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Popular summary in English

We live in a time of rapid scientific and technological advancement. People liv-
ing 100 years ago could never dream of inventions like those having completely
changed our way of life, and our perception of the world; computers, mobile
phones, the Internet, space travel, unraveling the mysteries of the early universe
and distant galaxies, and our insight into the microscopic world of quantum phe-
nomena. Today we are at the dawn of an era of nanotechnology, with computers
components being only tens of nanometers in size, and nano-devices making their
entrance into wide industrial use.

One such nanoscopic device is the Quantum Cascade Laser (QCL). Like all as
lasers, it emits electro-magnetic waves, which essentially is light. In fact, our
eyes can only detect a very narrow range of wavelengths in the electro-magnetic
spectrum, which stretches from very long radio waves, followed by microwaves,
terahertz and infrared waves, through the wavelengths of visible light, up to
ultra-violet UV-A and UV-B radiation (giving us a good tan), and finally X-
rays and gamma-rays from radio-active decay and cosmic radiation. In the case
of, e. g. conventional laser pointers, the light wave has wavelengths of 500 (blue
light) up to 700 (red light) nanometers and is visible to our eyes.

What is special about the QCL is that it does not emit visible light, but light in
the terahertz and infrared (IR) regions, and it does so using the same technology
as normal light emitting diode (LED) lights. These regions are both interesting
for applications in spectroscopy, i. e. the detection of chemical substances by
looking at light going through them. For example, QCLs can be used to detect
very small quantities of explosive materials, diagnose exhaled air in patients,
monitor green house gases and pollution in the atmosphere, and examining the
contents of far away stars. But, like IR cameras, they can also be used to
make images of that which our eyes cannot see; with terahertz light we can see
through clothes and thin materials, which could be used to screen patients in
the emergency room without having to remove their clothes, or at the airport to
see if they are carrying a weapon.

In this work, I have simulated QCLs using a complicated theoretical model, which
in detail accounts for the motion of the electrons inside the device, and their
interaction with their surroundings. By improving this model, we are actually
able to reproduce real QCL behavior remarkably well. This can help to improve
future QCLs, and to understand the basic physical mechanisms underlying their
operation. This to me is what physics is all about: To seek to understand nature
and make use of this knowledge to help making life better.
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Populärvetenskaplig sammanfattning på svenska

Vi lever i en tid av snabb vetenskaplig och teknologisk utveckling. För 100 år
sedan hade ingen kunnat drömma om de saker som helt har förändrat vår var-
dag och hur vi uppfattar omvärlden; datorer, mobiltelefoner, Internet, rymdfart,
våra upptäckter om universums barndom och avlägsna galaxer samt vår insyn i
kvantfenomenens mikroskopiska värld. Idag står vi på tröskeln till en era formad
av nanoteknologi, med datorkomponenter bara tiotals nanometer stora (en tiotu-
sendedel av ett hårstrås tjocklek), och då nya innovationer på nanomenterskalan
gör sina intåg i industriellt bruk.

En sådan nanoskopisk apparat är kvantkaskadlasern (eng. Quantum Cascade La-
ser). Som alla lasrar skickar den ut elektromagnetisk strålning, vilket väsentligen
är ljusvågor. Våra ögon kan faktiskt endast uppfatta en liten del av det elektro-
magnetiska spektrat, vilket sträcker sig från de mycket långa radiovågorna, via
mikrovågor, terahertz och infrarött, genom synligt ljus, och vidare till ultraviolett
UV-A och UV-B strålning (den som ger en så härlig bränna på sommaren), och
slutligen till Röntgen- och gammastrålar från radioaktivt sönderfall och kosmisk
strålning. Vanliga laserpekare skickar till exempel ut ljusvågor med våglängder
mellan 500 nanometer (blått ljus) och 700 nanometer (rött ljus), vilket är synligt
för våra ögon.

Det speciella med kvantkaskadlasern är att den inte skickar ut synligt ljus, utan
ljus med terahertz- och infraröda våglängder. Den gör dessutom detta med hjälp
av samma teknologi som används för att göra vanliga LED (light emitting diode)
lampor som numera finns i vartenda hem. Terahertz och infrarött ljus är intres-
sant att använda inom spektroskopi - alltså detektion av kemiska ämnen genom
att titta på det ljus som träffat dem. Till exempel kan kvantkaskadlasrar använ-
das för att upptäcka mycket små mängder sprängämnen, diagnostisera patienter
genom utandningsluften, följa koncentrationen av växthusgaser och förorening-
ar i atmosfären och undersöka innehållet i avlägsna stjärnor. Men det är även
intressant att, som med infraröda kameror, avbilda saker i terahertz som våra
ögon normalt inte kan se. Terahertzvågor går nämligen igenom textilier och kan
användas på flygplatser för att upptäcka om någon döljer ett vapen under sina
kläder. Eller också skulle de kunna användas för att inspektera en patient som
kommer in på akutavdelningen, utan att behöva klippa upp dennes kläder.

I den här avhandlingen har jag gjort datorsimuleringar av kvantkaskadlasrar ge-
nom att använda en komplicerad datormodell som i detalj tar med elektronernas
resa genom lasern i beräkningarna, och hur de växelverkar med sin omgivning.
Genom att förbättra denna modell, har jag kunnat återskapa hur verkliga kvant-
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kaskadlasrar fungerar med anmärkningsvärd precision. Detta kommer att under-
lätta utvecklingen av, och förbättra framtida, kvantkaskadlasrar samt hjälpa oss
förstå de underliggande fysikaliska processerna - hur elektronerna beter sig på
sin kvantmekaniska färd genom lasern. Det är just det jag tycker är så fantas-
tiskt med fysik: att försöka förstå naturen och använda denna kunskap för att
förbättra människors liv.
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Chapter 1

Introduction

In the last century, mankind has made technological advances nobody could
ever imagine. Today, nanotechnology is rapidly moving from scientific curiosity
into the real lives of people. One great example is the Quantum Cascade Laser
(QCL), which is right now transitioning from the science lab into wide industrial
use. In this thesis, I will describe the progress I have supplied to this ongoing
“revolution”. This work is theoretical, but some of the results have been made in
close collaboration with experimentalists and institutions pushing this techno-
logy to be used in, and to benefit, the general society. The history of the QCL
began with the conceptualization by Kazarinov and Suris [1] in 1971. The first
operational QCL was reported 22 years ago [2], and lased at a wavelength of 4.2
µm, which is in the mid-infrared (mid-IR) regime. Since then, many technolo-
gical and theoretical steps have been taken to steadily improve and diversify the
usage of QCLs.

Like a conventional atomic laser, the QCL exploits population inversion between
two quantum states. In contrast to real atoms, these states are formed in artifi-
cial atoms made from coupled quantum wells in a semiconductor heterostructure.
Applying an electrical bias to this heterostructure drives the inversion between
the two states, and thereby light amplification by stimulated emission of radi-
ation (LASER) can be generated. In addition, the quantum wells can be repeated
any number of times, and in each such period of the heterostructure the light-
emitting electrons are recycled. The competitiveness of the QCL comes from
it’s wavelength coverage in combination with it’s compactness and high power
efficiency, and that it is constructed using the mature fabrication technology of
III-V semiconductors [3, 4]. The two important spectral ranges of (i) the mid-
IR region (above the Reststrahlen band and below optical frequencies) and (ii)
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the terahertz (THz) region (below the Reststrahlen band and above microwave
frequencies) are covered. Let us look a little deeper into each of these regions to
see why the QCL is such an interesting invention.

The mid-IR spectral range covers frequencies from 40-100 THz, or wavelengths
between 3-8 µm. Although there already exists efficient molecular laser sources,
they are bulky and have limited spectral ranges [5]. All solid state lasers in this
range - except one - are limited by the band gap of the material used [5]. The
exception is the QCL which at the same time is compact, energy efficient [6],
and has a high output power [7]. The first room-temperature continuous wave
operation of a mid-IR QCL was reported in 2002 [8] and over the course of the
past 20 years, the QCL has found it’s way into industrial applications in a range
of fields; environmental monitoring [9], quality control of liquids (from oil plat-
forms as well as food manufacturing) [10], as well as security and defense sensing
applications [11] are some examples. Due to the nature of the growth process,
multiple frequencies can be emitted from the same QCL, either by a cleverly
designed heterostructure [12] or by combining several single-frequency active re-
gions [13]. For sensing applications (e. g. environmental and medical breath
analysis [14]), a broad spectrum is important as it allows all desired molecules
to be measured and distinguished using the same QCL. A common goal of QCL
research is to increase the wall plug efficiency (the ratio of electrical power put
in to the device to the power emited as radiation) of mid-IR lasers, in order for
portable sensing applications to become reality. To date, some of the best lasers
have a wall plug efficiency of about 20-27% at room temperature continuous
wave operation [15, 6], although at cryogenic temperatures over 50% wall plug
efficiency has been reported [16]. This is also the purpose of the European Union
seventh framework project MIRIFISENS [17], which I have been participating
as a part of my thesis project; to bring industry and scientific research together
and accelerate the development of QCLs for industrial applications.

The THz spectral range stretches from 0.3-10 THz (wavelengths from 30 to 1000
µm). This spectral range is important as it lies between microwave frequencies
generated by electronic components (such as Gunn diodes) and optical frequen-
cies. However, available radiation sources (free electron lasers, synchrotron, and
photomixing, where non-linearities can be used for down-conversion of IR radi-
ation to THz radiation at room temperature, are some examples) are inefficient,
bulky, or very expensive. This has prevented the realization of many applica-
tions in this wave length region (hence the so-called “THz gap”) [3]. The QCL
is a good candidate to fill this gap, and first lased in the THz range in 2002
[18]. While THz radiation can be produced by difference frequency generation
in mid-IR QCLs at room temperature [19], to date the maximum operating tem-
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perature for single frequency THz QCLs is 199.5 K [20]. The goal would be a
QCL operating at a lattice temperature of T = 240 K, since then it would be
possible to cool the device electronically [3]. Optimizing the wall-plug-efficiency
of these lasers [21] is also important for a wider range of applications.

The QCL shows great potential for many applications in a wide wavelength
region. Due to their composition, they are relatively cheap, mass-producible
and seemingly very durable [22]; recently, the very first laser [2] was operated
again and still lased, even at higher temperature (78 K), as we witnessed at the
celebration of the 20th anniversary of the QCL [23].

1.1 Motivation and structure of the Thesis

The QCL operates on principles derived from quantum mechanics, and it’s per-
formance depends on a complex interaction of the light-generating electrons with
many different aspects of the material system and the laser light. The details of
what happens on this almost atomic scale is not directly observable, yet they are
vital for the development and analysis of these structures. Thus, modeling on
the quantum level is essential, as this allows us to understand and predict the op-
eration of these devices in detail. The modeling is done on different levels, from
the propagation of the electro-magnetic field inside and outside the QCL to the
transport of electrons and their interaction with material impurities, phonons,
and the laser light itself.

The motivation of this work is to develop mid-IR QCL technology by careful
modeling of electronic transport and light generation. To this end, several ex-
tensions to an existing model, adapted for THz QCL simulations, needed to be
implemented and tested. One important ingredient in a successful modeling of
mid-IR lasers, which have large conduction band offsets, is the inclusion of the
effects of the other lattice bands in addition to the conduction band of the semi-
conductor materials. This gives the conduction band a non-parabolic dispersion
[24] and an energy-dependent effective mass. This is done using an effective
two-band model, described in Chap. 3. These lasers also host a large number of
active states compared to THz QCLs, and together with the large energy-grid
required by the high conduction band offset, the computational effort becomes
much bigger. In order to make it possible to get useful results in reasonable time,
it is essential to run computations in parallel, on several processors on a single
machine, or on a computer cluster. The parallelization of the code is described
in Chap. 4.

As the limiting factor of continuous wave operation at room temperature is the
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large heat generation in the active region compared to the low heat removal
possible for such a small device, a big goal in the development of mid-IR QCLs
is to have a low heat dissipation and a high wall-plug efficiency. A structure for
this purpose is the QCL presented in Ref. [25], emitting at 8.5 µm. Another goal
is to reach shorter wavelengths of ∼ 3 µm for gas sensing applications. Such short
wavelengths require a very large conduction band offset. This can be achieved
by the growth of materials with lattice constants which are not matched to the
InP substrate [26, 27]. In addition, some layers are very thin, giving a very high
interface roughness scattering. In order to reduce this effect, a design based on
mono-layers was attempted. Computations for mid-IR QCLs using the above
mentioned additions to the program are presented in Chap. 5.

In order to validate the program after the inclusion of the effects in Chaps. 3 and
4, we simulate THz structures, for which the previous version of the program is
reliable. These results are presented in Chap. 6. In this section, new propos-
als for THz QCL designs working up to room temperature in simulations are
presented, as well as results and discussions for THz QCLs employing different
design schemes.

A wide variety of QCL modeling schemes are on the market [28]. Often, simpler
models are convenient to use in order to deliver results quickly. However, it is
important to know that the results from these models are reliable. To this end,
we compare our advanced modeling scheme to simpler models in Chaps. 5 and
6.

The long-term goal of QCL research is to develop applications in a variety of
fields, ranging from diagnostics through exhaled air in medicine [14], to precise
spectroscopic measurements in astrophysics [29, 30]. The potential benefit to
society is great, once QCLs are commercially available as portable devices, which
for THz QCLs require a large increase in operation temperature, and for mid-IR
QCLs an increased energy-efficiency and wider wavelength coverage. Regarding
the results of this work, an outlook is given in Chap. 7.

1.2 Operation principles

The concept of a QCL utilizes the idea of a quantum well, a very popular example
for illustrating quantum mechanics. One of the most common combination of
materials used is GaAs as the well material and AlxGa1−xAs as the barrier ma-
terial (x is the relative amount of aluminum to gallium) which are schematically
drawn in Fig. 1.1. When put together, the conduction and valence band edges
will bend at the interfaces, creating a conduction band offset depending on the
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ratio x. The valence band is completely full, and so we turn our attention to
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Figure 1.1: Two pieces of bulk GaAs and AlGaAs have different band structure and different
band gaps at the Γ-point. Put together, the bands will bend at the interface
between the materials, keeping the Fermi energy EF constant.

what is happening in the conduction band from now on. (The mixing of the
valence band will come into play in the calculation of the basis states in the two-
band model.) In the z-direction (the growth direction), the electrons incoming
from the left in Fig. 1.1 will see a barrier in the GaAs/AlGaAs conduction band
offset. In the transverse directions (x and y), however, the electrons can move
freely.

Quantum wells in the conduction band are made by alternating between thin (a
few Å to a few nm) layers of materials with different band gaps as in Fig. 1.2.
The electron energy is quantized according to the depth of the well and the
widths of the wells and barriers. This allows for tailoring the eigenenergies and
spatial extent of the quantum mechanical states. The energy components in the
in-plane directions are not quantized and thus the electrons can have any energy
Ek associated with the transverse wave vector. When many quantum wells
are placed in sequence, forming a so-called superlattice (or heterostructure),
electrons can tunnel across the barriers between neighboring wells. When a
bias is applied, see Fig. 1.3, the whole band structure bends in energy and the
tunneling electrons will give rise to a tunneling current. For the structure in
Fig. 1.3(a), the current as a function of applied bias is shown in Fig. 1.3(b).

The quantum cascade laser exploits inter-subband transitions in the conduction
band, where electrons are provided by doping the lattice with donor atoms. The
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Figure 1.2: Slicing a thin slab of GaAs inside a AlGaAs slab creates a quantum well con-
finement potential for the electrons in the conduction band.

idea is now to tailor the quantum wells and barriers, so that an applied bias
will drive the electronic current in such a way that inversion is created between
two subbands. When inversion is present, electrons from the upper laser state
(with higher electron density) can be brought into the lower laser state (with less
electron density) by stimulated emission. By altering the layer widths, we can
get any suitable separation in energy between the states. The energy difference
between the lower laser state and some extraction state, e. g., is preferably
tuned to the optical phonon energy to get an efficient out-scattering from the
lower laser state. Alternatively, the two states are tuned into resonance to get a
high tunneling rate, in order to maintain inversion.

One such tailored structure is shown in Fig. 1.4, where the short-hand notation
for the lower laser state (LLS), upper laser state (ULS), extraction level (e) and
injection level (i) has been introduced. This is actually the simplest possible
structure [32], with only three active states and two wells per period.

This is how the laser scheme works: electrons are brought from a state of higher
energy (ULS) to a state of lower energy (LLS) by stimulated emission, when
a photon with the energy of the level separation interacts with the electrons.
This process requires inversion, i. e. more carriers have to be in the ULS than in
the LLS. The inversion is driven by the bias voltage, transporting the carriers
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Figure 1.3: Left: Superlattice structure with an applied bias of 40 mV per period. Right:
Current vs. applied bias per period. A peak occurs at around 100 mV/period,
where the ground state of one well aligns with the first excited state of the
neighboring well down stream.

from the LLS to the ULS in the next period via efficient tunneling and phonon
scattering.

1.2.1 Mid-infrared designs

QCL designs aimed at emission at widely different wavelengths (from 3 to 200
µm) require different strategies for pumping the upper state and depopulating
the lower state. Most importantly, high inversion needs to be established, by
having fast injection to the upper laser state, which has a long non-radiative
lifetime, and a fast extraction of the lower laser state. Furthermore, this needs
to be achieved at a bias with positive differential conductivity in order to have
stable operation. Once inversion is guaranteed, different designs can be aimed
at specific wavelengths, broad or narrow gain spectra, tunability, etc.

The biggest difference between mid-IR and THz designs, is that they operate at
photon energies above and below the longitudinal optical phonon energy ELO,
respectively. For mid-IR designs, with ~ωIR = EULS−ELLS > ELO, injection can
be achieved by resonant tunneling, while extraction is dominated by resonant-
LO phonon scattering in a band of states separated by energies ≈ ELO below the
lower laser state. This is called a bound-to-continuum (BtC) scheme [25] and is
shown in Fig. 5.1. Since the states in the lower band all have significant dipole
matrix element with the upper laser state, such a design can have a broad gain
spectrum. The continuum-to-continuum design is taking this one step further,
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Figure 1.4: Conduction band edge and the Wannier-Stark states of the structure invest-
igated in Ref. [31]. The different colors represent the lower laser state (LLS),
upper laser state (ULS), the extraction (e) and injection (i) levels. The injec-
tion and extraction levels are the same in this particularly simple structure. The
alignment between the injection level and the ULS provides efficient tunneling
filling the ULS of the next period.

by pumping the upper laser state also by a band of states, that all have significant
dipole matrix elements with the lower band, making the gain even broader[33].
Another pumping scheme is to have a resonant LO phonon scattering channel
into the upper laser state, called scattering assisted (SA) injection [34]. This
makes the injection very fast.

The above are the most common strategies for inversion between subbands. In
addition, several active regions designed for emission at different wavelengths can
be grown in sequence, to give one very broad gain spectrum or several narrow
spectra centered at separate wavelengths. To date, laser wavelengths as short as
2.6 µm have been achieved [35].

1.2.2 Terahertz designs

THz frequencies have photon energies ~ωTHz < ELO, below the LO phonon
energy. As the energy separation EULS−ELLS is small, the ULS lifetime is shorter
and it is more difficult to obtain inversion, than for the mid-IR frequencies.
For the same reason, the effect of heating is also more detrimental at lower
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temperatures than for the mid-IR designs.

A common depopulation scheme is resonant phonon (RP) extraction [36]. This is
the scheme shown in Fig. 6.1. Here, the lower state is close in energy to a second
state, and both of these states are one ELO above a third state. This gives a
very fast depopulation, and reduces thermal backfilling (i. e. thermal excitations
from the third state back to the lower laser state) as the LLS and third state can
be spatially separated. Designs similar to the mid-IR designs have been tested,
although to date it is the RP extraction scheme, with resonant tunneling injection
and using three quantum wells per period, which has been most successful [20].
The SA scheme is also promising [37][Paper II], but has so far not been as
successful, perhaps due to the small attention it has received compared to the
RP schemes. RP designs with four [38] and two [39, 31] wells per period have also
been tested. The latter, while having the benefit of a short period and thus large
gain per length, has shown higher current densities than expected, possibly due
to leakage currents [40]. This effect could be reduced in future designs by using
materials with higher conduction band offset [41], something that is explored
in Chap. 6.2. Finally, gain in a simple superlattice structure may be possible
[42] (although with very limited performance), but has so far not been observed.
In conclusion, despite the many QCL designs attempted, the operation is still
limited to 200 K. However, several design schemes are promising and further
exploration is needed in order to find their fundamental limitations.

1.3 Material systems

The materials comprising the layers of QCLs are usually lattices of semiconduct-
ors from the III and V groups, grown by molecular beam epitaxy (MBE) [43] or
metal-organic chemical vapor deposition (MOCVD) [44] on a Si, GaAs, or InP
substrate. While it is important to use materials with different band-gaps, they
still need to have similar lattice constants, in order to form a common lattice
and not break.

As seen in Fig. 1.5, it takes some care to find good matching materials. For
example, GaAs is often grown on top of a Si substrate since their lattice constants
are not too far apart, and due to the technological maturity of both materials.
The barrier material can then be chosen to be either pure AlAs, or a mixture of
GaAs and AlAs, giving a different conduction band offset without changing the
lattice constant much. The GaAs/AlGaAs combination has a high maximum
CBO of ∼ 1 eV (using pure AlAs barriers) [45]. However, AlAs is an in-direct
band gap semiconductor, with an X-valley gap lower than the direct GaAs Γ-
valley gap [46]. Thus, for a ratio of AlAs to GaAs of x > 40%, the X-valley
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Figure 1.5: Lattice constants and Γ-valley band gaps for common III-V semiconductors,
as well as the II-VI compounds ZnO and MgO (the latter lying outside of the
plotted area). Red indicates materials used for QCLs in this thesis. Asterisks
denote the X-valley gap of indirect bandgap materials. The lines connecting
different compounds represent alloys of the connected materials, which have
intermediate bandgaps and lattice constants.

the barrier material will be below the Γ-valley of the well material [46]. This
may allow carriers to leak into the barrier X-valley [47, 48], and as the basis is
typically expanded around the Γ-point with k = 0 (as in eq. (2.5)) it is difficult
to model such transitions accurately. This limits the CBO of the GaAs/AlGaAs
material system, why it is mainly used for THz devices.

In order to reach higher frequencies, a larger CBO is necessary. From Fig. 1.5
we find InAs has a small band gap, and in combination with both GaAs and
AlAs can be lattice matched to an InP substrate. In such a system, the well
material would be GaxIn1−xAs and the barrier material AlyIn1−yAs. To reach
an even higher CBO, we could use compositions that are not lattice matched
to InP, i. e. a smaller x and a larger y. However, this introduces strain in the
material [49], which will lead to breaking of the crystal if it is not compensated
for.

Other compositions are used, which are interesting for improvement of future
QCLs but not used in this thesis. For instance, large CBOs can be achieved using
GaSb/AlSb [50] or GaN/AlN/InN [51, 52]. The latter has a very large optical
phonon frequency, which might be beneficial for high-temperature THz QCLs.
ZnO/MgO heterostructures have also been proposed for this purpose [53, 54],
although the growth technique for these materials is not yet fully developed.
So far, no QCL has worked utilizing the GaN/AlN/InN or ZnO/MgO material
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systems.

1.4 Approaches to QCL modeling

As already discussed, the development of QCL designs is a computational and
modeling endeavor. For this purpose, accurate yet computationally efficient
models are required and these features are usually trade-offs of each other. A
good summary of available modeling schemes is given in Ref. [28]. Advanced
design models use genetic algorithms [55, 56, 57][Paper II], and an efficient model
is a necessity. The simplest and fastest approach is using rate equations found
from a simplified density matrix theory of the localized eigenbasis of the QCL
lattice potential [20, 58][Paper II]. In such a model, coherences are neglected and
their effect is approximated by density-density tunneling and scattering rates.
Generalizing, the coherences can be included in the rate equations, giving a more
complete picture of the tunneling and scattering, where the latter is taken into
account via Fermi’s golden rule type of calculations [59, 60]. The ensemble Monte
Carlo (MC) method [61, 62, 63] is used to statistically model scattering by ran-
domly allowing particles in the simulation undergo different scattering processes.
This approach has the advantage of relatively easily including electron-electron
scattering [61].

Not only do we model QCLs for the purpose of designing new structures, but
also to understand basic physical processes and other details of the operating
devices. In order to capture these phenomena, more advanced models taking into
account the full coherent terms of the density matrix and scattering matrices
are used. The most general treatment of scattering is using non-equilibrium
Green’s function (NEGF) theory [64, 65, 66, 67, 68, 69, 70] [Paper III], where
the full statistical results are found by computing an infinite series of scattering
processes, which can be visualized by Feynman diagrams. The approach here is
to terminate this series at a suitable point, so that sufficient detail is covered in
order to model the physics of the system under investigation. Even though the
scattering series (self-energy diagrams) is terminated at some suitable point, the
theory is fully consistent up to that point, so that in this framework the physics
is treated systematically and internally fully consistent.





Chapter 2

Theory

In this section, the theoretical framework required in Chaps. 3 and 4 is out-
lined. First, the structure of the Hamiltonian for a QCL is discussed. From this
Hamiltonian, a suitable set basis functions are derived, where we employ Wan-
nier functions [71, 32]. The NEGF model is then presented, and it is explained
how different observables, such as current density and gain, are calculated from
the Green’s functions. Finally, a brief explanation of the calculation for the scat-
tering part of the Hamiltonian is given, as well as it’s relation to the self-energies
of the NEGF theory.

2.1 Hamiltonian

The fundamental concept for all quantum systems expressible by a Hermitian
Hamiltonian is a set of basis states. For a given Hamiltonian, there exists, in
general, a semi-infinite choice of basis functions, which can be found by a rota-
tion of the Hamiltonian matrix. One particular choice of high importance and
which often corresponds to the most convenient basis, is the basis of energy ei-
genstates in which the Hamiltonian is diagonal. The eigenvalues of this basis set
are the energy eigenvalues. This is a well defined procedure for closed systems
(i. e. systems where the total energy, momentum, and particle number are con-
served). However, real systems as e. g. the QCL active region, are connected to
other systems and baths, and thus they can exchange energy, momentum, and
particles. To model such interacting systems, it would in principle be necessary
to include all other systems into the Hamiltonian that are in contact with the
reduced system of interest. However, this is impossible in most cases. In our
particular situation, our reduced system is constituted by the electrons traveling
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through the gain medium of the QCL, and these can exchange momentum and/or
energy with impurities, crystal defects, other electrons, and phonons. The latter
are treated as baths, i. e. their properties are not altered by the interaction with
the reduced system. The particle-bath interaction makes it inconvenient, if not
impossible, to find the true energy eigenstates of the extended system. In any
case, these true eigenstates would not be suitable for describing the dynamics of
the reduced system. For this reason we chose as our basis the energy eigenstates
of the single-electron part Hs-p, rather than the total Hamiltonian

Hel. = H0 + Vdc + VAC(t) +Hscatt

= Hs-p +Hscatt. (2.1)

H0 contains the kinetic part p̂2/2me and the heterostructure potential. Vdc con-
tains static electric fields, coming from the applied dc bias as well as the static
mean field from ionized impurities and carriers. Terms with explicit time de-
pendence are grouped in Vac(t), which contains the alternating laser field as well
as the responding dynamical mean field of the carriers. Finally, Hscatt. contains
the parts non-diagonal in momentum k which are the complicated scattering
mechanisms. These will be described in more detail in Sec. 2.7.1. The most
general expression for the single-particle Hamiltonian in the last line of eq. (2.1)
in the presence of an electro-magnetic field is

Ĥs-p =
(p̂− e ~A(~r, t))2

2m0
+ VL(~r) + eΦ(~r, t), (2.2)

where p̂ = −i~~∇ is the momentum operator, ~A(~r, t) is the vector potential, VL
is the atomic heterostructure potential, and Φ is the scalar potential. From now
on we will denote 3D vectors by an arrow (~r) and 2D vectors in the x-y plane
by bold face (r). Quantum mechanical operators are denoted by a “hat” (as
in Ĥ) Here, both the static and dynamical mean field are included in Φ(~r, t).
Alternatively, as described in the following section, the basis can be calculated
without electric fields, which are then treated as perturbations of the system.

For convenience, we also define Hs-p without electric fields as

HL =
p̂2

2m0
+ VL(~r). (2.3)

Within a given semiconductor material, VL(~r) is a lattice periodic function and
the eigenstates of HL are Bloch states ϕ

n~k
= ei

~k~ru
n~k

(~r). In a first step, we
will now derive the envelope functions of the semiconductor potential by an
expansion of the lattice periodic functions u

n~k
(~r) around the Γ-point ~k = 0. In a

second step, we introduce the heterostructure Bloch states originating from the
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periodicity of the heterostructure (on a larger scale than the lattice periodicity).
Then, we will find another set of states which have the same eigenenergies, but
which are maximally localized. These are the Wannier states which are used in
the NEGF computations.

2.2 Envelope functions

In the following, the procedure for finding the eigenfunctions to Hs-p of eq. (2.2)
is derived. In order to get an idea how to treat applied electric fields, we keep
them in this derivation, although they are not used in the actual computations of
the basis states. The time-dependent Schrödinger equation for the one-electron
wavefunction Ψ(~r, t) is

i~
∂

∂t
Ψ(~r, t) =

(
(p̂− e ~A(~r, t))2

2m0
+ VL(~r) + eΦ(~r, t)

)
Ψ(~r, t). (2.4)

Here, it is convenient to employ envelope functions ψn(~r, t), which have no Four-
ier components outside the first Brillouin zone, by setting

Ψ(~r, t) =
∑

n

ψn(~r, t)u
n,~k=0

(~r). (2.5)

Note that u
n,~k=0

≡ un satisfies HLun(~r) = Enun(~r), where n denotes the band
index. The above equation thus becomes

i~
∑

n

ψ̇n(~r, t)un(~r) =
∑

n

[
Enψn(~r, t)un(~r)−

(
p̂2

2m0
ψn(~r, t)

)
un(~r)

+
1

m0
(p̂ψn(~r, t))(p̂un(~r))

− e

m0

~A(t)
(

(p̂ψn(~r, t))un(~r) + ψn(~r, t)(p̂un(~r))
)

+

(
e2A2

2m0
+ eΦ(~r, t)

)
ψn(~r, t)un(~r)

]
,

where we have assumed that ~A(~r, t) varies slowly with ~r on the scale of ψn(~r, t)
and un(~r). Averaging over one unit cell centered at ~r0, multiplying by u∗m(~r) from
the left and assuming that the envelope functions are constant on this scale1 we

1The validity of this approximation for QCLs can be debated, since the envelope-functions
can vary significantly on a scale of a few mono-layers
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get

i~ψ̇m(~r0) = Emψm(~r0, t) +
p̂2

2m0
ψm(~r0, t) +

∑

n6=m

1

m0
~pmnp̂ψn(~r0, t)

− e

m0

~A(~r0, t)(p̂ψm(~r0, t))−
∑

n6=m

e

m0

~A(~r0, t)ψn(~r0, t)~pmn

+

(
e2A2

2m0
+ eΦ(~r0, t)

)
ψm(~r0, t) (2.6)

with the definition ~pmn ≡
∫

cell d3ru∗m(~r)p̂un(~r) which is non-zero only for m 6= n.
We have also used the orthogonality condition

∫
cell d3ru∗m(~r)un(~r) = δm,n. We

see from eq. (2.6) that the envelope function

ψ̄(~r, t) =




ψ1(~r, t)
ψ2(~r, t)

...
ψm(~r, t)


 (2.7)

satisfies the Schrödinger-like equation

i~
∂

∂t
ψ̄(~r, t) = ˆ̄Heffψ̄(~r, t). (2.8)

Taking only the conduction band into account, we find

Ĥc
eff = Ec +

(p̂− e ~A(~r, t))2

2m0
+ eΦ(~r, t). (2.9)

Note the appearance of the bare mass m0 in eq. (2.9). Taking only the conduc-
tion band into account is too crude an approximation. Treating all other bands
perturbatively, we get the effective Hamiltonian in the effective mass approxim-
ation with parabolic bands, replacing m0 by the effective mass

meff = m0m
∗. (2.10)

As we shall see in Chap. 3, including explicitly more bands in ˆ̄Heff will lead to
an energy-dependence of the effective mass.

2.3 Bloch functions of a periodic heterostructure

In the case of a heterostructure in the z-direction, the lattice periodic functions
u
m~k

(~r) will be different in different regions along the z-axis. Thus, En = En(z)
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and Heff = Heff(z) will get a z-dependence as well. Then, the solutions to
eq. (2.8) can be decomposed as

ψn(~r)→ ψn(z)eik·r (2.11)

for the lattice wave vector with in-plane components k. Furthermore, Heff(z)
is periodic in the case of a superlattice. This gives finally solutions with z-
components ψnq(z, t) and energies Enq(z), where q is a kind of heterostructure
wave vector (associated with the periodicity in the z-direction). The energies
Enq are called mini-bands and ψnq(z, t) Bloch functions [32].

2.4 Wannier functions

In the previous section, the procedure for finding the Bloch functions ψnq(z) of
the periodic heterostructure potential was outlined. However, the Bloch func-
tions are not localized and thus not suitable for describing the dynamics within
a few periods of the QCL. In our model, we choose to use Wannier states [71]
as basis states instead, as these are localized and they can be obtained via a
well defined prescription [32]. Another common choice are Wannier-Stark states
[32], that are calculated with a specific applied bias. In contrast, the Wannier
states are calculated at zero bias, and thus they have to be calculated only once.
Yet another reason for choosing Wannier states is that they are found directly
from the Bloch states of the periodic heterostructure, in contrast to the com-
mon method of finding the Wannier-Stark states by imposing artificial boundary
conditions at the edges of a series of a few periods.

The Wannier states can be obtained by [64]

φν(z − nd) =
d

2π

∫ π/d

−π/d
dqe−inqdψνq(z). (2.12)

from the heterostructure envelope functions ψνq(z), which are defined up to an
arbitrary complex phase. By choosing this phase in a certain way, it is possible
to construct a set of states which are localized to a few QCL periods. We
have considered two approaches: either to find the basis which diagonalizes the
position matrix element [64]

zαβ =

∫
dzφ∗α(z)zφβ(z), (2.13)

or by minimizing the variance of the Wannier states [72]. Comparing the two
methods, we find identical results but the latter method is faster and it’s imple-
mentation more convenient.
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2.5 The Wannier-Stark Basis

Let us now add a constant electric field Fdc, uniform over the entire heterostruc-
ture. This electric field gives rise to a potential energy

eφ(z) = −eFdcz, (2.14)

where e < 0 is the electron charge. (In Fdc we can also include the static mean
field potential.) This will change the Hamiltonian to

Hνν′ −→ Hνν′δνν′ − eFdczνν′ (2.15)

which is non-diagonal in the Wannier basis. The Hamiltonian (2.15) gives the
Wannier-Stark states as the eigenstates, mixing different Wannier states due to
the presence of an electric field. The Wannier-Stark states form a ladder in both
space and energy with the same wavefunctions appearing each heterostructure
period.

While the Wannier-Stark states are not used in the actual calculations, they are
a helpful tool for displaying, discussing and understanding a quantum cascade
structure since they are more similar to the eigenstates of Hs-p. To this end,
it is often also informative to include in an effective way the scattering part of
the Hamiltonian before diagonalizing. This procedure will be discussed in more
detail in Sec. 2.7.1.

2.6 The NEGF model

In order to get a full description of coherent transport in QCLs, as well as to
model scattering in a consistent way, we are using the non-equilibrium Green’s
function method, which is described in some detail in Paper III. As the Green’s
function theory is mathematically involved, we only have place here for a brief
glimpse at the theory.

The main idea is to start from the non-interacting Hamiltonian with known
eigenstates and slowly turn on the interaction. The full interacting result can
then be found by integrating from the beginning of time to the current time. The
main object is the Green’s function, which correlates two events at space-time
coordinates (r1, t1) ≡ (1) and (r2, t2) ≡ (2):

G(r1, r2; t1, t2) ≡ G(1, 2) = i〈T{Ψ̂†(2)Ψ̂(1)}〉 (2.16)

where the time-ordering operator T{} orders terms with later times to the left.
In order to facilitate the mathematics, this integral is performed along some
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fictitious time contour, in a plane of complex time τ . In the basis of eigenstates
Ψ(1) =

∑
α aα(t1)ψα(r1) ≡ ∑α aα(1)ψα(1), where it is clear from the context

what coordinate (time or space) 1 stands for. Thus,

G(1, 2) = i
∑

αβ

〈T{a†α(2)aβ(1)}〉ψ∗α(2)ψβ(1). (2.17)

This notation will greatly simplify the following equations.

