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Popular summary in English

Quantum mechanics has become the most successful framework in the history of science,
and our modern life is based on it. Quantummechanics provides the physics behind almost
every technology that makes the modern world what it is today: computers, communic-
ation technology, cellphones, and the internet are all based on that. After the invention
of the light bulb by omas Alva Edison in , scientists got interested in the proper-
ties of the light that is given off by materials as they are heated. So they started to study
the tiniest building blocks of nature like atoms or molecules. ey designed several clever
experiments, and they played with light interacting with matter. ey found that what
they observed in those experiments, can not be explained with the physics that they were
familiar with. Hence they invented new physical laws of nature. ese new laws are based
on the principles of quantum mechanics, which are different from how we experience the
world in our daily lives.

In the last decades, there has been an accelerated demand and huge research interest to find
better alternatives to traditional and typical devices. erefore researchers were encouraged
to develop the experimental technique as well as the theoretical tools toward smaller and
smaller components. For instance, they try to build faster and more powerful computers;
therefore, they make smaller transistors to be able to pack many of them into a small space
so they can ”talk to each other.” Today we have nanometer-scale devices, which are only
around 100 times larger than atoms. ese nanodevices show new behaviors, and what
makes them exciting is the fact that we need quantum mechanics to describe these behavi-
ors.

us it is essential to improve our theoretical tools to investigate different properties of the
nanostructures and gain a better understanding of these effects. My project is studying the
electron transport in the nanostructures theoretically. Improving the theoretical tools and
investigating the thermal and electrical properties of the nanostructures will allow us to
make more efficient devices.

For example, nanotechnology has great potential for applications in the field of renewable
energy. One of the most eco-friendly energy sources, which is usually attainable, almost
everywhere, is the thermal energy. Also, It is known that thermal energy can be converted
into electrical current. us one can use heat and get electrical current, which is the phys-
ical concept behind the ongoing energy technologies, such as heat engines. e thermal
and electrical properties of the nanowires allow us to make the energy conversion process
more and more efficient. Since a lot of heat is lost to the environment, this concept will
be fundamental, beneficial, and helpful in our modern industrial world. Taking advant-
age of heat to create electricity will decrease the mass of carbon emissions and also reduce
pollution.
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Some companies have been working on producing a ”smart watch”. A dream product: a
watch with a battery that never needs to be charged by extend devices. e body heat and
solar energy do this job so long as the watch is being worn. In reference [] the authors
describe the design of a watch that is equipped with a thermoelectric engine, that harvest
human body heat, converts it to electricity and generates the required voltage to charge the
battery of the watch.

viii



Part I

Introduction, background and theory







Chapter 

Introduction

e impressive development of high precision fabrication in the last few decades has made
it possible to design semiconductor structures in a very small size to such an extent that
the electrons are confined in one, two, or three dimensions. ese fabricated objects, with
structures at the nanoscale, are known as nanostructures. For such small devices, however,
the charge transport is dominated by quantum effects such as discrete energy levels, electron
tunneling, and non-classical interferences. While these effects make a further downsizing of
semiconductors difficult, they offer the possibility of nanoelectronic devices based on them.
Such devices, which could consist of a single atom or molecule, would allow for a leap in
chip manufacturing at the nanoscale. Possible applications are on the one hand to build
integrated circuits for classical computers, which would pave the way for a much faster and
more energy-efficient computing. On the other hand, nanoelectronic devices might also
provide a basis for future on-chip quantum computing. Depending on the dimensions in
which the electrons are confined, one can classify nanostructures as quantum layers [],
quantum wires [, ] or nanowires [, ], and quantum dots.

A promising approach to build fully functional nanoelectronic devices is to utilize the so-
called quantum dot. Quantum dots (QDs) are capable of confining the electrons in all
three spatial dimensions. QDs behave as artificial atoms where the confinement potential
substitutes the nuclear potential [, ]. A striking feature of quantum dots is that they
act like single atoms in many respects []. Nonetheless, in contradistinction to atoms,
quantum dots are highly tunable [] and it is possible to grow them in a way to be able to
control various characteristics of them such as the confinement potential, electron density
as well as to adjust the energy level positions electrostatically [, ]. Recent developments
in fabricating nanoelectronic devices have heightened the need for better techniques to
simulate quantum transport through these devices.





is thesis is devoted to a better theoretical understanding of transport in nanostructures,
where the nanostructures treated are quantum dots systems. A better knowledge of the
transport through such systems is expected to facilitate the development of more func-
tional electronic devices. e work presented in this thesis is a theoretical study, focus-
ing mainly on the effect of interactions in nanosystems. We investigate the influence of
electron-electron interactions on transport in a system of serial triple quantum dots. We
find that due to electron-electron scattering processes, the transport is enabled beyond the
common single-particle transmission channels. We also check the validity of the Pauli mas-
ter equation by comparing it with the first-order von Neumann approach (Paper I).

Moreover, we report the addition of phonon scattering to recently established numerical
package QmeQ for transport in quantum dot systems. Also, we propose and investigate
phonon assisted transport in the absence of the source-drain voltage (Paper II). We present
a combined experimental and theoretical study of the nanowire double quantum dot. We
investigate the origin and properties of the bias triangle features and predict and observe
features directly related to the inter-dot exchange energy (Paper III). Also, from results
presented in paper II together with experimental colleagues, it was shown that by coupling
a hot phonon bath to the double quantum dot, phonon assisted transport could be used to
drive currents through a double quantum dot in a three-terminal geometry, and effectively
harvest energy from the phonon bath (Paper IV).

e thesis is organized as follows. In chapter , I will give a general explanation of the
physical properties and features of single and double-dot systems, and describe the triple-
dot system which we have studied in paper III. In chapter , a general model system, the
Hamiltonian and different interactions will be discussed. In chapter  we will take a brief
look at the numerical method used in the calculations. In chapter  the main results of the
papers will be summarized. A summary and outlook are given in chapter . Finally, the
papers are reprinted at the end of the thesis.





Chapter 

Quantum dots

is thesis is considering various aspects of electronic transport through quantum dots,
with the focus on two or three dots coupled in series. Quantum dots (QDs) are small,
typically of nanometer size, with electronic properties largely determined by the laws of
quantum mechanics. QDs have been investigated intensively since the mid-s [, ]
and are still attracting considerable research interest, largely due to the large number of
possible applications based on QDs. To mention a few, QDs can be used in light emitting
diodes[] and lasing [, ], as quantum technology components in quantum bits [, ]
and single photon sources [, ], and as nanoscale electronic components, for example
in single electron transistors []. However, due to their inherent quantum mechanical
nature, QDs are also widely used as components in basic physics investigations [].

Typically QDs are made of semiconductor materials, but there are also other types of ma-
terial used, for example graphene []. A wide variety of QD implementations have been
demonstrated, in for example lateral [] and vertical [] two dimensional electron gas
systems, in nanowires [, ] and nanotubes [], and in self-assembled nanodot geomet-
ries [, ]. e focus in this thesis, in particular in papers III and IV where experimental
results are presented, is on semiconductor nanowire QDs made of III-IV material combin-
ations such as InAs, GaP, etc. However, all the theoretical methods and results presented
are valid for any type of quantum dots, since they typically depend on generic properties
such as tunnel rates, electronic interactions, and energy level structure.

e reason for focusing on nanowire QDs, besides the fact that Lund University has been
a world leading institution in nanowire research during the last one and a half decade
[], is that nanowire QDs have many appealing properties. In particular, the material
composition [] and even crystal structure [] can be controlled on atomic distances giving
rise to very well defined QDs. Moreover, as is true for many types of QDs, the nanowire





QDs can be coupled to electrical contacts, allowing electrical transport measurements and
characterization. Also, by adding electrostatic, metallic gates close to or on top of/under
the wires, the electronic properties such as tunnel barrier strengths, electron density, and
energy levels can be controlled in-situ, during an experiment.

To provide a compelling illustration of a nanowire QD and the electrical contacting and
electrostatic gating, we show in Fig. .(a) the micrograph of the InAs wire device investig-
ate in paper III. From the scanning electron image one clearly sees the InAs nanowire, with

VPG
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VR
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D
VM

sensor

VPG
R

dot Rdot L

eV

S D

(a) (b)

Figure 2.1: (a) Scanning electron image of a nanowire double QD coupled to source (S) and drain (D) contacts, with a number
of electrostatic gates (see text for details). The position of the two QDs are shown schematically with yellow circles.
The picture is taken from paper III. (b) Schematic electrostatic potential constituting the double QDs, with two (one)
single particle levels in the left (right) dot and the chemical potentials of the source and drain contacts, differing by
the amount eV, where V is the applied source-drain voltage.

a diameters of approximately  nm and a length of µm. e wire, with a Wurtzite crystal
structure, is placed on an Si substrate covered by an electrically insulating layer SiO2. e
wire is coupled to two metallic contacts, one acting as source (S) and one as drain (D) for
the electrical current flowing through the wire. In addition, there are a set of electrostatic
finger gates placed close to the wire, having different functions. e three gates L,M,R,
with corresponding applied potentials VL,VM,VR are used to modify the electrical poten-
tial locally in the wire. Applying negative potentials VL,VM,VR leads to the formation of
potential barriers for the electrons. e resulting potential three-barrier structure, shown
schematically in Fig. .(b), thus contains two potential wells, effectively constituting two
serially coupled quantum dots, one to the left (L) and one to the right (R).

Due to the quantum confinement along the wire, a structure with discrete energy levels are
formed in each dot, denoted by thick lines in Fig. .(b). e levels are slightly broadened
due to the couplings to the source and drain contacts. e two plunger gates PGL and PGR
are used to shift the QD levels up/down in energy, by applying negative/positive voltages
VPGL and VPGR respectively. Finally, there is in Fig. .(b) a gate denoted sensor. It can in
principle be used to sense the presence or absence of single electrons in the dots, however,
for the discussions in this thesis this type of charge sensing is not used.

