information about the demand processes of their customers. In 
order to benefit from this information, models are required that handle more 
detailed demand structures.  
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 As stated earlier, most existing models of distribution systems assume that 
the inter-arrival times follow exponential distributions, resulting in Poisson or 
compound Poisson demand processes. This can be a good representation of reality 
if the customers arrive independently of each other. In other systems, for example 
for some critical spare parts, it is not unusual to have a local stock point in 
conjunction with every large customer. In these cases, increasing or decreasing 
failure rates of the spare parts triggering orders or customers’ batching of orders 
can make the inter-arrival times far from exponential.  
 In the presented model, the customer inter-arrival times can follow any 
continuous distribution and the demand sizes of the customers can follow any 
discrete distribution. By assuming that the inter-arrival times and demand sizes 
are independent also across the retailers, the retailer demand processes constitute 
independent compound renewal processes. The replenishments in the model are 
made according to continuous review (S-1,S) policies at all stock points and all 
stock points apply FCFS allocation, complete backordering and partial deliveries. 
There are holding costs per unit and time unit at all stock points and backorder 
costs per unit and time unit at all retailers. 
 For this model, the exact inventory level distributions at all stock points in 
steady state are obtained. This is done by examining how the inventory levels at a 
given time depend on the customer demands during the previous replenishment 
lead times. The nominal inventory position from paper II is used to divide the 
analysis into different cases. By obtaining the distributions of the demand at the 
retailers during one or two consecutive time period(s) at a retailer, the inventory 
level distributions and the costs can be determined. From these distributions the 
expected total costs are evaluated and a recursive procedure to optimize the order-
up-to levels (the S-values) at all stock points is presented.  
 In a numerical study the optimal system behavior is examined when the 
customer inter-arrival times are either gamma or Weibull distributed. Loosely 
speaking, the gamma distribution can be used to approximate customer arrivals, 
when the customers batch their orders, while the Weibull distribution is 
commonly used in reliability theory to model increasing or decreasing failure 
rates of spare parts (see, for instance, O'Connor and Kleyner, 2012). For the 120 
problem scenarios tested, the expected cost increase of approximating these 
distributions with exponential distributions is evaluated. Moreover, as the gamma 
distribution has some analytical advantages over the Weibull distribution, it is 
examined whether the gamma distribution can be used to approximate the 
Weibull distributions.  
 The numerical study focuses on cases where the coefficient of variation 
(the standard deviation divided by the mean) of the inter-arrival times, ρ, is 
smaller than or equal to 1. Note that, for the exponential distribution, ρ is always 
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equal to 1.  The focus on smaller ρ values is motivated by the fact that increasing 
failure rates or customers’ batching of orders generates ρ values less than 1. Also, 
ρ is required to be smaller than 1 in order to model variance-to-mean ratios of the 
demand per time unit smaller than 1. This is relevant as the commonly used 
compound Poisson process only can model variance-to-mean ratios of the demand 
per time unit greater than or equal to 1. The details of the numerical study are 
found in the paper. 
 The results of the numerical study show that it can be costly to approximate 
the inter-arrival times with exponential distributions. Especially in the cases 
studied when ρ was significantly smaller than 1 and the demand size remained 
constant and equal to 1, the expected cost increase of assuming exponential inter-
arrival times was very high. For several problems this increase was more than 
200%. Approximating the Weibull distribution with the gamma distribution 
worked in general well, generating the same solution in 54 out of 60 problem 
scenarios. 

2.6.5 Paper V – A Note on Solution Procedures for a Class of Two-
echelon Inventory Problems 
Paper V constitutes a technical note that shows how additional information can be 
extracted from existing inventory control models. The stochastic multi-echelon 
literature contains several exact models that analyze the expected costs without 
first determining the inventory level distribution. These models originate with 
Axsäter (1990) and are based on similar methodologies. They follow an arbitrary 
unit as it travels through the system and analyze the expected costs incurring on 
this unit. The main result of this note is the derivation of the inventory level 
distribution from the cost function for this group of models. Through the 
inventory level distribution, several important service measures can be 
determined, such as the ready rate and fill rate. The note also shows that a well-
known relationship from the single-echelon literature between the ready rate and 
holding and backorder costs also hold for the retailers in the same group of 
systems. 
 The presented results are valid for any stock point i where there exists a 
control variable that fulfills the conditions of an adjusting control variable, Si. 
These conditions are: 

1. There are holding and backorder costs per unit and time unit at stock point 
i. 

2. A shift in Si by Δ units shifts the long run distribution of the inventory level 
with Δ units. 

3. Si does not affect any other expected system costs than the holding and 
backorder costs at stock point i. 
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The note shows that these conditions are fulfilled by Axsäter (1990), which 
studies a continuous review base-stock policy system facing Poisson demand. It is 
also explained how the results can be generalized to other customer demand 
processes (compound Poisson and compound renewal), other replenishment 
policies (installation and echelon stock (R,Q) policies) and models using periodic 
replenishments. Thus, apart from Axsäter (1990) the presented results are valid 
for the following models, which do not determine the inventory level 
distributions; Axsäter (1993a,b, 1997, 1998), Forsberg (1995, 1997a,b) and 
Marklund (2002, 2011), see Section 2.4 for short descriptions of the models. 
Important prerequisites for the results to hold in the cited models include; central 
warehouse replenishment policies that work independently of the adjusting 
control variable Si, FCFS allocations, and partial or complete delivery policies at 
the central warehouse. 

2.7 Contributions 
The main contribution of the thesis is that it extends the scope of stochastic multi-
echelon inventory systems that can be analyzed exactly. It complements and 
expands the existing literature primarily by including transportation and delivery 
decisions and more realistic transportation cost and emission structures to the 
models, and by allowing more detailed demand information to be considered. 
Below follow descriptions of the main contributions of Paper I-V separately. 
 Paper I introduces new aspects when analyzing distribution systems. To the 
best of our knowledge this paper is the first model studying a stochastic multi-
echelon system that includes volume dependent transportation costs. It is also, to 
our knowledge, the first stochastic multi-echelon model that explicitly considers 
emissions in the optimization. The main analytical contribution of the paper is the 
derivation of the distribution of the size of an arbitrary shipment leaving the 
central warehouse to any retailer group. This distribution enables the analysis of 
the exact costs for a range of distribution systems with shipment consolidation, 
where the transportation costs and emissions are dependent on the size of the 
shipment. 
 Like Paper I, Paper II generalizes the model of Marklund (2011), but in 
other directions. Firstly, it extends it to handle compound Poisson demand instead 
of Poisson demand. It can therefore be applied to systems where the variance to 
mean ratio is larger than or equal to one. Secondly, it generalizes the analysis to 
handle fill rate constraints in addition to backorder costs. This extension further 
improves the practical relevance, as fill rate constraints are commonly used in the 
industry. Thirdly, it provides a joint optimization procedure for the shipment 
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intervals, the reorder points and the order-up-to levels, whereas Marklund (2011) 
determines the shipment interval based on a heuristic. 
 The main analytical contribution is the cost evaluation, or perhaps, more 
precisely, the derivation of the distribution of the backorders destined to a specific 
retailer within this analysis. Also the methodology, with the new concept referred 
to as nominal inventory position, is a contribution, as it has already proven to be 
useful in other contexts. 
 Paper III introduces a more realistic cost structure to distribution systems 
with batch ordering policies. By introducing costs for splitting orders, this paper 
is able to compare and analyze the choice between dispatching partial or complete 
orders. Apart from the previously assumed partial and complete ordering policies, 
we introduce a new Mixed State-Dependent (MSD) policy, which has a 
performance guarantee over the other two. The main analytical contribution of 
this paper is the exact derivation of the exact expected costs under this policy. In 
this analysis, new useful features of the nominal inventory position are observed 
and used. 
 The numerical study indicates that substantial savings can be made by 
using the MSD policy compared to the partial or complete delivery policies. It is 
also worth noting that the performance guarantee, mentioned above, holds for any 
set of reorder points. In practical applications for large systems, it can therefore be 
interesting to optimize the reorder points with some faster heuristic and simply 
use the MSD delivery choice algorithm to decide on how to deliver in each 
particular instance.  
 Paper IV presents an exact analysis of a distribution system where the 
customer demands at the retailers follow compound renewal processes. Thus the 
customer inter-arrival times may follow any continuous distribution and the 
amount each customer orders may follow any discrete distribution. To the best of 
our knowledge, this is the first stochastic multi-echelon inventory distribution 
system analyzed exactly, where the analysis is not based on exponential customer 
arrivals. This contribution is strengthened by a numerical study showing that the 
exponential assumption can generate very poor results. 
 Paper V presents three results for a group of stock points in multi-echelon 
systems with adjusting control variables defined in Section 2.6.5. The main result 
is the derivation of the inventory level distribution from the cost function. This 
result extends the scope of several papers that analyze the costs by following an 
arbitrary unit as it travels through the system. The second result is a 
generalization of a relationship between the holding and shortage costs and the 
ready rate, which is well known for single-echelon systems, to hold for a group of 
stock points in multi-echelon systems. Finally it proves that the costs are convex 
in the adjusting control parameter.  
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2.8 Future Research 
Based on this thesis, there are several interesting directions for future research. 
Regarding the shipment consolidation policies studied in Papers I and II, a logical 
path would be to extend the analysis of the shipment size, transportation costs and 
emissions in Paper I to the case of compound Poisson demand analyzed in paper 
II. It would also be interesting to evaluate other transportation cost and emission 
structures. Furthermore, it would be relevant to compare the results of this time-
based shipment consolidation policy with other shipment consolidation policies, 
for instance quantity-based shipment consolidation. Such a policy consolidates 
and ships a predetermined quantity (e.g. a truckload) of units for every shipment 
from the central warehouse. This is interesting, not least from a sustainability 
perspective, as it assures maximum utilization of transportation capacity. 
 Based on the research in Paper III, it would be interesting to develop and 
analyze other delivery policies in batch ordering systems. One development 
would be to allow the central warehouse to make dynamic decisions between 
partial and complete deliveries. This means that even if the central warehouse 
initially expects it to be beneficial to wait for a complete delivery, demands 
occurring at the retailer can change the circumstances in favor of a partial 
delivery, triggering a “delayed partial delivery”. Another possibility would be to 
consider a partial delivery policy that cancels the remaining order after the 
available units have been shipped. Note however, that this policy causes 
analytical challenges as it alters the inventory position both at the central 
warehouse and at the retailer. It would also be relevant to extend the analysis of 
Paper III to handle compound Poisson demand. 
 Paper IV is, to the best of our knowledge, the first paper analyzing 
compound renewal demand in a multi-echelon distribution system. It would be 
interesting to extend the results to other replenishment policies under this demand 
structure. Possible examples include (R,Q) and (s,S) policies with continuous or 
periodic replenishments. However, it would also be interesting to see how a 
delayed ordering policy would perform in a multi-echelon setting. It has been 
shown in single-echelon settings that delaying orders can create significant cost 
savings when the customer inter-arrival times are non-exponential, see, for 
instance Axsäter and Viswanathan (2012) and Syntetos et al. (2016). Generalizing 
this to multi-echelon distribution systems would be relevant, especially as the 
times between orders placed to the central warehouse from retailers that batch 
their customer orders are non-exponential even if their customers arrive with 
exponential inter-arrival times. 
 For all the exact procedures presented in Papers I-IV, the computational 
times become long, for instance, when the amount of retailers or the expected 
demand per time unit increases. Therefore, finding fast and stable heuristic 
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solutions to all the presented problems constitutes relevant paths for future 
research.  



 

31 
 

References 
 
Andersson, J. 1999. Exact analysis of delivery policies in multi-echelon inventory 

systems. In Coordinated multi-stage inventory systems with stochastic 
demand. Doctoral Thesis, Lund University. 

Axsäter, S. 1990. Simple solution procedures for a class of two-echelon inventory 
problems. Operations Research 38 64-69. 

Axsäter, S. 1993a. Exact and approximate evaluation of batch-ordering policies 
for two-level inventory systems. Operations Research 41 777-785. 

Axsäter, S. 1993b. Optimization of order-up-to-S policies in two-echelon 
inventory systems with periodic review. Naval Research Logistics 40 245-
253. 

Axsäter, S. 1997. Simple evaluation of echelon stock (R,Q)-policies for two-level 
inventory systems. IIE Trans 29 661–669. 

Axsäter, S. 1998. Evaluation of installation-stock based (R,Q)-policies for two-
level inventory systems with Poisson demand. Operations Research 46 
S135–S145 

Axsäter, S. 2000. Exact analysis of continuous review (R,Q) policies in two-
echelon inventory systems with compound Poisson demand. Operations 
Research 48 686-696. 

Axsäter, S. 2003. Supply chain operations: Serial and distribution inventory 
systems. In Graves, S. C., T. de Kok., eds, Handbooks in operations 
research and management science, vol 11: Supply chain management: 
Design, coordination and operation, Elsevier. 

Axsäter, S. 2006. Inventory control, second edition. Berlin: Springer. 

Axsäter, S., J. Marklund. 2008. Optimal position based warehouse ordering in 
divergent two-echelon inventory systems. Operations Research 56 976–
991. 

Axsäter, S., J. Marklund. 2010. Decision sciences, Encyclopedia of library and 
information sciences, third edition 1:1 1450-1457. 

Axsäter, S., S. Viswanathan. 2012. On the value of customer information for an 
independent supplier in a continuous review inventory system. European 
Journal of Operational Research 221 340-347. 



 

32 
 

Chen, F., Y.S. Zheng. 1997. One warehouse multi-retailer systems with 
centralized stock information. Operations Research 45 275-287. 

Clark, A. J., H. Scarf. 1960. Optimal policies for a multi-echelon inventory 
problem. Management Science 6 475-490. 

Edgeworth, F. 1888. The mathematical theory of banking. J. Royal Statist. Soc. 51 
113–127. 

Federgruen, A., P. Zipkin. 1984. Computational issues in an infinite-horizon, 
multi-echelon inventory model. Operations research 32 818-836. 

Forsberg, R. 1995. Optimization of order-up-to-S policies for two-level inventory 
systems with compound Poisson demand. European Journal of 
Operational Research 81 143-153. 

Forsberg, R. 1997a. Exact evaluation of (R,Q)-policies for two-level inventory 
systems with Poisson demand. European Journal of Operational Research 
96 130-138. 

Forsberg, R. 1997b. Evaluation of (R,Q)-policies for two-level inventory systems 
with generally distributed customer inter-arrival times. European Journal 
of Operational Research 99 401-411. 

Graves, S.C. 1985. A multi-echelon inventory model for a repairable item with 
one-for-one replenishment. Management Science 31 1247-1256. 

Graves, S. C. 1996. A multi-echelon inventory model with fixed replenishment 
intervals. Management Science 42 1-18. 

Gürbüz, M., K. Moinzadeh, Y.P. Zhou. 2007. Coordinated replenishment 
strategies in inventory/distribution systems. Management Science 53 293-
307. 

Hillier, F. S., G. J. Lieberman. 2010. Introduction to operations research, ninth 
edition. McGraw-Hill. 

Howard, C. 2013. Real-time Allocation Decisions in Multi-echelon Inventory 
Control. Doctoral Thesis, Lund University. 

Howard, C., J. Marklund. 2011. Evaluation of stock allocation policies in a 
divergent inventory system with shipment consolidation. European Journal 
of Operational Research 211 298-309. 

Iglehart, D. 1963. Optimality of (s,S) policies in the infinite-horizon dynamic 
inventory problem. Management Science 9 259-267. 



 

33 
 

Kruse, W. K. 1979. An Exact N Echelon Inventory Model: The Simple Simon 
Method. Technical Report, March, U.S. Army Inventory Research Office, 
Philadelphia 

Marklund, J. 2002. Centralized inventory control in a two-level distribution 
system with Poisson demand. Naval Research Logistics 49 798-822 

Marklund J. 2006. Controlling Inventories in Divergent Supply Chains with 
Advance-Order Information. Operations Research 54 988-1010. 

Marklund, J. 2011. Inventory control in divergent supply chains with time based 
dispatching and shipment consolidation. Naval Research Logistics 58 59-
71. 

Marklund, J., K. Rosling. 2012. Lower bounds and heuristics for supply chain 
stock allocation, Operations Research 60 92-105. 

Moinzadeh K. 2002. A Multi-Echelon Inventory System with Information 
Exchange, Management Science 48 414-426. 

O'Connor, P., A. Kleyner. 2012. Practical Reliability Engineering, 5th Edition. 
New Jersey: John Wiley & Sons. 

Paterson, C., G. Kiesmüller, R. Teunter, K. Glazebrook. 2011. Inventory Models 
with Lateral Transshipments: A Review. European Journal of Operational 
Research 210 125-136. 

Porteus, E. L. 1971. On the optimality of generalized (s,S) policies. Management 
Science 17 411-427. 

Rosling, K. 1989. Optimal inventory policies for assembly systems under random 
demands. Operations Research 19 565-579. 

Shang, K., Z. Tao, S. Zhou. 2015. Optimizing reorder intervals for two-echelon 
distribution systems with stochastic demand. Operations Research 63 458-
475. 

Silver, E. A., D. F. Pyke, R. Peterson. 1998. Inventory management and 
production planning and scheduling, third edition. John Wiley & Sons, 
New York. 

Simon, R.M. 1971. Stationary Properties of a Two Echelon Inventory Model for 
Low Demand Items. Operations Research 19 761–777. 

Stenius, O. 2014. Multi-echelon inventory control with integrated shipment 
decisions. Licentiate thesis, Lund University. 

Syntetos, A.A., R.H. Teunter, M.Z. Babai, S. Tranchel. 2016. On the benefits of 
delayed ordering. European Journal of Operational Research, forthcoming. 



 

34 
 

Veinott, A. F. 1966. On the optimality of (s,S) inventory policies: New conditions 
and a new proof. SIAM Journal of Applied Mathematics 14 1067-1083. 

Zheng, Y. S. 1991. A simple proof for the optimality of (s,S) policies in infinite-
horizon inventory systems. Journal of Applied Probability 28 802-810. 

Zipkin, P. H. 2000. Foundations of inventory management. McGraw-Hill. 



Paper I





0 
 

Sustainable Multi-echelon Inventory Control with 
Shipment Consolidation and Volume Dependent 

Freight Costs 

 

 

Olof Stenius ● Johan Marklund ● Sven Axsäter 
Department of Industrial Management and Logistics, Lund University 

christian.howard@iml.lth.se ● olle.stenius@iml.lth.se 

 
  



 
 

Abstract 

This paper provides exact analysis of a model for sustainable control of a one-warehouse-N-retailer 

inventory system with time based shipment consolidation. The model setting is inspired by 

discussions with industry and involves the possibility to reserve intermodal transportation capacity, in 

combination with truck transports available on demand. Inventories are reviewed continuously while 

shipments from the warehouse are consolidated for groups of retailers and dispatched periodically. A 

key result is the derivation of the probability mass functions for the number of units on each shipment. 

This allows for realistic volume dependent freight cost structures and emissions to be included in the 

model. We show how to jointly optimize the reorder levels, shipment intervals and capacity 

reservation quantities to minimize the total expected costs. Emissions are taken into consideration by 

use of a side constraint on the total expected emissions or by introducing emissions costs. A numerical 

example illustrates how the model can be used for evaluating the cost impact of reducing emissions. 

The analysis is applicable to both single- and multi-item systems. 
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1. Introduction 
Increasing fuel prices and environmental concerns drive a growing interest among companies for more 

sustainable distribution and freight transportation systems. An important aspect of this challenge is to 

reduce transportation emissions while minimizing total inventory and transportation costs. In this 

paper we consider these issues in the context of a distribution system with a central warehouse that 

replenishes N non-identical retailers (or local warehouses) using a time based shipment consolidation 

policy with volume dependent freight costs and emissions, and intermodal transport options. 

 Our research is motivated by discussions with several Swedish companies having one (or a few) 

central warehouse(s) in central Europe or in Scandinavia, and local warehouses spread across Europe. 

Spurred by ambitions to reduce total costs and transportation emissions they investigate (or have 

already embarked on) intermodal transport solutions where goods from the central warehouses are 

primarily shipped to the local warehouses by train (or in some cases specialized low emission trucks 

e.g. with extended trailer length and/or alternative fuel engines). This typically means that a transport 

provider offers a truck-train-truck solution, where (shuttle) trains leave periodically from logistics 

hubs according to predefined schedules. The periodic shipment schedules facilitate high capacity 

utilization of the trains, and more reliable transport times. The latter because the transport provider is 

in a better position to negotiate slot times on the railway systems and avoid transit delays. 

Procurement of these intermodal transportation services typically requires that the company reserves 

capacity on the train (or on the specialized trucks) in advance for a given contract period. To assure 

reliable transport lead-times, which are typically specified in contractual agreements with the shipper, 

the transport provider complements the intermodal option by regular diesel truck transports. This 

option is used when the reserved capacity at a given shipment instance is insufficient to transport the 

entire order volume, or in case of disruptions. Most often the stated goal is that the inventory locations 

should experience the same transportation lead-time for the entire shipment irrespectively of how 

individual items are transported.  

 A fundamental question these companies face is how to leverage this type of intermodal 

transportation solution to reduce transport emissions while minimizing the total inventory and 

transportation costs of their distribution systems? The question is challenging because decisions 

regarding shipment frequencies, consolidation policies and how much train capacity to reserve, are 

intertwined with inventory decisions at the central warehouse and at the local warehouses.  

The model we present addresses these issues and offers means to analyze the tradeoff between 

transport emissions and total costs, and to optimize system performance. It assumes a centralized 
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system where the central warehouse has the mandate to control the inventories at the retailers, for 

example, through a VMI (Vendor Managed Inventory) program. Moreover, the IT systems are 

integrated to the extent that real time inventory and point-of-sale information for the entire system is 

available at the warehouse. Motivated by fixed costs for handling and shipping goods from the central 

warehouse, the retailers are clustered into retailer groups to which consolidated shipments are 

dispatched periodically from the central warehouse. (The use of periodic shipment schedules in 

practice, and the advantages it may bring are well documented in the literature, see, for example, Gaur 

and Fisher (2004).) The time between shipments to a given retailer group is a decision variable 

referred to as the (constant) shipment interval for the group in question. At each dispatching 

opportunity the warehouse ships all demanded units that are available using either a primary 

intermodal transportation option (where by far the longest traveled distance is by train or specialized 

low emission trucks), or an alternative transportation option (typically regular diesel trucks). 

Transportation lead-times are assumed to be constant but not identical. For the intermodal option, 

capacity must be reserved in advance (how much to reserve is a decision variable), and the reserved 

capacity is used to its fullest extent before the alternative transportation option may be used. The 

analysis focuses on the single-item case with Poisson demand and First-Come-First-Served (FCFS) 

allocations, but extensions to multi-item settings are provided. 

A key technical contribution of our work is the exact derivation of the probabilities for different 

shipment quantities to occur under the time based consolidation policy. Knowledge about these 

probabilities allow for great flexibility in evaluating different types of volume dependent cost 

structures, for example, with vehicle or load carrier dependent fixed and variable costs. Similarly, it 

also allows for evaluation of expected emissions associated with different transportation options.  

The remainder of this section is devoted to an overview of the related literature. Section 2 

provides a detailed model formulation. Section 3 presents the analysis of the expected transportation 

costs and emissions. Section 4 explains the proposed cost optimization procedures for systems with or 

without given emissions constraints. An illustrative example is found in Section 5, Section 6 discusses 

generalizations, and Section 7 concludes.  

1.1 Related literature 

Our work is closely related to Marklund (2011), which considers the same type of inventory 

system as we do but for more restrictive transportation cost structure. More precisely, a fixed cost is 

assumed for every scheduled shipment to each retailer group, regardless of the quantity shipped (even 

when no units are shipped). The main technical contribution is the derivation of an exact recursive 

procedure for obtaining the expected inventory holding and backorder costs for all stock points, which 
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we capitalize on in our present work. In contrast, we contribute with modeling and exact analysis of 

capacitated volume dependent shipment costs and transportation emissions, allowing for combinations 

of transportation modes and evaluation of expected emissions. We also provide a procedure for jointly 

optimizing shipment intervals (to each retailer group), reserved intermodal capacity (to each retailer 

group), and reorder levels (at all stock points), and show how transportation emissions can be 

considered in this optimization. 

Howard and Marklund (2011) build on Marklund (2011) and investigate by simulation the 

impact of using state dependent myopic policies instead of FCFS to allocate items to the retailers in a 

retailer group. For the same system Howard (2013) considers two alternative state dependent 

allocation policies which are guaranteed to not perform worse than FCFS. The conclusion from these 

two papers is that overall FCFS performs well, but there may be cost benefits of using state dependent 

allocation policies, particularly if the allocation decision is postponed to the moment of delivery. 

Stenius et al. (2015) extend the model in Marklund (2011) to compound Poisson demand. Gürbüz et 

al. (2007) also study joint inventory and transportation decisions, but in a VMI setting where the 

central warehouse is a cross-docking facility that is not allowed to hold any stock.  

 Apart from these articles, our current work is related to the literature on divergent continuous 

review multi-echelon inventory systems without consolidated shipments. Simon (1971), Graves (1985) 

and Axsäter (1990) present methods for exact and approximate evaluation of continuous review 

models with (S-1, S) policies, FCFS allocation and Poisson demand. Generalizations to compound 

Poisson demand and/or batch ordering are provided in Axsäter (1993a, 1997, 2000), Forsberg (1995, 

1997) and Chen & Zheng (1997). The same research stream also encompass papers investigating more 

general replenishment policies, allocation policies or delivery policies, including Marklund (2002, 

2006), Moinzadeh (2002), and Axsäter & Marklund (2008) and Howard & Stenius (2013).  

 Because of the periodic shipments from the central warehouse, our work is connected to the 

literature on periodic review multi-echelon inventory control. In contrast to what is assumed in our 

work, the main body of this literature does not make use of real-time information (see, for instance, 

Federgruen, 1993, Houtum et al., 1996, Cachon & Fisher, 2000, Axsäter et al., 2002, Özer, 2003, Chu 

& Shen, 2010, Marklund & Rosling, 2012, and references therein). Inventory levels are observed only 

when replenishments may be placed. Exceptions include Graves (1996), Axsäter (1993b) and Shang et 

al. (2014), which assume virtual allocation of orders under Poisson demand arrivals and constant 

transportation times. This means that demand is monitored continuously and satisfied in a FCFS 

sequence although replenishment orders (at all sites) can be placed only at preset times according to 

base-stock policies. Graves (1996) assumes fixed but not necessarily constant replenishment intervals, 
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and provides exact characterization of the inventory at any time and site in divergent distribution 

networks with two or more echelons. In these respects our model is more restrictive as it considers 

periodic shipments in two echelon systems. Axsäter (1993b) focuses on the special case of fixed and 

nested replenishment intervals and present a fast recursive procedure for evaluating expected holding 

and backorder costs. In spirit this procedure is similar to the method in Marklund (2011), used in our 

present work. Shang et al. (2014) consider the replenishment intervals as decision variables and show 

how to optimize them together with the base stock levels in the system. This is related to the 

optimization of the shipment intervals in our study. Volume dependent freight costs and transport 

emissions are not considered in any of the papers mentioned above, which sets our work apart. 

Another difference is that in our model the central warehouse uses a continuous review (R,Q) policy. 

 Our work is also associated with the shipment consolidation literature focusing on single-

echelon settings (e.g. Çetinkaya & Lee, 2000, Axsäter, 2001, Çetinkaya & Bookbinder, 2003, Chen et 

al., 2005, Çetinkaya et al., 2008, Mutlu et al., 2010, and Kaya et al., 2012). These papers typically 

study a vendor, which through VMI contracts decides replenishments (often with negligible 

replenishment lead-times) and dispatches consolidated shipments to a number of retailers. Similar to 

our present work Çetinkaya & Bookbinder (2003), Mutlu et al. (2010) and Kaya et al. (2012) allow 

for volume dependent dispatching costs. Key differences between this stream of literature and our 

work are that we study a multi-echelon system and explicitly consider emissions in the optimization.  

Disregarding the shipment consolidation aspect, Tempelmeier & Bantel (2015) approximate the 

probability distribution of the daily transportation volume from an inventory location using a periodic 

review (R,Q) policy. The daily volume is dispatched using limited in-house transportation capacity 

extended by a more costly external option. The authors advocate the importance of jointly optimizing 

inventory and transportation decisions and show that reducing the safety stock increases the variability 

of the daily transportation volume and the associated costs. Our approach is different, providing exact 

analysis and optimization of inventory and transportation decisions with respect to both costs and 

emissions in multi-echelon settings with shipment consolidation. 

 The research on sustainable supply chain management has increased significantly during the last 

decade. Until recently, most of the quantitative models have been focusing on closed-loop reverse 

logistics systems, or waste management (see, for example, Kleindorfer et al. 2005, Corbett and 

Klassen, 2006, Srivastava, 2007, and Dekker et al., 2012, for overviews). Lately, the interest in green 

inventory management models where emissions are considered has increased. For an overview of this 

literature, which so far is dominated by deterministic lot sizing models and newsvendor type models, 
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we refer to Marklund & Berling (2015). As far as we know, our work is the first to consider volume 

dependent shipment costs and transport emissions in a stochastic multi-echelon inventory setting.  

2. Model formulation 
Our model includes a central warehouse that replenishes N non-identical retailers facing independent 

Poisson demand of a single item (extension to multi-item systems is available in Appendix C). The 

central warehouse has access to real-time inventory information about the entire system, and 

replenishes its stock from an outside supplier/manufacturer with constant lead-time, L0. Moreover, as 

indicated above, complete backordering and FCFS allocation is assumed at all stock points. 

 The retailers are divided into K retailer groups (K ≤ N) and there are Nk retailers belonging to 

retailer group k, K
kk 1

N N
=

=∑ . The set of retailers belonging to retailer group k is denoted, Ωk. The 

shipments from the central warehouse to each retailer group are consolidated, offering a potential for 

reducing transportation costs and emissions. More precisely, the central warehouse dispatches a 

shipment to all retailers within retailer group k (1 ≤ k ≤ K) every Tk time units. The shipment interval, 

Tk, is assumed to be a positive multiple of some smallest shipment interval Tmin. The retailer groups 

are taken as given inputs to the model. They may, for example, be determined by geographical 

proximity or by use of a vehicle routing method (see, for example, Toth and Vigos, 2001 for an 

overview). Clearly, the configuration of the retailer groups can affect the performance of the system, 

and the presented model can be used for evaluating different alternatives with regards to expected 

costs and emissions. However, optimizing the configuration of retailer groups involve many issues 

beyond the scope of our present model and is left for future research. 

 To each of the retailer groups, shipments are made either with a primary intermodal 

transportation option, where capacity is reserved in advance, or with an alternative transportation 

option where capacity is unlimited. The latter is used only if a shipment quantity exceeds the reserved 

intermodal capacity. The set of possible capacity reservations for the primary option (expressed in 

number of units) to retailer group k is denoted Wk. For each retailer group there is a possibility not to 

reserve any capacity, wk=0 (i.e., 0 ∈  Wk ∀k=1,2,…K), and to use only the alternative option. In 

practice, the capacity reservation opportunities to a specific retailer group may include the possibilities 

to reserve nothing or an integer multiple of: whole trains, freight cars, containers or load carriers. 

Based on our discussion with industry, where reliability in delivery times is emphasized, the main part 

of the analysis assumes that the transportation lead-times from the central warehouse to retailer i 

(including picking at the central warehouse, loading, transporting, unloading at retailer i etc.), Li, is 

constant and independent of the transportation option used. An exact analysis of the more general case 
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of different transportation lead-times for the primary and alternative options is available in Appendix 

D. In either case, the replenishment lead-time for retailer i (i.e., the time from order placement at the 

central warehouse until the unit is available at retailer i) is stochastic. 

 The central warehouse uses an (R0,Q0) replenishment policy, meaning that an order of Q0 units 

is placed every time the inventory position (defined below) reaches R0. R0 is a decision variable while 

the order quantity Q0 is presumed to be given by the outside supplier/manufacturer, taking its 

production set up costs etc. into consideration. Q0 may also be determined by a deterministic EOQ 

method, as suggested in Zheng 1992 and Axsäter 1996. Even though Q0 is not a decision variable in 

our model, our method can of course be used repeatedly to evaluate different Q0 options.  

As indicated above, the warehouse has access to real time inventory and point-of-sale 

information from all stock points. This means that as soon as a demand occurs at a retailer, the 

information is transferred to the central warehouse. In effect this means that all retailers apply (Si–1,Si) 

ordering policies. However, it is important to note that replenishments are typically not delivered one 

unit at a time. Because of the periodic shipment policy used at the warehouse replenishments are 

consolidated by optimizing the shipment intervals. One can note that as a consequence of the system 

set up, the aggregated demand at the warehouse is also Poisson.  

 Focusing on the inventory process at the central warehouse, the FCFS allocation implies that a 

unit will be reserved for retailer i at the moment this retailer experiences a customer demand. This 

reserved unit may either be available at the central warehouse or not. In case the unit is available, it 

becomes qualified for shipment and will be part of the next shipment to retailer i. In case the reserved 

unit is not yet available, it will be backordered at the central warehouse. The unit will then become 

qualified for shipment (and the backorder cleared) at the moment it is delivered to the central 

warehouse from the outside supplier. It will then be sent on the next scheduled shipment to retailer i. 

Emergency shipments of units outside the periodic schedules are not allowed. The motivation stems 

from our industry discussions, where articulated ambitions were to reduce transport emissions by 

shipment consolidation and use of intermodal shuttle train solutions. Introducing the possibility of 

emergency shipments, for example, shipping backordered units that have missed a scheduled shipment 

immediately upon their arrival to the central warehouse is an interesting direction for future research. 

 The inventory level at the central warehouse at time t0, IL0(t0), is defined as the number of 

available units minus the amount of backordered units (the qualified units awaiting shipment are not 

included as they are already reserved for delivery to specific retailers). Equivalently, the inventory 

position at time t0, IP0(t0), is defined as the inventory level IL0(t0), plus all outstanding orders. 
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 There are holding costs at all stock points, backorder costs at all retailers, and fixed and variable 

shipment costs for replenishments sent from the central warehouse. 

T =  vector of shipment intervals to all retailer groups = {T1,…,TK}, Tk = nk·Tmin ∀ k=1,2,…K, 

where nk is an integer greater than zero. 

w =  vector of capacity reservation quantities to all retailer groups = {w1,…,wK}, wk∈Wk ∀ k. 

S =  vector of the order-up-to levels at all retailers = {S1, …, SN}. 

λi  =  expected demand per time unit at retailer i.  

λ0  =  expected total demand per time unit at the central warehouse = N
i 1 i= λ∑ .  

λ(k)  =  expected demand per time unit at the central warehouse from retailer group k, = 
k

ii∈Ω
λ∑ . 

hi  =  holding cost per unit and time unit at stock point i, i = 0,1,…,N 

bi  =  backorder cost per unit and time unit at retailer i, i =1,2,…,N 

x+  =  max(0,x) and analogously, x- = max(0,-x) 

TC(R0,S,T,w)  = expected total cost per time unit 

TIC(R0,S,T)  =  expected holding and backorder cost per time unit 

TSC(R0,T,w)  =  expected shipment cost per time unit 

Note that when the primary and alternative options offer the same transportation lead-time, the 

expected inventory holding and backorder cost per time unit, TIC, is unaffected by the reserved 

capacity w. Also note that the expected shipment cost per time unit, TSC, is unaffected by the base-

stock levels, S, (see Section 3 for explanation), and recall that Q0 is given. Hence,  

 ( ) ( ) ( )0 0 0TC R , , ,   TIC R , ,   TSC R , ,= +S T w S T T w . (1) 

Our focus is to evaluate the shipment costs, TSC(R0,T,w), and the emissions in the system. The 

inventory costs, TIC(R0,S,T), can be obtained by the recursive method presented in Marklund (2011). 

2.1 Shipment costs and emissions 

The considered shipment costs consist of three parts; (i) fixed costs for the reserved transportation 

capacity on the primary option for each scheduled shipment (may include fixed costs for picking, 

receiving, administration, etc.), (ii) fixed costs for each load carrier used on the alternative  option, and 

(iii) linear costs per unit shipped on each of the two transport options. We define: 

αkʹ(wk) = fixed cost for each scheduled shipment to retailer group k when a capacity of wk ∈  Wk is 

reserved on the primary transportation option 

Ak =  number of units on a single load carrier for the alternative option to retailer group k.  

αkʺ =  fixed cost per load carrier on the alternative option for retailer group k  

ciʹ =  variable cost per unit shipped by the primary option to retailer i 
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ciʺ =  variable cost per unit shipped by the alternative option to retailer i  

Δci =  variable cost increase per unit for shipping with the alternative option to retailer i = ciʺ − ciʹ  

 Because all units are shipped on one of the two transport options, only the cost increase per unit 

for shipping with the alternative option, Δci, matters in the analysis. For exposition reasons we assume 

that this cost increase is equal for all retailers within each retailer group, and define Δc(k) = Δci 

ki∀ ∈Ω . Relaxation of this assumption is discussed in Section 6. 

 The fixed cost αk´(wk) (i.e. capacity reservation, picking, receiving, administrative costs etc.) is 

incurred regardless of the number of units actually shipped. However, as we derive the probabilities of 

different shipment quantities, it is easy to modify the analysis so that only part (or none) of these costs 

are incurred in situations where no units are shipped to retailer group k. 

 The freight transportation emissions of greenhouse gases are included in the model by a 

combination of fixed and variable emissions parameters. 

βkʹ(wk) = fixed emissions for each scheduled shipment to retailer group k when a transportation 

capacity of wk ∈  Wk is reserved on the primary option 

βkʺ  = fixed emissions per load carrier or vehicle used on the alternative option to retailer group k 

eiʹ  = emissions per unit shipped to retailer i by the primary option 

eiʺ  = emissions per unit shipped to retailer i by the alternative option  

Δei  = emissions increase per unit shipped to retailer i by the alternative option  = eiʺ - eiʹ  

TE(R0,T,w)  = Expected total emissions per time unit for the system 

 The fixed emissions βkʹ(wk) for the primary option, are incurred regardless of how much of the 

reserved capacity that is actually used by the company. The motivation for this is that the shuttle trains 

(or specialized low emissions truck) will cause emissions when they run whether the reserved capacity 

is utilized or not. If instead, we assume that the unused capacity is sold to somebody else, this can be 

modeled by setting βkʹ(wk) = 0 k kw W∀ ∈ . Analogously to the cost analysis, the emissions increase 

per unit for shipping with the alternative option, Δei, is used in the analysis instead of eiʹ and eiʺ. We 

also assume that Δe(k) = Δei ki∀ ∈Ω  and discuss the relaxation of this assumption in Section 6.  

3. Analysis 
In this section we derive the expected shipment cost per time unit and the expected emissions per time 

unit for given values of R0, S ,T and w. The analysis is based on deriving the probability mass function 

(pmf) of the shipment quantities to each retailer group k (k=1,…,K). Letting t0 be the time at which a 

shipment leaves for retailer group k, we define: 
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M(k)(t0)  = Shipment quantity to retailer group k (i.e. number of units shipped to all retailers in 

retailer group k at t0), M(k) ≡  M(k)(t0) 

Section 3.1 derives the pmf, P(M(k) = m(k)). Based on this analysis we obtain the expected shipment 

costs and emissions in Section 3.2. All proofs are deferred to Appendix A. 

3.1 The shipment quantity 

A key step in the analysis is to determine the probability mass function (pmf) of M, the total amount of 

units that has been qualified for shipment (to all retailers in all retailer groups) since the last shipment 

departed. The pmf of the shipment quantity to each retailer group is then obtained by binomial 

disaggregation. This disaggregation technique is similar to the one used in Simon (1971) and Graves 

(1985) for determining the number of backordered units destined to each retailer in a divergent 

inventory system with (S-1,S) policies and Poisson demand. Let, 

Bin(a,b,p) =  ( )b aab
p 1 p

a
− 

− 
 

. 

Proposition 1: The probability of shipment quantity m(k) to retailer group k at time t0 can be 

determined through binomial disaggregation of M, the total number of units qualified for shipment to 

all retailers in all retailer groups during time period [t0 - Tk, t0),  

 ( ) ( ){ } { } ( )
( )

( )k

k
k k k

0m m

P M m P M m Bin m ,m,
∞

=

λ 
= = =   λ 

∑ . (2) 

 To obtain the probability mass function of M, i.e. the number of units becoming qualified for 

shipment in time interval [t0 - Tk, t0), we define: 

D0(t1,t0)  = demand at the central warehouse in time interval [t1,t0), t0 ≥ t1, Poisson distributed with 

mean λ0(t0−t1). 

( )
( )

0 0R ,Q
mod x  = x + nQ0, where n is an integer such that R0 < x + nQ0 ≤  R0 + Q0  

( )0IL t−   = number of backordered units at the central warehouse at time t (i.e., reserved units that 

have been demanded but are not yet qualified for shipment at time t). 

The analysis is divided in two cases; (1) L0 ≤  Tk in Section 3.1.1, and (2) L0 > Tk in Section 3.1.2. 

However, we first establish Lemma 1 and Lemma 2. 

Lemma 1: The number of units qualified for shipment in time interval [t1, t0), M, is 

 ( ) ( ) ( )0 1 0 0 1 0 0M D t , t IL t IL t− −= + − .  (3) 

Lemma 2. The inventory position at time t ≥ t1 can be obtained as 

 ( )
( )

( ) ( )( )
0 0

0 0 1 0 1R ,Q
IP t mod IP t D t , t= −   (4) 
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3.1.1 Analysis of case 1: L0 ≤ Tk  

When studying the amount of units becoming qualified for shipment between t1 = t0 – Tk and t0 there 

are two other important points in time (see Figure 1):  

t0 – L0 =  last point in time when orders placed by the warehouse will arrive on time to be shipped at t0.  

t1 – L0 =  last point in time when orders placed by the warehouse will arrive on time to be shipped at t1.  

These four time instances define three time intervals (A, B and C). The demand at the warehouse in 

these time intervals are DA = D0(t1 – L0, t1), DB = D0(t1, t0 – L0) and DC = D0(t0 – L0, t0), see Figure 1. 

We start the analysis from t1 – L0, with an inventory position of IP0(t1 – L0) = x. This inventory 

position is uniformly distributed on [R0+1, R0+Q0] (see, Axsäter, 1998 or Marklund, 2002). In order to 

determine the number of units qualified for shipment in time interval [t1,t0) the inventory levels at 

times t1 and t0 need to be obtained. The inventory level at time t1 can be expressed as 

 ( )0 1 AIL t x D= − .  (5) 

Similarly, the inventory level at time t0 is 

 ( ) ( )0 0 0 0 0 CIL t IP t L D= − −   (6) 

Using (4), the inventory position at time t0 – L0 follows from the inventory position x at time t1 − L0. 

 ( )
( )

( )
0 0

0 0 0 A BR ,Q
IP t L mod x D D− = − −   (7) 

 
Figure 1. Time intervals when L0 ≤ Tk. 

The number of qualified units in time interval [t1,t0), M, now follows from Lemma 1 

 ( )
( )

( )
0 0

B C A A B CR ,Q
M D D x D mod x D D D

−
−  = + + − − − − − 

  . (8) 

 As x, DA, DB and DC are independent stochastic variables, the pmf of M can in principle be 

obtained from (8) by convolutions. It is efficient to use the following procedure. Initially let the 

probabilities for all possible outcomes of M be zero. For each value of x, DA, DB and DC, the resulting 

value of M can be uniquely computed from (8). Moreover, the probability for this combination of 

independent outcomes follows directly as x is uniform on [R0 + 1, R0 + Q0] while DA, DB and DC are 

Poisson distributed. By successively considering new combinations of x, DA, DB and DC we can 

augment the probability mass for the corresponding M value and eventually obtain the correct pmf. 

New combinations are obtained by considering larger values of DA, DB and DC (i.e., larger demands). 
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We can disregard higher demands and stop searching new combinations of x, DA, DB and DC when the 

total probability of M is sufficiently close to 1. 

3.1.2  Analysis of case 2: L0 > Tk  

When L0 > Tk, there are again four critical points in time to consider in order to determine the number 

of units qualified for shipment in time interval [t1,t0). As before these times are t0, t1 = t0 – Tk, t0 – L0 

and t1 – L0 (see Figure 2). The difference from case 1 is that t1 now occurs after t0 – L0. Once again 

these four time instances define three time periods (D, E, and F), and the demand at the warehouse in 

these intervals are DD = D0(t1 – L0,t0 – L0), DE = D0(t0 – L0,t1) and DF = D0(t1,t0). 