For a system in equilibrium, the NEGF approach also allows for calculating ther-
modynamical properties of the system, by computing the so called temperature
(or Matsubara) Green’s function. We are interested in a system out of equilib-
rium, however, and thus we go along a different contour where it is convenient
to split the Green’s function into four different parts; the lesser Green’s function

G<α,β(1, 2) = i〈a†α(2)aβ(1)〉, (2.18)

which gives the particle density; the greater Green’s function

G>α,β(1, 2) = −i〈aβ(1)a†α(2)〉, (2.19)

which gives the hole density; The retarded Green’s function

GRα,β(1, 2) = −iθ(t1 − t2)〈{aβ(1), a†α(2)}〉, (2.20)

which gives the response at a time t1 later than t2 and whose imaginary part
gives the density of states; and finally the advanced Green’s function

GAα,β(1, 2) = iθ(t2 − t1)〈{aβ(1), a†α(2)}〉, (2.21)

which gives the response at a time t1 earlier than t2, and whose imaginary part
gives the density of hole states. As we do not concern ourselves with holes - only
electrons -we will be mainly interested in G< and GR. From these definitions of
the Green’s functions, all relevant observables of the system can be found. For
instance, the density matrix is

ρα,β(k, t) = −iG<α,β(k, t, t+) (2.22)

and the spatial and energetically resolved electron density

ρ(z, E) =
2e

2πiS

∑

k

∑

αβ

G<αβ(k, E)ψ∗β(z)ψα(z), (2.23)

where S is the lateral area of the sample and we have used the space and time
Fourier transformations of G<(1, 2) of eq. (2.18). Knowing the density matrix
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ρα,β(k, t), it is possible to find expressions for all desired observables by noting
that the expectation value of, say, the current density is

〈Ĵ〉 = Tr{Ĵ ρ̂}. (2.24)

As the Wannier states or Wannier-Stark states will not be energy-eigenstates to
the total Hamiltonian, it is often useful to consider the energy resolved density of
states in order to obtain information about the actual energy levels and transition
energies. This can be related to the so called spectral function, which in turn is
related to the retarded Green’s function:

A(k, ω) = −2I{GR(k, ω)}. (2.25)

(Since we are dealing with a two-dimensional system, the k-integral over the
spectral function will give a constant in ω.) So, once the Green’s functions are
found, we have a good tool box to analyze the system.

The mentioned (complex) time integral leading to the Green’s function is very
complicated, and indeed impossible to calculate exactly for a non-trivial system.
However, it is possible to split the integral in to smaller parts, which can be
represented by the famous Feynman diagrams. This diagrammatic expansion
makes it easier to group terms into different classes; there is always an infinite
amount of diagrams, but they can be summed in different ways. This makes
it possible to terminate the summation at some suitable point, giving a well
defined approximation and a consistent treatment of the interaction up to that
point (see e. g. [73] for details). In addition, from this summation emerges the
Dyson equation

G(1, 2) = G0(1, 2) +G(1, 3)Σ(3, 4)G0(4, 2), (2.26)

where G0(1, 2) is the Green’s function of the non-interacting system (internal
indices like 3 and 4 above follow the normal Einstein summation convention).
Σ is called the self-energy, and is given in terms of G(1, 2) and the interaction
potential. It can also be expanded in diagrams, and the relevant approximation
is made at this level. From the Dyson equation, an iterative solution can be
found by making an initial guess of Σ and G which, inserted into eq. (2.26),
gives an updated value of G and hence Σ. This procedure can be repeated until
convergence is reach (the correct solution is found), when the updated G and Σ
will be unchanged. This is the most naive way to update the self-energies; in
practice we use the more elaborate Broyden scheme [74] which takes into account
previous iterations of the self-energy in order to quicker reach convergence.
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In our treatment of non-equilibrium Green’s functions, the Dyson equation ac-
quires a more complicated form for involving the retarded and advanced quantit-
ies of the Green’s functions and self-energies. Then, these quantities are related
to G< via the Keldysh relation

G<(1, 2) = GR(1, 3)Σ<(3, 4)GA(4, 2), (2.27)

here written schematically with implied sums over the internal indices 3 and 4.
The Dyson equation and Keldysh relation can also be Fourier transformed into
functions of momentum and energy, rather than space and time coordinates, and
this is the form used in the actual computations.

It should be clear now, that the most complicated task is to compute the self-
energies at each iteration of the Dyson equation. This will be described in
Sec. 2.7.1.

2.7 Temporal response

In order to capture the time response of the system to the harmonic electric field
with frequency ω, we may assume that all observables can be expanded as a
Fourier series in ω. Then, we can get the time-dependence of, e. g. , the density
matrix as

ραβ(k, t) =

Nh∑

h=−Nh

ραβ,h(k) · e−ihωt, (2.28)

or the current density

J(z, t) =

Nh∑

h=−Nh

Jh(z) · e−ihωt, (2.29)

where the infinite sum is truncated at h = ±Nh. In linear response Nh = 1.
This implies all Green’s functions (and self-energies) can be expanded in terms
of their Fourier components Gα,β,h(Ek, E), where terms with h > 0 obey similar
equations as those with h = 0.

2.7.1 Scattering and self-energies

In the previous section, we have developed our state basis and basic quantum
mechanical observables for the pure system with an analytic Hamiltonian. Now,
we will consider physical scattering processes which couple this pure system
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of electrons to a realistic model of the environment. These effects are lattice
vibrations (phonons), material impurities (ionized donors, interface roughness,
and alloy disorders), as well as the interaction among the electrons themselves.
Note that the electro-magnetic field has already been treated in the classical
limit, and thus we will not include the interaction of photons explicitly.

Each scattering process can be described by an electronic scattering potential.
In first order perturbation theory, for example, this potential will enter squared
in the matrix element in Fermi’s golden rule. In the NEGF framework, this
matrix element will instead show up in the self-energies.

As mentioned in the beginning of this section, we need to approximate the self-
energies in a consistent way, by summing only a chosen subset of Feynman
diagrams. The most common choice, which we also use, is the self-consistent
Born approximation [Paper III]. In this approximation, the self-energy for elastic
scattering takes the form (in momentum and energy space)

Σ
</R
αα′ (E,k) =

∑

ββ′,k′

〈Vαβ(k− k′)Vβ′α′,k′(k
′ − k)〉impG

</R
ββ′ (E,k′), (2.30)

where V (q) is the scattering potential and the angled bracket implies an average
over a statistical scattering distribution. For in-elastic scattering, there will be
additional terms needed for total energy and momentum conservation.

We will assume that the system is (statistically) rotational invariant in the x-
y plane. Thus, we may average all scattering terms over the angles in this
plane, giving only an explicit dependence on the modulus k = |k| of the two-
dimensional momentum k. Since the energy associated with this momentum is
just Ek ∝ k2, we will in the following substitute all dependence on the modulus
of the momentum for Ek.

As a side note, it is often desirable to plot the energy levels and wave functions
of the QCL structure, as in Fig. 1.4. However, the eigenstates are not directly
accessible due to the complicated nature of the Hamiltonian. When transforming
to the Wannier-Stark basis (2.15) we completely neglected the scattering part of
Ĥ, and as a result they are not eigenstates of the QCL system. For example,
their energies do not correspond to the peaks of the spectral function and ρ(z, E)
[Paper IV]. In order to get a closer agreement between theWannier-Stark energies
and the energy where, e. g. the spectral function has it’s peaks, the self-energies
Σ(Eα) can be added to Hνν′ in eq. (2.15) before diagonalizing, giving

Hνν′ → Hνν′δνν′ − eFdczνν′ + Σνν′(Eν)δνν′ (2.31)

where Eα is the energy of the Wannier-Stark state computed without scatter-
ing. This typically gives a shift down in energy of the Wannier-Stark states, as
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compared to the case without scattering, and a much closer match to the peaks
of the spectral function.

2.7.2 Elastic Scattering

The terms in Hscatt. of eq. (2.1) from interface roughness, impurity scattering,
and alloy disorder constitute the elastic scattering. These are all treated similarly
with the self-energy (see Paper III for details)

Σαα′(E,Ek) = (2.32)
∑

β,β′

∫
dEk′

ρ0A

2

1

2π

∫ 2π

0
dϕ〈Uαβ(Ek, Ek′ , ϕ)Uβ′α′(Ek, Ek′ , ϕ)〉imp

︸ ︷︷ ︸
Xαα′ββ′ (Ek,Ek′ )

Gββ′(E,Ek′),

where Gββ′(E,Ek′) is the electron Green’s function in frequency and momentum
space, A is the sample area and ρ0 = emeff/~π. This defines the X-tensors that
have to be evaluated for each kind of elastic scattering mechanism. In eq. (2.32),
the integral is over momentum angle ϕ in the x-y plane.

2.7.3 Interface roughness scattering

As we will study the effects of interface roughness in some detail in, for example,
Sec. 5.1, this particular scattering mechanism will serve as a thorough example
of how different self-energies are calculated. The matrix element for interface
roughness scattering contains the potential

Uαβ(p) =
∑

j

1

A

∫
d2re−ip·rηj(r)∆EcΨ

α∗(zj)Ψ
β(zj), (2.33)

expressed in terms of the deviation from a defined interface η(r), see Fig. 2.1, and
the conduction band offset ∆Ec. The sum is over all interfaces j. Performing the
impurity average over the potential, we have to compute the correlation function

1

A

∫
d2r

∫
d2r′eiq·(r−r′)η(r)η(r′) =

∫
d2reiq·(r)〈η(r)η(0)〉 ≡ f(q), (2.34)

where f(q) is the Fourier transformation of the spatial correlation function
〈η(r)η(0)〉 for the fluctuations. f(q) will depend on the average roughness height
∆ and the average island length Λ, though the exact form of the roughness dis-
tribution η(r) in Fig. 2.1 in real systems is not known.



26 2 Theory

η(r)

η(r) η(r')

a)

z

x

η(r)

η(r)
η(r')

b)

Figure 2.1: Schematic view of the interface roughness across the well (red) and barrier
(blue) material. η(r) is the z-coordinate of the interface for given in-plane
coordinates r (it may also be taken as the deviation from the average interface).
In a), the interface as seen by the incident electrons is smooth, and in b) it is
sharp.

Most commonly a Gaussian distribution [75, 76, 77] is used here, with

〈η(r)η(0)〉 = ∆2 exp

(
−|r|

2

Λ2

)

→ f(q) = π∆2Λ2 exp

(
−Λ2|q|2

4

)
. (2.35)

This is a good choice if η(r) is smooth like in Fig. 2.1 (a). Then, the slope of
〈η(r)η(0)〉 at r → 0 vanishes (clearly, the average slope has to vanish for the
mean value to be zero). This is also the case for the Gaussian function.

In our model we mostly use an exponential distribution, based on the findings
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in Refs. [78, 79, 80, 81]

〈η(r)η(0)〉 = ∆̃2 exp

(
−|r|

Λ̃

)

→ f(q) =
2π∆̃2Λ̃2

(
1 + Λ̃2|q|2

)3/2
. (2.36)

This can be further motivated if η(r) is a sharp function as in Fig. 2.1 (b). If
then η(0) is on an island, the product η(r)η(0) will be constant as long as r
is on the same island, but becomes negative as it crosses the edge. Averaging
over all reference points, some points will be precisely on the rim of an island
as in Fig. 2.1 (b). Therefore, 〈η(r)η(0)〉 will have a finite negative slope for
small r, and this is consistent with an exponential distribution. Both roughness
distributions will be compared in Sec. 5.1.

Elastic scattering plays an important role in redistributing carriers within sub-
bands. Thus, f(q) for both distributions would give similar results when the
functions f(q) as well as their second derivatives coincide at the maximum q = 0.
This is achieved with the translation

Λ̃ = Λ/
√

6 and ∆̃ =
√

3∆ (Expon. 1). (2.37)

This is probably very well suited for THz QCLs, where the momentum exchange
is typically small. For IR QCLs, with much larger momentum transfer, e. g. for
transitions between the laser states where substantial in-plane kinetic energy has
to be transferred for energy conservation, this transformation would give stronger
scattering at large q for the exponential distribution. A second natural transla-
tion is given by requiring an identical average fluctuation height 〈η(r = 0)η(0)〉
and identical f(q = 0) for the Gaussian and exponential distribution. This
provides

Λ̃ = Λ/
√

2 and ∆̃ = ∆ (Expon. 2). (2.38)

Fig. 2.2 shows the different distribution functions, translated via the relations
(2.37) and (2.38) starting from a Gaussian distribution with ∆ = 0.1 nm and Λ =
9 nm. For typical infrared QCLs with ~ω = 150 meV, this implies q ≈ 0.4 nm−1,
which is where the Expon. 2 and Gaussian distributions cross. These would
therefore be expected to provide similar results, while the Expon. 1 distribution
would result in a larger scattering rate at the laser transition energy.

In general, knowing the form of the auto-correlation function provides the matrix
elements

〈Uα,β(q)Uα′,β′(−q)〉 =
∑

j

1

A2
fj(q)∆E2

cψ
c∗
α (zj)ψ

c∗
α′(zj)ψ

c
β(zj)ψ

c
β′(zj), (2.39)
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Figure 2.2: Roughness distributions f(q), for a Gaussian (eq. (2.35)) and two different
exponential (eq. (2.36) distributions. The Expon. 1 and Gaussian distribution
functions are very similar for small values of q, while the Gaussian and the
Expon. 2 distributions are of similar magnitude above q ≈ 0.4/nm. This
momentum exchange corresponds to an energy of a typical IR laser transition
of 150 meV. The Expon. 1 distribution is significantly larger in this region.
Figure taken from Paper V.

where the sum over j takes into account all interfaces in one period.

2.8 Current density

The definition of the current density

J(z, t) = eR
{〈

p̂z − eAz(z, t)
mc(z)

〉}
(2.40)

in the effective mass approximation can be directly used to find the current
density in terms of the density matrix (the expectation value is given by the
trace over the density matrix), and hence the lesser Green’s function as described
in Paper III. However, this assumes that the effective mass mc(z) is energy
independent. This situation will change when we generalize eq. (2.8) to account
also for the valence bands in Chap. 3.

With a time-varying electric field present, eq. (2.29) implies the current density
can be written as

J(z, t) = J0(z) + Jcos
1 (z) cos(ωt) + J sin

1 (z) sin(ωt) +
∑

|h|>1

Jh(z)e−ihωt, (2.41)
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where Jcos(z) (in phase with the ac field) and J sin(z) (out of phase with the ac
field) stem from the terms with h = ±1.

Frequently, we want to examine the current density resolved in space and energy,
just like the electron density in eq. (2.23). We get this from eq. (2.40) in Lorenz
gauge (with Az = 0) and straightforward calculations to

J(z, E) =
e~
meff

∫
dEk

∑

αβ

G<βα(Ek, E)

(
ψ∗α(z)

∂ψβ(z)

∂z
− ∂ψ∗α)(z)

∂z
ψβ(z)

)
,

(2.42)
where eq. (2.23) was used.

2.9 Gain from complex conductivity

In a material where Ohm’s law ~J = σ ~E is valid, the curl of the magnetic field
becomes [82]

∇×H = −iω(εrε0 + iσ/ω) ~E, (2.43)

where εr is the static dielectric constant and σ is the conductivity. On the other
hand we may interpret the ac currents as shifts in the polarization:

∇×H = −iωε(ω) ~E. (2.44)

Thus we identify ε(ω) = εrε0 + iσ/ω, or

σ = −iω(ε(ω)− εrε0). (2.45)

The complex wave vector of the ac field is written k = β + iα/2, where α is the
absorption coefficient giving rise to a decay of the intensity I ∝ e−αz as the wave
propagates through the material. The phase velocity relates the wave vector to
the dielectric function by

vphase =
ω

k
=

1√
µε(ω)

, (2.46)

giving the system of equations
{
β2 − α2

4 = ω2

c2
<
{
ε
ε0

}

β · α = ω2

c2
=
{
ε
ε0

}
.

(2.47)

Solving (2.47) for α and taking ω large,

α(ω) ≈ <{σ(ω)}
cε0
√
εr

=
Jcos

1

Faccε0
√
εr
, (2.48)
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where the dependence on the frequency ω is explicit. (The absorption α(ω) also
has a z-dependence since Jcos

1 = Jcos
1 (z), c. f. eq. (2.41)). We see that the gain

g(ω) = −α(ω) of the sample can be obtained by calculating the amplitude of
the part of the current that is in phase with the applied electric field. While
having only an explicit dependence on terms linear in ω, the gain is affected
by higher order terms indirectly since the Dyson equation and Keldysh relation
couple Green’s functions with different h.

2.10 Gain from Fermi’s Golden Rule

In many cases, e. g. when the time-dependence of the current density is not
available, gain is calculated from an expression derivable from Fermi’s golden
rule [44, 60]

Gfi(ω) =
e2∆nfi∆E

2
fiz

2
fi

2~2ωnrcε0d

Γw

(∆Efi − ~ω)2 + Γ2
w/4

, (2.49)

where ∆nfi is the inversion, ∆Efi is the energy difference between the initial
and final states, zfi is their dipole matrix element, and Γw is the full width at
half maximum of the transition. The total gain would be the sum of eq. (2.49)
over all initial and final states. Here we have the problem of knowing beforehand
what the width of the transition is, and second order processes such as dispersive
gain [83] are neglected. It is useful also within our model, however, to get a quick
estimate of the gain without running computations with Nh > 1.

2.11 Gain clamping and output power

As the field strength Fac increases due to stimulated emission between inverted
energy levels, eq. (2.48) implies that the gain decreases. This can be understood
as being a consequence of diminished inversion on the gain transition, as more
electrons undergo stimulated emission and transition from the upper to the lower
state. When the gain over the whole structure reaches the same level as the total
losses αtot in the system, i. e. g = −αtot, the stimulated emission of photons
exactly balances the absorption of photons, and the gain reaches a stable level.
This is called gain clamping.

We can arrive at a simple estimate of this effect by the following argument,
as outlined in Paper IV: The gain Gfi(ω) of eq. (2.49) is proportional to the
inversion ∆nfi on a certain transition. But, to first order a field of intensity F 2

ac
will reduce the inversion by a factor ∆nfi ∝ −F 2

acGfi(ω). If we know that, at
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Figure 2.3: (a) Gain clamping simulated by the full NEGF model and by eq. (2.51) and (b)
current density simulated using the full NEGF model with and without gain
clamping, compared to the experimental data from Paper IV. The figures are
taken from Paper IV.

vanishing field strength G(Fac = 0) = G0, then

G(Fac) = G0 − b ·G(Fac)F
2
ac. (2.50)

Thus,

G(Fac) =
G0

1 + bF 2
ac
, (2.51)

where b = τe2z2
fi/~Γw is a constant for the structure depending on the transition

time through one period τ and the dipole matrix element z2
fi. As seen in Fig. 2.3,

this simple expression captures the clamping behavior well. The inset in Fig. 2.3
(a) shows the increase of the current density as the field strength increases. By
noting for which Fac the gain reaches the level of the losses (10 cm−1 in Fig. 2.3
(a)), it is possible to extract the output power of the device as follows. Consider
a cavity with one semi-reflecting mirror with reflectivity R. Then, for a power
density Pin inside the cavity, the outgoing power density Pout = (1 − R)Pin. If
we neglect the reflected wave, the power density inside the cavity is given by
the time-averaged Poynting vector (see e. g. Ref. [82]) Pin = |S| = 1

2ε0nrcF
2
ac.

(This provides a lower bound for the output power, and in Ref. [84] the light is
additionally modeled as a standing wave, giving an upper bound for the output
power.) Some fraction 1/Γconf of the electro-magnetic wave may not cover the
gain region of the QCL and does not contribute to the output power. Thus, the
total output power is

P = (Fac)
2nrcε0A(1−R)

2Γconf.
, (2.52)

where A is the mirror area. Using this expression, the output power for the
structure and G0 from Paper IV is shown in the inset of Fig. 2.3 (b). This
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is not far from the experimental values. We also see that the current density
calculated in the NEGF model agrees better with the experiment when the
increased intensity in Fig. 2.3 (a) is considered.



Chapter 3

The two-band model

In simulations using the effective mass approximation of eq. (2.8), the energies
of the states high in the conduction band become inaccurate. A cure for this
is to take only two bands into account and obtain a closed expression for the
conduction band components ψc only. While this does give the correct energies,
the calculated basis is not orthonormal, giving fallacious results as we shall see in
Sec. 3.3. The only consistent solution is to fully take into account the components
from the other bands as well, and normalize the total wavefunction. This gives
both the correct energies of the Wannier states, and an orthonormal Wannier
basis. Here, we restrict to only the conduction and valence bands.

From equations (2.6)-(2.8) we see that, restricting to the conduction band c and
valence band v, the two-component envelope function

ψ̄(z, t) =

(
ψc(z, t)
ψv(z, t)

)
(3.1)

satisfies the wave equation

i~
∂

∂t
ψ̄(z, t) = ˆ̄Heff ψ̄(z, t) (3.2)

with

ˆ̄Heff =

(
Ec(z) + (p̂−eA(z,t))2

2m0
+ eΦ(z, t) pcv

m0
(p̂− eA(z))

pvc
m0

(p̂− eA(z)) Ev(z) + (p̂−eA(z,t))2

2m0
+ eΦ(z, t)

)
.

(3.3)
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In the absence of an electro-magnetic field and neglecting the p̂2 term, the ef-
fective Hamiltonian becomes

ˆ̄Heff =

(
Ec(z)

pcv
m0
p̂z

pvc
m0
p̂z Ev(z)

)
, (3.4)

and this will be the starting point for finding our new basis states in the two-band
model.

In order to see the connections between the components of the envelope function
(3.1), we solve the time-independent Schrödinger equation for ψ(z) and get sep-
arate equations for the conduction and valence band components, respectively:

Ec(z)ψc(z) +
pcv
m0

p̂zψv(z) = Eψc(z), (3.5)

Ev(z)ψv(z) +
pvc
m0

p̂zψc(z) = Eψv(z). (3.6)

Inserting ψc from eq. (3.5) into eq. (3.6) and vice versa, we get

ψc(z) =
1

E − Ec
pcv
m0

p̂zψv(z), (3.7)

ψv(z) =
1

E − Ev
pvc
m0

p̂zψc(z) (3.8)

which can again be inserted into eqs. (3.5) and (3.6) to yield closed expressions
for ψc and ψv:

Ecψc + p̂z

[
1

Ev − E
|pcv|2
m2

0

]
p̂zψc ≡ Ecψc + p̂z

1

2mc(E, z)
p̂zψc = Eψc, (3.9)

Evψv + p̂z

[
1

Ec − E
|pcv|2
m2

0

]
p̂zψv ≡ Evψv + p̂z

1

2mv(E, z)
p̂zψv = Eψv. (3.10)

Here we used that pcv = p∗vc, and defined the effective masses as

mc(E, z) = −1

2
m2

0

E − Ev(z)
|pcv|2

= mc(Ec, z)
E − Ev(z)
Eg(z)

(3.11)

and
mv(E, z) = −1

2
m2

0

E − Ec(z)
|pcv|2

= mc(Ec, z)
E − Ec(z)
Eg(z)

, (3.12)

where mc(Ec, z) is the effective mass at the conduction band edge. The two-
component enevelope functions are normalized according to

∫
dz|ψ̄|2 =

∫
dz(|ψc|2 + |ψv|2) = 1. (3.13)
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Eq. (3.9) can be used to find the conduction band Bloch functions ψc(z) by using
the transfer matrix method, as described in Ref. [32]. Then, the valence band
components can be found via eq. (3.8), and the Wannier functions are found as
in Sec. 2.4 for each band ν = {c, v}.

3.1 Current density in the two-band model

This section is a detailed background of the model section in Paper I. The well-
known result for the quantum mechanical current for free electrons is

J(z, t) = 〈 e
V

∂ẑ

∂t
〉 = 〈 e

V
[ẑ, H]〉 = (3.14)

e
∑

αβ

[ ~
i2m0

(
ϕ∗β(z)

∂ϕα(z)

∂z
−
∂ϕ∗β
∂z

ϕα(z)

)
− eA(z, t)

ϕ∗βϕα(z)

m0

] 2

S

∑

k

ραβ(k, t)

where V is the volume and S is the cross-sectional area of the space with charge
density ραβ(k, t). In the one-band model, a similar result is obtained for the
envelope functions by defining an effective mass, which is z-dependent [64]. This
model then requires that the same effective mass can be attributed to all quantum
states in the system. In the two-band model this is not the case, since the
effective mass in eq. (3.11) is energy-dependent and so each quantum state will
have a specific mass. To find the current density operator in this situation, we
have to start from more basic principles, such as the continuity equation or the
time derivative of the position operator. In the following we will use the former,
but the latter gives the same result.

Starting with the Hamiltonian (3.3) and the two component basis states (which
may be calculated without external fields)

ψ̄α(z) =

(
ψαc (z)
ψαv (z)

)
(3.15)

we get the Hamiltonian in second quantization

Ĥ = ˆ̄Ψ†(z) ¯̄Heff(z) ˆ̄Ψ(z) =
∑

mn

Hmna
†
nam, (3.16)

with Hmn =
∫

dzψ̄m
ˆ̄Heff ψ̄n. Here, we used the field operators

ˆ̄Ψ(z) =
∑

n

ψ̄n(z)ân =
∑

n

(
ψnc (z)
ψnv (z)

)
ân

ˆ̄Ψ†(z) =
∑

n

ψ̄∗n(z)â†n =
∑

n

(
ψn∗c (z)
ψn∗v (z)

)
â†n.
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The time-dependent Schrödinger equation i~ d
dt ψ̄ = ¯̄Heffψ̄ gives the time depend-

ence of the wavefunction components:

i~
d

dt
ψc(z) = (Ec(z) + eΦ(z))ψc(z) +

pcv
m0

(p̂− eA)ψv(z) (3.17)

i~
d

dt
ψv(z) = (Ev(z) + eΦ(z))ψv(z) +

pvc
m0

(p̂− eA)ψc(z). (3.18)

From the continuity equation for the charge density ρ(z) and the current density
j(z), we have that (e < 0)

e
d

dt
ρ(z) = e

d

dt
ψ̄∗(z)ψ̄(z) = e

d

dt

(
ψ∗c (z) ψ∗v(z)

)(ψc(z)
ψv(z)

)
= e

d

dt
(ψ∗cψc + ψ∗vψv) =

e

i~

[
ψ∗cpcv

p̂− eA
m0

ψv − (pcv
p̂− eA
m0

ψv)
∗ψc + ψ∗vpvc

p̂− eA
m0

ψc + (pvc
p̂− eA
m0

ψc)
∗ψv

]

= − e

m0

d

dz
(pcvψ

∗
cψv + pvcψv ∗ ψmc ) = − d

dz
j(z) ≡ − d

dz
ψ̄∗ ¯̄Jψ̄,

which defines the current density operator in analogy with eq. (3.16)

Ĵ = ˆ̄Ψ†(z) ¯̄J ˆ̄Ψ(z) (3.19)

with
¯̄J =

e

m0

(
0 pcv
pvc 0

)
. (3.20)

The matrix element pcv = p∗vc has an arbitrary phase that is chosen when calcu-
lating the valence band component. In order to get real valence and conduction
band components, pcv is chosen to be purely imaginary according to

pcv = i|pcv| = im0

√
Eg

2mc
= −pvc. (3.21)

Thus, the expectation value of the current operator Ĵ(z) is

〈Ĵ(z, t)〉 = Tr{Ĵ ρ̂} =
∑

mn

Jmn(z)ρnm(t), (3.22)

where

Jmn(z) =
e

m0
im0

√
Eg(z)

2mc(z)
(ψn∗c ψ

m
v − ψn∗v ψmc ). (3.23)

The current density (3.22) is in principle independent of z in steady state, but
since it is impossible to account for all states in a numerical calculation it has
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proved to be more stable to take the mean value of the current over one period1

[85]. Doing this and collecting the terms in phase (Jcos
1 ) and out of phase (J sin

1 ),
as well as the direct current part (Jdc), we write just as we did in eq. (2.41)

〈J(t)〉 = Jdc + Jac(t) = Jdc + Jcos
1 cos(Ωt) + J sin

1 sin(Ωt) +
∑

|h|≤2

Jhe
−ihΩt. (3.24)

Here we used eq. (3.22), the fact that ραβ(t) =
∑

h ραβρe
ihΩ from eq. (2.28)

and A = Fac · (−ie−iΩt + ieiΩt)/2Ω. Following Sec. 2.9, we arrive at a similar
expression for the gain in terms of jcos

1 , but using eq. (3.23) to calculate the
current density.

Note that we do not include the extra broadening effects of optical transitions
between bands with different dispersion E(k) [86]. This is certainly an interesting
effect for mid-IR lasers, and would be an interesting future implementation to
the model.

3.2 Interface roughness in the two-band model

As we now involve ourselves with two-component, rather than scalar, wavefunc-
tions, the scattering potential for IFR will take the same matrix form as the
effective Hamiltonian. Again, we use interface roughness as an example of the
extension of the one-band model potentials to fit the two-band model, but all
other scattering matrix elements are affected as well (although in more trivial
ways).

For interface roughness, we use the scattering matrix elements of eq. (2.33) in
the one-band model where Ec(z) is the Hamiltonian (neglecting the p̂2-term) in
absence of external fields. In the two-band model this becomes eq. (3.4) and

∆Vj = Heff(z−j )−Heff(z+
j ) =

(
∆Ec,j 0

0 ∆Ev,j

)
. (3.25)

Inserting this in place of ∆Ec,j in eq. (2.39) and the two-component wavefunc-
tions, we get the scattering matrix elements

Uαβ(q) =
∑

j

1

A

∫
d2re−ip·rξj(r)

(
∆Ec,jψ

α∗
c ψβc + ∆Ev,jψ

α∗
v ψβv

)
. (3.26)

1Taking J(t) ≈
∫
1 per. dzJ(z, t)/Dper, where Dper is the length of one QCL period. As

indicated by eq. (3.22), if the sum over n and m does not cover the entire basis 〈Ĵ(z, t)〉 cannot
be guaranteed to be constant in z since Jmn(z) is certainly not constant in z.
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This provides

〈Uα,βUα′,β′〉 =
∑

j

1

A2
fj(q)

(
ψc∗α ψ

c∗
α′ψ

c
βψ

c
β′∆E

2
c + ψv∗α ψ

v∗
α′ψ

v
βψ

v
β′∆E

2
v

+
(
ψc∗α ψ

v∗
α′ψ

c
βψ

v
β′ + ψv∗α ψ

c∗
α′ψ

v
βψ

c
β′
)
∆Ec∆Ev

)
. (3.27)

which is an extension of eq. (2.39) including the valence band offset and valence
band components of the wavefunction. As ∆Ec and ∆Ev have opposite signs
in the structures studied in this thesis, eq. (3.27) will result in lower scattering
than eq. (2.39). This is seen in paper V, while the effect is small for mid-IR
devices and negligible for THz devices. Note that simply neglecting the valence
band offset ∆Ev = 0 in eq. (3.25), we get back the result of eq. (2.39). However,
here one has to be careful, since then only the conduction band wave function
should be used and normalized accordingly. If, on the other hand, we view the
scattering potential as an electronic one and neglect the two-component nature
of ∆Vj , we are left with

〈Uα,βUα′,β′〉 =
∑

j

1

A2
fj(q)∆E2

c

(
ψc∗α ψ

c∗
α′ψ

c
βψ

c
β′ + ψv∗α ψ

v∗
α′ψ

v
βψ

v
β′

)
, (3.28)

where we can use the same form of the wavefunction and normalization condition
as for the full result.

Note that ρ0 = emeff/~π in eq. (2.32) still contains the energy-independent
effective massmeff in our two-band implementation. We therefore do not capture
the additional broadening effect coming from transitions between bands with
different parabolic dispersions in k. This is a very small effect compared to the
optical broadening.

3.3 Comparison of one- and two-band model simulations

In order to validate the implementation of a two-band model, we show results
for one THz and one IR QCL using the previous implementation with only the
conduction band [Paper III], and the new implementation with two bands [Paper
I]. The first structure, taken from Ref. [37], is shown in Fig. 3.1 at a bias per
period of 76 mV, together with the Wannier-Stark states with and without non-
parabolicity. The states are very similar, as the bands are all relatively low in
energy and the energy-dependent effective masses do not change much. The main
difference can be seen for the states with higher energy, being shifted down in
energy in the two band model. The lower states, which are the once active in the
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Figure 3.1: Comparison between the Wannier-Stark states for the one-band (thick lines)
and two-band (thin lines) implementations, for the structure of Ref. [37]. In
the new implementation only the states of high energy are different.

lasing scheme, are not affected to any noticable degree. Indeed, in simulations
of the structure from Ref. [37], shown in Fig. 3.2, the difference is very small
between the one and the two band model results.

The active states are close to the conduction band edge, well separated from the
higher excited states, and so their effective masses do not change significantly
with an energy dependent effective mass. Similar results were found for the
structure from Paper II (the conduction band structure can be seen in Fig. 6.5),
as displayed in Fig. 3.3, although here the shift in peak current is larger. Also,
there is a red shift of the peak position of the gain, as well as a small increase.
The data is taken at 50 K, but at higher temperature there is actually a rather
large decrease in gain at the bias of peak current in the two-band model (see the
discussion in Chap. 6). This reduction of gain, and also the shift of peak gain
frequency, comes from the lower bias of peak current in the two-band model.
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Figure 3.2: Comparison between IV (a) and gain (b) for the one-band model and the two-
band model for the THz QCL called V843 [37]. The IV peak positions are
unchanged, and the only difference is a slight increase in the overall current
density. The gain peaks are shifted towards higher frequencies, but are close
in magnitude, except for the peak at 10 meV.
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Figure 3.3: Comparison between IV (a) and gain (b) for the one-band model and the
two-band model for the THz QCL called V845 [Paper II]. Here, the IV peak
positions do shift to a lower bias for the two-band model, and as for Fig. 3.2, a
slight increase in the overall current density can be seen. For the gain, which
are calculated at the respective peaks in current density, the spectral gain peaks
are red-shifted. This is explained by the lower energy difference between the
ULS and LLS at the lower bias in the two-band case.
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For the IR design [25] in Paper IV and V the results differ significantly between
the models, as expected from the large variation in effective mass for high energy
levels. The Wannier-Stark states are shown in Fig. 3.4, and there is a large energy
difference between the states calculated in the one- and two-band models. As
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Figure 3.4: Square of the Wannier-Stark wavefunctions calculated in the one-band (thick
lines) and two-band (thin lines) models. The dashed arrows indicate the lower-
ing of the level energies for some of the states, when switching from the one-
to the two-band model. Note especially the big change in both the energy and
wavefunction for the upper laser state (dark green).

the energy of the upper laser level, shown by dark green in Fig. 3.4, is very
different using one and two bands, the one-band model would obviously give
the wrong emission frequency. Therefore, the current density and gain, shown in
Fig. 3.5, are calculated using the energies of the two-band model Wannier states.
In this approximation, non-parabolicity is only included as an energy dependent
effective mass, while the basis states still have only conduction band components.
Thus, the (conduction band) wavefunctions constituting the basis states are not
orthogonal, which both leads to difficulties converging the calculations, and that
fallacious results are produced. As can be seen in Fig. 3.5 (a), the current
density is heavily suppressed in the two-band model as compared to the one-
band model. The two-band model also gives results in excellent agreement with
the experimental data below the experimental threshold current density of 1.5
kA/cm. Above threshold we expect the lasing experimental device to exhibit
larger currents than the non-lasing simulated device, as seen in Fig. 2.3 (b)
and discussed in Paper IV. The gain spectra are shown in Fig. 3.5 (b). As
expected, the frequency of peak gain is very similar in the two models, and
it is overestimated in the one-band model. In these simulations we used the
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Figure 3.5: Current density (a) of the structure in Ref. [25] with the two- and one-band
models compared to the experimental current density, and gain spectra (b)
taken at a bias of 224.5 mV/period for the one- and two-band models, re-
spectively. In the one-band model, non-parabolicity is included via an energy
renormalization only, so that the energies of the states in the two models are
the same but the basis in the one-band model is not orthogonal.

exponential roughness distribution of eq. (2.36) with ∆ = 0.1 nm and Λ = 9 nm.
As will be discussed in Sec. 5.1, this value of Λ is probably too large.



Chapter 4

Parallelization

While the NEGF approach provides a general treatment of many-body effects
and scattering on a solid theoretical ground, this advantage is also the main
limitation of the model. The computations are heavy, both with regard to time
and memory consumption, especially for simulations of mid-IR QCLs where a
large state space and energy resolution is necessary. In order to be able to
analyze, let alone design, such structures, we need something faster than the
serial computations, which takes weeks to produce good results. In this section,
the parallelization of the code in two steps is explained; first we parallelize the
program to use all threads sharing memory on a single machine; secondly we
adapt the code to run on a massively parallel scale on computer clusters. The
former step is very useful for THz QCL simulations, although it is still too
inefficient for simulating infrared devices. This is solved in the second step. In
the following we show detailed performance tests of the code on different scales
and simulated system sizes, but start with a description of the computational
scheme of the NEGF model.