A voltage bias V is applied between the source and the drain, allowing electrons to tun-





nel between the dots, giving rise to an electric current. One can also, as is discussed in
paper IV, apply different temperatures to the source and drain contacts, in order to invest-
igate thermoelectric phenomena. We stress that, as is the case in essentially all electronic
nanostructures, tuning one electrical potential also leads to modifications of all the other
potentials due to capacitive cross-talk. In practice it is a non-trivial experimental task to
compensate for this effect by tuning all potentials to obtain the desired effect on a single
wire potential. is cross-talk, with the corresponding lever arms, is further discussed be-
low. We also note that in the Fig. .(b), only the conduction band, where the electrons
transport takes place, is shown.

. Single quantum dot - Coulomb blockade

In addition to the properties of a QD discussed above, there is one additional features
of fundamental importance: Electrons on a QD repel each other due to the Coulomb
interaction, hence, adding an electron to the quantum dot requires additional energy to
compensate the electrostatic repulsion caused by all the other electrons. When there is
insufficient energy of the tunneling electrons to overcome this repulsion the current can
not flow. is phenomenon is referred to as Coulomb blockade.

Taking into account both the discrete energy structure of the quantum dots band the Cou-
lomb blockade effects, one is able to describe a large fraction of transport experiments with
QDs. As pointed out above, QDs are useful in making electronic devices and, due to their
unique electronic properties, have applications in several areas of science. To characterize
the electron transport into a quantum dot, one can connect it to two metallic leads, source
(S) and drain (D) []. e difference between the source and the drain voltages is equal
to the applied bias voltage, V = VS−VD, and the resulting energy window between the
chemical potentials of S and D presents the bias window.

To describe qualitative the charge transport through a QD, we consider the scenario in
Fig. .. Electrons can tunnel in and out of a dot when the many-body energy level of
the dot is situated in the bias window. e energy levels in the dot can be modified by
varying the gate voltage. Figure .(a) schematically demonstrates the energy diagram of a
quantum dot occupied by N electrons. µN is the chemical potential of the QD containing
N electrons, that is the change in the total energy when adding theNth electron to the dot,

µN = E(N)−E(N−1). (.)

Here the energy E(N) consists of both the Coulomb energy and the energy level in the dot
to which the electron is tunneling. e current can pass through the dot due to the voltage
difference between the leads []. When the chemical potentials of the leads are below
µ(N+ 1), the electrons on the leads do not have enough energy to add the (N+ 1)th
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Figure 2.2: Schematic model for transport through a single quantum dot. (a) The dot is occupied by N electrons. The (N+1)th
electron can neither enter or leave the dot since the chemical potential of the dot is above the chemical potentials
the leads (b). By tuning the dot’s chemical potential, until the µ(N+1) is aligned with the chemical potential of the
source, the Coulomb blockade is lifted. (c) Schematic energy diagram shows the co-tunneling. The electron uses
the dot state as a virtual state, and transport through the dot becomes possible.

electron to the dot. In the same way, when µ(N) is below the chemical potentials of the
leads, the electrons on the dot are not allowed to exit from the dot; therefore the current
will be blocked. is phenomenon is known as Coulomb Blockade [, ]. e change in
the chemical potential required to add an electron to the quantum dot is called the addition
energy.

Figure .(b) shows that by changing the dot’s chemical potential the Coulomb blockade is
lifted and an electron can tunnel into the quantum dot and increase the number of electrons
to N+1. Meanwhile, this electron is allowed to exit the quantum dot and tunnel through
the drain. is transport process, as described here, is known as sequential tunneling. e
sequential tunneling is only possible if the energy level of the dot is in the bias window.

Furthermore, electron transport is also possible under some other specific circumstances.
Due to the tunneling, the energy level of the dots broadens and gives the electrons of the
leads the possibility to transport through energetically forbidden states, outside the bias
window, which are known as virtual states. is kind of tunneling is known as co-tunneling
process (Fig. .(c)). As a result of the uncertainty relation, electrons can only transport
through virtual states if the process happens in short enough time. For this process, the time
that the electrons tunnel through the system should be of the same order as the timescale
defined by the Heisenberg uncertainty relation. us co-tunneling process only happens if
there is a strong tunnel coupling between leads and the dot.

Identifying the energy level structure of the quantum dot is essential in order to understand
and predict a device performance. A large number of experiments have been done on
quantum dots, where with bias spectroscopy [] or thermoelectric measurements [],
one can obtain the energy level structure.
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. Single quantum dot - current spectroscopy

Quantum transport through a single dot can be drastically influenced by the quantization
of charge and energy. One can obtain spectroscopic information about the charge and the
energy levels by analyzing the so-called level spectroscopy diagrams or stability diagrams.
e stability plot that exhibits a diamond structure, can be made by measuring the current
through the dot, while changing the chemical potential on the leads for different values of
the gate voltage. From such plots, one can characterize the electron transport in detail as
well as extract parameters such as the distance between the single-particle energy levels and
the magnitude of Coulomb interactions.

Figure . presents an example of such a diagram. e current is plotted as a function of bias,
x-axis, Vb, and the gate voltage, Vg, the y-axis. e bias is changed symmetrically. e Pauli
master equation approach is used to calculate the current, as will be explained in Chapter
. e schematic diagrams (a - d), on the right side of the Fig. ., show the configuration
of the electrochemical potentials at different points. As it is illustrated in Fig. . in the
diamond areas along theVb axis, so-called Coulomb diamonds, no current can flow through
the dot, due to the Coulomb blockade effect, and the electron occupation on the dot is
fixed. erefore each diamond corresponds to a determined number of electrons (N).

In Fig. . at point (a), the first chemical potential of the dot is aligned with the source and
the drain. e borderline that connects point (a) and (b), shows the alignment of µ(1)
with µD. Also, the line that connects (a) and (d) shows the alignment of µ(1) with µS.
ese lines correspond to the transport onset through the first energy level in the quantum
dot. Furthermore, the two lines that connect (b)/(d) and (c) correspond to the alignment
of µ(2) with µS/µD.

In general, the points along the edges of each diamond at Vb = 0 are the degeneracy points
where the chemical potential of the dot, the source, and the drain are aligned. At the
diamond borderlines, one of the chemical potentials of the dot is aligned with, either the
source or the drain. e second degeneracy point, is the point C, where µ(2) is aligned
with the source and the drain. In the same way, as it was mentioned for point (a), the two
bottom borderlines show the transport of the second electron. Nonetheless, this electron
is in the same single-particle energy level as in (a) but with opposite spin.

e addition energy can be directly read from the width of the diamond in the source-
drain voltage plot, see for example point ’d’ in Fig. .. In the experimental data in order to
convert the gate voltage to an energy scale one has to know the gate-lever arm, αG. From
the ratio of the height and width of a diamond, it is possible to determine the gate lever
arms αG. e lateral and vertical sizes of the diamond in Fig. . are of the same since
αG = 1.
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Figure 2.3: Schematic model for a charge stability diagram, spin-degenerate system, Where the current is shown as a function
of the bias and gate voltages. Here the bias is changed symmetrically. Within the light yellow areas, Coulomb
diamonds, the number of electrons N in the quantum dot is fixed due to the Coulomb blockade. The gate shifts all
levels equally, with the value Vg. Chemical potential diagrams at different points (a-d) in the stability diagram are
shown on the right part of the figure, where µN is the Nth chemical potential. The current is calculated by Pauli
master equation method that is described in Chapter 4

Note that the diamonds corresponding to an odd number of electrons are smaller since
the additional energy is only the Coulomb interaction and for larger diamonds, the ad-
ditional energy is the Coulomb interaction plus the difference between the the energy of
the two single-particle energy levels, since spin down and spin up have the same energy.
By increasing the bias, more than one electrochemical potential level is accommodated in
the bias window whereby, as it can be seen in Fig . the current increase (darker blue and
darker red) for larger bias voltage.

. Double quantum dot, stability diagram

As discussed above, single QDs are sometimes regarded as artificial atoms, due to the dis-
crete energy level structure and sometimes pronounced shell structure [] for the electrons
filling up the dot. Along the same line of reasoning, two coupled QDs, a double quantum
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Figure 2.4: Schematic model for a double quantum dot system. This is a network of capacitors and resistors, indicating a double
quantum dot system.

dots (DQDs), can be seen as artificial, di-atomic molecules. In contrast to real molecules,
the properties of the artificial molecules can be modulated in a controlled way during an
experiment. at is, both the level structure of each QD atom as well as the inter-dot
coupling, the bonds between the atoms, can be tuned electrically.

In addition, when two (or more) QDs are coherently coupled, they give rise to a large
number of intriguing physical phenomena due to the interplay of electron correlations,
interference effects, etc. As a particularly prominent example, DQD system can constitute
building blocks for quantum bits, qubits, based on both the charge and spin degrees of
freedom [, , –]. Moreover, DQDs have been proposed as good candidates for the
implementation of elements in other nano-devices both for optoelectronics and quantum
technology applications as well as quantum systems in general [, , ].

For the purpose of this thesis, it is essential to understand electron-electron interactions in
coupled quantum dots, especially when quantum circuit elements are going to be built [].
We will, as a starting point, discuss the model in Ref. []. Figure . shows a schematic
image of a DQD, where each dot is coupled to one lead and the other dot via a tunnel
barrier described by a capacitor (CM) and a (tunable) tunnel resistor (RM). e two gate
voltages Vga and Vgb are coupled capacitively to dots a and b with capacitances Cga and Cgb,
respectively. us, the interdot coupling and the potential on each dot can be controlled
separately.

e number of electrons in dot a and b is denoted by na and nb, and the corresponding
charge state in the DQD by (na,nb). In the same way as we discussed for single quantum
dot, the DQD electrostatic energy is denoted by E(na,nb). e chemical potentials of the
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Figure 2.5: (a) Low bias stability diagram for a spin polarized double quantum dot system with the inter-dot tunnel coupling Ω
= 0.02 meV, interdot interaction is U = 10 meV and the bias is V = 0.2 mV. The dashed lines, connecting triple points
and separating charge stability regions, are a guide for the eye. (b) The schematic diagram for a specific transition
from (2,0) to (1,1) is shown on the right side of the figure.

two quantum dots are defined by

µa(na,nb) = E(na,nb)−E(na−1,nb)
µb(na,nb) = E(na,nb)−E(na,nb−1). (.)