 With an initial inventory position x at time t1 – L0, the inventory level at time t1 is 

 ( )0 1 D EIL t x D D= − − .  (9) 

From Lemma 2, ( )
( )

( )
0 0

0 0 0 DR ,Q
IP t L mod x D− = − , and the inventory level at time t0 is 

 ( )
( )

( )
0 0

0 0 D E FR ,Q
IL t mod x D D D= − − − .  (10) 

M can, from Lemma 1, be obtained as 

 ( ) ( )F 0 1 0 0M D IL t IL t− −= + − .  (11) 

 
Figure 2. Time intervals when L0 > Tk. 

Note again that x, DD, DE and DF are independent random variables. The pmf of M can therefore be 

determined in the same way as in Section 3.1.1, but with (11) defining the value of M instead of (8).  

3.2  Analysis of shipment costs and emissions 

We now turn our attention to the shipment costs and the emissions of the system. Let:  

SCk(wk,m(k)) = shipment costs for a shipment leaving to retailer group k, given the reserved 

primary capacity, wk, and the shipment quantity m(k) 

Based on the analysis of the shipment quantities in §3.1, the expected shipment cost per time unit to 

retailer group k, TSCk, is obtained from (12). Note, that this expression focuses on the scheduled 

shipments, but fully accounts for the possibilities that there may be no units to ship (m(k)=0). Also, 

recall that the cost per unit shipped by the primary transportation option to retailer i, ciʹ, is excluded 

from the analysis. To include these costs, the term 
k

i ii
c

∈Ω
′λ∑  should be added to TSCk in (12) 
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 ( ) ( )( ) ( )( )
( )k

k k kk k k
m 0k

1TSC P M m SC w ,m
T

∞

=

= =∑ . (12) 

The total expected shipment cost per time unit follows directly 

 ( )
K

0 k
k 1

TSC R , , TSC
=

=∑T w .   (13) 

Given wk and m(k), the number of units shipped with the alternative transportation mode is 

( )( )kkm w
+

− . The shipment cost is thus  

 ( )( ) ( ) ( )( ) ( )k k k k k k kk k kSC w ,m w n m w c
+

′ ′′= α + α + − ∆ , (14) 

where nk is the integer that satisfies ( ) ( )( )k k k k kkn 1 A m w n A
+

− < − ≤ . 

 The expected emissions are obtained analogously. If Ek(wk,m(k)) denotes the emissions for a 

shipment with reserved capacity wk, and a given shipment quantity to retailer group k, m(k), we have  

 ( )( ) ( ) ( )( ) ( )k k k k k k kk k kE w ,m w n m w e
+

′ ′′= β + β + − ∆ , (15) 

where nk is defined as in (14). The expected emissions per time unit for shipments to retailer group k, 

TEk, are now obtained from (16) and the total expected emissions per time unit from (17). Recall that 

the emissions per unit shipped by the primary transportation option to retailer i, eiʹ, are excluded from 

the analysis. To include them simply add the term 
k

i ii
e

∈Ω
′λ∑  to the expression for TEk in (16). 

 ( ) ( )( ) ( )( )
( )k

k k kk k k
m 0k

1TE P M m E w ,m
T

∞

=

= =∑ . (16) 

 ( )
K

0 k
k 1

TE R , , TE
=

=∑T w .   (17) 

Note, as the shipment quantities (in steady state) are independent of the retailer order-up-to levels, so 

are the transportation costs and the emissions of the system. 

4. Optimization 
This section presents an optimization method for finding cost optimal values for R0, S, T, w for three 

different scenarios; (i) emissions are not considered, (ii) there is a known per unit cost for the 

emissions, ρ, and (iii) there is a restriction on the expected emissions per time unit allowed in the 

system, θ. The optimization method focuses on scenario (iii), as (i) and (ii) are special cases where θ is 

infinite for (i), and for (ii) the cost parameters include the emissions related costs.  

 By example it can be shown that the total cost function is not jointly convex in R0, S, T and w. 

However, for given values of R0, T and w the total cost is separable and convex in the retailer order up 
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to levels {S1,S2,…,SN}. This follows from Marklund (2011) because the emissions and transportation 

costs associated with w are unaffected by S when R0 and T are fixed.  

 The optimization procedure can be described as a bounded search over all relevant 

combinations of T, R0 and w (wk ∈  Wk ∀ k=1,…,K), using the convexity for optimizing S (given T 

and R0). More precisely, for each relevant combination of T, w and R0, investigate whether the 

solution is environmentally feasible (if TE(R0,T,w) < θ). If so, find the optimal order-up-to level for 

each retailer i, Si, using that the total cost is separable and convex in the retailer order up to levels S. If 

the total expected cost is lower than TC , the lowest cost so far, TC  is updated and the associated 

solution is saved. When the search is finished, the optimal solution for given the emissions constraint, 

TC*(θ), has been found and the minimum total expected cost is TC . The relevant search space is 

determined by upper and lower bounds on the optimal shipment intervals (i.e., Tk
l ≤ Tk ≤ Tk

u for all 

k=1,2,…K), by upper and lower bounds on the optimal warehouse reorder point, R0 (i.e., R0
l ≤ R0 ≤ 

R0
u), and the finite set of possible capacity reservations, wk ∈  Wk ∀ k=1,…,K.  

 A critical step in the optimization procedure is to determine bounds on the shipment intervals 

and warehouse reorder point. Starting with the latter, we conclude that the results in Marklund (2011), 

can be transferred to our system. The starting point for the recursive cost evaluation procedure in this 

paper (and an upper bound on R0) is R0
u = min{R0: P(D(0,L0) > R0) < ε}, where ε is a small positive 

value close to zero. This ensures that an increase in R0 above R0
u will not affect the delivery delays 

caused by backorders at the central warehouse, as they are already (close to) zero. Therefore the 

inventory levels at the retailers and the shipment quantities will not be affected by further increasing 

R0. With analogous reasoning the lower bound for R0 is set to R0
l = –Q0 (see Marklund 2011 and 

Axsäter 1998). It is not difficult to find tighter upper bounds on R0 (see for example Stenius et al. 

2015). However, since the fast recursive procedure in Marklund (2011) is initiated at R0
u, and in order 

to determine the costs for R0
l, the cost optimal solution for all intermediate R0 values are obtained for 

free, a tighter upper bound does not improve the computational performance. 

 For the shipment intervals, an obvious lower bound is Tk
l = Tmin, ∀k=1,…,K, and an upper 

bound  is provided in Proposition 2. 

Proposition 2. All systems with a shipment interval for retailer group k, Tk, larger than 

 
( )

u
k

0k

2TCT
h

=
λ

   (18) 

will have an expected total cost that is larger than TC . 
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 Proposition 2 provides upper bounds on Tk for all k, provided that a feasible solution has been 

found, i.,e., TC  < ∞. (in scenario (i) and (ii) all solutions are feasible). If θ is set too low, solutions 

fulfilling the emissions constraint may not exist. To determine if feasible solutions exist one may  

compute the lowest possible expected emissions per time unit, TEe. If TEe > θ, no feasible solution 

exists. If TEe ≤ θ, a feasible solution can be found by optimizing S for R0, T and w corresponding to 

TEe. For reasons of exposition further analysis of this special case is deferred to Appendix C. 

5. Numerical example 
This section presents a small example of an inventory system distributing a bulky and expensive item. 

The objectives are to demonstrate how the model can be used for optimizing the system performance 

(minimizing expected costs subject to an emissions constraint), and how it can be used to understand 

the cost impact of enforcing emissions targets. Cost parameters are motivated by discussions with 

industry and  emissions calculations are based on information from the NTM database (NTM, 2011).  

 The inventory system consists of a central warehouse supplying three retailers in two retailer 

groups (N=3, K=2). One retailer group consists of two retailers (Ω1 = [1,2]), and a single retailer 

constitutes the second retailer group (Ω2 = [3]). To both groups there exist opportunities to reserve 

capacity on an intermodal shuttle train solution (primary option), W1 = W2 = [0,5,10,15,20] units. The 

alternative option for both retailer groups is to use direct truck transports, A1 = A2 = 5 units (i.e., for 

both options a filled load carrier contains 5 units). The fixed cost per load carrier is 1500 € for the 

primary option and 2000 € for alternative option. There are also variable transportation costs per unit 

shipped that are 20 € higher for the alternative option. The emissions are also divided into fixed and 

variable components. Transporting an empty load carrier by train causes emissions of 200 kg CO2 

equivalents, and transporting it by truck causes emissions of 850 kg CO2 equivalents. The variable 

emissions per unit shipped are 10 kg CO2 equivalents higher for the alternative option. The remaining 

problem parameters are specified in Table 1. 

 Table 2 illustrates the results for three problem instances; (I) no emissions constraint exists, (II) 

The emissions target θ = 100 kg CO2 equivalents, and (III) θ = TEe. The cost optimal solution without 

the emissions constraint provides an expected total cost of 881.89 € per day (obtained from expression 

(1)), where TSC=629.38 and TIC=252.51). The corresponding expected emissions are 131.67 kg CO2 

equivalents per day (from (17)). Enforcing the emission constraint of θ = 100 kg CO2 equivalents per 

day (24.1% lower than the emissions in the cost optimal system without any emissions constraints), 

leads to a decrease of the transportation costs to 593.44 but an increase of the inventory costs to 

319.73, the resulting expected total costs increase with 3.5% to 913.17 € per day. Table 2 shows that 

more capacity is now reserved on the train (w increases from [10,5] to [15,10]), the shipment intervals 
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(T) are longer (to ensure that the reserved capacity is better utilized), and the order-up-to levels at the 

retailers (S) are increased (to balance holding and backorder costs for longer replenishment times). 

The system with the lowest possible expected emissions (θ = TEe), reserves maximum capacity on the 

train, and has even larger T and S values. For this system, the emissions are 34.5% lower than for the 

unrestricted cost optimal solution but the expected total costs are 17.5% higher. 

Table 1. Problem parameters 
Cost Parameters (€) Emission parameters (kg CO2 equivalents) 
α1ʹ(W1) = α2ʹ(W2) = [0,1500,3000,4500,6000]  β1ʹ(W1) = β2ʹ(W2) = [0,200,400,600,800]  
α1ʹʹ = α2ʹʹ = 2000  β1ʹʹ = β2ʹʹ = 850,  
Δc(1) = Δc(2) = 20  Δe(1) = Δe(2) = 10  
h0 = hi =10 €/day, for all i Other parameters 
bi = 100 €/day, for all i L0=10 days, L1= L2 =L3=2 days, Tmin = 1 day 
 Q0=10 units, λ1=λ2=λ3=0.5 units/day 

  

Table 2. Optimal solutions for different θ values. 
θ R0 T w S TIC* TSC* TC*(θ) TE 
∞ 10 [10,9] [10,5] [8,8,7] 252.51 629.38 881.89 131.67 

100 9 [13,17] [15,10] [9,9,11] 319.73 593.44 913.17 99.91 
TEe 14 [16,32] [20,20] [10,10,17] 447.09 588.95 1036.04 86.29 

Table 3 provides further analysis of shipment solutions for the three problem instances. Without an 

emissions constraint, the train option is used for shipping 87% (86%) of the total number of units 

delivered to retailer group 1 (retailer group 2), and truck is used for the remaining 13% (14%). When 

the emissions constraint is tightened to θ= TEe, 98% of the units are shipped by train, leaving only 2% 

to be transported by truck. A closer look at the truck option, reveals that the probability of not needing 

any trucks when a shipment leaves for retailer group 1 and 2, increases from 0.593 and 0.706, 

respectively, when there is no emissions constraint, to about 87% when θ=TEe. (These probabilities 

are obtained directly from the pmf of the shipment quantity M(k) in (2)). We can also see that the 

utilization of the reserved train capacity is affected. For retailer group 1, it decreases from 87% first to 

82% (θ=100), and then to 78% (θ=TEe) as the emissions constraint is tightened. Intuitively, this is a 

result of hedging against having to use the truck option. However, for retailer group 2, the capacity 

utilization first increases from 77% to 79% (θ=100) and then decreases to 78% (θ=TEe). Thus, the 

behavior is difficult to predict in general due to the integrality of the decision variables. 

 Figure 3 provides the lowest expected costs, TC*(θ), for all θ values between TEe and the 

emissions in the cost optimal solution without the emissions constraint (higher θ values will generate 

the same solution). It is noteworthy that moderate reductions of emissions can be achieved with only 

small increases in expected costs. For instance, a system with emissions 16.5% lower than in the cost 

optimal solution only has 1.5% higher costs. However, for large emissions cuts, the cost increase 

escalates. Hence, the model can be used for evaluating the cost impact of managerial decisions to 
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reduce emissions, and for analyzing tradeoffs between emissions and costs. It also prescribes how to 

achieve the emission targets at minimum cost by choosing optimal values of the decision variables. 

Table 3. Analysis of the resulting shipment solutions for different θ values. 
  Shipment volume Utlization  Probability of using x trucks 
θ Ret grp train truck of w1,w2 x=0 x=1 x=2 x=3 x=4 
∞ 1 87% 13% 87% 0.593 0.360 0.043 0.004 0.000 
 2 86% 14% 77% 0.706 0.286 0.008 0.000 0.000 

100 1 95% 5% 82% 0.784 0.178 0.036 0.002 0.000 
 2 93% 7% 79% 0.763 0.222 0.015 0.000 0.000 

TEe 1 98% 2% 78% 0.876 0.113 0.010 0.000 0.000 
 2 98% 2% 78% 0.870 0.118 0.012 0.001 0.000 

 

 
Figure 3. Expected Total Cost for varying θ values. 

6. Extensions and generalizations 
In practice, shipment consolidation usually involves many different items that are shipped together, 

emphasizing the relevance of a multi-item perspective. Extending the single-item model to multi-item 

systems is relatively straightforward. The key is to require that all items with consolidated shipments 

to retailer group k use the same shipment interval, Tk, and to consider the total costs and emissions 

across all items and retailers in the system. For a given set of shipment intervals, the inventory costs 

can then be obtained individually for each item. An added complication is that transportation capacity 

becomes ambiguous to measure in number of units. Instead a common measure like weight or volume 

needs to be used. The shipment size distribution (in weight or volume), and thereby the transportation 

costs and emissions, can be achieved by convolution of the shipment size distributions of the 

individual items. For the analytical details we refer to Appendix C. 

 The assumption of equal transportation lead-times for the primary and alternative transportation 

options may sometimes be questionable. For example, direct truck transports from a point of departure 

to a final destination is often faster than intermodal train transports. However, the opposite is also 

possible; reservation of transport capacity in advance can enable efficient flows of goods not 

achievable with a flexible transportation mode. Appendix D extends the model with an exact analysis 
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of situations where the transportation lead-times times for the primary and alternative transportation 

options differ. Another assumption used so far is that the cost and the emissions increase per unit for 

the alternative option over the primary option are equal for all retailers in a retailer group, Δc(k) = Δci 

and Δe(k) = Δei ∀i∈Ωk. This assumption can be relaxed while maintaining the FCFS principle, letting 

units demanded first be transported with the primary option. Without loss of generality, we renumber 

the retailers in retailer group k {1,2,…,Nk}, and the rest of the retailers from Nk + 1 to N. The 

probability that an arbitrary unit, shipped with the alternative option to retailer group k, is going to 

retailer i (i ∈{1,…,Nk}) is λi/λ(k). This follows as the order process to the warehouse is Poisson, and 

the replenishment and consolidation processes at the warehouse (for given system parameters) are 

unaffected of which retailer within a group the order originates with. The expected cost increase for 

shipping an arbitrary unit with the alternative option can thus be obtained as 

 ( )
( )

kN
i

ik
i 1 k

c c .
=

λ
∆ = ∆

λ∑    (19) 

Analogously, the expected emissions increase per unit with the alternative option is 

 ( )
( )

kN
i

ik
i 1 k

e e .
=

λ
∆ = ∆

λ∑    (20) 

 If Δci or Δci differs significantly between the retailers within a retailer group, the incentives to 

allocate units to different transportation options based on their destination (instead of FCFS) increases. 

In order to evaluate the effects of such allocation, the joint probability mass function of the shipment 

quantities to all retailers within a retailer group is required. For the single-item case, this pmf is 

obtained by multinomial disaggregation of M, the total amount of units qualified for shipment in time 

interval [t0-Tk,t0), see Appendix E. The multi-item case can be handled analogously. The joint pmf of 

the shipment quantities (in Appendix E), also enables evaluation of other more complex transportation 

costs and emissions structures. 

7. Summary and concluding remarks 
This paper studies a distribution system, where replenishments from the central warehouse are 

consolidated to groups of retailers and dispatched periodically. Shipments are made either using a 

primary intermodal transportation option where capacity is reserved in advance, or an alternative 

option where capacity is available on demand. The latter is used only when the reserved capacity is 

insufficient to transport the entire shipment. Information is centralized and available in real time at the 

central warehouse. The warehouse replenishes its stock using a continuous review (R0,Q0) policy. For 

this system, we derive the exact probability mass functions for the shipment quantities to each retailer 



18 
 

group. With these distributions at hand, quantity-dependent transportation cost structures and 

emissions from transportations can be evaluated. Combined with the inventory holding and backorder 

costs at the warehouse and retailers a joint optimization of inventory replenishment and transportation 

decisions can be performed with respect to both costs and emissions. A numerical example illustrates 

how the model can be used for evaluating the cost impact of managerial decisions to impose emissions 

targets. Single-item as well as multi-item settings can be analyzed and optimized. 

 Interesting directions for future research include generalizing the model to more flexible 

demand structures (e.g. compound Poisson), and development of faster heuristics for larger systems. 

Evaluation of other consolidation policies also offers interesting research venues. 
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Appendix A - Proofs of propositions and lemmas 

Proof of Proposition 1. Because the retailer order processes are independent Poisson processes, and 

the FCFS allocation at the central warehouse, the probability that an arbitrary unit being qualified for 

shipment in any time interval is destined for a retailer in retailer group k is λ(k)/λ0. Moreover, this 

probability is independent of the destination of all other units becoming qualified for shipment. 

Consequently, the probability of shipment quantity m(k) to retailer group k given m qualified units in 

total, will be Bin(m(k),m,λ(k)/λ0). Taking the expectation of M renders (2). 

Proof of Lemma 1. Because all demanded units eventually will be qualified for shipment, the number 

of units that will be qualified in time interval [t1,t0), M, must be ( )0 1IL t−  plus the demand during [t1,t0), 

D0(t1,t0), minus the amount of demanded units that are not yet qualified for shipment at the end of the 

interval, ( )0 0IL t− .  

Proof of Lemma 2. Every time a unit is demanded at the warehouse the inventory position either 

decreases by 1 unit or increases by exactly Q0 – 1 units (whenever the inventory position reaches R0). 

This means that if the initial inventory position at time t1 is IP0(t1), and the demand in the following 

time interval [t1,t) is D0(t1,t), the inventory position at the end of this interval must be 

( ) ( )0 1 0 1 0IP t D t , t n Q− + ⋅ , where n is a non-negative integer. (4) follows as the inventory position 

always belongs to the interval [R0 + 1, R0 + Q0]. 

Proof of Proposition 2. The delivery process to the central warehouse is independent of when 

shipments are made to retailer group k, and all unsatisfied demand is backordered. Thus, the expected 

number of units that become qualified for shipment to retailer group k per time unit corresponds to the 

expected demand per time unit λ(k). Just after a shipment is made to retailer group k at time t, the 

number of units qualified for shipment at the central warehouse is 0. In expectation this increases 

linearly to Tkλ(k) units just before the next shipment at t+Tk. It follows that the expected number of 
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units qualified for shipment to retailer group k at the warehouse is Tkλ(k)/2 and the holding cost for 

these units is Tkh0λ(k)/2. As all other cost components are larger than or equal to zero, the expected 

total cost must be larger than TC  if Tk > 2 TC /(λ(k)h0). 

Appendix B - Determination of a minimum emissions solution 

In order to determine TEe, the minimum expected emissions per time unit, we define TEk
e(r) to be the 

lowest possible expected emissions per time unit for retailer group k, given R0 = r. First note that the 

emissions in retailer group k are independent of the values of S, of the shipment intervals and of the 

capacity reservations of the other groups (Tκ and wκ ∀  κ ≠ k). Hence, TEe is obtained by solving 

 ( )
l u
0 o

K
e e

k
r R ,...,R k 1

TE min TE r
= =

= ∑ .   (B1) 

 The lowest emission solution in retailer group k given R0=r, TEk
e(r), is found by searching 

through Tk, increasing it incrementally from Tk
l. For each value of Tk and R0=r, TEk in (16) is 

evaluated for all capacity reservations, wk ∈ Wk, constantly updating the smallest value, TE����k, (when 

found). Using Lemma B1 below, we stop increasing Tk when λ(k)Tk is significantly larger than 

max(wk) (the probability that the shipment quantity is smaller than wk approaches zero) and TEk gets 

sufficiently close to ( ) ( )( )k kk ke A′′λ ∆ +β  for all wk ∈ Wk. After the search is completed TEk
e(r) = TE����k. 

Note that Lemma B1 does not state whether TEk approaches ( ) ( )( )k kk ke A′′λ ∆ +β  from above or 

below. It is possible with some effort to show that both situations may occur. 

Lemma B1. 

 ( ) ( )( )
k
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′′= l ∆ +β .   (B2) 

Proof. Whenever (m(k) – wk)+ is not a multiple of Ak (where m(k) is the shipment quantity), the load 

carriers or vehicles on the alternative transportation modes will not be filled completely. Let Y = nkAk 

– (m(k) – wk)+  be the unused capacity (in units) for the alternative transportation option (where nk is 

defined as in (14)). Thus, 
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The first equality follows from (15) and (16). The second equality is a result of βkʹ(wk) being finite for 

wk∈Wk, and the fact that the probability of a shipment quantity smaller than wk approaches zero as Tk 

approaches infinity. The fourth and fifth equalities follow as both [ ] k kE Y A′′β and 

( )( )k k kkw e A′′− ∆ +β  are finite for wk∈Wk. ■   

Appendix C – Multi-item systems 

Consider J items that are distributed from the central warehouse to the N retailers. The demand of item 

j at retailer i follows a Poisson process with intensity λi
j that is independent of the demand at the other 

retailers and of the other items. Note that some items might not be available at all retailers, in which 

case λi
j = 0. Each item j is controlled analogously to the single-item case with base-stock policies at 

the retailers and a (R,Q) policy at the central warehouse. Again there are K ≤ N retailer groups, and 

shipments are consolidated periodically among all items and all retailers within a retailer group. In 

addition to the notation for the single-item model we define (t0 still denotes a time instance when a 

shipment leaves the warehouse): 

Q0
j = order quantity of item j at the central warehouse 

R0
j = reorder point of item j at the central warehouse, R0 = {R0

1, R0
2,…, R0

J} 

Si
j = order-up-to level of item j at retailer i, Sj = {S1

j, S2
j,…, SN

j}, S  = {S1; S2;…; SJ} 

L0
j = replenishment lead-time of item j to the central warehouse 

yj = size (expressed in e.g. weight or volume) of one unit of item j 

Wk =  set of possible capacity reservation sizes per shipment to retailer group k (expressed in e.g. 

weight or volume) for the primary transportation option,  

w = vector of capacity reservation per shipment to each of the K retailer groups for the primary 

transportation option {w1,w2,…,wK}, wk ∈ Wk ∀  k=1,2,…,K 

hi
j = holding cost per unit and time unit of item j at stock point i, i = 0,1,…,N 

bi
j = backorder cost per unit and time unit of item j at retailer i, i =1,2,…,N 

Δci = cost increase per size unit (expressed in e.g. weight or volume) for shipping with the 

alternative transportation mode to retailer i 

Δei = increase in emissions per size unit (expressed in weight or volume) for shipping with the 

alternative transportation mode to retailer i 

M(k)
j(t0)= shipment quantity (number of units) of item j to all retailers in retailer group k at t0, M(k)

j ≡  

M(k)
j(t0)  
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V(k)
j(t0)= shipment size of item j (expressed in weight or volume) to all retailers in retailer group k at t0 

(includes all units of item j shipped), V(k)
j ≡  V(k)

j(t0) = yjM(k)
j 

V(k)(t0)= shipment size to all retailers in retailer group k at t0 (includes all units of all items shipped), 

V(k) ≡  V(k)(t0) = J

j 1
V

=∑ (k)
j  

TC(R0, S ,T,w) = expected total cost per time unit for the system 

TICj(R0,Sj,T,w) = expected holding and backorder cost of item j per time unit in the system 

TSCk(R0,T,w) = expected shipment costs per time unit for shipments to retailer group k 

TE(R0,T,w) = expected total emissions per time unit for the system 

 The inventory costs for each item are independent of the reorder points and order-up-to levels of 

the other items, and can be evaluated with the same methodology as in the single-item case (see 

Marklund 2011). The total cost function is obtained as 

 ( ) ( ) ( )
J K

j j
0 0 k 0

j 1 k 1
TC , , , TIC R , , , TSC , ,

= =

= +∑ ∑R S T w S T w R T w   (C1) 

For reasons of exposition, we assume that exactly wk size units can be shipped with the primary 

transportation mode to retailer group k whenever V(k) ≥ wk. (Relaxing this assumption suggests the 

need for an allocation method that considers how the primary transportation mode is best utilized. 

Analyzing optimal allocation decisions in this setting is an interesting direction for future research.) 

As in Section 2, we also assume that Δc(k) = Δci and Δe(k) = Δei ki∀ ∈Ω . 

 The probability mass function of the shipment quantities, M(k)
j, can be analyzed independently 

for all units j=1,2,…,J following the approach in Section 3.1. The probability mass function of the 

shipment size of all items, V(k), is then obtained by a J-fold convolution of the shipment sizes for the 

individual items. Clearly, from a numerical perspective, this convolution is an added complication 

compared to the single-item model. 

 The expected shipment cost per time unit for shipments to retailer group k can be obtained as 

 ( ) ( )( ) ( )( )
( )k

k k kk k k
v 0k

1TSC P V v SC w ,v
T

∞

=

= =∑  , (C2) 

where SCk(wk,v(k)) is the shipment cost to retailer group k for a realized shipment of size v(k), when wk 

size units are reserved on the primary transportation mode. SCk(wk,v(k)) is obtained as 

 ( )( ) ( ) ( )( ) ( )k k k k k k kk k kSC w ,v w n v w c
+

′ ′′= α + α + − ∆ ,  (C3) 

where nk is the integer that satisfies ( ) ( )( )k k k k kkn 1 A v w n A
+

− < − ≤ . The emissions of a shipment 

with size v(k) to retailer group k, when wk size units are reserved on the primary transportation mode, 

Ek(wk,v(k)), is obtained as 
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 ( )( ) ( ) ( )( ) ( )k k k k k k kk k kE w ,v w n v w e
+

′ ′′= β + β + − ∆ .  (C4) 

This renders the expected emissions per time unit for shipments to retailer group k  

 ( ) ( )( ) ( )( )
( )k

k k kk k k
v 0k

1TE P V v E w ,v
T

∞

=

= =∑ ,  (C5) 

and the total expected emissions per time unit  

 ( )
K

0 k
k 1

TE , , TE
=

=∑R T w .   (C6) 

 The optimization can be performed analogously to the single-item case. For each relevant 

combination of T, w and R0, check if the solution is environmentally feasible with respect to the 

emissions constraint. If TE(R0,T,w)<θ, find the optimal order-up-to level for each item j and each 

retailer i, Si
j, using that the total cost is separable and convex in the retailer order up to levels S  = 

{S1
1,S2

1,…,SN
1;S1

2,S2
2,…,SN

2;…; S1
J,S2

J,…,SN
J}. If a new lowest cost is found, TC  is updated. When 

the search space (defined by bounds on T and R0, and the finite set of possible capacity reservations, 

Wk for all k) is exhausted, the optimal solution has been found and the minimum total cost is TC . 

 The bounds on Tk and R0 presented in Section 4 also hold for the multi-item case. If there is a 

need to find the lowest possible expected emissions per time unit, TEe, we define RJ as the set of 

combinations of R0, where the warehouse reorder point for item j, R0
j, is between the lower and upper 

bound for all j = 1,…J. We also define TEk
e(r) as the minimum expected emissions in retailer group k 

for a given R0 = r. TEk
e(r) can be found analogously to TEk

e(r) in the single-item case. TEe is then 

 ( )
J

K
e e

k
k 1

TE min TE
∈ =

= ∑
r R

r ,   (C7) 

Appendix D – Different transportation lead-times 

This Section analyzes situations where the transportation lead-time to retailer i with the primary 

transportation option, Li
P, differs from the transportation lead-time of the alternative transportation 

option, Li
A (for some or all of the retailers). This means that a shipment where both transportation 

options are used to transport units to retailer i is delivered at two separate time instances. We assume 

that order crossing is not allowed, which means that a shipment dispatched to retailer i at time t will be 

delivered before any shipments dispatched to this retailer after time t. To ensure this, the shipment 

interval, Tk, is required to be at least as long as the difference between the transportation lead-times Li
P 

and Li
A for all retailers, 

k

P A
k i ii

T max L L
∈Ω

≥ − . Consistent with the FCFS policy in use, the units in a 

shipment that were demanded first will be transported on the faster transportation option. 
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 We focus on situations where the transportation lead-time of the primary option is longer than 

for the alternative option. Arguably this is more plausible than the opposite when the primary option is 

an intermodal train solution, and the alternative is direct truck transports. The opposite situation can be 

analyzed analogously. Also, the analysis focuses on the single-item model, but extending it to multi-

item systems is straightforward. The presented solution is based on first determining the costs for the 

base model (analyzed so far) where the transportation lead-times for the alternative option is the same 

as for the primary option across all retailers. The second step is to determine the expected cost increase 

per time unit associated with having a faster alternative transportation option. Given that the other 

system parameters and decision variables are the same, this change does not affect the shipment 

quantity (and thereby the transportation costs and emissions) or the holding cost at the central 

warehouse. The changes will be isolated to the holding and backorder costs at the retailers and the 

holding costs during transportation. The latter is excluded from the base model as it is there a constant 

term, unaffected by the decision variables. Let, 

ΔCi(R0,S,T,w) =  Expected cost increase per time unit for a system where the units transported with 

the alternative option to retailer i have a transportation lead-time Li
A i∀ ∈Ω , 

compared to the base model where all units have a transportation lead-time Li
P 

i∀ ∈Ω  (ΔCi < 0 is equivalent to an expected cost saving). 

The total expected cost per time unit of the system is then 

 ( ) ( ) ( ) ( )0 0 i 0 0i
TC R , , , TIC R , , C R , , , TSC R , , .

∈Ω
= + ∆ +∑S T w S T S T w S T   (D1) 

 The same optimization procedure as before can be used. The retailer costs are still be separable 

and convex in the retailer order-up-to levels (the holding costs during transports are unaffected by the 

retailer order-up-to levels). What remains to be analyzed is how the holding costs during 

transportation and the holding and backorder costs at retailer i, for a given set of system parameters 

and decision variables, are affected by decreasing the transportation lead-time of the alternative 

transportation option from Li
P to Li

A, i.e. to obtain ΔCi(R0,S,T,w). Focusing on time t0, when an 

arbitrary shipment is dispatched from the warehouse to retailer i, we define: 

Mi
P = Number of units shipped to retailer i by the primary transportation option at t0 

Mi
A = Number of units shipped to retailer i by the alternative transportation option at t0 

Bi = Backorders at the central warehouse at t0 designated to retailer i 

Φi = (Mi
P,Mi

A,Bi) = Shipment state associated with retailer i at t0  

ΔRCi(Φi) = Expected increase of holding and backorder costs for the units dispatched to retailer i at t0 

compared to the base model, for shipment state Φi. 
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Δhi = decrease in holding cost during transport for a unit transported with the alternative option 

instead of primary option to retailer i. May, for example, be determined as (Li
P − Li

A) 

multiplied with some appropriate holding cost rate per unit and time unit. 

Ψi = Customer demand number at retailer i. When Ψi > 0, it indicates the Ψi
th customer 

demand occurring after (or exactly at) time t0 at retailer i,, and when Ψi ≤ 0, it indicates 

the (–Ψi +1)th customer demand occurring prior to time t0 at retailer i. 

ΔHCi(Ψi) = Expected increase in holding cost at retailer i for a unit satisfying the demand with 

customer demand number Ψi, when the transportation lead-time is Li
A instead of Li

P  

ΔBCi(Ψi) = Expected decrease in backorder costs at retailer i for a unit satisfying the demand with 

customer demand number Ψi, when the transportation lead-time is Li
A instead of Li

P 

Gi
ψ(t) = Erlang(ψ,λi) cumulative distribution function, ψ ≥ 0, Gi

0(0) = 1 

gi
ψ (t) = Erlang(ψ,λi) probability density function,  

The expression for the expected cost increase per time unit of a shorter transportation lead-time 

for the alternative option at retailer i, ΔCi(R0,S,T,w), in (D2) is based on analyzing the shipment state 

to retailer i at t0, Φi = (Mi
P,Mi

A,Bi). For a given shipment state (Mi
P = mi

P, Mi
A = mi

A and Bi = xi
B), we 

can evaluate the expected holding and backorder cost increase for the units transported with the 

alternative option compared to the base model, ΔRCi(mi
P,mi

A,xi
B). Expectation over the relevant set of 

shipment states renders the expected cost difference of an arbitrary shipment. The expected cost 

increase per time unit is then obtained after division with the shipment interval, Tk. 

 ( ) { } ( )
i

P A B
i i i

w
P A B P A B

i i i i i i i i i
m 0 m 1 x 0k

0
1C P (m ,m ,x ) RCR , m ,m ,x,
T

,
∞ ∞

= = =

∆ = Φ = ∆∑ ∑ ∑S T w   (D2) 

Note, because ΔRCi(mi
P,0,xi

B) = 0 BP
im ,x∀ we only need to consider the cases where mi

A > 0. How to 

determine ΔRCi(Φi) is described in Section D.1, while the shipment state probability, 

{ }P A B
i i i iP (m ,m ,x )Φ = , for all relevant outcomes is determined in Section D.2.   

D.1. Analysis of ΔRCi(Φi)  

Lemma D1. The units shipped with the alternative transportation option to retailer i at t0 will satisfy 

customer demands with customer demand numbers, Ψi ∈[Si – Bi – Mi
P – Mi

A + 1,  Si – Bi – Mi
P]. 

Proof.  Let iM  be the amount of units in transit to retailer i at t0 excluding the shipment at t0. By 

definition, the inventory position at retailer i at t0, Si, is the inventory level, ILi(t0), plus all outstanding 

orders. The outstanding orders just after the shipment at t0 can be expressed as Bi + Mi
P + Mi

A + iM . 

Hence, ILi(t0) + iM  = Si – Bi – Mi
P – Mi

A. Due to the FCFS allocations, if ILi(t0) + iM  ≥ 0, the first 
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unit from the shipment at t0 that arrives to retailer i will satisfy the (ILi(t0) + iM  + 1)th demand at 

retailer i occurring after (or exactly at) t0. Similarly, if ILi(t0) + iM  < 0, the first unit from the 

shipment at t0 that arrives to retailer i will satisfy the (ILi(t0) + iM )th demand at retailer i prior to t0. 

Thus, the units shipped at t0 will satisfy the customer demands at retailer i with customer demand 

numbers, Ψi, between Si – Bi – Mi
P – Mi

A + 1 and Si – Bi. Invoking the assumption (made in 

accordance with the FCFS principle) that the units demanded first are shipped with the faster 

alternative transportation option and are thereby delivered first, completes the proof. ■  

Based on Lemma D1, ΔRCi(Φi), can be determined as 

 ( ) ( ) ( )
P

i i i

P A
i i i i

S B M
A

i i i i i i
S B M M 1

RC M h HC BC
− −

ψ= − − − +

∆ Φ = − ∆ + ∆ ψ − ∆ ψ∑   (D3) 

 When analyzing the per unit holding cost increase, ΔHCi(Ψi), compared to the base model, we 

first consider situations where Ψi > 0, i.e. the customer demand occurs after (or exactly at) time t0, see 

(D4). Let τ denote the time until the Ψi
th unit after (or exactly at) time t0 is demanded, and note that it 

is Erlang(Ψi,λi)-distributed. Figure D1 illustrates the events on a time line and the associated cost 

differences for a unit (given Li
A < τ < Li

P for Ψi > 0). 

 
Figure D1. Illustration of inventory cost differences incurred on a unit when Li

A < τ < Li
P. 

 For τ ≤ Li
A the unit will be demanded by a customer before it arrives to retailer i, regardless if 

the transportation lead-time is Li
P or Li

A, and there is consequently no holding cost increase. If Li
A < τ 

< Li
P (see Figure D1) the unit in the base model will be demanded before it arrives at retailer i and will 

therefore not be on stock at retailer i. However, with transportation lead-time Li
A the unit will incur a 

holding cost for τ – Li
A time units at retailer i. When τ ≥ Li

P the unit will be on stock at retailer i for Li
P 

– Li
A time units longer if the transportation lead-time is Li

A instead of Li
P. We get 

 ( ) ( )( ) ( )( )( )
P
i

P
i

A
i

L
LA P A

i i i i i i i i
L

i i i iHC g L h d 1 G L L h , 0τ∆ = τ −Ψ Ψ τ Ψ+ − Ψ− >∫   (D4) 

For Ψi ≤ 0, the demand has occurred before or exactly at time t0 and there are no holding costs 

incurred on the units in neither cases and therefore  

 ( )ii iHC 0 , 0∆ = Ψ ≤Ψ    (D5) 

t0 t0+τt0+Li
A t0+ Li

P

Unit on hold Unit backordered in 
base system

Arrival of alternative 
transportation option

Arrival of primary
transportation option

Time of customer
demand

Shipment leaves
to retailer i

time
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Analogously for the backorder cost decrease, if τ ≤ Li
A the unit will be backordered for Li

P – Li
A 

time units longer in the base model than if the transportation lead-time is Li
A. If Li

A < τ < Li
P, the unit 

will not be backordered when the transportation lead-time is Li
A (see Figure D1), but for the base 

model it will be backordered for Li
P – τ time units. When τ ≥ Li

P the unit will never be backordered. 

 ( ) ( )( ) ( )( )
P
i

A
i

A
i

L
L P A P

i i i i i i i ii i ii i
L

BC G L L b g L b d , 0τΨ∆ = − + τ τΨ −Ψ Ψ >∫   (D6) 

For Ψi ≤ 0, the demand has occurred before or exactly at time t0 and the units are backordered 

already at t0. We thus get  

 ( ) ( )P A
i i ii iiBC L L b , 0∆ = − Ψ ≤Ψ .   (D7) 

D.2. Probability of the shipment state P{Φi = (mi
P,mi

A,xi
B)}  

The probabilities of the shipment states are determined in a three-step procedure. The first step is to 

determine the joint probability of m qualified units to all retailers (in all retailer groups) between t1 and 

t0, and of y backorders at the central warehouse at t0, ( ){ }0 0P M m and IL t y−= = . This can be done 

using the same technique presented for obtaining P{M = m} in Section 3.1. For L0 ≤ Tk, 

( ){ }0 0P M m and IL t y−= =  is obtained using (6), (7) and (8), with the technique described after (8) in 

Section 3.1. Note that for each value of x, DA, DB and DC, the value of both M and IL0
-(t0) are uniquely 

defined. For L0 > Tk, ( ){ }0 0P M m and IL t y−= =  is obtained using the same technique, but with (10) 

and (11) determining the values of IL0(t0) and M. 

 In step 2, ( ) ( ) ( ){ }0 0k kP M m and IL t y−= =  is determined. Following the same logic as in 

Proposition 1 and because the amount of backorders at the central warehouse at t0 is independent of 

which retailer a customer arrives to, this probability can be obtained by binomial disaggregation. Thus, 

    ( ) ( ) ( ){ } ( ){ } ( ) ( )( )
( )k

0 0 0 0 0k k k k
m m

P M m and IL t y P M m and IL t y Bin m ,m, .
∞

− −

=

= = = = = λ λ∑   (D8) 

 In the final step, the joint distribution of Mi
P = mi

P, Mi
A = mi

A and Bi = xi
B is determined. 

Because we are only interested in the cases where there is at least one unit shipped with the alternative 

transportation option, we require that M(k) is at least wk + 1. When M(k) = m(k) (m(k) > wk) and 

( )0 0IL t y− = , the primary transportation option to retailer group k is fully utilized and the amount of 

units on the primary transportation option to retailer i, Mi
P, is binomially distributed  

 ( ) ( ) ( ){ } ( )( )P P P
i i 0 0 i k ik k kP M m M m and IL t y Bin m ,w , .−= = = = λ λ   (D9) 
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Given that M(k) = m(k) (m(k) ≥ wk + Mi
A) and ( )0 0IL t y,− = the amount of units to all retailers in retailer 

group k shipped on the alternative transportation option is m(k) – wk, and the amount of units 

transported with the alternative option to retailer i, Mi
A, is binomially distributed 

 ( ) ( ) ( ){ } ( ) ( )( )A A A
i i 0 0 i k ik k k kP M m M m and IL t y Bin m ,m w , .−= = = = − λ λ   (D10) 

Moreover, when M(k) = m(k) (m(k) ≥ wk + Mi
A) and ( )0 0IL t y,− = the amount of backorders designated to 

retailer i, Bi, is binomially distributed 

 ( ) ( ) ( ){ } ( )B B
i i 0 0 i i 0k kP B x M m and IL t y Bin x , y, .−= = = = λ λ   (D11) 

Furthermore, given M(k) = m(k) (m(k) ≥ wk + Mi
A) and ( )0 0IL t y− = , the distributions of  Mi

P = mi
P, Mi

A 

= mi
A and Bi = xi

B are independent rendering the final expression (D12). The independence, and the 

binomial disaggregation follow from the Poisson demand processes and FCFS allocations. 

 

{ }
( ) ( ) ( ){ }

( )( ) ( ) ( )( ) ( )( )
A B

k i ik

P P A A B
i i i i i i

0 0k k

P A Bm w m y x i k i i k i i i 0k k k

P M m ,M m and B x

P M m and IL t y

Bin m ,w , Bin m ,m w , Bin x , y,

−
∞ ∞

= + =

= = = =

 = = ⋅
 
 λ λ − λ λ λ λ  

∑ ∑
. (D12) 

Appendix E - The joint pmf of shipment quantities 

In this Appendix we show how to determine the joint probability mass function of the shipment 

quantities to all retailers within retailer group k. Knowledge of this probability distribution enables 

extensions of the model to other (retailer dependent) cost and emissions structures, and consideration 

of different allocation decisions. The latter arising, for instance, when the cost increase, Δci, and the 

emissions increase, Δei, is not the same for all retailers within a retailer group (as assumed in the main 

analysis), and the shipment quantity exceeds the reserved capacity to retailer group k.  

Mi(t0) = Shipment quantity to retailer i, i ∈ Ωk, (i.e. number of units shipped to retailer i in retailer 

group k at t0), Mi ≡  Mi(t0)  

Mk =  {M1,M2,…,MNk) 

mk =  {m1,m2,…, mNk}, 

λk =  {λ1,λ2, ,…,λNk} 

Because of the Poisson demand processes, a unit that becomes qualified for shipment in any time 

interval is destined for retailer i with probability λi/λ0, and in analogy to Proposition 1, the joint 

probability P(Mk = mk) can be obtained by multinomial disaggregation of M, the total amount of units 

qualified for shipment in time interval [t0-Tk,t0). Thus, P{Mk= mk|M=m} follows a multinomial 
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distribution (see, for example, Feller (1968) for a definition). Letting kN
ii 1

m
=

ϕ =∑ , and recalling that 

kN
(k) ii 1=

λ = λ∑ denotes the total demand intensity in retailer group k, (E1) and E2) follows 

 { }
i

k

k

(m ) mN
0 (k) i

k k N
i 10 0

i
i 1

m!P M m
(m )! m !

−ϕ

=

=

λ − λ   λ
= = =    λ λ   − ϕ

∏
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M m , (E1) 
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Abstract

Sustainable and efficient management of a distribution system requires coordination between trans-

portation planning and inventory control decisions. In this context, we consider a one warehouse

multi-retailer inventory system with a time-based shipment consolidation policy at the warehouse.

This means that there are fixed costs associated with each shipment, and retailer orders are consol-

idated and shipped periodically to groups of retailers sharing the same delivery routes. Customer

demand is compound Poisson distributed and unsatisfied demand at each stockpoint is backordered

and allocated on a First-Come First-Served basis. The system is centralized and inventory levels are

reviewed continuously. The warehouse has access to real-time inventory information from the retail-

ers, and uses a (R,nQ) policy to replenish from an outside supplier/manufacturer. We derive the

exact probability distributions for the inventory levels at the retailers, and use these to obtain exact

expressions for the system’s expected shipment, holding and backorder costs, its average inventory

levels and fill rates. Based on the analytical properties of the objective function, we construct an

optimization procedure by deriving bounds on the optimal reorder levels and shipment intervals both

for single-item and multi-item systems.