4.1 Computation scheme

The model calculates the Green’s functions and self energies by iteratively solving
the Dyson equation (2.26) and Keldysh relation (2.27) in discretized momentum
and energy space, with Nk and NE grid points, respectively. The number of
levels involved are

Nmat = Nν(1 + 2Nper)

where Nν is the number of states considered per period and Nper is the number
of periods in the calculation. Nper is usually one, but for short structures and
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spatially extended states it may be necessary to use a higher number. Thus,
in a naive implementation, the Green’s functions and self energies would be
N2

mat ×NE ×Nk × (2Nh + 1), where terms with Nh = 1 are needed to calculate
gain and Nh > 1 is needed in order to capture non-linear phenomena and strong
ac fields. Now, we use the severe simplification to assume that the self-energies
are k-independent, and can be represented by some typical value for Ek. This
assumption is eventually made for Xαα′,ββ′(Ek, E

′
k) in eq. (2.32). This means we

need not store all Ek-elements of G(E,Ek), the computation of the X-tensors
becomes very efficient, and the self-energy is simply given by the integral

Σ</R/A(E)αα′ =
∑

β,β′

Xαα′,ββ′

∫
dEkG

</R/A
ββ′ (E,Ek), (4.1)

which can be discretized and parallelized easily.

A schematic illustration of the flow of the program is shown in Fig. 4.1, where
squares represent code in the main program, ovals represent subroutines, blue
are serial computations, and red represents parallelized parts. The program
starts with making an initial guess to the self-energies, then Xαα′,ββ′(Ek, E

′
k)

are calculated once every Fdc. For each value of Fac and ω, the convergence loop
is iterated until convergence is reached, which typically takes 50-100 iterations.
The computational time will therefore mostly be spent inside this loop, contain-
ing the loop over Ek from the integral in eq. (4.1) as well as the computation
of updated self-energies from eqs. (2.26) and (2.27), as the most time-intense
parts. As the program begins each new iteration with a starting point in the
previous one, it is more favorable to parallelize the internal loops than only the
outer loops for Fdc, Fac, and ω (especially if one is interested in only one data
point). All timings of the code given below are for a code compiled with the gcc
(gfortran) compiler, without any optimization flags.
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Figure 4.1: Flow chart for the NEGF program. Blue represents serial calculations, while
red indicates parallel parts. The calculation of Σ(E) is only parallelized in the
MPI version of the code.



46 4 Parallelization

4.2 Single node computations

For computations on a single node, where all processors share the same memory,
parallelization is best done using OpenMP [87] (or similar packages, such as
POSIX Threads and Click). The wall clock times for the different parts of the
code indicated in Fig. 4.1, as well as the average time for one iteration, are
shown in Fig. 4.2. In this test, NE = Nk = 1000 and Nν = 15, which is a
quite large computational space, even for mid-IR lasers. The program is 6 times
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Figure 4.2: Timing of the different parts of the code indicated in Fig. 4.1, parallelized
on a single machine using OpenMP [87]. In these simulations, Nν = 15 and
NE = 1000. From these times, we see that the loop over Ek together with the
subroutine for evaluating the new self-energies Σ, makes up almost all of the
iteration time. Here, the latter is not parallelized, as this is a major bottleneck
when going to from 8 to 16 threads.

faster when going from a serial execution with one thread, to parallel execution
with eight threads. Going to 16 threads gives a 10 times increase in speed
of one iteration. While this is not bad for such a simple and straightforward
implementation of parallelization, we see from Fig. 4.2 that the main bottleneck
is the subroutine for calculating new self-energies. This was not parallelized since
we typically use smaller Nν for singe machine computations; normally Nν = 15
requires more threads than exist on a single machine in order to get results
within reasonable time (see the next subsection). Another bottleneck is the
calculation of the scattering matrix elements, whose speed actually is slower than
the k-loop for 16 threads, even though it is faster for serial computations. The
Xαα′,ββ′ matrix elements are calculated for all different scattering contributions,
inside four nested loops running over the level indices α, α′, β, and β′. Here,
we simply parallelize the inner-most loop. The bottleneck is dealt with in the



4.3 Cluster computations 47

next subsection, where all four nested loops are parallelized. However, since
we are limited in the number of threads by the amount of cores available on
a single machine, this would most likely give a small improvement in speed
for shared memory parallelization. In addition, this calculation lies outside of
the convergence loop as shown in Fig. 4.1, and so adds very little to the total
computation time of one bias (Fdc), field strength (Fac), or frequency (ω) point,
so it’s speed is not so crucial. It is, though, very convenient to have it parallelized,
since this allows the user to more quickly look at the convergence rate and
diagnose the numerical parameters chosen.

Finally, we note that the summed times for the k-loop and the calculation of
Xαα′,ββ′ in Fig. 4.2, makes up almost all of the computation time per iteration.
Thus, we have focused on the most important part for speed improvement for
medium system sizes (Nν . 9), which is the case for most THz QCLs. However,
most mid-IR QCLs have more than 10 states in the active region, and this
requires a more elaborate parallelization scheme, as discussed in the following
subsection.

4.3 Cluster computations

A single high-performance machine has typically no more than 48 processors,
but more common computers usually have 8-16. This limits the speed at which
we are able to do computations for structures with more states and finer energy
grid, as well as high intensity calculations with Nh > 1. The next step in
computational power is to migrate to a computer cluster, which consists of many
connected machines. This extends the number of possible parallel processes to
hundreds [88] or even more. Each process has it’s own memory, and to share
objects between processes, messages with data are sent between them. This is
done through an interface called MPI (Message Passing Interface) [89], which
takes much more effort and care than shared memory parallelization for the
programmer. Average computation times are shown in Fig. 4.3 (a). Here we
have timed the total iteration loop, which is the innermost blue loop in Fig. 4.1,
as well as the parallelized section of the code marked as red in Fig. 4.1. First
we note that, comparing the sum of times of the parallelized parts within one
convergence iteration, most of the computational time is spent in parallel code.
The longest time is spent in the loop over Ek (blue curve). Next, we see in
Fig. 4.3 (a) that the subroutine for calculating new Σ (purple curve) actually
becomes slower for large numbers of processors, completely taking over the time
per iteration for 128 cores. To fix this issue, a number of processors are excluded
from this calculation, depending on the simple criteria that the number of energy
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points calculated per processor

NE,local < C/N2
ν , (4.2)

where NE,local = NE/(# processors) is the number of energy points calculated
by each processor, and C is some constant that is chosen to give the best per-
formance. The computational times shown by the dashed light blue curve in
Fig. 4.3 (a) uses C = 5000. Then, the time taken for 64 and 128 processors are
both 4.5 s (compared to 5.1 s for 32 processors). Note also that due to the MPI
overhead, the time of 670 s with only one processor is higher than the time of
610 s for the serial version of the code.

In order to see how effective the parallelization is for other values of NE and
Nν , a timing of the code for different system sizes is shown in Fig. 4.3. Here,
we have used Nν = 3, 9, and 15 (red, green, and blue lines, respectively), and
NE = Nk = 500 and 1000 (solid and dashed lines, respectively). The thin lines
show the expected time if there were no overhead time for sending and waiting
to receive messages by the processors. For the smallest computational space
(lowest red curve), we see that the time actually increases for a large number of
processors, due to the very large overhead compared to the actual computation
time. We also see that the relative overhead time (ratio of thick to thin lines)
decreases as the system size increases while it increases with the number of
processors. While for NE = 500 the gain in efficiency in going from 64 to 128
cores is questionable, this still yields a significant increase of the computation
speed for Nν > 3 and NE = 1000.

As the number of processes and the overhead time is larger for MPI, it becomes
more important to have an efficient parallelization. For this reason, the four loops
over level index in the calculation of the scattering matrix elements Xαα′,ββ′ is
un-rolled into a single loop, so that computation chunks of suitable sizes can
always be distributed among the processors. This is evident from that the MPI
calculation with 16 processors is faster (22 s) than using OpenMP (39 s), even
though the overhead time is longer in the former case.

In conclusion, an efficient parallelization of the code running both on single ma-
chines with shared memory, and large computer clusters (the code has also been
run successfully on the Brutus cluster of ETH Zürich) has been implemented,
enabling computations of infrared devices. Specifically, for a large computational
space with NE = Nk = 1000 and Nν = 15, we can expect a 100-fold increase
in the speed for one convergence iteration. As seen in Fig. 4.2, the OpenMP
implementation could be made more efficient for large systems by parallelizing
also the calculations of new self-energies.
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Figure 4.3: (a): Average wall clock time for one full iteration (red), the subroutine for
calculating Xαα′,ββ′ (green), the parallelized loop over momentum k (blue),
the subroutine for calculating new self-energies using all (purple) or a reduced
number of processors (light blue, dashed). We also show the sum of the times
for the k-loop and the calculation of new self-energies (black), which are the
parallelized parts of the code within one convergence iteration. These times
are for a calculation with Nν = 15 and NE = Nk = 1000, which is typical for
mid-IR lasers. (b): Average wall clock time for one full iteration for different
Nν and for NE = Nk = 500 (solid lines) and NE = Nk = 1000 (dashed lines),
vs. number of processors. Thin lines show the expected times if no overhead
time is added when increasing the number of processors.
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For the MPI implementation, as seen in Fig. 4.3 (a) the overhead time for large
numbers of processors should be reduced, and the self-energy calculation could
be more efficiently parallelized, as shown in Fig. 4.3 (b). The former could
be achieved by making use of non-blocking send and receive calls, whereas the
current version only implements blocking calls (where the sending and receiving
processor both wait until the message has been successfully received). Note also
that none of these tests made use of compilation optimization.



Chapter 5

Mid-infrared QCLs

As described in the previous sections, we have built upon the previous model
suitable for THz QCL modeling, and included the effects necessary for accurately
model mid-infrared devices. We will now apply this model to study a number of
such structures.

First, we will investigate the effects of scattering by interface roughness. As
mid-IR QCLs have larger band offsets than their THz cousins, the interface
roughness scattering will play a much more important role. We will then con-
solidate our model extensions with experimental measurements and simulations
by another model that is well tested for mid-IR devices, for a lattice-matched
InGaAs/InAlAs structure. A multi-stack device, where multiple active regions
emitting at different wavelengths are stacked together to get a wide laser spec-
trum, is simulated.

Having consolidated the model for lattice matched structures to experiments
and other models, we push it further by simulating a strain-compensated device,
which have very high CBO for specific barriers. While a simpler density matrix
model predicted the experimental behavior quite well, considering different ex-
perimental realizations of the device showed large variations in current density
and lasing, we originally found very large interface roughness scattering which
degraded the performance of the QCL well below the experimental observed
behavior. Including interface correlations, our results agree very well with the
experimental data. Finally, we briefly present an optimization of the active
region using a mono-layer based design.
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5.1 Role of interface roughness scattering

While interface roughness (IFR) scattering is important as an additional source
of elastic scattering and provides incoherent tunneling in lower CBO (THz) struc-
tures, for mid-IR devices it is more important to be accurate in the modeling
of this effect, as it is much stronger [77]. As the actual roughness distribution
in real devices is not well known, and many models for interface roughness are
used, we here compare different modeling functions and investigate for which
parametrization it is possible to get reasonable results.
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Figure 5.1: Band conduction band structure of the mid-IR QCL of Ref. [25].

The main results were published in Paper V, where we investigate the impact
of the exact choice of the statistical distribution of the interface roughness cor-
relation function. We choose either the Gaussian distribution from eq. (2.35),
or the exponential distribution from eq. (2.36). The two distribution functions
are plotted in Fig. 5.2 for different sets of values for the roughness height ∆ and
correlation length Λ. These sets of values are chosen systematically in order to
match the Gaussian and exponential distributions at low (the set called Expon.
1 and Gauss 1 respectively) or high (Expon. 2 and Gauss 2) momentum trans-
fer, according to eqs. (2.37) and (2.38). The Expon. 1 and 2 values in panel (a)
refers to a mid-IR structure [25], while the Gauss 1 and 2 values are taken for
a THz structure [37]. The relevant momentum transfer for transport through
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the mid-IR structure [25] under study in Paper V is the one corresponding to a
transition from the upper to the lower laser level, with q ≈ 0.4 nm−1. We thus
expect the transformation from a Gaussian to an exponential distribution via
the Expon. 2 set of parameters to provide similar results. Indeed, looking at the
results in Fig. 5 of Paper V, this is exactly what we find.
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Figure 5.2: Fourier transforms of the auto-correlation function in eq. (2.35) (Gauss) or
eq. (2.36) (Expon). In (a), we start from a Gaussian distribution with ∆ = 0.1
nm and Λ = 9 nm adopted for the IR QCL in Ref. [25], and transform to
exponential functions by translation (2.37) (Expon 1) and (2.38) (Expon 2).
In (b), we start instead from an exponential distribution with ∆ = 0.2 nm
and Λ = 10 nm, suitable for the THz QCL in Ref. [37], and apply the reverse
transformations of (2.37) (Gauss 1) and (2.38) (Gauss 2). Figure is taken from
paper V.

Although this chapter is concerned with mid-IR QCLs, it is interesting here to
look at the impact of the choice of interface distribution functions also for THz
QCls. For the SA THz structure of Ref. [37], the momentum transfer corres-
ponding to the gain transition is 0.16 nm−1. Here, it is not clear from panel
(b) which of the two transformations will provide the most similar results to
the original exponential distribution. We find that it is again the second trans-
formation, here Gauss 2, which agrees best with the exponential one, especially
for the current density, which can be understood by the large separation of the
lower laser state and the extraction state, as well as the injector state and the
upper laser state in this design. In contrast, the gain spectral width is more
similar when using the Gauss 1 transformation, since the level broadening is
mostly affected by scattering with low q. In Paper V, we also study a second
THz structure [90], with tunneling injection. As the number of interfaces per
period is less and the CBO is lower, the overall impact of interface roughness
scattering is smaller in this design. Still, we find once again that the Gauss 2
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transformation agrees best with the original exponential distribution, which also
fits best with the experimental findings of Ref.[90].

As already discussed in Sec. 3.2, the scattering matrix element for interface
roughness contains conduction band as well as valence band components in the
two-band model. The effect of making this substitution is very small, especially
for the THz QCL, as shown in Paper V.

5.2 Multi-stack device

In order to investigate the possibilities of designing a QCL structure with a very
broad and flat gain spectrum, a structure derived from the one presented in
Ref. [13] was simulated within the MIRIFISENS project [91]. The structure is
composed of five different active regions, each one optimized to lase at specific
wavelengths of 7.3, 8.5, 9.4, 10.4, and 12 µm respectively. These active regions
will be grown in sequence (symmetrically around the shortest wavelength to get
optimal mode propagation), and so the current density through each region will
be the same under operation, which puts constraints on the operation bias; it
will be limited by the region which reaches Jmax at the lowest bias.

The simulated current density vs. bias is shown in Fig. 5.3. The interface rough-
ness parameters in these simulations are those of the Expon. 1 (2.37) transform-
ations in the previous section (from a Gaussian model with ∆ = 0.1 nm and
Λ =9 nm, giving ∆ = 0.17 nm and Λ = 3.67 nm) and as we have already seen in
Secs. 5.1 and 2.7.2, we therefore have to be careful in the analysis since the laser
transition energies are centered around 150 meV. In fact, simulations of the 12
µm design with parameters we conventionally use (Λ = 10 nm in the exponential
model), show currents are slightly higher below the onset of NDR, and a lower
peak current density.

The band structures of the individual stacks are all variations of a bound-to-
continuum design similar to Ref. [25], which is shown in Fig. 5.1. Here, however,
we see that the ground state of the well before the injection barrier is lower in
energy compared to Ref. [25].

Gain was simulated at current densities of 3 and 4 kA/cm2 for each structure,
as shown in Fig. 5.4. At 3 kA/cm2, the total gain profile is below zero for
all frequencies. As the gain is higher for higher electric fields, operation at
a current density of 4 kA/cm2 seems to be a better option. At this larger
current density the gain is improved, but still does not show the desired broad
features. Especially the 7.3 µm structure inhibits large absorption below 130
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Figure 5.3: Current vs. the total bias over 50 periods for each of the five simulated active
regions. The dashed lines indicate at which biases the current density is 3 and
4 kA/cm2 through all structures.

meV, removing the 12 µm peak in the final spectrum. In Fig. 5.5 (a) we see that
for ~ω = 100 meV (red), there is absorption to higher states where the density
of electrons is the highest before and after the injection barrier. There is gain
in the band of lower laser states, but it is too small to compensate for the large
absorption in the ground state. For ~ω = 160 meV (green curve in Fig. 5.5 (a))
the gain transition is active and the absorption in the ground state is smaller.
In order to improve gain at low frequencies, the overlap of the ground state with
higher states should be reduced. The 12 µm structure, on the other hand, is
absorbing at high frequencies from the lower band of states up to the upper
laser state (as well as to higher lying states) as seen in Fig. 5.5 (b). In fact, the
7.3 µm structure is absorbing at frequencies where the 12 µm structure has gain,
and vice versa. Omitting the 7.3 and 12 µm structures, the gain actually gets
broader in these simulations, as well as larger for all frequencies, as can be seen
for the yellow dashed line in Fig. 5.4.

Changing the roughness transformation from the Expon. 1 to the Expon. 2
transformation, or using a Gaussian distribution function, would most likely
improve gain, as well as change the bias (with 4 kA/cm2 current) where the gain
should be calculated. As the exact distribution is not known, however, there is
no direct way of knowing which results apply best to the experimental situation.
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Figure 5.4: Simulated gain at biases corresponding to 3 (solid) and 4 (dashed) kA/cm2

for each of the five active regions. The dot-dashed black line shows the total
gain omitting the 7.3 and 12 µm structures.

5.3 Strain compensated InGaAs/InAlAs/AlAs structures

Within the MIRIFISENS project [17], one goal is to produce a design with a short
wavelength of ∼ 3.3 µm much shorter than for the usual designs with λ ∼ 4− 8
µm. This short wavelength and high photon energy (370 meV) requires a high
conduction band offset. Using material compositions with very different con-
duction band energies requires a relaxation of the lattice-matching condition for
growing InP-based InGaAs/InAlAs structures. However, this introduces strain
in the system [27]. This strain is compensated by using the combination of the
well material GaxIn(1−x)As with x = 0.28, and the barrier materials AlAs and
AlxIn(1−x)As (with x = 0.52). As the number of states is very large, it is chal-
lenging to simulate such a structure with the NEGF model. Thus we have done
simulations both with the NEGF and a density matrix model developed at ETH
Zürich, called SEWLAB [60, 92].

In Fig. 5.6, we show simulation results for EV1695 using nominal data (full
lines). The Density matrix simulations, using SEWLAB, produced fairly accur-
ate results, which agreed well with the experimental data below the threshold
current of 2 kA/cm2. However, the NEGF simulations appear to agree worse
with experiment. In particular the spectral peak gain position in NEGF is about
50 meV below the experimentally observed lasing frequency, as can be seen in
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Figure 5.5: Carrier density and spatially resolved gain (a. u. ) at a current density of 4
kA/cm2, at (a) ~ω = 100 meV (red) and ~ω = 160 meV (green) of the 7.3
µm structure, and at (b) ~ω = 105 meV (red) and ~ω = 140 meV (green) of
the 12 µm structure.

Fig. 5.7. This can be related to the treatment of interface roughness, where
the models differ in two respects: Firstly, SEWLAB takes into account vertical
interface roughness correlations, which effectivly reduces the scattering. This
can be seen in the broadening induced by elastic scattering of 170 meV, in the
NEGF model, which is much larger than the width of 50 meV that SEWLAB
typically finds. Secondly, the NEGF model includes a higher order energy shift
of the energy levels, due to the treatment of scattering via self-energies, which
lowers the energy of the upper laser level. We find this self-energy shift is about
50 meV for the upper laser state.

Taking interface correlations into account in a simplified way in the NEGFmodel,
we find a self-energy shift of 30 meV, and elastic scattering rate of 88 meV, which
is a dramatic reduction. The reason is that the high AlAs barriers are very
narrow, and thus the impact of the correlation (here modeled by a reduction in
the interface roughness RMS height ∆′ =

√
1− c ∗∆, where following Ref. [60],

c = exp(−∆z/k) and k = 1.5 nm, ) on the scattering rate is large. In Fig. 5.6
this appears to shift the whole NEGF curve down in current density, agreeing
better with the experimental measurements. Also the gain peak shifts to higher
frequencies, much closer to the measured laser emission frequency.

A third factor that contributes to the differences between NEGF and SEWLAB
results is the treatment of the momentum resolution of scattering processes,
where we use a constant value for the scattering rate for all momentum exchanges
in the NEGF model. This leads to an over estimation of the scattering strength.
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Figure 5.6: Comparison of non-lasing NEGF and SEWLAB simulation results, as well as
lasing SEWLAB results, for the original design EV1695. Also shown is the
NEGF simulation accounting for interface correlation effects. Experimental
data for the device is shown in black.

We conclude that interface roughness scattering plays a crucial role for the per-
formance of this structure, and it is important to model it correctly. As there is
expected to be a large uncertainty regarding the effectiveness of vertical inter-
face correlation effects, minimizing the impact of interface roughness scattering
may result in a large improvement of the performance. This is important, es-
pecially as further active region optimization is not expected to yield significant
improvements on its own. Finally, these calculations indicate that our current
implementation of the NEGF model has problems with extremely large interface
roughness scattering, occurring in these devices with exceptionally high barriers
when neglecting correlations.

5.4 Optimization of short wavelength and low dissipation active
region

Simulations of the design (EV1695) in the previous section showed that interface
correlations are crucial for the operation. However, there is a large uncertainty
as to how large this correlation is in a real system, and therefore we think that
lowering the interface roughness is a good way to increase the wall plug efficiency
in three ways; (i) increased gain due to increased inversion and lower level broad-
ening; (ii) lower current density for a given bias; (iii) decreased absorption due
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Figure 5.7: Gain calculated for a bias of 600 mV/period using SEWLAB and NEGF. For
the NEGF model, data is shown for the cases with (blue) and without (green)
vertical interface roughness correlation. The vertical line shows the observed
laser frequency of 375 meV (wavelength of 3.3 micron).

to lower width of absorbing levels. Employing lower barriers is dangerous, since
the high energy transition requires a large conduction band offset. Instead, if the
layers are grown in integer mono-layers, so that each layer becomes completely
filled with one material before the growth of the next layer, interface roughness
should be minimized. In addition, the variation of period lengths in the sample is
expected to be reduced with this approach, providing a narrower gain spectrum
with higher output power.

In order to see whether the new layer sequence per se improved the perform-
ance, i.e. without assuming a reduction in interface roughness, we use the same
roughness parameters as for the original design. The simulated IV is shown in
Fig. 5.8. Up to threshold, the two simulation models, NEGF and SEWLAB,
provide very similar results, despite the mentioned difference in the treatment of
interface roughness scattering. We also find a lower maximum interface rough-
ness scattering matrix element (about 110 meV) in the NEGF model for the
same parameters, compared to the original design. We attribute part of this
reduction to the fact that the new design has two interfaces less. This indicates
that this design is less sensitive to interface roughness.

We find significant gain at 360 meV (3.4 micron) in SEWLAB, and due to the
width of the gain spectrum (about 60 meV), the target frequency of 375 meV
is still covered. While the wall plug efficiency shown below is calculated at 3.4
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Figure 5.8: SEWLAB simulations of current density vs. bias (solid) and wall plug efficiency
(dashed) for the original (EV1695) and new mono layer design.

micron, it will be slightly smaller at 3.3 micron. Again we find a much lower
spectral peak gain frequency in the NEGF model (about 300 meV).

In these simulations, the lattice temperature is 300 K, while the electron tem-
perature is set to 360 K, which agrees well with the one found in full NEGF
simulations, as well as SEWLAB simulations with kinetic balance.

While the threshold current density is slightly higher for the new design, as can
be seen in Fig. 5.8, the corresponding bias is lower, resulting in a similar (but
lower) wall plug efficiency as for EV1695 at low current density. However, the
wall plug efficiency for a current density of 10 kA/cm2 is significantly improved
from 0.25 to 0.40. Note that these results are found using the same interface
roughness as in the case of the non-mono layer sequence, which we believe is a
pesimistic assumption.

The wall plug efficiency is much better for the new design at high current dens-
ities, which are problematic to reach in a real device due to heat dissipation.
In order to reduce the current density, we have simulated the same sample but
with half the doping density. The simulated wall plug efficiency as a function of
optical output power is shown in Fig. 5.9, and here we see a clear advantage of
the new design compared to the original, especially at low output power, where
the low doped version is very efficient and has a comparably low heat dissipation.
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Chapter 6

Terahertz QCLs

Up to this point, we have generalized and expanded the model in order to re-
produce and predict mid-IR QCL behavior, and we have shown the model is
accurate for a variety of designs in Chap. 5. In this section, the aim is to show
that the model still is able to produce reliable results in agreement with exper-
imental data. We will look at a few examples of THz QCL, and see some of
the conclusion that can be drawn from such simulations. Here, the emphasis
will be on the design schemes, and some specific suggestions for improvements
are given. In the last part of this section, new designs will be presented, which
out-perform any of the THz QCLs previously simulated with our model.

The main obstacle for the terahertz quantum cascade laser [18] (THz QCL)
reaching it’s true potential in industrial and scientific applications is the limited
operating temperature. To date, the maximum operating temperature is 199.5
K [20], while many practical applications require a minimum temperature of 240
K, where electro-mechanical coolers can be employed. Which effect is mostly
responsible for the temperature degradation is not completely settled [93, 94,
95, 96, 40, 41]. It has been speculated that thermal backfilling [3, 97][Paper I]
is one major contributor, while thermally activated longitudinal optical (LO)
phonon emission, i. e. the emission of phonons by electrons of high in-plane
momentum in the upper laser state, is generally accepted as the main cause
[96, 95, 40, 98]. In addition, carrier leakage into continuum states of the Γ-valley
(for low Al content x = 0.15) [41], as well as bound states in the X-valley (for
high Al content x = 0.33) [99], has been shown to have detrimental effects on
the operation on THz QCLs employing the GaAs/AlxGa1−xAs material system.
An increased leakage with lower barriers is also indicated by e. g. Ref. [97]. (For
even higher Al concentration, x = 0.45, Ref. [99] finds that leakage currents are
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suppressed by a stronger localization of the bound states.)

6.1 Injection schemes in THz QCLs

The most promising THz QCL design has been to use a tunneling injection
with resonant phonon extraction [100], most successfully using a diagonal laser
transition [90]. The tunneling injection serves two purposes; it separates the
periods in space so that a LO phonon scattering rate between the LLS and the
ULS of different periods is smaller, and it prevents negative differential resistance
(NDR) at biases lower than that designed for laser operation, by limiting the
current through each period when the tunneling resonance is not satisfied. This
method has been very successful so far, having reached the highest operating
temperature repeatedly [90, 20]. However, this design has inherent drawbacks
as we will discuss below. One attempt to improve on these, is the scattering
assisted (SA) scheme, which is also discussed with regards to two different SA
structures, one an attempted improvement of the other. A more detailed analysis
of the structures in this section can be found in Papers I and II.

6.1.1 Tunneling injection

In order to study the tunneling injection scheme, consider the tunneling injection
THz QCL of Ref. [90], whose conduction band structure is shown in Fig. 6.1
at a bias of 57 mV/period. In addition to the upper laser state (ULS), lower
laser state (LLS) and injector (in) states, this structure features an additional
extraction state to aid the extraction process by having a large overlap with the
injection state of the next period. The injector and ULS are almost degenerate
at the design bias, and share most of the carrier density, which is divided with
about half of the population on each side of the injection barrier, as seen in
Fig. 6.2. This is due to the nature of the tunneling injection scheme and may
give significant thermal backfilling into the LLS. The LLS, on the other hand,
is almost empty in comparison, which means this design is close to optimal.
Furthermore, the inversion at 50 K is 45% of the total population density, which
is very close to the theoretical limit described earlier. Fig. 6.1 (b) shows the
band structure and energy resolved current density at a slightly higher bias,
and indicates that there is significant leakage into the paracitic current state
(PCS), even thought the population of this state is negligible. This leakage
would increase the current density, dissipating more power than necessary with
resulting reduction of efficiency and lattice heating. We also see bands of current
between the ULS and the extractor state at one optical phonon energy below
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Figure 6.1: Tunneling injection design of Ref. [90] with the upper laser state (ULS), lower
laser state (LLS), injector (in) and extractor (ex) states and a parasitic current
state (PCS). The electron densities at a bias of 57 mV per period is shown
in gray scale in (a). (b) Energy resolved local current density at a bias of 61
mV/period, where the PCS is plotted in orange. The lattice temperature in
these simulations is 50 K. This figure is taken from Paper I.

the LLS, caused by LO phonon emission from the bottom of the LLS to a state
of high momentum in the injector.

For this structure, gain drops by 70% when increasing the temperature from 50
to 200 K lattice temperature [Paper I]. In order to explain this, Fig. 6.2 shows the
change in carrier densities of the different states labeled in Fig. 6.1 with tem-
perature. Inversion (considered as the average population in the injector and
ULS, as these states are in resonance) decreases by ∼ 30% over this temperature
range, while the width of the transition increases by ∼ 120%. From eq. (2.49),
this gives an expected reduction of gain by ∼ 73%, which explains the loss seen
in the simulations. Thus the larger fraction of the loss of gain comes from a
radical increase in the transition width, caused by above all optical phonon scat-
tering. This confirms the idea that the main temperature degrading mechanism
in structures with tunneling injection is thermal phonon emission. It is thus im-
portant to find the correct choice of wavefunction overlap, in order to minimize
this rate, but at the same time have an efficient stimulated emission.

Another detrimental temperature effect is the reduction of inversion by thermal
backfilling from the ULS to the LLS and extractor. In Fig. 6.2, the dashed
lines show the expected amount of carriers removed from the ULS by thermal
excitations (if the populations follow a Fermi distribution). This can be seen to
account for about half of the increase in the LLS population.

In conclusion, this design is already highly optimized for gain, since the inversion
is close to the theoretical limit at low temperatures. However, the high temper-
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C in order to coincide the curves at 200 K for easier comparison. The dashed,
diamond-marked curve shows the reduction of nULS due to the backfilling of
nLLS, where D is again a constant used for comparing the curves. The data
is taken at 57 mV/period. These figures are taken from Paper I.

ature performance could be optimized by lowering the dipole matrix element
between the ULS and LLS (to reduce phonon emission ULS→LLS). It is less
clear how to reduce thermal backfilling, however this is likely of less importance
[96, 95, 40, 98].

6.1.2 Scattering assisted injection

The scattering assisted injection scheme [34] uses an additional optical phonon
transition in the current path compared to the tunneling injection scheme, in
order to inject carriers into the upper laser level. This allows for a larger bias
drop over one period which is supposed to reduce thermal excitations to the
lower laser level. However, one would expect there to be twice the occupation
of phonon modes in the lattice, providing more lattice heating than for phonon
extraction only.

In Ref. [37] we investigated a SA structure labeled V843, shown in Fig. 6.3. The
structure was designed using a rate equation model, to optimize the level energies
and wavefunction overlaps to match the suggested SA scheme as follows: The
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Figure 6.3: Band structure of the QCL in Ref. [37] as well as the carrier density and the
Wannier-Stark states, at a bias of 78 mV/period for T = 125 K.

injector state (i) has to be one phonon energy ELO = 36 meV above the ULS
and below the LLS of the previous period, as shown in Fig. 6.3. This actually
means that, theoretically, almost all carriers can be in the ULS, in contrast to
the tunneling injection scheme. At the same time, the extraction state (e) needs
to be aligned to i. This can only happen at a specific bias, due to the spatial
separation of the ULS and LLS. The experimental device did not, however,
operate up to a temperature as high as expected from the original simulations,
although the simulated current density matched the experimental one well. In
order to more deeply investigate the design, we also simulated it using our NEGF
model, and found excellent agreement to the experimental data both for current
density and gain [37]. In contrast to the simpler model, however, we find that
the extraction energy ELLS − Ee ≈ 27 meV was not well matched to ELO, as
shown in Fig. 6.4 (a). Instead, we find that the transition from the ULS directly
down to the extraction state has an energy only slightly larger than ELO. We
attribute the different results for the two models to the inclusion of a mean field
potential, as well as the shift in energy coming from the real parts of the self-
energies. From the densities in Fig. 6.4 (b) it is also evident that the extraction
energy is too low, since the extraction state is highly populated at the same time
as the LLS population is larger than that of the injector state.

Now we investigate the design presented in Paper II, called V845. This design
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Figure 6.4: Transition energies (a) and populations (b) of the SA design V843 [37], as
functions of the applied bias. Since the injection energy Ei − EULS is well
matched to ELO the injection rate is fast and the injector state population is
low, except at the bias of the tunneling alignment where is shares density with
the highly populated extraction state. The inversion is increasing even after
the tunnel alignment since the leakage channel energy EULS − Ee increases
away from ELO.

was intended to improve V843 by better matching the extraction energy ELLS−
Ee to ELO at the bias of the tunnel resonance. The NEGF simulations shown
in Paper II were performed with the one-band model, and the difference when
including the valence band components can be seen in Fig. 3.3. The main effects
are a lowering of the overall gain by 5-10 cm−1, a slight red-shift of the spectral
peak gain position, and slightly higher current density. The energy levels of
the Wannier-Stark states calculated in the two-band model with eq. (2.31) are
shown in Fig. 6.6. Indeed this design has a better matching of ELLS − Ee to
ELO compared to V843, and throughout the bias range in Fig. 6.6 the density of
the LLS is kept low. However, we find that now the injection energy Ei −EULS
deviates from ELO instead. As a result, carriers accumulate in the injection
state, seen by the high electron density in Fig. 6.5. Another effect from the
low injection energy is that the energy difference between the ULS and the
extractor state EULS − Ee is close to ELO (see Fig. 6.6), which works directly
against inversion. As for the previous design, we attribute the main part of the
differences between the rate equation results in Paper II and the results from the
NEGF model to the real parts of the self-energies and the mean field potential
included in the NEGF model.

In conclusion, we find that the tunneling injection scheme is operated close to it’s
theoretical limit, but is still limited to operation below 200 K lattice temperature.
This prompts the use of different design schemes in order to reach higher operat-
ing temperatures, such as the two scattering assisted injection designs investig-
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states, calculated via eq. (2.31), at a bias of 70 mV/period and a lattice
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ated. However, one has a too low extraction energy, which results in a LLS pop-
ulation greater than the population of the injector state. For the other structure,
the injection energy is too low instead, resulting in an extractor state population
that is greater than the ULS population. Bringing both the injection and extrac-
tion energies close to ELO at the same bias (close to the bias of the tunnel reson-
ance), one would hope to achieve a configuration where nULS > ne/nin > nLLS.
It therefore seems that this scheme has room for improvement by further optim-
izing the level energies, so that Ei − EULS ≈ ELLS − Ee ≈ ELO and Ei ≈ Ee at
one specific bias. It is important to take into account mean field effects in such
an optimization.
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6.2 Two-quantum well designs

To date, the device with highest operating temperature is based on a resonant
tunneling injection and resonant phonon extraction design, with a diagonal lasing
transition and x = 0.15.[20] The diagonal design aims to limit the wrong injec-
tion directly into the lower laser state [93], as well as the emission of thermally
activated phonons, by reducing the dipole matrix element zul between the up-
per (u) and lower (l) laser levels. This increases the inversion ∆nul, but at the
same time reduces the (scaled) oscillator strength ful = 2m∗ωulz

2
ul/~, where

ωul = (Eu − El)/~ is the energy difference between u and l, and m∗ is the ef-
fective electron mass1. Since the modal gain G(ω) given by eq. (2.49) close to
the resonance laser frequency ~ω ≈ ∆Elu is

G(ω) ∝ ∆nul~ωz2
ul

dΓw
∝ ful∆nul

dm∗Γw
, (6.1)

where Γw is the transition line width and d is the period length, the maximum
gain is found at some trade-off between oscillator strength and inversion.

The oscillator strength is proportional to the photon energy ~ω, although at high
energies ~ω & 20 meV, or frequencies ν & 5 THz, optical losses are increased
by the absorption of photons by LO phonons, and the probability of thermally
activated phonon emission is greater. The previous record-holding design [90]
has ful = 0.38, while the corresponding value for the current record-holding
design [20] is ful = 0.58. The good temperature performance of the latter design
is attributed to the optimized oscillator strength. In contrast, a systematic study
of four-well designs with scattering assisted injection [101], oscillator strengths
between 0.26-0.47 had a negligible impact on the laser performance.