In addition, dot a (b) is coupled to the source (drain) contact via another tunnel barrier,
with a capacitance CL (CR) and tunnel resistance RL(RR). e applied source-drain bias
VSD = V.

Figure . schematically shows the low source-drain bias, linear response, conductance of
a DQD as a function of gate voltages Vga or Vgb. It is assumed that each dot is coupled to
its respective gate voltage Vga or Vgb, that controls the number of electrons. ese kind of
graphs are the stability diagrams for double quantum dot systems. is name comes from
the fact that in the area where the transport of electrons is stopped, due to the Coulomb
blockade, the double dot is in a stable charge state given by (na,nb). Electron transition
through the DQDs can be understood as tunneling processes between many-body states
in the dots. Based on this model, when the chemical potential in the right dot is aligned
with the chemical potential in the left dot, both within the bias window, the states (na,nb),
(na+1,nb), (na+1,nb+1) are degenerate and sequential tunneling can take place. ese
regions of degenerate states are manifested as triple points, connections points between
three lines in the stability diagrams.
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Figure 2.6: (a) Finite bias stability diagrams for a double quantum dot spin degenerate system, with the inter-dot tunnel coupling
Ω = 0.02 meV, intradot interaction is Un = 10 meV, interdot interaction is Un = 3 meV and the bias is V = 5 mV.
Electron-phonon interaction is taken into account along the lines discussed in the transport part of the thesis. (b)
The schematic diagram for a specific transition from (2,0) to (1,1) is shown on the right side of the figure. Though
the energy level in the left dot is higher than the one in the right dot, electrons can transport through the right dot
via emitting phonons. The phonon emission is illustrated by a curly red arrow.

. Finite bias triangles and phonons

For finite source-drain voltage V, the triple points develop into bias triangles, the main
topic of paper III. Inside the bias triangles, the Coulomb blockade is lifted and current can
flow, As an illustrative example, the modification of the stability diagram in Fig. . due to
finite V is shown in Fig. .. e reason for the current flow inside the bias triangle, is that
electrons scatter inelastically when tunnelling between the dots. e origin of this inelastic
tunnelling is typically phonons. As of now, we have neglected the coupling of the electrons
in the QDs to vibrations of the atoms constituting the dots. In the quantum mechanical
treatment employed here these lattice vibrations are described as phonons which couple to
the motion of the electrons when tunneling between the dots. A microscopic description
is given in the next chapter.

Some known physical effects, like nonlinearities in the current-voltage characteristic and
conductance [, , , ], and some features in the DQD stability diagrams such as
bias triangles [–], are caused by electron-phonon interactions. In general, electron-
phonon interactions have strong effects on the electronics and optoelectronic properties
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of the nanoscale structures, therefore, understanding the effects of these interactions is of
fundamental importance.

e phonon modes are described by harmonic oscillators with energies E = h̄ω(n+ 1
2).

In thermal equilibrium, the average number of phonons in a mode is given by the Bose-
Einstein distribution

fBE =
1

eh̄ω/kBT−1
, (.)

where kB is the Boltzman constant and T is the temperature. In this thesis, typically, the
phonon temperature and hence the corresponding thermal energy is much lower than other
relevant energy scales in the system. As a result, electron typically give away energy by
creating phonons when tunneling. e opposite process, where tunneling electrons absorb
energy from the phonons, is much less important. It is the inelastic tunneling events, when
electrons tunnel under emission of phonons, that allow for current to flow in the entire
bias triangle and not only under the condition of degenerate many-body states.

To illustrate this in more detail, we show in Fig. . the effect of electron-phonon interac-
tion on the transport of electrons through a DQD system. e considered model is for a
specific DQDs with arbitrary parameters sets given in the caption. A Pauli master equation
approach is used to calculate the current, see chapter.  for a discussion of the transport
models. Here we compare the stability diagrams for this double quantum dot system to the
one in Fig. .. For finite bias, the triple points in Fig. . grow out to finite size regions,
bias triangles in Fig. ., in which the current flows.

Importantly, in the absence of inelastic scattering, the tunneling only happens if the elec-
tronic levels in the two dots are aligned. However, as it is seen in Fig. .(b), by emitting
(absorbing) a phonon the electron can tunnel also off resonance []. e triangles of finite
current appear due to the phonon emission process. When the energy level in the left dot is
higher than the one in the right dot, electrons in the left dot are able to transport through
the right dot by emitting phonons. is process can happen as long as the energy levels
are in the bias window. us the size of the triangles depends on the bias magnitude. e
absorption of phonons does not play any role since kBT≪ eV. We observe a pair of over-
lapping full bias triangles, for each transition, due to the inter-dot Coulomb interactions.

e energy difference due to phonon emission is given by ∆E= h̄ω where, h̄ is the reduced
Planck’s constant, and ω is the frequency of the phonon involved. is energy is given
to the phonons. e size of the bias triangles are typically set by the applied voltage V,
but as discussed below and also in e.g. paper III, there are several effects that can modify
the properties of the triangles and also give rise to fine structures and regions of different
currents inside the triangles.
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. Double quantum dots, Pauli spin blockade

In the description so far there has been no account for the spin properties of the electrons.
However, in the DQD systems, electrons in the dots obey the spin selection rules which
state that two electrons with the same spin cannot occupy the same orbital. Consequently,
some specific configurations of electrons in DQDs will lead to a current blockade phe-
nomenon, different from the Coulomb blockade. is phenomenon is known as Pauli
spin blockade, since it comes from the Pauli exclusion principle [, , ]. e occupa-
tion of the double quantum dot is shown by (m,n), where m and n are the numbers of
electrons in the left and right dot respectively. Spin blockade can happen in the transition
from (1,1) to (0,2).

When the quantum dots are coupled to each other, because of the tunnel coupling, the
wave functions of electrons are no longer localized on one QD. erefore, when there is
one electron on each dot, depending on the spin of electrons, the system can be either in a
singlet, S(1,1), or triplet, T(1,1), state. ere is almost no difference between the energy
of S(1,1) and T(1,1) states. However, there is a significant difference between the energy
of S(0,2) and T(0,2). is energy difference comes from the fact that the electrons in the
triplet state, T(0,2), have symmetric spin wave-function, and due to the Pauli exclusion
principle, they can not occupy the same energy level; therefore, one of the electrons has
to occupy an excited orbital. When there is one electron in the right dot and none in the
left, the system is in the state (0,1). Because of an applied bias an electron can tunnel
from the left lead to the left dot and set the system in a (1,1) state. Depending on the
spin of the electrons, two possible configurations can ensue. e first case is when a spin
singlet state S(1,1) is formed. In this case, the electron can tunnel through the right dot,
since the singlet state S(0,2) is energetically accessible, and then through the right lead.
e other possibility is that a spin triplet state T(1,1) is created. Since the electron spin
is conserved during tunneling between the dots, the electron has to go from state T(1,1)
to T(0,2). is transition is not possible since the triplet state in the right dot, T(0,2),
has considerably higher energy, as, the energy difference between the ground and excited
single-particle levels in the right dot is comparatively high. is process, the Pauli spin
blockade, blocks the current and it is discussed in paper II and III in more detail.

. Triple quantum dots

A triple quantum dot structure can, in analogy to the DQDs, be seen as more complicated,
tri-atomic, molecules. In particular, triple quantum dots can have different kinds of geo-
metries, such as a chain, a ring or a triangular shape. Various shapes have been extensively
studied both theoretically and experimentally [–]. In paper I we focus on a linear,
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Figure 2.7: (a) Stability diagram for a spin degenerate double quantum dot system, with the inter-dot tunnel coupling Ω =
0.02 meV, intradot interaction is U = 10 meV, interdot interaction is Un = 3 meV and the bias is V = 5 mV. The red
cross denotes the region for the spin blockade. (b) Schematic diagram for a specific transition from (1,1) to (0,2) is
shown on the right side of the figure. If the loaded state is parallel with the electron in the right dot, the tunneling
is suppressed due to the T(0,2) state being inaccessible in energy.

or chain geometry, with three QDs in series. Figure . shows such a triple QD system
implemented in a nanowire [] geometry and coupled to a source and a drain contact.

Experimentally a triple dot system can also be realized by a specific gate structure confining
a two-dimensional electron gas [, , ] or a carbon nanotube []. It also serves as a
model system for longer arrangements such as quantum dot superlattices [] or possible
dot-based quantum cascade lasers (QCLs) [, ]. e system that is shown in Fig. .,
was considered theoretically by B. Lassen and A.Wacker []. ey analyzed the effect of
Coulomb scattering on the transport of electrons through triple coupled dots. An import-
ant property is that the phase space restrictions in such low-dimensional structures reduce
the scattering rates substantially, compared to bulk materials. is is one of the reasons for
why triple dots have been suggested for a broad range of applications varying from quantum
information processing [] to quantum cascade lasers [, ]. Electron transport through
these structures has also been widely used for level spectroscopy [, , , ] .