Keywords: Inventory, Multi-echelon, Multi-item, Stochastic, Shipment consolidation, Continuous

review, Compound Poisson demand



1 Introduction

The technological development of integrated supply chain information systems is making real-time

point-of-sale and inventory information more and more accessible, also across multi-tier supply chains.

In the process, administrative costs of sharing information and placing of orders are decreasing, thus

reducing the economic incentives for aggregating demand information into orders. On the other hand,

set up costs, batch processing, and shipment consolidation are important considerations in manufac-

turing and distribution of physical products. In freight transportation these issues are accentuated by

fluctuating fuel prices and increasing emphasis on environmental concerns and sustainability. With

respect to the latter, shipment consolidation can reduce the number of shipments (e.g. trucks) and

thereby achieve both lower transportation costs and lower (carbon) emissions. However, consolidation

typically means longer replenishment lead times and increased inventory costs. Thus, sustainability

in terms of economic viability and environmental friendliness requires coordination and balancing of

shipment and inventory decisions.

In this paper, we focus on these issues in the context of a divergent two-echelon inventory system

with a central warehouse and multiple non-identical retailers facing compound Poisson demand. The

system is characterized by a time-based shipment consolidation policy at the warehouse, in conjunction

with real-time point of sale data and centralized inventory information. The consolidation policy

means that outbound shipments from the central warehouse are dispatched periodically to groups of

retailers sharing the same delivery routes (a group may consist of a single retailer). Thus, retailer

orders are consolidated for the retailers on the same route over the time between shipments, referred

to as the shipment interval. The delivery routes and grouping of retailers are determined exogenously

and optimizing their design is beyond the scope of this paper. Inventory replenishments are based

on continuous review information, batch ordering at the warehouse, and base stock ordering at the

retailers. The contributions of our work include derivations of the probability distributions for all

inventory levels in the system, and determination of the associated expected costs and retailer fill

rates. We also provide optimality bounds that allow for joint optimization of the shipment intervals

and the reorder levels in the system. The results encompass both the case of backorder costs per

unit and time unit at the retailers, and the case of fill rate constraints. For the latter, the total costs

only consist of the expected shipment and holding costs. The analysis is applicable to single-item as

well as multi-item systems, although the focus in this work is placed on the former. The approach for

analyzing the system is new, and can be used for analyzing other types of divergent inventory systems.
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Initial motivation for our work stems from discussions with a large European company that man-

ufactures and sells sheet metal products to the construction industry. The company produces both

to order and to stock, where the former typically involves customized solutions for large construc-

tion projects. Focusing on the latter, products are distributed from a central warehouse to a large

number of retailers and market companies (hereafter jointly referred to as retailers) using connected

IT and inventory control systems. This means that there is centralized access to point-of-sale data

and inventory information in real time for the network. Currently, this information is not used for

centralized control of the system, but there are ongoing discussions about how this may be done.

Many of the company’s products are large and bulky with relatively low value to volume ratio. Thus,

transportation costs are generally high, meaning that shipment consolidation, and efficient use of the

transport capacity are important for the company. Consolidated shipments from the warehouse to the

retailers are dispatched periodically to groups of retailers. The transportation planning is performed

in-house, but the transports are contracted from external service providers. All outbound transports

from the warehouse are made by truck, either a dedicated vehicle delivering to a group of retailers on

a specified route, or a shared vehicle utilizing the transport provider’s network of terminals. Looking

downstream, the majority of the company’s customers are construction companies of different sizes,

which typically place batch orders dedicated to specific construction projects. As these projects vary

in sizes so do the batch sizes. Thus, the customer demand is characterized by randomness both in the

number of orders that arrive, and in the size of individual orders. Structurally, this corresponds well to

a compound Poisson process, which motivates its use in our present work. Upstream, the warehouse

replenishes most of its stock by placing orders with the company’s own manufacturing plants.

Further motivation for our work is based on contacts with several other companies (including some

spare parts service providers) that use, or are in the position to use, different types of VMI (Vendor

Managed Inventory) systems in combination with periodic shipment schedules. (For overviews of

different types of VMI systems, see, for example, Cheung and Lee 2002 and Marques et al. 2010.)

Although the details may vary, these systems are characterized by a supplier/central warehouse with

the mandate to control inventories at different customer locations/retailers under specified service

agreements. This control is typically facilitated by access to point-of-sale data and inventory informa-

tion from the retailers. These centralized systems offer the supplier flexibility in planning production,

distribution and replenishing activities. However, a recurring question these companies struggle with

is how the centralized inventory information may be used for improved control of their multi-echelon
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inventory systems.

Literature Review

Our work is closely related to Marklund (2011), which considers a similar system under the more

restrictive assumption of Poisson demand. Marklund (2011) presents a fast recursive procedure for

determining the exact average costs per time unit, and for optimizing the reorder levels at all inven-

tory locations for a given set of shipment intervals. A heuristic for determining near optimal shipment

intervals is also presented. Compared to Marklund (2011) our present work distinguishes itself in

three major ways. Firstly, it is more general as we provide an exact approach for compound Poisson

demand. Secondly, we use a new methodology for analyzing the system, which enables determination

of the inventory level distributions and service levels at all locations, not just the expected costs as

in Marklund (2011). Thirdly, we provide upper and lower bounds for the optimal shipment intervals

and reorder points in the system, thereby enabling joint optimization of these decision variables.

Howard and Marklund (2011) and Howard (2013) build on the work in Marklund (2011) and use

simulation to investigate the cost benefits of replacing the First-Come First-Served (FCFS) allocation

assumption at the warehouse with state dependent myopic allocation policies under Poisson demand.

Howard and Marklund (2011) deal with one retailer group whereas Howard (2013) considers multiple

retailer groups and a policy that offers a performance guarantee over FCFS. Both studies conclude

that some cost benefits exist for long retailer lead times, particularly, when the allocation decision is

postponed to the moment of delivery, but in general the FCFS assumption performs very well. Gürbüz

et al. (2007) also consider joint inventory and transportation decisions, but for a system where the

warehouse is a stockless cross docking facility that orders for a set of retailers simultaneously. This

policy is compared to three well-known policies including one with fixed replenishment intervals.

Our present work is also related to the general multi-echelon literature which does not take ship-

ment consolidation decisions into consideration. Of particular interest is the stream of literature on

analysis of continuous review one-warehouse multiple-retailer systems. For overviews, see for exam-

ple, Axsäter (2003) and Axsäter and Marklund (2008). Early contributions include Simon (1971),

Graves (1985) and Axsäter (1990), which consider systems with Poisson demand, complete backorder-

ing, FCFS allocation, and base-stock policies at all locations. Graves (1985) uses an exact approach

similar to Simon (1971) for determining the probability distributions of the retailers inventory levels

and the expected system costs. An accurate approximation is also presented. The analysis is based
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on determining the steady state probability distributions of the number of outstanding orders at each

retailer by binomial disaggregation of the total number of outstanding orders. The approach is also

commonly translated into disaggregation of the total number of warehouse backorders to obtain the

distribution of warehouse backorders destined for each retailer (c.f., Axsäter 2006). Generalizing the

method to handle compound Poisson demand is difficult and has so far not been done. The challenge

is how to disaggregate the distribution of the total number of outstanding orders to specific retailers.

Axsäter (1990) provides exact and computationally efficient recursive expressions for the system’s ex-

pected inventory holding and backorder costs. His approach is based on tracking an arbitrary unit

through the system, and determining the holding and backorder costs it incurs. The method does not

involve the inventory level distributions at the retailers. Our work is related to both these approaches.

As we are interested in the inventory levels in the system, we derive the exact probability distributions

of warehouse backorders destined to each retailer. However, instead of disaggregating the total amount

of backorders, we obtain these distributions by tracking what happens in the system backwards and

forwards in time. The methodology of Axsäter (1990) has been extended in various ways to deal with

more general divergent systems. For example, Axsäter (1993a, 1998) and Forsberg (1997) consider

exact and approximate models with installation stock (R,Q)-policies and Poisson demand. In case

of compound Poisson demand, Forsberg (1995) shows how to exactly calculate costs for base-stock

policies at the retailers as weighted sums of the expected costs of (S-1,S) systems with Poisson demand

obtained from Axsäter (1990). Axsäter (1997) extends the model to echelon stock (R,Q)-policies (the

echelon stock of an inventory location includes the stock at the location itself and at all downstream

locations). In a parallel work, Chen and Zheng (1997) provide an alternative method for evaluating

echelon-stock (R,Q)-policies that is exact for Poisson demand and approximate for compound Poisson

demand. This approach is related to the disaggregation of warehouse backorders used by Simon (1971)

and Graves (1985). Of particular interest for our work is Axsäter (2000), which provides exact analysis

of the expected holding and backorder costs and the probability distributions for the inventory levels

in a one-warehouse N-retailer system with installation stock (R,Q)-policies and compound Poisson

demand. In the special case of no shipment consolidation and batch quantities equal to one at all

retailers, our present work offers a different way to analyze the system in Axsäter (2000).

The literature on divergent continuous review systems also contains papers that investigate other

warehouse ordering policies utilizing more detailed inventory and demand information. Marklund

(2002) provides an exact analysis of a new type of service level policy at the warehouse (referred
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to as an (α0, Q0) policy) that uses real-time information about the individual inventory positions

at all stockpoints. In a parallel work Moinzadeh (2002) investigates a generalized installation-stock

(R,Q) policy at the warehouse assuming identical retailers. Axsäter and Marklund (2008) derive a

warehouse ordering policy that is optimal in the class of ”position based” policies, which encompass

all the policies discussed above. They also relax the FCFS assumption made in all previous models

cited above. Marklund (2006) focuses on the use of advance order information, and provides exact

and approximate analysis of warehouse reservation policies. These policies enable the warehouse to

differentiate its service to the retailers through temporal allocation and prioritization. All the models

above assume the use of partial deliveries, i.e., all stockpoints ship what is available as soon as possible.

Apart from the exact results mentioned above there exist a large number of approximations for

analyzing one-warehouse-N-retailer inventory systems, (c.f., Axsäter (2003) for an overview). One of

the most common approximation techniques is to replace the stochastic delay due to stockouts by

its average value. This idea originates from the METRIC model by Sherbrooke (1968) and has been

developed and adapted to many different settings in e.g. Sherbrooke (1986), Zipkin (2005 p.335),

Andersson et al. (1998), Andersson and Marklund (2000), Axsäter (2003) and Berling and Marklund

(2013, 2014). This group of approximations is related to our work as the average waiting time usually is

obtained by dividing the average total amount of backorders at the central warehouse with the average

total demand per time unit. In some special cases this renders the correct mean, but in general the

average waiting time per demanded unit at a warehouse is different across the retailers. Our analysis

of the backorders at the central warehouse can be used for determining the correct average waiting

time for each retailer. In this respect our work is related to Kiesmüller et al. (2004), which focus on

an approximation model involving the first two moments of the waiting time.

The time-based dispatching and use of fixed shipment intervals links our present work to the

research on divergent periodic review systems. A major difference compared to the traditional periodic

review literature (see, for example, Federgruen and Zipkin 1984, Jackson 1988, Federgruen 1993,

Axsäter 1993b, Graves 1996, Houtum et al. 1996, Heijden et al. 1997, Diks and de Kok 1998,1999,

Cachon 1999, Cachon and Fisher 2000, Axsäter et al. 2002, Özer 2003, Chu and Shen 2010, Marklund

and Rosling 2012, Shang et al. 2014, and references therein) is that in our current model only

shipments are made periodically, while inventory is reviewed and replenished continuously. Graves

(1996), Axsäter (1993b), and Shang et al. (2014) have a closer relationship with our work because

they assume a virtual (FCFS) allocation policy based on Poisson demand arrivals. This means that
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the inventory levels must be monitored continuously even though orders are generated periodically.

Our model assumptions are less restrictive with respect to the compound Poisson demand and the

(R,Q)-policy at the warehouse. A distinguishing feature of Shang et al. (2014) compared to Graves

(1996) and Axsäter (1993b), is that not only the base-stock levels but also the reorder intervals are

decision variables. An important contribution is that the authors are able to provide bounds that

facilitate optimization of all these decision variables to minimize the total expected costs. The reorder

intervals are related to the shipment intervals in our model.

Finally, there is a connection between our work and the body of literature that investigates different

types of consolidation policies for outbound shipments in a single-echelon context. The focus in this

literature is placed on a VMI supplier (typically with a negligible replenishment lead time) that receives

orders from multiple retailers. The supplier wants to decide how and when to replenish and dispatch

shipments in order to minimize its inventory and shipment costs. Examples from this literature include

Çetinkaya and Lee (2000), Axsäter (2001), Çetinkaya and Bookbinder (2003), Çetinkaya et al. (2008),

and Mutlu et al. (2010). In principle, these (and other) papers consider three types of consolidation

strategies for Poisson or compound Poisson demand: (i) time-based consolidation policies where time

dictates when shipments are dispatched, (ii) quantity-based policies where shipments are consolidated

into fixed dispatch quantities, and (iii) time-and-quantity based policies where shipments leave either

when a dispatch quantity is reached or when a certain time has passed since the last dispatch. None

of these papers provide an exact analysis similar to our present work.

The remainder of this paper is organized as follows. Section 2, describes the detailed model as-

sumptions and the associated total cost function for the single-item model. Section 3 presents exact

analysis of the inventory level distributions as well as the backorder distributions at the central ware-

house. Section 4 explains the optimization procedure. Section 6 extends the model formulation,

cost analysis and optimization procedure to the multi-item case. Finally, Section 7 discusses possible

extensions, future research directions and conclusions. The electronic companion of this paper con-

taining all proofs and appendices is available together with the online version that can be found at

http://or.journal.informs.org/.

2 Problem Formulation Single-Item Model

As explained above, the system under consideration is a centralized continuous review inventory

system with one warehouse and N non-identical retailers. Initially (in Sections 2, 3 and 4), we limit
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our attention to single-item systems. Extensions to multi-item systems are described in Section 6.

The warehouse replenishes its inventory from one or several outside suppliers with constant lead time

L0. The retailers order solely from the central warehouse (no lateral transshipments between retailers

are allowed). All stockpoints use complete backordering and FCFS allocation of items to demands.

Customer demand occurs at the retailers and follows stationary compound Poisson processes with

discrete compounding distributions. Thus, customer orders at retailer i arrive according to a Poission

process, and the size of each order is random with a discrete probability mass function (referred to

as a compounding distribution). The demand processes across different retailers can be different but

they are assumed to be mutually independent. An important rational for using the compound Poisson

process is that it offers the flexibility to model highly variable customer demand processes with order

size uncertainty. This is a characterizing feature of the industry example motivating this work, but it

also applies to many other real world systems (e.g. Kapuscinski et al.(2004)). For practical examples

of using compound Poisson processes to model real world demand we refer to, for example, Eaves

(2002), Berling and Marklund (2013) and Lengu et al. (2014). Theoretically, the compound Poisson

process is interesting because of its generality. For instance, it can be shown (Feller 1966, Axsäter

2006) that any demand process, where the cumulative demand follows a non-decreasing stochastic

process with mutually independent increments (a common assumption in the inventory literature),

can be represented by a limit of an appropriate sequence of compound Poisson processes.

Inventory control at the retailers is accomplished by base-stock policies with order-up-to level

Si for retailer i. The use of base-stock policies is not an assumption per se, but a consequence of

the assumption that POS (Point Of Sale) information is immediately transferred to the warehouse

without any fixed costs associated with each transaction. Thus, there are no incentives to batch

demand information from consecutive customers into consolidated orders. However, there are fixed

costs associated with the transportation of physical products. These costs are considered centrally

in the shipment consolidation of deliveries from the warehouse to the retailers over time and across

groups of retailers sharing common delivery routes. In accordance with the referred literature on

continuous review multi-echelon inventory systems all stockpoints apply a partial delivery policy. At

the retailers, this means that a customer that orders more than what is on hand at the retailer will

receive the units on hand and the remaining demand is backordered. Similarly at the warehouse,

if only part of a retailer order (corresponding to a customer order) is on hand when a shipment is

about to leave, the available units will be shipped immediately and the rest later. Partial deliveries
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are commonly used in practice (for instance, in the industry examples motivating this work) as it

represents the fastest way to satisfy the customer demand. It dominates the obvious alternative of

only delivering complete orders provided that there are no, or very small, costs associated with order

splitting. This holds for example in a distribution system where there are only variable shipment

costs (including picking, loading transporting and receiving) per unit handled. Or as in our case with

periodic shipments, where there are variable and fixed shipment costs, but the latter are associated

with the planned shipments, which are unaffected by order splitting. If splitting an order leads to an

extra shipment associated with fixed costs, a partial delivery policy may be costly. Our method can

be modified to deal with complete instead of partial deliveries analogously to the analysis in Howard

and Stenius (2013).

The central warehouse uses a continuous review (R0, nQ0) policy to control its inventory replen-

ishments. This means that as soon as the (installation stock) inventory position (defined below) falls

to or below R0 an order of nQ0 units is placed with an outside supplier/manufacturer. Here n is

the smallest integer that raises the inventory position above R0. The batch quantity Q0 is presumed

to be given with the restriction that it must be a positive integer (in our motivating example it is

typically determined by set up costs and restrictions at the outside supplier/manufacturer, but it can

also be determined by a deterministic EOQ method, as suggested in Zheng 1992 and Axsäter 1996).

Even though Q0 is not a decision variable in our model, the presented method can of course be used

repeatedly to evaluate different Q0 options. Extensions to other replenishment policies at the central

warehouse are discussed in Section 7. The use of continuous review base stock policies at the retailers

implies that from a control perspective, there is no difference between using an installation stock policy

and an echelon-stock policy at the warehouse. Thus the former concept is used in this paper.

The shipment consolidation policy for outbound warehouse deliveries means that there is a ship-

ment leaving the central warehouse to retailer i every Ti time units. Henceforth, Ti is referred to as the

shipment interval of retailer i. Periodic shipments are often seen in practice as they facilitate planning

of dispatching activities, such as picking, loading, transportation and receiving, and can therefore re-

duce the costs (see, for example, Gaur and Fisher 2004, and Kuhn and Sternbeck, 2013). In addition

to consolidation of outbound deliveries to a single retailer over the shipment intervals, the model allows

for consolidation of shipments to groups of retailers sharing the same delivery routes. This is done by

synchronizing the shipment intervals (the lengths and moments of shipments) to all retailers on the

same route, allowing the same vehicle(s) to service all retailers in that group with a joint shipment.
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Note that because of the FCFS allocation, synchronization of shipment intervals across retailer groups

is of no relevance in our model. With slight abuse of notation we let Tk denote the shipment interval

to retailer group k. The retailer groups and the routing within the groups are taken as given input

to our model and need to be determined exogenously. However, the model can of course be used to

evaluate different groupings and routing alternatives. In the industry examples motivating this work,

restrictions in transport capacity has not been considered an issue as it is bought from third party

logistics providers/forwarders. Therefore no such restrictions are included in the model.

The shipment time from the warehouse to retailer i, Li, includes not only handling activities such

as picking, loading, transporting and receiving, but also the time to visit the preceding retailers on

the same route. The replenishment lead times for retailer orders are stochastic and depend on the

shipment times, the shipment intervals and the stock availability at the warehouse. Note that the

latter two affect the delay at the warehouse before a unit is shipped. The replenishment lead time for

the central warehouse, L0, is assumed constant.

To further explain the sequence of events in the replenishment and delivery processes, consider the

system as a customer arrives to retailer i at time t, and demands x units. The retailer then tries to

satisfy the demand from its stock on-hand, and if there are less than x units on hand, the shortage is

backordered. These backorders are cleared in a FCFS sequence as forthcoming replenishments arrive

from the warehouse. When the customer arrives at time t, the demand instantaneously translates

into an order of x units from retailer i to the warehouse, which then reserves x units for delivery to

retailer i. If there is unreserved stock on-hand at the warehouse, these units are reserved first and are

added to the reserved stock on-hand awaiting the next shipment to retailer i, Wi. If there is less than

x unreserved units on-hand, the remaining units are backordered (reserved units that are outstanding

at time t). As replenishments arrive, the backorders are cleared in a FCFS sequence and the units are

added to the reserved stock on-hand. When the next shipment is dispatched to retailer i, the reserved

stock on-hand for this retailer, Wi, goes to zero as all these units leave the warehouse on a shipment

to retailer i. Focusing on the replenishment process at the warehouse, the reservation of x units at

time t lowers the warehouse’s inventory position, defined as the outstanding orders + unreserved stock

on-hand − backorders, by the same amount. When the inventory position falls to or below R0, an

order of nQ0 units is placed with the outside supplier, bringing the inventory position back between

R0 + 1 and R0 + Q0. Note that the reserved stock on-hand is excluded from the inventory position

as these units cannot be used for satisfying future retailer orders. The reserved stock-on hand at the
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warehouse can for all practical purposes be seen as units on route to specific retailers.

Analogous to the inventory position above, the inventory level at the central warehouse, IL0,

is defined as the unreserved stock on-hand minus the backorders. Note, if Ti → 0 ∀ i = 1, ..., N

and the warehouse uses partial deliveries to satisfy retailer orders, IL0 represents the traditional

installation-stock inventory level. The total stock on hand at the warehouse is the sum of the un-

reserved stock on-hand, max(IL0, 0), and the reserved stock-on hand awaiting shipment to different

retailers,
∑

i=1,...,N Wi. The inventory level of retailer i, ILi, is defined as the stock on hand minus

the amount of backorders at this retailer. The inventory position at retailer i is the inventory level

plus all outstanding orders, and it is kept at the base stock level Si at all times.

The FCFS allocation policy is commonly used in practice. It is generally considered as a “fair”

allocation policy that is easy to implement. In the current model, it also provides an incentive for

the retailers to share their point-of-sale information immediately with the warehouse. However, it is

clearly not an optimal allocation policy. Inventory allocation in divergent multi-echelon systems with

stochastic demand is an inherently difficult problem, and no general optimality results exist. FCFS

allocation allows tractability and is a standard assumption in the continuous review literature. To

our knowledge relaxations are only analyzed exactly in Marklund (2006) and Axsäter and Marklund

(2008) both assuming Poisson demand. FCFS allocation is also used in numerous periodic review

models of divergent systems starting with Graves (1996) coining the term virtual allocation. Turning

to our current model setting, Howard and Marklund (2011) and Howard (2013) have investigated

the performance of FCFS allocation in comparison to four state dependent myopic allocation policies

(two in each paper) under the assumption of Poisson demand. The two policies in Howard (2013)

have a performance guarantee over FCFS. In each paper, the two policies analyzed are based on

postponing the allocation to the moment of shipment, and the moment of delivery respectively. The

numerical results obtained by simulation show that when allocation is performed at the moment of

delivery, the cost savings of using the more sophisticated policies instead of FCFS can be significant:

on average 5.6% in Howard and Marklund (2011) and 6.7% in Howard (2013). Allocation at moment

of delivery is for practical reasons very challenging to implement and is associated with additional

costs for inventory handling and IT, which are not included in the analysis. When allocation is

performed at the moment of shipment, which is much cheaper and easier to implement, the savings

are quite small: 1.6% and 2.4% respectively. The compound Poisson assumption in our present work

implies larger demand variability than in the studied models with Poisson demand. However, there
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are no indications in these studies that a larger standard deviation to mean ratio of the demand per

time unit (i.e. a lower customer arrival rate) has any significant impact on the FCFS performance.

Still, further investigation of the performance of FCFS allocation for compound Poisson demand is

an interesting venue for future research. In a separate study, Graves (1996) finds a lower bound on

the costs in a distribution system with periodic replenishments for any allocation policy. A numerical

study indicates that the cost increase of using FCFS (referred to as virtual allocation) is modest. Thus

our choice of FCFS allocation is motivated by its wide spread use in practice and in theory, but also

by its analytical tractability and seemingly good performance.

We use the following notation to express the system stock levels and demand structure:

N : Number of retailers

K: Number of retailer groups (≤ N)

Nk: Set of retailers belonging to retailer group k

λi: Arrival rate of customers at retailer i

Yi: Number of units demanded by an arbitrary customer at retailer i, stochastic variable,

µi = E[Yi] (Note by assumption Yi > 0 and thus P (Yi = 0) = 0.)

λ0: Arrival rate of retailer orders at the warehouse

Y0: Number of units in a retailer order at the warehouse, stochastic variable

λic : Arrival rate of retailer orders at the warehouse excluding orders from retailer i

Yic : Number of units in a retailer order at the warehouse excluding orders from retailer i, stochastic

variable

Di(t1, t2): Customer demand at retailer i in the time interval (t1, t2], where t1 ≤ t2

Di(x): Total customer demand at retailer i during x units of time (for simplicity Di ≡ Di(1))

D0(x): Aggregate demand at the warehouse during x units of time (D0 ≡ D0(1))

S: Vector of retailer order-up-to levels = (S1, ..., SN )

Ti: Shipment interval to retailer i (= Tk for all retailers i ∈ Nk)

T: Vector of shipment intervals to all retailers = (T1, ..., TN )

ILi(t): Inventory level at retailer i at time t (= stock on hand − backorders)

Wi(t): Reserved stock on hand at the warehouse destined for retailer i at time t

IL0(t): Inventory level at the warehouse at time t (= unreserved stock on-hand − backorders)

IP0(t): Inventory position of the warehouse at time t (IL0(t) + outstanding orders)

x+ = max(x, 0)
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x− = max(−x, 0)

As the retailer order processes are identical to the customer demand processes, λ0 =
∑N

i=1 λi and

Y0 =
∑N

i=1 χiYi, where χi is an indicator function that is 1 if a given order is from retailer i and 0

otherwise. The probability that a given order emanates from retailer i is P{χi = 1, χj = 0 ∀ j 6=

i} = λi
λ0

for all i ∈ N . Analogously λic =
∑

j∈N\i λj and Yic =
∑

j∈N\i χjYj . Based on the definitions

above, the probability mass function (pmf) of the demand during x time units at retailer i is

P{Di(x) = y} =

y∑
n=1

(λix)n

n!
e−λixP{Y n

i = y}, y ≥ 0 (1)

where Y n
i represents the total amount of units demanded by n customer orders arriving to retailer i.

More precisely, Y n
i is the sum of n i.i.d. customer orders, Yi, and the pmf of Y n

i is determined by the

n-fold convolution of the pmf of Yi. P{D0(x) = y} and Y n
0 are determined analogously.

With respect to cost parameters, the model considers inventory holding costs per unit and time

unit at all inventory locations, denoted hi for i = 0, 1, ..., N , and backorder costs per unit and time

unit at all retailers, denoted βi for i = 1, ..., N . Moreover, a shipment cost of ωk is incurred for each

scheduled shipment leaving the central warehouse for retailer group k. This reflects, for example, the

use of a third party logistics provider or forwarder (as in our motivating industry example) with a

fixed cost as part of the contract. Note that ωk should capture the fixed costs for all retailers in group

k, and is incurred even if there are no units to ship. There are also per unit costs for shipping to a

specific retailer. However, due to the complete backordering, all demanded units will eventually be

shipped. Thus the shipment costs per unit do not affected the optimization and are therefore excluded

from the analysis.

The objective is to minimize the long-run average total cost, TC(R0,S,T), in (2) with respect

to R0, S and T. This total cost consists of: (i) The expected warehouse holding cost per time unit,

h0(E[IL+
0 ] +

∑
i=1,...,N E[Wi]), (ii) the expected holding and backorder costs per time unit at retailer

i, hiE[IL+
i ] and βiE[IL−i ], and (iii) the expected shipment cost per time unit SC(T) =

∑
k=1,...,K

ωk
Tk

.

Note that the latter is independent of R0 and S and only depends on the shipment intervals.

TC(R0,S,T) =h0(E[IL+
0 ] +

∑
i=1,...,N

E[Wi]) +
∑

i=1,...,N

(
hiE[IL+

i ] + βiE[IL−i ]
)

+
∑

k=1,...,K

ωk
Tk
. (2)
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In a system with fill rate constraints, the objective is to minimize the total costs while meeting

the fill rate constraint for each retailer. In this case there will be no backorder costs at the retailers

and the total cost function will only consist of holding and shipment costs, that is, the term βiE[IL−i ]

disappears from (2). The fill rate is defined as the portion of the total demand that can be satisfied

from stock on hand. How to analyze the fill rates is described at the end of Section 3.2.

3 Analysis

In this section, we provide an exact analysis of the probability mass function of the inventory levels and

the expected inventory holding and backorder costs for the single-item system. The analysis is valid

for any combination of the decision variables R0, S and T. In Section 3.1 we determine the average

stock on hand (both unreserved and reserved) at the central warehouse. Section 3.2 explains how to

compute the average stock on hand, backorders and fill rates at each retailer i. This analysis assumes

that the probability mass functions of the backorders at the central warehouse, designated to retailer

i ∀ i ∈ N are known. Section 3.3 provides an exact approach for determining these probabilities. All

proofs are deferred to the online Appendix B, and an illustrative numerical example is available in the

online Appendix C. All online appendices are found in the electronic companion.

3.1 The Stock on Hand at the Central Warehouse

As explained above, the stock on hand at the central warehouse consist of unreserved stock on hand,

IL+
0 , and reserved stock on hand for each retailer i, Wi. Note that the shipment consolidation policy

has no impact on the unreserved stock on hand or the backorders at the central warehouse. The

inventory level at the central warehouse, IL0,(per definition excluding the reserved stock on hand)

can therefore be analyzed as a single-echelon system without shipment consolidation. Thus, in steady

state IL0 = IP0−D0(L0). Moreover, because of the centralized access to POS information (manifested

by the continuous review base-stock policies at the retailers) the order process at the warehouse is

a superposition of the compound Poisson demand process at the retailers. Assuming that not all

customer demand sizes are multiples of some integer larger than one, the inventory position in steady

state is uniform on [R0 + 1, R0 +Q0] (see Axsäter 2006 p.88). It follows that

E[IL+
0 ] =

1

Q0

R0+Q0∑
IP0=R0+1

E[(IP0 −D0(L0))+]. (3)

13



The expected reserved stock on hand destined for retailer i, Wi, is given in Proposition 1.

Proposition 1. The expected stock on hand at the central warehouse reserved for retailer i is

E[Wi] =
1

2
λiµiTi. (4)

3.2 Inventory Levels at the Retailers

To derive the probability mass function for the inventory level at a given retailer, consider a shipment

destined for this retailer (group) that leaves the warehouse at time t0. This shipment arrives at retailer

i at time t0 +Li and the next shipment will arrive at t0 +Li +Ti. We call this recurring time interval,

(t0 + Li, t0 + Li + Ti], a replenishment cycle for retailer i (see Figure 1).

Figure 1: Replenishment cycle for retailer i

The inventory level for retailer i at t0 + Li + t (0 < t ≤ Ti) is determined by the inventory level

at t0 + Li, just after the considered shipment has arrived, and the demand in (t0 + Li, t0 + Li + t].

Defining Bi(t0) as the number of backordered units for retailer i at the central warehouse at t0,

ILi(t0 + Li + t) = ILi(t0 + Li)−Di(t0 + Li, t0 + Li + t)

= Si −Bi(t0)−Di(t0, t0 + Li + t), 0 < t ≤ Ti. (5)

Note that Bi(t0) and Di(t0, t0 + Li + t) are independent since Bi(t0) depends on the demand before

time t0. The pmf of the inventory level of retailer i at t0 + Li + t can then be obtained as

P{ILi(t0 + Li + t) = j} =

Si−j∑
r=0

P{Bi(t0) = r}P{Di(Li + t) = Si − j − r}, j ≤ Si. (6)

The challenging part in (6) is to determine the probabilities P{Bi(t0) = r}. Section 3.3 explains how

this can be done. For now we assume that these probabilities are known and focus on determining
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the expected stock on hand, and the expected backorders at retailer i. The former is obtained as the

expected stock on hand during a replenishment cycle divided by the cycle length, see (7).

E[IL+
i ] =

1

Ti

∫ Ti

0
E[ILi(t0 + Li + x)+]dx

=
1

Ti

Si∑
j=1

j

∫ Ti

0
P{ILi(t0 + Li + x) = j}dx

=
1

Ti

Si∑
j=1

Si−j∑
r=0

jP{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = Si − j − r}dx (7)

The expected inventory level can be determined analogously,

E[ILi] = Si − E[Bi(t0)]− λiµi
(
Li +

Ti
2

)
. (8)

Based on these results, the expected number of backorders at retailer i can be obtained from (9).

E[IL−i ] = E[IL+
i ]− E[ILi] (9)

The fill rate for retailer i, denoted by γi, can then be determined from (10). This expression

follows from analysis of single-echelon systems with compound Poisson demand, see, for example,

Axsäter (2006). The difference between the stock on hand at the beginning and at the end of the

replenishment cycle renders the amount of demand satisfied directly from stock. This amount is

divided by the total expected demand during a cycle. Recall that in systems with fill rate constraints

we assume that there are no backorder costs, and the total cost consists of the sum of the holding and

shipment costs.

γi =
E[ILi(t0 + Li)

+]− E[(ILi(t0 + Li)−D(t0 + Li, t0 + Li + Ti))
+]

λiµiTi
(10)

3.3 Distribution of the Warehouse Backorders

Consider the central warehouse at time t0 when a shipment is leaving the central warehouse. We are

interested in the pmf of Bi(t0), the number of backordered units destined for retailer i. The analysis

focuses on the inventory level at the warehouse, IL0 (where all the backorders at the central warehouse

are included). The backorders at time t0 depend on the inventory position a replenishment lead time

earlier, IP0(t0 − L0), and the demand during the lead time. Since the inventory position in steady
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state is uniformly distributed on [R0 + 1, R0 +Q0], the pmf of Bi(t0) can be obtained as

P{Bi(t0) = r} =
1

Q0

R0+Q0∑
S0=R0+1

P{Bi(t0) = r|IP0(t0 − L0) = S0} (11)

The remaining analysis focuses on deriving expressions for P{Bi(t0) = r|IP0(t0 − L0) = S0} and

is divided in two cases: S0 > 0 (in Section 3.3.1) and S0 ≤ 0 (in Section 3.3.2).

3.3.1 The Case of S0 > 0

Note first that backorders at time t0 can only occur when the demand during the replenishment lead

time, D0(L0), is larger than S0. Thus, the total amount of units backordered at time t0, B0(t0), is

B0(t0) = (D0(L0)− S0)+. (12)

Because of the FCFS policy, it will always be the last units demanded in (t0 − L0, t0] that are backo-

rdered. To track these units, we therefore study the retailer orders during (t0 − L0, t0]. We define:

Φ0 : Total number of retailer orders arriving to the central warehouse (i.e., number of customers

arriving to the system) during (t0 − L0, t0] .

Ψn: The nominal inventory position = the inventory position at the central warehouse at time t0−L0

minus the aggregate demand of the n first retailer orders after time t0 − L0, Y n
0 ,

Ψn = S0 − Y n
0 . (13)

The nominal inventory position helps us to track which retailer orders are backordered at time t0.

Note that Ψ0 = S0 and ΨΦ0 = IL0(t0), but for all other values 0 < n < Φ0, Ψn can neither be seen as

the inventory position nor the inventory level.

For the analysis we divide the backorders in two categories; partial backorders, B̂0(t0), and complete

backorders, B̌0(t0), such that B0(t0) = B̂0(t0) + B̌0(t0). The partial backorders (at time t0) result

from a retailer order that brings the nominal inventory position from a strictly positive value to a

non-positive value. Hence, there can be at most one retailer order that is partially backordered, but

it may involve many units that are all referred to as partial backorders. All orders after the nominal

inventory position has reached zero will be completely backordered and all these units are referred to
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as complete backorders, see Figure 2(a).

Figure 2: Illustration of two possible sample paths for the nominal inventory position, Ψn, at the central
warehouse and the associated number of partial and complete backorders

Starting with the analysis of the partial backorders for retailer i we define

B̂n
i (t0) : Number of partial backorders for retailer i at t0, when the nth retailer order after t0 − L0

brings the nominal inventory position to a non-positive value.

Lemma 1. The probability of u partial backorders for retailer i at time t0, when the nth customer

order after t0 − L0 brings the nominal inventory position to 0 or below, P{B̂n
i (t0) = u}, is for u > 0

P{B̂n
i (t0) = u} = P{Φ0 ≥ n}

S0−n+1∑
x=1

P{Ψn−1 = x}λi
λ0
P{Yi = u+ x}, (14)

and for u = 0

P{B̂n
i (t0) = 0} = P{Φ0 ≥ n}

S0−n+1∑
x=1

P{Ψn−1 = x}
(
λi
λ0
P{Yi = x}+

λic

λ0
P{Yic ≥ x}

)
. (15)

Turning to the retailer orders that are completely backordered, we know that after the nominal

inventory position has reached zero for the nth retailer order, all subsequent orders are classified as

complete backorders. Consequently, the distribution of the complete backorders is dependent on n.

B̌i,n(t0) : Number of complete backorders for retailer i at t0, given that the nominal inventory position

is taken from a positive to a non-positive value by the nth retailer order after time t0−L0 and Φ0 ≥ n.

Φ̌i,n : Number of orders from retailer i before t0 but after the nth retailer order has arrived to the

warehouse, given Φ0 ≥ n.
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Zmi : number of orders from retailer i given m orders in total.

Note that Zmi is binomially distributed due to the Poisson arrivals of customer orders:

P{Zmi = a} =

(
m

a

)(
λi
λ0

)a(λ0 − λi
λ0

)m−a
. (16)

Lemma 2. The probability of v complete backorders for retailer i given that the nth retailer order

after t0 − L0 brings Ψn to a non-positive value, P{B̌i,n(t0) = v}, can be obtained as

P{B̌i,n(t0) = v} =
v∑
a=1

P{Φ̌i,n = a}P{Y a
i = v}, (17)

where

P{Φ̌i,n = a} =

∞∑
m=a

P{Φ0 = n+m}
P{Φ0 ≥ n}

P{Zmi = a} (18)

Denoting the probability that the nominal inventory position never reaches zero by p0, we have

p0 =

S0−1∑
n=0

P{Φ0 = n}P{Ψn > 0}. (19)

The pmf of the number of backordered units for S0 > 0 can now be obtained from Proposition 2.

Proposition 2. The probability that the central warehouse has r backordered units allocated to retailer

i at t0 when the inventory position is S0 > 0 can be obtained for r > 0 as

P{Bi(t0) = r|IP0(t0 − L0) = S0} =

S0∑
n=1

r∑
u=0

P{B̂n
i (t0) = u}P{B̌i,n(t0) = r − u}, (20)

and for r = 0 as

P{Bi(t0) = 0|IP0(t0 − L0) = S0} = p0 +

S0∑
n=1

P{B̂n
i (t0) = 0}P{B̌i,n(t0) = 0}. (21)

Remark. The expected amount of backorders is not always proportional to the demand per time

unit resulting in different average waiting times per unit due to stockouts across the retailers. The

expected amount of complete backorders are proportional to the demand per time unit, but this is

not always true for the expected amount of partial backorders.
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3.3.2 The Case of S0 ≤ 0

When the initial inventory position is less than or equal to zero, all units ordered during the time

interval (t0 −L0, t0] will be completely backordered at time t0. We denote this part of the backorders

B̌0(t0) and the units ordered by retailer i, B̌i(t0). In addition to this, the last −S0 units ordered before

time t0 − L0 will also be backordered at time t0. We denote this part of the backorders as B̃0(t0)

and the units ordered by retailer i B̃i(t0), see Figure 2(b). It follows that B0(t0) = B̌0(t0) + B̃0(t0),

Bi(t0) = B̌i(t0) + B̃i(t0) and B0(t0) =
∑N

i=1Bi(t0). Note that B̌0(t0) only consists of units from

completely backordered retailer orders (ordered after t0 − L0), while B̃0(t0) (= −S0) can consist of

units both from completely backordered retailer orders, and from a partially backordered retailer

order. As B̃i(t0) depends on the demand before time t0 − L0, and B̌i(t0) depends on the demand

during (t0 − L0, t0], they are independent. The probability of r units backordered at the warehouse

for retailer i at time t0, when S0 ≤ 0 is thus

P{Bi(t0) = r|IP0(t0 − L0) = S0} =

min(r,−S0)∑
u=0

P{B̃i(t0) = u}P{B̌i(t0) = r − u}, S0 ≤ 0. (22)

Because all units ordered in time interval (t0−L0, t0] will be completely backordered, the probability

that v units are backordered for retailer i at t0 is simply

P{B̌i(t0) = v} = P{Di(t0 − L0, t0) = v}. (23)

Turning to the analysis of B̃i(t0), note first that for S0 = 0, there can be no backorders ordered

before t0 − L0. Consequently B̃i(t0) = 0 ∀ i, which means that P{B̃i(t0) = 0} = 1 ∀ i and (22)

simplifies to P{Bi(t0) = r|IP0(t0−L0) = 0} = P{B̌i(t0) = r}. In order to determine B̃i(t0) for S0 < 0

we study the system backwards in time from t0 − L0. We define

Ψ−m : Nominal inventory position before t0 − L0, defined as the inventory position at time t0 − L0

plus the accumulated demand of the last m retailer orders before t0 − L0.

B̃−mi (t0) : Backordered units to retailer i at t0 ordered before t0 − L0, when the nominal inventory

position reaches a non-negative value by the occurrence of the mth retailer order before t0 − L0 (i.e.,

counting backwards from t0 − L0, the mth retailer order is the first order that is backordered; either

completely or partially).

V m
i : The number of units ordered by retailer i, given that a total of m retailer orders have occurred.
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Because the nominal inventory position can reach zero only once, B̃−mi (t0) for m ∈ [1,−S0] repre-

sent mutually exclusive events. Thus, we get

P{B̃i(t0) = u} =



∑S0
m=1 P{B̃

−m
i (t0) = u}, S0 < 0

1, u = 0 and S0 = 0

0, otherwise

, (24)

where P{B̃−mi (t0) = u} can be determined from Lemma 3.

Lemma 3. The probability for u backordered units at t0, ordered by retailer i before time t0 − L0,

when the mth customer order before t0 − L0 is the first to be backordered, is

P{B̃−mi = u} =
−1∑

x=S0+m−1

λic

λ0
P{Yic ≥ −x}P{V m−1

i = u and Ψ−(m−1) = x}

+
λi
λ0
P{Yi ≥ −x}P{V m−1

i = u+ x and Ψ−(m−1) = x}, (25)

where

P{V m−1
i = u and Ψ−(m−1) = x} =

m−1∑
a=0

P{Zm−1
i = a}P{Y a

i = u}P{Y m−1−a
ic = x− S0 − u}. (26)

P{Bi(t0) = r|IP0(t0 − L0) = S0} for S0 ≤ 0 follows from (22), (23), (24) and Lemma 3.

4 Optimization

In this Section we present a method for optimizing the system parameters R0, S and T both in

systems with backorder costs, and in systems with fill rate constraints. We assume, as before, that

the order quantity Q0 is given by the outside supplier/manufacturer. The method is explained for

the single-item case and is extended to the multi-item case in Section 6. The objective is to minimize

the total cost function (2), or the sum of expected shipment and holding costs subject to fill rate

constraints. We know from Section 3.1 that the stock on hand, and therefore also the holding costs,

at the warehouse can be separated into unreserved stock on hand, IL+
0 , which depends on R0 but is

independent of T and S, and the reserved stock on hand that depends on T but is independent of

R0 and S. We define the costs directly related to retailer group k (including the holding cost of the
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reserved stock on hand going to the retailers in the retailer group) as

TCk(R0,S, Tk) =
ωk
Tk

+
∑
i∈Nk

h0E[Wi] + hiE[IL+
i ] + βiE[IL−i ]. (27)

Recall that, with slight abuse of notation, we let Tk denote the shipment interval for all retailers in

retailer group k (Tk = Ti ∀ i ∈ Nk). The total cost function can thus be expressed as

TC(R0,S,T) = h0E[IL+
0 ] +

∑
k∈K

TCk(R0,S, Tk). (28)

The total cost function is not jointly convex in R0, S and T which can be shown by example.

Thus, the proposed optimization method is based on bounding R0 and Tk ∀ k, using Proposition 4

and Proposition 5 respectively, and searching this bounded region using the convexity property of

the retailer order-up-to levels specified in Proposition 3. The approach for obtaining the bounds in

Propositions 4 and 5 is to assert when further changes of the considered decision variable can no longer

decrease the total cost below the lowest cost known so far, TC.

Proposition 3. For fixed R0 and T the total cost function TC(R0,S,T) is convex and separable in

the retailer order-up-to levels S.