As the gain G(ω), given by eqs. (2.49) and (6.1), is inversely proportional to the
period length d, a short design is beneficial. Refs. [90, 20] are based on three
quantum wells, with period lengths of ∼ 45 nm. In order to make the period
shorter, a two-well scheme can be employed [39, 31, 102]. The design by Kumar
et al. [39] has d = 32.5 nm, while the one by Scalari et al. [31] has d = 34.5 nm.
The structures presented in this work are even shorter (d = 31.4− 31.6 nm).

The two-well lasers in Refs. [39, 31] lased up to a lattice temperature of TL ∼ 120
K. Kumar et al. attributes [39] the poor temperature performance to a leakage
current from the upper laser level into a highly excited parasitic state. We believe

1In the calculation of f we assume m∗ = 0.067m0 is constant for simplicity, as non-
parabolicity is not expected to significantly alter the results in these types of structures. In
the full NEGF calculations, however, non-parabolicity is taken into account in the two-band
model described in Chap 3.
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it is likely that the discrepancy between simulated (jNEGF = 0.3 kA/cm2) and
measured (jmeas. = 0.8 kA/cm2) current density for the sample of Ref. [31] for
TL = 100 K is similarly due to current leakage into the continuum. Compared to
three- or four-well structures, the situation is worse with only two quantum wells,
since the short period requires a higher electric field to encompass similar laser
frequencies, and the wavefunction overlap between the highly occupied states
and states of the next period is larger. To prevent such continuum leakage,
a material with higher conduction band offset can be used [37, 41, 103, 104].
We find that even though interface roughness scattering is increased, it is of
negligible importance (see Paper VI) for the structures studied here. Also, by
keeping the Al content moderate x ≈ 0.25, X-valley leakage is not expected to
be a bigger concern than for x = 0.15.

Building upon these ideas, we have designed three two-quantum well lasers with
varying oscillator strengths, based on the GaAs/Al0.25Ga0.75As material sys-
tem. In addition, the designs have both resonant tunneling and phonon extrac-
tion (double extraction). The structures were optimized by iteratively varying
the layer sequences to achieve better characteristics, such as gain and oscillator
strength. Crude approximations to the final results were found with a density
matrix approach [92, 60], while fine-tuning of the energy levels and wavefunc-
tions was accompliced using a non-equilibrium Green’s function (NEGF) model
[64][Paper III]. The latter has a more elaborate treatment of scattering and co-
herences, and is therefore more reliable for THz structures, where coherences
play an important role [59, 105]. Here it is important to point out that this
model includes all of the discussed temperature degrading mechanisms, with the
exception of current leakage to continuum states, since the basis states used are
localized in nature [64][Paper III] and this would require an unfeasible number
of states in the calculations. It also includes free-carrier absorption within the
active region.

6.2.1 Design Concepts

Fig. 6.8 shows the three designs, denoted by A, B, and C. Common for all struc-
tures is the use of 25% Al barriers, as well as tunneling injection and phonon
extraction. In addition, level 4 aligns with the level l of the previous period. This
alignment also occurs for the two-well structures of Refs. [39] and [31], albeit at
a different bias than the operation point. However, for these earlier designs with
lower barriers, the wave-functions of levels 4 and 5 have significant amplitudes in
the continuum, and alignments of these states with the highly populated active
states is therefore at risk of providing significant leakage currents, reducing in-
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Figure 6.7: Schematic illustration of the process giving free-carrier gain (FCG). Radiative
transitions from i → v, or from v′ → a are shown by wavy lines, while LO
phonon transitions v → a and i→ v′ are shown as green arrows. v and v′ are
virtual states, while a can be chosen to be the ULS. In order to get a large
FCG, the dipole matrix element between levels i and a should be large, as well
as the population of i (though it does not have to be larger than that of a).

version and increasing current density and heating the active region. In contrast,
levels 4 and 5 in Fig. 6.8 are well confined below the barriers, and we are free
to use these levels to our benefit. At the operation bias, this alignment provides
an additional depopulation of l via resonant tunneling, and then LO phonon
emission from 4 directly to u′ of the following period.

Another benefit of this scheme can be seen in Fig. 6.8, where all structures are
shown at biases still in the region of positive differential conductance (PDC).
Here, level u is actually lower in energy than the injector level 1. This is pos-
sible since the overlap between levels u/5 and l/4 provides PDC even after the
alignment bias of u/1. This allows for higher inversion on the main laser trans-
ition than the limit (half the doping density) placed by the resonant tunneling
transition, as the carriers will be more localized in the narrow well.

Elastic scattering is dominated by impurity scattering (Γimp & 10 meV while
ΓIFR . 1 meV), since for these short structures impurities must be placed where
they affect either u or l. We have minimized this impact by placing the dopants
where the wavefunction l has it’s node in the wider well.[31]

In QCL heterostructures, the free-carrier absorption (FCA) is quite different
from that of bulk materials [106]; it is much smaller and the biggest contribu-
tion comes from the interaction with light via LO phonon scattering, for the
structures studied in this work. In fact, if the electron temperature Te is high
enough above TL, Te ≥ TL(1+~ω/ELO), where ELO = 36 meV is the LO phonon
energy, the FCA mediated by LO phonon absorption can actually become neg-
ative [106, 107]. As is illustrated in Fig. 6.7, this process requires a transition
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Figure 6.8: Band structure and square of the wavefunctions for the three two-well designs
close to the peak current density (at biases of 55, 55, and 49 mV/period
respectively for A, B, and C), where A has similar oscillator and coupling
strengths, as well as frequency as Ref. [31], B has been optimized for high gain
at 200 K, and C is designed to have large negative free-carrier absorption. The
layer sequences for the respective structures are A: 33-85-26-172, B: 34-85-
18-177, and C: 30-92-16-177, where bold face denotes the barriers. All three
lasers are doped to 3 · 1010 cm−2 in the middle of the widest well in order to
minimize the impact of impurity scattering.
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from a highly populated level i to one of two virtual states v and v′ of energy
Ev = Ea +ELO = Ei− ~ω and Ev′ = Ei−ELO = Ea + ~ω. Here, level a has an
energy ELO + ~ω below level i. In addition, eq. (14) of Ref. [106] suggests that
one should choose as low frequency, short period length, high dipole moment zai,
and high electron temperature Te as possible, in order to improve this free-carrier
gain (FCG) [107].

6.2.2 Simulation results

NEGF simulations of the previous two-well designs (Refs. [39, 31]) have shown
a large pre-peak at the bias where l aligns with level 1. As can be seen in
Fig. 6.9, this is not the case in the present designs. Further simulation results
are summarized in Tab. 6.1.

Table 6.1: Summary of NEGF simulations for the two-well designs in Fig. 6.8 as well as
Refs. [39] and [31]. Units for doping density and inversion, current density, and
gain are 1010 cm−2, kA/cm2, and cm−1, respectively.

Sample n2D jNEGF
max (TL) Gmax (TL) fosc. ∆nul

Ref. [39] 2.2 1.20 (200 K) 34 (200 K) 0.53 0.65
Ref. [31] 1.5 0.46 (200 K) 13 (200 K) 0.13 0.44

A 3 0.90 (200 K) 32 (200 K) 0.11 1.20
1.5 0.49 (200 K) 20 (200 K) 0.55

B 3 1.51 (200 K) 57 (200 K) 0.3 0.95
3 1.53 (300 K) 20 (300 K) 0.59
2 1.05 (200 K) 43 (200 K) 0.56
1.5 0.80 (200 K) 35 (200 K) 0.41

C 3 2.41 (200 K) 46 (200 K) 0.47 0.41
2 1.62 (200 K) 36 (200 K) 0.38a

1.5 1.25 (200 K) 28 (200 K) 0.31

aNote that for C, the gain is the sum of the transitions u→ l, 5→ 4, as well as FCG, which
explains the low inversion of the main transition compared to Kumar et al. [39].

Laser A

Laser A has been designed to have an oscillator strength ful = 0.11 (0.13 in
Ref. [31]), frequency ~ω = 17 meV (16 meV in Ref. [31]), and tunnel coupling
~Ω as close as possible to the QCL of Ref. [31]. Evidence of the similarities of
the structures is the close match between the current densities and population
inversions in Tab. 6.1. Concerning the slight difference in oscillator strengths, it
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should be noted that this quantity varies significantly with bias. The optimized
structure A has a 65% higher gain than the reference QCL, even though inversion
is only 25% higher.

Laser B

Laser B has been optimized to give as high a gain as possible at 200 K. We see
from Tab. 6.1 that for the high doped version we find a very high gain of 55
cm−1 at 200 K, and still 20 cm−1 at 300 K. This is much better than the gain
of the previous designs [39, 31]. The efficacy of the double extraction scheme
is evident in the electron densities ρi of laser B for the simulation parameters
of Fig. 6.8 (b), where we find ρu = ρ1 = 1.3 · 1010 cm−2, ρl = 3.5 · 109 cm−2,
ρ4 = 1.3 · 109 cm−2, and ρ5 = 2.2 · 108 cm−2 at TL = 200 K. This shows that
resonant tunneling from level l to level 4 is active, and that inversion is good even
at this high lattice temperature (see also Tab. 6.1). Here, care has to be taken as
we have actually negative inversion between levels 4 and 5, which might provide
large absorption due to the very large f45 = 1.6. This is avoided by having an
energy separation E5−E4 = 11 meV between levels 4 and 5 that is smaller than
the laser transition energy ~ω = 17 meV.

As can be seen in Tab. 6.1, the gain does not scale linearly with doping; we
find significantly more than half the gain for half the doping density for all
samples, which can be explained partly by an increased line broadening Γw due
to increased impurity scattering.
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Laser C

Finally, laser C has gain from three contributing channels; (i) the normal gain
transition from u to l, with ∆nul = 0.38·1010 cm−1; (ii) the transition 5 to 4 with
a very large dipole matrix element (f45 = 1.75) and inversion of ∆n45 = 0.1 ·1010

cm−1, which is possible since the alignment of u and level 5 occurs at a lower
bias than the alignment of l and 4; (iii) free-carrier gain (FCG) between level 5
and virtual states one ELO above u and below l, as explained above. The levels a
and i are here levels u and 5, respectively, where the dipole moment zu5 has been
maximized. This was achieved by swapping energies of levels 4 and 5 compared
to lasers A and B; it can be seen in Fig. 6.8 c) that level 4 is now the first
excited state of the narrow well, while level 5 is the second excited state of the
wide well. In addition, the laser barrier was made thinner, which simultaneously
gives a large oscillator strength of ful = 0.47. For a lattice temperature of
TL = 200 K, Fig. 6.11 shows the calculated FCG using either Te = 280 or 300 K
in eq (14) of Ref. [106]. The behavior at the laser frequency ~ω = 14 meV is very
sensitive to electron temperature, and we need Te > 300 K in order not to have
absorption, in which case the contribution to the gain is expected to be a few
cm−1 for a doping concentration of 3 · 1010 cm−2. In fact, in laser C, the upper
level 5 is highly populated as it is aligned with u of the previous period, and
the effective temperature Te is therefore significantly higher. Although E5 −Eu
is not perfectly matched to ~ω + ELO, further optimization is not expected to
yield a FCG comparable to the total gain.

The gain for laser C is lower than that of B, mainly due to the large oscillator
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Figure 6.11: Logarithm of the modulus of the free carrier absorption due to LO phonon
absorption, for laser C. Below the arrows there is gain and above there is
absorption. At the frequency (E5−Eu)/~, close to the laser frequency, there
is a gain peak for Te = 300 K, and an absorption peak for Te = 280 K.
The doping density is n2D = 3 · 1010 cm−2. Figure and simulations made by
Camille Ndebeka-Bandou, ETH Zürich 2015.

strength, which gives a low inversion. Compared to the laser by Kumar et al., the
design is quite similar, as evident from the similar ful, current density, and gain.
They differ significantly in ∆nul, however, which is explained by the separation
of the total gain of 36 cm−1 into the two main channels (i) and (ii); channel (i)
has a product of ∆nul · ful =0.175 cm−1, while the corresponding number for
channel (ii) is 0.179 cm−1. As their transition line widths are similar, this shows
that the transition 5 to 4 contributes to the total gain only slightly less than the
conventional gain transition.
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6.2.3 Conclusions

We have presented three (A, B, and C) two-quantum well THz QCL designs,
with tunneling injection and both LO phonon and resonant tunneling extraction.
The latter extraction mechanism is made possible by the use of taller barriers
as compared to previous two-well designs [39, 31], a feature which is also ex-
pected to reduce parasitic currents into the continuum [41]. Compared to the
design of Ref. [31], which is similar to but with lower barriers than A, we find
almost twice the gain, and only a slight increase in the simulated current density.
Furthermore, we expect that higher barriers lead to a better agreement between
measurements and simulations, reducing the current density as well as increasing
the gain in a real device. Another sample, B, has a very high gain (57 cm−1) at
200 K, and the NEGF simulations predict that the gain is possibly sufficient to
overcome the optical losses even at room temperature. Finally, we have designed
a laser, C, which has three distinct gain channels which together provides a gain
of 46 cm−1 at 200 K. The most contributing channel after the conventional one,
exploits a transition with low inversion but very large oscillator strength between
highly excited states. While such transitions decay rapidly with increased op-
tical field strength, it is promising for enhancement of the maximum operating
temperature, especially if the inversion of the main transition can be improved.

Finally, it is worth to note that the only effect of the specific Al content used is
on the band offset ∆Ec = 217.5 meV and the barrier effective mass mb = 0.0877.
These designs were optimized using these values, and since it is not entirely clear
which offset to use for a specific Al contents, a growth may require adjustments
of this value in order to give the required ∆Ec.





Chapter 7

Conclusions and outlook

This thesis describes the extension of an NEGF approach used to simulate THz
QCLs to great success, to give accurate results also for mid-IR lasers for the
first time. This has paved the way for future improvements of mid-IR designs,
using a model that accounts for the complex physics in the most fundamental
and sophisticated way and at the same time gives results in close agreement
with experimental data for real devices. To achieve these results, the model has
now been generalized to a two-band model as non-parabolicity is important for
mid-IR devices. In order to perform simulations within reasonable time, the pro-
gram has been parallelized in two stages; to be able to run locally with multiple
processors sharing memory, as well as massively parallel cluster computations
using message passing communications. This was absolutely necessary in order
to obtain the results for mid-IR QCLs presented in this thesis. After these imple-
mentations, the model was used to successfully reproduce experimental results
for several mid-IR QCLs, while THz QCL behavior can still be modeled with
great accuracy. Thus, we now have a computer model that can accurately re-
produce experimental behavior of a wide range of samples; from two-well based,
as well as conventional, structures for THz radiation, to structures covering all
of the mid-IR spectrum from 3-12 µm.

The impact of interface roughness scattering was investigated, as this is more
important in mid-IR devices due to their higher conduction band offsets. In
detail, we study relevant interface roughness auto-correlation functions (expo-
nential and Gaussian to be precise), the inclusion of the valence band, as well
as vertical interface correlations. We find that it is important to consider all of
these points, while acknowledging that the details of the actual roughness distri-
bution of experimental devices remain unknown. In future versions of the NEGF
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program, it would therefore be motivated to include more thoroughly vertical
interface correlations.

In the course of this work, the NEGF model has been compared to several sim-
pler models. We find that these results agree well, and thus we have asserted the
confidence in the accuracy of ours and others’ current state-of-the art models of
varying degree of complexity. Some investigations into THz samples have also
been conducted, as these devices are highly interesting for the under-developed
THz spectral range. The most important results are the assertion that the SA
THz structures in the published literature are not perfectly designed, and sugges-
tions of improvements are found, as well as the affirmation of the success of the
resonant phonon depopulation scheme. We also propose three new THz designs
that show a promising gain at lattice temperatures above 240 K (and which
can therefore be cooled electronically). These new devices will be grown and
tested in the future, and such measurements may indicate further improvements
to bring THz QCLs closer to room temperature operation.

As an outlook, a new time-resolved density matrix model is under development,
and therefore not presented in this thesis. This model treats the time evolution
of all coherences of the density matrix, and includes all scattering between co-
herences and densities using a Boltzmann distribution for the in-plane momenta.
While the model shows promising results for simple test cases, due to the choice
of basis states, QCLs have not yet been accurately modeled. The strength of
such a model would be faster calculations and time-resolved simulations (en-
abling the study of electro-magnetic pulses, multiple simultaneous frequencies
and much more), which are of high interest in many QCL applications. It would
also be a great tool in conjunction with the NEGF model, since the latter could
be used to validate the former and cross-check results between the models.

In conclusion, we now have an NEGF model capable of accurately and reason-
ably fast simulating the whole range of QCLs; from the longest wavelengths of
THz QCLs, to the shortest IR ones. The model can be used for designing new
structures, or to give in-depths analysis and explanations of the performance
of experimental devices. This will be an important tool for developing future
QCL devices, in an exciting field that is rapidly growing and transitioning from
scientific curiosity to real world applications. And perhaps in the future, we
will see something like what is envisioned in the upcoming computer game “Star
Citizen”: “Quantum cascade lasers fire electromagnetic bolts that convert any
material contacted into plasma, giving it a reasonable ’bite’ that is useful in most
space combat encounters.” [108] However, this requires a significant increase in
the output power.
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Injection schemes in THz quantum cascade lasers under
operation

M. Lindskog, D. O. Winge, and A. Wacker

ABSTRACT

The two main design schemes for Terahertz quantum cascade lasers, based on tunnelling and scattering injection,
respectively, are theoretically compared. We apply our simulation package based on the non-equilibrium Green’s
function technique. Our results provide a good description of the gain degradation with temperature. Thermal
backfilling contributes to decrease of population inversion in both cases. However, the dropping inversion cannot
account for the total reduction of gain.

1. INTRODUCTION

Terahertz (THz) radiation is an important part of the electro-magnetic spectrum for high-technological appli-
cations in the fields of medicine and astronomy, amongst others.1,2 In order to fully develop these applications,
compact, high-power devices are needed and the quantum cascade laser3 (QCL) is a promising device capable of
combining these features. Much effort has been put into improving the temperature performance of these lasers,
the best to date working up to 199.5 K,4 which still requires cryostatic cooling.

The tunnelling injection (TI) design5 has been very successful, setting new records in temperature performance
repeatedly by using a diagonal lasing transition instead of a direct one.4,6 It has not been able, however, to
operate at temperatures with thermal energies significantly above the energy of the lasing transition, why it
is thought that there is some fundamental limitation of the performance of QCLs of this design. It has been
pointed out7 that this limitation might come from the temperature broadening of the active QCL states making
the tunnel injection to the lower laser state significant compared to the injection to the upper laser state. It is
also a well known fact that thermal backfilling into the lower laser level worsens inversion at higher temperatures.
Indeed, the TI design has the fundamental limitation that the population inversion cannot exceed 50 % of the
total population.8,9

For the above given reasons, the indirect pump scheme,8 or scattering assisted (SA) injection design was
proposed, initially in the mid-infra-red, where the injection into the upper laser state is assisted by longitudinal
optical (LO) phonon scattering, thus eliminating the problem of tunnel injection into the lower laser level. In
addition, the population of the extractor level is supposedly lower in this design, reducing the thermal backfilling
into the lower laser level. In the THz regime, SA designs7,10,11 have operated at thermal energies exceeding the
lasing energy by up to almost two times, however still at cryostatic temperatures (a maximum temperature of
163 K has been achieved7).

In this work we investigate the two designs described above using the non-equilibrium Green’s function
(NEGF) method, which gives detailed information about carrier distributions as well as current densities and
gain characteristics. The stability of population inversion with respect to bias drop and temperature is studied,
as well as the main reasons for the loss of population inversion and gain.
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2. MODEL

Our model was recently described in some detail12 with the possibility to include higher harmonics of the external
ac field. The model takes into account the superlattice potential, an external classical electro-magnetic field (with
one dc part and one ac part), and the mean field potential from the carrier and doping densities. In addition,
phonon, impurity and interface roughness scattering with electrons are included by the means of self-energies.
We here briefly present our model extended to take into account the non-parabolicity of the conduction band
within the effective two-band model, in which the effective Hamiltonian is written13

H =

(
Ec + eΦ pcv

m0
(p̂− eA⃗)

pvc

m0
(p̂− eA⃗) Ev + eΦ

)
(1)

and the Schrödinger equation
Hψα = Eαψα, (2)

with the two-component wave functions

ψα =

(
ψα
c

ψα
v

)
(3)

provides the valence band components ψα
v in terms of the conduction band components ψα

c

ψα
v = −h̄

√
2mc(Ec, z)

Eg(z)

1

mc(Eα, z)

∂ψα
c (z)

∂z
(4)

in the absence of the electro-magnetic field. Here, the effective mass is defined as

mc(E, z, t) = −1

2
m2

0

E − Ev(z)

|pcv|2
= mc(Ec, z)

E − Ev(z)

Eg(z)
, (5)

where mc(Ec, z) is the effective mass at the conduction band edge. For simplicity, we assume that the lateral
effective masses are constant. Thus, we can easily obtain the valence band components from our previously used
basis states ψα

c (z), to obtain the two-component basis states (3).

The two-component formalism requires new matrix elements for the desired observables and scattering terms
to be calculated using the wave functions (3), which is straightforward in most cases. However, the current
density can no longer be expressed simply as12

J(z, t) = eℜ

{⟨
p̂− eA⃗

mc(z)

⟩}
(6)

since the effective mass is now energy dependent; we have to find the current operator from more basic principles,
such as the continuity equation or the time derivative of the position operator, both giving the same result

Ĵ =
1

A

∑
k

∑
mn

(
ψn∗
c ψn∗

v

)
J(z)

(
ψm
c

ψm
v

)
a†n(k)am(k) ≡ 1

A

∑
k

∑
mn

Jmna
†
n(k)am(k), (7)

where A is the cross-sectional area and

J(z) =
e

m0

(
0 pcv
pvc 0

)
. (8)

Interestingly, the current density operator, and consequently its expectation value, no longer explicitly contain
the vector potential A⃗, and the basis states can be chosen to not depend on A⃗ either.

We model the QCL system by an infinite repetition of one period of the structure. This approximation
allows for neglecting the leads as well as calculating the Wannier states of the sub-bands ψc

α(z, t) using periodic
boundary conditions. The latter gives more reliable eigen-energies than the conventionally used Wannier-Stark
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states, if sufficiently many basis states are included, while the former is hardly expected to make any difference
for the central periods of THz QCLs, which typically consists of more than 200 periods.

In order to describe the system as physically accurate as possible, we use non-equilibrium Green’s functions
to express the observables of interest. This method, used by various groups simulating QCL systems,14–17 keeps
the coherences between the states and allows for a consistent treatment of scattering mechanisms and many-body
interactions. For instance, one Green’s function of interest is the lesser Green’s function G<, defined as:

G<
α,β(k, t1, t2) = i⟨a†β(k, t2)aα(k, t1)⟩. (9)

In order to account for non-linear response to the ac electro-magnetic field, we allow the system to oscillate at
the different harmonics of the field frequency Ω. This allows for Fourier expanding in terms of the fundamental
frequency Ω, yielding the Fourier transform for all self-energies and Green’s functions

F (k, t1, t2) =
1

2π

∫
dE
∑
h

e−iE(t1−t2)/h̄Fh(k, E)e−ihΩt1 (10)

Using the above definitions, the expectation value of the current density becomes (with t1 = t2 = t)

⟨Ĵ(z, t)⟩ =
1

A

∑
k

∑
mn

Jmn(z)⟨a†n(k, t)am(k, t)⟩ (11)

= −i 1
A

∑
k

∑
mn

∫
dE

2π

∑
h

Jmn(z)G
<
mn,h(k, E)e−ihΩt. (12)

Finally, we point out that all temperatures given refer to the phonon distributions in the lattice, while the carrier
distribution is in non-equilibrium.

3. RESONANT PHONON DESIGN

The tunnelling injection design has repeatedly broken the terahertz temperature record.4,6 A resonant tunnelling
current serves as a fast way of filling the upper laser state while the lower laser state is placed at an optical
phonon energy above the injector state. The robust injection and very fast extraction builds up the inversion
at the design bias. One period of the sample of Ref. 6 is shown in Fig. 1(a). The bias is 57 mV/period and
it is around this bias that the crossing of the injector and the upper laser state (ULS) occurs. The transition
energies of this design are shown in Fig. 2 as functions of applied bias. This figure shows a robust performance
over a wide bias range, also seen experimentally6 where lasing was observed over a 13 mV wide bias range per
period. The injector and ULS are clinging together and the extraction energy is close to the optical phonon
energy ELO = 36.7 meV in GaAs.

From the current-voltage characteristics displayed in Fig. 3(a), we see that the region of negative differential
resistance (NDR) of this design begins at a bias well above the bias of the crossing of the injector and ULS in
Fig. 2. This can be understood by two effects. Firstly, despite the level crossing at about 57 mV per period the
densities in Fig. 1(a) show that the electrons just right of the injector well still have higher energy than those
in the left one at that bias. This effect helps the system keep a positive differential resistivity and can only be
seen when resolving the energy distribution of the electrons. Secondly, the aligning of the parasitic current state
(PCS) to the injector and ULS also enhances the current density, which can be observed by resolving also the
local current density in energy as shown in Fig. 1(b).

Another detail in Fig. 3(a) is the peak at around 37 mV per period. This has no counterpart in measurements
made6 and we currently attribute it to a long range tunnelling effect that might survive due to the lack of electron-
electron scattering in our model,12 though we have no clear cut interpretation of this phenomenon at this time.
The same effect might cause an overestimate of the parasitic current from the injector and ULS to the PCS at
higher biases.

As temperature increases, electrons gain thermal energy and occupy states of large in-plane momentum k
to a higher degree, which results in an increase of the LO phonon emission rate in the ULS as the transition
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Figure 1. (a) Tunnelling injection design of Ref. 6 with the upper laser state (ULS), lower laser state (LLS), injector (in)
and extractor (ex) states and a parasitic current state (PCS), as well as the electron densities at a bias of 57 mV per
period. (b) Energy resolved local current density at a bias of 61 mV/period, where the PCS is plotted in orange.
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Figure 2. Transition energies for the energy levels shown in Fig. 1(a) of the tunnelling injection design as functions of
applied bias. The dashed line shows the LO phonon energy ELO in GaAs.
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Figure 3. (a) Current-voltage characteristics of the tunnelling injection design. The change in peak current density with
temperature is displayed. Gain simulations were carried out at the marked bias points for 50 K, see (b). For the 57 mV per
period point, gain degradation with temperature is also shown, where the dashed lines represents different temperatures.

energies EULS +Ek −ELLS and EULS +Ek −Eex of the electrons with a significant Ek are closer to ELO. This
explains the strong enhancement in current with temperature.

Fig. 3(b) shows the gain spectra at the bias points marked in Fig. 3(a). This shows, in addition to Fig. 2, that
the lasing range is wide, since gain sufficiently large to overcome the level of losses (assumed to be significantly
below 40 cm−1) can be observed for a bias range of more than 13 mV per period (at 48 mV per period calculations
show gain around 40 cm−1 for h̄ω = 14 meV). This is in good agreement with the experimental measurements
of a bias range of ∼ 13.5 mV/period.6

The experimentally observed laser peak is at a photon energy of 16 meV, and a small shift in energy is also
seen when going from lower to higher biases. Fig. 3(b) shows a drift of the frequency of peak gain, and at the
highest current point it is substantially higher than what was measured. This might indicate that experimentally
lasing has already stopped from entering the NDR, while in our simulations this has not happened due to an
overestimate of the parasitic leakage current.

Our simulations show that threshold is reached at about 350 A/cm2 which reasonably matches the exper-
imental results. Peak current is found to be 600 A/cm2 at 50 K, whereas measurements suggest 850 A/cm2.
However, this high current density is measured under lasing conditions, whereas the current density in Fig. 3(a)
is calculated in the off-state of the laser.

As temperature increases we find that current rises and gain drops, as can be seen in Fig. 3(b) for the bias
point 57 mV per period. At 200 K lattice temperature, the laser has sufficiently large gain in order to overcome
the level of the losses, but this is expected to stop at a somewhat higher temperature. This is consistent with
the fact that experimentally, lasing stops at 186 K heat sink temperature.6 The degradation of inversion with
temperature can be seen in Fig. 4 where the densities are plotted against temperature. Assuming a Fermi
distribution for the injector state (in) we can explain half of the increase of nLLS by means of thermal backfilling.
Furthermore, we see no indication of a parasitic current from the injector to the LLS. A possible additional effect,
which might further degrade the performance, is hot phonons out of equilibrium,18 which is not considered here.

Despite having a drop in population inversion of about 30 % over the temperature range shown in Fig. 4,
gain drops by 70 % and so the decrease in population inversion, and thus thermal backfilling, can only account
for about half of the reduction of the gain. This effect was also noted in Ref. 19, and more research into the
origin of the remaining reduction of gain is necessary for a complete understanding of this phenomenon.
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Figure 5. Band structure of the QCL in Ref. 10 as well as the carrier density and the Wannier-Stark states, at a bias of
78 mV/period for T = 125 K.

4. SCATTERING ASSISTED DESIGN

The scattering assisted injection scheme8 uses an additional optical phonon transition in the current path com-
pared to the tunnelling injection scheme, in order to inject carriers into the upper laser level. This allows for a
larger bias drop over one period which is supposed to reduce thermal excitations to the lower laser level. How-
ever, one would expect there to be twice the occupation of phonon modes in the lattice, providing more lattice
heating than for phonon extraction only.

We investigate here the structure, shown together with the carrier densities in Fig. 5, from Ref. 10. There
we discussed the importance of taking into account the mean field in the optimization process, since even small
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Figure 6. (a) Simulated current density of the SA QCL10 as a function of applied dc bias per period for three different
lattice temperatures and (b) gain profile at different biases for the same structure, for a lattice temperature of T = 50 K.
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Figure 7. (a) population densities of the extraction (e), injection (i), lower (LLS), and upper laser states (ULS) as well as
(b) transition energies of the SA design, as functions of applied bias.

differences in the conduction band profile might put the tunnel resonance at a bias where unwanted effects occur,
for instance that the phonon resonances are not satisfied.

Figure 6(a) shows the simulated current density as a function of applied bias per period. For low temperatures,
the maximum current (Jmax) occurs at a bias of 78 mV/period, whereas for slightly higher temperatures it occurs
at 74 mV/period, and then slowly shifts back to 78 mV/period at 300 K. There are two smaller current peaks
at 16 and 32 mV/period, which arise when the injector and extractor levels align with the lower and upper
laser levels respectively. These peaks are also seen in the experiment and our model reproduces them well. In
addition there are two very sharp peaks at 51 and 56 mV/period, which occur due to long range tunnelling as
the high energy state in the ULS well aligns with the lower and upper laser level respectively. These peaks have
not been seen in experiments10,11 and we currently attribute them to unexplained artefacts of our model. The
gain, shown in figure 6(b) for different biases, exceeding the level of losses (assumed to be 20 cm−1) is peaked at
12-14 meV, corresponding to frequencies of 3-3.5 THz, in good agreement with experimental data.10

Fig. 7(a) indicates that the tunnel resonance where nin ≈ nex occurs around a bias of 74 mV/period. At
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Figure 8. (a) Maximum gain and current density as well as (b) the population densities as functions of the lattice
temperature at the bias of Jmax. nULS · f(T,Ein −EULS) shows the appreciated change in ULS population due to thermal
backfilling into the injector state.

70 mV/period, Fig. 7(b) shows that the extraction and injection states are already near resonance and nothing
drastic happens with the energy levels as the bias increases. What affects the current flow is rather that both
the injection and extraction energies approach ELO as the bias increases above the tunnel resonance, at roughly
the same rate as the energy of the leakage transition ULS → ex increases away from ELO. This ultimately leads
to the peak current density Jmax occurring at a bias of 78 mV/period, where the tunnelling rate starts to limit
the current flow.

Figure 6(b) shows the gain for T=50 K and different applied biases. The gain is increasing with bias, even
far into the region of NDR. We also see from figure 7(a) that inversion is increasing over the same range of
biases, and that the tunnel resonance occurs at a bias of 74 mV/period. The reason is that the injection and
extraction energies become better matched to ELO at higher biases. Another feature of Fig. 6(b) is that there is
an additional gain peak at h̄ω ∼ 4 meV, prominent at high biases, coming from the population inversion between
the extraction and injection states.

We see that even though a better matching of the biases where the tunnel and phonon resonances occur would
increase inversion for the particular QCL studied here, the operation is not very sensitive to the detuning of
the tunnel resonance, but depends more on the injection and extraction energies. Even though the NDR begins
before the phonon resonances for injection and extraction are reached, this is at a 4 mV/period higher bias than
the bias of the tunnel resonance. Designing the heterostructure so that the phonon resonances occur at a slightly
higher bias than the tunnel resonance might therefore allow for a reliable way to delay an NDR caused by any
parasitic current channel.

Turning our attention to the temperature performance we see from Figs. 8(a) and 8(b) that inversion and
gain decreases with temperature above 125 K. Here the gain is lower than for the tunnelling injection structure
in accordance with the worse temperature performance in the experiment. On the contrary, gain increases with
temperature up to 125 K in our simulation. The reason for this increase can be attributed to the extraction
energy ELLS − Eex being about 10 meV lower than ELO. As temperature increases, carriers in the LLS acquire
more thermal energy, and at T = 125 K the thermal energy of kBT = 10.8 meV has exceeded the activation
energy of 10 meV, and the depopulation of the lower laser state becomes more efficient than the relaxation rate
from the upper to the lower laser state. This effect can be seen in Fig. 8(b) for nLLS going to a minimum at
150 K and nULS a maximum at 125 K. On the contrary, the density of the injection state ni has its minimum
at T = 25 − 50 K, corresponding to kBT ≈ 2 − 4 meV, since the injection energy only differ from ELO by
∼ 3 meV. Another effect that can be seen in Fig. 8(b) is the decrease of nex with temperature, indicating a
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diminishing detuning of the tunnel resonance. This detuning comes from the mean field of the carriers in the
LLS, and decreases as nLLS decreases. Our model does not include electron-electron scattering, and in a realistic
situation this scattering mechanism would likely increase the energy of the carriers in the LLS enough to allow
for efficient LO phonon emission, and thus the increase of inversion and gain at low temperatures would be
suppressed. At higher temperatures other scattering channels such as acoustic phonons dominate and the lack of
electron-electron scattering becomes less important. At temperatures above 125 K the population of the upper
laser state nULS decreases, and the population of the lower laser state nLLS increases. Both the population of the
injection and extraction states increase, which means the ULS loose carriers to all these states with increasing
lattice temperature (the remaining states have negligible population densities).

Fig. 8(a) also shows that the current density decreases with temperature, in contrast to the TI design, as the
carriers get more thermalized and the tunnelling current goes down since less current channels are available. This
is also the reason for the shift of Jmax to lower biases as temperature increases; the tunnel resonance becomes
more selective as carriers get more thermalized towards the bottom of the sub-bands. This is quite the opposite
to the situation for the TI QCL, where the increase in temperature opens up new current channels and the total
current density increases with temperature.

In Fig. 8(b) we see that we have significant thermal backfilling from the ULS to the extraction and injection
levels, even though an additional filling effect at low temperatures is necessary to fully account for the increase of
nin. The backfilling effect on the LLS from i is less clear due to the decrease of nLLS below T = 125 K, however it
is certainly present as a contributing factor and both thermal backfilling channels lower the population inversion
of the lasing transition. This should be contrasted to the TI QCL, where thermal backfilling is filling the LLS
whereas in this case it is mainly emptying the ULS. Even though thermal backfilling seem to be the most
important effect preventing the QCL10 from lasing at high temperatures, again we see that the reduction in
population inversion from 125 K to 300 K of ∼ 40 % cannot completely account for the reduction of gain over
the same temperature range of ∼ 70 %.

5. CONCLUSIONS

We have investigated the tunnelling injection and scattering assisted injection schemes for terahertz quantum
cascade lasers using a model based on the non-equilibrium Green’s function formalism.12 Correct maximum
current and gain peaks with respect to experiments can be reproduced, but for the TI scheme smaller pre-peaks
due to long-range tunnelling in the current spectrum are grossly overestimated for reasons that are not yet clear.
In contrast, for the SA scheme these pre-peaks are in good agreement with experimental data.