Generally, one assumes that the transport through quantum dot systems is governed by spe-
cific resonances. ese happen due to the alignment of energy levels in different dots with
those in neighboring dots, within the bias window of the system. is provides specific
conditions for transport, which are resolved as current or conductance peaks for varying
external parameters, such as the voltages at different gates. Such resonances may even refer
to states with different energies due to the emission of phonons with a specified frequency
[, ] or Auger processes []. However, even in this case, the existence of specific reson-
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Figure 2.8: The triple quantum dot, implemented in a nanowire geometry, studied in paper I. The tunnel rates ΓL,ΓR to the
source and drain contacts and the interdot coupling strength Ω are shown.

ances is the guiding theme of studying multiple dot systems. However, with the increasing
number of dots, the number of resonance conditions becomes large and difficult to satisfy
simultaneously. Taking into account growth imperfections as well as undefined locations
of impurities with fluctuating charges, a strong suppression of current is expected with an
increasing number of dots [, ]. Electron-electron interaction is naturally occurring in
all electronic devices and affects transport both by scattering (such as the Auger term) and
level shifts.

In the first paper, we focus on charge transport through a serial arrangement of multiple
quantum dots. e main interest of the work is to address the influence of different parts
of the electron-electron (ee) interaction inside the triple-dot on the electrical current. We
show that the Coulomb interaction between electrons opens up a large variety of different
channels, which go far beyond the simple pictures of a few resonances, especially when the
spin degeneracy of the levels is included.
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Chapter 

e nanostructure device model

e development, during the last decades, in design, fabrication and characterization of
nanostructure devices have strengthened the need for studying the physics of open-quantum
systems []. Simulating transport through such nanoscale systems is nontrivial, especially
in the presence of strong electronic interactions that can lead to phenomena such as Cou-
lomb blockade [, ] or the Kondo effect [–]. ere are to date a large number of
different theoretical methods to treat the transport, ranging from scattering approaches []
via non-equilibriumGreen’s function techniques [] to density matrix approaches [–].

To large extent is the approach taken depending on the properties of the nanostructure.
For an open quantum system, with strong coupling between the nanostructure and the
source-drain contacts and negligible electronic interactions, the modern theory of scatter-
ing, often referred to as Landauer-Büttiker theory [, ], is a commonly applied method
due to its conceptual simplicity. Non-equilibrium Green’s function techniques provides a
framework to also account for interactions, such as electron-phonon or electron-electron
ones. In this thesis we will focus on density matrix approaches, which are a natural choice
for a nanosystem weakly coupled to source-drain contacts, where Coulomb blockade phe-
nomena play an important role in the transport. A large variety of density matrix methods,
including different types of master equations, have been developed [, –, –].

e aim of this chapter is to discuss key aspects of the modelling of the serial QD systems,
investigated by density matrix transport approaches used in all four papers I-IV. A general
Hamiltonian for theQD-systemwill be introduced, where different parts of themany-body
interaction are presented for this system. Moreover, rates for the coupling of the system to
the source and drain contacts as well as to phonons will be derived and discussed. In this
discussion concepts as many-particle states and the density operator will be introduced. In
the next chapter we then discuss the density matrix approach to transport, based on the
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results in the present chapter.

. e Hamiltonian

e systems that are considered in this thesis consist of a number of serially coupled QDs
that are connected to metallic leads. e following Hamiltonian can model such systems,

H=Hleads +Hdots +Htunneling, (.)

where, the first term describes the source and drain leads as reservoirs with a continuum of
non-interacting electrons,

Hleads = ∑
kℓσ

Ekℓσ c
†
kℓσ ckℓσ . (.)

Here c†kℓσ and ckℓσ respectively create and annihilate an electron, with spin σ =↑,↓, in
the lead ℓ; ℓ = L,R stand for the left or right lead. Moreover, k represents a continuous
quantum number, which refers to the energy of the electrons Ek. is means that k-sums
can be performed by introducing the density of states ν(E) as

∑
k

fk −→
∫

dEν(E)f (E). (.)

where fk = f (Ek) is any given function. Also it is assumed that the energy of the lead states
has a bandwidth 2D, centered around the Fermi level. e particle energy Ek ∈ [−D,D]
and the density of states in this interval is a constant ν(E) ≈ ν(EF) = νF. en the k-
sums are performed as ∑k fk −→ ν(F)

∫ +D
−D dE f(E). Furthermore, Ekℓ = Ek+ µℓ is the

single-particle energy of the electron in state k. e dispersion Ek in the lead is shifted
by the chemical potential µℓ of the respective lead ℓ. It is also assumed that the electrons
in the leads are in thermal equilibrium with an electronic distribution characterized by a
Fermi–Dirac function

fℓ(E) =
1

1+ e(E−µℓ)/kBTℓ
, (.)

with temperature Tℓ and chemical potentials µℓ.

e second term in Eq. (.), Hdots, is the many-body Hamiltonian that is used for the
quantum dots,

Hdots =Hsingle +HCoulomb, . (.)

Here first term, Hsingle, describes the single particle energies in each dot and the coupling
between the states in the neighboring dots. is term is given by

Hsingle = ∑
nσ

End†
nσdnσ + ∑

nmσ
Ωnmd†

nσdmσ , (.)
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where d†
nσ (dnσ ) creates (annihilate) an electron with spin σ , in single-particle orbital n,

and Ωnm is the coupling between state n in one dot and state m in the neighboring dot,
which are estimated by a standard tight-binding superlattice model []. e levels in
one quantum dot only couple to the levels in the nearest-neighbor dots, and therefore the
coupling matrix elements corresponding to the coupling between the levels in the next-
nearest-neighbor dots are zero.

e second term in Eq. (.) is the HCoulomb, which describes the electron-electron inter-
actions and becomes relevant if more than one electron is confined in the system,

HCoulomb =
1
2 ∑
mnkl
σσ ′

Vmnkld†
mσd

†
nσ ′dkσ ′dlσ . (.)

Here Vmnkl are the Coulomb interaction matrix elements. e calculation of the Coulomb
matrix elements for the systems that we have studied in this thesis will be described in more
detail in section ..

e last term in Eq. (.) is Htunneling, related to the coupling between the dots and the
leads,

Htunneling = ∑
n,kℓσ

(
tn,kℓd†

nσ ckℓσ +h.c.
)
, (.)

where tn,kℓ is the magnitude of the tunneling between the leads and the dots, and h.c. stands
for the Hermitian conjugate. An important energy scale in the calculations is the tunneling
rate between the dots and the source and drain contacts, defined as

Γn,kℓ(E) = 2π ∑
n,kℓ

|tn,kℓ|2δ (E− εkℓ), (.)

In our calculations the tunneling amplitude is assumed to be energy, or k, independent and
therefore tn,kℓ = tn,ℓ. In this case the tunneling rates become

Γnℓ = 2πνF|tnℓ|2. (.)

We note that in the case of single spinful orbital with on-site interactionU, theHamiltonian
Eq. (.) is referred to as an Anderson-type model [–]. is model has been intensively
studied, for different kind of phenomena and in various parameter limits.

. Matrix elements of the interactions

e Coulomb Hamiltonian operator, Eq. (.), describes the electron-electron interaction
where Vmnkl are the different matrix elements and in general reads

Vmnkl = ⟨χm|χl⟩⟨χn|χk⟩
∫

d3r
∫

d3r′φ∗
m(r)φ∗

n (r
′)

e2

4πεrε0|r− r′|
φk(r

′)φl(r). (.)
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Here, φm(r) and |χm⟩ are the spatial and the spin part of the single-particle statem, respect-
ively. Also, εr and ε0 are the relative and vacuum permittivity, respectively. We neglect all
terms, where either m and l or k and n belong to different quantum dots, as their overlap
would be vanishingly small. Furthermore, terms connecting levels of next-nearest neigh-
boring dots are small and neglected as well. e remaining terms can be categorized as
intradot and interdot interactions depending on whether the two states are in the same dot
or in two neighboring dots. ese cases are separately treated below.

. Intra-dot Coulomb matrix elements

For intradot interaction all the levelsmnkl are considered to be in the same dot. By employ-
ing the normalization condition for the wave function, the direct elements can be estimated
as

Vmnnm =
e2

4πεrε0σ
= U, (.)

where σ is the standard deviation for the spatial extension of the dot wave functions, σ =√
⟨(r−⟨r⟩)2⟩.

Another set of interaction matrix elements that have to be taken into account are Vmnmn
(for n ̸= m), which act as exchange terms for equal spins and scattering terms for different
spins. Trying different test wave functions (an example is discussed in ..) we observe

Vmnmn ≈ Uex =
U
5

(.)

is gives the correct order of magnitude of the exchange interaction Uex compared to the
direct, on-site Coulomb interaction U, as is shown for example in paper III.

.. Matrix Elements for Harmonic Oscillator

As an illustrative example, we can evaluate the matrix elements by assuming Gaussian wave
functions, eigenfunctions of the harmonic oscillator, as

φ0(r) =
e−r2/2a2

(πa2)3/4
, φ1(r) =

√
2z
a

e−r2/2a2

(πa2)3/4
, (.)

where a=
√

h̄/mω for a harmonic oscillator. Fourier transformation of Eq. (.) yields,

Vmnkl =
e2

(2π)3εrε0

∫
d3q

A∗
lm(q)Ank(q)

q2

Ank(q) = ⟨χn|χk⟩
∫

d3re−iq·rφ∗
n (r)φk(r). (.)
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To find the relation between the magnitude of the direct term and exchange term, we
calculate V0110 and V0101. From Eq. (.) and (.) we can find,

V0110 =
e2

4πεrε0
√

π/2a
5
6
, V0101 =

e2

4πεrε0
√

π/2a
1
6
. (.)

us V0101 is a factor 5 smaller compared to the direct term, which is just the result above
in Eq. (.). is term acts as exchange interaction if electrons have the same spin and as
a scattering term in case of two different spins.

. Inter-dot Coulomb matrix elements

e direct interaction between two states in the neighboring dots can be evaluated in the
same way as in Eq. (.), giving

Vmnnm =
e2

4πεrε0d
= Un, (.)

where d is the average distance between the two particles, which can be approximated by the
distance between the centers of the dots. e terms with different combinations of indices
are estimated by a Taylor expansion of 1/|r− r′| around the centers of the respective dots
Ri , Rj, see ref. [].