4.1 Optimization procedure

The first step in the optimization procedure is to determine lower bounds for the optimal total costs

directly related to each retailer group k ∈ K, TC lk valid for all T, R0 and S. Explanations of how TC lk

∀ k can be obtained are given in Section 4.2. The second step is to define TC as the lowest total cost

under all currently known policies, and use a heuristic to determine a good initial value for TC (a close

to optimal initial solution will provide tighter bounds). The heuristic solution is determined by first

fixing the shipment intervals to some near optimal values T, i.e. Tk = T k ∀ k, and then optimizing

R0 and S. Values for T k ∀ k can be obtained from the deterministic Economic Order Interval (EOI)

heuristic, presented in Marklund (2011). It does not allow for shortages and assumes that the demand

per time unit at retailer i is constant and equal to λiµi. Noting that the shipment interval affects the

inventory both at the warehouse and at the retailers, the expected cost per time unit for retailer group
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k can be expressed as
∑

i∈Nk
(h0 + hi)T k

λiµi
2 + ωk

Tk
. Minimizing this cost with respect to T k renders

T k =

√
2ωk∑

i∈Nk
(h0 + hi)λiµi

. (29)

Given the shipment intervals T k ∀ k, R0 and S are optimized by searching the possible values of R0

starting from Rl0 = −Q0 (this bound is known from previous research, see for example Marklund 2011

and Axsäter 1998), and using the convexity property in Proposition 3 to optimize Si ∀ i for each value

of R0. The search is limited by the upper bound Ru0 in Proposition 4. Note that TC and thereby R0

are updated during the search as better solutions with lower expected costs are found.

Proposition 4. An upper bound for the optimal reorder point at the central warehouse, Ru0 , is obtained

for the smallest value of R0 satisfying the condition

h0E[IL+
0 ] ≥ TC −

∑
k∈K

TC lk. (30)

For systems with fill rate constraints at the retailers, the optimization of R0 and S (given T) is

achieved by searching the interval [Rl0, R
u
0 ], and for each R0 determine the smallest Si ∀ i satisfying

the fill rate constraint at retailer i, utilizing that the expected holding costs are increasing in Si.

The third step in the optimization procedure is to determine lower and upper bounds for the

optimal Tk ∀ k ∈ K, using Proposition 5.

Proposition 5. For the optimal shipment interval of retailer group k, a lower bound is obtained by

T lk =
TC −

∑
κ6=k TC

l
κ −

√
(TC −

∑
κ6=k TC

l
κ)2 − 2ωk

∑
i∈Nk

h0λiµi∑
i∈Nk

h0λiµi
, (31)

and an upper bound by

T uk =
TC −

∑
κ6=k TC

l
κ +

√
(TC −

∑
κ6=k TC

l
κ)2 − 2ωk

∑
i∈Nk

h0λiµi∑
i∈Nk

h0λiµi
. (32)

Finally, the optimal solution with respect to T, R0 and S is obtained by searching all combinations

of Tk within the bounded region, (using some step size τ) and optimizing R0 and S for every combina-

tion according to the same procedure as for the initial solution (where Tk = T k ∀ k) explained above.

As better solutions with lower total expected costs are found, TC is updated and the bounds on the

shipment intervals and R0 are tightened. When the search is complete, the optimal solution is found
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(the optimal system parameters for Tk ∀k, R0 and Si ∀i are denoted T ∗k , R∗0 and S∗i respectively) and

the associated minimum expected cost, TC∗, equals TC. Note that the probability mass functions of

the warehouse backorders, which can be time consuming to calculate, are independent of Tk and S

and only need to be determined once for each R0 ∈ [Rl0, R
u
0 ]. Moreover, as TC is updated during the

optimization Ru0 never increases. Thus, the probability mass functions of the warehouse backorders

for the initial solution is sufficient for the entire optimization.

4.2 Lower Bound for Costs Directly Related to Retailer Group k

The presented bounds on Tk and R0 are based on the existence of a lower bound for all costs directly

related to retailer group k, TC lk, valid for all values of R0 and Tk. Lemma 4 provides such a bound

which is applicable both for systems with backorder costs and fill rate constraints.

Lemma 4.

TC lk =

√
2h0ωk

∑
i∈Nk

λiµi. (33)

The optimization of the retailer order-up-to levels is more time consuming for systems with back-

order costs than for systems with fill rate constraints, as a numerical integration is needed when

evaluating the expected retailer costs for each value of Si. To compensate for this, Lemma 5 provides

tighter bounds for TC lk in backorder cost systems.

Lemma 5. A lower bound for the costs directly related to retailer group k, TCk(R0,S, Tk) for all R0,

can for systems with backorder costs be obtained by minimizing these costs with respect to Tk and Si

for a system where there are no backorders at the central warehouse (R0 →∞):

TC lk = min
Tk,Si∀ i∈Nk

[TCk|Bi(t0) = 0,∀ i ∈ Nk] ≤ TCk(R0,S, Tk),∀ R0,S, Tk. (34)

TC lk = minTk,Si(TCk|Bi(t0) = 0,∀ i), may be computed by the algorithm in the online Appendix

A.

5 Numerical Results

This section summarizes some of the results from a numerical study detailed in Appendix D found in

the electronic companion to this paper. The purposes of this study are to investigate: the behavior

of the optimal solutions, investigate the quality of the optimality bounds, and the performance of the
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EOI heuristic for determining the shipment intervals. This section focuses on results concerning the

latter two. It also includes a discussion about computational issues. The study covers 128 problems

representing all combinations of a high and a low value for the parameters N,Li, ρi (variance to mean

ratio of the demand per time unit), βi, ωk, L0 and Q0. More precisely, the number of retailers, N = 3

or 6; where in both cases we have two retailer groups. When N = 3, retailers {1, 2} constitute one

group and retailer 3 a second. When N = 6, retailers {1,2,3,4} constitute one group and retailers {5,

6} a second. The expected demand per time unit, E[Di], is {2,1,3} when N = 3, and {2,1,2,1,4,2}

when N = 6. The shipment times, Li = {1, 2, 1} or {2, 4, 2} when N = 3, and {1, 1, 2, 2, 1, 2} or

{2, 2, 4, 4, 2, 4} when N = 6. We also consider ρi = 1 (Poisson demand) or 5 (compound Poisson

demand with logarithmic compounding distributions) ∀ i ∈ N , βi = 10 or 100 ∀ i ∈ N , ωk = 10 or

100 ∀ k ∈ K, L0 = 1 or 5, Q0 = 2 or 20, and hi =1 ∀ i.

For every problem, Tk ∀ k ∈ K, R0 and Si ∀ i ∈ N are optimized using the method in Section 4

(with step size τ = 0.01 time units for Tk ∀k). For the optimal solution we compute the distance to

the optimality bounds, ∆Ru0 = Ru0 − R∗0, ∆T lk = T ∗k − T lk and ∆T uk = T uk − T ∗k . We also determine

the relative difference between optimal shipment intervals and those obtained by the EOI heuristic,

∆Tk = (T k − T ∗k )/T ∗k , and the relative increase in the associated costs, ∆C = (TC − TC∗)/TC∗. The

average, maximum and minimum results across all problems are presented in Table 1. From there

we can see that the upper bound, Ru0 , which is the most important bound computationally, is rather

tight; on average 7.41 units above R∗0. The importance of Ru0 stems from the fact that the warehouse

backorder distributions are the most time consuming to compute (especially when R0 +Q0 is large).

Fortunately, they only need to be computed once for each R0.

Table 1: Summary results for the numerical study

E[TC∗] E[R∗0] E[S∗i ] E[T ∗k ] E[∆C] E[∆T ] E[∆Ru0 ] E[∆T lk] E[∆T uk ]

Average 111.51 19.89 19.41 3.15 0.14% 2.99% 7.41 2.19 23.55

Minimum 31.61 -10 7.67 1.09 0.00% -9.79% 0 0.91 7.05
Maximum 264.19 68 38.33 6.11 0.66% 18.60% 24 4.23 51.26

Looking at the bounds for Tk, Table 1 shows that T lk is on average 2.19 time units below the

optimal value T ∗k , while T uk exceeds it with on average 23.55 time units. Thus, the lower bound tends

to be rather close to the optimum, while the upper bound is looser. Fortunately, from a computational

perspective it is less important to provide tight bounds on T ∗k than on R∗0.

Table 1 indicates that the EOI heuristic performs well and offers a viable option to the optimal

solution. On average it overestimates the shipment intervals by 2.99%, but the average cost increase
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is only 0.14% with a maximum of 0.66%. This suggests that the total cost is insensitive to the choice

of shipment intervals around the optimum as long as R0 and S are adjusted accordingly.

The computational complexity of the presented method is directly related to the number of com-

binations that need to be considered in the cost and fill rate evaluations (follows from the analysis in

Section 3 and 4). Consequently, evaluation and optimization of large systems, with many retailers,

high demand items, and long lead-times can be time consuming. Looking at the computation times for

the problems in the numerical study they range from seconds to several hours, with changes in L0 and

N having the biggest impact. On average, the computation times are 19 times longer for the problems

with L0 = 5 than for L0 = 1, and 6.5 times longer for problems with N = 6 (with E[D0] = 12) than

for N = 3 (with E[D0] = 6). In contrast, 10 fold increases of βi, ωk and Q0 increase the computa-

tion times on average by 26%, 7%, and 30% respectively. To investigate the computational impact

of larger expected warehouse demand for fixed N , we solved 64 additional problems with N = 3 for

which the expected demand per time unit at each retailer was doubled rendering E[D0] = 12 (keeping

the compounding distributions and everything else fixed). On average the computation times then

increase by a factor 2.2. Thus, the computational times increase significantly with both N and E[D0].

Increasing the number of retailer groups K (for fixed N) increases the number of candidate solutions

to search in the optimization, but it only affects the inventory cost and fill rate calculations if the

bounds T lk and T uk change so new Ti - values need to be considered. For given optimality bounds and

step sizes τk, there are (Ru0 − Rl0)
∏K
k=1

(
(T uk − T lk)/τk

)
combinations of R0 and T to consider. This

means that the search space (and thereby the computation times) increases rapidly with K if τk is

small compared to (T uk − T lk) for all k, but more modestly otherwise.

6 Multi-Item Systems

This section extends the analysis to multi-item systems, where J items are controlled simultaneously.

The items are distributed via a central warehouse to N retailers (The model is also applicable to

situations where different items are located at different central warehouses and shipments from these

warehouses are consolidated). The items may be distributed in any way across the retailers. However,

without loss of generality, we assume that each item is sold by at least one of the retailers and each

retailer sells at least one of the items. Shipments may be consolidated to K consolidation groups

across items and retailers. A consolidation group consists of a number of items jointly distributed

to a collection of retailers. In principle there can be different consolidation groups associated with
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different items, but K ≤ N × J . Note that in the single-item case a consolidation group is equivalent

to a retailer group. From a practical perspective, the possibility to consolidate shipments across items

as well as retailers increases both the practical applicability and the possible gain. We define:

R0,j : reorder point at the central warehouse for item j Si,j : order-up-to level at retailer i for item j

Sj : vector with order-up-to levels for all retailers for item j (S1,j , ..., SN,j)

Ti,j : shipment interval for item j to retailer i (= Tk for all items and retailers in group k)

T : matrix with shipment intervals for all items to all retailers (T1,1, ..., T1,J ; ...;TN,1, ..., TN,J)

HC0,j(R0,j ,T) : holding costs at central warehouse for item j

HCi,j(R0,j ,Sj ,T) : holding costs at retailer i for item j

BCi,j(R0,j ,Sj ,T) : backorder costs at retailer i for item j

TCM : the total cost function in the multi-item system

As explained in Section 2, the fixed shipment costs are incurred for every scheduled shipment

that leave the warehouse. In the multi-item case, the fixed cost for every scheduled shipment to

consolidation group k, ωk, may, for example, be determined as the sum of the fixed shipment costs per

retailer and item belonging to this group. This way to model the costs will assure that consolidation

can be obtained both across retailers and items in group k by using the same shipment intervals, and

by synchronizing their start. In the cost functions for multi-item systems, the total shipment costs

per time unit can still be determined as SC(T) =
∑

k∈K
ωk
Tk

.

Given T, the holding and backorder costs as well as the fill rates for item j are independent of

the other items and can be determined as in the single-item case. The total cost function for the

multi-item system with backorder costs is

TCM =
∑
j∈J

[
HC0,j(R0,jT) +

∑
i∈N

[HCi,j(R0,j ,Sj ,T) +BCi,j(R0,j ,Sj ,T)]

]
+ SC(T). (35)

For a multi-item system with fill rate constraints, each item j at retailer i may have an individual

fill rate constraint while the backorder costs are excluded from the total cost function. The fill rate of

item j at retailer i, γi,j , can be determined analogously to the single-item case using (10).

The optimization of multi-item systems is similar to the single-item optimization but with the

coupling constraint that all items in a consolidation group use the same shipment interval. The

shipment intervals are the only way in which the different items affect each other. The bounds for the
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warehouse reorder points need to be determined separately for each item, while T lk and T uk are only

determined once for each consolidation group, taking all items into consideration. Propositions 4 and

5 can still be used to determine these bounds, provided that TC is redefined as the lowest total cost

for all items under all currently known policies, and TC lk is redefined as a lower bound for the total

costs of all items related to consolidation group k. TC lk can be obtained from Lemma 4 by including

the holding costs for the reserved stock on hand of all items in group k.

The optimization procedure is analogous to the single-item case. First, TC lk is determined. Second,

an initial total cost, TC, is obtained by optimizing a system where the shipment intervals, T k ∀ k ∈

K, are determined by a straightforward extension of the heuristic in (29). In this extension, the

total holding cost is a summation of the holding costs of all items associated with the considered

consolidation group. The optimization, given T k, is performed separately for each item j ∈ J according

to the single-item procedure. Given TC, initial values for T lk and T uk ∀ k ∈ K can be determined and

the bounds are tightened as TC is updated. Finally, an optimal solution is found by searching all

combinations of shipment intervals within the bounds, optimizing the reorder points and order-up-to

levels at all retailers for all items separately, and choosing the solution with the lowest total cost.

7 Summary, Extensions and Future Research

In this paper we have presented a method for exact analysis of the inventory level distributions, fill

rates and expected costs in one warehouse multi-retailer inventory systems with time based shipment

consolidation and compound Poisson demand. An optimization procedure is also provided based on

bounding the optimal decision variables; the warehouse reorder point, the retailer base-stock levels,

and the shipment intervals. The method is applicable for both single- and multi-item systems.

The analysis can be extended to other related systems, for example with different replenishment

policies at the central warehouse. The same technique for analyzing the inventory levels, costs and fill

rates at the retailers (via the backorder distribution at the warehouse) can be used for any warehouse

replenishment policy for which the inventory position and lead time distributions are known. One

such extension is the use of an (s, S) policy at the warehouse. For this system, the lead time (L0)

is constant and the distribution of the warehouse inventory position can for instance be obtained by

the technique in Axsäter (2006, p. 107–109). With this distribution known, the cost analysis of the

entire system can be obtained analogously to the approach presented in this paper. Assuming that

S − s is fixed, the optimization can be handled analogously as well. Relaxing this assumption offers
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interesting challenges for further research.

Another possible extension is to let the warehouse use, what we refer to as, synchronized (R,nQ)

replenishments. This implies that replenishment orders from the central warehouse are placed only

when there is a shipment leaving (to any retailer group) exactly L0 time units later. To elaborate,

consider a situation when the inventory position at the warehouse falls below R0 at time t0 and the

first shipment from the warehouse after time t0 + L0 leaves at t0 + L0 + ∆. If the replenishment

order of Q0 units is placed at time t0 (as our policy prescribes) it will arrive ∆ time units before it is

needed. Under the synchronized policy the warehouse delays the order placement ∆ time units, and

will thereby reduce its inventory with Q0 units for ∆ time units. Because of the periodic shipment

schedule, this delay does not affect the service to the retailers. The analysis of the retailers in this

system therefore remains the same as in our current model. However, the analyses of the warehouse

inventory (both the reserved and unreserved stock on hand) and the optimization bounds are severely

complicated and beyond the scope of this paper to solve. Note that, theoretically, the synchronized

policy offers a performance guarantee over the presented (R,nQ) policy. Intuitively, the difference in

performance will depend on how often shipments are dispatched. This is influenced, for example, by

the number of retailer/consolidation groups, the length of the shipment intervals and the coordination

of dispatching times. Frequent shipments suggests smaller opportunities for savings. From a practical

perspective, there are two drawbacks with the synchronized policy; (1) it is sensitive to variations in

the replenishment lead times, L0, and (2) the receiving and loading activities of all items at the central

warehouse are concentrated to the same time instances. Other possible extensions would be periodic

(R,nQ) replenishments, and synchronized or periodic (s, S) policies.

The exact approach presented in this paper can be computationally challenging to apply to large

systems. Thus, another direction for future research is to consider computationally more efficient

methods for cost analysis and optimization. In addition, we believe that our analysis provides a good

foundation for future research on both exact methods and accurate heuristics for analyzing similar

divergent systems. Other possible future areas of research using extensions of this approach includes

N -echelon distribution systems, periodic replenishments to the central warehouse or demand with

other distributions than compound Poisson.
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Electronic Companion

An electronic companion, containing all proofs and appendices, is available together with the online

version of this paper at http://or.journal.informs.org/.
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Axsäter, S. 1997. Simple evaluation of echelon stock (R,Q)-policies for two-level inventory systems. IIE Trans. 29
661–669.
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Appendix A: Algorithm for Determining TC l
k

To find the lower bound for the total costs directly associated with retailer group k, TCk, in Lemma
5,

TC lk = min
Tk,Si

(TCk|Bi(t0) = 0, ∀ i), (A1)

we go through the following steps:

1. Determine a near optimal shipment interval for retailer group k, T k, using (29)

2. Given T k, determine near optimal reorder points for each retailer Si. This is done by optimizing
each retailer separately as a single-echelon system. Note that the convexity property in Proposition 3
holds also for systems where Bi = 0 (R0 →∞).

3. Calculate TCk = TCk(T k, Si).

4. Obtain upper and lower bounds for Tk for the optimization. These bounds are obtained analogously
to the bounds in Proposition 5 as

T lk =
TCk −

√
TC

2
k − 2ωk

∑
i∈Nk

h0λiµi∑
i∈Nk

h0λiµi
(A2)

T uk =
TCk +

√
TC

2
k − 2ωk

∑
i∈Nk

h0λiµi∑
i∈Nk

h0λiµi
.. (A3)

5. Search through all values of Tk in this interval and optimize Si for each Tk to find the lower bound,
TC lk.

Appendix B: Proofs

Proof of Proposition 1

Proof. The reserved stock on hand at the warehouse increase whenever an unreserved unit on hand
is reserved or a backordered unit arrives to the central warehouse. Thus the process by which the
reserved stock on hand accumulates depends on the customer demand process, and the warehouse
replenishment process. For fixed policies these two processes are in the current system independent
of the shipment process, i.e., the length of the shipment interval, and when shipments leave the
central warehouse. Hence, the same holds for the accumulation process of the reserved stock on hand.
Moreover, as all unsatisfied demand is backordered, and all units will be reserved stock on hand at the
warehouse at some point in time, the average rate by which the reserved stock on hand for retailer i
accumulate is equal to the demand rate at retailer i, λiµi. Consequently, if the previous shipment to
retailer i left at time t, the expected number of units on hand at the warehouse reserved by retailer
i, at t + τ , for any τ ∈ (0, Ti], is λiµiτ . This means that the expected amount of reserved stock on
hand for retailer i will increase linearly between two consecutive shipments from 0 to λiµiTi. Taking
the average over time renders (4).
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Proof of Lemma 1:

Proof. Conditioning on at least n retailer orders during (t0 − L0, t0], Φ0 ≥ n, and that Ψn−1 = x,
for x > 0, there will be u > 0 partial backorders for retailer i caused by the nth retailer order if two
conditions are fulfilled: (i) The nth retailer order originates from retailer i. The probability for this is
λi
λ0

. (ii) The quantity of this order is x + u. The probability for this is P{Yi = x + u}. This renders
for u > 0,

P{B̂n
i (t0) = u|Φ0 ≥ n and Ψn−1 = x} =

λi
λ0
P{Yi = x+ u},∀ x > 0. (B1)

(14) follows from unconditioning with respect to Φ0 and Ψn−1. The latter by considering all possible
positive values x ∈ [1, S0 − n+ 1].

In order to have 0 partial backorders for retailer i, when the nth retailer order after t0 − L0 brings
the nominal inventory position to a non-positive value, the proof is analogous. In this case, however,
there are two different scenarios; either the nth customer arrives from retailer i and demands exactly
x units to move the nominal inventory position to 0, or the nth customer arrives from another retailer
and demands more than or equal to x units.

Proof of Lemma 2:

Proof. The distribution of complete backorders depends on n, the retailer order that brings the nominal
inventory position to a non-positive value. However, because of the memoryless property of the
compound Poisson demand, the complete backorders are independent of which retailers these n first
orders originated from, and the sizes of these orders.

Given that there are a orders to retailer i after the nth retailer order, i.e., Φ̌i,n = a, it is clear that
P{B̌i,n(t0) = v|Φ̌i,n = a} = P{Y a

i = v}. (17) follows by taking the expectation over all possible
outcomes of Φ̌i,n.

To arrive at (18) we note that given m retailer orders that are completely backordered, the probability
that a of these originates with retailer i is P{Zmi = a}. Moreover, the probability of n + m retailer
orders in (t0−L0, t0] given at least n orders in (t0−L0, t0] is P{Φ0 = n+m}/P{Φ0 ≥ n}. (18) follows
as an expectation over all possible values of m.

Proof of Proposition 2:

Proof. By definition P{B̂n
i (t0) = u} is the probability that the nth retailer order brings Ψn to a non-

positive value, causing u partial backorders for retailer i. Also, by definition P{B̌i,n(t0) = r−u} is the
probability that there are r− u complete backorders for retailer i conditioned on that the nth retailer
order brings Ψn to a non-positive value. Taking the expectation over all possible values of n and u
(noting that u ≤ r) renders (20).

For r = 0 we also need to consider the probability that the inventory position never reaches zero
during the replenishment lead time, p0, rendering (21).
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Proof of Lemma 3:

Proof. In order for B̃−mi (t0) = u there are two possible scenarios; (a) The mth order before (t0 − L0)
arrives from retailer j 6= i and the size of this order is at least −Ψ−(m−1) = −x units (x < 0), and
(b) the mth order originates with retailer i and is for at least −Ψ−m = −x units. Starting with (a)
the probability that the mth customer arrives from retailer j 6= i and demands more than −x units
is (λic/λ0)P{Yic ≥ −x}. In order for B̃−mi (t0) = u in this scenario, the m − 1 next customer orders
need to contain u units to retailer i and need to assure that the nominal inventory position is x, which
can be expressed as the probability P{V m−1

i = u and Ψ−(m−1) = x}. A summation over all possible
values of x (x ∈ [S0 +m− 1,−1]) generates the first part of (25).

The probability for scenario (b) is (λi/λ0)P{Yi ≥ −x}. In this scenario, −x units of the mth order
will be backordered at t0. Thus, in order for B̃−mi (t0) = u, the next m − 1 customers need to order
u − (−x) = u + x units to retailer i and ensure that Ψ−(m−1) = x, which can be expressed as the
probability P{V m−1

i = u + x and Ψ−(m−1) = x}. A summation over all possible values of x renders
the second part of (25).

In order for V m−1
i = u and Ψ−(m−1) = x, the last m−1 customer orders before t0−L0 need to include

u units to retailer i and x− S0 − u units to all other retailers (recall S0 < 0 and x < 0). With Zm−1
i

defined as in Section 3.3.1 and determined by (16) we get (26).

Proof of Proposition 3:

Proof. Neither the shipment costs,
∑K

k=1
ωk
Tk

, nor the holding costs at the central warehouse are affected
by Si. Furthermore, the holding cost and backorder cost at retailer i are unaffected by the order-up-to
levels at other retailers. Thus, for fixed R0 and T, TC(R0,S,T) is separable in the retailer order-up-to
levels. To assert the convexity in Si we define the holding and backorder costs at retailer i as

RCi(R0, Si, Ti) = hiE[IL+
i (s)] + βiE[IL−i (s)]. (B2)

It is sufficient to show convexity for RCi(R0, Si, Ti) with respect to Si for each retailer i. We define
the difference function ∆G(s) as follows:

∆G(s) = RCi(R0, s+ 1, Ti)−RCi(R0, s, Ti). (B3)

To prove convexity, we need to show that ∆G(s) −∆G(s − 1) ≥ 0. First, by using (7), (8) and (9),
we rewrite RCi(R0, s, Ti) as:

RCi(R0, s, Ti) = (hi + βi)E[IL+
i (s)]− βiE[ILi(s)],

= (hi + βi)
1

Ti

s∑
j=1

s−j∑
r=0

jP{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s− j − r}dx,

−βi(s− E[Bi(t0)]− λiµiLi). (B4)

Note that the probability mass function and expectation of Bi(t0) does not depend on the order-up-to
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levels of the retailers. Next, we derive RCi(R0, s+ 1, Ti) in terms of RCi(R0, s, Ti):

RCi(R0, s+ 1, Ti) =

(hi + βi)
1

Ti

s+1∑
j=1

s+1−j∑
r=0

jP{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s+ 1− j − r}dx

−βi(s+ 1− E[Bi(t0)]− λiµiLi),

= (hi + βi)
1

Ti

s∑
z=0

s−z∑
r=0

(z + 1)P{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s− z − r}dx

−βi(s+ 1− E[Bi(t0)]− λiµiLi),

= (hi + βi)
1

Ti

s∑
z=0

s−z∑
r=0

zP{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s− z − r}dx

+(hi + βi)
1

Ti

s∑
z=0

s−z∑
r=0

P{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s− z − r}dx

−βi(s− E[Bi(t0)]− λiµiLi)− βi,

= (hi + βi)
1

Ti

s∑
z=0

s−z∑
r=0

P{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s− z − r}dx

−βi +RCi(R0, s, Ti). (B5)

As a result the first order difference is equal to:

∆G(s) = (hi + βi)
1

Ti

s∑
j=0

s−j∑
r=0

P{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s− j − r}dx− βi. (B6)

By following the similar line of thought, we get the following for the second order difference:

∆G(s)−∆G(s− 1) = (hi + βi)
1

Ti

s∑
r=0

P{Bi(t0) = r}
∫ Ti

0
P{Di(Li + x) = s− r}dx ≥ 0. (B7)

Proof of Proposition 4:

Proof. It is clear from (3) that h0E[IL+
0 ] is increasing in R0 for all values of R0 ≥ −Q0 and that

the total cost TC(R0,S,T) = h0E[IL+
0 ] +

∑
k∈K TCk(R0,S, Tk) ≥ h0E[IL+

0 ] +
∑

k∈K TC
l
k. With

Ru0 = min{R0 : h0E[IL+
0 ] +

∑
k∈K TC

l
k ≥ TC} it follows that for all R0 > Ru0 , TC(R0,S,T) ≥ TC

and searching this region cannot reduce the costs.
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Proof of Proposition 5:

Proof. Let

Θk(Tk) = h0

∑
i∈Nk

E[Wi] +
ωk
Tk

=
1

2

∑
i∈Nk

h0λiµiTk +
ωk
Tk
, (B8)

be the costs directly related to shipment interval Tk. Note that Θk(Tk) is strictly convex in Tk as (for
Tk > 0)

∂2Θk

∂T 2
k

=
∂2(1

2

∑
i∈Nk

h0λiµiTk + ωk
Tk

)

∂T 2
k

= 0 + 2
ωk
T 3
k

> 0. (B9)

Note also that

TC(R0,S,T) = h0E[IL+
0 ] +

∑
κ∈K

TCκ(R0,S, Tκ)

≥ TCk(R0,S, Tk) +
∑

κ∈K\{k}

TCκ(R0,S, Tκ) ≥ Θk(Tk) +
∑

κ∈K\{k}

TC lκ. (B10)

It follows that no Tk satisfying

Θk(Tk) ≥ TC −
∑

κ∈K\{k}

TC lκ (B11)

can render a lower total expected cost than TC. From (B8), (B11) and the convexity of Θk(Tk) we
arrive at (31) and (32) by solving

1

2

∑
i∈Nk

h0λiµiTk +
ωk
Tk

= TC −
∑

κ∈K\{k}

TC lκ (B12)

with respect to Tk. When Tk is smaller than the smallest root, T lk, or larger than the largest root, T uk ,
(B11) is always satisfied and these regions do not need to be searched.

Proof of Lemma 4:

Proof. From Proposition 5 we know that the costs directly related to the shipment interval Tk,
Θk(Tk) =

∑
i∈Nk

E[Wi] + ωk
Tk

is convex in Tk. Hence, the shipment interval Tk,l that minimizes Θk(Tk)
is obtained from the first order optimality condition

δΘk

δTk
=

δ

δTk

1

2

∑
i∈Nk

h0λiµiTk +
ωk
Tk

 = 0, (B13)

which renders

Tk,l =

√
2ωk∑

i∈Nk
h0λiµi

. (B14)

(33) follows from

TCk(Tk) ≥ Θk(Tk) ≥ Θk(Tk,l) =

√
2h0ωk

∑
i∈Nk

λiµi. (B15)

Proof of Lemma 5:
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Proof. From (27) TCk(R0,S, Tk) = ωk
Tk

+
∑

i∈Nk
h0E[Wi] + hiE[IL+

i ] + βiE[IL−i ]. Note that neither

Wi nor ωk
Tk

depend on R0. Moreover, the retailer costs, RCi(R0, Si, Tk) = hiE[IL+
i (s)] + βiE[IL−i (s)],

depend on R0 solely through the backorder distribution, Bi(t0). From (6) we can show that the
probability of an inventory level j at time t0 + Li + t at retailer i when Bi(t0) = bi is

P{ILi(t0 + Li + t) = j} = P{bi +Di(t0, t0 + Li + t) = Si − j}
= P{(bi + 1) +Di(t0, t0 + Li + t) = (Si + 1)− j}, (B16)

which implies that

RCi(Si, Tk|Bi(t0) = bi) = RCi(Si + 1, Tk|Bi(t0) = bi + 1). (B17)

For reasons of exposition and without loss of generality we renumber the retailers in retailer group
k, {1, 2, ..., Nk}. Now, let SNk

denote the vector of all order-up-to levels within retailer group k,
{S1, ..., SNk

}, and BNk
(t0) denote the vector of backordered units to each retailer in retailer group k

at t0, {B1(t0), ..., BNk
(t0)}. The total costs for retailer group k, TCk(R0,SNk

, Tk), for any values of
R0, SNk

and Tk can then be seen as a sum over weighted averages of costs for all possible backorder
combinations:

TCk(R0,SNk
, Tk) =

∞∑
b1=0

...
∞∑
bk=0

P{BNk
(t0) = {b1, ..., bk}}TCk(SNk

, Tk|BNk
(t0) = {b1, ..., bk}). (B18)

This gives us for any value of R0

TCk(R0,S, Tk) ≥ min
Tk,SNk

[TCk(R0,S, Tk)]

= min
Tk,SNk

 ∞∑
b1=0

...
∞∑
bk=0

P{BNk
(t0) = {b1, ..., bk}}TCk(SNk

, Tk|BNk
(t0) = {b1, ..., bk})


≥

∞∑
b1=0

...
∞∑
bk=0

P{BNk
(t0) = {b1, ..., bk}} min

Tk,SNk

[TCk(SNk
, Tk|BNk

(t0) = {b1, ..., bk})]

=

∞∑
b1=0

...

∞∑
bk=0

P{BNk
(t0) = {b1, ..., bk}} min

Tk,SNk

[TCk(SNk
, Tk|BNk

(t0) = {0, ..., 0})]

= min
Tk,Si∀ i∈Nk

(TCk|Bi(t0) = 0,∀ i ∈ Nk). (B19)

The first equality follows from (B18). The second inequality is a consequence of relaxing the constraint
forcing the same values of Tk and SNk

for all values of BNk
(t0). The second equality follows from

(B17) and the fact that only the retailer costs are affected by the backorder distribution. The last
equality follows directly as probabilities must sum to 1, completing the proof of (34)
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Appendix C: A Small Numerical Example

To illustrate the analysis we consider a system consisting of 3 retailers belonging to 2 retailer groups;
retailers {1, 2} constitute the first group (and therefore have equal shipment intervals) and retailer 3
the second. Each retailer face compound Poisson demand with a logarithmic compounding distribu-
tion, i.e. with a variance to mean ratio of the demand at retailer i of ρi = V ar[Di]/E[Di] we have:
P{Yi = y} = −αyi /(ln(1 − αi)y) and λi = −E[Di](1 − αi)ln(1 − αi)/αi, where αi = 1 − ρ−1

i . The
considered problem parameters are presented in Table 2.

Table 2: Values for parameters and decision variables in the illustrative example

E[Di] = {1, 1, 1} R0 = −2 Ti = {0.5, 0.5, 1} Li = {0.5, 0.5, 1, 0.5} βi = {10, 10, 10}
ρi = {4, 2, 1.5} Q0 = 5 Si = {4, 4, 4} hi = {1, 1, 1, 1} ωk = {2, 2}

As seen in Section 3.2, to analyze retailers i (i = 1, 2, 3) we need to determine the probability of
r warehouse backorders designated to retailer i, P{Bi(t0) = r}, for all r = [0, Si − 1], and the
expected amount of backorders to retailer i, E[Bi(t0)]. The computations are based on the analysis
in Section 3.3. Two examples of the backorder distribution to retailer 1 conditioned on the inventory
positions are {P{B1(t0) = r|IP0(t0 − L0) = −1}, r = 0, 1, 2, 3} = {0.607, 0.262, 0.057, 0.028} and
{P{B1(t0) = r|IP0(t0 − L0) = 3}, r = 0, 1, 2, 3} = {0.942, 0.023, 0.012, 0.008}. Taking the average
over all possible inventory positions (IP0(t0 − L0) = [−1, 3]) we get the steady state distributions of
the backorders designated to each retailer, presented in Table 3. Exemplifying the Remark on page
20, Table 3 also presents the expected backorders designated to each retailer and illustrates their
disproportions to the demand per time unit. One result of this is that the delay in the expected
replenishment lead time to retailer 1, caused by backorders at the central warehouse, will be higher
than the delay experienced by retailers 2 and 3.

Table 3: Distribution of warehouse backorders designated to each retailer

Retailer (i) {P{Bi(t0) = r}, r = 0, 1, 2, 3} E[Bi(t0)]

1 {0.824, 0.096, 0.032, 0.017} 0.399
2 {0.773, 0.144, 0.048, 0.020} 0.373
3 {0.754, 0.165, 0.054, 0.018} 0.367

Knowing the backorder distributions, the expected stock on hand, E[IL+
i ], the expected

backorders, E[IL−i ], and the fill rates, γi, at the retailers can be determined from (7), (9) and (10)
respectively. Calculating the expected stock on hand at the central warehouse using (3) and (4), the
total cost of the system can be determined from (2). The results, determined analytically by the
suggested approach, and simulated in a discrete event simulation program (Extend), are presented in
Table 4.

Table 4: Results from exact analysis and simulation (Sim)

E[IL+
0 ] E[IL+

i ] E[IL−i ] TC γi(%)

Exact 1.639 {3.087,2.541,2.704} {0.236,0.165,0.071} 20.691 {72.6,79.5,88.1}
Sim1 1.639 {3.087,2.541,2.704} {0.236,0.165,0.071} 20.691 {72.6,79.5,88.1}

1The Standard deviations of the simulated results were < 0.001.
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Appendix D: Numerical Study

For all 128 problem settings defined in Section 5, the shipment intervals, Tk ∀ k ∈ K, the reorder points
at the central warehouse, R0, and the order up to levels at the retailers, Si ∀ i ∈ N , are optimized
using the method described in Section 4. For optimizing the shipment intervals we have used a step
size of of 0.01 time units. The complete results for all settings are available from the authors upon
request. Table 5 summarizes the results in terms of average effects on: the optimal total cost, TC∗,
the optimal reorder point at the central warehouse, R∗0, the average of the optimal order-up-to level at
the retailers, S∗i , and the average of the optimal shipment intervals, T ∗k . It also includes the relative
difference between the heuristic shipment intervals and the optimal, ∆T , the relative increase in the
associated costs, ∆C, the difference between the upper bound on R0, Ru0 , and the optimal value, R∗0,
∆Ru0 , the difference between the optimal value on Tk, T

∗
k , and the lower bound, T lk, ∆T lk, and the

difference between the upper bound on Tk, T
u
k , and the optimal value, T ∗k , ∆Tk. The results associated

with ρi = 1 are averages across all 64 problems where ρi = 1, and analogously for all other parameters.

Table 5: Average results for the test series, for low and high values of N , ρi, βi, ωk, L0, Li and Q0 as well as
averages over all problems and minimum and maximum values

E[TC∗] E[R∗0] E[S∗i ] E[T ∗k ] E[∆C] E[∆T ] E[∆Ru0 ] E[∆T lk] E[∆T uk ]

ρi
1= 1 82.02 19.11 15.08 3.24 0.12% -0.60% 4.91 2.05 15.81

ρi
1= 5 141.00 20.67 23.75 3.05 0.16% 6.57% 9.92 2.33 31.28

βi = 10 93.66 18.19 15.88 3.30 0.08% -2.27% 7.42 2.21 18.88
βi = 100 129.37 21.59 22.94 2.99 0.21% 8.24% 7.41 2.17 28.21

ωk = 10 81.96 21.25 15.97 1.54 0.13% 1.90% 7.28 1.25 19.07
ωk = 100 141.07 18.53 22.85 4.75 0.15% 4.07% 7.55 3.13 28.02

N = 3 84.78 10.86 20.45 3.68 0.15% 3.18% 6.53 2.52 25.82
N = 6 138.24 28.92 18.38 2.61 0.14% 2.79% 8.30 1.86 21.27

L0 = 1 108.36 1.27 18.86 3.11 0.17% 4.41% 5.06 2.11 22.05
L0 = 5 114.66 38.52 19.96 3.18 0.11% 1.56% 9.77 2.27 25.04

Li = 1 and 2 107.98 20.45 17.26 3.10 0.18% 4.94% 7.48 2.13 22.96
Li = 2 and 4 115.04 19.33 21.57 3.19 0.11% 1.03% 7.34 2.26 24.14

Q0 = 2 110.40 24.50 19.13 3.13 0.15% 3.49% 6.33 2.15 22.96
Q0 = 20 112.63 15.28 19.69 3.16 0.14% 2.48% 8.50 2.23 24.13

Average 111.51 19.89 19.41 3.15 0.14% 2.99% 7.41 2.19 23.55

Minimum 31.61 -10 7.67 1.09 0.00% -9.79% 0 0.91 7.05
Maximum 264.19 68 38.33 6.11 0.66% 18.60% 24 4.23 51.26

1ρi = 1 corresponds to Poisson demand at all retailers and ρi = 5 to compound Poisson demand with logarithmic

compounding distributions so that the variance-to-mean ratio of the demand per time unit at retailer i is 5 ∀ i ∈ N .

Focusing first on the computational aspects and the optimality bounds, it is relevant to know that the
optimization times for studied problems were between 0.2 and 120 minutes on a Dell Latitude 6400
lap top. The parameters that seem to affect the computational times the most are λ0, L0, N and K.
An important observation is that the fairly time consuming calculations of the backorder distributions
at the central warehouse only needs to be computed once for each value of R0 (in a given problem).
Especially for the computationally more demanding problems, most of the computational time was
spent on calculating these distributions. An explanation for this is that the complexity of determining
these distributions increase with R0 + Q0. As a result, the upper bound on the reorder level at the
central warehouse, Ru0 is the most important bound. Table 5 shows that this bound is rather tight,
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exceeding the optimal value R∗0 by on average with only 7.41 units. It is especially tight in the cases
where ρi = 1 (on average only 4.91 units above optimum) and when L0 = 1 (on average only 5.06
units above optimum). In fact, in the 32 problem settings investigated, where ρi = 1 and L0 = 1,
E[∆Ru0 ] = 3.53. The fact that E[∆Ru0 ] is lower in systems where L0 is lower is intuitive, as the optimal
reorder level, R∗0, is much lower for these systems. The effect of ρi on the performance of the bound
is perhaps less obvious. In order to explain this, recall that this bound is based on an estimation of
the minimum costs at the retailers, TC lk, that assumes no backorders at the central warehouse (see
Proposition 4). When the demand has a higher variance-to-mean ratio, a higher R0-value is required
for reaching this situation and the bound will therefore become looser.

Turning to the bounds on Tk, Table 5 shows that the lower bound is on average 2.19 time units below
the optimal value (which is on average 3.15). The upper bound is looser as it is on average 23.55 time
units above the optimal value. These bounds play a less important role in reducing the computational
time than the upper bound on R∗0.

Shifting our attention to the EOI heuristic, Marklund (2011) shows that it performs very well for
Poisson demand. Based on Table 5 this seems to hold also for compound Poisson demand. The
expected relative cost increase for all problem settings is only 0.14%, although the heuristic tends to
overestimate the optimal shipment intervals with on average 2.99%. The relative cost increase is also
only slightly higher in the systems where the variability in the demand is high 0.16% compared to
0.12% for the Poisson systems. There is a stronger tendency to overestimate the shipment intervals
for the systems where ρi = 5 (E[∆T ] = 6.57%), but because the total costs are much higher in these
systems, the relative increase is still small. The parameter that seems to have the biggest influence
on the performance of the heuristic is, in fact, the backorder costs. In systems where the backorder
costs are high E[∆C] = 0.21%. An explanation may be the desire to increase the flexibility in these
systems by reducing the shipment intervals (the shipment intervals are overestimated by 8.24% in
systems where βi = 100 when using the heuristic).

Considering the behavior of the optimal solutions, Table 5 illustrates that when the variability increases
(i.e. comparing ρi = 1 to ρi = 5), the biggest difference in the control parameters is seen in the order-
up-to levels of the retailers, which increase from on average 15.08 to 23.75. However there are also
effects on the shipment intervals and reorder points at the central warehouse. The optimal warehouse
reorder point increases from on average 19.11 to 20.67, thus raising the amount of available units at
the central warehouse to handle the variability. The shipment intervals decrease from on average 3.24
to 3.05 with the effect that there is more flexibility in the system (the system can react faster if there
is a big order at a specific retailer). Similar effects can be seen when increasing the backorder cost
(βi). The largest effect on the the optimal control parameters is an increase in the average order-up-to
levels at the retailers from 15.88 to 22.94. However, we also see an increase in the average reorder
point at the central warehouse from 18.19 to 21.59 and a decrease in the average shipment intervals
(from 3.30 to 2.99), increasing the flexibility.

With regards to the shipment costs, we can see from Table 5 that as ωk ∀ k increase, the system
reacts by increasing the shipment intervals (from on average 1.54 to 4.75). Moreover, the order-up-to
levels at the retailers need to be raised accordingly in order to ensure stock for a longer replenishment
cycle. Maybe less intuitively, the average optimal reorder points at the central warehouse decreases
for these systems. This can be explained by the fact that increased shipment intervals results in longer
replenishment lead times to the retailers, which may reduce the relative impact of inventory pooling
at the central warehouse. Another contributing factor may be that the consolidation stock at the
central warehouse increases with the shipment intervals. Thus, in order to avoid too much stock at
the warehouse, the reorder point is reduced. For the other parameters, N , L0, Li and Q0, the behavior
of the optimal solutions did not offer any insights beyond the obvious.
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Abstract 

We consider a continuous review inventory model consisting of a central warehouse supplying N 

retailers which face stochastic demand. All installations replenish using reorder point policies with 

fixed batch sizes. The focus is on evaluating different central warehouse delivery polices. If the 

central warehouse cannot satisfy an entire order immediately, previous models predominantly assume 

that any available units are shipped immediately (partial delivery). However, depending on the cost 

structure and the current state of the system it may be more effective to wait until the entire order is 

available (complete delivery). We introduce a new state-dependent delivery policy where a cost 

minimizing decision between partial or complete deliveries is made for each occurring order. We 

provide an exact method for cost evaluation and optimization of the reorder points under this policy, 

as well as for the pure partial - and for the pure complete delivery policies. We also derive sufficient 

conditions for when complete deliveries should always be chosen over partial deliveries. Numerical 

results show that significant benefits can be reaped by using our new policy. 