We conclude that thermal backfilling from the extraction to the LLS can explain about half of the decrease
in population inversion with temperature for the TI scheme, while for the SA scheme it is backfilling from the
ULS to the injection and extraction levels that is responsible for a large part of the decrease instead. We see no
indication of other processes such as hot phonon emission or injection tunnelling directly to the LLS to have a
large impact on the population inversion for the TI QCL.6 However, thermal backfilling cannot by itself explain
the reduction in gain with temperature, as was also seen in Ref. 19. We leave the question open as to what
effect is responsible for further reducing the gain, be it re-absorption of carriers into higher energy levels, thermal
broadening of the injection and laser levels, the thermal distributions of the population densities, or something
not addressed here. Furthermore, we see that the populations of the TI QCL energy levels are less sensitive to a
change in bias than those of the SA QCL, why the latter is more sensitive to placing the tunnel and LO phonon
resonances at the same bias. We have also shown that parasitic (for the TI QCL) and LO phonon (for the SA
QCL) current channels have a greater impact on the current flow than the tunnel resonances, something that
might be utilized to avoid an early NDR.
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We designed and demonstrated a terahertz quantum cascade laser based on indirect pump injection

to the upper lasing state and phonon scattering extraction from the lower lasing state. By

employing a rate equation formalism and a genetic algorithm, an optimized active region design

with four-well GaAs=Al0:25Ga0:75As cascade module was obtained and epitaxially grown. A figure

of merit which is defined as the ratio of modal gain versus injection current was maximized at

150 K. A fabricated device with a Au metal-metal waveguide and a top nþ GaAs contact layer

lased at 2.4 THz up to 128.5 K, while another one without the top nþ GaAs lased up to 152.5 K

(1:3�hx=kB). The experimental results have been analyzed with rate equation and nonequilibrium

Green’s function models. A high population inversion is achieved at high temperature using a

small oscillator strength of 0.28, while its combination with the low injection coupling strength of

0.85 meV results in a low current. The carefully engineered wavefunctions enhance the quantum

efficiency of the device and therefore improve the output optical power even with an unusually low

injection coupling strength. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807580]

I. INTRODUCTION

Terahertz (THz) quantum cascade lasers (QCLs), one of

the most important sources of coherent THz radiation, can

cover a spectral range from �1:2 to �5:2 THz.1–3 Since their

invention,4 even though many efforts have been made to

improve the performance of THz QCLs in terms of operating

temperature, it is not high enough to work under thermo-

electric cooling systems. Recently, a design based on a

three-well resonant tunneling (RT) structure, implemented in

the GaAs=Al0:15Ga0:85As material system, has reached a

maximum operating temperature Tmax of 199.5 K.5 The limi-

tations of RT-QCLs were addressed by Yasuda et al.,6 Kubis

et al.,7 Kumar et al.,8 and Dupont et al.9 Many carriers are

stationed in the injector state, ready to be transferred via res-

onant tunneling to the long-lived, hence heavily populated,

upper lasing state (ULS). In this configuration, the bidirec-

tional nature of resonant tunneling limits the maximum pos-

sible population inversion of RT-QCLs to 50%.10 An

efficient injector barrier must be thick enough to suppress

wrong carrier injection to the lower lasing state (LLS) or

other states lower than ULS and to prevent early negative

differential resistance (NDR). On the other hand, it should

be thin enough to reduce the tunneling time and increase the

maximum current, thereby the dynamic range of the laser.

The constraint on the injector barrier becomes even worse

when the device lasing frequency approaches 2 THz which

corresponds to a photon energy of less than 8.5 meV.11 All

the aforementioned RT-QCL issues impel designers to find

novel approaches to overcome the bottlenecks of THz

RT-QCL.

The majority of high-performance devices are based on

RT-QCL structures.5,12–14 In contrast, there is the indirectly

pumped (IDP) scheme, well implemented in mid-IR QCL,10

and a promising approach to improve the performance of

THz QCL,6 especially for low lasing frequencies. To date,

several designs based on IDP scheme have been theoretically

presented and avowed to have enough gain at higher temper-

atures to improve the temperature performance and over-

come the fundamental limitation of designs based on RT

structures.6,15,16 Three groups have demonstrated THz struc-

tures based on the IDP scheme,8,9,17,18 and the best perform-

ance THz QCL in terms of kBTmax=�hx was achieved in the

GaAs=Al0:15Ga0:85As material system by Kumar et al.8

The structures in the In0:53Ga0:47As=In0:52Al0:48As mate-

rial system, presented by Yamanishi et al.,17–19 while not

showing the highest operating temperature, exhibited advan-

tages of a high peak output power and smooth current density-

voltage (J-V) characteristics with no tunneling resonance

before the designed electric field. However, the light-current

a)Electronic mail: sgrazavi@uwaterloo.ca.
b)Electronic mail: emmanuel.dupont@nrc-cnrc.gc.ca
c)Electronic mail: h.c.liu@sjtu.edu.cn
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density characteristics (L-J) showed an optical power roll-

over that reduces the temperature performance of the devices.

It was proposed that the optical roll-over in power, might

come from (i), the excess energy effect of the hot carriers in

the injection region and (ii), fast tunneling rate to the next

module that could frustrate the thermalization of carriers in

the injector. This roll-over effect was not observable in the

next generation of IDP structure with an extended tunneling

time, which supports this excess energy hypothesis.19

Different from all aforementioned IDP designs, we are

presenting an IDP four-well structure with an unusually low

injection coupling strength. This new design demonstrates

better performance than that of Ref. 9 in terms of the output

power, threshold current density, resonance before the

designed electric field, and kBTmax=�hx. Among all reported

approaches for modeling the charge transport in THz

QCL,20–30 a simplified rate equation (RE) model, which is

easy to implement and fast to compute, is employed to pre-

dict the carrier transport and estimate the optical gain in this

paper. A nonequilibrium Green’s function (NEGF) approach,

presented in the Appendix, was used to confirm and comple-

ment the RE results.

This reported IDP four-well THz QCL is based on pho-

non-photon-phonon (3P) successive emissions within two

neighboring thick injection barriers. Figure 1 shows the sche-

matic energy level diagram of a 3P-QCL structure. Since

both carrier injection into the ULS and extraction from the

LLS are mediated by LO-phonon scattering, and since no

tunneling is involved in carrier transport within a module, an

efficient injection and extraction are crucial for this design,

which are achieved here by wavefunction engineering

through a genetic algorithm (GA). This control of wavefunc-

tions is different from energy-band engineering and gives us

an opportunity to control the desired and undesired scattering

rates through the shapes of wavefunctions and their relative

overlaps.31 The RE model presented in Ref. 9 is employed

again during the design stage with a modified figure of merit.

In Ref. 9 in order to maximize the gain in a module, a figure

of merit was defined as the product of population inversion,

oscillator strength, and the inverse of the superperiod length

and resulted in the design of a QCL structure named V843.

The design details of another THz 3P-QCL (second genera-

tion), including its specific figure of merit, will be discussed

in the next section.

II. DEVICE DESIGN

A. Wavefunction engineering challenges

To understand how this scheme works, we can assume

that the four-well structure consists of two phonon double

wells separated by a radiative barrier. The more spatially

overlapped wavefunctions in each double well lead to a

faster phonon scattering process. In addition, the energy

spacing of each double well should be as close as possible to

the LO-phonon energy of GaAs (36.7 meV). The thickness

of the radiative barrier strongly affects the oscillator

strength, which, in turn, directly affects the gain and the pop-

ulation inversion. Even though there is no tunneling for car-

rier injection to the ULS and carrier depopulation from the

LLS, the wrong injection and extraction channels still exist.

To overcome this problem, those undesired scattering rates

must be minimized to decrease the chance of the wrong

injection to the LLS or non-radiative relaxation from the

ULS. That is, the scattering times (red arrows in Fig. 1) must

be increased. From the point of view of population inversion,

the optimum structure of this scheme is a design that has a

short si2 and s1e to maximize the correct injection and extrac-

tion, and second, a long si1 and s2e to minimize the wrong

injection and extraction, respectively. In addition, it needs to

have a fairly long relaxation time between the lasing states

to keep the population inversion high enough even at higher

temperatures. Therefore, in 3P structures, all four eigenener-

gies and their corresponding wavefunctions have to be care-

fully and simultaneously tailored to efficiently inject carriers

into ULS and extract them from LLS. To satisfy those

requirements, a GA was employed to optimize the design

candidates.

Two minor issues arise when the GA is employed to

find the optimum structure.

1. The fifth energy state, which was not an issue in the RT

structure, may play an adverse role in 3P designs. In a

conventional THz RT-QCL, the total potential across one

module, which equals the sum of a THz photon energy

and a LO-phonon energy, is typically less than 57 meV

(considering 36 meV for LO-phonon energy and maxi-

mum 21 meV for THz photon energy3). In a THz 3P-

QCL, this energy spacing increases to almost 90 meV so

as to put the fifth energy state closer to the ULS and LLS

of the previous (upstream) module at an electric field

lower than the designed electric filed. This situation can

substantially enhance the leakage current through tunnel-

ing to this state and decrease the population inversion. In

FIG. 1. Schematic diagram of a scattering-assisted QCL active region based

on a phonon-photon-phonon configuration. Throughout this paper and what-

ever the electric field, the states within a module are labeled in energy

ascending order e, 1, 2, i, and 5. The solid lines show the forward scatter-

ings, while the dashed lines indicate the back scatterings. D and X are the

detuning and the coupling between states i and e, respectively. The green

lines indicate the correct injection and extraction, while the red lines show

the wrong injection and extraction in each module. 2 and 1 are the ULS and

LLS, respectively.
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addition, this state can be a reason for early NDR if the in-

jector barrier is thinned too much in order to reach a high

maximum current. Moreover, as the injector state cannot

be totally depleted, the dipole moment between levels i
and 5 should be kept low in order to minimize the free-

carrier absorption;32,33 this is typically achieved by a

thick radiative barrier.

2. The second issue that must be noted is the effect of tun-

neling between level e of the left module and levels 2 or 1
of the right one. If this tunneling is stronger than that of

levels e and i at the desired threshold electric field, we

may confront an early NDR, which could block the lasing

operation of the structure or cause voltage instabilities.34

It has been demonstrated that an IDP structure with a two-

well injector can substantially reduce all resonances prior

to the threshold.18

B. Figure of merit

Considering the aforementioned challenges, in the sec-

ond generation of 3P-QCL, we targeted to maximize the ra-

tio of the gain versus injection current at a lattice

temperature of 150 K. The product of the modal gain, transit

time, and inverse of the superperiod length was thus defined

as the figure of merit, the details of which are provided in

Ref. 35. A GA was employed to optimize the design candi-

dates. The three-dimensional doping concentration, the in-

jector barrier, the desired electric field, and the material

(GaAs=Al0:25Ga0:75As) were fixed while the quantum well

and barrier widths were free to change. The electron temper-

ature was assumed to be 50 K higher than the lattice temper-

ature for all subbands. Even though only the LO-phonon

scattering was included in the GA process, the electron-LO-

phonon, electron-impurity, and interface roughness (IR)

intersubband scatterings are considered in all simulation

results presented in this paper. As shown in Fig. 1, both for-

ward and backward scattering channels were computed in

our design. The quantum wells and barriers of the converged

solution from the GA program are (starting with the injector

barrier): 44=64:5=16:2=71:5=27:9=104:45=6=49:65 Å, where

the bold font indicates the barriers. Fixing the 3D doping of

the structure and obtaining the quantum wells and barriers

widths determine the superlattice length and the two-

dimensional doping concentration. The first well after the

injection barrier was delta-doped with Si to ns ¼ 3:45�
1010 cm�2 near the center. This structure was grown by mo-

lecular beam epitaxy as a wafer named V845.

The energy spacings of the first four energy states con-

tributing in our rate equation model are 36.6, 13.9, and

30.3 meV at 21 kV/cm, respectively. The oscillator strength

and the injection coupling strength of this structure are lower

than those of V843. Such a low tunnel coupling

(�hX ¼ 0:85 meV at 21 kV/cm) makes the transport through

the injection barrier incoherent and limits the maximum cur-

rent in the lasing regime. This low value of tunnel coupling

strength is attributed to the specifically defined figure of

merit, whose target is to maximize the modal gain over the

current ratio. Both the threshold current and the maximum

current are lower than those of V843. The energy spacing of

36.6 meV between levels 1 and e results in a faster relaxation

time of 0.21 ps at 150 K compared to 0.41 ps in V843. A lon-

ger scattering time between the lasing states (2 and 1) can

increase the population inversion at higher temperatures.

This result is achieved by the spatially separated wavefunc-

tions of the lasing states of the structure. The conduction

band diagram and squared wavefunctions of the correspond-

ing energy states in two adjacent modules at 21 kV/cm are

shown in Fig. 2. Since we have defined a specific figure of

merit to find a structure with higher gain at lower current and

also forced the algorithm to set the injector barrier thickness

at 44 Å, the two minor issues, presented in Sec. II A, may not

affect our optimization process. If we decrease the thickness

of the injector barrier and enhance the coupling strength

between levels e and i to reach a high current dynamic range

and operating temperature, the effect of the fifth energy state

and tunneling before the threshold should be considered. In

this paper, both four and five-level RE were implemented

and the simulation results were almost the same, suggesting

the 5th state of this design has a marginal impact on

transport.

C. Rate equation modeling assumptions

In this section, we present the assumptions of the RE

model used for the calculations of the coherence term,

FIG. 2. Conduction band diagram and the moduli squared of wavefunctions

of the THz 3P-QCL, V845, at 21 kV/cm. The “þ” signs denote the position

of Si doping in each module. The intersubband lifetimes by LO-phonon

emission are given at the resonant in-plane kinetic energy.
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tunneling time, dephasing rate during tunneling and optical

transition. The RE model is based on the density matrix for-

malism and it is computationally very efficient. However,

unlike a full density matrix model, the RE model greatly

simplifies the expression of the coherence term between two

tunneling states, qab, by involving only the coupling strength

�hXab, detuning energy �hDab, dephasing time sk ab, and popu-

lations (qaa and qbb) of this particular pair of states a and b

ðDab � ˚s�1
kabÞqab ¼ Xabðqaa � qbbÞ: (1)

The model ignores that the coherences can be interlinked:

for instance, when two states b and c are coupled to the same

state a by tunneling, a coherence term qbc develops and also

intervenes in the expression of qab. This simplification

ignores the indirect resonances between states that are two

modules apart.34 Our RE model for transport is a simplified

version of the one described in chapter 7 of Ref. 36 in the

sense it is based on first-order resonant tunneling and it does

not solve self-consistently the electronic temperature and the

coupled Schr€odinger-Poisson equations.

All tunneling channels between two neighbor modules

were calculated based on a first-order approximation and

included in our RE model. In the first-order approximation,

the tunneling time between the extractor and injection states

is defined as a Lorentzian function of the detuning energy,

stun ¼ ð1þ D2s2
keiÞ=2X2skei, where �hD is the energy detuning

between the two extractor and injection states. The tunneling

rate depends sensitively on the dephasing time, easily

obtained by skei ¼ ð 1
s� þ 1

2se
þ 1

2si
Þ�1

. It consists of lifetime

terms ( 1
2se
þ 1

2si
) due to intersubband scattering and a compo-

nent commonly named the “pure” dephasing time ( 1
s�) due to

intrasubband scattering. By calculating each individual

broadening that comes from different scattering mechanisms,

the total broadening (Ctun) will be determined by having

CeðiÞ
inter ¼

P
m Cm�eðiÞ

inter and Cei
intra ¼

P
m Cm�ei

intra , where m denotes

a specific scattering mechanism, and using Cei
tun ¼ 1

2
Cei

intra

þ 1
2
ðCe

inter þ Ci
interÞ.

37 A pure dephasing time was obtained by

calculating the intrasubband scattering between levels e and

i at an electric field right before the two states were aligned

(s� ¼ 2�h=Cei
intra). A constant pure dephasing time of 0.2 ps

was employed for all temperatures to calculate the tunneling

time between e and i. This value of 0.2 ps was estimated by

including the intrasubband interface roughness (�h=CIR�ei
intra

� 0:25 ps) and impurity (�h=CION�ei
intra � 0:18 ps) scatterings in

our model and using the aforementioned equations.

In this paper, we did not model the bandwidth, D�, of

the gain. The peak gain of the design was simply written as

gpeak ¼
q2f21

2m��0nrc
� DN3D

21 �
C

D�
; (2)

where C is a normalization constant of the gain profile, i.e.,

1=p for a Lorentzian (assumed in most cases) or
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=p

p
for

a Gaussian, f21 is the oscillator strength between the lasing

states, DN3D
21 the population inversion 3-D density averaged

over one superperiod, m� is the effective mass in GaAs.

Since we decided to keep the bandwidth as an unknown pa-

rameter, in reality throughout this work, we only modeled

the product between peak gain and bandwidth, gpeak � D�
(gain-bandwidth product).

D. Evaluation of selected design

To investigate the effectiveness of our wavefunction en-

gineering, the scattering times between the five states in one

module, included in our RE model, and the tunneling rate

between two modules, should be calculated. The following

parameters were calculated: the scattering times among the

first five states in one module, the population of each state,

the current density, and the gain-bandwidth product based on

the rate equation model at each electric field, starting from

0.5 kV/cm to 23 kV/cm at different operating temperatures.

Figure 3 shows the simulation results at two electron temper-

atures: 70 K (lattice temperature¼ 20 K) and 200 K (lattice

temperature¼ 150 K) versus electric field.

The most relevant time constants are shown in Fig. 3(a)

for Te ¼ 70 K, where si is the lifetime of the injection state

and stun is the tunneling time between level e and i. The vari-

ables ~s2eff ; s<tr , and s<tr are the modified effective lifetime,

FIG. 3. The 4-level RE simulation results of the structure presented in

Fig. 2. (a) Different characteristic times at 20 K (Te ¼ 70 K, thick blue

lines). The scattering time presented in figure are defined as follows: stun is

tunneling time (solid line), s<tr (dotted line), and s>tr (dashed dotted line) are

the transit times—excluding the tunneling time—across the four wells

before and after threshold, respectively; si is injection state lifetime (dashed

line); and ~s2eff is the modified effective lifetime (dashed dotted dotted line).

(b) Normalized populations of the four states at 20 K (thick blue lines) and

150 K (thin red lines) lattice temperatures and the population inversion

(n2 � n1) at 20 K (blue solid circles) and 150 K (red solid circles),

(c) Current density, lasing frequency (dashed line), and optical gain-

bandwidth product vs electric field at 20 and 150 K lattice temperatures.
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transit time—excluding the tunneling time—through the

four quantum wells, without stimulated emission, and transit

time—excluding the tunneling time—through the four quan-

tum wells, with stimulated emission. The last three parame-

ters are defined in Eqs. (2), (3), and (8) of Ref. 9,

respectively. Since the injector barrier is thick (44 Å), and

due to the specifically defined figure of merit, the coupling

between the wavefunctions of level e and i is small; the tun-

neling between these states is incoherent. This incoherency

in transport could result in carrier accumulation at level e,

increasing the backfilling, specially at higher temperatures.

The faster scattering from the injector state i (si), compared

to the tunneling time stun shown in Fig. 3(a), under various

electric fields suggests the population on the extractor state

will be significantly higher than that of the injector state. s<tr
and stun are longer in V845 than in V843, which is due to

higher diagonality of the structure and smaller coupling

strength. Therefore, the population on the extractor state, ne,

does not change very much between the two structures as

ne � stun=s<tr . Even though X is quite small, the device is not

penalized dramatically because the transport by carrier hop-

ping between two 44 Å injection barriers (i.e., when exclud-

ing tunneling) has also been slowed down by the strong

diagonality. Since by design, the lifetime of the injection

state, si, is short, and the transit time without stimulated

emission is rather long, there is no need to reach coherent

transport through the injection barrier, i.e., stun � si.

However, we would recommend to have stun comparable to

si, i.e., stun � si, to lower significantly the population on the

extractor state, which can be achieved by increasing the tun-

nel coupling strength. At 21 kV/cm, the energy spacing

between states i and 2 (Ei2) in V845 is 6.4 meV below the

GaAs phonon energy, as a result the injection of carriers on

ULS is slowed down: si2 � 0:56 ps vs 0.33 ps for V843 at

150 K. This increase in injector state lifetime explains why ni

is even worse (i.e., larger) in V845 as ni � si=s<tr . The cur-

rent at e-i alignment, calculated as the product of ne � ni and

the inverse of stun will be lower than that of V843 due to

lower ne � ni and higher stun simultaneously.

Figure 3(b) shows the carrier density of each state at dif-

ferent electric fields. As expected, the carrier density at level

e, ne, is dominant almost over the entire bias range. This

shows that most of the carriers are piled up at level e, even

near the designed electric field of 21 kV/cm. The same effect

of carrier accumulation on level e is predicted by NEGF sim-

ulations (see Appendix). Consequently, due to the backfilling

from level e, the density of carriers at level 1 (LLS) increases

dramatically when the temperature increases from 20 K to

150 K. The population inversion (solid circles) decreases

when the temperature varies from 20 K to 150 K but it is still

higher than that presented in Ref. 9 due to a longer modified
effective lifetime ~s2eff . At lower temperatures since the back-

ward scattering is not fast, level 1 is almost empty.

The gain-bandwidth product, current density, and lasing

frequency are shown in Fig. 3(c). The value of the gain-

bandwidth product changes modestly, from 20 K to 150 K.

The maximum value of the gain-bandwidth product is

60.4 THz cm�1 at 20 K, while it decreases to 48.1 THz cm�1

and 43.1 THz cm�1 at temperatures of 125 K and 150 K,

respectively. The backfilling to the level 1 at higher tempera-

tures, due to the piling-up at level e, is the main reason for

the population inversion reduction and hence gain reduction.

Even though the tunneling time stun is exactly minimized at

21 kV/cm, i.e., at the electric field when e-i are perfectly

aligned, the current density is peaked at �20.7 kV/cm due to

a decline of ne � ni close to the resonance. Figure 3(c) shows

that the lasing frequency will vary from 2.8 THz near the

threshold to 3.2 THz at the electric field near the NDR by

assuming the product of the gain bandwidth (D�) and the

cavity loss (acav) is D� � acav � 42 THz cm�1, which will be

discussed in Sec. IV E.

III. EXPERIMENTAL RESULTS

The whole QCL structure V845 consists of 260 repeats

of the module presented in Fig. 2 and is grown on a semi-

insulating GaAs substrate using molecular beam epitaxy

with a total thickness of 10 lm. The active region is sand-

wiched between a 100 nm of 3� 1018 cm�3 bottom nþ GaAs

and a top stack of 40 nm of 7� 1017 cm�3; 50 nm of 5�
1018 cm�3; 10 nm of 5� 1019 cm�3 nþ and 3.5 nm of low-

temperature (LT) grown GaAs. The first layer of the top

stack is meant to adjust the Fermi level so as to align with

the injector state of the first module, and the last two layers

are used to form a non-alloyed ohmic contact.

We should point out that this V845 wafer was grown

using a nearly depleted Ga cell. Indeed, the cell ran out of

gallium during the flux measurement procedure conducted

on the next day. Since the evaporation in such a situation is

often taking place from several remaining droplets of gal-

lium, the evaporation surface area can change in a random

fashion. Thus, despite attempt to stabilize the flux by appro-

priate ramp of the cell temperature during the growth, the av-

erage Ga flux decreased by more than 2% during the active

region deposition, while the analysis of X-ray Diffraction

(XRD) data revealed step-like changes in the Ga flux which

resulted in three distinct regions of different periodicity: the

main region with 1.4% shorter period than the target value,

and the other two regions with about 30 repeats each in

which the periods were 0.4% shorter and 0.6% longer than

the target value.

Two different fabrication processes were employed to

compare the effect of waveguide loss on device performance

of this structure. Since the oscillator strength of this 3P struc-

ture is lower than that of V843, the maximum operating tem-

perature may be enhanced more substantially by lowering

waveguide loss.34,38 The first fabrication process, device A,

used a Au-Au ridge waveguide with a 144 lm width and

1.07 mm length, while the second fabrication process, device

B, has a wider (159 lm) and longer (1.79 mm) waveguide. In

addition, the 100 nm thick top contact layer was removed to

lower the waveguide loss. The Ti/Au metalization process

and In-Au bonding technique were employed for device A,

while device B was fabricated using a Ta/Au metallization

process and an Au-Au bonding process.

Figure 4(a) shows the pulsed light-current density-volt-

age (L-J-V) characteristics of device A from 10 K to

128.5 K, with a pulse duration of 250 ns and repetition rate
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of 1 kHz. The threshold current density of 0.87 (0.8) kA=cm2

was measured for device A (device B) package, while the

maximum current density was 1.25 (1.34) kA=cm2. The

lower cavity loss results in a lower threshold current density

(i.e., 0.8 kA=cm2 at 7.8 K for device B vs 0.87 kA=cm2 for

device A at 10 K) and a higher maximum current density

which enhances the dynamic range of device B and improves

the maximum operating temperature. The maximum operat-

ing temperatures of 128.5 K and 152.5 K were achieved with

devices A and B, respectively. The maximum collected opti-

cal power in devices A and B was 1.5 mW and 5.8 mW at

lattice temperature of 10 K and 7.8 K, respectively (The opti-

cal set up and the injected electric power were different in

devices A and B).

The solid orange V-J curve (device A) in Fig. 4(a)

shows the first NDR at 8.5 V and the final NDR at 21.8 V.

By considering a 0.75 V Schottky drop voltage from the top

contact,39 we will reach 21.05 V as the main NDR of the

design, which nicely matches with our design electric field

(21 kV/cm). The first NDR at 8.5 V (7.75 kV/cm) comes

from the resonance tunneling between levels e and 1. The

Schottky drop voltage of top contact can be accurately

obtained by comparing the V-J measurements of the lasing

and non-lasing devices. The width and length of the non-

lasing device were reduced to 248 lm and 174 lm, respec-

tively, to increase the loss of the cavity, hence suppress the

stimulated radiation. In addition, the non-lasing device was

annealed to form PdGeTiPtAu ohmic contacts, which had

the advantage—for this particular application—to increase

the waveguide loss.39 Besides, these ohmic contacts reduce

the potential drop across the metal/semiconductor interfaces

and help to achieve accurate V-J curve measurements. The

dashed-magenta curve in Fig. 4(a), showing the V-J charac-

teristic of the non-lasing device, is also plotted, and the dif-

ference between the V-J curves of the lasing and non-lasing

devices becomes distinguishable only after the threshold

voltage indicated by a vertical arrow. The dashed-magenta

curve was shifted upward along the voltage axis by a

Schottky drop voltage of 0.75 V so as to overlap with the las-

ing V-J curve of the device A. At the NDR, the difference in

current density between the lasing ridge and the non-lasing

mesa is small, only �60 A=cm2. We also note that, above

130 K, a small resonance in the J-V characteristics develops

slightly above 2 V. As shown in Fig. 5, the maximum current

density (Jmax) of both devices A and B slightly decreases

from 8 K to a temperature close to Tmax. This reduction of

current density is 10 A=cm2 from 10 K to 110 K in device A

and 70 A=cm2 from 7.8 K to 145.8 K in device B. Above

110 K for device A, or 145.8 K for device B, the Jmax starts

to increase slowly. Above 150 K, the Jmax of devices A and

B are very similar since both devices are not lasing anymore.

At a high temperature of 250 K, the Jmax of device A is only

�150 A=cm2 higher than at 10 K.

The light measurement of device A shows that the maxi-

mum amount of the light was collected at a current density

near the NDR. The roll-over of output optical power in cur-

rent ranges below maximum currents, observed in Ref. 18,

FIG. 4. Left axis: The bias voltage of THz 3 P-QCL V845 versus the current

density, (a) device A (b) device B. The short vertical arrows show the

change in the slope of the V-J curves at laser threshold and the lowest tem-

perature (10 K for device A or 7.8 K for device B). Right axis: Collected

THz light (optical output power) versus current density at different heat sink

temperatures. Since the measurement set-up and the waveguide properties

are different, the collected light, the maximum current density, and the

threshold current are different in plots (a) and (b). Drop voltage on device B

is higher than on device A, the latter having the top 100 nm nþ contact GaAs

layer hence, a top Schottky contact with a short depleted region (�18 nm).

FIG. 5. Maximum current density and threshold current density as functions

of heat sink temperature for devices A and B. The dashed line shows the

result of a 5-level rate equation simulation assuming a constant product

D� � acav ¼ 42 THz cm�1.
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does not exist in our device. Since, on the one hand, the cou-

pling injection strength of our device is lower than that of

the one presented in Ref. 18 (0.85 meV compared to 2 meV),

and on the other hand, the excess energy (voltage drop per

module minus 2ELO) of our device is low (7.3 meV at design

electric field that could compensate for the small injection

energy Ei2), our device does not suffer from the roll-over

effect that can degrade the performance of THz IDP-QCL.

The spectral measurements of this structure at different

current injections and different temperatures are illustrated in

Fig. 6. At 10 K, the lasing frequency started from �2.4 THz at

near threshold voltage and blue-shifted to �2.8 THz at 21.7 V

considering the highest amplitude longitudinal mode. At a

current injection of 1:25 kA=cm2, corresponding to 21.7 V,

the structure acts as a multiple-wavelength source that lases

from 2.32 THz to 2.94 THz at 10 K. Even though the

Schr€odinger equation helped us to estimate the lasing fre-

quency of the first generation of 3P-QCL, it cannot predict the

spectrum of V845 accurately. For comparison, the simulations

(the dashed line in Fig. 3(c)) predict that the lasing frequency

is 2.9 THz at 19.7 kV/cm (an actual device bias of 20.45 V);

experimentally, 2.4 THz was observed. At 21 kV/cm, the las-

ing frequency is 3.36 THz (simulation) vs 2.32–2.94 THz

(experiment). At 150 K and near the Jmax, the spectral mea-

surement shows a single lasing frequency of �2.4 THz, which

seems to be the dominant frequency range (2.4–2.5 THz) over

the lasing operating temperatures.

The theoretical study of laser frequency versus bias and

temperature is beyond the scope of this paper. We will men-

tion only three mechanisms that can change the peak gain

frequency, and which were not taken into account in our

RE model. Many-body interactions, in particular the

depolarization (intersubband plasmon), can red-shift the op-

tical resonance in an inverted two-level system.40,41 This

depolarization effect could be weak though due to the small

overlap between the lasing wavefunctions. If the population on

LLS is substantial, for instance at high temperature by backfill-

ing, the occurrence of Bloch gain cannot be excluded and it

would tend to red-shift the peak position.42,43 Finally, our

model does not solve self-consistently the Schr€odinger, Poisson

and rate equations. In reality, due to charge separation the elec-

tric field is not uniform within one module. Since the section

between the expected positions of the ULS and LLS wavefunc-

tions is more conductive when stimulated emission occurs, the

electric field can be configured differently when device is las-

ing, thereby reducing the Stark effect on the lasing transition.44

However, considering the small carrier concentration in THz

QCLs, this effect should be weak too. We have not verified yet

numerically these three hypotheses. It is worth mentioning the

NEGF simulations were more successful than RE in predicting

the laser frequency (see Appendix).

IV. RATE EQUATION ANALYSIS

A. Electrical characteristics

For the sake of simplicity, the pure dephasing time, s�,
was left temperature independent (0.2 ps) in our rate

equation-based modeling. We did not try to match for all

temperatures the simulated Jmax with the experimental val-

ues. To investigate the performance of this design, the cur-

rent density of the structure in a full range of electric fields

at different temperatures was calculated and the simulation

results of lasing and non-lasing devices at 10 K are plotted in

Fig. 7. A threshold electric field of 19.4 kV/cm was derived

and matched the experimental value by assuming a gain

bandwidth� cavity loss product of 38:5 THz cm�1. Two pre-

threshold current peaks occur before the final NDR: the

effect of tunneling of states e to 1 and e to 2 aligned at

FIG. 6. THz spectra recorded for different biases and temperatures. The cur-

rent density, the applied voltage bias, and voltage drop per module are

reported in the figure. Spectrum at 150 K was collected from device B while

all other spectra were measured from device A.

FIG. 7. The current density vs electric field were calculated by using a

5-level first-order rate equation formalism at 10 K for lasing (red) and non-

lasing (blue) devices. The green, pink, and cyan lines represent the leakage

currents from the wrong extraction 2-e, and the wrong injections i-1, i-e,

respectively. The vertical dashed lines were plotted to determine the first

NDR and threshold voltage of the device at 10 K. The black dashed line

shows the current density by using the second-order model of tunneling. The

experimental curve of device A, shown as an orange dotted line, was meas-

ured at 10 K for comparison.
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electric fields of 7.7 and 10.5 kV/cm, and giving rise to cur-

rent peaks at �7.7 and �10.5 kV/cm, respectively. The cur-

rent calculation with stimulated emission (red) and without

stimulated emission (blue) is different after the threshold

voltage. The peak current density of the lasing curve

increases by �177 A=cm2, and is slightly shifted by þ0.3 V

in voltage compared to the non-lasing curve, while the two

curves overlap before the threshold. From Fig. 3, two obser-

vations should be recalled: (i) above threshold, the total

transit time—excluding the tunneling time—across the four

quantum wells, s>tr , is much faster than the counterpart with-

out stimulated emission, s<tr , this being mostly due to the

high diagonality of the laser transition; (ii) the tunnel cou-

pling strength is too low (0.85 meV) to ensure a coherent

transport through the tunneling barrier (2Xsk ei¼ 0.44,

instead of 2Xsk ei>1 if tunnel transport were coherent). As a

result, the transport through the structure is essentially lim-

ited by the transit time within the period without stimulated

emission (stun � s<tr � 2si2 þ s21 þ s1e), while the tunneling

time becomes relevant with stimulated emission

ðstun � s>tr � 2ðsi2 þ s1eÞÞ, hence the maximum current with

(without) stimulated emission will (not) be sensitive to the

dephasing time, skei.
25 We came out with this estimation

s� � 0:2 ps in order to bring the simulated lasing V-J curve

close to that of non-lasing and we found that it was roughly

consistent with the intrasubband scattering rates by IR and e-

impurity potentials (Sec. II C).

As already mentioned in Sec. II D, our 5-level rate equa-

tion model suggests a slight decrease of voltage (0.3 kV/cm in

Fig. 7) at Jmax for the non-lasing devices because of the decline

of the population difference between the tunneling states,

ne � ni, when these levels approach the resonance. This effect

is not likely to happen on lasing devices because, above thresh-

old, the population inversion is clamped, hence the population

difference ne � ni does not change very much above threshold

and Jmax occurs when the tunneling time, stun, is at a minimum,

i.e., when the levels e and i are aligned (21 kV/cm).45 This volt-

age shift effect for non-lasing devices would not be easy to

measure experimentally, unless a larger coupling strength is

used to empty more drastically the extractor state. Recently, the

electrical characteristic of a non-lasing device from a wafer

with a large coupling (�hX ¼ 1:54 meV) strongly suggests that

the peak current of the e-i channel is shifted by �1.5 V from

the design voltage.46

The leakage current from the wrong extraction channel

2-e, shown by a green line in Fig. 7, is lower than that of

V843, as is its fractional contribution to the total current.

Lower spatial overlap and higher energy spacing (50.5 meV

in V845 compared to 42 meV in V843) between states 2 and

e are the two main reasons for this lower leakage current and

simply result from the specific wavefunction engineering

where the net gain per electron injected was approximatively

optimized through our GA approach. Two leakage currents

from the wrong injection channels (i-1 and i-e) were also

plotted in Fig. 7. As expected, they are lower than the wrong

extraction current, showing the good injection efficiency to

the ULS in this IDP-QCL. The lower wrong injection could

result in a higher internal quantum efficiency (longer ~s2eff )

and hence a higher output optical power.

The observed small shoulder in the J-V curves around

2 V that slowly develops above 130 K (Fig. 4(a)) is related to

tunneling between levels 2n�1 and in and is very well simu-

lated by the NEGF model (see Fig. 11 in the Appendix for

NEGF simulated J–V at high temperatures). At such

high temperatures, level 1 is more populated and the

channel 1! i (resonant at �6.6 kV/cm) is more activated,

which, when combined with the e! 1 channel (resonant at

7.7 kV/cm), results in slightly shifted, slightly less intense

and broader peaks of the J–V characteristics (lower conduct-

ance) before the first NDR. Such alterations of the electrical

characteristics before the first NDR have been experimen-

tally observed here at high temperatures. The non-vanishing

current below the e-1 resonance comes from the first-order

approximation of tunneling and a good fit was obtained in

this voltage range by using the second-order approximation

of tunneling (black dashed line in Fig. 7).47

B. Maximum current density versus temperature

When the RE model is employed with a constant pure

dephasing time s�, a constant product D� � acav, and five

states (including the different scatterings between them), the

simulated maximum current density stays roughly constant

up to 85 K (with even a slight increase below 45 K) and then

decreases more rapidly with temperature due to back scatter-

ing, whereas the experiment shows a reduction in Jmax as

devices are lasing (Fig. 5). The result of this simulation is

plotted as a dashed line in Fig. 5. For a constant product

D� � acav ¼ 42 THz cm�1, the back scattering, simulated by

RE model, would result in a reduction of Jmax by

�260 A=cm2 from 10 to 250 K, which is contrary to the ex-

perimental observation of an increase �150 A=cm2 over the

same temperature range. For a phonon population in thermal

equilibrium at 250 K, the different scatterings involving the

fifth state result in a 4% raise in the simulated Jmax, which is

insufficient to compensate the back scattering effects.