Defining r1 = Ri + s and r2 = Rj + s′, where s and s′ are the displacement of electron
densities from the center of mass in dot i and j, respectively. a Taylor expansion of the
Coulomb interaction gives

1
|Ri+ s−Rj− s′|

=
1

|Ri−Rj|
−

(Ri−Rj) · (s− s′)
|Ri−Rj|3

− (s− s′)2

2|Ri−Rj|3

+
3(Ri−Rj) · (s− s′)(Ri−Rj) · (s− s′)

2|Ri−Rj|5
. (.)

Using |Ri−Rj|= d for neighboring dots, we find

Vlnml ≈
e2

4πεrε0
snm · (Ri−Rj)

d3
=±Udc, (.)

eUdc term can be interpreted as a dipole-charge interaction that is the interaction between
a superposition of two states in one dot and one specific state in the neighboring dot. In
these matrix elements, the indices n and m represent the states in the same dot, whereas l
is the state in the next neighboring dot.
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Figure 3.1: Schematic view of the Coulomb interactions, showing the six different terms discussed in the text.

We moreover have the element

Vmnkl ≈
−e2

4πεrε0
2sml · snk

d3
= Usc, (.)

with the intradot dipole matrix element

snm =

∫
d3rφ∗

n (r)rφm(r). (.)

e Udc and Usc terms can be interpreted as a dipole-charge interaction and dipole-dipole
scattering terms, respectively. eUsc term is responsible for the Auger process and is crucial
for the current flow in our system that we considered in the first paper. e sign of Udc
in Eq. (.), depends on whether the charge is on the right or left side of the dipole. In
Fig. . we provide an overview of all the six different Coulomb interaction terms discussed
above.

. Electron-phonon interaction

e phonons are modeled as non-interacting bosonic modes

Hph = ∑
q
h̄ωqb†

qbq, (.)

were b†
q creates a phonon in a mode q. e electron-phonon interaction is given by

He−ph = ∑
nm,q

gqnmd†
ndm(b

†
q+bq). (.)
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with thematrix elements gqnm and q indicating the complex conjugate state of q. e phonon
coupling to the free electrons in the leads is very small compared to the electron-phonon
coupling in the central region, see Ref. [], therefore we only consider the electron phonon
coupling in the dot.

We consider deformation potential coupling to the phonons, which is given by the di-
vergence of the displacement following []. We can express the corresponding coupling
matrix element for the first acoustic phonon mode coupled to the electrons via the deform-
ation potential by

gq1nm =
∫

d3rΨ ∗
n (r)D∇ ·uq1(r)Ψm(r). (.)

Here uq1(r) is the displacement and D is the deformation potential coefficient. e elong-
ation uq1(r) is given by []

uq1(r)
q→0
∼ Nq[(1−ν

q2r2

2
) ez− iνqr er+O(q3)]eiqz, (.)

where ν is the ratio between transverse contraction and longitudinal elongation in the
stretching force direction, which is called the Poisson number. In the limit where q → 0
one can get the linear dispersion relation ωq = νq with ν =

√
E
ρ , where E is the Young’s

modulus and ρ is the mass density.

Taking into account Eq. (.) and Eq. (.) we obtain

gq1nm =
∫

d 3rΨ ∗
n (r)D

(
(

∂
∂ r

+
1
r
)ur+

1
r

∂uθ
∂θ

+
∂uz
∂ z

)
Ψm(r)

=
∫

d 3rΨ ∗
n (r)D

(
iqNq(1−2ν)eiqz

)
Ψm(r)+O(q3).

(.)

By using the normalization condition []

1
V
=

∫
d3r |Uq(r)|2 =

h̄
2Mωq

(.)

it can be found that

Nq =

√
h̄

2LAρωq
=

√
h̄

2LAρνq
. (.)

In the above expression, A is the wire area and L is the normalization length for the phonon
modes. By inserting Eq. (.) into Eq. (.) we obtain

gq1nm = i

√
h̄q

2LAρν
D(1−2ν)

∫
d 3rΨ ∗

n (r) e
iqz Ψm(r). (.)
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We express the electron-phonon coupling matrix element, gqnm = g(q)yqnm, in terms of a
state-independent overall strength g(q) and a dimensionless coefficient yqnm, given by

g(q) = i

√
h̄q

2LAρν
D(1−2ν)

yqnm =
∫

d3rΨ ∗
n (r)e

iq·z(r)Ψm(r).

(.)

By assuming that yqnm is q-independent (e.g. by choosing a characteristic value), we obtain

yqnm ≈ ynm, yqnm ≈ ynm = y∗mn. (.)

We can quantify the coupling strength between the different phonon modes and the elec-
tronic states in the quantum dots by the phonon spectral density. We can thus collect all
the energy dependence in the spectral density [] as

J(E) = ∑
q
|g(q)|2 δ (E− h̄ωq). (.)
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Chapter 

Density matrix transport model

Based on the Hamiltonian model of the nanostructure derived in the last chapter, we here
describe the theoretical model for the transport used throughout the thesis, including in
all papers I-IV. As was mentioned in the previous chapters, studying electronic transport
in nanostructures (multiple quantum dot, molecules, etc.) in which quantum effects are
relevant, is an important but also non-trivial task. To investigate transport properties, de-
pending on the properties of the system many theoretical approaches have been used such
as scattering theory [], numerical-renormalization group [], many-body methods [],
non-equilibrium Green’s functions [] and density matrix equation-based approaches, in-
cluding master equations, [, –, –]. In the papers of this thesis we apply one of
the most common techniques, the generalized master equation-based approach.

In this chapter, we first describe the concept of a density matrix and it’s use is motivated.
en, the two related transport approaches are described, the density matrix equation, or
the generalized master equation, approach and the rate equation, or Pauli master equation
approach. e latter is a limiting, simpler, case of the former, applicable when the coherence
between states inside the nanostructure can be neglected. [, , , ]. In contrast to
the density matrix equation, where the full quantum state of the system (the density matrix)
is needed, in a rate equation only probabilities for state occupations are used.

. e equation of motion

In order to derive the generalized master equation, we start to write the equation of motion
of the system on density matrix form. A density matrix, or density operator, is one of the
most important concepts in statistical quantummechanics, introduced by J. von Neumann
in . e density matrix ρ(t) describes a statistical mixture of pure quantum states and
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can in general be written
ρ = ∑

j
pj|ψj⟩⟨ψj| (.)

where pj is a probability, with∑j pj= 1 and |ψj⟩ a quantum state of the system. Importantly,
the set of states {|ψj⟩} does typically not constitute an orthonormal basis, it can be any
number of non-orthogonal states. In particular, working in the energy eigenbasis of the
system {|E⟩}, one can in general write

ρ = ∑
EE′

ρEE′ |E⟩⟨E′| (.)

us, the density matrix is typically not diagonal, there are elements ρEE′ . at is, it has
non-zero elements which are npon-zero. ese elements are referred to as coherences, and
are of quantummechanical origin, that is, they cannot be described in terms of probabilities
to find the system in a given energy eigenstate. Sometimes it is convenient to work not in
the energy eigenbasis but the eigenbasis of the density matrix itself. Since it is by definition
a positive (semi) definite matrix it can be diagonalized as

ρ = ∑
i
Wi|i⟩⟨i|. (.)

In this equation, {|i⟩} is the complete basis set of ρ and Wi is the probability to find the
system in state |i⟩.

Also accounting for the time dependence of ρ(t), the von Neumann equation gives the
dynamics of the density operator.

ih̄
d
dt

ρ =−[ρ,H] (.)

If a system can be separated into two uncoupled subsystems, for instance in our situation
the leads and the dot, not connected via tunnel barriers, it is possible to factorize the density
into a lead and a dot part, ρ = ρleads ⊗ρdots. When coupling the two subsystems via the
tunneling Hamiltonian, Htunneling this is no longer possible, that is, the density matrix of
the full system is no longer in a product state. However, one can obtain information about
the dot properties only by tracing the total density matrix over the lead degrees of freedom,
as

ρdots(t) = Trleads[ρ(t)], (.)

where the the resulting density matrix of the dot, ρdots, is called a reduced density matrix.
Importantly, if the total state of the system is a pure quantum state, the reduced dens-
ity matrix typically describes a non-pure, or mixed, state. is illustrates one of the key
properties and uses of density matrices.
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In the thesis, we study tunneling through a small system such as multiple quantum dots,
connected to leads. As it was discussed in Sec. . the Hamiltonian of such a system is
defined by

H=Hleads +Hdots +Htunneling. (.)

We will take the approach to work in the many-body eigenbasis of the dot system. We
thus diagonalize the HamiltonianHdots and get the many-particle eigenstates |a⟩, |b⟩, |c⟩,...
where we use the convention that a state |a⟩ contains one particle less than the state |b⟩,
which in turn contains one less that |b⟩, etc. We can then write the dot Hamiltonian as

Hdots = ∑
a
Ea|a⟩⟨a|. (.)

In this many-particle basis, the Hamiltonian that describes the tunneling between the states
in the leads and the dot, Htunneling, can then be written

Htunneling = ∑
ab,klσ

Tba(klσ)|b⟩⟨a|cklσ +h.c.), (.)

where σ =↑,↓ denotes the spin, k labels the spatial wave functions of the contact states
and ℓ denotes the lead (ℓ= L/R for the left and right lead, respectively). Also, Tba(klσ) is
the tunneling matrix element, which determines the transition rate between state |a⟩ and
|b⟩ for transfering one electron in the state klσ of the leads to the dot. We note that the
number of electrons in state |b⟩, Nb, equals Na+1. e transition matrix element can be
written

Tba(klσ) = ∑
n
tnl⟨b|d†

nσ |a⟩, (.)

where the index n runs over the dots.