 

Keywords: Inventory, Multi-echelon, Batch ordering, Stochastic demand, Delivery policy 
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1. Introduction 
Increasing fuel prices, tighter environmental legislation and the growing strive to create sustainable 

supply chains draws focus to the distribution and transportation aspects of inventory control. As the 

importance of these issues increases, so does the importance of designing good policies for when and 

how to ship physical products within a supply chain. In this work we consider a two-echelon 

continuous review inventory system with a central warehouse and a number of retailers facing 

stochastic Poisson demand. All installations order in batches using reorder point policies (commonly 

referred to as installation stock (R,Q) policies). In previous exact analysis of such systems it is 

generally assumed that if shortages at the central warehouse occur, any units currently available are 

shipped to the retailers as soon as possible (Axsäter, 2003). This is referred to as a partial delivery 

policy and it means that a given order may be shipped to the retailer in several parts in varying sizes 

and at different times. An obvious alternative is the complete delivery policy, where units are always 

shipped in complete batches. A question not analyzed in previous models is how the choice of 

delivery policy may affect the operating characteristics of the system studied. This is particularly 

noticeable in models featuring partial deliveries as it is assumed that no extra cost is incurred, 

regardless of how many separate shipments are required to fulfill a given retailer order. This is in 

many cases a poor representation of reality, where splitting an order results in repeating activities such 

as order picking, loading, unloading, receiving, inspection, authorization and invoicing. Add to this 

the extra cost of transportation (for instance, being forced to dispatch several trucks) as well as the 

environmental consequences of such actions, and it is clear that the delivery strategy is an important 

part of controlling inventories efficiently. 

 In this work we present a new model that incorporates, and makes it possible to exactly 

evaluate, the impact of different delivery policies. In addition to standard holding - and backorder 

costs we consider what we refer to as an (extra) handling cost. This handling cost is a fixed charge for 

each partial delivery and it quantifies the extra cost of partial delivery compared to complete delivery 

of a given retailer order. Hence, the extra cost of activities such as the ones mentioned above, as well 

as quantifiable environmental costs can be included in this cost parameter. Given this new, more 

general, cost structure it is easy to spot the weaknesses in both the partial - and complete delivery 

policies. For example, assume that a retailer orders Q units and the central warehouse has only one 

unit currently available, with Q − 1 more units arriving in stock within a very short time period. 

Partial delivery implies that one unit will be shipped immediately, and the remaining Q − 1 will be 

shipped just moments later, incurring an unnecessary extra handling cost. Conversely, complete 
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delivery can lead to situations where a retailer desperately needs replenishment, justifying the extra 

handling cost, but no units are shipped because the order is not yet complete. In light of these 

predicaments, we introduce a new Mixed State-Dependent delivery policy, referred to as the MSD 

policy. Under the MSD policy, a decision between delivering a retailer order in one or several parts is 

made at the time of order placement. The decision minimizes the expected costs for the entire system 

and is based on the arrival times of incoming orders to the central warehouse. With the advances in 

information technology such information is becoming readily available. We provide an exact method 

for cost evaluation and optimization of all reorder points in the system for this new policy, as well as 

for the partial and complete delivery policies. 

 Looking at the literature, there are quite a few models, both exact and approximate, dealing 

with one warehouse - multiple retailer systems. For general overviews of this literature we refer to, for 

example, Axsäter (2003) and Marklund (2011). We will focus on models with exact solutions and 

non-identical retailers. Our emphasis on a state-dependent delivery policy that uses real-time 

information also means that we will focus on continuous review systems. For recent overviews of the 

periodic review literature see, for example, Chu and Shen (2010), Marklund and Rosling (2012) and 

references therein. Early contributions to the continuous review literature focus on one-for-one 

ordering (base-stock policies) and include Graves (1985) and Axsäter (1990). Assuming Poisson 

demand and First Come - First Served (FCFS) allocation, Graves (1985) provides the distribution of 

the retailer inventory levels using a technique based on binomial disaggregation of the central 

warehouse backorders. Through the distributions of the inventory levels it is easy to obtain 

performance measures such as the expected holding - and backorder costs. Axsäter (1990) uses a 

different technique to determine the expected holding - and backorder costs. The technique is based 

on tracking the costs that accrue as an arbitrary unit moves through the system. An extension of this 

technique to compound Poisson demand is available in Forsberg (1995). 

 Turning our attention to batch ordering policies, Axsäter (1993,1998) and Forsberg (1997) 

extend the unit tracking technique in Axsäter (1990) to installation stock (R,Q) policies. Axsäter 

(1997) and Chen and Zheng (1997) provide exact results for echelon stock (R,Q) policies. An 

important work is Axsäter (2000) which provides a model for installation stock policies, featuring 

(R,Q) policies and compound Poisson demand. Note that all papers mentioned so far assume partial 

delivery policies. If we consider the special case in our model where the handling cost is set to zero, 

we provide an alternative method of analysis for the models in Forsberg (1997) and Axsäter (2000) 

under Poisson demand. Andersson (1999) generalizes the technique in Axsäter (2000) and provides a 

cost evaluation method for the complete delivery policy. We provide an alternative cost evaluation 
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technique to this work as well when demand is Poisson. Noteworthy is that Andersson (1999) does 

not provide a method for optimizing the reorder points for the complete delivery policy. To the best of 

our knowledge, our work is the first to provide an optimization method for the case of complete 

deliveries. 

 Recently, there have been a number of papers considering new policies for the central 

warehouse. Marklund (2011) shares our focus on the central warehouse delivery policy, as it 

considers a time-based shipment consolidation policy, as well as an (R,Q) policy at the central 

warehouse and Poisson demand (later generalized to compound Poisson demand by Stenius et al., 

2013). An important difference is that Marklund (2011) considers base-stock policies at the retailers, 

as opposed to our (R,Q) policies. Furthermore, Marklund (2011) assumes that shipments leave the 

warehouse at regular time intervals, whereas a state-dependent decision on when to release a batch (or 

part of a batch) is made with our MSD policy. Central warehouse policies also based on this type of 

extended information can be found in, for example, Marklund (2002), Marklund (2006), Axsäter and 

Marklund (2008). However, their focus is different from ours as they study the warehouse ordering 

policy, assuming partial deliveries. Axsäter and Marklund (2008) provide an optimal position-based 

ordering policy that relaxes the FCFS allocation assumption. Apart from this work, FCFS allocation is 

assumed in all papers mentioned above, and is also assumed in our current work. In addition to being 

a simple easily implemented allocation policy, there are a number of numerical studies suggesting that 

FCFS generally performs well for the type of system considered in this work (e.g., Graves 1996, 

Axsäter, 2007, Howard and Marklund, 2011, Howard, 2013). 

 The main contributions of this paper can be summarized as follows: First, we introduce a new 

state-dependent delivery policy and provide an exact method for cost analysis and optimization of the 

system reorder points, given this policy. Second, we generalize previous exact partial - and complete 

delivery models. For partial delivery models we introduce a new cost parameter. For complete 

delivery models we provide a method for optimizing the reorder points. Furthermore, in our analysis 

we use a different approach compared to the previous literature; one which we believe can be 

fruitfully applied to other problems. Finally, through analytical as well as numerical results we 

provide managerial insights on when partial or complete deliveries are reasonable to use, and the 

value of using a more advanced state-dependent delivery policy. For example, we derive sufficient 

conditions for when one should always choose complete deliveries. The numerical tests show that the 

new MSD policy can lead to significant cost reductions compared to the simpler policies. Over all 

problem scenarios considered in the study, the maximum expected total cost increase of using the 

partial delivery policy, compared to the MSD policy, was 26.6% (the average was 5.8%). The 
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equivalent maximum cost increase of the complete delivery policy was 17.9% (the average was 

5.9%). Furthermore, the numerical tests suggest that, under our more general cost structure, it is 

optimal to keep more stock at the central warehouse compared to what has been reported in the 

previous literature. 

2. Problem formulation 
We consider a continuous review system consisting of one central warehouse and N non-identical 

retailers. The retailers face customer demand that occurs according to independent Poisson processes, 

and they place replenishment orders with the central warehouse. The central warehouse, in turn, 

places orders with an outside supplier with a constant lead time. All stock points apply complete 

backordering and demand is satisfied according to a First Come - First Served (FCFS) principle. 

Orders are placed using installation stock (R,Q) policies, where a batch of Q units is ordered when the 

inventory position ( = inventory level + outstanding orders; inventory level = stock on hand –

 backorders) drops to or below R. As mentioned above, the lead time for a batch shipped from the 

outside supplier to the central warehouse is constant. The transportation times (including time for 

loading, shipping and receiving) from the central warehouse to the retailers are also constant. 

However, the lead times for orders placed by the retailers depend on the availability of units at the 

central warehouse, and the type of delivery policy used at this location. They are therefore stochastic. 

We assume linear holding costs per unit and time unit at all stock points and linear backorder costs 

per unit and time unit at the retailers. The holding costs for units in transport between the central 

warehouse and the retailers are not included in our model. This is because these costs are constant on 

average and independent of the choice of ordering – or delivery policy. 

 The delivery policy determines when units will be dispatched from the central warehouse. 

When one or more units have been dispatched, they will arrive at the retailer after the constant 

transportation time. We consider three different delivery policies: (i) the partial delivery policy, (ii) 

the complete delivery policy and (iii) the mixed state-dependent delivery policy. The partial delivery 

policy (referred to as the PD policy) means that any available units are dispatched from the central 

warehouse as soon as possible after they are ordered by a retailer. If this results in a batch of Qi being 

delivered in multiple parts, we refer to this as a partial delivery of that batch. The complete delivery 

policy (CD policy) implies that no units are dispatched until the entire batch of Qi is available at the 

central warehouse. In other words, complete delivery is applied to all incoming orders. Note that the 

PD and CD policy can result in the same course of action, whenever all Qi units are available at the 

central warehouse at the same time. Applying the mixed state-dependent delivery policy (MSD 
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policy), a decision between partial or complete delivery is made at the time the retailer order occurs. 

That is, if part of (but not the entire) order will be available at some point in time, a choice is made 

between dispatching the first part at the earliest possible time or waiting until the entire batch is 

available. This choice is referred to as the MSD decision. The MSD decision is made according to 

what we call the MSD decision rule, which minimizes the expected costs for the entire system. 

 We assume that partial delivery can lead to a maximum of one extra delivery compared to 

complete delivery. That is, an order cannot be split in more than two parts. This will always be the 

case given some mild assumptions regarding the central warehouse and retailer batch sizes (this is 

discussed in further detail after the notation has been defined). There is a fixed handling cost for each 

batch that is partially delivered. This cost quantifies the extra costs that are incurred due to the two 

separate delivery occasions, compared to complete delivery where the entire batch of Qi units is 

delivered on one single occasion. 

 The ordering policy at the central warehouse operates independently of the delivery policy. 

When applying complete delivery, there can be units physically at the central warehouse that have 

already been assigned to a specific retailer (recall that FCFS is used). These units, which are referred 

to as units on hold, are waiting for order completion before they can be dispatched. Units on hold are 

not included in the stock on hand (we define stock on hand to only include units that are available to 

satisfy future retailer orders). As a consequence, units on hold are not included in the inventory level 

or the inventory position (the state of which, triggers orders to the outside supplier). However, units 

on hold do incur holding costs at the central warehouse, just like the units on hand. 

 We introduce the following notation:  

N = number of retailers 

N = {1,2,…,N}, set of retailer indices 

R0 = reorder point at the central warehouse 

Ri = reorder point at retailer i 

Q0 = order quantity at the central warehouse, 

Qi = order quantity at retailer i 

q = largest common factor of Q0,Q1,…,QN 

L0 = lead time for an order placed by the central warehouse with the outside supplier 

Li = transportation time for an order placed by retailer i with the central warehouse 

h0 = holding cost per unit and time unit at the central warehouse, h0 > 0 

hi = holding cost per unit and time unit at retailer i, hi > 0 

bi = backorder cost per unit and time unit at retailer i, bi > 0 
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θi = handling cost for each partially delivered batch to retailer i, θi ≥ 0 

λi = average customer demand rate at retailer i 

IP0(t) = inventory position at the central warehouse at time t 

IPi(t) = inventory position at retailer i at time t 

IL0(t) = inventory level at the central warehouse at time t 

ILi(t) = inventory level at retailer i at time t 

Oi(t) = inventory on hold assigned to retailer i at the central warehouse at time t 

Si = expected number of extra deliveries per time unit due to partial deliveries to retailer i 

x+ = max(x,0) 

x− = max(−x,0) 

 It is assumed that R0 is an integer multiple of q (and that the central warehouse inventory level 

is a multiple of q when the system is initiated). As a direct consequence, IL0 and IP0 will always be 

multiples of q. The retailers accept both partial and complete deliveries, but do require information, at 

the time of order placement, on exactly when they will be receiving the units ordered. Under the MSD 

policy, this means that the central warehouse is not allowed to revise its decision (e.g., send units on 

hold earlier than first decided) based on events after the time of retailer order placement. Another 

consequence of this assumption is that we only consider central warehouse reorder points that satisfy 

R0 ≥ 0. This eliminates situations where there are backorders at the central warehouse, but no order 

has yet been placed to the outside supplier. As mentioned above, we also assume that partial delivery 

can lead to a maximum of one extra delivery. This means that we require that Q0 ≥ max(Q1,…,QN). In 

most practical situations one would expect the central warehouse order quantity to be larger than the 

retailer order quantities. Hence, this assumption is not very restrictive. Using our methodology, it is 

quite easy to expand the parameter range to R0 ≥ −q and Q0 ≥ max(Q1,…,QN) − q, but for ease of 

exposition we exclude these special cases. 

 We assume that all order quantities are given (e.g., determined by a deterministic model), and 

we focus on determining the integer reorder points R = (R0,…,RN) that minimize expected total 

system costs for each of the three different delivery policies. The expected total costs are given by 

 
N N N

0 0 i i i i i i i
i 1 i 1 i 1

TC( ) h (E[IL ] E[O ]) S (h E[IL ] b E[IL ]).+ + −

= = =
= + + θ + +∑ ∑ ∑R  (1) 
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3. Analysis 
We begin the analysis with deriving the cost minimizing MSD decision rule. Given this policy, we 

then provide a method for determining the expected total costs for a given set of reorder points. This 

is followed by the analysis of the PD policy and the CD policy, respectively. Finally, we provide 

methods for obtaining the optimal reorder points under each of the three different delivery policies 

considered. 

3.1 The MSD decision rule 
Assume that retailer i places an order of Qi units to the central warehouse at time τz. The MSD 

decision is applied at time τz if part of, but not the entire, order will be available for dispatch at some 

point in time. Because Q0 ≥ Qi (∀ i∈N), the central warehouse never places two orders to the outside 

supplier at the same time. Clearly, if the central warehouse inventory level is such that 

q ≤ IL0(τz) ≤ Qi − q just before the retailer order of Qi is placed, part of the order can be dispatched 

immediately, and part of the order can be dispatched when the next batch of Q0 units arrives from the 

outside supplier. Furthermore, if q − Q0 ≤ IL0(τz) ≤ Qi − q− Q0, part of the order can be dispatched 

when the next batch of Q0 units arrives, and part of the order can be dispatched when the next Q0 after 

that arrives. Following this logic the MSD decision is applied if and only if 

q −nQ0 ≤ IL0(τz) ≤ Qi − q − nQ0  (n = 0, 1, 2…) when the order of Qi occurs. If this is not the case, a 

complete delivery will be made and we do not need to apply the MSD decision. Recall that the order 

of Qi can be split in at most two parts. Therefore, for applying the MSD decision at time τz we define 

 

t1 = time until the first part of the order can be dispatched from the central warehouse (t1 ≥ 0) 

t2 = time until the entire order can be dispatched from the central warehouse (t2 > t1) 

u = number of units available for dispatch to retailer i from the central warehouse at time τz + t1 

  (q ≤ u ≤ Qi − q). 

Recall that R0 ≥ 0. Therefore, the values of t1, t2 and u will be known at time τz. A partial delivery 

means that we dispatch u units at time τz + t1, and Qi − u units at time τz + t2. A complete delivery 

means that we dispatch all Qi units at time τz + t2. We refer to the latter as placing u units on hold 

(between time τz + t1 and τz + t2). 

 The analysis is facilitated by the following observation: 
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Observation 1 

The MSD decision at time τz does not affect any forthcoming MSD decisions. Furthermore, the MSD 

decision only affects the costs at the central warehouse and retailer i. 

 

Observation 1 follows directly from the fact that the MSD decision cannot be revised after time τz, 

and the fact that central warehouse uses FCFS allocation. The FCFS allocation principle implies that 

retailer orders will be satisfied in the sequence that they arrive at the central warehouse. Therefore, 

any units on hold for retailer i do not affect other incoming orders at the central warehouse. 

Observation 1 means that we can derive the decision rule by considering the expected difference in 

holding - and backorder costs of placing the u units on hold until time τz + t2, compared to dispatching 

them at time τz + t1. This cost difference, denoted by ΔCi(Ri,t1,t2,u), can then be compared to the 

handling cost, θi. If ΔCi(Ri,t1,t2,u) ≤ θi, complete delivery is chosen. Otherwise, partial delivery is 

chosen. 

 We obtain ΔCi(Ri,t1,t2,u) by analyzing each affected cost component separately. Obviously, 

placing u units on hold implies an additional holding cost of h0(t2 − t1)u at the central warehouse. To 

calculate the cost effect at retailer i, we arbitrarily number the u units considered and introduce our 

second observation: 

 

Observation 2 

Given that Ri + n > 0 at time τz, the nth unit in the u units considered will satisfy the (Ri + n)th customer 

demand after τz at retailer i. If Ri + n ≤ 0, the nth unit will satisfy the (Ri + n + 1)th most recent 

backorder before time τz. 

 

Observation 2 holds because the retailer’s inventory position just reached Ri at time τz. Furthermore, 

the FCFS allocation principle means that the nth unit will satisfy the same customer demand, 

regardless if it placed on hold at the central warehouse or not. Because customer demand occurs 

according to a Poisson process, the time until the nth unit is demanded is Erlang distributed. Let 

Γi(k) = stochastic time for k customer demand arrivals at retailer i, Γi(k)∈Erlang(k,λi) 

  with probability density function 
i

k k 1 x
(k)f (x) x e (k 1)!− −λ

Γ = λ −  x ≥ 0. 

gi(Ri,δ,n) = expected holding - and backorder cost at retailer i for the nth unit placed on 

  hold, arriving at retailer i in δ time units 

It follows that 
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u

i i 1 2 0 2 1 i i i 2 i i i 1
n 1

C (R , t , t , u) h (t t )u g (R ,L t ,n) g (R ,L t ,n)
=

∆ = − + + − +∑ . (2) 

The nth unit will either incur a holding cost or a backorder cost, depending on if it arrives before or 

after its corresponding demand at the retailer. Hence, for Ri + n > 0 we have 

 

( ) ( )

( ) ( )
i i

i i i i i i i i

i i i i i i i

R n j
i i i i

i i i
j 0i i

g (R , ,n) h E (R n) b E (R n)

(h b )E (R n) b E (R n)

(h b )e ( ) b(R n j) ( R n),
j!

+ −

+

−λ δ +

=

   δ = Γ + − δ + Γ + − δ   
   = + Γ + − δ + δ −Γ +  

+ λ δ
= + − + λ δ − −

λ λ∑

 (3) 

and for Ri + n ≤ 0 

 i i ig (R , ,n) bδ = δ . (4) 

 The results from our analysis are summarized in Proposition 1. 

 

Proposition 1  The MSD decision rule 

The central warehouse should choose complete delivery of the batch of Qi if 

 i i 1 2 iC (R , t , t , u)∆ ≤ θ . (5) 

Otherwise, partial delivery should be chosen. 

 

 Note that if (5) is satisfied with equality, we are indifferent to either partial or complete 

delivery. Two corollaries follow from Proposition 1. 

 

Corollary 1  Performance guarantee 

For any set of reorder points, R, the MSD policy will always provide an expected total cost which is 

lower or equal to the PD - and the CD policy. 

 

Corollary 1 follows directly because a cost minimizing decision is made each time an order is placed. 

It means that the MSD decision rule provides a cost performance guarantee both compared to the PD - 

and the CD policy, regardless of how the reorder points are chosen. Corollary 2 makes it possible to 

identify systems where it is always reasonable to use the CD policy. 

 

Corollary 2 

If θi > L0(Qi − 1)(h0 + bi), the MSD policy will always dispatch complete deliveries to retailer i. 
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Proof 

It is sufficient to show that L0(Qi − 1)(h0 + bi) is an upper bound for ΔCi(t1,t2,u). This is done by 

maximizing each cost component separately. The maximum expected central warehouse holding cost 

difference incurred by placing u units on hold occurs when u = Qi − 1 and t2 − t1 = L0. Hence, 

max{h0(t2−t1)u} = h0L0(Qi−1). The maximum expected retailer holding cost difference is equal to zero 

(retailer holding costs will never increase by placing units on hold). The maximum expected retailer 

backorder cost difference is biL0(Qi−1), which again occurs when u = Qi − 1 and t2 − t1 = L0. Thus, 

h0L0(Qi−1) + 0 + biL0(Qi−1) = L0(Qi − 1)(h0 + bi) is an upper bound for ΔCi(t1,t2,u). ■ 

 

A direct result of Corollary 2 is that the MSD policy will be identical to the CD policy in systems 

where θi > L0(Qi − 1)(h0 + bi) for all retailers. 

3.2 The MSD policy: Distribution of retailer inventory levels 
Recall that in order to obtain the total expected cost for a given set of reorder points R, we need to 

determine E[IL+
0 ], E[Oi], Si, E[IL+

i ] and E[IL−
i ] (i = 1,…,N). In this section we derive the probability 

distributions of the retailer inventory levels, P(ILi = m). Given P(ILi = m), it is easy to obtain the 

expected amount of stock on hand and backorders at retailer i as 

 

i iR Q

i i
m 1

i i
m 1

E[IL ] mP(IL m)

E[IL ] mP(IL m).

+
+

=

∞
−

=

= =

= = −

∑

∑
 (6) 

Methods for obtaining E[IL+
0 ], E[Oi] and Si are provided in Section 3.3. 

 It is well known that the retailer inventory positions in steady state are uniformly distributed on 

the integers [Ri+1, Ri+2,…, Ri+Qi], and the central warehouse inventory position is uniform on 

[R0+q, R0+2q,…, R0+Q0] (e.g. Axsäter 1998). Furthermore, these N + 1 distributions are independent. 

Note that this is true also in our context because the inventory positions are not dependent on the 

delivery policy. This is because stock on hold is not included in the central warehouse inventory 

position, and placing units on hold does not change the inventory position of retailer i. Let 

Bi(t) = number of backorders at the central warehouse belonging to retailer i at time t 

Di(τ1,τ2) = customer demand at retailer i in the time interval [τ1,τ2] (Poisson distributed) 

D0(τ1,τ2) = demand from all retailers to the central warehouse in the time interval [τ1,τ2] 

D0,i(τ1,τ2,a,d) = demand from retailer i to the central warehouse in the time interval [τ1,τ2], 

  given that IPi(τ1) = a and Di(τ1,τ2) = d 
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R,Q
mod(z)  = z + nQ, where n is the integer such that R + 1 ≤ z + nQ ≤ R + Q. 

D0,i(τ1,τ2,a,d) is easily obtained as nQi, where n is the integer such that R + 1 ≤ a − d + nQ ≤ R + Q. 

 A unit ordered by retailer i will arrive in stock after Li time units, unless it has been 

backordered or placed on hold at the central warehouse. Thus, it must hold for an arbitrary time t that 

 i 0 i i 0 i 0 i 0 i 0 0 iIL (t L L ) IP (t L ) B (t L ) O (t L ) D (t L , t L L ).+ + = + − + − + − + + +  (7) 

For notational convenience we assume that t = 0 and hereafter refer to this arbitrary time as time zero. 

That is, 

 i 0 i i 0 i 0 i 0 i 0 0 iIL (L L ) IP (L ) B (L ) O (L ) D (L ,L L )+ = − − − + . (8) 

D(L0,L0 + Li) is independent of IPi(L0), Bi(L0) and Oi(L0). However, there clearly are dependencies 

between IPi(L0), Bi(L0) and Oi(L0). The remainder of this section focuses on determining the 

distribution of ILi(L0+Li). 

 To facilitate the analysis we introduce the nominal inventory position, Ψ0(τ), defined for 

0 ≤ τ ≤ L0. This variable is a modified version of the nominal inventory position introduced in Stenius 

et al. (2013). The nominal inventory position is defined as the central warehouse inventory position at 

time zero, minus all retailer demand to the central warehouse in the time interval [0,τ]. That is, 

 0 0 0( ) IP (0) D (0, )Ψ τ = − τ . (9) 

Ψ0(τ) is a stepwise decreasing stochastic variable containing information about how much demand the 

central warehouse can satisfy before time L0. Properties of the nominal inventory position that will 

prove useful in proceeding sections are stated in Lemma 1. 

 

Lemma 1  Properties of the nominal inventory position 

 1) Ψ0(0) = IP0(0) 

 2) Ψ0(L0) = IL0(L0) 

  For a given τ (0 ≤ τ ≤ L0): 

 3) If Ψ0(τ) ≥ 0, no retailer orders occurring before time τ will be backordered or on hold at the 

  central warehouse at time L0. 

 4) If Ψ0(τ) ≤ 0, all retailer orders that occur in the time interval (τ, L0] will be backordered at the 

  central warehouse at time L0. 

 5) If Ψ0(τ) = u (q ≤ u ≤ Qi − q) and a retailer order for Qi units occurs at time τ, Qi − u of these 

  units will be backordered at time L0. The remaining u units will be: 

  a) dispatched to the retailer at time L0 if partial delivery is chosen for the order 

  b) on hold at the central warehouse at time L0 if complete delivery is chosen for the order. 
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Proof 

1) Follows from the definition in (9). 

2) Also follows from (9) because IL0(L0) = IP0(0) − D0(0,L0) = Ψ0(L0). 

3) At time L0, the FCFS assumption means that the central warehouse will have been able to satisfy 

demand for the first IP0(0) units in the time interval [0,L0]. Because Ψ0(τ) ≥ 0 means that 

D0(0,τ) ≤ IP0(0), the statement must hold. 

4) Must hold because Ψ0(τ) ≤ 0 means that IP0(0) units have already been satisfied at time τ. 

5) When Ψ0(τ) = u, IP0(0)  − u demands will have occurred just before the order of Qi occurs at time τ. 

Thus, u units can be satisfied at time L0 and Qi − u units will be backordered. Whether the u units are 

dispatched or placed on hold at time L0 follows directly from the MSD decision. ■ 

 

 To further facilitate the analysis it is also appropriate to define the system state vector at time τ, 

 [ ]0 1 N( ), IP ( ),..., IP ( )τ = Ψ τ τ τV( ) . (10) 

The analysis is based on calculating the probabilities for state transitions of the vector V(τ). That is, 

given a state V(τ1) = v = [v0, v1,…, vN] at time τ1, we can calculate the probability of state 

V(τ2) = w = [w0, w1,…, wN] at time τ2 (τ2 ≥ τ1). This leads us to Lemma 2. 

 

Lemma 2 

The conditional distribution of V(τ2)|V(τ1) is obtained as 

 

( ) ( )
1 2 N

1 1 N N

N

2 1 i 1 2 i
d 0 d 0 d 0 i 1

N

0 0,i 1 2 i i 0 1 1 1 N N NR ,Q R ,Qi 1

P ( ) | ( ) ... P D ( , ) d ,

where

1 ; v D ( , , v ,d ) w , mod(v d ) w ,..., mod (v d ) w

0 ; otherwise.

∞ ∞ ∞

= = = =

=

t = t = = χ tt  =


− tt  = − = − =χ = 



∑ ∑ ∑ ∏

∑

V w V v  

 (11) 

Proof 

Because each retailer faces an independent Poisson process, the probability of a demand realization 

d1,d2,…,dN in the time interval [τ1,τ2] is ( )N
i 1 2 ii 1P D ( , ) d= τ τ =∏ . Furthermore, all different demand 

realizations are mutually exclusive events. The initial inventory position, vi, and demand realization, 

di, at retailer i, will lead to a demand for D0,i(τ1,τ2,vi,di) units at the central warehouse (lowering the 

nominal inventory position by this amount). The result then follows from the fact that, because of the 

(Ri,Qi) policy used at retailer i, the inventory position will be 
i i

i iR ,Q
mod(v d )−  at time τ2. ■ 
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Note that the probability distribution in Lemma 2 is written in a general form. In practical 

calculations, we do not need to consider all di because the indicator function χ will be zero for many 

demand realizations. Furthermore, it is not necessary to consider infinite sums because χ will always 

be zero above a certain value of di. 

 To determine the distribution of ILi(L0+Li), we condition on an initial state vector at time zero, 

V(0) = a = [a0,a1,…,aN]. Note that at time zero a0 = IP0(0) and the elements in V(0) are therefore 

independent and uniformly distributed. Thus, for retailer i we have that 

 ( ) ( )N

j
j 0

q
i 0 i i 0 i

Q
P IL (L L ) m P IL (L L ) m | V(0) ,

=

∈
+ = = + = =

∏
∑
a A

a  (12) 

where the state space A contains all possible state vectors at time zero. That is, 

 
N 1

0 0 0 0 0

n n n N N

{ | a R q,R 2q, ,R Q ;
a R 1,R 2, ,R Q , n }.

+= ∈ = + + +

= + + + ∀ ∈

A a
N

 



 (13) 

In light of Lemma 1 we consider three mutually exclusive and (conditioned on V(0) = a) collectively 

exhaustive events: 

 

 I. Conditioned on V(0) = a, the nominal inventory position is positive at time L0. 

 II. Conditioned on V(0) = a, the nominal inventory position is non-positive at time L0, and was 

  brought from a positive to a non-positive value by an order from retailer j ≠ i in the time 

  interval (0,L0]. 

 III. Conditioned on V(0) = a, the nominal inventory position is non-positive at time L0, and was 

  brought from a positive to a non-positive value by an order from retailer i in the time 

  interval (0,L0]. 

 

Focusing on retailer i, it follows from Lemma 1 that it is only in Event III that we need to take the 

MSD decision into consideration. The conditional probability in (12) can now be expressed as 

 

( )
( ) ( ) ( )

i 0 i

i 0 i i 0 i i 0 i

P IL (L L ) m | V(0)

P IL (L L ) m, I P IL (L L ) m, II P IL (L L ) m, III .

+ = =

= + = + + = + + =

a

 (14) 

In the following subsections we show how to determine each term in (14) separately. 

3.2.1 Probability of inventory level m in Event I 
Given V(0) = a, the nominal inventory position is positive at time L0. This means that there will be no 

units backordered or on hold at the central warehouse at time L0 (see Lemma 1). Figure 1 depicts a 
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possible sample path of the nominal inventory position in Event I. The system state at time L0 is 

V(L0) = ω ∈ Ω, where 

 
N 1

0 0 0

n n n n n

{ | q,2q, ,R Q ;
R 1,R 2, ,R Q , n }.

+= ∈ ω = +

ω = + + + ∀ ∈

Ω ω
N

 



 (15) 

Lemma 3 provides the key to obtaining the distribution of the inventory level. 

 
Figure 1. Possible sample path of the nominal inventory position in Event I. 

Lemma 3 

For ω ∈ Ω we have 

 ( ) ( )i 0 i 0 i 0 0 i iP IL (L L ) m, I | (L ) P D (L ,L L ) m .+ = = = + = ω −V ω  (16) 

Proof 

It is given that IPi(L0) = ωi. Furthermore, because ω0 = Ψ0(L0) > 0, Lemma 1 gives that 

Bi(L0) = Oi(L0) = 0. Thus, in Event I and conditioned on V(L0) = ω we have 

 i 0 i i 0 i 0 i 0 i 0 0 i

i i 0 0 i

IL (L L ) IP (L ) B (L ) O (L ) D (L ,L L )
D (L ,L L )

+ = − − − +

= ω − +
 (17) 

Hence, ILi(L0+Li) = m if and only if Di(L0,L0+Li) = ωi − m. ■ 

 

Given Lemma 3, obtaining the distribution of ILi(L0+Li) is simply a matter of considering all state 

transitions from the vector a to all vectors in Ω. That is, using the law of total probability we have 

 ( ) ( ) ( )i 0 i i 0 0 i i 0P IL (L L ) m, I P D (L ,L L ) - m P (L ) | (0) ,
∈

+ = = + = ω = =∑
ω Ω

V ω V a  (18) 

where the state transition probabilities are provided in Lemma 2. Note that, because not all state 

transitions considered in (18) are possible, P(V(L0) = ω | V(0) = a) will be equal to zero in many 

cases. For instance, because the nominal inventory position is decreasing, ω0 can never be larger than 

a0. However, for ease of exposition we maintain this general notation throughout the proceeding 

sections. 

0 L0

0

R0

R0+Q0 Ψ0a0

IL0(L0)

time

units
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3.2.2 Probability of inventory level m in Event II 
Given V(0) = a, the nominal inventory position is non-positive at time L0, and it was an order placed 

by retailer j ≠ i  that brought the nominal inventory position to a non-positive value. All orders placed 

after this particular order by retailer j ≠ i will be backordered, and there will be no units on hold to 

retailer i at time L0 (see Lemma 1). To determine the distribution of the inventory level, we study the 

time at which the order by retailer j ≠ i occurs. Let 

τw = time when a demand occurs at retailer j ≠ i, triggering an order that brings the nominal 

  inventory position from a positive to a non-positive value, 0 < τw ≤ L0. 

We use the notation τ·
(−) and τ·

(+) to denote the time just before and just after time τ·, respectively. That 

is, τw
(−) < τw < τw

(+), where τw
(+) = τw

(−) + dτw, dτw → 0. Figure 2 depicts a possible sample path of the 

nominal inventory position in Event II. 

 
Figure 2. Possible sample path of the nominal inventory position in Event II. 

In the example in Figure 2, retailer i places one order after the nominal inventory position has become 

negative, resulting in Qi backorders at time L0. 

 At time τw
(−) the nominal inventory position is positive and less than or equal to Qj, the 

inventory position of retailer j is Rj + 1, and the inventory positions at all other retailers can be any 

possible values. Hence, the system state at this time is V(τw
(−)) = w ∈Wj

(−), where 

 
( ) N 1
j 0 j j j

n n n n n

{ | w q,2q, ,Q ; w R 1;

w R 1,R 2, ,R Q , n \ j}.

− += ∈ = = +

= + + + ∀ ∈

W w

N

 



 (19) 

Conditioning on the state vector w and on that a demand at retailer j occurs in the time interval 

(τw
(−),τw

(+)). Lemma 4 provides the necessary result for analyzing the inventory level of retailer i. 

 

0 L0

0

R0

Ψ0 (τw
(-))

a0

IL0(L0)

Qj

time

units

Qi Bi(L0)
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Lemma 4 

For j ∈ N\i  and w ∈ Wj
(−) we have 

 ( ) ( )( ) ( ) ( ) ( )
i 0 i w j w w i w 0 i iP IL (L L ) m, II | ( ) ,D ( , ) 1 P D ( ,L L ) w m .− − + ++ = τ = τ τ = = τ + = −V w  (20) 

Proof 

A demand occurred at retailer j in the time interval (τw
(−),τw

(+)). Because the probability of two demand 

occurrences in this interval of length dτw → 0 is zero, it follows that IPi(τw
(−)) = IPi(τw

(+)) = wi. Hence, 

the inventory position at time L0 must be IPi(L0) = ( )( )
i i w 0R,Q

mod w D ( ,L )+− τ

= wi − Di(τw
(+),L0) + D0,i(τw

(+),L0,wi,Di(τw
(+),L0)). Because Ψ0(τw

(+)) ≤ 0 due to an order by retailer j, it 

follows from Lemma 1 that Bi(L0) = D0,i(τw
(+),L0,wi,Di(τw

(+),L0)) and Oi(L0) = 0. Therefore, in this case 

we have 

i 0 i i 0 i 0 i 0 i 0 0 i
( ) ( ) ( )

i i w 0 0,i w 0 i i w 0

( ) ( )
0,i w 0 i i w 0 i 0 0 i

( )
i i w 0 i

IL (L L ) IP (L ) B (L ) O (L ) D (L ,L L )

w D ( ,L ) D ( ,L , w ,D ( ,L ))

D ( ,L , w ,D ( ,L )) D (L ,L L )

w D ( ,L L )

+ + +

+ +

+

+ = − − − +

= − τ + τ τ

− τ τ − +

= − τ +

 (21) 

Hence, ILi(L0+Li) = m if and only if Di(τw
(+),L0+Li) = wi − m. ■ 

 

 Lemma 4 shows that conditioned on the event that a state transition from a to w occurs, and 

that the nominal inventory position is brought to a non-positive value by retailer j in the time interval 

(τw
(−),τw

(+)), the distribution of the inventory level is a Poisson probability. It remains to determine the 

probability for such an event to occur, in other words, to determine the joint distribution of 

V(τw
(−)) = w and Dj(τw

(−),τw
(+))) = 1, conditioned on V(0) = a. The probability of a system state 

transition from V(0) = a to V(τw
(−)) = w, i.e. P(V(τw

(−)) = w | V(0) = a), is given by Lemma 2. Because 

of the Poisson demand process, demand in the time interval (τw
(−),τw

(+)) at retailer j is independent of 

V(τw
(−)), and the probability of exactly one occurrence is λjdτw. The probability of more than one 

occurrence is zero. Through Lemma 4 we can now determine the distribution of ILi(L0+Li) using the 

law of total probability. Summation over all possible state vectors in Wj
(−), over all retailers except 

retailer i, and over all time intervals of length dτw (i.e., integration) thus yields 

 

( )

( ) ( )
0

( )
j

i 0 i

L

i w 0 i i w j w
j \i0

P IL (L L ) m, II

P D ( ,L L ) w m P ( ) | (0) d .
−∈ ∈

+ = =

τ + = − τ = = λ τ∑ ∑∫
N w W

V w V a
 (22) 
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3.2.3 Probability of inventory level m in Event III 
Assume that retailer i places an order to the central warehouse at time τz (0 < τz ≤ L0), and that this 

brings the nominal inventory position from a positive value u (q ≤ u ≤ Qi) to a non-positive value 

u − Qi. If u is strictly less than Qi, the MSD decision will be applied. This means that the u units will 

either have been dispatched (partially delivered) or they will be on hold at the central warehouse at 

time L0 (see Lemma 1). Because of the FCFS allocation policy, the first u units will be satisfied by the 

last order placed by the central warehouse before time zero (referred to as Order 1). The remaining 

Qi – u units will be satisfied by the first warehouse order placed after time zero (referred to as Order 

2). To make the MSD decision we therefore need to keep track of the times when these two 

warehouse orders were placed (and thus the times when they will be available at the central 

warehouse). Similar to Event II we define: 

τx = time when a demand occurs at retailer k = 1,…,N, triggering an order that, in turn, 

  triggers Order 1 at the central warehouse τx < 0 

τy = time when a demand occurs at retailer j = 1,…,N, triggering an order that, in turn, 

  triggers Order 2 at the central warehouse, 0 < τy ≤ L0 

τz = time when a demand occurs at retailer i triggering an order that brings the nominal 

  inventory position from a positive to a non-positive value, τy ≤ τz ≤ L0. 

 We will treat the event where τy = τz separately (the event where it is the same order from 

retailer i that both triggers Order 2 and brings the nominal inventory position to a non-positive value). 

Thus, first assume that τy < τz. We refer to this as Event IIIa and the former as Event IIIb, where 

 ( ) ( ) ( )i 0 i i 0 i i 0 iP IL (L L ) m, III P IL (L L ) m, IIIa P IL (L L ) m, IIIb .+ = = + = + + =  (23) 

In order to characterize the system state at time τx, we need to extend the definition of the nominal 

inventory position to include times before time zero. Hence, the nominal inventory position at time 

τ ≤ 0 is defined as the central warehouse inventory position at time zero, plus all retailer demand to 

the central warehouse in the time interval [τ,0]. That is, 

 0 0 0( ) IP (0) D ( ,0).Ψ τ = + τ  (24) 

Figure 3 depicts a possible sample path of the nominal inventory position in Event IIIa. 
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Figure 3. Possible sample path of the nominal inventory position in Event IIIa. 

As illustrated in Figure 3, Order 1 is triggered at time τx. Just after this event, at time τx
(+), the system 

is in a state such that a demand at retailer k (k = 1,2,…,N) just triggered orders both at that retailer and 

at the central warehouse. Note that with the extended definition of the nominal inventory position, 

Order 1 is triggered when Ψ0 moves from a value above R0 + Q0 to a value equal to, or below, 

R0 + Q0. Also, the inventory position at the retailer that just placed the order, retailer k, must be 

Rk + Qk. This means that V(τx
(+)) = x ∈Xk

(+), where 

 
( ) N 1
k 0 0 0 k 0 0 k 0 0 k k k

n n n n n

{ | x R Q Q q,R Q Q 2q, ,R Q ; x R Q ;
x R 1,R 2, ,R Q , n \ k}.

+ += ∈ = + − + + − + + = +

= + + + ∀ ∈

X x
N

 



 (25) 

At time τy
(−), a demand at retailer j (j = 1,2,…,N) is about to trigger Order 2, but the nominal inventory 

position will remain positive (because we are considering Event IIIa). Hence, V(τy
(−)) = y ∈Yj

(−), 

 
( ) N 1
j 0 0 j 0 j 0 j j j

n n n n n

{ | y max(R ,Q ) q,max(R ,Q ) 2q, ,R Q ; y R 1;

y R 1,R 2, ,R Q , n \ j}.

− += ∈ = + + + = +

= + + + ∀ ∈

Y y

N

 



 (26) 

The moment after τy
(−), at time τy

(+), the nominal inventory position will have decreased by Qj, and the 

inventory position of retailer j will have increased by Qj − 1. That is, V(τy
(+)) = fj(y), where 

 ( )
j 0 j 1 j j N jf ( ) (y Q , y , , y 1 Q , , y ), .−= − − + ∈y y Y   (27) 

At time τz
(−) retailer i is just about to place an order that brings the nominal inventory position from a 

positive to a non-positive value. We have V(τz
(−)) = z ∈Zi

(−), 

0 L0

0

R0

R0+Q0

Ψ0 (τz
(-))

a0

IL0(L0)

Qi
time

units

Qj

Bi(L0)

Ψ0 (τy
(-))Ψ0 (τx

(+))

u

Qk

L0 L0

Order 1
arrives

Order 2
arrives

t1 t2

τzτyτx
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( ) N 1
i 0 i i i

n n n n n

{ | z q,2q, ,Q ; z R 1;
z R 1,R 2, ,R Q , n \ i}.

− += ∈ = = +

= + + + ∀ ∈

Z z
N

z 



 (28) 

 Figure 3 shows the relation between τx, τy, τz and the input parameters t1 and t2 that are used for 

the MSD decision. We have that t1 = (τx + L0 − τz)+ and t2 = τy + L0 − τz. The number of units available 

for partial delivery, u, is given by the value of the nominal inventory position at time τz
(−). That is, 

u = z0.  

 Similar to Lemma 4, we condition on the event that Order 1 is triggered in (τx
(−),τx

(+)), Order 2 is 

triggered in (τy
(−),τy

(+)), and the nominal inventory position is brought to a non-positive value in 

(τz
(−),τz

(+)). We have Lemma 5: 

 

Lemma 5 

For k ∈ N, j ∈ N, x ∈ Xk
(+), y ∈ Yk

(−) and z ∈ Zj
(−) we have 

 

(
)

( )
( )

( ) ( ) ( )
i 0 i k x x x

( ) ( ) ( ) ( ) ( ) ( )
y j y y z i z z

( )
i z 0 i i i i i 1 2 i

( )
i z 0 i i

P IL (L L ) m, IIIa | D ( , ) 1, ( ) ,

( ) ,D ( , ) 1, ( ) ,D ( , ) 1

P D ( ,L L ) R m ; u Q and C (R , t , t , u)

P D ( ,L L ) R u m ; otherwise ,

− + +

− − + − − +

+

+

+ = tt  = t =

t = tt  = t = tt  = =

 t + = − < D ≤ θ


t + = + −

V x

V y V z  (29) 

where u = z0, t1 = (τx + L0 − τz)+ and t2 = τy + L0 − τz.

 Proof 

Because an order was just triggered at retailer i at time τz
(+) we have IPi(τz

(+)) = Ri + Qi. Therefore, 

IPi(L0) = Ri + Qi − Di(τz
(+),L0) + D0,i(τz

(+),L0,Ri + Qi,Di(τz
(+),L0)). An order occurs just after time τz

(−) 

that brings the nominal inventory position from a positive value, Ψ(τz
(−)) = z0 =u, to a non-positive 

value Ψ(τz
(−)) = u − Qi. Lemma 2 thus implies that Bi(L0) = Qi − u + D0,i(τz

(+),L0,Ri + Qi,Di(τz
(+),L0)). 