Since on the one hand, the Jmax of devices A and B

decrease with temperature until the laser effect dies and even-

tually match their values close to and above the highest Tmax,

and on the other hand, the increase in current is unambiguous

above Tmax, this could suggest that two (or more) mechanisms

are involved in the temperature dependence of Jmax, for

instance a mechanism specific to transport in the lasing regime,

and another one specific to transport at high temperatures. The

disagreements between experiments and RE simulations as

shown in Fig. 5 are not well understood yet. The same behav-

ior in maximum current density was also observed by NEGF

simulations (see Appendix). The discrepancies may come (i)

from employing a constant product D� � acav while this pa-

rameter might increase with temperature, (ii) from assuming a

constant pure dephasing time while this parameter could

decrease with temperature, thereby affecting the Jmax in the

lasing regime, and (iii) from omitting several possible leakage

mechanisms, such as the excitation to the fifth level by re-

absorption of nonequilibrium optical phonons48–51 followed by

thermionic emission to the continuum.50

The initial raise of the simulated Jmax at low temperature

is related to the energy gap between levels i and 2 that is
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6.4 meV smaller than the phonon energy; however, if the

subband i is more populated at high momentum than the

assumed Boltzmann distribution, the increase of Jmax (and

gain too) at low temperature would partially—if not com-

pletely—disappear. Modeling accurately the maximum cur-

rent density, in particular its temperature dependence, is the

subject of intense research in order to understand all aspects

of transport in THz QCL.48,50,52,53

C. Intermediate resonances

At low temperature, there are two important anticrossing

resonances before the main resonance between states e and i.
Since both simulated current peaks at electric fields of 7.7

and 10.5 kV/cm are far less than the threshold current, the

two pre-threshold tunneling resonances (e-1 and e-2) impose

a minimum impact on device lasing performance. This cal-

culation should be performed for all structures based on the

3P scheme to make sure the currents at resonances of e to 1
and e to 2 are substantially lower than the threshold current,

without sacrificing the dynamic range of the laser. To show

how the wavefunctions couple when the leakage current den-

sity due to the e-1 tunneling resonance is peaked, the con-

duction band diagram of V845 is calculated and plotted in

Fig. 8. The lowest energy state of the left module (en�1) is in

resonance with the second energy state of the right module

(1n) at an electric field of 7.7 kV/cm, which is lower than the

threshold electric field. The coupling strength between these

states is �hXe1 ¼ 0:235 meV. Since the tunneling between

level e and 1 is incoherent (4X2
e1ske1s1 ¼ 0:35 at 20 K), the

dephasing time constant can affect the tunneling current.8,25

The carriers passing through the injector barrier (tunnel from

en�1 to 1n) will be relaxed to the next extraction state (en).

The second resonance should be observed at 10.5 kV/cm,

where the states e and 2 are aligned. For this resonance, the

transport is clearly incoherent, with a low coupling strength

between the states e to 2 (�hXe2 ¼ 0:147 meV) and a short

relaxation time of level 2 (s2e ¼ 0:25 ps) that result in very

low coherence in tunneling (4X2
e2ske2s2e � 6� 10�3 at

20 K). Therefore, the current through the e-2 channel is

smaller than that of e-1 channel because of its smaller cou-

pling strength and, to a lesser extent, due to its shorter

dephasing time. We note that the relaxation times of levels 2
and 1 are inverted at these low electric fields, i.e., fast for

level 2 (0.18 ps) and slow for level 1 (3.48 ps) as the two las-

ing states did not anticross yet (2 and 1 are aligned at

13.3 kV/cm).

The measured peak leakage current at the first NDR,

i.e., 7.7 kV/cm, is Jres ¼ 340A=cm2, while the simulation

result is 276 A=cm2. Even though the maximum current den-

sity of the lasing device can be reasonably well predicted by

our simulation (at least at low temperature), the experimental

value of Jmax on the non-lasing device is 78 A=cm2 higher

than our simulation result. A similar vertical shift

(64 A=cm2) was also observed in the peak leakage current

density at 7.7 kV/cm (340 A=cm2 measured value vs a

276 A=cm2 simulation result). The ratio of the maximum

current over the resonance peak current before threshold

(Jmax=Jres) at 10 K in V845 is slightly better than that of

V843 (3.7 in V845 compared to 3.1 in V843), due to the

weaker e-2 resonance in V845 because of the wider radiative

barrier (�hXe2 ¼ 0:147 meV in V845 vs 0.24 meV in V843).

D. Differential resistance at threshold

The differential resistance of lasing device A (at differ-

ent temperatures) versus current density, plotted in Fig. 9,

shows a clear discontinuity at the laser threshold, whereas

the same parameter is displayed as a smooth curve (dashed-

magenta line) for the non-lasing mesa device (shown only at

4 K). The �16% fractional change of differential resistance

at threshold, observed in measurement at 10 K, is lower than

what the rate equation model predicts (32% extracted from

FIG. 8. Conduction band diagram and the moduli squared of wavefunctions

of V845 at 7.7 kV/cm. States in left module (upstream), middle module, and

right module (downstream) are represented by subscripts n� 1; n, and n þ
1, respectively. The extraction state (e) of each module is in resonance with

state (1) of next module at an electric field of 7.7 kV/cm.

FIG. 9. Left axis: The differential resistance of non-lasing (the red dashed

line) and lasing (solid lines with symbols) device A versus current density at

different temperatures. The L-J measurement results are also plotted (right

scale) to determine the threshold current at each temperature.
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Fig. 7 by assuming D� � acav ¼ 38:5 THz cm�1). To more

accurately determine the position of the discontinuity which

shifts to higher currents with temperature, the L-J curves of

device A are plotted with vertical dashed lines to denote the

corresponding threshold points. A better internal efficiency

of the second generation of THz 3P-QCL due to the longer

modified effective lifetime of the ULS and shorter lifetime of

the LLS results in a clear discontinuity of differential resist-

ance and a higher output power (1.5 mW in device A com-

pared to 0.8 mW in Ref. 9 with the same collecting optics).

In Ref. 9, the discontinuity of differential resistance was esti-

mated and appears to depend on two relaxation times associ-

ated with the extractor state, the wrong extraction lifetime

(s2e), and the depopulation (s1e)

DRth

Rth

¼ Dqth

s2e � s1e

s2e þ s1e
; (3)

where Dqth is the normalized population inversion at thresh-

old. The discontinuity of differential resistance in V845 is

improved compared to the first iteration 3P design (V843) in a

two-fold strategy: (i) s2e is longer because of the thicker radia-

tive barrier (s2e ¼ 5:6 vs 2.55 ps in V843 at electron tempera-

ture of 70 K) which results in a higher modified effective ULS

lifetime and (ii) s1e is shorter due to the higher energy spacing

to make the depopulation more efficient. The observation of a

discontinuity in differential resistance on V845 tends to sup-

port our hypothesis about the vanishing discontinuity on

V843, which was attributed to a slow depopulation rate as the

energy spacing between the states 1 and e was 9 meV below

the LO-phonon energy.9 This discontinuity in differential re-

sistance on V845 is consistent with the higher emission power

from this wafer, since DRth=Rth is closely related to the inter-

nal efficiency of the QCL.

E. Cavity loss estimation

Even though this RE model is not very accurate, for

instance in predicting Jmax, it was used here for estimating

the product between the gain bandwidth, D�, and the cavity

loss, acav. Figure 10 shows the simulated D� � acav as a func-

tion of lattice temperature. The gain of the structure was cal-

culated at all electric fields and different temperatures and

the cavity loss and/or the gain bandwidth were adjusted to

match the simulated and experimental voltage thresholds.

Simulations were performed under two conditions: (i) the

electron temperature is 50 Kð�DTeÞ higher than lattice tem-

perature, (ii) the electron temperature is 100 K higher than

lattice temperature. By having the voltage threshold of de-

vice A at different temperatures (the experimental results

range from �19.4 V at 10 K to 20.5 V at 128.5 K after subs-

tration of the Schottky barrier) and mapping the gain value

at each temperature, a product D� � acav � 42 THz cm�1

was inferred for DTe ¼ 50 K. This inferred value remains

almost constant (�42 THz cm�1) at temperatures of 50-

120 K, but slightly drops to �38.5 THz cm�1 at 10 K. This

drop is likely attributed to the underestimated gain calcula-

tion at lower temperatures because the slow-down in carrier

injection from level i to 2 at low temperatures (e.g., below

20-30 K) might be exaggerated in the modeling. This under-

estimation of the gain leads to a lower inferred cavity loss.

Indeed, especially at low temperatures, the injection of car-

riers into the ULS is very sensitive to the actual electron dis-

tribution of carriers in the injector subband as the energy

spacing Ei2 is fairly detuned from the phonon energy

(7.45 meV at 19.4 kV/cm, the threshold electric field at

10 K); in other words, the Boltzmann distribution with a

characteristic temperature of 60 K (used for the simulation at

10 K lattice temperature) might be too far from reality.

It is worth mentioning that the inferred product D� �
acav � 42 THz cm�1 is for an assumed Lorentzian gain pro-

file (C ¼ 1=p in Eq. (2)); if a Gaussian gain spectrum had

been chosen, this value would be multiplied by 1.48

(62 THz cm�1). Close to Tmax of device A, the peak gain and

bandwidth simulated by NEGF are 33 cm�1 and 1.56 THz,

respectively (see Appendix), resulting in a product of

51:5 THz cm�1, in agreement with the estimation from the

RE model (42-62 THz cm�1). Under the second condition,

when the electron temperature is 100 K higher than the lat-

tice temperature, the derived D� � acav decreases with tem-

perature which is unlikely to happen.13 This behavior is due

to a too fast degradation of the gain versus temperature when

DTe ¼ 100 K as this assumed temperature difference prob-

ably overestimates the carrier distribution at high momentum

in the subbands. Globally, it seems the heating is less than

100 K.54 Repeating the same exercise with the lasing device

B, a lower D� � acav product of �38 THz cm�1 (with

Lorentzian profile) was estimated for this waveguide, which

is consistent with previous reports.5,13,55

V. CONCLUSION

In this paper, we present a THz indirectly pumped QCL

based on phonon-assisted injection and extraction. A simple

rate equation formalism was employed and a genetic

FIG. 10. Symboled lines are the cavity loss� gain bandwidth products of

device A, calculated by a 4-level RE model, at different lattice temperatures

(TL) and for two electron temperatures, Te, such as Te � TL ¼ 50, 100 K.

The solid lines are the peak gain� gain bandwidth products vs lattice tem-

perature at 19.7 kV/cm calculated by the RE model.
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algorithm was used to optimize the structure to have the

maximum gain while keeping the current injection as low as

possible. The product of net optical gain and transit time was

defined as a figure of merit to be maximized at the lattice

temperature of 150 K in the design optimization process. The

fifth energy state was engineered to be far from the first four

states and makes sure its carrier density is negligibly low.

Based on the design optimization, the second generation

of THz 3 P-QCL was demonstrated and a higher dynamic

range (ðImax � IthÞ=Imax ¼ 0:3 (0.4) in device A (device B)

compared to 0.24 in V843), higher operating temperature

(152.5 K compared to 138 K (Ref. 56)) and lower lasing fre-

quency (2.4 THz at 150 K compared to 3.2 THz at 138 K)

were obtained. The lower loss waveguide plays an important

role in pushing the maximum temperature to 152.5 K and a

high performance THz QCL with kBTmax=�hx ¼ 1:3 was

demonstrated. Despite these improved performances, the

intrasubband scattering contribution to the dephasing of the

tunneling process has been identified as a crucial parameter,

which limited the dynamic range of this device. Therefore,

future optimization schemes should include a realistic model

of the tunnel dephasing and linewidth of the lasing

transition.

To further improve the performance of THz 3P-QCL,

one can design a structure with a thinner injector barrier to

increase the gain and maximum current. A higher injection

tunnel coupling strength might be tolerable as long as the

early NDR, here observed at 7.7 kV/cm, can effectively be

suppressed. As a result, the lasing dynamic range can be

expanded and the maximum lasing temperature could be fur-

ther enhanced. Inserting one more quantum well in the up-

stream phonon double well could effectively minimize the

leakage current arising from tunneling resonances prior to

lasing threshold.11 In such QCL structures, a higher injection

tunnel coupling strength might, therefore, be chosen to fur-

ther improve device performance.

It is fair to recall the other very efficient—and experi-

mentally proven—strategy to suppress the early NDR, which

employs a design of a two-state extractor.18,19,57 This solu-

tion would imply dealing with five and possibly six levels

per module because the third state of the double-well extrac-

tor will likely be close in energy with the lasing states. In

such a case, this third state should be employed in the depop-

ulation mechanism via tunneling, resulting in the abandon-

ment of the “3P” nature of the designs we have explored

because a two-level extractor IDP-QCL would work accord-

ing to a 2PTP sequence (phonon-photon-tunnel-phonon)

between two injection barriers.

The main message conveyed by this paper is to demon-

strate that, despite its disarming simplicity, the 3P-QCL de-

vice can be optimized in some sophisticated ways and

perhaps, could reach performances suitable for practical

applications.

ACKNOWLEDGMENTS

The authors thank Dr. Marek Korkusinski from NRC for

providing the genetic algorithm and Pietro Patimisco from

the Universit�a and Politecnico di Bari for helpful stimulating

discussions. They also would like to acknowledge the finan-

cial supports from Natural Science and Engineering

Research Council (NSERC) of Canada, Canadian

Foundation of Innovation (CFI), the CMC Microsystems,

and Ontario Research Fund (ORF). H.C.L. was supported in

part by the National Major Basic Research Project

(2011CB925603) and the Natural Science Foundation of

China (91221201 and 61234005).

APPENDIX: SIMULATIONS BY NONEQUILIBRIUM
GREEN’S FUNCTION MODEL

Current and carrier densities as well as gain spectra of

the V845 device were simulated with the NEGF method,28

where the recent implementation described in Ref. 58 is

used. As basis states, we use the Wannier functions of the en-

velope hamiltonian of the perfect QCL structure at zero bias.

For this approach, the barrier height was �12.5 meV smaller

than in the RE model and a zero non parabolicity was

assumed. Both features widely compensate and the resulting

level spectrum is almost identical. Scattering effects from

interface roughness, impurities, and phonons are treated with

self-energies within the self-consistent Born approximation,

while electron-electron interactions are appreciated by a self-

consistently calculated mean field potential.

The current density has been calculated at different lat-

tice temperatures as shown in Fig. 11. In these simulations,

Jmax is found at a total bias which is lower than the experi-

mental bias of Jmax (shifted by the Schottky bias drop) by

�1.8 V. The difference is slightly smaller for the first reso-

nance peak. This contrasts with the RE method used in the

main text, where no such shift was observed. We attribute

the main part of the shift to the real parts of the self-energies

and the mean field potential included in the NEGF model.

Taking into account the real parts of the self-energies and

the mean field potential provides different Wannier-Stark

states as shown in Fig. 12(a). Here, the tunneling resonance

between states e and i occurs at a field of 18.7 kV/cm, but the

FIG. 11. Current densities at different lattice temperatures, calculated with

the NEGF method. Jmax is located at 19.3 kV/cm. The experimental curve of

the non-lasing device, shown as an orange dotted line, was measured at

4.2 K for comparison.
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injection energy Ei2 ¼ 25:97 meV deviates strongly from the

phonon energy ELO ¼ 36:7 meV. (A detailed summary of the

values is given in Fig. 13.) As a result, carriers accumulate in

the injection state. Correspondingly, the current peak occurs

for a slight detuning of Ei and Ee at 19.3 kV/cm (Fig. 12(b)).

At higher fields, the detuning between Ei and Ee becomes

significant and the current drops. Note that the population of

the ULS is asymmetric with respect to the current peak, as

the transition energy E2e of the leakage channel 2! e
becomes more detuned from ELO with increasing field. This

also results in a stronger inversion on the gain transition. The

relevance of the mean-field can be quantified by solving

Poisson’s equation including the electron densities in Fig.

12(b) and the doping density. We find a maximum mean

field potential of �1.8 meV (in the LLS well) and a mini-

mum of ��0.7 meV in the doped well. This potential effec-

tively raises e and the LLS, while it lowers i. This requires a

lower bias for the e�i tunneling resonance as compared to

the case without mean field.

As the temperature increases, inversion decreases as a

result of thermal backfilling from e to the LLS, as well as

from the ULS to i. The first backfilling effect shows the

importance of emptying the extraction state efficiently at the

operating bias, whereas the latter shows the importance of

matching the injection energy to ELO. At fields below the

first resonance peak, the current increases with temperature,

whereas the peak itself decreases, in good agreement with

the experiment (Fig. 4). In the region between the first reso-

nance peak and Jmax, the current also increases as in the ex-

perimental measurements. However, Jmax decreases with

temperature, whereas for the lasing device there is a decrease

in current at low temperatures, but for higher temperatures

the current drastically increases. The same effect is seen in

the RE simulations with 5 states per period, and the NEGF

with its 7 states per period thus confirms that this increase in

Jmax does not come from thermal excitations to higher states.

The gain spectra computed at different temperatures and

for the electric field of Jmax (�19.3 kV/cm) are shown in Fig.

14. Peak gain is achieved for � ¼ 2:5 THz at Jmax, which

agrees much better with the experimental data than the RE

results. This frequency corresponds to the difference in

energy of the Wannier-Stark states responsible for lasing,

and we thus conclude that the dispersive gain and depolariza-

tion shift included in the NEGF model do not play an

FIG. 12. Carrier densities at (a) 18.7 kV/cm and (b) 19.3 kV/cm. Current is

peaked at the bias in (b), although the tunneling resonance is greater in (a).

FIG. 13. (a) The detuning energy between extraction and injection states Eei,

the energy differences of the extraction E1e, the injection Ei2 and the energy

spacing E2e of the main leakage channel 2! e. (b) Population densities of

the injection ni, upper laser n2, lower laser n1 and extraction ne states. At

electric fields where i and e are almost degenerate, the average value of ne

and ni is shown.
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important role. The peak value of the gain decreases from

39 cm�1 at 50 K to 33 cm�1 at 130 K and finally, down to

30 cm�1 at 150 K. The full width at half maximum of the cal-

culated gain (D�) at 130 K is �1.56 THz. At lower fields (see

dashed line of Fig. 14), the gain goes down in magnitude,

and the peak gain shifts to lower frequencies with a Stark

shift �0:45 THz=V, which is slightly higher than the experi-

mental observation at 10 K (Fig. 6).
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Nonequilibrium Green’s Function Model for
Simulation of Quantum Cascade Laser
Devices Under Operating Conditions

Andreas Wacker, Martin Lindskog, and David O. Winge

(Invited Paper)

Abstract—A simulation scheme based on nonequilibrium
Green’s functions for biased periodic semiconductor heterostruc-
ture devices is presented in detail. The implementation can de-
termine current and optical gain both for small and large optical
fields. Specific results for superlattices, quantum cascade lasers,
and quantum cascade detectors are shown which demonstrate the
capabilities of the approach.

Index Terms—Nonequilibrium Green’s functions (NEGF),
quantum cascade laser, simulation.

I. INTRODUCTION

QUANTUM cascade lasers (QCLs) [1] have become an
important source of radiation for infrared spectroscopy

[2]–[4]. In addition, lasing in the terahertz range [5] opens up
a wide range of further applications [6]–[10]. These devices
rely on a precise design of the underlying semiconductor het-
erostructure, so that the combination of electron tunneling and
scattering provides inversion in the population of the subbands.
While a first idea about the operation can be obtained by rela-
tively simple principles such as level alignments and scattering
rates [1], a full understanding of the operating requires a more
detailed quantum description.

Typically the operation of QCLs is modeled by rate equa-
tions [11] between the levels of the active regions, while the
current flow through the injector is taken into account phe-
nomenologically. The transition rates are evaluated microscopi-
cally within Fermi’s golden rule for phonon scattering [12], [13]
and partially for electron–electron scattering [14], [15]. In addi-
tion, confined phonon modes [16] and hot phonon effects [17]
have been studied. If one includes the injector states in such a
simulation, one obtains a self-consistent simulation of the entire
structure [18], [19] within the semiclassical carrier dynamics.

While rate equations only take into account the electron den-
sity of subbands, Monte Carlo simulations of the Boltzmann
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equation [20], [21] allow for a study of nonequilibrium dis-
tributions within the subbands [22]. Here, the importance of
electron–electron scattering [23] is debated. In [24], Iotti and
Rossi show that the impact of electron–electron scattering is
strong if no elastic scattering mechanism is taken into account.
In contrast the authors of [25] find that elastic impurity scattering
gives stronger effects than electron–electron scattering.

Density matrices include the correlations ραβ between dif-
ferent quantum states α �= β. These are of particular impor-
tance for the tunneling through the injection barrier, where
their neglect provides the wrong result, that is the peak tun-
nel current does not drop with the barrier width [26], [27]. In
a more phenomenological way, this can be done on the level
of densities [28]–[30], which is very cost effective. Taking into
account the k-resolution, the equations for the density matrix
ραβ (kx, ky ) become much more involved [24], [27], [31]. Here,
it is a well-known problem that unphysical negative occupations
may occur in frequently used approximation schemes; see [27]
for a thorough discussion. A possible solution by using further
approximations is outlined in [32] on the level of densities.

Nonequilibrium Green’s functions (NEGF) constitute a
higher step of sophistication. They can be viewed as energy-
resolved density matrices and allow for a consistent perturba-
tive treatment of scattering and quantum evolution. On the other
side, their numerical implementation is heavy, in particular if
electron–electron scattering is considered. They have been used
for QCL simulations by various groups in different types of
implementations [33]–[38].

The purpose of this paper is to present a detailed account of
our implementation of NEGF in Section II. On the one hand, this
complements earlier descriptions [34], [35] for the stationary
transport. Furthermore, we present our extension to include the
lasing field beyond linear response, which we recently applied
in [39]. We demonstrate the strength of the simulation tool
by applications for superlattices, QCLs, and quantum cascade
detectors (QCDs) in Sections III–V, respectively.

II. THEORETICAL FORMULATION

We consider a general sequence of heterostructure layers,
where z is the growth direction. For an ideal structure, the system
is translational invariant in the x and y directions and we use a

1077-260X © 2013 IEEE
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complete set of states

Ψα,k(x, y, z) = ϕα (z)
ei(kx x+ky y )

√
A

(1)

where k = (kx, ky ) is a vector within the x, y plane of nor-
malization area A. The states ϕα (z) can be chosen in different
ways. Typical examples are eigenstates of the pure Hamiltonian
Ĥ0 (also called Wannier–Stark states) as used by most groups,
or a site representation as used in [37] and [38]. We usually
apply Wannier States; see [34, Appendix A], which allow for a
consistent description of periodic extended structures. In partic-
ular, their construction does not require any artificial boundary
conditions (such as the Wannier–Stark states) and they provide
reliable energy levels (while these energies are approximate in
a site representation with a manageable number of grid points).
Nevertheless, the following description can be used for any kind
of orthonormal states ϕα (z).

With in this basis, the total Hamiltonian can be written as
follows:

Ĥ = Ĥ0 + Ĥac(t) + ĤMF(t) + Ĥscatt . (2)

Here, Ĥ0 contains the kinetic energy, the heterostructure poten-
tial, and the constant electric field F due to the applied bias.

Ĥac(t) is due to a laser field with the electrical component
Fac�ez cos(ωt − kx). Here, k =

√
εrω/c with the refractive in-

dex
√

εr . Neglecting terms of order k (just as in the common
dipole approximation), we obtain the potentials [33]

Coulomb gauge �A(t) = −Fac

ω
�ez sin(ωt) φ(z, t) = 0

Lorenz gauge φ(z, t) = −Facz cos(ωt) �A(t) = 0

which allow us to construct Ĥac(t) in the standard way.
ĤMF(t) is the mean field due to the charge distribution ρ(z, t)

in the heterostructure, which is obtained by solving Poisson’s
equation. (Its time-independent part is frequently incorporated
into Ĥ0 .) Finally, Ĥscatt describes the interaction with impu-
rities, phonons, and other sources destroying the translational
invariance in x and y directions. Thus, this term is not diagonal
in k, in contrast to all other contributions to Ĥ .

Most physical observables can be expressed by the (reduced)
density matrix

ραβ (k, t) =
〈
a†

βk(t)aαk(t)
〉

= Tr
{

ρ̂a†
βk(t)aαk(t)

}
(3)

where the creation/annihilation operators a†
αk(t)/aαk(t) of the

single particle level Ψαk(x, y, z) have a time dependence in the
Heisenberg picture and ρ̂ is the density operator. Note that av-
eraging over impurity positions and phonon mode occupations
typically renders zero expectation values of 〈a†

βk ′(t)aαk(t)〉 for
k′ �= k. These density matrices ραβ (k, t) allow for the calcula-
tion of the relevant physical properties. For example, the electron
sheet density in level α is given by nα (t) = ρ̄αα (t), where

ρ̄αβ (t) =
2

A

∑

k

ραβ (k, t) (4)

sums over the lateral degrees of freedom and the spin. Even
more important is the current density in the growth direction

J(z, t) = e�
{〈

p̂z − eAz (z, t)

mc(z)

〉}

=
e

�
∑

α,β

[
iWβα (z) − eAz (z, t)d

�
Fβα (z)

]
ρ̄αβ (t) (5)

where Az (z, t) is the z component of the electrodynamic vector
potential (we tacitly assume that its x, y dependence is not of
relevance), e < 0 the charge of the electron, and

Wβα (z) = − �2

2mc(z)

(
ϕ∗

β (z)
∂ϕα (z)

∂z
−

∂ϕ∗
β (z)

∂z
ϕα (z)

)

Fβα (z) =
�2

d

ϕ∗
β (z)ϕα (z)

mc(z)
.

In practice, J(z, t) depends on the number of states used [40],
as the completeness relation is not entirely satisfied for a finite
basis. However, the spatial average over one period J(t) con-
verges much better and is used for almost all practical purposes.
In the presence of an ac field with amplitude Fac cos(ωt), we
find a time-periodic current density

J(t) =
∑

h

Jhe−ihωt . (6)

Here, J0 is the dc current and the material gain can be obtained
via the real part of the dynamical conductivity σ(ω) as

G(ω) = −�{σ(ω)}
cε0

√
εr

= − 1

cε0
√

εr

J1 + J−1

Fac
. (7)

Thus, the main task is to evaluate the density matrix ραβ (k, t)
in the presence of Hamiltonian (2). (In fact, for most purposes
it is sufficient to consider ρ̄αβ (t) as used in many recent density
matrix approaches [28]–[30], [32]). In this context, it is a major
problem that a standard perturbative treatment of the scatter-
ing Hamiltonian(see [24] and [27]) provides negative densities,
which is a general feature [41]. An outcome is to modify the
scattering terms in a clever way; see, e.g., [32]. However, such an
artificial procedure might mask relevant physical effects, where
details of the k-distribution matter [38]. Thus, it is of general
interest to have a formalism at hand, which is entirely based
on a systematic treatment of perturbation theory and avoids un-
physical outcomes. This justifies the far more evolved method
of NEGF as discussed here.

A. Green’s Functions

The formalism of NEGF [42]–[44] can be based on the fol-
lowing Green’s functions: the correlation function (or “lesser”
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Green’s function)

G<
α1 ,α2

(k; t1 , t2) = i〈â†
α2

(k, t2)âα1
(k, t1)〉 (8)

which can be regarded as an extension of the density matrix (3)
to different times, as well as the retarded and advanced Green
functions

Gr
α1 ,α2

(k; t1 , t2) = −iΘ(t1 − t2)
〈{

âα1
(k, t1), â

†
α2

(k, t2)
}〉

Ga
α1 ,α2

(k; t1 , t2) = iΘ(t2 − t1)
〈{

âα1
(k, t1), â

†
α2

(k, t2)
}〉

=
[
Gr

α2 ,α1
(k, t2 , t1)

]∗
(9)

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. Using ma-
trix notation, where matrices like Gαβ are denoted by bold
capitals G, differentiating in time provides the equations of
motion
(

i�
∂

∂t1
− Ek

)
Gr/a(k; t1 , t2) − U(t1)G

r/a(k; t1 , t2)

= �δ(t1 − t2)1 +

∫
dt

�
Σr/a(k; t1 , t)G

r/a(k; t, t2) (10)

where the matrix U refers to the k-diagonal part of the
Hamiltonian

Ĥ0 + Ĥac(t) + ĤMF(t) =
∑

α,β ,k

Uα,β (k, t)a†
α (k)aβ (k) (11)

and Ek = �2k2/2m∗ is the in-plane energy, where we use the
effective mass m∗ of the well for simplicity. (Nonparabolic-
ity has been recently considered in the Green’s function model
of [45].) The self-energies Σ take into account Ĥscatt pertur-
batively. A similar equation of motion for the lesser Green’s
function is solved by the Keldysh relation [44]

G< (k; t1 , t2)

=

∫
dt

�

∫
dt′

�
Gr(k; t1 , t)Σ

< (k; t, t′)Ga(k; t′, t2). (12)

In earlier work [34], [35], we focused on the stationary be-
havior, where the Green’s functions only depend on the time
difference t1 − t2 . Now, we consider a periodic solution, where
the system is allowed to oscillate at a frequency ω and its higher
harmonics as a consequence of the time periodicity of Ĥac(t)
(and consequently ĤMF(t)). Setting

U(t) =
∑

h

Uhe−ihωt (13)

and using the Fourier decomposition similar to [66]

F (k; t1 , t2) =
1

2π

∫
dE

∑

h

e−iE (t1 −t2 )/�Fh(k, E)e−ihωt1

(14)
both for self-energies and Green’s functions, we find the Dyson
equation

1δh,0 = (E + h�ω − Ek )G
r/a
h (k, E)

−
∑

l

(
Uh−l + Σ

r/a
h−l(k, E + l�ω)

)
G

r/a
l (k, E) (15)

and the Keldysh relation

G<
h (k, E) =

∑

l,l ′

Gr
h−l−l ′(k, E + (l + l′)�ω)

×Σ<
l ′ (k, E + l�ω)Ga

l (k, E) (16)

providing a set of equations to determine the Green’s functions
for given self-energies within the truncation |h| ≤ hmax . The
density matrix is then element wise reproduced by

ραβ (k, t) = −i
∫

dE

2π

∑

h

G<
αβ,h(k, E)e−ihωt (17)

allowing for the evaluation of current and gain as outlined
previously.

B. Self-Energies

For the self-energies, we use the self-consistent Born approx-
imation. In Appendix B, details on the scattering processes are
given. Here, we restrict to the main concept. For example, for
elastic scattering

Ĥelast
scatt =

∑

αkβk ′

Vαβ (k − k′)a†
αkaβk ′ (18)

we have

Σ
< / r

αα ′ ,h (E,k) =
∑

β β ′,k ′
〈Vαβ (k − k′)Vβ ′α ′(k′ − k)〉 G

< / r

β β ′,h (E,k′)

(19)

where 〈〉 averages over different realizations of the scattering
potential, which restores the spatial homogeneity. For the same
reason, the Green’s function and self-energy do only depend on
the absolute value |k|, which is conveniently expressed by Ek .
Then, (19) can be rewritten as

Σ
< / r

αα ′ ,h (E, Ek ) =
∑

β β ′

∫ ∞

0

dEk ′ Xαα ′ ,β β ′(Ek , Ek ′)G
< / r

β β ′,h (E, Ek ′).

(20)

Assuming that G
</r
ββ ′,h(E,Ek ′) peaks at Ek ′ ≈E − (Eβ +Eβ ′)/

2 = E′
typ , and Σ

</r
αα ′,h(E,Ek ) is mostly needed at Ek ≈ E −

(Eα + Eα ′)/2 = Etyp , we may approximate Xαα ′,ββ ′(Ek ,Ek ′)
by Xαα ′,ββ ′(Etyp , E′

typ), which effectively corresponds to
delta-like scattering potentials. Here, we usually chose the value
of E such that Min{Etyp , E′

typ} = 1meV + 0.3kB T . This con-
stant k approximation provides an essential simplification of the
numerics, as the self-energies do not depend any longer on k.

The k-dependence of Σ has been shown to be of relevance for
longitudinal optical phonon scattering [46], [47], so the results
have to be taken with some care. However, with our choice of
a level-dependent Etyp , E′

typ , we obtained reasonable results
for all cases studied so far. A comparison with an exact treat-
ment of intersubband absorption for roughness scattering [48]
showed that our approach reproduced the peak very well, but
overestimated the absorption tails at high energies, where the
momentum dependence of the matrix elements is crucial.
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C. Boundary Conditions and Iteration Scheme

We consider a periodic system, where the same sequence of
layers is repeated infinitely (d is the length of the period). We
tacitly assume that the solution follows this periodicity.1 Taking
into account a potential drop eFd per period due to the external
dc bias, this implies in Coulomb gauge

Σαβ ,h(E) = Σα ′β ′,h(E + eFd)

if the states α′β′ are shifted by one period with respect to αβ.
(For the Lorenz gauge, the transformation is more complex and
mixes terms with different h.) Thus, it is sufficient to evaluate
the self-energies Σαβ ,h(E), where the state α is located in a
given central period.

In order to obtain a solution, we determine Gr/a by solving
(15) for a given Σαβ ,h(E) taking into account the states of the
central period as well as Nper periods on either side. Then, we
determine G< via (16). Based on these Green’s functions, we
calculate the new self-energies Σαβ ,h(E) for α being located in
the central period. If the new self-energies do not agree with the
starting ones, we choose new values by the Broyden algorithm
[49] and repeat the iteration. Convergence with an accuracy
of typically 5 × 10−4 (or even smaller) is obtained after 30–
100 iterations. Finally, the quantities of interest are evaluated
from the Green’s functions in the central region. By increasing
hmax and Nper , the quality of the respective truncations can be
verified.

D. Meanfield

The electron charge density ρel(z, t) is directly obtained from
the density matrix. Solving Possion’s equation together with the
doping density for periodic boundary conditions φ(z) = φ(z +
d) provides the potential φ(z, t), which determines ĤMF(t).

III. COMPARISON WITH ANALYTICAL RESULTS FOR

SUPERLATTICES

Semiconductor superlattices represent the simplest periodic
structures and provide an excellent testing ground for the code.
Here, we consider the structure of [50], which has a rather large
miniband width Δ = 26.4 meV. Fig. 1(a) shows the calculated
current-bias relation using the nominal system parameters and
neglecting interface roughness (which should be small, as wells
and barriers are binary systems and carefully chosen to con-
sist of an integer number of monolayers). All calculations are
done at a lattice temperature of 300 K and we use Nper = 3.
The peak height and position agree reasonably well with the
measured characteristics. The data can be fitted very well by a
simple expression J(F ) = 2JmaxeFdΓ/((eFd)2 + Γ2) based
on the Esaki–Tsu characteristics [51] where Γ = 18 meV is the
average scattering rate multiplied by �. This is expected, as the
miniband model is good for Δ � Γ and Δ � |eFd| [52]. In-
deed, minor deviations are seen for larger bias drops Fd per
period. Following the work of [53], analytical expressions can

1Recently nonperiodic solutions have been discussed in [65]. As this effect
appears in direct connection to the injecting contact, it is not clear whether this
is of relevance far inside the periodic structure.

Fig. 1. Results of the NEGF simulation for the superlattice of [50]. The thick
gray line gives the analytic solution of the simplified miniband model for com-
parison. The NEGF solutions are displayed for one miniband (mb) (full/dashed
line) and two minibands (dotted/dash–dotted line) for Lorenz/Coulomb gauge,
respectively. In panels (c) and (d), different choices of hmax are shown for
Lorenz gauge and one miniband, while all other curves are solutions with suf-
ficiently high hmax . In panel (b), the gain value at ω → 0 obtained from the
NEGF conductance in panel (a) is marked by a dot.

be obtained within the Esaki–Tsu model even for a finite ac
field (see [54, Section VI.2] for details), which can be used for
comparison.

In Fig. 1(b) the gain is shown for a weak ac field at a dc bias
dropping over one period of Fd = 30 mV. Here, we are in the
region of negative differential conductivity of the superlattice,
and consequently, gain occurs for �ω � |eFd|. The NEGF solu-
tions are in reasonable agreement with the simple model, which
can be seen as a validation for both approaches. We note that
the choice of gauge does not affect the result much. However, it
can be seen that the inclusion of the second subband (i.e., letting
α run over two states per well) changes the result slightly for
the Coulomb gauge. (The current–voltage characteristics are
not affected as the second miniband, located 300 meV above
the first miniband, is essentially empty.) Finally, we see that the
gain approaches the value G0 = − σd c

cε0
√

εr
= 205/cm for ω → 0,

where the dc conductivity σdc is obtained from the slope of the
current–voltage characteristics.