In terms of these quantities we can write the time-evolution of the density matrix elements
using the von Neumann equation

ih̄
∂
∂ t

ρ [0]
ag,b′ g

= ⟨ag|Hρ −ρH|bg′⟩, (.)

where |bg⟩ = |b⟩⊗ |g⟩ with |b⟩ indicating the eigenstate of the dot Hamiltonian and |g⟩
expressing the eigenstate of the leadHamiltonian. Importantly, the superscript [0] indicates
that it is the density matrix element to zeroth order in tunneling. In our equations we keep
only the single-particle, sequential tunnelling events (first order in tunneling, denoted [1])
and neglect all higher order, co-tunneling, events. For instance, we have the density matrix
elements

ρ [0]
bg,b′ g

= ⟨bg|ρ̂ |b′g⟩

ρ [1]
bg−κ ,ag = ⟨bg−κ|ρ̂ |ag⟩,

(.)
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where, for shortness, κ is a composite index

κ ≡ k, ℓ,σ ; (.)

and we have
|bg+κ⟩= |b⟩⊗ c†κ |g⟩,
|bg−κ⟩= |b⟩⊗ cκ |g⟩.

(.)

By solving the equation of motion, Eq. (.), we obtain the equations

ih̄
∂
∂ t

ρ [0]
bg,b′ g

= (Eb−Eb′ )ρ
[0]
bg,b′ g

+Tba1(κ1)ρ
[1]
a1g,g+κ1,b

′ g
(−1)Na1

+Tbc1(κ1)ρ
[1]
c1g,g−κ1,b

′ g
(−1)Nb −ρ [1]

bg,c1g−κ1
(−1)Nb′Tc1b

′ (κ1)

−ρ [1]
bg,a1g−κ1

(−1)Na1Ta1b
′ (κ1),

(.)

and
ih̄

∂
∂ t

ρ [1]
cg−κ,bg ≈ (Ec−Eκ −Eb)ρ

[1]
cg−κ ,bg

+Tcb1(κ)ρ
[0]
b1g,bg(−1)Nb1 ⟨g|c†κ cκ |g⟩

−ρ [0]
cg−κ,c1g−κ(−1)NbTc1b(κ).

(.)

In order to have a particle current from the left lead into the dots, there should be an
electron in the single-particle state corresponding to κ . e term ⟨g|c†κ cκ |g⟩ in Eq. (.)
corresponds to this necessity. Moreover, a phase factor (−1)Nb is needed because of the
order exchange of the lead with the dot operators, i.e., cκ(|b⟩⊗ |g⟩) = (−1)Nb |b⟩⊗ |g⟩.

Summing Eq. (.) and Eq. (.) over all the lead states |g⟩ we get

ϕ [0]
b,b′

= ∑
g

ρ [0]
bg,b′ g

(.)

which are the elements of the reduced density matrix ρdot, and

ϕ [1]
cb (κ) = ∑

g
ρ [1]
cg−κ ,bg(−1)Nb (.)

that explain the transformations of electrons from the leads to the quantum dot. Diagonal
elements ϕbb present the probability that an electron occupies the state |b⟩ in the dot,
regardless of the state of the leads. e off-diagonal elements ϕbb′ describe the quantum
coherence resulting from the point that an electron can be in the two states |b⟩ and |b′⟩ at
the same time. ese elements lead to interference effects in electron transmission through
two states in Quantum dots.
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e equations of motion for [0] and [1] matrix elements read

ih̄
∂
∂ t

ϕ [0]
b,b′

= (Eb−Eb′ )ϕ
[0]
b,b′

+Tba1(κ1)ϕ
[1]
a1b

′ (κ1)+Tbc1(κ1)ϕ
[1]
c1b

′ (κ1)

−ϕ [1]
bc1(κ1)Tc1b′ (κ1)−ϕ [1]

ba1(κ1)Ta1b
′ (κ1)

(.)

and
ih̄

∂
∂ t

ϕ [1]
cb (κ)≈ (Ec−Ek−Eb)ϕ

[1]
cb (κ)

+Tcb1(κ)ϕ
[0]
b1b fκ −ϕ [0]

cc1Tc1b(κ) f−κ ,

(.)

Here we also make an assumption that the level occupation in the leads are thermally dis-
tributed according to the Fermi-Dirac distribution and are unaffected by the coupling to
the quantum dots. at gives rise to to the following approximation,

∑
g

ρ [0]
bg,b′ g

⟨g|c†κ cκ |g⟩ ≈ fκ ϕ [0]
bb′
,

∑
g

ρ [0]
bg−κ ,b′ g−κ

≈ f−κ ϕ [0]
bb′
.

(.)

which is used below.

. First-order von Neumann approach

e conditions that are assumed for the stationary state, that is when the time evolution of
the density matrix can be disregarded, is

ih̄
∂
∂ t

ϕ [0]
bb′

= 0, ih̄
∂
∂ t

ϕ [1]
cb (κ) = 0, (.)

and we can write ϕ [1] in terms of ϕ [0] as

ϕ [1]
cb (κ) =

Tcb1(κ)ϕ
[0]
b1b fκ −ϕ [0]

cc1Tc1b(κ) f−κ

Eκ −Ec−Eb− iη
. (.)
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Now the 1vN approach equations can be obtained for the steady state from Eqs. (.),
(.), and (.) as

0= ϕb,b′ (Eb−Eb′ )

+∑
b′′ ℓ

ϕbb′′
[
∑
a

Γℓ
b′′a,ab′ I

ℓ−
ba −∑

c
Γℓ
b′′ c,cb′ I

ℓ+∗
cb

]
+∑

b′′ ℓ

ϕb′′b

[
∑
c

Γℓ
bc,cb′′ I

ℓ+
cb′

−∑
a

Γℓ
ba,ab′′ I

ℓ−∗
b′a

]
+ ∑

aa′ℓ

ϕaa′ Γ
ℓ
ba,a′b′

[
Iℓ+∗
b′a

− Iℓ+
ba′

]
+∑

cc′ℓ

ϕcc′ Γ
ℓ
bc,c′b′

[
Iℓ−∗
c′b

− Iℓ+
cb′

]
.

(.)

In addition , we use the normalization condition for density matrix,

∑
b

ϕbb = 1 (.)

In Eq (.) the tunneling rate Γ is defined as

Γba,a′b′ = 2πνF∑
σ
Tba(lσ)Ta′b′ (lσ), (.)

Here the following integral was used

2πIl±ba = P
∫ D

−D

dE f (±E)
E− plba

− iπ f (±plab)θ(D−|plba|), (.)

where P denotes the principal part and where

plba = Eb−Ea− µl, f(E) = (exp[E/kBT ]+1)−1 (.)

which results from applying the approximation of a flat, wide density of states, i. e,
∫
k →

νF
∫ D
−D dE, with νF indicating the density of states at the Fermi level and 2D expressing the

bandwidth of the leads. Hence, it is assumed that the largest energy scale in our calculations
is the bandwidth of the leads.

Lastly, we are interested in the particle current from lead ℓ into the structure, Iℓ, which
equals the rate of change of the occupation in the lead:

Iℓ(t) = e∑
kσ

∂
∂ t

⟨c†kℓσ ckℓσ ⟩= e∑
kσ

∂
∂ t

ρ0
bg,bgk

=
2e
h̄ ∑

kσ
Im

[
Tbc(ℓσ)ϕ [1]

cb (kℓσ)
]
.

(.)

Here the current is formulated in terms of the off-diagonal elements of the total density
matrix that connect two different states of the dot, the difference in occupation number of
these states is one.
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e current in the steady-state is achieved in terms of ϕ [0]
b′b

as

Iℓ =
2e
h̄ ∑

cb
Im

[
∑
b′

Γℓ
bc,cb′ I

ℓ+
cb ϕ [0]

bb′
−∑

c′
Γℓ
bc,c′bI

ℓ−
cb ϕ [0]

cc′

]
, (.)

as discussed in the first paper I.

. Pauli master equation

Now we can obtain a rate, or Pauli master equation from the 1vN approach by ignoring
the coherences ϕbb′ , b ̸= b

′ . Taking into account the fact that the populations Pb = ϕbb we
can write the time evolution for the occupation probability of a state |b⟩.

dPb
dt

= ∑
aℓ

[
PaΓℓ

a→b f
ℓ(Eb−Ea)−Pb Γℓ

b→a[1− f ℓ(Eb−Ea)]
]

+∑
cℓ

[
PcΓℓ

c→b [1− f ℓ(Eb−Ea)]−PbΓℓ
b→c f

ℓ(Ec−Eb)
]
.

(.)

where we have denoted Γℓ
a→b = Γℓ

ab,ba = Γℓ
b→a = Γℓ

ba,ab. To get the steady state conditions
we put dPa/dt = 0. Here, Pa , Pb, and Pc are the probabilities that state |a⟩, |b⟩, and |c⟩
are occupied respectively.

e first line in the above equation yields the rate at which the system turns to the state |b⟩
from states |a⟩ and |c⟩. e first term corresponds to that the dot is in a state |a⟩, with the
probability Pa. Tunneling onto the dot would, therefore, be possible, if occupied states of
matching the energy, Eb−Ea, could be found in the lead ℓ. Due to the tunneling process,
the state of the dot change from |a⟩ to |b⟩. e factor f ℓ(Eb−Ea), indicates the probability
that states with energies Eb−Ea are occupied in lead ℓ. e state |b⟩ of the dot can also be
reached if the state |c⟩ is occupied, and an electron is removed to lead ℓ. Similarly, electrons
which leave the dot need empty states in the lead. e second term of the first line describes
this tunneling process. e second row in the above equation describes the rate at which
the system returns to state |a⟩ and |c⟩ from state |b⟩. Where the first term and the second
term contains the processes in which an electron leaves and enter the dot respectively.