The amount of units on hold at time L0, O(L0), depends on the MSD decision (unless u = Qi in which 

case no decision is made and Oi(L0) = 0). Order 1 was placed at time τx
(+) meaning that this order will 

arrive at the central warehouse at time τx
(+) + L0. Correspondingly, Order 2 will arrive at time 

τy
(+) + L0. Hence, when applying the MSD decision rule at time τz

(+) the first u units will be available 

after t1 = (τx
(+) + L0 − τz

(+))+ time units and the remaining Qi − u units will be available after 

t2 = τy
(+) + L0 − τz

(+) time units. If u < Qi, the MSD decision is applied and Proposition 1 gives that 

Oi(L0) = u, if ΔCi(Ri,T1,T2,u) ≤ θi. Otherwise Oi(L0) = 0. In the former case (complete delivery) we 

therefore have 
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 ( )

i 0 i i 0 i 0 i 0 i 0 0 i
( ) ( )

i i i z 0 0,i 0 0 i i i z 0

( )
i 0,i 0 0 i i i z 0 i 0 0 i

( )
i i z 0 i

IL (L L ) IP (L ) B (L ) O (L ) D (L ,L L )

R Q D ( ,L ) D ( ,L ,R Q ,D ( ,L ))

Q u D ( ,L ,R Q ,D ( ,L )) u D (L ,L L )

R D ( ,L L ),

+ +

+

+

+ = − − − +

= + − τ + τ + τ

− − + τ + τ − − +

= − τ +

 (30) 

and in the latter case (partial delivery or if u = Qi) we have 

 ( )

i 0 i i 0 i 0 i 0 i 0 0 i
( ) ( )

i i i z 0 0,i 0 0 i i i z 0

( )
i 0,i 0 0 i i i z 0 i 0 0 i

( )
i i z 0 i

IL (L L ) IP (L ) B (L ) O (L ) D (L ,L L )

R Q D ( ,L ) D ( ,L ,R Q ,D ( ,L ))

Q u D ( ,L ,R Q ,D ( ,L )) D (L ,L L )

R u D ( ,L L ).

+ +

+

+

+ = − − − +

= + − τ + τ + τ

− − + τ + τ − +

= + − τ +

 (31) 

■ 

 

 It remains to determine the probability of the event conditioned on in Lemma 5. Analogously to 

Event II, all state transitions depend only on the starting state and the customer demand in disjoint 

time intervals. We can therefore again obtain the joint distribution by multiplying all the probabilities 

of moving from one state to the other. That is, we determine the probability of the sample path where: 

(i) Order 1 is triggered in (τx
(−),τx

(+)) by an order from retailer k, resulting in the state space 

V(τx
(+)) = x, (ii) the state at time zero is V(0) = a, (iii) Order 2 is triggered in (τy

(−),τy
(+)) from the state 

V(τy
(−)) = y by an order from retailer j, and (iv) the nominal inventory position is moved to a non-

positive value in (τz
(−),τz

(+)) from state V(τz
(−)) = z by an order from retailer i. This yields 

( ) ( ) ( )( ) ( ) ( )
k x x y j y z j i zd P (0) | ( ) P ( ) | (0) d P ( ) | (0) f ( ) d .+ − −λ τ = τ = τ = = λ τ τ = = λ τV a V x V y V a V z V y  (32) 

Utilizing Lemma 5 and considering all possible times, retailers and state vectors we have 

 

( )
0 0

( ) ( ) ( )
y k j i

i 0 i

L L0

i x y z kji x y z z y x
k j0

P IL (L L ) m, IIIa

p (m, , , , ) ( , , , , , )d d d ,
+ − −∈ ∈ ∈ ∈ ∈−∞ τ

+ = =

τ τ τ p τ τ τ τ τ τ∑ ∑ ∑ ∑ ∑∫ ∫ ∫
N N x X y Y z Z

z x y z
 (33) 

where pi() is given by Lemma 5, 

 
( )
( )

i x y z

i z 0 i i i i i 1 2 i

i z 0 i i

0 1 x 0 z 2 y 0 z

p (m, , , , )

P D ( ,L L ) R m ; u Q and C (R , t , t , u)

P D ( ,L L ) R u m ; otherwise

u z , t ( L ) , t L ,+

ttt   =

 t + = − < D ≤ θ


t + = + −
= = t + − t = t + − t

z

 (34) 

and 

 
( ) ( ) ( )

kji x y z

k x y j z j i

( , , , , , )

P (0) | ( ) P ( ) | (0) P ( ) | (0) f ( )

π τ τ τ =

λ = τ = τ = = λ τ = = λ

x y z

V a V x V y V a V z V y
 (35) 
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is obtained from (32). 

 We now turn to Event IIIb, where it is the same order from retailer i that both triggers Order 2 

and brings the nominal inventory position to a non-positive value. Note that R0 ≤ Qi − q for this to be 

able to occur. Figure 4 depicts a possible sample path of the nominal inventory position in this event. 

 
Figure 4. Possible sample path of the nominal inventory position in Event IIIb. 

The analysis is simpler than the preceding case as we do not need to consider two separate times τy
(−) 

and τz
(−), or sets Yj

(−) and Zj
(−). The state just before a demand at retailer i occurs, triggering an order to 

the central warehouse, which simultaneously triggers Order 2 and brings the nominal inventory 

position to a non-positive value, is ( ) ( )
y i( ) Y− −τ = ∈V y 

 , where 

 
( ) N 1
i 0 0 0 i i i

n n n n n

{ | y R q,R 2q ,Q ; y R 1;
y R 1,R 2, ,R Q , n \ i}.

− += ∈ = + + = +

= + + + ∀ ∈

Y y
N



  
 




 (36) 

Following the same analysis as above we have 

 
( )

0

( ) ( )
k i

i 0 i

L0

i x y ki x y y x
k N0

P IL (L L ) m, IIIb

p (m, , , ) ( , , , )d d ,
+ −∈ ∈ ∈−∞

+ = =

τ τ p τ τ τ τ∑ ∑ ∑∫ ∫
x X y Y

y x y




   

 (37) 

with 

0 L0

0

R0

R0+Q0
a0

IL0(L0)
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time
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Bi(L0)

Ψ0 (τy
(-))

Ψ0 (τx
(+))

u
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L0 L0
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( )
( )

i x y

i y 0 i i i i i 1 2 i

i y 0 i i

0 1 x 0 y 2 0

p (m, , , )

P D ( ,L L ) R m ; u Q and C (R , t , t , u)

P D ( ,L L ) R u m ; otherwise

u y , t ( L ) , t L ,+

tt  =

 t + = − < D ≤ θ


t + = + −
= = t + − t =

y 



 (38) 

and 

 
( ) ( )

ki x y

k x y i

( , , , )

P (0) | ( ) P ( ) | (0) .

π τ τ =

λ = τ = τ = = λ

x y

V a V x V y V a

 



 (39) 

3.3 Determining E[Oi], Si and E[IL0
+] under the MSD policy 

The evaluation of the expected number of units on hold to retailer i, E[Oi], the expected number of 

extra deliveries per time unit due to partial deliveries to retailer i, and the expected number of units on 

hand at the central warehouse, E[IL0
+], are all based on the analysis in Section 3.2. Note that given the 

distributions of Oi(L0) and IL0
+(L0), the expected values are obtained as 

 [ ] ( )
iQ q

i i 0
u q

E O uP O (L ) u ,
−

=
= =∑  (40) 

 ( )
0 0R Q

0 0 0
m q

E IL mP IL (L ) m .
+

+

=

  = =  ∑  (41) 

3.3.1 Units on hold, Oi(L0) 
Based on the analysis in Section 3.2, we know that it is only in Event III that there can be units on 

hold to retailer i at time L0. The u units on hold always belong to the same order, with 

u = q, 2q,…, Qi − q. Defining A as in (13) and Events IIIa and IIIb (which are conditioned on 

V(0) = a) as in Section 3.2.3, gives the unconditioned probability 

 ( )
( ) ( )N

j
j 0

q
i 0 i 0 i

Q
i 0

P O (L ) u, IIIa P O (L ) u, IIIb ; u q,2q, Q q
P O (L ) u

0 ; otherwise.
=

∈

 = + = = −


= = 



∏
∑
a A



 (42) 

In order for P(Oi(L0) = u) > 0 in Event IIIa, the nominal inventory position at time τz
(−) must be 

exactly u units. Thus, we have V(τz
(−)) = z ∈Zi

(−)(u), 

 
( ) N 1
i 0 i i

n n n n n

(u) { | z u; z R 1;
z R 1,R 2, ,R Q , n \ i},

− += ∈ = = +

= + + + ∀ ∈

Z z
N

z



 (43) 

for u = q, 2q,…, Qi − q, and Zi
(−)(u) = ∅  otherwise. Following the same logic as in Section 3.2.3 

yields 
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( )
0 0

( ) ( ) ( )
y k j i

i 0

L L0

i x y z kji x y z z y x
k N j N (u)0

P O (L ) u, IIIa

( , , , u) ( , , , , , )d d d ,
+ − −∈ ∈ ∈ ∈ ∈−∞ τ

= =

ρ τ τ τ π τ τ τ τ τ τ∑ ∑ ∑ ∑ ∑∫ ∫ ∫
x X y Y z Z

x y z
 (44) 

where 

 i i 1 2 i
i x y z

1 ; C (R , t , t , u)
( , , , u)

0 ; otherwise,
∆ ≤ θ

rttt    = 


 (45) 

t1 = (τx + L0 − τz)+, t2 = τy + L0 − τz, and πkji is obtained from (35). 

 Analogously, for Event IIIb we have ( ) ( )
y i( ) Y (u)− −τ = ∈V y 

 , 

 
( ) N 1
i 0 i i

n n n n n

Y (u) {y | y u; y R 1;
y R 1,R 2, ,R Q , n \ i},

− += ∈ = = +

≤ + + + ∀ ∈N



  





 (46) 

for u = Ri + q, Ri + 2q,…,Qi − q and ( )
iY (u)− = ∅  otherwise. This results in 

 

( )
0

( ) ( )
k j

i 0

L0

i x y ki x y y x
k N (u)0

P O (L ) u, IIIb

( , , u) ( , , , )d d ,
+ −∈ ∈ ∈−∞

= =

ρ τ τ π τ τ τ τ∑ ∑ ∑∫ ∫
x X y Y

x y




  

 (47) 

where 

 i i 1 2 i
i x y

1 ; C (R , t , t , u)
( , , u)

0 ; otherwise,
∆ ≤ θ

rtt   = 


  (48) 

t1 = (τx + L0 − τz)+, t2 = L0, and kiπ  is obtained from (39). 

3.3.2 Rate of partial deliveries, Si 
As stated in the problem formulation, a cost θi is incurred each time an order is shipped partially to 

retailer i. We now turn our attention to this cost and determine the expected rate at which partial 

delivery decisions to retailer i are made, Si. We only consider θi > 0, because if θi = 0 the value of Si 

does not affect the total costs. The analysis is based on calculating in steady state: (i) the probability 

that an order to retailer i is partially delivered at time L0 (i.e., the probability that the first u < Qi units 

have been shipped, and the remaining Qi − u units have not been shipped, at time L0), (ii) the time 

difference between the shipping of the first and second part of the given order, which is referred to as 

the split time and is denoted by T. Using the previous notation it follows that T = t2 − t1. 

 Let f(T) be the probability that there is a partially delivered order at time L0 with the split time 

T (more precisely, the split time is in the interval (T(−),T(+))). It follows that the expected rate of partial 

delivery decisions for orders with split time T is f(T) / T, and hence that 

 
0L

i
f (T)S dT,

Tε

= ∫  (49) 
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where ε (0 < ε < L0) is a lower bound on T for when the MSD policy will choose partial delivery. 

Following the same reasoning as for Corollary 2, it is straightforward to show that one such bound is 

ε = θi / [(h0 + bi)(Qi − 1)]. If ε ≥ L0 we have Si = 0. 

 It remains to determine the distribution of f(T). Once again note that there can only be a 

partially delivered order at time L0 in Event IIIa and Event IIIb. Thus, utilizing the results in the 

previous analysis, considering all states V(0) = a and all situations where the MSD policy chooses 

partial delivery, we have 

 

N

j
j 0

0 0

( ) ( ) ( )
y k j i

0

( ) ( )
k i

q

Q

L L0

i x y z kji x y z z y x
k j0

L0

i x y ki x y y x
k0

f (T)

( , , , ,T) ( , , , , , )d d d

( , , ,T) ( , , , )d d ,

=

+ − −

+ −

∈

∈ ∈ ∈ ∈ ∈−∞ τ

∈ ∈ ∈−∞

=

σ τ τ τ π τ τ τ τ τ τ +

σ τ τ π τ τ τ τ

∏
∑

∑ ∑ ∑ ∑ ∑∫ ∫ ∫
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where 
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u = z0, t1 = (τx + L0 − τz)+, t2 = τy + L0 − τz, and 

 i 2 1 i i 1 2 i
i x y

1 ; u Q t t T and C (R , t , t , u)
( , , )

0 ; otherwise,
< − = ∆ > θ

stt   = 


y   (52) 

u = y0, t1 = (τx + L0 − τy)+, t2 = L0 . Again, πkji() and ki ()π  are obtained from (35) and (39), 

respectively. 

3.3.3 Inventory level at central warehouse, IL0(L0) 
The distribution of the central warehouse inventory level is obtained by analyzing the system at time 

L0. In order for IL0(L0) = m, the system state must be V(L0) = ω ∈ Ω(m), where 
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 (53) 

The probability for this is obtained as 

 ( ) ( )N

j
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q
0 0 0

(m)Q
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=

∈ ∈
= = = =

∏
∑ ∑
a A ω Ω

V ω V a  (54) 

3.4 The PD - and CD policy 
The analysis of ILi for the PD - and CD policy only differs from the previous analysis in Event III. 

Because these simpler policies are not dependent on the state of Order 1 and Order 2, keeping track of 
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when these orders were placed is not necessary. Hence, defining Zi
(−) as in (28), the analysis for the 

PD policy simplifies to 
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( ) ( )
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( )
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L

i z 0 i i z i z
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 (55) 

where u = z0. For the CD policy we have 
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where 
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 The distribution of IL0 is independent of the delivery policy and is obtained from (54). The 

expected number of units on hold, E[Oi], is obviously equal to zero for the PD policy. For the CD 

policy there can only be between q and Qi − q units on hold at any given time, and units are only 

placed on hold in Event III. Therefore, defining Zi
(−)(u) as in (43) yields 
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 The expected number of extra deliveries, Si, is clearly equal to zero when applying the CD 

policy. For the PD policy, Si is simply equal to the rate at which orders that lead to a partial delivery 

are placed by retailer i. Recall from Section 3.1 that partial deliveries to retailer i will occur only if 

retailer i places an order when q −nQ0 ≤ IL0(L0) ≤ Qi − q −nQ0 (n = 0, 1, 2…) We therefore have 
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where 

 
N 1

i 0 0 0 0 i i i

k k k k k

ˆ (n) { | nQ q, nQ 2q, , nQ Q q; R 1;
R 1,R 2, ,R Q , k \ i}.

+= ∈ ω = − + − + − + − ω = +

ω = + + + ∀ ∈

Ω ω
N

 



 (60) 

Optimization of reorder points 
Let TCMSD(R), TCPD(R) and TCCD(R) be the total expected cost for each respective delivery policy, 

given a set of reorder points R = (R0,R1,…,RN). Furthermore, let RMSD, RPD and RCD be the optimal 

reorder points for each policy. In this section we will utilize results from the special case of the PD 
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policy with θ1 = θ2 = … θN = 0. This special case has been analyzed previously (e.g. Axsäter, 2000) 

and we refer to it as the PD0 policy, with expected cost TCPD0(R). 

 We wish to minimize 

 
N N N

0 0 i i i i i i i
i 1 i 1 i 1

TC ( ) h (E[IL ] E[O ]) S (h E[IL ] b E[IL ]).• + + −

= = =
= + + θ + +∑ ∑ ∑R  (61) 

We know that for a given R0, TCPD0(R) is separable and convex in the retailer reorder points. It is 

obvious that the same holds true for TCPD(R). This is because the costs of the two policies are 

identical, except for the terms θiSi which are independent of Ri (i = 1, 2,…, N). We can therefore use 

the standard approach of enumerating over R0 and, given each R0, finding the optimal reorder points 

separately for each retailer (the trivial lower bound Ri = − Qi can be used as a starting point). 

 Lemma 6 shows that this procedure can also be applied to the CD policy. 

 

Lemma 6 

For a given value of R0, TCCD(R) is separable and convex in Ri, i = 1, 2,…, N. 

Proof 

As stated previously, TCCD(R) is separable because the choice of reorder point only affects the retailer 

in question. To prove convexity, we show that the retailer cost function is a sum of convex functions. 

First note that the distributions of Oi and IL0 are independent of Ri. Defining Xi so that IPi = Ri + Xi 

means that Xi(L0) − Bi(L0) − Oi(L0) is independent of Ri, as well as independent of the demand after 

time L0. From (8) we have that ILi(L0+Li) = Ri + Xi(L0) − Bi(L0) − Oi(L0) − Di(L0,L0+Li). Given 

Xi(L0) − Bi(L0) − Oi(L0) = α, retailer costs are convex in Ri as the analysis is equivalent to a base-stock 

single-echelon system (with base-stock level Ri + α). Summation of these convex functions for all 

possible values of α, multiplied with their corresponding probabilities, yields the retailer cost function 

under the CD policy. ■ 

 

It can be shown by examples that TCMSD(R) is not always convex in Ri for a given R0. In fact, in some 

cases it has multiple local minima. However, we can obtain bounds for the optimal retailer reorder 

points. Let Ri
●(R0) denote the optimal reorder point given R0 for a specific delivery policy (in case the 

optimal solution is not unique, let Ri
PD(R0) be the smallest - and Ri

CD(R0) be the largest reorder point 

that is optimal). We have the following bounds: 

 

Lemma 7 

Ri
PD(R0) ≤ Ri

MSD(R0) ≤ Ri
CD(R0) for i = 1, 2,…, N. 
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Proof 

Given the MSD policy, assume that the system is in a state such that a placement of an order by 

retailer i requires an MSD decision with given values of the parameters t1, t2 and u. Let the rate at 

which such orders are placed be μi(t1,t2,u). Note that μi(t1,t2,u) is independent of Rj (j = 1, 2,…, N). 

The difference between the PD policy and the MSD policy is that an opportunity for cost savings 

occurs each time the MSD decision is made. The amount saved by the MSD decision compared to 

partial delivery is (θi − ΔCi(Ri,t1,t2,u), 0)+ (see Proposition 1). Thus, the expected total cost for the 

MSD policy can be obtained by subtracting the expected cost savings of the MSD decisions from the 

expected total cost of the PD policy. That is, for any given reorder points we have that 

 ( )1 2

N
MSD PD

u,t , t j 1 2 j j j 1 2
j 1

TC ( ) TC ( ) E (u, t , t ) C (R , t , t , u),0 .
+

=

 
= − µ θ − D 

 
∑R R  (62) 

Now assume that Ri
MSD(R0) < Ri

PD(R0). This implies that 

 PD MSD PD PD
0 1 i 0 N 0 1 i 0 NTC (R ,R , ,R (R ), ,R ) TC (R ,R , ,R (R ), ,R ).>>>>>     (63) 

Furthermore, if ΔCi(Ri,t1,t2,u) is decreasing in Ri, 

 ( ) ( )MSD PD
i i i 1 2 i i i 1 2C (R , t , t , u),0 C (R , t , t , u),0 ,

+ +
θ − D ≥ θ − D  (64) 

and therefore from (62) we have that 

 MSD MSD MSD PD
0 1 i 0 N 0 1 i 0 NTC (R ,R , ,R (R ), ,R ) TC (R ,R , ,R (R ), ,R ).>>>>>     (65) 

However, (65) is a contradiction and thus it must hold that Ri
PD(R0) ≤ Ri

MSD(R0), if ΔCi(Ri,t1,t2,u) is 

decreasing in Ri. Analogous reasoning can be applied for the CD policy. In this case  
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and it follows that Ri
MSD(R0) ≤ Ri

CD(R0). It remains to show that ΔCi(Ri,t1,t2,u) is decreasing in Ri. 

Manipulating the expressions in (2), (3) and (4) yields 
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We identify the two sums in (67) as the cumulative distribution functions for Poisson variables with 

means λi(t2 + Li) and λi(t1 + Li), respectively. Because t1 < t2, the latter mean is lower and therefore the 

value of the associated cumulative distribution function evaluated at Ri + n is higher. Hence, the 

difference in (67) is less than or equal to zero, meaning that ΔCi(Ri,t1,t2,u) is decreasing in Ri. ■ 
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 To summarize, our optimization procedure means that we increase R0 by one unit at a time, 

starting with R0 = 0. In each step we determine Ri
●(R0), i = 1, 2,…, N. (by using the lower bounds and 

convexity for the PD - and CD policy, and by considering all values that are given by the lower and 

upper bound for the MSD policy). Because IL0
+ is increasing in R0, we can stop increasing R0 when 

h0IL0
+(R0) is larger than the lowest expected total cost found so far. 

4. Numerical experiments 
To demonstrate the performance of the different delivery policies, we consider 32 problem scenarios. 

All scenarios feature three retailers with L0 = 4, h0 = hi = 1 (∀ i), and the order quantities set to two 

different levels; either Q0 = 4, Q1 = 2. Q2 = 3, Q3 = 4, or Q0 = 6, Q1 = 4. Q2 = 5, Q3 = 6. The remaining 

input parameters are identical between retailers. We have θi = {2, 4, 8, 16}, bi = {5, 50} and 

Li = {1, 2} (∀ i), where all combinations of the parameter levels constitute our problem set. 

 The MSD policy will always produce the lowest expected total cost. Hence, it is natural to use 

it as a base for the comparison between the different delivery policies. Let ΔP and ΔCD denote the 

relative cost increase of the PD - and CD policy compared to the MSD policy. That is, 

 

PD MSD

MSD

CD MSD

MSD

TC TCPD
TC

TC TCCD .
TC

−
D =

−
D =

 (68) 

 Table 1 provides the input data, the optimal solutions and the corresponding expected costs for 

each of the three delivery policies. In Table 1 we see that the PD and CD policy perform significantly 

worse than the MSD policy in many scenarios. The maximum ΔPD was 26.6% and the maximum 

ΔCD was 17.9%, with averages of 5.8% and 5.9%, respectively. This indicates that there can be a 

significant advantage in using our new MSD policy. One can also compare the MSD policy to the 

better of the two other policies (that is, to consider min{ΔPD,ΔCD}). This isolates the specific cost 

increase of not using state-dependent deliveries, and the results show a maximum increase of 6.1% 

(the average was 1.8%). Table 1 shows that the maximum value occurs when the handling cost is at 

an intermediate value (θi = 8). This is logical because the PD - and CD policy will obviously perform 

well when the handling cost is low - and high, respectively. Figure 5 depicts the average ΔPD - and 

ΔCD values for given values of the handling cost. 
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Table 1. Input data and results of numerical tests. 

Input data Results MSD Results PD Results CD Comparison 
# θi bi Li Q RMSD TCMSD RPD TCPD RCD TCCD ΔPD ΔCD 

1 2 5 1 (4,2,3,4) (10,1,1,1) 10.02 (10,1,1,1) 10.18 (10,1,1,1) 10.70 1.6% 6.8% 
2 2 5 1 (6,4,5,6) (8,1,1,0) 11.91 (8,1,1,0) 11.98 (9,1,1,1) 14.04 0.6% 17.9% 
3 2 5 2 (4,2,3,4) (9,3,2,2) 11.28 (9,3,2,2) 11.44 (10,3,2,2) 11.98 1.4% 6.2% 
4 2 5 2 (6,4,5,6) (6,3,2,2) 12.99 (6,3,2,2) 13.06 (10,2,2,2) 15.06 0.5% 15.9% 
5 2 50 1 (4,2,3,4) (12,3,3,2) 16.26 (12,3,3,2) 16.37 (12,3,3,3) 17.36 0.7% 6.8% 
6 2 50 1 (6,4,5,6) (11,3,2,2) 18.79 (11,3,2,2) 18.84 (14,2,2,2) 20.95 0.3% 11.5% 
7 2 50 2 (4,2,3,4) (11,5,5,4) 18.47 (12,5,4,4) 18.62 (11,5,5,5) 19.47 0.8% 5.4% 
8 2 50 2 (6,4,5,6) (10,5,4,4) 20.88 (11,4,4,4) 20.93 (14,4,4,4) 23.01 0.3% 10.2% 
9 4 5 1 (4,2,3,4) (10,1,1,1) 10.31 (10,1,1,1) 10.82 (10,1,1,1) 10.70 5.0% 3.8% 
10 4 5 1 (6,4,5,6) (8,1,1,0) 12.35 (8,1,1,0) 12.59 (9,1,1,1) 14.04 2.0% 13.7% 
11 4 5 2 (4,2,3,4) (10,3,2,2) 11.60 (10,3,2,2) 12.15 (10,3,2,2) 11.98 4.8% 3.3% 
12 4 5 2 (6,4,5,6) (7,3,2,2) 13.45 (7,3,2,2) 13.73 (10,2,2,2) 15.06 2.1% 11.9% 
13 4 50 1 (4,2,3,4) (12,3,3,2) 16.51 (13,3,2,2) 16.76 (12,3,3,3) 17.36 1.5% 5.1% 
14 4 50 1 (6,4,5,6) (11,3,2,2) 19.14 (11,3,2,2) 19.30 (14,2,2,2) 20.95 0.8% 9.4% 
15 4 50 2 (4,2,3,4) (12,5,4,4) 18.74 (12,5,4,4) 19.08 (11,5,5,5) 19.47 1.8% 3.8% 
16 4 50 2 (6,4,5,6) (11,4,4,4) 21.23 (11,4,4,4) 21.39 (14,4,4,4) 23.01 0.8% 8.4% 
17 8 5 1 (4,2,3,4) (10,1,1,1) 10.57 (12,1,1,0) 11.94 (10,1,1,1) 10.70 12.9% 1.2% 
18 8 5 1 (6,4,5,6) (9,1,1,0) 13.00 (10,1,0,0) 13.78 (9,1,1,1) 14.04 6.0% 8.0% 
19 8 5 2 (4,2,3,4) (10,3,2,2) 11.85 (11,2,2,2) 13.44 (10,3,2,2) 11.98 13.5% 1.1% 
20 8 5 2 (6,4,5,6) (8,2,2,2) 14.12 (8,2,2,2) 14.97 (10,2,2,2) 15.06 6.1% 6.6% 
21 8 50 1 (4,2,3,4) (13,3,2,2) 16.84 (13,3,2,2) 17.51 (12,3,3,3) 17.36 3.9% 3.0% 
22 8 50 1 (6,4,5,6) (12,3,2,2) 19.67 (13,2,2,2) 20.06 (14,2,2,2) 20.95 2.0% 6.5% 
23 8 50 2 (4,2,3,4) (12,5,4,4) 19.06 (13,4,4,4) 19.98 (11,5,5,5) 19.47 4.8% 2.1% 
24 8 50 2 (6,4,5,6) (11,4,4,4) 21.81 (12,4,4,3) 22.25 (14,4,4,4) 23.01 2.0% 5.5% 
25 16 5 1 (4,2,3,4) (10,1,1,1) 10.69 (14,1,0,0) 13.53 (10,1,1,1) 10.70 26.6% 0.1% 
26 16 5 1 (6,4,5,6) (9,1,1,0) 13.64 (12,0,0,0) 15.52 (9,1,1,1) 14.04 13.8% 3.0% 
27 16 5 2 (4,2,3,4) (10,3,2,2) 11.97 (13,2,2,1) 15.14 (10,3,2,2) 11.98 26.5% 0.1% 
28 16 5 2 (6,4,5,6) (9,2,2,2) 14.71 (12,2,1,1) 16.90 (10,2,2,2) 15.06 14.9% 2.3% 
29 16 50 1 (4,2,3,4) (13,3,3,2) 17.15 (15,2,2,2) 18.54 (12,3,3,3) 17.36 8.1% 1.2% 
30 16 50 1 (6,4,5,6) (13,2,2,2) 20.28 (14,2,2,2) 21.26 (14,2,2,2) 20.95 4.9% 3.3% 
31 16 50 2 (4,2,3,4) (12,5,5,4) 19.34 (14,4,4,4) 21.25 (11,5,5,5) 19.47 9.9% 0.6% 
32 16 50 2 (6,4,5,6) (12,4,4,4) 22.47 (13,4,4,3) 23.64 (14,4,4,4) 23.01 5.2% 2.4% 

 
Figure 5. Average ΔPD - and ΔCD values for given values of the handling cost. 
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Figure 5 illustrates how performance of the PD policy deteriorates as the cost of partial deliveries 

increases. It is easy to show that the cost increase of using the PD policy compared to the MSD policy 

is unbounded as the handling cost increases towards infinity. However, the cost increase of using the 

CD policy is bounded. For this policy, the cost increase is at its highest value when the handling cost 

is zero, and then it decreases to zero (recall that Corollary 2 implies that the CD and MSD policies are 

equivalent above a certain value of the handling cost). 

 As mentioned in Section 1, the previous literature has almost exclusively considered systems 

with partial delivery policies. In these systems the optimal solutions usually point toward having a 

small proportion of stock at the central warehouse, thus having the main part at the retailers. This 

means that the retailers keep most of the safety stock, and the central warehouse provides relatively 

low service (e.g., Axsäter, 2003). To investigate how these results carry over to our new policies, 

Figure 6 shows how the optimal proportion of stock under the MSD policy changes with the handling 

cost. For each value of the handling cost there are eight different scenarios. Hence, the proportion of 

stock is defined as the sum of the expected positive central warehouse inventory over the eight 

scenarios, divided by the sum of the expected positive retailer inventories over the eight scenarios. 

Note that, in addition to the scenarios in Table 1, Figure 6 also includes results from the same eight 

scenarios with the handling cost equal to zero (because h0 = hi, ∀i, in this case the MSD policy is 

equal to the PD0 policy considered in previous work). Moreover, Figure 6 also includes the 

proportion with the handling cost equal to the upper bound (UB) provided by Corollary 2 (where the 

MSD policy is equal to the CD policy). 

 
Figure 6. Proportion of total expected stock stored at the central warehouse for given values of the 

handling cost under the MSD policy. 

We see in Figure 6 that increasing the handling cost makes it more attractive to keep stock at the 

central warehouse. This seems natural because the handling cost penalizes situations where there is 

not enough stock on hand to cover an entire order of Qi. Hence, it appears that under our more general 

cost structure, more stock will be allocated to the central warehouse than seen previously in the 
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literature. However, even for high handling costs where the CD policy is optimal, the majority of 

stock is still kept at the retailers. 

5. Summary and concluding remarks 
We have considered a two-echelon inventory model consisting of one central warehouse and a 

number of retailers. The purpose has been to evaluate the cost impact of different central warehouse 

delivery policies. This is done by introducing a more realistic cost structure for the handling of orders 

than previously considered in the literature. We have provided an exact method for cost evaluation 

and optimization of the reorder points under three different delivery policies: the partial delivery 

policy, the complete delivery policy and the mixed state-dependent policy. The state-dependent policy 

makes a cost minimizing decision between partial or complete deliveries for each retailer order and, 

thus, gives a performance guarantee compared to the simpler policies. 

 Our results show that the choice of delivery policy can have a significant impact on the 

operating costs of the considered system. Analytically, we have shown that the mixed state-dependent 

policy never performs worse than the two other policies. We have also identified sufficient conditions 

for when one should always choose complete deliveries. Numerically, when using our new state-

dependent policy as a benchmark, we recorded maximum relative cost increases of 26.6% (average 

5.8%) for the partial delivery policy, and 17.9% (average 5.9%) for the complete delivery policy. 

Hence, analytical as well as numerical results show that the common assumption of partial deliveries 

may be questionable in many cases. Moreover, our results suggest that, under our new cost structure, 

it is optimal to allocate more stock to the central warehouse than recorded previously in the literature. 

 Finally, we believe that the method of analysis that is presented in this work holds a high 

degree of generality. For instance, by deriving the distributions of the inventory levels it is easy to 

consider various types of service constraints, as opposed to backorder costs. By using our approach 

based on the nominal inventory position it could, for example, also be possible to consider more 

general demand distributions such as compound Poisson. 
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Abstract 

This paper studies a two-echelon inventory system consisting of one warehouse and multiple non-

identical retailers facing independent compound renewal demand. There are linear holding costs at all 

stock points and backorder costs at the retailers. All stock points apply continuous base stock 

replenishment policies, first-come-first-served allocations, partial order fulfillments and complete 

backordering. For this system, the exact long run average inventory level distribution is determined. 

Through this distribution, optimal order-up-to levels of all stock points are obtained using a recursive 

cost evaluation procedure. Numerical tests show that it can be very costly to assume exponential inter-

arrival times, as is customary in many existing models.  

 

Keywords: Inventory, Multi-echelon, Stochastic, Continuous review, Compound renewal demand, 

Inter-arrival times. 
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1. Introduction 
Developments in Information Technologies enable firms to collect more detailed information about 

their businesses. For logistics planning, this means that many companies have access to detailed 

information about their customer demand, for instance the distribution of the time between 

consecutive customer arrivals (the inter-arrival time) and demand sizes. In order to benefit from this 

information, models that can handle general demand distributions are needed. Existing exact 

inventory control models of distribution systems predominantly assume exponential inter-arrival 

times of customers. The memoryless property of the resulting Poisson processes has many analytical 

advantages. In many cases, especially when there are a large number of independent customers 

arriving to each stock point, this is also a well-motivated assumption.  However, in other situations, 

for example for critical spare parts, it is not uncommon to have a local stock point (or consignment 

stock) in conjunction to larger customers. In these systems, e.g. increasing or decreasing underlying 

failure rates or preventive maintenance can make the inter-arrival times far from exponential. In other 

systems, customers’ batching of orders makes exponential times poor estimates of reality.  

 In this context, we present a one-warehouse-multiple-retailer inventory model, where the inter-

arrival times of customer demands follow any continuous distribution and the customer demand sizes 

are positive integers, at each retailer. The distributions of the inter-arrival times and demand sizes at 

all retailers are known. Assuming that consecutive inter-arrival times and demand sizes are 

independent (also across the retailers), the customer demands at the retailers correspond to 

independent compound renewal processes.  

 The model includes linear holding costs per unit and time unit at all stock points and backorder 

costs per unit and time unit at the retailers. The retailers replenish from the central warehouse, which, 

in turn, replenish from an outside supplier. All stock points apply continuous base stock policies to 

replenish their inventory. The optimal replenishment policy for this type of distribution system is 

unknown even for simpler demand distributions. However, for systems with negligible replenishment 

costs compared to the holding and backorder costs (for instance expensive spare parts) continuous 

base stock (or order-up-to S) policies are optimal in many single-echelon systems and also commonly 

used in multi-echelon systems both in theory and in practice. First-Come-First-Served (FCFS) 

allocations are assumed at all stock points. This is motivated by tractability reasons and their wide 

spread use. There are also several studies suggesting close to optimal performance in many 

distribution systems (see Graves, 1996, Howard and Marklund, 2011, and Howard, 2013).   
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 The main contribution is the exact analysis and derivation of long run inventory level 

distributions at all stock points. Through these distributions the expected long run system cost is 

obtained and a recursive optimization procedure for the order-up-to-levels at all stock points is 

provided. Our numerical study show that the common assumption of exponential inter-arrival times 

can be extremely costly (cost increases of more than 200%). 

 The rest of this section is dedicated to a literature review and Section 2 formulates the model. 

Section 3 presents the analysis of the inventory level distributions and costs of the system. Based on 

this analysis, Section 4 shows how to optimize the order-up-to levels with a recursive procedure. 

Section 5 presents the numerical study, and Section 6 concludes. 

Related literature 
As mentioned before, thus far, exact evaluation techniques for one-warehouse-multiple-retailer 

continuous review inventory control systems have been based on Poisson processes. Simon (1971) 

presents an exact method for evaluating the expected inventory levels and thereby the costs in a 

system were customer demand is Poisson distributed and all stock points replenish with order-up-to S 

policies. For this system, Axsäter (1990) provides a fast recursive approach for determining the costs. 

The Axsäter model is generalized to compound Poisson demand by Forsberg (1995) and to 

installation stock (R,Q)-policies and Poisson demand by Axsäter (1993a) and Forsberg (1997a). 

Forsberg (1997b) extends the analysis of Forsberg (1997a) to the case were customer inter-arrival 

rates are k-Erlang distributed. Axsäter (2000) is related to our work as it also evaluates the inventory 

level distributions under compound Poisson and installation stock (R,Q) policies. This is also the case 

for Chen and Zheng (1997) that analyses echelon stock (R,Q) policies exactly for Poisson and as an 

approximation for compound Poisson. For an overview of more recent exact models, that analyzes 

more elaborate replenishment policies in distribution systems; see, for example, Marklund (2011).   

 To the best of our knowledge, Forsberg (1997b) provides the only exact analysis of costs with 

non-Poisson customer inter-arrival times in a continuous review multi-echelon distribution system. 

This analysis is also based on the Poisson process as it uses an adjusted Poisson process with a higher 

virtual demand frequency and assumes that only every k virtual demands trigger orders and generates 

costs. Compared to Forsberg (1997b) our present work distinguishes itself in several ways; (i) we 

consider general continuous distributions of the inter-arrival times, (ii) we consider a compounding 

distribution, i.e. the customers can order multiple units at once, (iii) we evaluate the expected 

inventory level distribution, not only the costs, (iv) we provide an optimization procedure for the 

order-up-to levels, and (v) we present a new cost evaluation technique.  
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 Among the existing approximation models for continuous review inventory control of 

distribution systems Kiesmüller et al. (2004) and Forsberg (1997b) are of specific interest to our 

research, as they approximate general (compound) renewal demand. Our research is also related to the 

large body of research examining periodic review inventory distribution systems. Particularly Graves 

(1996), Axsäter (1993b), and Shang, Tao and Zhou (2015) are related to the present work as they 

assume FCFS allocation policies in their model. Also, Erkip, Hausman and Nahmias (1990) relates to 

our work as they study a system where the demands in successive time periods are dependent. When 

the customer arrivals follow general renewal processes, as they do in our present work, the demand in 

consecutive time periods (of constant length) is usually dependent, as opposed to models assuming 

Poisson arrivals.   

 General renewal or compound renewal demand has also been considered in the single-echelon 

settings, see, for instance, Kruse (1981), Larsen and Thorstenson (2008), Syntetos et al. (2015) and 

references therein. 

2. Problem formulation 
As mentioned, we study a 2-echelon system where a central warehouse supplies N non-identical 

retailers, which face independent compound renewal demand. The retailers replenish from the central 

warehouse (no direct demand at the warehouse or lateral transshipments are allowed) and the 

warehouse replenish from an outside supplier. The transportation time to the retailers including 

picking, loading, transporting, receiving etc. is constant, as is the replenishment lead time, L0, for the 

central warehouse (the time from placement of an order with the outside supplier until the units are 

available at the warehouse). Alternatively the model describes a repairable item system, where the 

central warehouse repairs all broken parts in L0 time units. 

 Recall that, there are linear holding costs at all stock points (per unit and time unit) and linear 

backorder costs at all retailers, and all stock points apply order-up-to S policies and FCFS allocations.  

When orders cannot be fully satisfied, all stock points use complete backordering and partial order 

fulfillment, which is common for expensive spare parts (where shipment costs are negligible). The 

order-up-to levels are assumed to be non-negative at all stock points. For the retailers, this is optimal 

(given that base stock policies are used), but for the warehouse, this is not necessarily the case. There 

exist systems where negative order-up-to levels can be optimal at the central warehouse (especially 

for some systems where the inter-arrival times are close to deterministic). The restriction is motivated 

by analytical tractability, the fact that it is optimal for exponential inter-arrival times, and its use in 

practice. We define: 
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Ω = set of retailers (number of retailers = N) 

S0 = order up to level at the central warehouse 

Si = order up to level at retailer i 

L0 = replenishment lead time to the central warehouse 

Li = transportation time from the central warehouse to retailer i 

h0 = holding cost per unit and time unit at the central warehouse 

hi = holding cost per unit and time unit at retailer i 

bi = backorder cost per unit and time unit at retailer i 

Ai = inter-arrival time of customers at retailer i 

fX(τ) = probability density function of the continuous variable X 

FX(τ) = cumulative distribution function of the continuous variable X 

( )iq x  =  probability that the customer demand size at retailer i is equal to x 

( )iq x′  =  probability that the customer demand size at retailer i is larger than x 

iλ        = long run average number of customers arriving per time unit at retailer i = 1/E[Ai] 

iµ        = average order size at retailer i 

ILi(t) = inventory level (= stock on hand – backorders) at retailer i at time t 

IL0(t) = inventory level at central warehouse at time t  

x+ = max(x,0), x− = max(−x,0) 

3. Cost Analysis 
In this section the long run average costs per time unit is determined by a steady state analysis. 

Because the inter-arrival times are stochastic with a continuous distribution (non-lattice) and 

independent, the system will eventually reach steady state. The costs for the time period until steady 

state is reached are finite, and will therefore not affect the long run average costs. All proofs are 

deferred to Appendix A. We define: 

TC(S0,S1,…,SN) = the expected total costs per time unit for the system in steady state, with order-up-

to levels S0 and Si i .∀ ∈Ω  

C0(S0) = the expected costs per time unit in steady state at the central warehouse, when the 

order-up-to level at the warehouse is S0 

Ci(S0,Si) =  the expected costs per time unit in steady state at retailer i, when the order-up-to level 

at the warehouse is S0 and the order-up-to level at retailer i is Si 
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Di[t1,t2)  = total customer demand at retailer i in time interval [t1,t2) 

Di(t1,t2)  = total customer demand at retailer i in time interval (t1,t2) 

( )T
i xπ = probability of a demand of x units at retailer i during a time interval of T time units 

excluding the initial demand that marks the start of this interval  

( )T
i xπ


= probability of a demand of x units at retailer i during a time interval of T time units 

excluding the demand that marks the end of this interval 

( )T
i xπ = probability of a demand of x units at retailer i during T time units in steady state 

[ ] ( )1 2T ,T
i x, yπ = joint probability of a demand of x and y units at retailer i during two consecutive time 

intervals of T1 and T2 time units each in steady state 

( )T xΘπ = probability of a total demand of x units for the retailer set Θ during a time interval of T 

time units in steady state  

How to determine these ( )π


 -probabilities is a key feature of the cost analysis, and it is described in 

Section 3.3 below.  

 The expected total costs in the system per time unit in steady state is 

 ( ) ( ) ( )0 1 N 0 0 i 0 i
i

TC S ,S ,...,S C S C S ,S .
∈Ω

= +∑   (1) 

The costs at the central warehouse, C0(S0), consist of only holding costs. The analysis is based on 

studying the distribution of the inventory level at time t in steady state. We have 

 
( ) ( )

( )( )
0

0 0 0 0

S

0 0
m 1

C S h E IL t

h mP IL t m .

+

=

 =  

= =∑
  (2) 

The inventory position at the central warehouse (= outstanding orders + stock on hand – backorders) 

is by definition equal to the base stock level S0. Because of the continuous review base stock policy at 

each retailer i, every customer demand immediately creates a retailer order of the same size. Using the 

inventory balance equation, we get 

 ( ) [ )0 0 i 0i
IL t S D t L , t

∈Ω
= − −∑ .  (3) 

In steady state, the long run probability of an inventory level m at the central warehouse can thus be 

obtained as 

 ( )( ) ( )0L
0 0P IL t m S mΩ= = π −   (4) 

How to determine the probability ( )0L
0S mΩπ − in (4) is described in Section 3.3. 



6 
 

 The retailer costs, Ci(S0,Si) ∀ i, consist of both holding and backorder costs. For analyzing 

these costs, we study the inventory level at retailer i at time t in steady state. The solution is obtained 

by analyzing the system behavior during the L0 + Li time units prior to t. For ease of exposition, we let 

t = L0 + Li. We also define the amount of backordered units at the central warehouse destined for 

retailer i at time t – Li = L0, Bi(S0). The inventory level at retailer i at time L0 + Li, ILi(L0 + Li), is 

 ( ) ( ) [ )i 0 i i i 0 i 0 0 iIL L L S B S D L ,L L+ = − − + .  (5) 

The analysis of the inventory levels at the retailers is explained in Section 3.1 below. Based on the 

inventory level distribution, the expected costs at retailer i is obtained as 

 
( ) ( ) ( )

( ) ( )( ) ( )( )
i

i 0 i i i 0 i i i 0 i

S

i i i 0 i i i i 0 i i i
m 1

C S ,S h E IL L L b E IL L L

h b mP IL L L m b S E B S L .