Fig. 1(c) shows the dc current at Fd = 15 mV as a func-
tion of the ac-field strength. We find that the current drops as
a result of dynamical localization [55]. The result in Lorenz
gauge and the analytic miniband model agree very well. For the
Coulomb gauge, the agreement is only good if two minibands
are taken into account. For the Lorenz gauge, we have shown
simulations with different numbers hmax . As expected, with in-
creasing eFacd a larger number of h-components is needed in
order to reach convergence.

Finally, Fig. 1(d) shows the gain for �ω = 10 meV at a dc bias
of Fd = 15 mV as a function of the ac-field strength. The be-
havior is less dramatic. Here, the agreement between the NEGF
solution and the analytic miniband model is only of qualitative
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Fig. 2. Energetically and spatially resolved electron density ρ(E, z) and
the Wannier–Stark states of the QCL in [56] for a bias drop per period
F d = 48.25 mV.

nature. A better agreement would be surprising, as the high
fields F + Fac in combination with the high frequency ω are
limiting the validity of the miniband model. The disagreement
between the gauges is stronger and again, the result in Coulomb
gauge depends on the number of minibands included.

These findings indicate that the NEGF model provides rea-
sonable results in Lorenz gauge. In Coulomb gauge, the results
depend strongly on the number of states included, even, if they
are not directly involved. This may be attributed to the Az term
in the current (5). Technically, the equivalence between the two
gauges requires the completeness relation for the basis used. For
any finite basis, the completeness relation is only approximate,
and thus, the equivalence between the approaches is not guar-
anteed. The data shown here indicate that the Lorenz gauge is
more reliable.

IV. QCL RESULTS

A. Characterization of a QCL

In order to test the validity of our model, we present simula-
tion results on the QCL structure of [56]. The structure is shown
in Fig. 2, with the Wannier–Stark states and the energetically
and spatially resolved electron density ρ(E, z), directly found
from the Green’s function by

ρ(E, z) =
2e

2πiA

∑

k

∑

αβ

G<
αβ,h=0(E,k)ϕ∗

β (z)ϕα (z). (21)

Fig. 3 shows the current-bias relation without an external
ac field at a lattice temperature of 50 K. The peak current
∼350 A/cm2 is reached at 49 mV/period, which corresponds
well with the experimentally observed peak at lasing at about
48 mV/period, where the current for a nonlasing device was
measured to be ∼ 400 A/cm2 . The relatively large peak around
34 mV/period is of much smaller magnitude in the measure-
ments. It corresponds to tunneling over two barriers. We think
that dephasing is underestimated in our model here, probably
due to the neglect of electron–electron scattering.

The simulated gain spectra for two gauges of a weak applied
ac field are shown in Fig. 4. As discussed previously, the gauge
transformations should in principle leave the results unchanged,

Fig. 3. Current-bias relation for the QCL in [56]. The circles mark the oper-
ating points where the gain is simulated and the conductivity is calculated.

Fig. 4. Gain spectrum for Facd = 1 mV at different biases for the QCL in [56]
at two different gauges (solid lines: Lorenz; dashed lines: Coulomb). Circles
mark the gain coefficients at ω → 0 calculated from the conductivity.

but the incompleteness of the basis used gives rise to minor
numerical differences. However, the results for different gauges
agree fairly well for low ac bias as in the case for the superlattice
discussed previously.

Again, we validate our model by comparing the theoretical
value of the gain coefficients with the simulated gain spectra. In
Fig. 4, the gain coefficients at ω → 0 are marked with circles.
These have been calculated from the slope of the IV curve at the
bias points indicated in Fig. 3 (using a quadratic fit) to be −9.09,
−4.59, and −7.523/cm for increasing bias. The gain at low ω
can be seen to approach the calculated values. Experimentally,
lasing is observed at �ω = 11.5 and 13.3 meV at lower bias and
at �ω = 16 meV for higher bias, which agrees well with our
gain spectrum.

B. Integrated Absorption

The physics of gain in a QCL is essentially the physics
of intersubband absorption and stimulated emission. The to-
tal absorption of all states in the conduction band, which we
will here denote the integrated absorption, can be estimated
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Fig. 5. Simulated absorption on a structure presented in [59]. Results from
two different simulations are compared, one using 5 states per period and one
using 8 states per period. As a reference, the conduction band offset in this
structure is about 135 meV.

following [57] and [58] to

∫ ∞

0

dω αintersubband(ω) = nav
πe2

2m∗cε0
√

εr
(22)

with nav =
∑

i ni/d as the average 3-D carrier distribution and√
εr again the refractive index. Note that this expression depends

neither on the structure nor on the applied bias.
The constant property of the integrated absorption provides

an excellent opportunity to test the model. To do this, we investi-
gate a structure presented in [59]. This is a four-well QCL where
the main transport properties can be retrieved from simulations
by taking the first five states in each period into account. For
this structure, simulations were carried out over a wide range of
frequencies, and the results are shown in Fig. 5. The integrated
absorptions for the two cases are found via numerical integration
over the frequency interval to yield 2.23 eV/cm (1.62 eV/cm)
when including 8 (5) states. Here, the errors in the numerical
calculation can be severe as the number of points in the critical
regions are few, and then exaggerated by the numerical integra-
tion. The simulated integrated absorption should be compared
to the theoretical value of 2.41 eV/cm from (22).

As seen in the figure, the inclusion of states not contributing to
transport is crucial in order to reproduce the correct integrated
absorption. It is worth noting that the difference between a
noncomplete basis set of five states and one almost complete
of eight states is large. This shows again the importance of
the completeness relation in the model, as we see here that an
incomplete basis does not nearly reproduce the theoretically
predicted result. The ninth state is in the continuum, and its
importance is so far neglected.

Looking closer at (22), we note that the effective mass m∗ is
in fact z-dependent, as it is not the same in the barriers as in the
wells. However, absorption will occur where the electrons are
localized, as this is the argument for approximating the mass
in these calculations with the effective mass of the wells of the
heterostructure. Therefore, we expect the theoretical estimate
to slightly overshoot the real value. Although the electrons are
most probably found in one of the wells, we would find a certain
percentage in the barriers, effectively raising the average mass
and thus contributing to lower integrated absorption. This should

Fig. 6. Simulations with different hmax for three ac field strengths. An esti-
mate of the critical frequency for each calculation is shown with a line.

also be taken into account when interpreting the results given
previously.

C. High Intensity

Recently, we showed the relevance of nonlinear effects on the
gain spectrum of a QCL [39]. In this context, it is important to
study the convergence of the solution depending on the trun-
cation parameter hmax . Obviously, for low intensity of the ac
field, a sharp truncation is very reasonable but when the photon
energy is comparable to the ac field strength higher harmonics
are needed in order to expand the space of allowed response
functions of the system.

This criterion can be expressed as eFacd � hmax �ω, for
Nper = 1 used here. More orders of the response function must
be taken into account when calculating with low photon ener-
gies �ω. This can be understood as including higher orders of
absorption phenomena, as several photons of low energy can
give the same absorption effect in the electronic system as one
photon at the exact transition energy. These effects are naturally
more important as intensity is increased.

The lowest truncation possible is hmax = 0 which cannot treat
any external light field at all but gives the stationary behavior
of the system. Second lowest would then be hmax = 1, where
response at the fundamental frequency is seen. This gives the
main part of the system dynamics, making it possible to retrieve
quantities such as gain and absorption. Higher orders hmax > 1
provide higher accuracy as more dynamical effects are taken
into account as more Fourier components of the Green’s func-
tion enter the system. This is important for low photon energies
as discussed before. For terahertz QCLs, which operate at typ-
ical photon energies of 10 meV, large parts of the gain spectra
are actually in the regime where the higher harmonics play an
important role. In order to illustrate the importance, simulations
of a QCL described in [59] are displayed in Fig. 6. The main
effect, as discussed in detail in [39], is the reduction of gain with
the intensity of the optical field due to bleaching.

The simulations show that it is not trivial to approach the low-
frequency part of the spectra with a finite ac field strength. At
the energy scale of the transport dynamics, the photon energies
are now small, and a number of photons would be required in
order to affect the system on the same premises as in the cases
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Fig. 7. Current at the same points as in Fig. 6 for hmax = 2 plotted for
the three different intensities. Data only taken at points where we estimate the
simulations to be accurate.

of higher photon energy. This is why hmax is such an important
parameter in the results shown in Fig. 6.

Here, the simulations with hmax = 3 are the best cases and
closest to the would-be exact calculation. For this system, it is
on the limit of what is at the moment possible for us to do and
only a few points are shown for the hmax = 3 case, plotted as
dashed lines in the figure. The simulations for different cases of
hmax eventually coincide at higher photon energies as expected,
early for low ac field strength and later for high ac field strength.
It is clear from the results that the higher harmonics are of im-
portance at operating intensities above eFacd = 6 meV. In the
plot we also show, for each ac field strength and hmax , an esti-
mation of the critical frequency. At this frequency, one should
start being restrictive in trusting the results of the simulations.

In a QCL under operating conditions, the laser field will drive
the current as the frequency of the photons is matched to the
energy difference of the upper and lower laser state, stimulating
emission and thus destroying the inversion of the carriers. This
will result in a higher current through the system, and this can
be seen in Fig. 7 where current is plotted at the same points
as in Fig. 6 for hmax = 2. The general trend is that for a given
ac field strength the current increases with decreasing photon
energies. This can be attributed to the fact that with decreasing
photon energy, the number of photons increases for a fixed
intensity. Therefore, more stimulated transitions occur, which
provide extra channels for the electron transport.

Characteristic features can also be seen at the absorption
peak at �ω ∼ 7 meV and at the gain peak at �ω ∼ 10 meV,
compared with Fig. 6. We attribute the first peak in current to
a redistribution of carriers from localized states to more mobile
ones. At the gain peak at �ω ∼ 10 meV, the stimulated emission
provides an enhanced current along the common current path
through the structure. This is commonly seen experimentally as
a change of conductance at the onset of lasing.

Finally, above �ω > 13 meV, the current is hardly affected
by the laser field. This is just the region without any significant
absorption/gain, as can be seen in Fig. 5.

V. QUANTUM CASCADE DETECTOR

A suitable application of our model other than the QCL is
the QCD [60], which is an alternative to the quantum well

Fig. 8. (a) Basis states of the QCD, numbered from bottom to top. (b) Maxima
of the density of states and the electron density.

Fig. 9. Absorption (blue) and response current (red) as functions of the applied
ac field frequency. The optical transitions causing the absorption and response
peaks are indicated.

infrared photodetector (QWIP) for detecting infrared radiation.
In contrast to the QWIP and many other photodetectors, the
QCD operates at zero (or very small) bias, and therefore has
minimal dark currents, in addition to having a narrow detection
wavelength width.

We will now study the QCD presented in [61], shown in
Fig. 8(a) with the calculated basis states. In Fig. 8(b), we show
the density of states (lines) at the energies where it has maxima.
The reason for doing this is that the Wannier–Stark states, con-
ventionally used as basis states that here contain mean field, are
not defined at zero bias, and that the Wannier states do not in-
clude these effects. The density of states allows for determining
which transitions are most probable with respect to populated
and empty states.

Light is detected when an electron in the ground state of the
widest, heavily doped well, |1〉, absorbs a photon with an energy
matching the transition |1〉 → |8〉. The electron will thereby oc-
cupy state |8〉. Tunneling and scattering then allow for a cascad-
ing current from |8〉 down to the ground state of the neighboring
period, to the right in Fig. 8. This gives an overall current flow-
ing through the device (consisting of 50 periods or so) that is
detected at the terminals.

Fig. 9 shows the simulated absorption and the response cur-
rent arising from the photon-absorbing carriers. This current is
a second-order effect, since it arises from carriers excited by
the applied ac field. The main peaks are located at (going from
low to high �ω) 69, 119, 138, 159, and 226 meV. Using the
labeling in Fig. 8 (a) and taking the energy differences between
the density of states maxima in Fig. 8 (b), the response peaks are
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attributed to the transitions shown in Fig. 9. The QCD current
response agrees almost exactly with the absorption peaks.

The experimentally measured QCD [61] showed the same
structure for both absorption and response current as the pre-
sented simulations. The simulated peaks are shifted to higher
frequencies by about 5 meV (more for larger transitions, and
less for smaller transitions) with respect to the measured peaks.
We attribute this to the neglect of nonparabolicity in our current
scheme. In general, nonparabolicity reduces the energy of high
energy states.

VI. CONCLUSION

We have presented our implementation of NEGF for the sim-
ulations of heterostructure devices in detail. Our model allows
for a reliable determination of the current-field relation in most
cases. However, some problems exist with extra peaks due to
long range tunneling, which indicates that some dephasing chan-
nels are still missing. The main advance compared to previous
implementations is the possibility to treat the radiation field even
beyond linear response. This allows for studying a variety of im-
portant effects such as dynamical localization in superlattices,
gain bleaching in quantum cascade lasers, and photon-assisted
currents in QCDs. For small optical fields, the choice of the
gauge does not matter much. However, the Coulomb gauge
seems to require the inclusion of higher minibands in a super-
lattice even if they do not contribute explicitly. This effect is
particularly strong for large optical fields.

APPENDIX A

ANGLE AVERAGED SCATTERING MATRIX ELEMENTS

Using the self-consistent Born approximation in (19), we
already argued for the use of only the absolute value |k| for the
potentials. This means that when transforming the self-energies
into a function of Ek = �2k2/2m∗ and Ek ′ instead of k and k′,
we have to write the self-energy as

Σ
</ret
αα ′,h (E,Ek ) =

∑

ββ ′

∫ ∞

0

dEk ′
A

(2π)2

m∗

�2

×
∫ 2π

0

dφ〈Vαβ (Ek ,Ek ′ , φ)Vβ ′α ′(Ek ,Ek ′ , φ)〉

× G
</ret
ββ ′,h (E,Ek ′)

where we now have converted the sum over k′ into a 2-D integral
of E ′

k and the angle φ = ∠(k,k′). Now, we identify the second-
rank tensor Xαα ′,ββ ′ as the angle averaged part of the scattering
matrix elements as a function of Ek ,Ek ′ in the following way:

Σ
</r
αα ′,h(E,Ek ) =

∑

ββ ′

∫ ∞

0

dEk ′ Xαα ′,ββ ′(Ek ,Ek ′)

×G
</r
ββ ′,h(E,Ek ′) (23)

where also the constants are included in Xαα ′,ββ ′ . As discussed
previously, these tensors are evaluated at certain typical energies
Etyp and Etyp ′ which allow us to take the tensors outside the in-

tegral leaving an expression where we only need the k-integrated
Green’s function for the evaluation of the self-energies.

APPENDIX B

DETAILS FOR THE SCATTERING MATRIX ELEMENTS USED

Here, we describe in detail how the different scattering pro-
cesses are included in the formalism. The alloy scattering matrix
elements are evaluated to describe the procedure of these cal-
culations, and then the other scattering mechanisms are shown
for completeness. These can be derived by the interested reader
in the spirit of [34] with only minor changes with respect to the
formalism presented here.

A. Elastic Scattering

Alloy scattering is treated here as the disturbing potential
arising from alternating one of the atoms in a binary alloy, and
the treatment follows [62]. The strength of this potential will
depend on the mixing parameter x and the difference in the
conduction-band edge ΔV between the compounds with x = 0
and x = 1. The potential from one fluctuating species located
at �ri = ri + zi�ez is given by

V i(�r) = Cx
i δ(�r − �ri)

where Cx
i is a random variable such that

〈Cx
i 〉alloy = 0

〈
Cx

i Cx
j

〉
alloy

= δijx(1 − x)(ΔV Vmol)
2

and Vmol is the volume of one dimer (i.e., a fourth of the cubic
unit cell for zincblende lattices). These properties determine the
averages for the matrix elements in our basis, which read

〈V i
αkα ,βkβ

V j
γkγ ,δkδ

〉alloy =
δijx(1 − x)(ΔV Vmol)

2

A2

×ϕ∗
α (zi)ϕβ (zi)ϕ

∗
γ (zi)ϕδ (zi)e

−i(kα −kβ +kγ −kδ )·ri (24)

showing that this is a local scattering process. Summing over all
unit cells, effectively turning the sum into an integral

∑

i

→ 1

Vmol
d3ri

gives

〈V i
αkα ,βkβ

V j
γkγ ,δkδ

〉alloy

=
Vmol

A
δkα −kβ ,kδ −kγ

∫
dz ϕ∗

α (z)ϕβ (z)ϕ∗
γ (z)ϕδ (z)

× x(z)(1 − x(z))ΔV 2(z) (25)

which provides us with the squared matrix element used in (19)
for the alloy scattering. The φ-integral provides a factor of 2π
giving the final expression

Xαα ′,ββ ′ =
Vmolm

∗

2π�2

∫
dz ϕ∗

α (z)ϕβ (z)ϕ∗
β ′(z)ϕα ′(z)

×x(z)(1 − x(z))ΔV 2(z). (26)
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Now we proceed with the tensors for the other elastic scat-
tering matrix elements. For interface roughness scattering, we
assume the correlation functions

〈ξi(r)〉 = 0 〈ξi(r)ξj (r
′)〉 = δij η

2e−|r−r ′|/λi

for the deviation ξi(r) of the interface i from its nominal posi-
tion. Here, η is the average (RMS) height of the interface rough-
ness and λ lateral correlation. Then, we obtain approximately
(analogously to [34, Appendix B])

Xrough
αα ′ββ ′(Ek ,Ek ′) =

∑

j

ΔE2
c η2

j

2Eλj

1

(aj − bj )
√

aj + bj

×ϕ∗
α (zj )ϕβ (zj )ϕ

∗
β ′(zj )ϕα ′(zj ) (27)

where

a = 1 +
Ek + Ek ′

Eλ

b = 2

√
EkEk ′

Eλ

ΔEc is the conduction band offset in energy, η is the average
(RMS) height of the interface roughness, and Eλ = �2/2m∗λ2 .

Scattering at ionized dopants is treated as scattering from a
number of delta-doping layers at positions zi and areal density
Ni

2D :

X imp
αα ′ ,β β ′(Ek , Ek ′) =

∑

i

N i
2D

e4

16πε2
s ε

2
0

1

2π

∫ 2π

0

dφ

{
1

Ek + Ek ′ − 2
√

Ek Ek ′ cos φ + Eλ

×
∫

dz1 ϕ∗
α (z1 )ϕβ (z1 )e

−q (φ ) |z 1 −z i |

×
∫

dz2 ϕ∗
β ′(z2 )ϕα ′(z2 )e

−q (φ ) |z 2 −z i |
}

where �2q2(φ)/2m∗ = Ek + Ek ′ − 2
√

EkEk ′ cos φ + Eλ and
Eλ = �2λ2/2m∗. The inverse screening length λ is determined
by an interpolation between Debye and Tomas–Fermi screen-
ing for the average 3-D electron density. Even for very inho-
mogeneous distributions of the electrons along the period, this
approximation is good as long as λd � 1 [63].

B. Inelastic Scattering

In our current implementation, inelastic scattering processes
are only due to the phonons. For the longitudinal optical
phonons, we assume a constant frequency ωLO . We consider
the perturbation potential for the electron due to phonons with
wave vector �q = q + qz�ez :

Vphon(�r, t) =
∑

qqz

g(�q)eiq·r+iqz z
[
b(�q, t) + b†(−�q, t)

]
(28)

where b(�q, t) and b†(�q, t) are the bosonic annihilation and cre-
ation operators in the Heisenberg picture. For the polar interac-
tion of the longitudinal optical phonons, we have the standard
expression

|g(�q)|2 = g(�q)g(−�q) =
1

AL

e2

|�q|2
�ωLO

2ε0

(
1

ε(∞)
− 1

ε(0)

)

where L is the normalization length for the phonons in the
z-direction. Essentially following [44] and [64], we find in Born
approximation (see also [54, Section IV.1.2])

Σ<
αα ′(E,k) =

∑

ββ ′

∑

qz q

|g(�q)|2Mαβ (qz )Mβ ′α ′(−qz )

×
[
G<

ββ ′(E − �ωLO ,k − q)nB

+ G<
ββ ′(E + �ωLO ,k − q)(nB + 1)

]

where nB is the Bose distribution for the optical phonons at
lattice temperature and

Mαβ (qz ) =

∫
dz ϕ∗

α (z)eiqz zϕβ (z).

The retarded self-energy reads

Σr
αα ′(E,k) =

∑

ββ ′

∑

qz q

|g(�q)|2Mαβ (qz )Mβ ′α ′(−qz )

×
[
Gr

ββ ′(E − �ωLO ,k − q)(nB + 1)

+ Gr
ββ ′(E + �ωLO ,k − q)nB

+
1

2
G<

ββ ′(E − �ωLO ,k − q) − 1

2
G<

ββ ′(E + �ωLO ,k − q)
]

where a term containing a principal value integral [(127) of [54]]
has been neglected. Using the fact that the Green’s functions and
self-energies do only depend on |k|, the individual terms can be
rewritten in the form

Σαα ′(E,Ek ) =
∑

ββ ′

∫ ∞

0

dEk ′Xopt
αα ′ββ ′(Ek ,Ek ′)

× Gββ ′(E ± �ωLO , Ek ′) × [nB or (nB + 1)]

(29)

with

X opt
αα ′ ,β β ′ (Ek , Ek ′ ) =

e2 �ωLO

16π2 ε0

(
1

ε(∞)
− 1

ε(0)

)

×
∫

dqz

Mαβ (qz )Mβ ′α ′ (−qz )√
(�2 q2

z /2m + Ek + Ek ′ )2 − 4Ek Ek ′
.

(30)

As in the elastic case, we apply the constant k approx-
imation setting Ek ≈ E − (Eα + Eα ′)/2 = Etyp and Ek ′ ≈
E ± �ωLO − (Eβ + Eβ ′)/2 = E ′

typ in the Green’s functions
with the corresponding energy argument E ± �ωLO . Again,
the typical energy E is chosen such that Min{Etyp , E′

typ} =
1meV + 0.3kB T .

For the deformation potential scattering with longitudinal
acoustic phonons, we have

|g(�q)|2 = Ξ2
c

�ω(�q)

2ρm ALc2
L

in (28), where Ξc is the deformation potential of the conduc-
tance band, ρm is the mass density of the crystal, and cL is
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the longitudinal sound velocity. In general, these matrix ele-
ments are much smaller than the ones for optical phonon scat-
tering or impurity scattering. However, we want to take acous-
tic phonons into account at least phenomenologically, so that
there is some energy dissipation if optical phonon emission is
energetically not allowed for. We make the essential simplifica-
tions to set �ω(�q) → �ωac = kB T in the energy arguments of
the Green’s functions and nB (�q) → nB (�ωac) ∗ �ωac/�ω(�q) as
well as nB (�q) + 1 → (nB (�ωac) + 1) ∗ �ωac/�ω(�q) to mimic
the q dependence of the occupation functions. This prefactor
actually cancels with ω(�q) in |g(�q)|2 and we find an expression
completely analogously to (29) with

Xac
αα ′β ′β = �ωac

Ξ2
c mem

∗

4π�2ρm c2
L

1

L

∑

qz

Mαβ (qz )Mβ ′α ′(−qz ).

(31)
This expression does not depend on Ek and Ek ′ , so the con-
stant k approximation is already included in the aforementioned
approximations.

ACKNOWLEDGMENT

The authors would like to thank S.-C. Lee and R. Nelander
for their earlier contributions to the model development.

REFERENCES

[1] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y.
Cho, “Quantum cascade laser,” Science, vol. 264, pp. 553–556, 1994.

[2] R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus,
R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cas-
cade lasers in chemical physics,” Chem. Phys. Lett., vol. 487, pp. 1–18,
2010.

[3] A. Müller and J. Faist, “The quantum cascade laser: Ready for take-off,”
Nat. Photon., vol. 4, p. 291, 2010.

[4] F. Capasso, “High-performance midinfrared quantum cascade lasers,”
Opt. Eng., vol. 49, 111102 (9 pp.), 2010.
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We study the operation of an 8.5 lm quantum cascade laser based on GaInAs/AlInAs lattice

matched to InP using three different simulation models based on density matrix (DM) and non-

equilibrium Green’s function (NEGF) formulations. The latter advanced scheme serves as a valida-

tion for the simpler DM schemes and, at the same time, provides additional insight, such as the

temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade

laser studied here, the behavior is well described by simple quantum mechanical estimates based

on Fermi’s golden rule. As a consequence, the DM model, which includes second order currents,

agrees well with the NEGF results. Both these simulations are in accordance with previously

reported data and a second regrown device. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4895123]

Quantum cascade lasers1 (QCLs) have become an im-

portant source of infra-red radiation for spectroscopy appli-

cations,2 and different modeling techniques of varying level

of detail have been used to simulate the performance of such

structures.3 The density matrix (DM) scheme,4–6 where the

transport is governed by scattering transitions and selected

tunneling rates calculated from the off-diagonal elements of

the density matrix, provides fast calculations in good agree-

ment with experimental data.7 This makes the DM model

suitable for predicting the behavior of well-known QCL

types, and allows for layer sequence optimization.8

However, such models rely on a number of approximations,

such as scattering mechanisms based on Fermi’s golden rule

and thermalized subbands, in order to form a consistent and

efficient model.

In contrast to the DM scheme, the method of non-

equilibrium Green’s functions9–12 (NEGF) takes into account

the full coherences between the off diagonal elements of the

density matrix, as well as scattering between states of differ-

ent in-plane momentum k. Scattering effects are treated by

matrices of self-energies,9 which provides a self-consistent

solution with the coherences mentioned above. Furthermore,

the energetic widths of the states are fully included.

However, the calculations are very resource-demanding, and

thus put limitations on the structure optimization that is pos-

sible with such an approach. Instead, it is well suited to

model well-defined problems in deep detail, since informa-

tion about carrier, current, and state densities resolved in

energy and space can be extracted from the Green’s func-

tions. The NEGF approach can thus be used to validate sim-

pler models, as well as structures that have been optimized

using these.

In this letter, we present simulations of a QCL7 based on

a GaInAs/AlInAs heterostructure lattice matched to InP

under operation. We consider two implementations of the

DM model, where the first (DM simp.) uses the first order

current only, while the second one (DM 2nd), described in

Refs. 6 and 13, includes the second order current following

Ref. 14. These are directly compared with the NEGF model

described in Ref. 15. The results are compared with experi-

mental data from Ref. 7 and a regrowth reported here. Going

beyond Ref. 16, where a similar comparison was done for

another sample, we present simulations under lasing condi-

tions as well.

The models used differ essentially with respect to the

main concepts applied. For the DM models, the quantum

electronic states are calculated for each period separately.

The scattering transition rates between the states within the

period are calculated by Fermi’s golden rule. In addition, the

tunneling rates between pairs of states of different periods

are derived from a density matrix model. In contrast, the

NEGF model uses a basis of Wannier functions, and treats

all states on equal footing based on the microscopic

Hamiltonian. The DM models have the areal electron den-

sities of the specific levels and the coherences between them

as principal variables. In order to evaluate the total transition

rates, they assume a simple Fermi-Dirac distribution function

with the same temperature for all sub-bands which is pro-

vided as an input. The full distribution with respect to k is

resolved within the NEGF model, which is determined self-

consistently, where the lattice temperature determines the

occupation of the phonon modes. The only approximation is

the use of momentum-independent effective scattering ma-

trix elements, which highly simplifies the numerical

scheme.15 In the DM models, the optical transitions in the

laser field are calculated via Fermi’s golden rule where the

energy-conserving delta-function is replaced by a

Lorentzian. DM simp. uses an empirical broadening of

20 meV for the gain and the tunneling rates as an input to the

program, whereas DM 2nd evaluates them with the Andoa)Electronic mail: martin.lindskog@teorfys.lu.se
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model.13,17 In the NEGF model, gain is calculated from the

dynamical conductance, and calculations in a strong ac field

follow the procedure outlined in Ref. 18.

We consider scattering from interface roughness, longi-

tudinal optical phonons, alloy disorder, acoustic phonons

approximated by a single frequency (not used in DM 2nd),

and ionized dopants (not used in DM simp.). Non-

parabolicity in the band structure is treated via an effective

two-band or three-band (for DM simp.) model.19,20 All basic

parameters, such as band gaps, effective masses and optical

properties of the QCL materials, are the same in all models.

For instance, all models use the same Gaussian interface

roughness correlation length of 9 nm and height of 0.1 nm

and a lattice temperature of 300 K. Additionally, in the DM

models, the electron temperature was fixed to 430 K in con-

trast to the self-consistent calculation reported in Ref. 6.

Inter-carrier Coulomb interaction is treated on a mean-field

level.

We have simulated the structure described in Ref. 7

using the three models described above. The structure with

the Wannier-Stark states is shown in Fig. 1, together with the

carrier densities, which have a shift with respect to the

Wannier-Stark states caused by impurity scattering.21 These

shifts mainly result from the real parts of the self-energies,

which are of the order of 14 meV. They are similar for all

states, so that they hardly affect the tunneling resonances.

Fig. 2 shows the current densities vs. applied electric

field. The dashed lines show the experimental data for the

original device and our regrowth, which agree until threshold

(Jth ¼ 1:5 kA/cm2 and 2 kA/cm2 of the original and regrown

device, respectively). This reflects the reproducible growth

quality as verified by X-ray measurements determining the

actual period of 44.6 nm for the original and 44.7 nm for the

regrown device (nominal 44.9 nm). In addition, the peak cur-

rents are comparable. The full lines give the simulation

results of the different models without lasing. We see a good

agreement between the NEGF model and the DM 2nd model

for fields below �52 kV/cm, which both reproduce the ex-

perimental data below threshold. In contrast, as expected,6

the DM simp. model provides a much larger current density,

which shows the importance of including the second order

current in the calculations.

The simulated gain spectra, taken in the limit of a van-

ishing lasing field, are shown in Fig. 3, near threshold (a)

and far above threshold (b). The results of the DM 2nd and

NEGF models agree near threshold while the DM simp.

model shows a slightly larger gain with a blue-shift, coming

from the approximation of constant effective mass in the

gain calculation within this model. This trend is also seen in

Fig. 3(c) for a wide range of electric fields, where the peak

positions for both the NEGF and DM 2nd models agree qual-

itatively with the measurements. As the electric field

increases, the gain evaluated by the two DM models

increases strongly, while the NEGF model provides a signifi-

cantly lower gain. This discrepancy most likely comes from

the approximation of constant sub-band temperatures used in

the DM models, while increasing electron temperatures pro-

vide detrimental occupation of higher levels at larger fields

in the NEGF simulations. Another contributing factor is the

restriction of the basis states to one period, which explains

that the 1!8 side peak in Fig. 3(b) is not visible in the DM

models. As can be seen in Fig. 1(a), the relevant upper laser

level at threshold is level 4. At the higher field, however, the

levels responsible for lasing are the two resonant levels

FIG. 1. Carrier densities and the square of the wave functions, calculated in

the NEGF model, for different electric fields near threshold (a) and far above

threshold (b). The numbers label the injection level (1), the upper laser lev-

els (4 in (a), 2 and 3 in (b)), and the lower laser level (8).

FIG. 2. Current-field characteristics for the different simulation models and

experimental measurements. The field of the experimental data is obtained

from the bias divided by the nominal length. Simulations under lasing condi-

tions are given by large blue crosses for the NEGF and small red crosses for

the DM 2nd model. The inset shows the measured and calculated output

power as a function of the current density.
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2 and 3, whose coherence is only fully taken into account in

the NEGF model.

The waveguide losses aw for the device in Ref. 7 are

reported to be 2.8 cm�1. With a mirror loss of am ¼ 3:3
cm�1 and a mode confinement factor of Cconf: ¼ 0:63, a gain

Gth � 10 cm�1 is required in the QCL active region for

achieving lasing. From Fig. 3(c), it is seen that in the DM

2nd and NEGF models, Gth is reached at Eth ¼ 47:3 kV/cm

and Eth ¼ 47:6 kV/cm, respectively. This is in very good

agreement with the experimental value of 48 kV/cm. For this

field, the NEGF model provides a threshold current density

of 1.2 kA/cm2, and the DM 2nd model gives 1.3 kA/cm2

(Exp. 1.5 kA/cm2). Again, the DM simp. model differs, giv-

ing a threshold field of 44 kV/cm with the corresponding cur-

rent density of 1.7 kA/cm. As the new device was processed

using a double trench waveguide instead of the buried heter-

ostructure technique used in the original device, the losses

for this sample are higher. The observed threshold field of

52 kV/cm and threshold current of �2 kA/cm2 reflect the

trend for the gain simulations.

Under laser operation, an output power of P ¼ 0:5� 1 W

was reported in Ref. 7. Using the relation for a traveling

wave18

P ¼ Facð Þ2 nrce0A 1� Rð Þ
2Cconf:

; (1)

where nr is the refractive index of the gain medium, A is the

facet area, and R is the reflectivity, we obtain an ac field

inside the active region of strength Facd � 100� 130 mV,

where d is the period length. This is a significant amount

compared with the dc field under operation Fdcd � 250 mV.

This ac field is affecting the transport by increasing the

current density above threshold, as expected in the case of

photon-driven transport.22 The simulated transport under an

applied ac field is shown in Fig. 4, where an increasing Facd
results in an increased current density and a decreasing gain.

For Fdc ¼ 50 kV/cm, the NEGF results agree well with the

DM 2nd model. Again, for Fdc ¼ 60 kV/cm, the gain is

higher for the DM model. The dotted line in Fig. 4 indicates

Gth for the original device. Its intersection with the gain

determines the ac field where gain and losses compensate.

For these ac fields, Fig. 2 shows with crosses the NEGF and

DM 2nd current densities under operation. This is in much

better agreement with the experimental current density as

compared to the simulations without a laser field. The corre-

sponding power output (inset of Fig. 2) calculated from Eq.

(1) for the NEGF model also agrees well with this experi-

mental data as well as the DM 2nd model.

Now, we show that the gain in the NEGF model follows

simple estimates, which demonstrates that the behavior can

be understood in conventional terms. A simple calculation

using Fermi’s golden rule provides (see, e.g., Refs. 13 and

23)

G xð Þ ¼
e2Dnf iDE2

f iz
2
f i

2�h2xnrc�0d

Cw

DEf i � �hx
� �2 þ C2

w=4
; (2)

where Dnf i is the inversion, zfi¼ 2.2 the dipole matrix ele-

ment, and DEf i the energy difference for the final (f) and ini-

tial (i) states for the main gain transition. Cw ¼ 14 meV is

the FWHM of the gain spectrum from Fig. 3(a). Extracting

the values Dnf i;DEf i, and zfi from the NEGF simulations, we

calculate for electric fields of 50 and 60 kV/cm a peak gain

of 16 and 43 cm�1, respectively, agreeing reasonably well

with Figs. 3(a) and 3(b). Thus, the gain can be solely

explained by the relationship (2), where Dnf i accounts for

the largest fraction of the variation in gain. This, together

with the fact that the frequency of peak gain agrees with the

energy difference between the peaks in the spectral function,

shows that in this particular case, complex effects such as

dispersive gain24,25 and depolarization shifts26,27 are not of

FIG. 3. Simulated spectral gain at electric fields of (a) 50 kV/cm and (b)

60 kV/cm. The gain is calculated in the off-state of the laser. In (a) and (b),

the transitions of the respective gain peaks in the NEGF simulations are indi-

cated. (c) Peak values and positions vs. electric field. The horizontal dotted

line shows the computed threshold gain Gth for the original experiment. The

experimental peak position (black dashes) is taken from the electro-

luminescence spectrum of Ref. 7.

FIG. 4. Gain vs. applied ac field strength for different dc fields, simulated in

the NEGF and DM 2nd models, compared to the relationship (3). The inset

shows the current density in the NEGF model. The horizontal dotted line

shows the threshold gain Gth of the original sample.
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relevance. The differences in gain between the NEGF and

the DM models for high dc fields can be attributed to the dif-

ferences in Dnf i addressed above.

Regarding the Fac dependence in Fig. 4, it is reasonable

to assume that the inversion drops proportionally to the prod-

uct of gain times lasing intensity. Thus, we expect

GðFacÞ ¼ G0 � bGðFacÞ � ðFacdÞ2, where G0 is the gain at

zero field. The parameter b can be evaluated using Eq. (2)

and standard kinetics, providing

G Facð Þ ¼ G0

1þ b Facdð Þ2
with b ¼

se2z2
f i

�hCwd2
: (3)

We obtain b¼ 120 V�2 for zfi¼ 2.2 nm and s ¼ 0:47 ps

(approximately the lifetime of the upper laser state). Fig. 4

shows that Eq. (3) reproduces the full NEGF calculations.