Now we can evaluate the current in the steady-state from lead ℓ into the dot as

Iℓ =
2e
h̄ ∑

ab
{PaΓℓ

a→b f
ℓ(Eb−Ea)−Pb Γℓ

b→a[1− f ℓ(Eb−Ea)]}. (.)
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. Comparison of first-order vonNeumann andPauli approaches

In the previous sections of this chapter the derivation of the first-order von Neumann equa-
tion and the Pauli master equation was presented. In this section, we discuss in more detail
their properties and the role of coherences. As discussed above, the off-diagonal elements of
the reduced density matrix in the many-body eigenbasis of Hdots are known as coherences.

e Pauli master equation approach ignores all such coherences. In contrast, the first-
order von Neumann accounts for the coherences of the system and consider the tunnel
transitions to the leads in the lowest order. e coherences are known to be of relevance, if
ΔE≲ Γ, where ΔE is the splitting between the many-particle states with the same number
of particles and Γ is the transition rate to the leads in units of energy. Typical examples for
this situation have been already discussed in refs [, ].

e 1vN approach is considered to give reliable results if the temperature kBT of the leads
exceeds the transition rate Γ, as shown by comparison with higher-order approaches [].
For lower temperatures, kBT ∼ Γ, many-particle tunneling becomes important and one
needs to go to higher order in tunneling []. Also, if ΔE ≲ Γ, the coherences are known
to be of significance.

e Pauli master equation approach gives accurate results when the temperature is much
larger than the coupling strengths kBT≫Γ. Furthermore, the levels of the dot must be well
separated so that the effects of quantum superpositions, i.e., coherence, can be neglected.
It should be mentioned that e Pauli master equation and the first order von Neumann
(1vN) approaches give identical results if the coupling to the leads Γ becomes vanishingly
small compared to the level splittings, and non-diagonal elements of the density matrix are
not relevant. However, in the case where Ω, the coupling between the dots is less than Γ,
coherences become essential, and the Pauli master equation is not reliable.

To put it in a nutshell, it is clear that the Pauli master equation is a reliable option if
no coherences between different states develop. However, if coherences are essential, it is
reliable to use the 1vN. Besides, both of these approaches are well-founded if only sequential
tunneling is of relevance.





Chapter 

Overview of the papers

. Paper I

In this paper, we investigate the influence of electron-electron interactions on transport in
three serial quantum dots sandwiched between metallic contacts (schematically shown in
Fig. .). In this system, only the right/left dot energy levels are directly connected to the
leads with a continuum of levels. We find that the presence of single-particle resonances
within neighboring levels are not essential, since the many-particle states create channels
for the current flow under a wide range of configurations of single-particle levels.

To calculate the current we use the first-order von Neumann (1vN) approach [, ], that
takes into account all density matrix elements and a simpler Pauli master equation which
neglects coherences [–]. We also check the validity of the Pauli master equation by
comparing it with the first-order von Neumann approach. Moreover, we neglect phonon-
scattering here. Since the phonon scattering rates, between the states of the quantum dot,
are of the order of 1/ns or even smaller [–], and such a scattering process can give
current of at most ≈ 0.1nA, which is found to be negligible. We calculate the current as
a function of dot level energies E3 and E4 (see Fig. .), for two different cases: (i) e
spin-polarized system and (ii) e spin-degenerate system.

.. Spin polarized case

Figures .(a) and .(b) show the current as a function ofE3 andE4, when all the interaction
matrix elements except the scattering elements, Usc, are zero. To calculate current we used
the Pauli master equation and the first von Neumann approach for Fig. .(a) and .(b)
respectively.
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Figure 5.1: Spin-polarized system, (a),(b) with just scattering Usc included. (c),(d) All Coulomb matrix elements included. The
two columns correspond to two different approaches. The diagram on the left shows schematically the energy levels

If the electrons occupy both levels 1 and 4, an energy-conserving scattering event creates the
simultaneous transitions 1 −→ 2 and 4 −→ 3 (for E3−E4 = E2−E1 ), with subsequent
tunneling to the right contact via the state 5. erefore, the electrons are able to transfer
through the system only if E3 = E5 = 20meV and E4 = E1 = 40meV. Otherwise, the
electron transport is blocked. On the other hand, by considering the full e-e interaction
with all the interaction matrix elements, Fig. .(c) and (d), the current flow is spread over
a wide range of parameters, since a larger variety of excitation energies are relevant.

By comparing Fig. .(c) and Fig. .(d) we see that if all interactions are included the peak
structure in the 1vN (Fig. .(d))and Pauli (Fig. .(c)) approaches is similar. However, the
thin line of resonance for E4 ≈ E3+20 is substantially reduced in the more advanced 1vN
simulation. is reduction is the effect of the coherences developing between the many-
body states which have energy differences smaller than the tunneling rate, Γ. Here, the
relevant many-particle states are the 2-particle state occupying the levels 1 and 3, and the
2-particle state occupying levels 4 and 5, which are degenerate.

A similar pattern can be seen when just scattering Usc is included for spin-polarized levels
Figs. .(a) and (b), thin lines of resonances with high current appear at E4 ≈ 40meV and
E4 ≈ E3+ 20meV (faintly) for the Pauli master equation (Figs. .(a)), however, for 1vN





approach the resonance is extending just along the E4 = 40meV line (Figs. .(b)).

.. Spin-degenerate system

Figure . shows the result for the system with both spin species. Comparing Figs. .(a)
and (c) with Figs. .(a) and (c) shows that the maximum of the current has increased by
a factor of two. However, the behavior of the current in Fig. .(a) that was calculated by
the Pauli master equation is totally different compared to the 1vN approach Figs. .(b).
In Figs. .(a) many resonances are noticeable, which totally reduced by the 1vN approach
in Figs. .(c). Furthermore, Fig. .(b) shows that the resonance faintly extends along the
intersection of E3 = 20meV and E4 = 40meV. ough, in a spinless case, this resonance is
just along the E4 = 40meV line.

In order to understand the reason for this difference, we look at the five one-particle eigen-
states of the Hamiltonian responsible for transport. e plot on the right side of Fig. .
shows a line for fixed E4 = 38meV, and corresponding eigenstates are schematically shown
in the squares. For specific parameters at the green (right) square, a significant current is
observed for the spinful levels; however, the current is blocked for the spin-polarized levels.
At the red (left) square, the current is blocked for both cases.

e superposition states E1 and E4 as well as E3 and E5 creates two new states with two new
energies, which are referred to as E1,4, E4,1, E3,5 and E5,3. At the right (green) square (E2−
E1,4 ≈ E1,4 − E3,5), therefore, the conservation of energy is satisfied, and the Coulomb
scattering is possible. Only if the levels are spin degenerate, the Pauli principle can be
fulfilled, and the electrons can transfer through the system. However, the current is blocked
in a spin-polarized system. As it is illustrated on the right side of Fig. . if the coupling to
the leads is enhanced, the current is decreased because of the to the coherences. Including
all ee-interaction terms produces a broad variety of single-particle excitations. erefore
resonance conditions are easier to satisfy than Figures .(c) and .(d) show the evaluated
current, and we observe a multitude of peaks as well as significant background current for
a large number of energy level combinations.

Further, in this paper, we report that the principle part integrals in the 1vn approach,
Eqs. (.), can give unphysical outcomes (current against the bias) which was the motiv-
ation for neglecting these terms in our calculations. See the supplementary information.

. Papers II and IV

In the second paper, we report on the addition of phonon scattering to the QMEQ soft-
ware [], which is a package for numerical modeling of transport through quantum dot
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Figure 5.2: Two spin direction system, (a),(b) with just scattering Usc included.In (b),(d) all Coulomb matrix elements have been
included. The two columns correspond to two different approaches. (e) Dashed (green) and dashed dotted (blue)
gives current for larger coupling Γ The left and right square panels show the one-particle eigenstates at two values
of energy E3.

systems based on density matrix equations. Here, we study a double-dot system with tun-
able energy levels, where energy relaxation is essential to match the energy levels difference,
and compare our results to the experimental data in Ref. []. Furthermore, we show the
particle current against the bias due to the non-equilibrium phonon distributions []. In
order to calculate the electron-phonon interaction, I follow Sec. ..

We used the Pauli master equation approach to calculate the current, In all the systems
that we study here, Γ is much smaller than the level splitting; therefore, the non-diagonal
matrix elements of the densitymatrix do not play any role, and the first-order vonNeumann
approach gives the same result as the Pauli master equation[, ]. Fig. .(a) and (c) show
the current as a function of the left and the right dot energy levels (EL and ER).

What can be seen is the rise of the current, close to the resonance line due to the phonon
scattering. e bias triangles tell us that the current rises due to the phonon emission
process. Since kBT ≪ eV, the phonon absorption does not play a role. On the left top
of the Fig. .(a) and (c), in the transition (1,1) −→ (0,2), the current is suppressed due
to Pauli spin blockade [, ]. Figure .(b) shows schematically the configuration of the
energy levels at this point. Figure .(c) is different from Fig. .(a) in the magnitude of
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Figure 5.3: Stability diagrams of the double dot system. The bias is V= 5 mV. (b)The diagram shows schematically the removal
energies µi,n(Nl,Nr) at the operation point denoted by red squares in (a). Due to Pauli spin blockade the current is
suppressed at this point. [µi,n(Nl,Nr) is the energy of an electron removed from the level n (0 = ground, 1 = excited)
of dot i (left or right) where Nl/r is the number of electrons in the left/right dot.] (c) Stability diagram with increased
bias V = 8 mV, Here the combination of electron-phonon coupling and high bias lifts the Pauli spin blockade as
sketched in panel (d)

bias. Since the bias in Fig. .(c) is higher than in Fig. .(a), both the ground and the
excited states of the right dot can be in the bias window and the transition (1,1)−→ (0,2)
is possible via the excited state. Figure .(d) shows the schematic diagram and depicts that
energy level µL,0(1,1) can now be in resonance with µR,1(0,2), whereby the two-particle
state µR,0(0,2) is emptied to the right lead.