+ −

=

   = + + +   

= + + = − −   − λ m ∑
  (6) 

(6) follows as for any variable X, E[X] = E[X+] – E[X-] and the expected demand between L0 and     

L0 + Li is λiμiLi. E[Bi(S0)] is analyzed in Section 3.2. 

3.1. Inventory Level at Retailer i 
 The derivation of the inventory level probabilities at the retailers is more challenging than the 

analysis of the inventory level at the central warehouse. The reason is that the warehouse is usually 

unable to fulfill all retailer orders immediately. The difficulties in analyzing (5) for a specific retailer 

i, lies in determining Bi(S0), keeping in mind that, because of the compound renewal demand, Bi(S0) 

(at time L0) can be dependent on Di(L0,L0 + Li). For analyzing Bi(S0) we define the nominal inventory 

position at time τ to be 

 ( ) [ )0 ii
S D 0,

∈Ω
Ψ τ = − τ∑ ,          for 00 L≤ τ ≤ . (7) 

The nominal inventory position is a stepwise decreasing function. When positive, it provides 

information about how many units (not yet demanded by the retailers) the central warehouse still can 

provide (to any retailer) before time L0. Lemma 1 summarizes some of the properties of the nominal 

inventory position, illustrated in Figure 1. Similar definitions of the nominal inventory position and its 

properties have previously been used in Stenius et al. (2015) and Howard and Stenius (2014) for other 

types of distribution systems under more restrictive Poisson/compound Poisson demand. 

Lemma 1. Properties of the nominal inventory position, ( )Ψ τ , 0 ≤ τ ≤ L0: 

a)  ( ) 00 SΨ =   

b)  ( ) ( )0 0 0L IL LΨ =   
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c)  if ( ) 0Ψ τ ≥ , no retailer orders before time τ will be backordered at the central warehouse at 

time L0 

d)  if ( ) 0Ψ τ ≤ , all retailer orders in time interval (τ,L0) will be backordered at the central 

warehouse at time L0 

e)  if ( ) xΨ τ = , x ≥ 0 when retailer i places an order of y > x units, x of these units will be 

delivered before time L0 and y-x of these units will be backordered at time L0.  

   
Figure 1. Sample path of the nominal inventory position from time 0 to L0. 

Based on the properties of the nominal inventory position, we divide the analysis of the inventory 

level at the considered retailer i at time L0 + Li in three events: 

E1:  IL0(L0) ≥ 0 

E2:  At time τ (0 ≤ τ < L0) an order from retailer j ≠ i occurs that brings the nominal inventory 

position from a non-negative to a negative value. 

E3:  At time τ (0 ≤ τ < L0) an order from retailer i occurs that brings the nominal inventory 

position from a non-negative to a negative value. 

These events are mutually exclusive and collectively exhaustive and the probability of an inventory 

level m at retailer i at time L0 + Li in steady state is thus 

 
( )( )

( )( ) ( )( ) ( )( )
i 0 i

i 0 i i 0 i i 0 i

P IL L L m

P IL L L m,E1 P IL L L m,E2 P IL L L m,E3 .

+ =

= + = + + = + + =
  (8) 

The probability of an inventory level m at retailer i for event E1 
For event E1, the inventory level at the central warehouse is non-negative at time L0. For determining 

the probability mass functions of the inventory levels at retailer i in this event we use Lemma 2 and 

Corollary 1. 

Lemma 2. For IL0(L0) ≥ 0 (event E1)  

0 L0

0

Ψ(τ) 
S0

IL0(L0)

time

units

Unsatisfied (backordered) 
retailer orders at L0

Retailer orders 
satisfied before L0
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 ( ) [ )i 0 i i i 0 0 iIL L L S D L ,L L+ = − +   (9) 

Corollary 1. ILi(L0 + Li) = m for event E1 iff conditions a), b) and c) are satisfied:  

a) [ )[ ] j 0j i\
D 0,L x

∈Ω
=∑         , x ≤ S0  

b) [ )i 0D 0,L y=          , y ≤ S0 – x 

c) [ )i 0 0 i iD L ,L L S m+ = −   

Note that because of the compound renewal demand processes at the retailers, the demands in 

consecutive time intervals at the same retailer are usually dependent. For that reason, conditions b) 

and c) in Corollary 1 are dependent. They are however independent of a) as demand at different 

retailers are independent. Because we have no specific requirements on when an order should occur, 

the probability of condition a) for a given x is [ ] ( )0L
\ i xΩπ . The joint probability of conditions b) and c) 

for a given y is [ ] ( )0 iL ,L
i iy,S mπ − . How to determine these ( )π



 -probabilities is explained in Section 

3.3. Considering all possible values of x and y, the probability of an inventory level m at retailer i for 

event E1 at an arbitrary point in time in steady state (at time L0 + Li) can be obtained as 

 ( )( ) [ ] ( ) [ ] ( )
0 0

0 i0

S S x
L ,LL

i 0 i i ii
x 0 y 0

\P IL L L m,E1 x y,S m .
−

Ω
= =

+ = −π π=∑ ∑   (10) 

The probability of an inventory level m at retailer i for event E2 
In event E2, the nominal inventory position is brought to a non-negative value by an order from 

retailer j ≠ i at time τ, 0 ≤ τ < L0. This order is triggered by a customer demand at retailer j of the same 

size, and we refer to this customer demand as the critical demand. Lemma 3 and Corollary 2 provides 

the conditions under which the inventory level at retailer i is m for event E2. 

Lemma 3. For event E2, when the critical demand occurs at time τ (0 ≤ τ < L0), 

 ( ) ( )i 0 i i i 0 iIL L L S D ,L L+ = − τ +   (11) 

Corollary 2. ILi(L0 + Li) = m for event E2 iff conditions a) – f) are satisfied:  

a) a demand occurs at retailer j at time τ (the critical demand)  , [ ]j i ,\∈Ω  0 ≤ τ < L0 

b) [ )[ ] kk \ i, j
D 0, x

∈Ω
τ =∑         , x ≤ S0  

c) [ )jD 0, yτ =           , y ≤ S0 – x 

d) [ )iD 0, zτ =           , z ≤ S0 – x – y 

e) the size of the critical demand at retailer j is larger than S0 – x – y – z 

f) ( )i 0 i iD ,L L S mτ + = − .  
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 Analogously to event E1, in general conditions d) and f) in Lemma 3 are dependent. Moreover, 

condition c) is dependent on condition a), that there is a customer demand occurring at retailer j at τ. 

Again, the demands at different retailers are independent. Also, because of the independence between 

order sizes and inter-arrival times in the compound renewal demand process, the size of the critical 

demand is independent of the demand prior to τ.  

 The intensity at which demands occur at retailer j, in steady state, is λj. The probability of 

condition b) for a given τ and x is [ ] ( ), j\ i xτ
Ωπ . When there is a demand occurrence at retailer j at τ, the 

probability of condition c) for a given τ and y is ( )j yτπ


. The joint probability of conditions d) and f) 

given τ and z is  [ ] ( )0 i,L L
i iz,S mτ + −τ −π  and the probability of condition e) given x, y and z is 

( )j 0q S x y z′ − − − . How to determine the ( )π


 -probabilities is explained in Section 3.3. Considering 

all possible retailers j ≠ i, and all possible values for τ, x, y and z, the probability of an inventory level 

m at retailer i for event E2 at an arbitrary point in time in steady state (at time L0 + Li) can be obtained 

as 

 
( )( )

[ ] ( ) ( ) ( ) [ ] ( )
[ ]

0 0 0 0
0 i

i 0 i

L S S x S x y
,L L

j j j 0 i ii, j\
\j i x 0 y 0 z 00

P IL L L m,E2

x y q S x y z z,S m d .
− − −

τ + −ττ τ
Ω

∈Ω = = =

+ =

′= λ − − − τπ π −π∑ ∑ ∑ ∑∫ 

  (12) 

The probability of an inventory level m at retailer i for event E3 
For event E3 the critical demand occurs at retailer i. When this demand occurs, the nominal inventory 

position is brought to - iB̂  ( iB̂ 0> ). Thus, from Lemma 1 f), iB̂ units of the order corresponding to 

this critical demand (destined to retailer i) will be backordered at L0. We refer to these iB̂  units as the 

initial backorders. Lemma 4 and Corollary 3 provides the conditions under which the inventory level 

at retailer i will be m for event E3. 

Lemma 4. For event E3, when the critical demand occurs at time τ (0 ≤ τ < L0), 

 ( ) ( )i 0 i i i 0 i
ˆIL L L S B D ,L L+ = − − τ +   (13) 

Corollary 3. ILi(L0 + Li) = m for event E3 iff conditions a) – e) are satisfied:  

a) a demand occurs at retailer i at time τ (the critical demand)  , 0 ≤ τ < L0 

b) [ )[ ] jj \ i
D 0, x

∈Ω
τ =∑         , x ≤ S0  

c) [ )iD 0, yτ =           , y ≤ S0 – x 

d) the size of the critical demand is z  , S0 – x – y < z ≤ Si – m + S0 – x – y  
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e) ( )i 0 i i 0D ,L L S m S x y zτ + = − + − − −   

 Given that there is a demand (the critical demand) occurring at retailer i at τ, the demands in 

interval [0, τ) and (τ,L0 + Li) at retailer i are dependent on the fact that this demand occurs. However, 

due to the independence of the inter-arrival times and demand sizes, they are independent of the size 

of the critical demand and each other. Note again, that the demand at different retailers are 

independent in steady state. 

 The long run intensity at which demands occur at retailer i in steady state is λi. The probabilities 

for: condition b) given τ and x is [ ] ( )\ i xτ
Ωπ , condition c) given τ and y is ( )i yτπ



, condition d) given z 

is ( )iq z and condition e) given τ, x, y and z is ( )0 iL L
i i 0S m S x y z+ −τ − + − −π − . How to determine the 

( )π


 -probabilities is explained in Section 3.3. Considering all possible values for τ, x, y and z, the 

probability of an inventory level m at retailer i for event E3 at an arbitrary point in time in steady state 

(at time L0 + Li) can be obtained as 

 
( )( )

[ ] ( ) ( ) ( ) ( )
0 0 0 i 0

0 i

0

i 0 i

L S S x S m S x y
L L

i i i i i\ 0i
x 0 y 0 z S x y 10

P IL L L m,E3

x y q z S m S x y z d .
− − + − −

+ −ττ τ
Ω

= = = − − +

+ =

= λ − + − τπ π − −π∑ ∑ ∑∫




  (14) 

3.2. Expected Backorders Designated for Retailer i, E[Bi(S0)] 
Theoretically, the cost analysis and the optimization of the order-up-to levels can be performed based 

on only the probability mass functions of the inventory levels. However, in order to avoid evaluations 

of infinite sums when determining Ci(S0,Si) i∀ ∈Ω  in (6), we also determine the expected amount of 

warehouse backorders designated for each retailer i at an arbitrary time L0 in steady state, E[Bi(S0)]. 

We define: 

Gi(S0) =  number of units ordered by retailer i in time interval [0,L0) that are dispatched from the 

central warehouse before time L0. 

 When the expected value of Gi(S0) is known, the expected amount of backorders designated for 

retailer i can be determined from Lemma 5. 

Lemma 5.  

 ( ) ( )i 0 i 0 i i 0E B S L E G S  = λ µ −        (15) 

Note also that Gi(S0) only takes values between 0 and S0, therefore 

 ( ) ( )( )
0S

i i
g 1

0 0E G gP G gS S
=

  = =  ∑   (16) 
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The analysis of P(Gi(S0) = g) is divided in the same three events (E1, E2 and E3) and follows a similar 

structure as the analysis of the inventory levels at the retailers in Section 3.1. The details of this 

analysis are provided in Appendix B.  

3.3 Demand per time unit 
This section is devoted to determining the probability mass functions of the demands during one or 

two consecutive time interval(s), i.e. the ( )π


 -probabilities defined at the beginning of Section 3. 

The analysis is focused on the demand at retailer i and for notational convenience we suppress the 

index i from some variables. We define: 

A = inter-arrival time of customers at retailer i (with pdf fA(τ) and cdf FA(τ)) 

V(t) = time until next customer arrival after (or exactly at) time t at retailer i  

W(t) = time since previous customer arrival before time t at retailer i 

U(t) = inter-arrival time between the last customer arriving before time t and the first customer 

after (or exactly at) time t at retailer i  

( )n
iq x  = probability that the sum of n customer demands at retailer i is equal to x, determined as 

the n-fold convolution of ( )iq x  

( )T
ip n = probability that there are n customers arriving to retailer i in time interval (t,t + T), 

when there is a customer arriving at t (not included in n) 

( )T
ip n


= probability that there are n customers arriving to retailer i in time interval (t,t + T), 

when there is a customer arriving at t + T (not included in n) 

( )T
ip n = probability that there are n customers arriving to retailer i during an arbitrary time 

interval of T time units in steady state 

[ ] ( )1 2T ,T
ip n,m = joint probability of n and m customers arriving to retailer i during two consecutive 

time intervals of T1 and T2 time units in steady state 

Determining ( )T
i xπ  and ( )T

i xπ


 

Note first that, due to the symmetry of the compound renewal process, ( )T
i xp


 is equal to ( )T
i xp , and 

consequently ( ) ( )T T
i ix x=π π


. Thus, we focus on determining the distribution of the demand during a 

time interval, when we know that there is a demand occurring at the beginning of this interval 
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(excluding this demand), ( )T
i xπ . Because each customer demands at least one unit, the only 

possibility to have a demand of zero units is if there are no customers arriving. Thus, 

 ( ) ( ) ( )T T
i i A0 p 0 1 F Tp = = − .  (17) 

For x>0, we have to consider that there are 1 to x customers arriving in the time interval and get 

 ( ) ( ) ( )
x

T T n
i i i

n 1
x p n q x

=

p =∑  ,  (18) 

where the probability that there are n customers arriving can be determined recursively as 

 ( ) ( ) ( ) ( )
T

TT
i A i

0

p n f p n 1 d−τ= τ − τ∫
  .  (19) 

Determining ( )T
i xπ  and ( )T xΘπ  

To determine the distribution of the demand at an arbitrary time interval from t to t + T in steady state, 

we study the time until the next customer arrives at retailer i after time t, V(t). See, for example, 

Parzen (1962) that the probability distribution function of V(t) (the excess lifetime) in steady state is  

 ( ) ( ) [ ] ( )( )
v

AV t
0

1F v 1 F d
E A

= − tt ∫   (20) 

and the density function is 

 ( ) ( ) [ ]
A

V t
1 F (v)f v .

E A
−

=   (21) 

Analogously to (17), there can only be a demand of zero units in time interval [t, t + T) if no 

customers arrive (i.e. if the time until the next customer arrival after t is longer than T). Thus, 

 ( ) ( ) ( ) ( ) ( ) ( )T T
i i V t V t

T

0 p 0 f v dv 1 F T .
∞

= = = −p ∫   (22) 

For x>0, we get analogously to (18) that 

 ( ) ( ) ( )
x

T T n
i i i

n 1
x p n q x

=

p =∑ .  (23) 

The probability that there are n > 0 customers arriving can be obtained by conditioning on the time of 

the first customer arrival after time t, V(t), as 

 ( ) ( ) ( ) ( )
T

T vT
i V(t ) i

0

p n f v p n 1 dv−= −∫
 .  (24) 

 For determining ( )T xΘπ , recall that the demands at different retailers are independent in steady 

state. ( )T xΘπ  is thus determined by convolution of ( )T
i x iπ ∀ ∈Θ . 
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Determining [ ] ( )1 2T ,T
i x, yπ   

Finally we turn to the derivation of the joint distribution of the demands in two consecutive time 

intervals of lengths T1 and T2, [ ] ( )1 2T ,T
i x, yπ . Note that whenever this probability is used in this paper, 

T1 + T2 = L0 + Li. We denote the time between the two intervals t, the time before the first interval t1 = 

t – T1, and the time after the second interval t2 = t + T2 (see Figure 2). We divide the analysis in four 

cases dependent on whether the demand is positive in each time interval: case 1: [ ] ( )1 2T ,T
i 0,0π , case 2: 

[ ] ( )1 2T ,T
i 0, yπ , y>0, case 3: [ ] ( )1 2T ,T

i x,0π , x>0 and case 4: [ ] ( )1 2T ,T
i x, yπ , x>0, y>0. 

 
Figure 2. Timeline for analyzing case 4: [ ] ( )1 2T ,T

i x, yπ , x>0, y>0  

 In case 1 ( [ ] ( )1 2T ,T
i 0,0π ) the demand in both intervals is zero. As a result, analyzing the next 

customer arrival after t1 analogously to (22) yields 

 [ ] ( ) [ ] ( ) ( ) ( ) ( )1 2 1 2 1 2

1

T ,T T ,T T T
i i i 1 2V t0,0 0,0 0 1 F T Tp ,p += = = − +p   (25) 

Note that the distribution of V(t1) equals the distribution of V(t) (as both are in steady state) and 

( ) ( )
1 1 2V tF T T+  can be determined by (20).  

 In case 2 ( [ ] ( )1 2T ,T
i 0, yπ , y > 0) the demand in the first time interval (of T1 time units) is zero and 

the demand in the second time interval is y > 0. Studying the system at time t1, we know that the time 

until next customer arrival, V(t1), has to be between T1 and T1 + T2. The probability to have zero 

customers arriving in the first interval and m > 0 customers arriving in the second interval is obtained 

by conditioning on V(t1)  

 [ ] ( ) ( ) ( ) ( )
1 2

1 2 1 2

1

1

T T
T ,T T T v

i iV t
T

p 0,m f v p m 1 dv.
+

+ −= −∫
   (26) 

Analogously to (18) and (23) we get 

 [ ] ( ) [ ] ( ) ( )1 2 1 2

y
T ,T T ,T m

i i i
m 1

0, y p 0,m q y .
=

=p ∑   (27) 

time

t1 t t2

U(t)
V(t)

T1 T2

Customer arrivals

W(t)
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 In case 3 ( [ ] ( )1 2T ,T
i x,0π , x>0) we have a positive demand, x, in the first time interval and no 

demand in the second time interval. We now study the system at time t2 and condition on the time 

since the previous customer arriving, W(t2), (which has to be between T2 and T1 + T2) and get for n>0 

 [ ] ( ) ( ) ( ) ( )
1 2

1 2 1 2

2

2

T T
T ,T T T w

i iW t
T

p n,0 f w p n 1 dw
+

+ −= −∫


  (28) 

and 

 [ ] ( ) [ ] ( ) ( )1 2 1 2
x

T ,T T ,T n
i i i

n 1
x,0 p n,0 q x .

=

=p ∑   (29) 

Because of the symmetry of the renewal process and as both t and t2 are in steady state, the density of 

W(t2) (the current lifetime) in (28), ( ) ( )
2W tf w , is equal to the density of V(t) in (21) (see, for instance, 

Karlin and Taylor, 1975, p. 193-194).  

 In case 4 ( [ ] ( )1 2T ,T
i x, yπ , x>0, y>0) we have positive demands in both time intervals. By 

studying the system at the time between the two time intervals, t, the analysis is based on analyzing 

U(t) and V(t), see Figure 2. Note first that the probability density function of the inter-arrival time 

between the previous and next customer arrival at retailer i at time t in steady state, U(t), (the total 

lifetime) is (see, for instance, Parzen, 1962) 

 ( ) ( ) ( )
[ ]

A
U t

uf u
f u

E A
=   (30) 

and the conditional density function of the time until the next customer arrival at time t, V(t), given 

U(t) = u is 

 ( ) ( ) ( )V t U t u

0 ,v u
f v .1 ,0 v uu

=

>=  ≤ <
  (31) 

Lemma 6. At retailer i there are n > 0 customers arriving in time interval [t1,t) and m > 0 customers 

arriving in time interval [t, t2) iff conditions a)-d) are satisfied:  

a) ( )U t u=      , 0 < u ≤ T1 + T2 

b) given a), ( )V t v=   , max(0,u – T1) ≤ v < min(u,T2) 

c) given a) and b), m – 1 additional customers arrive in time interval (t + v, t2), excluding the 

customer arriving at t + v  

d) given a) and b), n – 1 additional customers arrive in time interval [t1, t + v – u), excluding the 

customer arriving at t + v – u 
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 Studying the system in steady state at time t, the probability density function for condition a) is 

( )U tf (u) . The conditional probability density function for condition b) is ( ) ( ) ( )V t U t uf v= . The 

conditional probability for condition c) is ( )2T v
ip m 1− −  and for condition d) is ( )1T v u

ip n 1+ − −


. 

Conditioning first on U(t) = u and then on V(t) = v and considering all possible values of u and v we 

get for n>0 and m>0 

 [ ] ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( )
21 2

1 2 2 1

1

min u,TT T
T ,T T v T v u

i i iU t V t U t u
0 max 0,u T

p n,m f u f v p m 1 p n 1 dvdu
+

− + −
=

−

= − −∫ ∫




.  (32) 

From (30) and (31) (as max(0,u-T1) ≤ v < min(u,T2)) we get  

 [ ] ( ) [ ] ( ) ( ) ( )
( )

( )21 2

1 2 2 1

1

min u,TT T
T ,T T v T v u

i A i i
0 max 0,u T

1p n,m f u p m 1 p n 1 dvdu
E A

+
− + −

−

= − −∫ ∫




.  (33) 

Finally, convolution yields 

 [ ] ( ) [ ] ( ) ( ) ( )1 2 1 2

yx
T ,T T ,T n m

i i i i
n 1 m 1

x, y p x, y q x q y
= =

=p ∑∑ .  (34) 

4. Optimization of Order-up-to Levels 
The aim of the optimization is to find the set of order-up-to levels at the warehouse, S0

*, and all 

retailers, S1
*,…, SN

*, that achieve the minimum total expected system costs, TC*. It can be shown by 

example that the costs are not jointly convex in S0 and Si. However, as C0(S0) and Cj(S0,Sj) for j ≠ i are 

independent of Si (see the cost analysis in Section 3), the total costs are separable in the retailer order-

up-to levels. Corollary 4 below also proves that the total costs are convex in Si for a given S0. The 

optimal solution is thus obtained by bounding S0, and optimizing Si for all i∈Ω  using this convexity 

property. The recursive cost evaluation technique in Proposition 1 below is used to reduce the 

computation time. Let: 

ILi(S0,Si) = the inventory level in steady state at retailer i, when the order-up-to level at the 

warehouse is S0 and the order-up-to level at retailer i is Si 

Proposition 1. Given S0, the costs of retailer i can be determined recursively for increasing values of 

Si as 

 ( ) ( )( )i 0 i i 0 i i iC S ,0 b E B S L ,  + λ µ =   (35) 

 ( ) ( ) ( ) ( )i i i i i i i i i0 0 0C S C S 1S , S h b, b ,S S,= − + + α −   (36) 
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where ( ) ( )( )0i 0 i i iS ,S P IL S ,S 0α = >  is the ready-rate at retailer i and obtained as 

 ( )0i 0S ,0α =   (37) 

 ( ) ( ) ( )( )i i i i0 i0 i0S S 1 P ILS , S , S ,S 1α = α − + =   (38) 

Corollary 4. given S0, the inventory costs at stock point i and the total system costs are convex in Si. 

 By definition (in Section 2), S0 = 0 is a lower bound. The upper bound is determined by 

Proposition 2 below. Let: 

S0
u =  upper bound for the optimal order-up-to level at the central warehouse 

TC  =  lowest total cost found for all evaluated sets of order-up-to levels (updated concurrently 

during the optimization) 

Ci
l =  lower bound on the expected holding and backorder costs at retailer i for any set of 

order-up-to levels at the warehouse and the retailer. 

Proposition 2. Defining S0
u as the largest value for which 

 ( )u l
0 o i

i
C S TC C ,

∈Ω

≤ −∑   (39) 

no system where u
0 0S S>  can minimize the total costs.  

Trivial Ci
l values can obviously be determined as Ci

l = 0 i∀ ∈Ω . For tighter lower bounds on the 

retailer costs Ci
l (leading to a tighter upper bound on the warehouse order up to level, S0

u) see 

Appendix C. Note that the tightness of the upper bound can be important as the computational 

complexity in the cost analysis increases for higher S0 values. 

4.1. Optimization procedure 
1. Determine Ci

l i∀ ∈Ω  according to the procedure in Appendix C. 

2. Optimize Si i∀ ∈Ω  for S0 = 0 using the recursive procedure in Proposition 1 and the convexity 

property in Corollary 4. Note that C0(0) = 0 and set the initial TC  to the minimum total cost 

for S0 = 0.  

3. Increase S0 one step at the time, updating the warehouse costs with (2). For each S0, optimize Si 

for all i using the recursive procedure in Proposition 1 and the convexity property in Corollary 

4. Update TC  as solutions with lower expected total costs are found. 

4. Stop increasing S0 when the upper bound S0
u in Proposition 2 is reached. The optimal solution 

is now found and the associated lowest expected total cost is TC* = TC . 



17 
 

5. Numerical study 
This Section presents the results of a numerical study (of two Test series) investigating the value of 

considering detailed inter-arrival time distributions. The system behavior is explored for either 

Gamma or Weibull distributed inter-arrival times (when the compounding distribution is constant or 

geometric). The results are compared with systems where the inter-arrival times are approximated 

with the commonly used exponential times. Finally, the possibility to approximate the Weibull 

distributions with gamma distributions (which have some computational advantages) is examined. 

The focus is on Test series 1, where the inter-arrival times are gamma distributed. The gamma 

distribution with shape parameter k and scale parameter θ has the probability density function 

 
( )

x
k 1

k

1 x e , x 0,k 0, 0,
k

−− θ > > θ >
Γ θ

  (40) 

where Γ(k) is the gamma function evaluated at k. This distribution has several interesting features. 

Gamma distributions with shape k=1 are exponentially distributed with λ=1/θ (resulting in a Poisson 

process) and gamma distributions where the shape parameter k is a positive integer are k-Erlang 

distributed. From an inventory control perspective, k-Erlang inter-arrival times occur in systems 

where a single customer experiences Poisson demand and orders with a continuous batch ordering 

policy with batch size k.  

 Any combination of mean, E[Ai] > 0, and standard deviation, σi > 0, of the inter-arrival times at 

retailer i can be represented with the gamma distribution. This should be compared with the 

commonly used exponential distribution, where the standard deviation always equals the mean. The 

resulting compound Poisson process, can therefore only model variance-to-mean ratios of the demand 

per time unit larger than or equal to one. With a demand process where the inter-arrival times are 

gamma distributed, any variance-to-mean ratio (of the demand per time unit) can be achieved.  

 From a computational perspective, a useful property is that the sum of n gamma distributed 

variables with shape k and scale θ, is gamma distributed with shape k and scale nθ. Let the inter-

arrival times of the customers at retailer i, A, be gamma distributed with shape ki and scale θi. The 

time from a customer demand at retailer i until the nth next customer arrives (excluding the initial 

customer demand), denoted A(n), is then gamma distributed with shape ki and scale nθi. As a result, 

the numerically intensive recursive integral for n > 0 in (19) can be replaced with 

 ( ) ( ) ( ) ( ) ( )T
i A n A n 1p n F T F T .+= −   (41) 

 Test series 1 consists of 60 problem scenarios. All problems involve three retailers, with h0 = hi 

= Li = 1 i∀ ∈Ω  and E[Di] = [1,1.5,2], where E[Di] = μi/E[Ai] is the expected demand per time unit at 



18 
 

retailer i. The test series includes all combinations of the following values on four variables; the lead 

time to the central warehouse, L0 = [1,2], the backorder costs at the retailers, bi = [10,100] i∀ ∈Ω , the 

average customer order size at the retailers, μi = [1,2,4], i∀ ∈Ω , and the coefficient of variation of the 

customer inter-arrival times at the retailers, ρi = σi/E[Ai] = [0.2,0.4,0.6,0.8,1], i∀ ∈Ω . When μi = 1, 

all order sizes are 1. When μi > 1 a geometric compounding distribution is used, so that 

( ) ( )x 1
i i iq x 1 1 1 .−= µ − µ   For the coefficient of variation of the inter-arrival times, ρi, we focus on 

values smaller than or equal to one. Batch ordering at the customers, increased failure rate of parts and 

planned maintenance all lead to ρi < 1. Also, variance-to-mean ratios of the demand per time unit less 

than one, which cannot be modeled with compound Poisson processes, can only be modeled with ρi < 

1. For gamma distributed demand, we have that [ ]i i iE A k= θ  and i i ik .σ = θ  Thus, we get 

2
i ik 1= ρ  and [ ]2

i ii iE D .µθ = ρ  

 For each problem we use the described analysis to evaluate; the optimal order-up-to levels, S0
*, 

S1
*, S2

*, S3
*, the corresponding minimum cost, TC*, the proportion of inventory kept at the central 

warehouse in the optimal solution, Φ, the upper bound, S0
u, and the expected relative cost increase of 

assuming that the inter-arrival times are exponential, ΔCP. Let S0
P, S1

P, S2
P and S3

P be the optimal 

order-up to levels for the system where all inter-arrival time distributions are replaced with 

exponential distributions with the same mean value. Also, let TCP be the costs of the system with 

gamma distributed inter-arrival times evaluated with order-up-to levels S0
P, S1

P, S2
P and S3

P. The 

expected relative cost increase of assuming that the inter-arrival times are exponential is then obtained 

as ( )P P * *C TC TC / TC∆ = − . The results for all problem scenarios are found in Appendix D. In Table 

1, the average results for all problems with a specific value for ρi are presented.  

Table 1. Average results for different ρi values in Test series 1 (gamma distributed customer inter-
arrival times) 

ρi S0
* S1

* S2
* S3

* TC* Φ S0
u ΔCP 

0.2 5.3 5.7 6.9 8.1 20.0 4.0 % 15.5 90.0 % 
0.4 6.5 5.7 6.9 8.3 21.6 8.4 % 13.9 38.8 % 
0.6 7.1 5.9 7.3 8.6 23.8 10.0 % 14.6 15.3 % 
0.8 7.4 6.4 8.0 9.3 26.6 10.8 % 14.9 2.9 % 
1 8.2 6.7 8.5 9.9 29.8 12.8 % 15.5 0.0 % 

All 6.9 6.1 7.5 8.8 24.3 9.2% 14.9 29.4% 
 

 Table 1 shows that the average minimum total cost increases quite steadily with the coefficient 

of variation, from an average value of TC* = 20.0 for ρi = 0.2 to an average value of TC* = 29.8 for ρi 

= 1. Looking at the detailed results in Table D1a and D1b in Appendix D, this increase is fairly stable 

in all 12 cases when ρi is increasing from 0.2 to 1 and the other problem parameters are fixed. Next, 
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we turn our attention to the proportion of inventory held at the central warehouse, Φ. From previous 

studies of similar distribution systems under compound Poisson demand, a recurring finding is that 

the proportion of inventory kept at the central warehouse increases on average with the variance-to-

mean ratio of the demand per time unit. It is interesting to see that the same tendency is found also 

when the variance in the demand is caused by variations in the inter-arrival times, see Table 1. When 

ρi = 1, Φ = 12.8% on average, and when ρi = 0.2 only Φ = 4.0% of the average inventory is kept at the 

central warehouse. 

 Focusing on the cost effects of assuming that the inter-arrival times are exponential, which is a 

common assumption, Table 1 shows that the relative cost increase, ΔCP, grows rapidly when ρi 

decreases. For ρi = 0.6, the relative cost increase is already on average 15.3% and for the problems 

were ρi = 0.2, the corresponding solution for a system with exponential times yields costs that are on 

average 90.0% higher. Figure 3 presents these results separately for μi = 1, 2 and 4. We see that, by 

far, the largest relative cost increases for assuming exponential inter-arrival times are found in the 

problems where μi = 1 (when the demand sizes are constantly 1). For these systems, ΔCP = 37.9% on 

average already for ρi = 0.6, and for ρi = 0.2, ΔCP = 246.9% on average (outside the chart area in 

Figure 3), looking at the detailed results in Table D1a and D1b in Appendix D, we see that in all these 

four problem scenarios (with μi = 1 and ρi = 0.2) the costs of the Poisson model is more than 200% 

higher. This can be explained by the fact that in these cases the variation in the demand is exclusively 

caused by the variation in the in the inter-arrival times. Also, as the variation in these systems 

becomes low (when ρi approaches zero), the costs decreases, and an overestimation of the order-up to 

levels by a few units has a big impact on the expected costs.  

    
Figure 3. Relative cost increase of assuming exponential inter-arrival times, ΔCP, as a function of ρi 

for different μi values. 

 Test series 2 explores systems where the customer inter-arrival times follow Weibull 

distributions. The Weibull distribution is commonly used in reliability engineering to illustrate the 
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failure rate of parts (see, for instance, O'Connor and Kleyner, 2012) and is therefore relevant for many 

spare parts systems. Note that, also the Weibull distribution is exponentially distributed when ρi = 1. 

The problem instances have identical parameter values (including E[Ai] and ρi values) as Test series 

1. For Test series 2, we also study the effects of approximating the Weibull distributions with gamma 

distributions with the same E[Ai] and ρi values. This approximation has the computational advantage 

of replacing the recursive integral in (19) with (41). We define ΔCΓ as the relative cost increase of 

using the gamma approximation, and it is obtained analogously to ΔCP.  

 The detailed results are found in Table D2a and D2b in Appendix D. Looking at these results, it 

seems that it is often sufficient to approximate the Weibull distribution with a gamma distribution. 

The optimal policy differs from the solution with gamma distributed inter-arrival times in only 6 

problem scenarios (out of 60). For five of these six problem instances, the related cost increase, ΔCΓ, 

is moderate (less than 2.5%). However, in the last one, the cost increase is ΔCΓ = 12.6%, proving that 

this approximation is not always reliable. The results from Test series 2 regarding TC*, Φ and ΔCP are 

in line with the results in Test series 1.  

6. Summary and concluding remarks 
 We present an exact evaluation and optimization procedure for a one-warehouse-multiple-

retailer inventory system with continuous base stock replenishment policies and compound renewal 

demand. The presented cost analysis is to the best of our knowledge the first exact analysis of the 

costs in a two-stage distribution system where the customer inter-arrival times at the retailers follow 

general continuous distributions, and we also allow for general distributions of customer demand 

sizes. The analysis is based on the fact that the arrival processes at the retailers, after a sufficiently 

long period of time, are independent of the initial state and each other. We can therefore determine the 

distribution of the demand in one or two consecutive time interval(s) in steady state. The inventory 

level distributions at the retailers can then be determined by analyzing the distribution of backorders 

at the central warehouse destined to a specific retailer combined with the demand during the following 

replenishment lead time to that retailer. A recursive cost analysis is used for optimizing the order-up-

to levels in this system. 

 A numerical study show that it can be very costly to assume exponential customer inter-arrival 

times as is customary in many models, when they are, in fact, gamma or Weibull distributed. 

Particularly, when the coefficient of variation of the inter-arrival times ρi << 1 and the customer 

demand sizes are constantly one, this approximation performs poorly. Several problem instances 

where studied where the expected costs increased by more than 200% with this assumption. 



21 
 

Approximating Weibull inter-arrival times with gamma distributions with the same mean and 

standard deviation worked well for most problem instances. However, in one problem instance the 

relative cost increase for this assumption was as high as 12.5%.  

 For future research, it would be interesting to extend the analysis to other replenishment 

policies under compound renewal demand. Interesting replenishment policies are for instance 

installation stock or echelon stock (R,Q) or (s,S) ordering policies, with either continuous or periodic 

replenishments. It would also be interesting to see how so called delayed ordering policies would 

perform in multi-echelon settings. It has been shown in single-echelon systems, that delaying orders 

can create large savings when the inter-arrival times of customers are not exponential, see e.g. Axsäter 

and Viswanathan (2012) and Syntetos et al. (2015) and references therein. It would be interesting to 

see how delayed ordering could be used in multi-echelon settings.  
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Appendix A – Proofs 
Proof of Lemma 1: 

a) Follows from (7). 

b) Follows from (3) and (7) as ( ) [ ) ( )0 0 0 i 0 0i
IL L S D 0,L L

∈Ω
= − = Ψ∑ . 

c) The FCFS allocation ensures that before time L0, the central warehouse can provide the first S0 

units ordered from the central warehouse in time interval [0,L0). Ψ(τ) ≥ 0 means that 

[ )i 0i
D 0, S

∈Ω
τ ≤∑ , thus the statement must hold. 

d) Must hold because Ψ(τ) ≤ 0 means that at least S0 units have already been ordered in time interval 

[0,τ). 

e) When Ψ0(τ) = x, S0 − x demands will have occurred in time interval [0, τ). Thus, when a demand of 

y units occur at time τ, x of these units will be satisfied before time L0 and y − x units of these units 

will be backordered at L0.  

Proof of Lemma 2: In event E1, the inventory level is non-negative at L0. As a result, Bi(S0) = 0. (9) 

follows from (5). 

Proof of Corollary 1: Conditions a) and b) ensures and encloses all possibilities that IL0(L0) ≥ 0 and 

c) follows from Lemma 2. 

Proof of Lemma 3: From Lemma 1 c), no orders before τ will be backordered at L0. From Lemma 1 

d), Bi(S0) = ( )i 0D ,L .τ (11) follows from (5).  

Proof of Corollary 2: Conditions b), c) and d) ensures and encloses all possibilities that the nominal 

inventory position is non-negative the moment before the critical demand occurs at time τ. Conditions 

a) and e) ensures and encloses all possibilities that the nominal inventory position is brought to a 

negative value by a demand at retailer j ≠ i at time τ (the critical demand). f) follows from Lemma 3. 

Proof of Lemma 4: Lemma 1 c) assures that no orders before time τ will be backordered at L0. From 

Lemma 1 d) and e), it follows that Bi(S0) =  ( )i i 0B̂ D ,L .+ τ (13) then follows from (5). 

Proof of Corollary 3: Conditions b) and c) ensures and encloses all possibilities that the nominal 

inventory position is non-negative the moment before time τ. Conditions a) and d) ensures and 

encloses all possibilities that the nominal inventory position is brought to a negative value by a 

demand at retailer i at time τ (the critical demand) and that i 0B̂ x y z S= + + − is smaller than or equal 

to Si – m. e) follows from Lemma 4. 

Proof of Lemma 5: No units ordered by a retailer before time 0 can be backordered at the central 

warehouse at time L0. This is due to the First-Come-First-Served allocations, the constant 
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replenishment lead times at the warehouse, and the fact that S0 is non-negative. Of all units ordered by 

retailer i in time interval [0,L0), the number of units that have been dispatched is Gi(S0), all other units 

are backordered at L0. Thus ( ) [ ) ( )i i 0 i0 0B D 0,LS G S= − . (15) holds as [ )i 0 i 0 iE D 0,L L .  = λ µ   

Proof of Lemma 6: If U(t) > T1 + T2 there cannot be customers arriving in both time intervals, 

proving a). Per definition V(t) has to be non-negative and less than U(t) = u. Also, V(t) has to be at 

least u – T1 in order for at least one customer to arrive in the first time interval. In order for at least 

one customer to arrive in the second time interval V(t) has to be smaller than T2. This proves b). c) 

and d) follow as the next customer after t arrives at t + v and the previous customer before t arrives at 

t + v – u.  

Proof of Proposition 1: (35) follows from (6). (37) holds by the definition of ( )i 0 iS ,Sα . From (5) it 

is evident that 

 ( )( ) ( )( )i 0 i i 0 iP IL S ,S m P IL S ,S 1 m 1= = + = + ,  (A1) 

 proving (38). For any integer variable Y with a maximum value M 

 ( ) ( )
M M

m 1 n 1
mP Y m P Y n

= =

= = ≥∑ ∑ .  (A2) 

 Thus, (36) is proven by 

 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

i

i

i

i

S

i 0 i i i i 0 i i i i
m 1

S

i i i i i i i
n 1

S

i i i i

0

0 0

0 0 0i i

0 0

i i i
n 2

S 1

i i i i i i i i
n 1

, , S ,

S , S ,

S , S , S ,

C S S h b mP IL S S m b E IL S

h b P IL S n b E IL S

h b P IL S n P IL S 1 b E IL S 1 1

h b P IL S 1 n P IL S 0 b E ILS , S , S

=

=

=

−

=

= + = −   

= + ≥ −   

 
= + ≥ + ≥ −  −  +   

 
 

= + − ≥ + > − 
 

∑

∑

∑

∑ ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

i

i i

S 1

i i i i i i i i i i i i

0

0 0 0
m 1

i i i0 i i i i0

S 1 b

h b mP IL S 1 m b E IL S 1 h b S

,

S , S , S ,

S , S ,

b

C S 1 h b S b ,

−

=

 −  − 

= + − = −  −  + + α − 

= − + + α −

∑

  

where the first and last equality follows from (6), the second and fifth equality follows from (A2), and 

the third and fourth equality follows from (A1).  

Proof of Corollary 4: From (36), ( ) ( ) ( ) ( )i 0 i i 0 i i i i 0 i iC S ,S C S ,S 1 h b S ,S b− − = + α − . This difference 

increases in Si as ( ) ( )( )i 0 i i 0 iS ,S P IL S ,S 0α = >  increases in Si (follows from (A1)). Also, as Si does 

not affect other costs, this result holds for the total cost of the system.  
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Proof of Proposition 2: From (2) and (3), it follows that C0(S0) is increasing in S0. From the 

definition of S0
u follows that ( ) l

0 0 i
i

C S TC C
∈Ω

> −∑  for all u
0 0S S> .                                                  

Therefore, for any u
0 0S S>  and any set of order up to levels, { }1 NS , ,S… , 

( ) ( ) ( ) ( )l l l
0 1 N 0 0 i 0 i i i 0 i i i

i i i i i
TC S ,S ,...,S C S C S ,S TC C C S ,S TC C C TC

∈Ω ∈Ω ∈Ω ∈Ω ∈Ω

= + > − + > − + =∑ ∑ ∑ ∑ ∑    . 

Thus, any system with u
0 0S S>  will have a total expected cost, TC, higher than for the best known 

policy, TC .   

Appendix B – Derivation P(Gi(S0) = g) 
The analysis of P(Gi(S0) = g) (0 ≤ g ≤ S0)  is divided in the same three mutually exclusive and 

collectively exhaustive events defined in Section 3.1. We get 

 
( )( )
( )( ) ( )( ) ( )( )

i

i i i

0

0 0 0

P G g

P G g,E1 P G g,E2 P G g,E3

S

S S .S

= =

= + = + =
 (B1) 

In event E1 the inventory level at time L0 is required to be non-negative. The conditions under which 

Gi(S0) = g in event E1 (IL0(L0)) > 0) is specified in Lemma B1. 

Lemma B1. Of the units ordered by retailer i in interval [0,L0), g units (0 ≤ g ≤ S0) will be dispatched 

from the central warehouse to retailer i before time L0 in event E1 iff conditions a) and b) are 

satisfied:  

a) [ )i 0D 0,L g=     

b) [ )[ ] j 0j i\
D 0,L x

∈Ω
=∑    , x ≤ S0 – g 

Proof: In event E1, IL0(L0) ≥ 0 which means that Bi(S0) = 0 and all units ordered from the central 

warehouse before L0 will be dispatched before L0. This proofs condition a). Condition b) ensures and 

encloses all possibilities that IL0(L0) ≥ 0. ■ 

Conditions a) and b) in Lemma B1 are independent as the demands at different retailers are 

independent. In steady state, the probability of condition a) is ( )0L
i gπ  and the probability of condition 

b) for a given x is [ ] ( )0L
\ i xΩπ . How to determine these ( )π



 -probabilities is explained in Section 3.3. 

Considering all possible values of x, the probability of Gi = g for event E1 can be obtained as 

 ( )( ) ( ) [ ] ( )
0

0 0

S g
L L

i i i
x 0

0 \P G g,E1 gS x .
−

Ω
=

π π= = ∑   (B2) 
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 In event E2, the nominal inventory position is brought to a non-negative value by an order from 

retailer j ≠ i at time τ, 0 ≤ τ < L0 (triggered by the critical demand). Lemma B2 provides the 

conditions under which Gi(S0) = g for event E2. 

Lemma B2. Of the units ordered by retailer i in time interval [0,L0), g units (0 ≤ g ≤ S0) will be 

dispatched from the central warehouse before time L0 in event E2 iff conditions a)-e) are satisfied:  

a) a demand occurs at retailer j at time τ (the critical demand)  , [ ]j i ,\∈Ω 0 ≤ τ < L0 

b) [ )iD 0, gτ =            

c) [ )[ ] kk \ i, j
D 0, x

∈Ω
τ =∑         , x ≤ S0 – g 

d) [ )jD 0, yτ =           , y ≤ S0 – g – x 

e) the size of the critical demand is larger than S0 – g – x – y 

Proof: Only units ordered by retailer i before the critical demand occurs at time τ will be dispatched 

before L0 (see Lemma 1), which renders condition b). Conditions c) and d) ensures and encloses all 

possibilities that the nominal inventory position is non-negative the moment before τ. Conditions a) 

and e) ensures and encloses all possibilities that the nominal inventory position is brought to a 

negative value at time τ by an order from retailer j ≠ i. ■ 

 Condition d) is dependent on the fact that there is a customer demand occurring at retailer j at τ. 