In this paper, we also study the influence of a heated phonon distribution in the double
dot system, which can operate as a heat engine [, , ]. e system that we have
considered is a double dot system with one energy level in each dot. Figure .(b) shows a
schematic diagram of the system.

For this study, we fix the temperature of the electron leads to be TC = 60 mK, but for the
phonon distribution, we consider several different temperatures, TH. e bias is zero, and
the energy levels are tuned symmetrically. Figure .(a) shows the current as a function of
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Figure 5.4: (a) Zero-bias current as a function of Δ, the difference between the energy levels of the dots, for different phonon
temperatures. Inset: current as a function of Δ for different biases and TH = 300 mK. Further parameter: TC = 60
mK, Ω = 0.05 meV, ΓL = ΓR = 90 neV. (b) A sketch of a double dot system coupled to non-equilibrium phonon bath.

Δ. Δ is the separation between the energy levels of the dots Δ= EL - ER. It is apparent from
this figure that the electrons can be transported through the system due to the asymmetry
in the energy levels. An increase in the temperature TH will increase the current flow.

For the phonon bath with higher temperature, the phonon absorption dominates over
phonon emission between the energy levels; therefore, electrons can transport through the
system by acquiring heat from the phonons. e inset of Fig. .(a) shows the current as a
function of Δ for different values of the bias. As is illustrated the current can run against
the bias, this process means that the system acts like a heat engine as it is discussed in
Refs. [, ].

As we proposed in the second paper, there is a possibility of a phonon-assisted transport
(PAT), through the DQD systems, even in the absence of the source-drain voltage. In this
regard, the effect of a hot phonon bath on the transport through the DQD is investigated in
paper IV, both experimentally and theoretically. e experimental setup contains InAs/InP
nanowire DQDs with an external heat bath close to the DQD as a phonon bath and also
two temperature sources for the left and right reservoirs, i.e., the source and the drain.

It is shown that the combination of the temperature gradient between the source and drain,
and also the phonon bath, leads to a variety of the induced transport through the DQD
system, which is characterized in this paper. Moreover, the spin relaxation in the PAT via
excited states is also studied.
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Figure 5.5: (a) Schematic of DQD-system, showing single particle energy levels EL0,EL1,ER0,ER1, tunneling rates ΓL/R, inter-dot
coupling Ω and the symmetric biasing, ±eV/2, at each reservoir. An emission of a phonon in connection with an
electron tunneling event (dashed line) is depicted with a wiggly, solid arrow. (b) available single and two-particle
states (in black boxes) and transitions between them (solid, colored arrows), with corresponding rates

. Paper III

In this work, we present a combined experimental and theoretical study of the nanowire
DQD-device in Ref. []. We investigate the bias triangle features and identify features
beyond the ones that are associated with excited dot states. By combining electrical current
measurements, quantitative transport numerics, and a qualitative model, we predict and
observe features, directly related to the inter-dot exchange energy, in triangles displaying
Pauli spin blockade.

We used the Pauli master equation to calculate the current (Sec. .), which is reliable since
we only consider sequential tunneling and no coherences within various states develop. A
schematic of the energy level structure of the nanowire DQD system is shown in Fig. .(a).
We consider two spin-degenerate single particle levels in each dot, denoted L0,L1 for the left
(L) and R0,R1 for the right (R) dot, with corresponding energies Eαn, α = L,R, n= 0,1.
e tunneling coupling between levels in different dots is Ω. Moreover, the levels Ln
(Rn) are tunnel coupled, with the same rate ΓL(ΓR), to the left (right) electronic reservoir,
respectively. e bias is applied symmetrically.

In this work we are only intested in the transition from (1,1) to (0,2) where the charge
configurations (1,1),(0,2) and (0,1) are relevant. e states and transition chart corres-
ponds to this charge configurations are shown in Fig. .(b). Figure .(a) shows the bias
triangle as a function of energies EL0 and ER0. Also, a schematic bias triangle is shown in
Fig. .(c); each line in this figure corresponds to the same color arrow in Fig. .(b). Since
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the model is spin conserving, we focus on the bias triangle, where the Pauli spin blockade
is lifted due to the applied bias. e Coulomb interaction between particles in different
dots is large compared to the bias; therefore, we only analyze one triangle.

We are interested in the additional feature in the bias triangles, visible as a vertical dividing
line between two regions of the different magnitude of the current. We show that the
distance from this vertical line to the left border of the triangle is given by exactly Uex.
Since during the out-tunneling, (0,2) → (0,1), an electron tunnels out from an orbital
R0 or R1 in dot R, to the right reservoir. ere are four different out-tunneling processes,
depicted with black, purple and red arrows in Fig. .. e different processes occur with
different energy constraints. Two processes are, however, crucial for the properties of the
bias triangle. First, the transition SR,R → R0, denoted with a red arrow, is required for
the transport cycle not to get blocked in the singlet state SR,R. e corresponding energy
constraint is

ER >−eV/2−U. (.)

is gives rise to the vertical, red line ER = −eV/2−U that can be seen in Fig. .(c).
Second the transition TR,R → R1, denoted with a purple arrow Fig. .(b), has an energy
constraint

ER >−eV/2−U+Uex, (.)

giving rise to the purple line seen in the schematic bias triangle in Fig. .(c), shifted Uex
to the right with respect to the red line. We note that the intra-dot exchange leads to that
spins singlets S (triplets T), with one particle in R0 and one in R1, acquire an extra energy
+Uex (−Uex).

We also find that there is another parameter that strongly affects the results, both qualit-
atively and quantitatively. at is the relation between the tunnel rates ΓL and ΓR. Fig-
ure .(b) illustrated the bias triangle for another set ofΓL/ΓR, for a constant productΓLΓR.
e additional feature in the bias triangle is most present in the regime where ΓL ≫ ΓR,
and in the opposite regime, ΓL ≪ ΓR, the corresponding bias triangle shows no additional
features. e current flowing in the four different transport regimes, denoted with I-IV in
Fig. .(c), depends on the contributing tunneling processes.

To understand the currents in the different regimes and the corresponding bias triangle
features, we analyze the different transport regimes in more detail by comparing the tun-
neling rates ΓL,ΓR, and γ (γ is the rate of the process where an electron tunnels and emits a
phonon). We focus on the regime γ ≫ ΓL,ΓR corresponding to the experimental situation,
the through-tunneling is much faster than the in and out-tunneling. As a consequence, the
current in the different regimes can be written

II/II = 2e
2ΓLΓR

(7/2)ΓL+ΓR
, IIII/IV = 2e

2ΓLΓR

2ΓL+ΓR
, (.)
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Figure 5.6: Electrical current as a function of energies EL0 and ER0, (a) Exchange energies Uex = 0.3meV and ΓL/ΓR = 0.1 (b)
Exchange energy is Uex = 0.3meV and ΓL/ΓR = 10. (c) Bias triangle with limiting energy constraints shown with
colored lines. Each line corresponds to one or more transfer processes, shown in the same color in Fig.5.5(a)

all independent of the rate γ , i.e. it is irrelevant for the current if the process SL0,R0 → SR0,R1,
denoted by a blue arrow in Fig. ., contributes to transport or not. is, in turn, gives that
II = III and IIII = IIV and that there is only one line in the bias triangle, a vertical separation
between regions I, II and III, IV.

Also, the result in Eq. (.) shows another interesting aspect. For an asymmetric coupling
ΓL ≫ ΓR, corresponding to the situation in the experiment, the currents in the two regimes
become II/II = e(8/7)ΓR and IIII/IV = e2ΓR, i.e. IIII/IV = (7/4)II/II. However, in the
opposite regime, ΓR ≫ ΓL, the two currents become the same, II/II = IIII/IV = e4ΓL and
hence, the dividing line in the triangle disappears as can be seen in Fig. .(b).

Our findings give a new way to determine the exchange interaction directly from the bias
triangles. Moreover, we have shown that the existence of the features relies on strong
electron-phonon interactions and asymmetry in the coupling strengths of the DQD to
the left and right leads.







Chapter 

Summary and outlook

In summary, in this thesis we have investigated various aspects of electronic transport in
serially coupled quantum dots. is comprise electron-electron interaction induced trans-
port channels in triple dot systems, the role of electron-phonon interactions and energy
relaxation in double dots, novel bias triangle features in nanowire double dots and phonon
and temperature induced heat and charge transport, also in nanowire double dots. In
all of the works presented, paper I-IV, we have employed various density matrix methods
to perform numerical calculations of the transport properties. Moreover, in paper II we
presented a method development, by including electron-phonons interactions in an exist-
ing transport code. Two of the papers, III and IV, are in collaboration with experimental
colleagues. In both papers III and IV we find a very good agreement between theoretical
predictions and experimental results, suggesting that our numerical methods are well suited
to describe transport in quantum dot nanostructures.

is observation, supporting the applicability of our density matrix approach to describe
nanoscale electronic transport, also opens up a lot of possibilities for future research. To give
a few interesting directions, the approach could be applied to a wide variety of energy and
heat transport properties, of interest for nanoscale and quantum thermodynamics. ese
topics are presently attracting an increasing interest internationally and constitute an act-
ive area of experimental research in Lund. Moreover, by further developing the approach,
one could include electron-photon interactions along the same line as electron-phonon
interactions. is would open up for a broad spectrum of investigations of light-matter in-
teractions, ranging from coherent coupling of coupling of tunneling electrons to microwave
cavity photons to quantum dot based hot-electron solar cell devices. In addition, the avail-
able density matrix methods also allow for a theoretical investigations of time-dependent
transport effects. Time dependent transport studies would provide interesting, novel results
complementing the steady state properties at the focus of the present thesis.


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