Still, the demands at different retailers are independent, and the size of the critical demand is 

independent of the demand prior to τ. The intensity at which demands occur at retailer j, in the long 

run, is λj. The probability of condition b) given τ is ( )i gτπ  and the probability of condition c) given τ 

and x is [ ] ( ), j\ i xτ
Ωπ . The probability of condition d) given τ and y is ( )j yτπ



and the probability of 

condition e) given x and y is ( )j 0q S g x y′ − − − . How to determine the ( )π


 -probabilities is 

explained in Section 3.3. Considering all possible retailers j ≠ i, and all possible values for τ, x and y, 

the probability of Gi(S0) = g for event E2 can be obtained as 

 
( )( )

( ) [ ] ( ) ( ) ( )
[ ]

0 0 0

0

\

i

L S g S g x

i j j j 0i, j
j i x 0 y 00 \

P G g,E2

g x y q S x z .

S

y d
− − −

τ τ τ
Ω

∈Ω = =

=

′= λ π −π − −π τ∑ ∑ ∑∫ 

  (B3) 

 In event E3 the critical demand occurs at retailer i. Note that if the nominal inventory position 

is brought from a positive value x to a negative value, x units of this order will be dispatched from the 

central warehouse before time L0. Lemma B3 provides the conditions under which Gi(S0) = g for 

event E3. 
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Lemma B3. Of all units ordered by retailer i in time interval [0,L0), g units (0 ≤ g ≤ S0) will be 

dispatched from the central warehouse before time L0 in event E3 iff conditions a)-d) are satisfied: 

a) a demand occurs at retailer i at time τ (the critical demand)  , 0 ≤ τ < L0 

b) [ )[ ] j 0i\j
D 0, S g

∈Ω
τ = −∑         

c) [ )iD 0, yτ =           , 0 ≤ y ≤ g 

d) the size of the critical demand is larger than g – y 

Proof: As the inventory level at the central warehouse is negative at L0 in Event E3, the amount of 

units demanded in time interval [0,L0) delivered to all retailers is S0. Lemma 1 gives that the units 

delivered to all retailers except retailer i are the ones demanded before time τ, proving condition b). 

Condition c) ensures and encloses all possibilities that the nominal inventory position is non-negative 

the moment before τ. Conditions a) and d) ensures and encloses all possibilities that the nominal 

inventory position is brought to a negative value at time τ by an order from retailer i. ■ 

 Again, the demand in time interval [0,τ), prior to the critical demand is dependent on the fact 

that the critical demand occurs, but it is independent of the size of this demand at time τ. The long run 

intensity at which demands occur at retailer i is λi. The probabilities for condition b) given τ is 

[ ] ( )0i\ S gτ
Ωπ − , condition c) given τ and y is ( )i y ,τπ



 and condition d) given y is ( )iq g y′ − . How to 

determine the ( )π


 -probabilities is explained in Section 3.3. Considering all possible values for τ and 

y, the probability for Gi(S0) = g for event E3 can be obtained as 

 
( )( )

[ ] ( ) ( ) ( )
0

i

L g

i 0 i ii
y 0

\
0

0P G g,E3

S g y q g y d

S

.τ τ
Ω

=

=

′= λ − τπ −π∑∫ 

  (B4) 

Appendix C – Lower bound for expected costs at retailer i 

For systems with compound Poisson demand at retailer i, a lower bound for the expected costs at 

retailer i, Ci
l, can be determined as the lowest cost for the single echelon system of retailer i, where the 

central warehouse can fulfill all retailer orders immediately (see Stenius et al., 2015). This is not true 

for all compound renewal systems. To see this, consider, for example, a system consisting of a 

warehouse and a single retailer. The retailer faces renewal demand (customer demand sizes are 

constantly 1) where the inter-arrival times have a mean 2 and a standard deviation approaching zero. 

The other parameter values are: L0 = L1 = h0 = h1 = 1 and b1 = 10. The minimum expected total 

system costs for the two-echelon system approaches zero and can be achieved when S0 is set to 0 and 
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S1 is set to 1. However, for the single-echelon system, the minimum costs for the single echelon 

system is achieved with S1 = 1 and is approximately 0.5. Thus, in this special case, the order delay 

caused by the central warehouse replenishment lead time actually decreases the total costs of the 

system. 

 For determining a lower bound applicable for any compound renewal demand structure we 

again study the system at an arbitrary time t in steady state, and for notational convenience we let t = 

L0 + Li. The influence of the warehouse on the retailer performance can be summarized by the 

distribution of the backorders at the central warehouse at time L0 destined to retailer i, Bi(S0), keeping 

in mind that it can be dependent on the time since the previous customer arrival at retailer i at time 

L0,W(L0). The lower bound is thus achieved by conditioning on Bi(S0) and W(L0) and artificially 

optimizing Si at time L0 (i.e. Si is allowed to depend on x and w) in Lemma C1 below. Let 

( ) ( )( )i i i 0 0C S B S x| ,W L w= =  = Expected cost per time unit at retailer i at time L0 + Li for reorder 

level Si, given Bi(S0) = x and W(L0) = w 

( ) ( )( )i i i 0 0IL S B S x,W L w| = =  = Inventory level at retailer i at time L0 + Li for reorder level Si, 

given Bi(S0) = x and W(L0) = w 

( ) ( )i 0L W| L w
i x=π  = probability of x units demanded at retailer i in time interval [L0,L0 + Li), given 

W(L0) = w 

( ) ( )i 0L  W| L w
ip n=  = probability of n customers arriving to retailer i in time interval [L0,L0 + Li), given 

W(L0) = w 

Lemma C1. For any S0 and Si  

 ( ) ( ) ( ) ( ) ( )( )
0 i

i 0 i i i 0W L s
0

i 0C S ,S f w min C s B W L0, w.S w d
∞

≥ ==∫   (C1) 

Proof: From (5) follows that ( ) ( )( ) ( ) ( )( )i i i 0 0 i i i 0 0IL S B S x,W L w IL S B S 0,W L| wx |= = =− == . 

Thus,  ( )( ) ( )( )i i i ii 0 i 0C S W w C SB S x, B S 0x ,W w ,= = − ===  assuring that 

( )( ) ( )( )
i i

i 0 i 0i i i is s
min C s W w mB S x, B Sin ,C s W w .0= == = =  Let ( ) ( ) ( )

0i 0B ,WS Lf x,w  be the joint 

probability density function of Bi(S0) and W(L0). Conditioning on both Bi(S0) and W(L0) gives 
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( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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0 i

i 0 i i i i 0B S ,W L
x 0 0

i i i 0B S

0

,W L sx 0 0

i i i 0W s
0

0

L 0

C S ,S f x,w C S B x,W L w dw

f x,w min C s B x,W L w dw

f w min C s B

S

S

S 0,W L w dw.

∞∞

=

∞∞

=

∞

= = =

≥ = =

= = =

∑∫

∑∫

∫

  (C2) 

■ 

In order to avoid the infinite integral in (C1), we introduce a large value, M1, and stop evaluating the 

integral at this value (i.e. costs are set to 0 for higher values). Thus, this new integral will have a 

smaller value than the original. Also, evaluating   

 
( ) ( )( )

( ) ( )( ) ( ) ( )( )
i i 0

i i i 0 i

i 0

i 0 i 0i i 0

C s W L w dw

h E IL s W

B S 0,

L w b E IL sB S 0, B S 0,W L w+ −

= = =

   = + =  == 

  (C3) 

is numerically challenging as it either includes an infinite sum or requires the determination of 

( ) ( )( )i i 0 0E IL s  B S 0,W w| L= =   . Finding a generic expression for this expected value is difficult, 

we therefore define  ( ) ( )( )i i 0 2 3i 0C S W L w ,M MB S 0, ,==  to be ( ) ( )( )i 0i i 0C SS w0,W LB = =  with 

the distinction that all situations where more than M2 customers arrives in [L0, L0 + Li) and all 

situations where an individual customer orders more than M3 units are disregarded (costs are set to 0 

in these cases). It is easy to show that 

( ) ( )( )  ( ) ( )( )i 0 i 0ii i 0 i 0 2 3 2 3B S 0, B S 0C S W L w C S W L w, M, M ,M ,M= ≥ = = ∀= . These properties, 

together with Lemma C1, prove Proposition C1. 

Proposition C1. The expected retailer costs at retailer i for any values of S0 and Si and any M1, M2 

and M3, is always at least 

 ( ) ( )  ( ) ( )( )
1

0 i
i 0

M
l

ii i 0 2 3W L s
0

B S 0,C f w min C s W L w,M ,M dw.= ==∫   (C4) 

For retailers where the inter-arrival rates are exponential this lower bound on the retailer costs 

approaches the actual minimum retailer costs when M1, M2 and M3 approach infinity. When deciding 

on M1, M2 and M3 one should keep in mind that higher values will create a tighter bound on the 

retailer costs but will be computationally slower. A suggestion for deciding these values is to first 

decide on γ1, γ2 and γ3 values (for instance γ1 = γ2 = γ3 = 99%). M1, M2 and M3 is then determined as  

 ( ) ( )
0 1 1W LF M = γ ,  (C5) 

 ( )
2

i

M 1
L

2 i 2
n 0

min M : p n
−

=

 
≥ γ 

 
∑    and (C6) 
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 ( )
3M

3 i 3
x 0

min M : q x .
=

 
≥ γ 

 
∑   (C7) 

Thus, e.g. M1 is determined so that γ1 of the probability mass of the integral in (C1) is included in 

(C4). Note that, W(L0) has the same unconditioned distribution as V(t) and (C5) can be determined by 

(20).  

 For deciding  ( )( )i i i 0 2 3C s B 0,W w ,MS ,M= =  we need to determine

( ) ( ) ( )( )i i i 0 0P IL S m B S 0,W L w= = =  . With Bi(S0) = 0, this probability follows from (5) 

 ( ) ( ) ( )( ) ( ) ( )i 0L W L w
i i 0 ii 0 iBP IL S m W L SS 0, w m .== π== = −   (C8) 

 Analogous to the previous π-functions, we get for Si – m > 0, 

 ( ) ( ) ( ) ( ) ( )
i

i 0 i 0
S m

L W L w L W L w n
i i i i i

n 1
S m p n q S m

−
= =

=

p − = −∑ , (C9) 

where 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i 0 i

0 0

L
L W L w L v
i iV L W L w

0

p n f v p n 1 dv.= −
=

= −∫
   (C10) 

Finally, ( ) ( ) ( )
0 0V L W L wf v

=
 is obtained from Lemma C2 and the case where Si – m = 0, i.e. 

( ) ( ) ( ) ( )i 0 i 0L W L w L W L w
i i0 p 0= ==p  is determined by Corollary C1. 

Lemma C2.   

 ( ) ( ) ( ) ( )
( )0 0

A
V L W L w

A

f v w
f v .

1 F w=

+
=

−
  (C11) 

Proof: W(L0) has the same unconditioned density function as V(t) in (21). Also, analogously to (31) 

( ) ( ) ( ) ( )
0 0W L U L v wf w 1 v w

= +
= +  for positive values on v and w. These facts together with theory on 

conditional probabilities prove that 
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  (C12) 

■ 
Corollary C1. 

 ( ) ( ) ( ) ( ) ( )
( )

i 0 i 0L W L w L W L w A i
i i

A

1 F L w
0 p 0 .

1 F w
= = − +

=
−

p =   (C13) 

Proof: No demand in time interval [L0,L0 + Li) implies that no customers arrive, thus from Lemma C2 

follows 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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( )
( )

i 0 i 0

0 0

i i

L W L w L W L w
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V L W L w
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Appendix D – Results of the numerical study 

Table D1a. Results of Test series 1, with gamma distributed customer inter-arrival times, presented in 
Section5. First 45 problem scenarios. 

# L0 bi μi ρi S0
* S1

* S2
* S3

* TC* Φ S0
u ΔCP 

1 1 10 1 0.2 2 2 3 4 2.3 0.0 % 6 201.6 % 
2 1 10 1 0.4 3 2 3 4 3.7 0.9 % 5 87.8 % 
3 1 10 1 0.6 4 2 3 4 5.4 7.9 % 5 32.5 % 
4 1 10 1 0.8 5 2 3 4 7.4 18.8 % 6 5.8 % 
5 1 10 1 1 4 3 4 5 9.2 8.2 % 6 - 
6 1 10 2 0.2 4 3 4 5 12.9 9.8 % 9 10.2 % 
7 1 10 2 0.4 3 4 5 6 13.8 4.2 % 8 6.8 % 
8 1 10 2 0.6 4 4 5 6 15.2 8.8 % 9 3.3 % 
9 1 10 2 0.8 4 4 5 6 17.0 9.7 % 9 0.6 % 
10 1 10 2 1 4 4 6 7 19.1 9.1 % 9 - 
11 1 10 4 0.2 1 6 8 9 25.3 1.5 % 16 4.7 % 
12 1 10 4 0.4 3 6 7 9 26.4 6.1 % 13 2.6 % 
13 1 10 4 0.6 4 6 7 9 28.0 9.0 % 13 1.1 % 
14 1 10 4 0.8 4 6 8 9 30.0 8.9 % 13 0.3 % 
15 1 10 4 1 5 6 8 9 32.4 12.1 % 13 - 
16 1 100 1 0.2 3 2 3 4 3.1 0.2 % 6 284.4 % 
17 1 100 1 0.4 5 2 3 4 5.6 14.1 % 7 113.1 % 
18 1 100 1 0.6 4 3 4 5 8.4 4.7 % 8 43.9 % 
19 1 100 1 0.8 4 4 5 6 11.5 4.6 % 8 7.9 % 
20 1 100 1 1 6 4 5 6 14.8 15.2 % 8 - 
21 1 100 2 0.2 4 7 8 9 23.5 3.9 % 14 19.3 % 
22 1 100 2 0.4 5 7 8 9 24.9 6.9 % 13 13.5 % 
23 1 100 2 0.6 5 7 9 10 27.2 6.8 % 13 7.0 % 
24 1 100 2 0.8 5 8 10 11 30.2 6.4 % 13 1.7 % 
25 1 100 2 1 6 8 10 12 33.8 8.9 % 14 - 
26 1 100 4 0.2 2 14 15 17 49.0 1.5 % 26 8.0 % 
27 1 100 4 0.4 4 13 15 17 50.7 3.9 % 20 5.4 % 
28 1 100 4 0.6 6 13 15 17 53.4 7.0 % 21 2.7 % 
29 1 100 4 0.8 6 14 16 18 57.2 6.7 % 21 0.6 % 
30 1 100 4 1 7 14 17 19 62.0 8.0 % 22 - 
31 2 10 1 0.2 6 2 3 4 2.3 0.0 % 10 226.7 % 
32 2 10 1 0.4 8 2 3 4 4.1 4.7 % 10 81.7 % 
33 2 10 1 0.6 9 2 3 4 6.0 16.1 % 10 28.6 % 
34 2 10 1 0.8 8 3 4 5 8.2 8.0 % 11 3.9 % 
35 2 10 1 1 9 3 4 5 10.2 15.3 % 11 - 
36 2 10 2 0.2 8 4 5 6 13.8 8.3 % 14 12.6 % 
37 2 10 2 0.4 8 4 5 6 14.9 9.5 % 14 8.4 % 
38 2 10 2 0.6 9 4 5 6 16.5 14.7 % 14 3.9 % 
39 2 10 2 0.8 9 4 6 7 18.6 14.0 % 15 0.8 % 
40 2 10 2 1 10 4 6 7 21.0 18.6 % 16 - 
41 2 10 4 0.2 7 6 8 9 27.4 7.5 % 22 5.0 % 
42 2 10 4 0.4 8 6 8 9 28.5 10.4 % 19 3.2 % 
43 2 10 4 0.6 9 6 8 9 30.4 13.6 % 20 1.4 % 
44 2 10 4 0.8 10 6 8 10 32.8 16.1 % 20 0.3 % 
45 2 10 4 1 11 6 8 10 35.7 19.1 % 21 - 
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Table D1b. Results of Test series 1, with gamma distributed customer inter-arrival times, presented in 
Section5. Last 15 problem scenarios. 

# L0 bi μi ρi S0
* S1

* S2
* S3

* TC* Φ S0
u ΔCP 

46 2 100 1 0.2 7 2 3 4 3.6 0.1 % 11 274.9 % 
47 2 100 1 0.4 10 2 3 4 6.2 21.4 % 12 118.8 % 
48 2 100 1 0.6 9 3 4 5 9.2 9.9 % 13 46.5 % 
49 2 100 1 0.8 10 4 5 6 12.7 13.6 % 14 9.8 % 
50 2 100 1 1 10 4 6 7 16.3 13.1 % 14 - 
51 2 100 2 0.2 10 7 8 9 24.8 9.4 % 19 22.0 % 
52 2 100 2 0.4 10 7 8 10 26.4 9.6 % 19 15.7 % 
53 2 100 2 0.6 11 7 9 10 29.0 12.4 % 20 8.0 % 
54 2 100 2 0.8 11 8 10 11 32.4 11.7 % 20 2.1 % 
55 2 100 2 1 12 9 10 12 36.5 13.6 % 21 - 
56 2 100 4 0.2 9 13 15 17 51.8 5.8 % 33 10.7 % 
57 2 100 4 0.4 11 13 15 17 53.5 8.8 % 27 8.0 % 
58 2 100 4 0.6 11 14 16 18 56.7 8.6 % 29 4.4 % 
59 2 100 4 0.8 13 14 16 19 61.0 11.4 % 29 1.4 % 
60 2 100 4 1 14 15 18 20 66.4 12.2 % 31 - 

When deciding Ci
l, γ1 = γ2 = γ3 = 99%. Integrations are performed with the trapezoidal method with 

integration interval 0.001 for tabulating values and initial calculations and integration interval 0.01 for 
the computationally heavy parts. The analytical method has been validated through discrete event 

simulations.  
 
 

Table D2a. Results of Test series 2, with Weibull distributed customer inter-arrival times, presented 
in Section5. First 25 problem scenarios. 

# L0 bi μi ρi S0
* S1

* S2
* S3

* TC* Φ S0
u ΔCP ΔCΓ 

1 1 10 1 0.2 2 2 3 4 2.4 0.0% 6 188.8 % - 
2 1 10 1 0.4 3 2 3 4 4.0 0.9% 5 77.1 % - 
3 1 10 1 0.6 4 2 3 4 5.7 8.1% 6 27.6 % - 
4 1 10 1 0.8 5 2 3 4 7.6 18.9% 6 4.3 % - 
5 1 10 1 1 4 3 4 5 9.2 8.2% 6 - - 
6 1 10 2 0.2 4 3 4 5 12.9 9.9% 9 10.0 % - 
7 1 10 2 0.4 3 4 5 6 13.9 4.3% 8 6.5 % - 
8 1 10 2 0.6 4 4 5 6 15.4 8.9% 8 2.9 % - 
9 1 10 2 0.8 4 4 5 7 17.2 9.0% 9 0.4 % 0.02 % 

10 1 10 2 1 4 4 6 7 19.1 9.1% 9 - - 
11 1 10 4 0.2 1 6 8 9 25.4 1.5% 15 4.6 % - 
12 1 10 4 0.4 3 6 7 9 26.7 6.2% 13 2.4 % - 
13 1 10 4 0.6 4 6 7 9 28.4 9.1% 12 0.9 % - 
14 1 10 4 0.8 4 6 8 9 30.3 9.0% 13 0.2 % - 
15 1 10 4 1 5 6 8 9 32.4 12.1% 13 - - 
16 1 100 1 0.2 3 2 3 4 3.4 0.2% 7 252.4 % - 
17 1 100 1 0.4 5 2 3 4 6.4 14.3% 7 88.7 % - 
18 1 100 1 0.6 5 3 4 5 9.0 10.7% 8 34.2 % 1.3 % 
19 1 100 1 0.8 4 4 5 6 11.9 4.7% 8 5.8 % - 
20 1 100 1 1 6 4 5 6 14.8 15.2% 8 - - 
21 1 100 2 0.2 4 7 8 9 23.5 3.9% 13 19.0 % - 
22 1 100 2 0.4 5 7 8 9 25.3 7.0% 13 12.4 % - 
23 1 100 2 0.6 5 7 9 10 27.7 6.9% 13 5.8 % - 
24 1 100 2 0.8 5 8 10 11 30.6 6.5% 13 1.4 % - 
25 1 100 2 1 6 8 10 12 33.8 8.9% 14 - - 
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Table D2b. Results of Test series 2, with Weibull distributed customer inter-arrival times, presented 
in Section 5. Last 35 problem scenarios and average over all problem scenarios. 

# L0 bi μi ρi S0
* S1

* S2
* S3

* TC* Φ S0
u ΔCP ΔCΓ 

26 1 100 4 0.2 2 14 15 17 49.1 1.5% 24 7.8 % - 
27 1 100 4 0.4 4 13 15 17 51.3 4.0% 20 4.9 % - 
28 1 100 4 0.6 6 13 15 17 54.3 7.0% 21 2.1 % - 
29 1 100 4 0.8 6 14 16 18 58.0 6.7% 22 0.4 % - 
30 1 100 4 1 7 14 17 19 62.0 8.0% 22 - - 
31 2 10 1 0.2 6 2 3 4 2.4 0.0% 10 208.3 % - 
32 2 10 1 0.4 8 2 3 4 4.3 4.6% 10 74.0 % - 
33 2 10 1 0.6 9 2 3 4 6.2 16.2% 11 24.6 % - 
34 2 10 1 0.8 8 3 4 5 8.4 8.0% 11 3.5 % - 
35 2 10 1 1 9 3 4 5 10.2 15.3% 11 - - 
36 2 10 2 0.2 8 4 5 6 13.8 8.4% 14 12.6 % - 
37 2 10 2 0.4 8 4 5 6 15.0 9.6% 14 8.1 % - 
38 2 10 2 0.6 9 4 5 6 16.8 14.8% 14 3.5 % - 
39 2 10 2 0.8 9 4 6 7 18.9 14.1% 15 0.7 % - 
40 2 10 2 1 10 4 6 7 21.0 18.6% 16 - - 
41 2 10 4 0.2 7 6 8 9 27.5 7.6% 22 4.9 % - 
42 2 10 4 0.4 8 6 8 9 28.8 10.5% 19 3.0 % - 
43 2 10 4 0.6 9 6 8 9 30.9 13.7% 19 1.2 % - 
44 2 10 4 0.8 10 6 8 10 33.2 16.2% 20 0.2 % - 
45 2 10 4 1 11 6 8 10 35.7 19.1% 21 - - 
46 2 100 1 0.2 8 2 3 4 3.8 1.3% 12 255.7 % 12.6 % 
47 2 100 1 0.4 10 2 3 4 6.9 21.5% 12 95.7 % - 
48 2 100 1 0.6 10 3 4 5 9.8 16.1% 14 39.0 % 2.5 % 
49 2 100 1 0.8 10 4 5 6 13.0 13.7% 14 8.2 % - 
50 2 100 1 1 10 4 6 7 16.3 13.1% 14 - - 
51 2 100 2 0.2 10 7 8 9 24.8 9.5% 19 21.8 % - 
52 2 100 2 0.4 10 7 8 10 26.7 9.6% 19 14.6 % - 
53 2 100 2 0.6 10 8 9 11 29.6 9.1% 20 6.8 % - 
54 2 100 2 0.8 11 8 10 11 32.8 11.7% 20 1.6 % - 
55 2 100 2 1 12 9 10 12 36.5 13.6% 21 - - 
56 2 100 4 0.2 9 13 15 17 51.8 5.8% 31 10.6 % - 
57 2 100 4 0.4 11 13 15 17 54.1 8.9% 27 7.4 % - 
58 2 100 4 0.6 12 14 16 18 57.6 10.0% 28 3.7 % 0.02 % 
59 2 100 4 0.8 13 14 17 19 61.8 11.3% 30 1.1 % 0.06 % 
60 2 100 4 1 14 15 18 20 66.4 12.2% 31 - - 

Average 1.5 55 2.3 0.6 6.9 6.1 7.6 8.9 24.6 9.4 % 14.8 26.2 % 0.3 % 
Knowing E[Ai] and ρi the corresponding Weibull distributions are retrieved with Microsoft Excel’s 

solver function. When deciding Ci
l, γ1 = γ2 = γ3 = 99%. Integrations are performed with the 

trapezoidal method with integration interval 0.0001 for tabulating values and initial calculations 
(including the recursive integral in (19))  and integration interval 0.01 for the computationally heavy 

parts. The analytical method has been validated through discrete event simulations.   
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Abstract 

The literature contains several exact models for inventory control of stochastic multi-echelon systems 

that determine the expected costs directly, without first deriving the distribution of the inventory 

levels, which is the standard approach. This technical note extends the scope of these models by 

showing how the inventory level distributions can be obtained from the cost functions for a broad 

class of publications. This facilitates the analysis of performance measures, including the ready rate 

and the fill rate for these systems. We also show that a well-known relationship between the ready 

rate and the cost parameters is valid for many stock points in multi-echelon systems. 

 

Keywords: Inventory, Multi-echelon, Stochastic, Inventory level distribution, Fill rate. 
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1. Introduction and Related Literature 
The multi-echelon inventory literature contains a wide range of models for exact cost evaluation of 

divergent systems, which are not based on first determining the inventory level distributions. These 

models, originating with Axsäter (1990), are based on following a unit through the system and 

determining the costs this unit accrues at different stages. In this note we show how the inventory 

level distributions for a wide range of policies may easily be determined from the expected costs. This 

offers a way to extend the scope of analysis for many of these existing models to performance 

measures based on inventory level information. The inventory level distribution is, for instance, used 

for computing the ready rate (the proportion of time with positive stock on hand) and the fill rate (the 

proportion of demand that can be satisfied immediately from stock on hand, see, for example, Axsäter 

2006, p.97-98). Moreover, this note shows that a well-known relationship between the ready rate and 

the holding and backorder costs is valid for many stock points in multi-echelon systems. It also 

provides an alternative convexity proof of the costs at the retailers in the retailer order-up-to levels. 

For expositional reasons, the results are initially explained in the context of Axsäter (1990) and then 

generalized. 

 The inventory system considered in Axsäter (1990) consists of a central warehouse that 

supplies a number of retailers facing Poisson demand. All stock points are subject to linear holding 

costs, and linear backorder costs are incurred at all retailers. There are continuous (S-1,S) 

replenishment policies (one-for-one replenishments), complete backordering, FCFS allocations and 

deterministic replenishment times at all locations (see Axsäter, 1990, for motivations and a detailed 

problem formulation).  

 The presented results are generalized to a group of models that offer exact cost analysis of other 

types of multi-echelon inventory systems; Axsäter (1993a,b, 1997, 1998), Forsberg (1995, 1997a,b) 

and Marklund (2002, 2011). More specifically, Forsberg (1995) extends the analysis of Axsäter 

(1990) to compound Poisson demand (where each customer orders a random number of units). For 

batch ordering policies, Axsäter (1993b) extends the Poisson analysis to the case of installation stock 

(R,Q) policies at all stock points with identical retailers. This is generalized to non-identical retailers 

by Forsberg (1997a) and Axsäter (1998). Forsberg (1997b) generalizes this model to the case where 

the time between two consecutive customers is Erlang distributed. Axsäter (1997) considers the case 

of echelon stock (R,Q) policies (the warehouse also considers the stock levels at the retailers when 

placing orders) in combination with compound Poisson demand. Marklund (2002) presents an 

alternative way to consider the information at the retailers. He introduces an (α0,Q0) replenishment 
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policy at the central warehouse, which aims at synchronizing the incoming replenishments with the 

expected time of future retailer orders.  

 Axsäter (1993a) provides the analysis for periodic order-up-to-S policies. Forsberg (1995) 

analyzes a periodic replenishment system with compound Poisson demand. Marklund (2011) 

distinguishes the ordering policy from the replenishment policy and combines a continuous (R,Q) 

ordering policy at the central warehouse and (S-1,S) ordering policies at the retailers (facing Poisson 

demand) with consolidated periodic replenishments to groups of retailers from the warehouse.  

 None of the models above evaluate the inventory level distributions at the stock points. There 

are however several models that do. We focus here on models analyzing the same systems as the cited 

papers above. Simon (1971) presents an exact analysis of the inventory level distributions for the 

same system as Axsäter (1990). For echelon-stock (R,Q) policies under Poisson demand, these 

distributions are evaluated in Chen and Zheng (1997). In a parallel work, Axsäter (2000) presents a 

different evaluation technique for installation stock (R,Q) policies and compound Poisson 

demand. Graves (1996) determines the inventory level distributions for a system with periodic 

replenishments and order-up-to S policies.  The system analyzed in Marklund (2011) is extended to 

compound Poisson demand and evaluation of inventory levels in Stenius et al. (2016). Stenius (2016) 

analyzes a continuous review (S-1,S) replenishments system where the customer demand is 

compound renewal (i.e. the inter-arrival times can follow any continuous distribution and the demand 

sizes any discrete distribution).  

 As can be seen, the inventory level distribution is analyzed for many of the models for which 

the main result of this note (the derivation of the inventory level from the cost function) can be 

applied. This note provides the inventory level distribution for the remaining models in Forsberg 

(1995, 1997b), Axsäter (1997) and Marklund (2002). Furthermore, it presents an alternative way of 

analysis for the inventory levels in the other models. It can also benefit future models by providing the 

inventory level distributions from the cost functions directly. The presented results regarding the 

relationship between the ready-rate and the holding and backorder costs, as well as the convexity 

proof is valid for a large group of stock points, e.g. models in all papers cited above. 

 This note is organized as follows; Section 2 specifies the general system requirements and 

explains why the Axsäter (1990) model satisfies these requirements. The analysis of the relationships 

between the inventory level distributions and the costs for systems fulfilling these requirements is 

presented in Section 3. Section 4 generalizes the results to other problem settings and Section 5 

presents some concluding remarks. 
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2. System Specifications 
This section presents the general requirements for the considered stock point and the inventory system 

it is part of, for which the results in Section 3 are valid. We also explain why these requirements are 

satisfied by the retailers in the Axsäter (1990) model.   

 Consider a stock point i with an inventory level that only takes integer values (with a finite 

maximum value). At this stock point, there are linear holding costs, hi > 0, and backorder costs, βi ≥ 0, 

per unit and time unit. Let 

Si  = adjusting control variable for stock point i, defined below 

Vi  = vector of all other control variables affecting the long run inventory level distribution at 

stock point i 

ILi(Vi,Si)  = inventory level at stock point i (= stock on hand – backorders) 

x+  = max(x,0), x– = max(–x,0) 

The adjusting control variable Si is adjusting in the sense that an alteration of Si with Δ units, adjusts 

the long run inventory level distribution of stock point i with Δ units. More specifically, for the 

adjusting control variable for stock point i, Si, the following three conditions must hold: 

1. There is a cost function related to the inventory level distribution at stock point i of the form 

 ( ) ( ) ( )i i i i i i i i i i iC ,S   h E IL ,S E IL ,S+ −   = +β   V V V    (1) 

for hi > 0 and βi ≥ 0. 

2. A shift in Si with Δ units shifts the long run inventory level distribution of stock point i with the 

same amount, i.e.  

 ( )( ) ( )( )i i i i i i , mP IL ,S m P IL ,S m= = + ∆ = + ∆ ∀V V   (2) 

3. Si does not affect any other expected system costs than the inventory costs at stock point i, 

( )i i iC ,S .V  

For the model in Axsäter (1990), the order-up-to level, Si, for any retailer i, is an adjusting control 

variable for this stock point. Moreover, the order-up-to level at the central warehouse, S0, constitutes 

Vi. Let us explain why Si satisfies conditions 1, 2 and 3 in Axsäter (1990). Condition 1 is fulfilled 

according to the definition of the model.  

 To assert that condition 2 is satisfied, we study the system in Axsäter (1990) at an arbitrary 

point in time. Analyzing the expected costs from this point onwards for an infinite time horizon, it can 

be shown that the expected future costs are independent of the initial state (the state at this arbitrary 

point in time). Let us therefore define this initial state so that there are no outstanding orders (i.e. the 
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stock on hand is Si at retailer i ∀  i and S0 at the central warehouse). Note that, according to this 

definition, the initial inventory level at retailer i is dependent on Si (an increase of Si by Δ units, 

increases the initial inventory level at retailer i by Δ units). From this point forward, every unit 

demanded decreases the inventory level by one unit, and every unit arriving as a replenishment 

increases the inventory level by one unit.  

 We can also show that both the future demand and the arrival of future replenishments are 

independent of Si.  The demand is independent of Si because the retailer applies complete 

backordering, which means that all demand is received (and eventually fulfilled) even if there is no 

stock on hand. Given an initial state as defined above, and for every given sample path of the future 

demand, the future replenishments are independent of Si. This is ensured by the following four 

criteria;  

 (a) the independency between Si and orders placed by retailer i,  

 (b) the independency between Si and the replenishment process at preceding stock points (the 

central warehouse),  

 (c) the independency between Si and the allocations of orders at preceding stock points, and  

 (d) the independency between Si and the shipping of retailer orders to retailer i.  

Criterion (a) follows as every customer demand triggers a retailer order, regardless of Si. Criterion (b) 

follows from criterion (a) and the fact that the central warehouse replenishment policy only reacts to 

incoming retailer orders. Criterion (c) follows from criterion (a) and the FCFS allocation policy at the 

central warehouse. Finally, criterion (d) results from the previous independencies and the 

deterministic transportation times.  

 To conclude, recall that according to the definition of the initial state, the initial inventory level 

shifts with Si. Thus, for a given initial state and for every given sample path of future demand, an 

increase or decrease in Si will simply shift the future inventory level pattern accordingly, verifying 

condition 2. The independence between Si and the order placements, allocations and replenishment 

processes (criteria (a)-(d)) also guarantees that condition 3 is satisfied.  

3. Relationship between the Inventory Level Distribution 

and the Expected Costs 
In this section we present the main results regarding the relationships between the expected holding 

and backorder costs and the inventory level distribution applicable for a stock point i with an 

adjusting control variable, we define:  
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αi(Vi,Si) = the ready-rate at stock point i ( )( )i iiP IL 0,S= >V  

Si
l   = lower bound on Si, i.e. a (preferably the largest) value of Si for which αi(Vi,Si) = 0. 

( )u
i i iIL ,SV = upper bound on the inventory level at stock point i.    

 From the definition of Si
l it follows that ( )u l

i i iIL ,S 0.=V Using (2) provides the upper bound 

( )u l
i i i i iIL ,S S S .= −V  For the model in Axsäter (1990), a lower bound on Si is Si

l = 0 and consequently 

( )u
i i iIL ,SV  = Si – Si

l = Si (independently of Vi = {S0}).  

 Lemma 1 below is used for obtaining the main result in Theorem 1. But it also leads to 

Corollaries 1 and 2, below. 

Lemma 1. For stock point i with adjusting control variable Si, given Vi = vi  

 ( ) ( ) ( ) ( )i i i ii i i i ii ii,S ,C C 1 hS .,S= − + +β α −βv v v   (3) 

Proof: The definition of the upper bound on the inventory level at stock point i gives that ( )u
i i iIL ,Sv – 

1 = ( )u
i i iL 1I ,S −v . For any discrete stochastic variable Y with a maximum value M  

 ( ) ( )
M M

y 1 z 1
yP Y y P Y z .

= =

= = ≥∑ ∑   (4) 

 Also, for any variable X, E[X-] = E[X+] – E[X]. These properties, together with (1) and (2) provides 

 

( ) ( ) ( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( )

( ) ( )( )
( )

( )( ) ( )

u
i i i

u
i i i

u
i i i

i i i i i i i i i i

IL ,S

i i i i i i

IL ,S

i i

i

i i i
m 1
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+ −

=

=
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+ = −   
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β β
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( )
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=
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−

= − + + α

β

β −βv v

  

proving (3). ■  
Corollary 1. For stock point i with adjusting control variable Si, given Vi = vi, the inventory costs at 

stock point i, ( )i i iC ,Sv , are convex in Si. 
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Proof: Lemma 1 gives that ( ) ( ) ( ) ( )i i i i ii i i i i i iC C 1,S S h, ,S− − = +β α −βv v v . This difference 

increases in Si as ( ) ( )( )ii i i iiP I,S ,L 0Sα = >v v  increases in Si. ■ 

Corollary 2. For stock point i with adjusting control variable Si, for any Vi = vi, the optimal Si 

value(s) is (are) the value(s) for which 

 ( ) ( )i i i i
i

i i
i i

1
h

,S ,Sβ
α ≤ ≤ α +

+β
v v .  (5) 

Proof: From Lemma 1 we know that, given Vi = vi, ( )ii iC ,Sv  decreases in Si, i.e.  

( ) ( )ii i i iiC C,S , 1S< −v v , if ( ) ( )ii iii i/ h ,S .β β <+ α v  Also, ( ) ( )ii i i iiC C,S , 1S= −v v  if 

( ) ( )i i i ii i/ h ,Sβ β =+ α v  and ( )ii iC ,Sv  increases in Si, i.e.  ( ) ( )i ii i i iC ,S ,C 1 ,S> −v v  if 

( ) ( )ii iii i/ h ,S .β β >+ α v  (5) follows as ( ) ( )( )ii i i iiP I,S ,L 0Sα = >v v  increases in Si. ■ 

Corollary 1 can be used when determining the optimal order-up-to levels under a cost-minimizing 

strategy. Note also, that for given values of all other variables in the system, also the total system 

costs are convex in Si. This is due to the independency between Si and all other cost components 

except ( )i i iC ,Sv  (condition 3). Corollary 2 presents a relationship between the ready-rate and the 

holding and backorder costs in a cost optimal system, which is well-known for single-echelon systems 

with compound Poisson demand (see, for instance, Axsäter 2006, p. 103). It is here generalized to a 

group of stock points in multi-echelon systems.  

 Finally, Theorem 1 below presents the procedure according to which the inventory level 

distribution can be retrieved from the cost function for this same group of stock points. 

Theorem 1. For stock point i with adjusting control variable Si, the probability that the inventory 

level at stock point i is m, given Vi = vi, can be obtained as 

 

( )( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

i i

u
i i i

i i i i u
i i i

i i i i i

i

i i i

i i

i i i

i i

i u
i i i

,S

IL ,S
,S ,S

IL ,S

P IL m

0 ,m
C m 1 C m

,m
h

C m 1 2C m C,S ,S , m 1
,m

h
S

IL ,S

= =


 >
 − + − − +β =

+β
 − + − − + − −
 <

+β

v

v
v v

v

v v v
v

  (6) 

Proof: For ( )u
i i im IL ,S> v  the result follows from the definition of ( )u

i i iIL ,Sv . For ( )u
i i im IL ,S≤ v

Lemma 1 gives that 

 ( ) ( ) ( )i ii i
i

i
i

i i

C Z, ,
,

C Z 1
Z

h
− − +β

α =
+β

v v
v .  (7) 
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From (2) follows that 

 ( ) ( ) ( )( )i ii i ii, ,Z Z 1 ,P IL Z 1α = α − + =v v v   (8) 

and (2) also assures that ( )( ) ( )( )i ii iP IL Z 1 P IL Z m, 1 m,= = + − =v v . Combining these results 

provides ( )( ) ( ) ( )i i iiP IL Z m, 1 m Z, ,Z 1 .+ − = = α −α −v v v  Substituting Si = Z + m – 1 and using (7) 

renders the results for ( )u
i i im IL ,S≤ v . When m = ( )u

i i iIL ,Sv  = Si – Si
l, α(vi,Z – 1) = α(vi, Si – m + 1 – 

1) = α(vi, Si
l) is per definition of Si

l zero. ■ 

The proposed method is applicable also for the central warehouse in some systems. For instance, in 

the Axsäter (1990) model, by setting the holding costs and backorder costs at all retailers to zero, the 

order-up-to-level at the central warehouse is an adjusting control variable of the central warehouse 

with Vi = {}. 

4. Generalizations 
Apart from the system in Axsäter (1990), the results in Section 3 hold for many stock points in 

different distribution systems. The results can be generalized to different customer demand structures, 

to different replenishment policies, and to systems using periodic replenishments.  

 Following the same reasoning as for the Axsäter (1990) model, it is straightforward to see that 

Conditions 1, 2 and 3 specified in Section 2 holds even if the customer demand is compound Poisson 

or compound renewal. Note however, that in the case of compound renewal demand, the definition of 

the initial state needs some adjustment. For these systems, a state where there are no outstanding 

orders may not be reachable (if the customer inter-arrival time cannot take larger values than the 

replenishment lead time). Also, for this demand structure, the time since the last order occurrence 

need to be included in the state space as it affects the future demand. 

 Turning our attention to other replenishment policies, the installation stock (R,Q) ordering 

policy is defined so that each stock point i places an order of Qi units whenever the inventory position 

(the inventory level + all outstanding orders) is Ri or below Ri. In systems applying (R,Q) ordering 

policies, the reorder point of retailer i ∀  i, Ri, can fulfill the conditions of an adjusting control 

variable. For these systems the order quantities of all locations and the reorder points at upstream 

locations usually constitute Vi. In order to see this, let the initial state be defined as the state where 

there are no outstanding orders and no demands have occurred since the last order placement at each 

stock point (i.e. the  inventory level = the inventory position = (Ri+Qi)). A shift of the adjusting 

control variable, Ri, then clearly shifts the initial inventory level (Ri+Qi) accordingly. It follows that 
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for every sample path of the future demand, this shift will be preserved as long as the aforementioned 

criteria (a)-(d) hold. To assert this, note that given the initial state, the future order placements at 

retailer i are independent of Ri (criterion (a)). For installation stock policies it is also easy to see that 

the replenishments at the central warehouse are independent of Ri (criterion (b)). All of the systems 

cited in Section 1 apply FCFS allocations, ensuring criterion (c). When the shipments are performed 

with partial deliveries, complete deliveries or a fixed minimum delivery batch and when the shipment 

times are independent of Ri (e.g. deterministic), criterion (d) is ensured.  

 For echelon stock (R,Q) policies the inventory position also includes the inventory position of 

all preceding stock points. For these systems, it is not clear that the warehouse replenishment policy is 

independent of the reorder point at retailer i, Ri. In order to reach this independency, we replace the 

control variable R0 (central warehouse echelon stock reorder point) with 0 0 ii
R R R .= −∑  For 

echelon stock (R,Q) systems, the system performance will also be dependent on the initial state of the 

system. More specifically, it depends on the initial installation stock inventory position at the central 

warehouse, 0
0i , see Axsäter (1997). However, by considering 0

0i  to be a control variable, as suggested 

by Axsäter (1997), and by including 0
0i  and 0R  in Vi (instead of R0), Ri fulfills criteria (a)-(d) (for the 

same assumptions on allocations and deliveries as above) and constitutes an adjusting control 

parameter for stock point i i∀ .  

 It is also straightforward to apply the results on many systems applying periodic replenishments 

(with one of the ordering policies discussed above), as long as the replenishments, allocations and 

deliveries at preceding stock points are performed independently of the adjusting control variables. In 

this case, the replenishment intervals of preceding stock points are usually included in Vi. 

Consequently, there exists adjusting control variables at the retailers in all of the papers referred to in 

Section 1.  

5. Concluding Remarks 
This note presents relationships between the inventory level distribution and the costs for a group of 

systems where there exist parameters fulfilling the conditions of an adjusting control variable (see 

Section 2). In order to find adjusting control variables in distribution systems, the replenishments, 

allocations and deliveries at upstream locations usually need to be independent of the adjusting 

control variable. This occurs for instance when the upstream locations use replenishment policies 

reacting solely to retailer orders, FCFS allocation policies and partial or complete delivery strategies.  
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 The main result of this note is the derivation of the inventory level distribution from the cost 

function for systems analyzing the costs directly. All papers for which this result is relevant apply 

similar cost evaluation methodologies. They study the costs incurring on an arbitrary unit as it travels 

through the system. Note however that, the results are not dependent on this methodology. Note also 

that, the presented results are not valid for all papers applying this methodology. One example is the 

model in Axsäter and Marklund (2008), where adjusting control variables are not found at the 

retailers because the central warehouse uses a replenishment and allocation policy that is dependent 

on the reorder points at the retailers. There are however a wide range of models for which the results 

are valid, and hopefully this note can facilitate future research, by identifying adjusting control 

variables in other system settings. 
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