From the NEGF modeling results, the carrier densities

for each level a and in-plane momentum k can be extracted.

Fitting to a Fermi distribution function, the subband tempera-

tures Ta can be extracted. With E¼ 55 kV/cm without a las-

ing field, the upper laser state temperature TULS ¼ 398 K is

close to the electron temperature of 430 K used in the DM

simulations, while the lower laser state temperature TLLS ¼
345 K is significantly lower. When the laser field is turned

on, with Facd ¼ 110 mV, TULS ¼ 512 K is now larger, while

TLLS ¼ 411 K is close to the DM temperature instead.

In conclusion, we have presented simulations of a QCL

both with and without a laser field, based on DM and NEGF

models, and compared these results to experimental data from

two separate growths. The transport and gain characteristics

are well explained by simple relations, and thus, the DM 2nd

model reproduces the experimental data as well as the NEGF

model. However, the NEGF model predicts significantly

lower gain and current for large dc fields close to the current

density peak. We also find that the DM simp. model overesti-

mates the current density in the devices, confirming the impor-

tance of taking the second order current into account. Finally,

electron temperatures similar to those assumed in the DM

models have been calculated using the NEGF model.
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Abstract: We study the impact of interface roughness on the operation
of mid-IR and THz quantum cascade lasers. Particular emphasis is given
towards the differences between the Gaussian and exponential roughness
distribution functions, for which we present results from simulation pack-
ages based on nonequilibrium Green’s functions and density matrices. The
Gaussian distribution suppresses scattering at high momentum transfer
which enhances the lifetime of the upper laser level in mid-IR lasers. For
THz lasers, a broader range of scattering transitions is of relevance, which
is sensitive to the entire profile of the interface fluctuations. Furthermore we
discuss the implementation of interface roughness within a two band model.

© 2015 Optical Society of America
OCIS codes: (140.5965) Semiconductor lasers, quantum cascade; (000.6800) Theoretical
physics.
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1. Introduction

Quantum cascade lasers (QCLs) [1] have become an important source of infrared radiation for
spectroscopy applications [2]. They consist of a vast number of specifically designed semicon-
ductor layers. As the interfaces of these layers are never entirely perfect, the lateral translational
invariance is broken and interface roughness scattering becomes inevitable. Several studies have
focused on its relevance for the lifetime of the upper laser level [3–7], which is a key element
for the lasing performance. Furthermore, interface roughness is relevant for the broadening of
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tunneling transitions [8, 9] in QCLs. The deviations from an ideal interface are treated statis-
tically, where the spatial correlation function of the height fluctuations contains the relevant
information to evaluate the scattering matrix elements. (Correlations between different inter-
faces are of minor importance as they are washed out under typical growth conditions unless
barriers are very thin [4].) It is common to model this correlation function by a Gaussian with
two fit parameters “although there is no definite physical ground“ [10]. In this paper such a
Gaussian correlation function is compared to an exponential fit and calculations for different
QCLs are presented under both assumptions. While there are some specific differences, the
calculated current-voltage characteristics and gain spectra are comparable if the respective fit
parameters are correctly transformed.

2. Interface roughness models

The central assumption for modeling interface roughness is that the position of the interface
between two materials is fluctuating by η(r), where r is a two-dimensional vector in the x− y
plane of the heterostructure layers. Averaging over a large area, the statistical properties of η(r)
become important. In order to quantify roughness scattering, the square of the matrix element
for momentum transfer q between different subband states is required. Next to prefactors, it
contains the integral

1
A

∫
d2r

∫
d2r′eiq·(r−r′)η(r)η(r′) =

∫
d2r eiq·r

∫
d2r0η(r0 + r)η(r0)

=
∫

d2reiq·r〈η(r)η(0)〉 ≡ f (q), (1)

where A is the sample area. This is the Fourier transformation of the spatial correlation function
〈η(r)η(0)〉 for the fluctuations, which we denote by f (q). It is common to assume a Gaussian
distribution [10] with

〈η(r)η(0)〉 = Δ2 exp

(
−|r|2

Λ2

)

→ f (q) = πΔ2Λ2 exp

(
−Λ2|q|2

4

)
. (2)

Alternatively, the idea, that there is a constant likelihood to be at the rim of a roughness plateau,
suggests an exponential distribution:

〈η(r)η(0)〉 = Δ̃2 exp

(
−|r|

Λ̃

)

→ f (q) =
2πΔ̃2Λ̃2

(
1+ Λ̃2|q|2

)3/2
. (3)

The average fluctuation height Δ and the spatial correlation length Λ are not directly measur-
able, but should be seen as fit parameters. Thus it is meaningless to compare the Gaussian and
an exponential distribution with the same set of parameters, i.e. setting Δ̃ = Δ and Λ̃ = Λ. In
this case the exponential distribution would result in twice the scattering of the Gaussian one
at q ≈ 0. Rather, Λ and Δ should be changed as to achieve similar scattering rates in a wide
range of q, in order to quantify the difference using either distribution. Provided the dominat-
ing scattering events have small q, both distributions are expected to provide similar results
with the

Translation 1 Λ̃ = Λ/
√

6 and Δ̃ =
√

3Δ (4)
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Fig. 1. Fourier transforms f (q) of the correlation functions for different roughness distribu-
tion functions. In panel (a), the Gaussian distribution, Eq. (2), has the parameters Λ = 9 nm
and Δ = 0.1 nm. The parameters for the exponential distributions, Eq. (3), Expon 1 (Λ̃ = 3.6
nm, Δ̃ = 0.17 nm) and Expon 2 (Λ̃ = 6.3 nm, Δ̃ = 0.1 nm), are transformed via Eq. (4) and
(5), respectively. These distributions are used for the InGaAs/InAlGaAs based IR QCL.
Panel (b) shows the exponential distribution with Λ̃ = 10 and Δ̃ = 0.2 nm, and the parame-
ters for the two Gaussian distributions, Gauss 1 (Λ̃ = 24.5 and Δ̃ = 0.115 nm) and Gauss 2
(Λ̃ = 14.1 and Δ̃ = 0.2 nm), which are transformed via Eqs. (4) and (5), respectively. These
distributions are used for the GaAs/AlGaAs based THz-QCLs.

so that the functions f (q) as well as their second derivatives coincide at the maximum |q| = q =
0. The corresponding functions f (q) are displayed in Fig. 1 for different roughness parameters.
We find, that the exponential distribution provides much stronger scattering for large q with this
translation. A second natural translation is given by requiring an identical average fluctuation
height 〈η(r = 0)η(0)〉 and identical f (q = 0) for the Gaussian and exponential distribution.
This provides

Translation 2 Λ̃ = Λ/
√

2 and Δ̃ = Δ (5)

which better reproduces the fall-off at larger q-values but agrees less well for small q as can be
seen in Fig. 1.

There are actually experimental indications for an exponential distribution for several mate-
rial systems such as Si/SiO2 [11]; InAs/GaSb [12], InAs/GaInSb [13]; GaAs/InGaAs [14]. For
GaAs/AlGaAs or InGaAs/InAlAs interfaces, relevant for QCL structures, less information is
available. In [15], Offermans et al. report lateral fluctuations of 10 nm for an InGaAs/InAlAs
QCL but do not provide a distribution function, while [16] reported values of 10-20 nm for a
GaAs/AlGaAs superlattice. In [5], Leuliet et al. used a Gaussian distribution with Λ = 6 nm
and Δ = 0.15 nm, to fit their data for a GaAs/Al0.33Ga0.67As QCL. Recently, 〈η(r)η(0)〉 has
been measured for a GaAs/InGaAs QCL, where three different Gaussians were required to fit
the data [17].

Considering the case of an IR QCL, the out-scattering from the upper laser level requires a
particular large momentum transfer q, as the large energy mismatch between initial and final
states (typically the lasing energy) must be transferred into in-plane kinetic energy. For typical
infrared QCLs with a lasing energy of h̄ω = 150 meV, this implies q ≈ 0.4 nm−1 (using the
in-plane effective mass m∗

e = 0.043 for InGaAs lattice matched to InP). For a typical value of
Λ ∼ 10 nm, the Gaussian thus provides a strong suppression of the scattering matrix element.
In contrast, the exponential distribution of Eq. (3) shows a power law suppression which allows
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for some out-scattering, in particular with the Translation 1, see Fig. 1(a). For THz lasers,
on the other hand, h̄ω ≈ 10 meV corresponds to q ≈ 0.1 nm−1 (using the in-plane effective
mass m∗

e = 0.067 for GaAs) and scattering at intermediate q values decreases the lifetime. In
this case the level spacings for the extraction process (as well as the injection for a scattering
assisted design) match the optical phonon energy (∼ 36 meV) with q ≈ 0.25 nm−1. Thus, large
q scattering might even improve performance in these structures. Similar interface engineering
has been proposed in [18], where barriers are inserted to decrease the lifetime of the lower laser
state.

The power law for large q can actually be related to the behavior of g(r) = 〈η(r)η(0)〉 for
r → 0. Standard rules of Fourier transformation provide the second derivative

∂
∂r

· ∂
∂r

g(r) = − 1
4π2

∫
d2qq2 f (q)eiq·r .

Assuming, that g(r) = g(r) and f (q) = f (q) are rotational invariant, the asymptotic behavior
f (q) ∼ 1/q3 is thus related to ∂ 2g(r)/∂r2 → ∞ for r → 0, which means, that the gradient
of g(r) is discontinuous at the origin (this corresponds to the Fourier transform asymptotic
behavior theorem in the one dimensional case discussed in [19]). Such a discontinuity naturally
occurs, if g(r) has a finite slope at r = 0 (which is the case for the exponential distribution in
contrast to the Gaussian).

A (negative) slope of g(r) at r = 0 can be motivated by the following argument: We consider
the product η(r)η(r0) for a fixed reference point r0. This product is positive for r = r0 and
maintains its value as long as r is on the same plateau as r0. Crossing the rim of the plateau,
η(r)η(r0) changes, more likely to a negative value, as the average elongation 〈η(r)〉 = 0. As
one averages over all reference points r0, there are some points, which are precisely on the rim
of a plateau and thus 〈η(r)η(0)〉 is expected to have a finite negative slope in the direction of
r for small r. Note, that this argument requires a sharp drop of the scattering potential for the
conduction band electrons at the rims between the plateaus. On the other hand, if the rims of the
plateaus result in a smooth change of the potential landscape, there would be no such negative
slope for small r, and the Gaussian distribution would be a viable choice. To determine which
behavior is the most accurate in a real situation would therefore require the precise measurement
and interpretation of the actual potential landscape.

In order to demonstrate the relevance of the roughness distribution, we provide simulation
results for a mid-IR QCL, a THz QCL with scattering injection, and a THz QCL with tunneling
injection. We apply the interface roughness parametrizations shown in Figs. 1(a) and (b) for the
mid-IR QCL and THz QCLs, respectively. In all cases we apply identical distributions for all
interfaces.

3. Two-band model: including the valence band offset

For IR QCLs non-parabolicity in the conduction band is relevant as the electronic states cover
a large range of energies. This can be effectively implemented by mixing the conduction band
wave-function with at least one component from the valence band [20]. As the valence band
offset (VBO) differs from the conduction band offset, roughness may act differently, whether
one restricts to the conduction band or implements a two-band model. In a phenomenological
approach, where little is known about the actual roughness distribution, appropriate choices of
the roughness parametrization can to a large extent compensate for the difference between these
concepts. Nevertheless the magnitude of the difference is of interest for a priori calculations.

The Hamiltonian for interface roughness scattering is written in second quantization as

Ĥ = ∑
αβ

∑
k,p

Uαβ (p)a†
αk+paβk with Uαβ (p) = ∑

j

∫
d2r

e−ip·r

A
η j(r)Ψ∗

α(z j)ΔEΨβ (z j) (6)
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Fig. 2. (a) Current-field simulations of the THz QCL [23] using the NEGF model with
and without inclusion of the valence band offset (VBO) in the roughness scattering. The
simulation temperature is 140 K and the dashed line shows the experimental data at 150 K.
Here, the exponential distribution function from Fig. 1(b) is used. (b) Gain simulations for
the same sample at a bias of 74 mV/period.

where z j denote the interface positions. In the two-band model,

Ψβ (z) →
(

ψc
β (z)

ψv
β (z)

)
and ΔE →

(
ΔEc 0

0 ΔEv

)
, (7)

where c and v denote the conduction and valence band components, respectively, and ΔEc/v are
the respective band offsets. This gives terms in the matrix elements squared as

〈Uα,β (−p)Uα ′,β ′(p)〉 = ∑
j

f j(p)

A
(ΔEcψc∗

α ψc
β +ΔEvψv∗

α ψv
β )(ΔEcψc∗

α ′ ψc
β ′ +ΔEvψv∗

α ′ ψv
β ′) , (8)

where the wave functions are taken at the respective z j. If only the conduction band offset is
taken into account, then the resulting expression is instead

〈Uα ,β (−p)Uα ′,β ′(p)〉 = ∑
j

f j(p)

A
ΔE2

c (ψc∗
α ψc

β +ψv∗
α ψv

β )(ψc∗
α ′ ψc

β ′ +ψv∗
α ′ ψv

β ′) . (9)

Since for type I heterostructures ΔEc and ΔEv have opposite signs, the former case will exhibit
lower interface roughness scattering.

Using our Nonequilibrium Green’s function (NEGF) simulation scheme [21, 22] we per-
formed simulations for different QCLs in order to compare the expressions (8) and (9). For the
THz QCL of [23], Fig. 2 shows that the neglect of the valence band offset in the roughness
scattering term neither changes the current density nor the gain. In contrast, a slight increase
in the current density at the peak and a slight reduction of the gain is visible for the IR QCL
of [24] in Fig. 3. This follows the expected trend, that nonparabolicity becomes more relevant
with reduced band gap and increased state energies. Consequently, the difference between both
approaches may become more prominent for QCLs at shorter wavelengths.

In both cases the simulations agree quantitatively with experimental data. As the simulations
shown do not include the lasing field they cannot reproduce the experimental currents above
the threshold current density of 1.5 kA/cm2 in Fig. 3.

In the rest of this work, all simulations of the mid-IR QCL are performed using Eq. (9),
whereas all simulations for the THz QCLs employ Eq. (8). In the calculations of the energy
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Fig. 3. (a) Current-field simulations of the mid-IR QCL [24] using the NEGF model with
and without inclusion of the valence band offset (VBO) in the roughness scattering. The
Gaussian interface roughness from Fig. 1(a) is applied. (b) Results for the gain at an electric
field of 50 kV/cm and a lattice temperature of 300 K.
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Fig. 4. Band structure with the square moduli of the wavefunctions, together with the carrier
density from the NEGF simulation, for the mid-IR structure of [24]. The arrow indicates
the main laser transition.

levels as well as the matrix elements of all other scattering mechanisms, i.e. acoustical and
optical phonons, alloy and impurity scattering which do not depend explicitly on the band
offsets, we use the two-component wavefunctions within the effective two-band model [20].

4. Results

4.1. Mid-IR laser

In order to quantify the impact of different interface roughness distributions on the QCL perfor-
mance, we simulate the IR device [24] shown in Fig. 4 with the DM model from [25] and the
NEGF model. A detailed discussion of the model differences is given in [26], where we applied
the Gaussian roughness model with Λ = 9 nm and Δ = 0.1 nm. Here we compare these results
with the two exponential models applying different translations of the parameters as shown in
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Fig. 5. (a) Current-field characteristics of the QCL in [24] for the DM (dashed lines)
and NEGF (full lines) simulation schemes and different roughness distributions given in
Fig. 1(a). (b) Peak gain vs. electric field. The dotted line denotes the gain required to com-
pensate the losses. The red crosses show the experimental threshold data in both panels.

Fig. 1(a).
A comparison of the current-field characteristics is shown in Fig. 5(a). We find that the Ex-

pon 1 roughness distribution provides generally higher currents than Expon 2 and Gauss. This
can be attributed to the shorter lifetime of the upper laser state, as shown in Table 1, due to
enhanced roughness scattering with large momentum transfer, which facilitates the transfer of
carriers through the device. The trend is the same in both simulation schemes, albeit the cur-
rents from the NEGF model are generally smaller than the DM results. Note that the field for
the experimental data does not take into account any possible bias drop in contacting regions,
which would reduce the field slightly. Thus, comparison with experiment cannot clearly support
a certain model.

Now we consider the simulated peak value of the gain as a function of applied electric field,
displayed in Fig. 5(b). Here we find the highest gain for the Gaussian roughness, somewhat
lower values for Expon 2 and relatively low gain for Expon 1. Again this can be directly at-
tributed to the lifetime of the upper laser state, which is central for the inversion. Quantitatively,
the NEGF model provides an inversion Δn of 2.54, 1.14, and 2.33 ×109cm−2 and a linewidth
Γ of 13.8, 13.1, and 11.6 meV for the Gauss, Expon 1 and Expon 2 distribution, respectively,
at an electric field of 50 kV/cm. Thus the key contribution Δn/Γ suggests a reduction in gain
by 53% (Expon 1) and an increase by 9% (Expon 2) of the peak gain compared to the Gaussian
distribution. This reflects the trend in the full NEGF calculations at 50 kV/cm, where the cor-

Table 1. Scattering times in the DM model for the upper and lower laser state at a bias of
50 kV/cm. The NEGF simulations show the same trend but due to the intricate treatment
of coherences, it is less straightforward to extract a single time.

Upper laser state Lower laser state
Gauss 1 Expon 1 Expon 2 Gauss 1 Expon 1 Expon 2

τLO phonon (ps) 0.549 0.549 0.549 0.158 0.158 0.158
τinterface roughness (ps) 2.611 0.739 2.439 0.777 0.458 1.123
τalloy disorder (ps) 2.283 2.283 2.283 2.270 2.270 2.270
τsum (ps) 0.378 0.277 0.375 0.124 0.112 0.130
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for the structure of [23], based on resonant phonon injection and extraction. The upper and
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extractor level. The simulations are carried out for a lattice temperature of 140 K.

responding relative changes are a reduction by 42% (Expon 1) and an increase by 10% (Expon
2), respectively. Γ is dominated by intra-subband scattering with low q, hence the similar Γ for
the Gauss and Expon 1 distributions. Expon 2 has a lower Γ, as expected from the lower f (q) at
low q. From this reasoning, the Expon 1 distribution is expected to have the largest Γ, however
we find that Gauss results in a somewhat higher value, for which we currently have no clear
explanation.

A gain of ∼9 cm−1 is required in order to overcome the total losses of the experimental
sample [26], and this is observed at the experimental threshold field of 48 kV/cm. All three
roughness distributions agree reasonably with the experimental threshold current density, the
Gauss and Expon 2 requiring slightly higher losses and the Expon 1 slightly lower, and both
the DM and NEGF models provide the same threshold field when the same distribution is
employed. Finally, we note that the DM model provides significantly larger gain than the NEGF
model at higher fields. The reasons are not yet fully understood, however similar output powers
are found if gain saturation is considered [26].

4.2. Scattering assisted injection THz QCL

For the THz structures studied below, the exponential distribution function with Λ̃ = 10 nm
and Δ̃ = 0.2 nm provide results in close agreement with experimental data [23,27]. Employing
translations (4) and (5) thus provides the corresponding Gaussian distributions displayed in
Fig. 1(b). Here Gauss 1 agrees with the exponential at low q while Gauss 2 agrees better at
higher q.

First, we study the scattering assisted injection design presented in [23]. For this structure,
see Fig. 6, the laser level separation is ∼ 14 meV, which corresponds to a momentum transfer
of q ∼ 0.16 nm−1. One would therefore expect that in this case the intermediate-q is of high
relevance. Furthermore, the electron transport through the device is also relying on two different
optical phonon resonances (with an energy difference matching q ≈0.25 nm−1) and a tunneling
resonance at the main operation point. This explains the differences in the current densities
shown in Fig. 7(a), where the current essentially increases with the size of the scattering matrix
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Fig. 7. (a) Current-field simulations of the THz QCL [23] using the NEGF model with
different roughness distributions given in Fig. 1(b). The simulations are carried out for a
lattice temperature of 140 K. (b) Gain at 74 mV/period for the THz QCL [23], using differ-
ent roughness models. The linewidths Γ of the gain peaks are without interface roughness
(IFR): 2.8 meV; for Gauss 1: 3.6 meV; for Expon: 3.9 meV; and for Gauss 2: 4.3 meV.

elements in the range of 0 < q � 0.25 nm−1 as determined by f (q) displayed in Fig. 1(b).
These effects are more pronounced at lower temperature, as phonon scattering becomes

weaker while roughness scattering is less temperature dependent. However, at low temperature,
the NEGF simulations provide an extremely non-thermalized carrier distribution in the upper
laser state, which appears to be an artifact due to the neglect of electron-electron scattering.
Thus we consider our results as not reliable under these conditions.

Figure 7(b) shows the gain evaluated near the current peak. As expected, the peak gain de-
creases with the scattering strength around q = 0.16 nm−1, which dominates the scattering from
upper to the lower laser level. Furthermore, the linewidth is affected, which enhances the im-
pact of the different roughness models. Here, the difference in linewidth between the Gauss 1
and Expon roughness distribution is actually the least, as low q-scattering dominates the width.
Neglecting interface roughness altogether (dashed lines) gives a large and sharp gain peak,
showing that roughness plays a vital role, deteriorating the performance of the QCL at 140 K
for this design.

4.3. Resonant Tunneling Injection THz QCL

As the resonant-tunneling designs have received much attention and have also repeatedly bro-
ken the temperature record, it is of interest to expand this study to cover those designs as well.
In this work we focus on the three well structure shown in Fig. 8 investigated by Kumar [27]
which was later improved to reach operation temperatures of ∼ 200 K [28].

A collection of simulation results is presented in Fig. 9. Let us first consider the validity of the
simulations by comparing the ab initio calculations to the experimental results of [27]. Thresh-
old current is reported to increase from 410 A/cm2 at 5 K heatsink temperature to 800 A/cm2

at 180 K. At the design bias of 56 mV/period the low temperature simulations provide a high
gain of the order of 100 cm−1and a current density above the experimental threshold (except for
Gauss 1), consistent with the onset of gain at a lower current. While the current peak without
laser operation, only reaches ≈ 550 A/cm2, a significantly higher current is found employing
simulations under laser operation [29], shown by crosses in Fig. 9(a). This is consistent with
experimentally measured currents for this sample. For higher temperatures gain drops and cur-
rents around ≈ 800 A/cm2 match well the experimental threshold current.

The results for different roughness distributions follow the same trend as for the scattering-
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assisted design. Comparing the low temperature threshold current indicates that roughness scat-
tering in accordance with the Expon or Gauss 2 distribution is adequate. In general the differ-
ences between the roughness distributions are slightly less significant than for the scattering-
assisted design addressed above, as there are fewer interfaces per length present in this design.
For low temperatures, switching on the scattering given by the exponential correlation function
leads to a decrease of peak gain with 20%, which is also consistent with Monte-Carlo studies
for resonant-tunneling designs [30].

Below threshold, the current-field characteristics in Fig. 9(a) show a pre-peak around
37 mV/period. This is due to the intermediate resonance between the injector state and the
extraction state as shown in Fig. 8, in accordance with the discussion in [27]. At low temper-
atures the experiment observes a plateau region for a bias range of ≈ 1.6 V with a current of
≈ 400 A/cm2 after which lasing sets in. This is consistent with our calculated current-field re-
lation, if one takes into account domain formation for biases surpassing the pre-peak [31]: In
this case a high-field domain forms with a field around 50 mV/period, while the current and the
low-field domain is locked at the pre-peak. Within the high-field domain we calculate a gain
of 50/cm and thus lasing sets in if approximately half of the device (222 periods in total) are
covered by the high-field domain. The difference between the fields in the low- and high-field
domain, thus suggests a bias range of 1.4 V for the current plateau before lasing sets in.

5. Conclusions

We have studied the relevance of different distribution functions for the interface roughness in
Quantum Cascade Lasers. In principle, exponential distribution functions provide a slower de-
cay of scattering with increasing transition wave-vector q, compared to Gaussians, which can
be related to a finite slope of the spatial correlation function at the origin. We find that for IR
QCLs, the scattering at large q values is most important and that the results for Gaussian and
exponential distribution functions are comparable, if they provide similar matrix elements in
this region. These findings are recovered by different simulation schemes, which demonstrates
that they hold beyond specific approximations in the respective models. In contrast, for THz
QCLs scattering at intermediate q is more relevant and we showed that the width of the gain
spectrum is most sensitive to low q scattering. For all structures studied here, increased rough-
ness scattering enhances current and deteriorates gain. However, scattering matrix elements
with different ranges of q are of relevance for IR and THz structures, which has to be taken into
account, when choosing a model distribution functions.

Furthermore we have shown that corrections due to the valence band components used for
the treatment of non-parabolicity are negligible for THz QCLs and are of minor importance for
IR-QCLs in the 8 μm region.
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We use a numerical model based on non-equilibrium Green’s functions to investigate the influence

of interface roughness (IFR) scattering in terahertz quantum cascade lasers. We confirm that IFR is

an important phenomenon that affects both current and gain. The simulations indicate that IFR

causes a leakage current that transfers electrons from the upper to the lower laser state. In certain

cases, this current can greatly reduce gain. In addition, individual interfaces and their impact on the

renormalized single particle energies are studied and shown to give both blue- and red-shifts of the

gain spectrum. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930572]

I. INTRODUCTION

Quantum cascade lasers (QCLs)1,2 have proven to be

useful devices with important applications, as they can be

designed to emit in the region of 5–14 lm, crucial to molecu-

lar spectroscopy.3 These lasers are solid state devices that

employ mini-bands to achieve population inversion and

thereby lasing in semiconductor heterostructures. Due to

their high possible wall-plug efficiency4 and capability to op-

erate in the mid-infrared (mid-IR) and terahertz regions of

the electromagnetic spectrum that are poorly covered by

other coherent radiation sources, these devices have attracted

a lot of attention.

While mid-IR QCLs are already industrialized, possible

applications5 of THz QCLs are not reached due to a lack of

room temperature operation. Difference frequency genera-

tion using mid-IR QCLs has proven to be a way, although

with limited power.6 In order to reach high temperature oper-

ation of THz QCLs, it is necessary to understand the under-

lying mechanisms that govern the operation of these devices.

The two main causes of elastic scattering in QCLs are

impurities, where electrons are scattered by the dopant ions,

and interface roughness (IFR), which provides scattering due

to imperfections of the interfaces between two semiconduc-

tor layers. The interface roughness scattering7,8 is dominant

in mid-IR QCLs,9 and is also relevant in THz QCLs.10 It

affects the occupation of states by scattering electrons from

one mini-band into another, due to the lack of lateral symme-

try at the interfaces. It was shown by Deutsch et al.,11 by

producing symmetrical lasers from materials, in which IFR

depends on growth direction, that interface roughness scat-

tering strongly affects the operation of THz QCLs.

Using our non-equilibrium Green’s function (NEGF)

model,12 we investigate the influence of interface roughness

in detail both with respect to growth direction and roughness

fluctuations of individual interfaces. The use of a compli-

cated and computationally expensive model is motivated by

the access to several important features. Among these effects

is the renormalization of the single particle energies from the

scattering potentials. Thus, altering IFR can provide shifts of

the energy levels. Furthermore, the approach is able to cap-

ture effects such as dispersive gain13 and gain linewidth

reductions due to correlations, which are crucial in THz

QCLs.14 These effects are unique to the NEGF scheme,

thanks to the use of two times in the evaluation of the density

matrix. A summary of different methods for modeling QCLs

can be found in Ref. 15.

II. THEORY

In our numerical computation method documented in

Ref. 12, the IFR scattering enters the equations through the

self-energy, a physical quantity that describes the interaction

of the particle with its surroundings. The real part of the self

energy gives a shift in the energies of the single particle

states, while the imaginary part is related to its lifetime.

IFR is characterized by the autocorrelation function for

the spatial distributions of the deviation from a perfect inter-

face. In this work, we chose an exponential autocorrelation

function, given by

hf rð Þf r0ð Þi ¼ g2 exp � jr� r0j
k

� �
: (1)

The Fourier transform of this function is

f qð Þ ¼ 2p
g2k2

ð1þ qkð Þ2Þ3=2
; (2)

where q is the absolute change in wavevector, and the two

variables k and g describe the correlation length and root

mean square deviation from a perfect interface, respectively.

A Gaussian distribution function is another common

choice of autocorrelation function. However, as shown in

Ref. 10, it is possible to obtain similar results by an appropri-

ate transformation of parameters between both autocorrela-

tion functions. Since there is no convincing physical

argument for either of them, we normally use the exponential

type.

In Fig. 1, we display Eq. (2) for the reference case and

also for the case when g and k are separately increased. It is

possible to see that increasing the parameters k and g have

different effects on the scattering. While g increases thea)Electronic mail: andreas.wacker@fysik.lu.se
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scattering over the entire range of q values, k tends to

emphasize low momentum transfer. Comparing results when

these parameters are increased separately could give insight

into how important scattering with large momentum transfer

is.

As our non-equilibrium Green’s function model applies

the self-consistent Born approximation in the calculation of

self-energies, multiple-scattering events with a single imper-

fection are neglected. Thus, we cannot reproduce any bound

states due to disorder, which might cause distinct effects of

inhomogeneous broadening. However, such effects only

become of relevance for larger spatial correlation lengths as

discussed in Section IV of Ref. 16. In order to quantify this,

we consider the energy balance for localization at an island

of size k and thickness g. The possible gain in energy at an

island with a locally enlarged well width is about

gDEcjWðziÞj2, where DEc is the conduction band offset and

W(zi) the wave function at the interface. However, the lateral

localization costs an energy larger than �h2=ðmck
2Þ, where mc

is the effective mass. Thus, we can exclude any localization

effects as long as

k2g <
�h2

mcDEcjW zið Þj2
: (3)

For all interfaces considered in this study, the right hand side

is at least 100 nm3 (for the thin barrier in the four-well laser).

Thus, the inequality holds even for the enlarged values

k¼ 15 nm and g¼ 0.3 nm.

An alternative approach to study these issues is the use

of exact eigenstates.7 We could actually show that the line-

shape of our model agrees with such calculations very

well,17 which justifies the Born approximation for interface

roughness.

III. DEVICES STUDIED

In this work, the influence of IFR scattering is investi-

gated using three different terahertz QCL designs, namely, a

two-well,18 a three-well,19 and a four-well20 structure. The

first one employs three states per period for electron trans-

port: an upper lasing state (ULS), a lower lasing state (LLS),

and an injector-extractor state (i-e), as shown in Fig. 2. This

laser operates over a range of frequencies from 2.8 to 4.1

THz, with a maximum reported operating temperature of

125 K. The second (three-well) laser is of resonant phonon

design and therefore has separate states for injection (i) and

extraction (e). The reported lasing frequency is 3.9 THz, and

the reported maximum temperature of operation is 186 K.

The band diagram of this laser is displayed in Fig. 3. The last

investigated QCL employs a scattering assisted design. It

relies on 4 mini-bands distributed over four wells per period.

This laser operates at 3.2 THz at the maximum temperature

of 138 K. The band diagram is shown in Fig. 4.

IV. RESULTS

We investigate the influence of IFR scattering by alter-

ing the interface roughness parameters in the simulations.

These results are then compared to simulations with unal-

tered IFR. As a reference, we use the parameters k¼ 10 nm

and g¼ 0.20 nm. The IFR of the altered interfaces is chosen

to have one of these two parameters increased by 50%. The

interfaces are also assumed to be uncorrelated, so that one

interface distribution does not depend on the others.21 All

simulations are performed for a lattice temperature of 200 K.

It is known that interface roughness can depend on

growth direction.11 Therefore, increasing IFR on every sec-

ond interface would recreate the naturally occurring configu-

ration. The applied bias tilts the potential wells and lets us

distinguish between two different cases: first, when the

altered interfaces are on the lower potential side of the wells

(wb), and second, when the altered interfaces are on the

higher potential side of the wells (bw).

First, we investigate the effect of IFR scattering on the

current density. The results when either half of the interfaces

or all of them are altered are shown in Fig. 5. If the changes

FIG. 1. Different forms of the autocorrelation function, Eq. (2). The full line

is the reference case with g¼ 0.20 nm and k¼ 10.0 nm, the dashed line

shows the case when k is increased by 50% and the dotted-dashed shows the

behavior for the same increase of g.

FIG. 2. Band diagram of the two-well laser18 at 47.5 mV per period with

respect to the growth direction z. The conduction band profile is shown to-

gether with the probability density for the most important subbands at their

respective energies.

114501-2 Krivas et al. J. Appl. Phys. 118, 114501 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  130.235.187.19 On: Thu, 24 Mar 2016

13:43:33



in current due to a change in IFR are small, we expect that if

we increase the interface roughness on two interfaces simul-

taneously, we obtain the same change in current density as if

we would add the changes in current densities from simula-

tions when these two interfaces have roughness increased

separately. As can be seen from Fig. 5, it is actually possible

to relate the magnitude of the increase in current density to

how well this superposition holds. For instance, the two-well

laser exhibits the lowest increase in current (4%) and shows

the best agreement between simulated relative current and

the sum, while the four-well laser shows the least agreement,

and the increase in current is the highest (21%). The three-

well laser is an intermediate case, having 11% increase in

current density when g is increased by 50% on all interfaces.

It can be seen in Fig. 5 that altering wb interfaces causes

a larger increase in current density than bw interfaces. This

can be understood by the effect that the wavefunctions tend

to shift to the lower potential side of the well when a bias is

applied, as can be seen in Figs. 2–4. This results in higher

wavefunction values at the interfaces at the lower potential

side of a well. Since IFR scattering is proportional to the

product of the wavefunction values at the interfaces, chang-

ing IFR on interfaces with high wavefunction values has a

larger impact on the transport. This observation confirms the

results shown in Ref. 11.

For the two- and three-well lasers, the results of Fig. 5

can be understood using the reasoning above. Here, the (wb)

interfaces dominates the IFR scattering. However, in the

four-well case, the changes due to wb and bw are approxi-

mately the same. This is an effect of the thin barriers, as the

value of the wavefunction of the ground state is actually

lower on the high potential side of the barrier (or, equiva-

lently, on the low potential side of the foregoing well) as

seen in Fig. 4. This is because thin barriers are placed where

the ground state wavefunctions have their maximum, rather

than their minimum, value. However, the thick barriers act

as in the cases of the other two lasers.

The simulated relative gain spectra compared to unal-

tered IFR, for the respective devices are shown in Fig. 6, and

all devices show an overall decrease in gain as a result of

increasing IFR. However, the magnitude of the effect differs

widely. Again, the two-well laser is the most insensitive to

changes in IFR, with a decrease in gain of 7.2%. The three-

well laser displays a 19.1% reduction, while the gain of the

four-well laser shows a decrease by 50.6% when roughness

parameter g was increased by 50% on all interfaces.

In order to determine in detail the influence of individual

interfaces on the current density and gain, we now change

only one interface at a time and compare these results to the

reference case. These results are shown in Fig. 7 for the

three-well laser. The effects of the changes are twofold; we

FIG. 3. Band diagram of the three-well laser,19 in the same way as Fig. 2

with labels added to distinguish the specific interfaces. The bias is 55 mV

per period.

FIG. 4. Band diagram of the four-well laser20 plotted in the same way as in

Fig. 3, at a bias of 80 mV per period.

FIG. 5. Results of current density sim-

ulations. (a) Two-well laser,18 (b)

three-well laser,19 and (c) four-well

laser.20 The parameter g is increased

by 50% with respect to the reference

calculation (ref) for different sets of

interfaces.
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see both reductions and shifts in the gain spectra. There is an

overall decrease in magnitude due to the enhanced depopula-

tion of the ULS, being the main effect in (a) and (e). This is

also reflected in the significant increase in current. These two

are wb interfaces and, following the above discussion, cru-

cial to the operation. In contrast, the main effect in (b), (c),

and (f), is a blue-shift. As the scattering potential is

increased, there will be a renormalization of the single parti-

cle energies. In our model, this is taken into account by the

real part of the self energies, but it can be understood in gen-

eral as a level shift in second order perturbation theory. The

intraband scattering will shift the levels down in energy, and

for the interfaces (b), (c), and (f), this effectively lowers the

LLS, which gives a blue-shift. This interpretation is strength-

ened by the remaining case, Fig. 7(d) where the ULS is

mostly affected. Here, in combination with a gain reduction,

a red-shift is observed. In all cases, the impact of changing g
and k is similar, albeit k has less impact due to the limited

strength at higher q-values.

One of the possible causes for changes in gain and current

density might be a leakage into high kinetic energy states

of lower energy mini-bands. This leakage can be observed

by investigating the change in spatially and energetically

resolved electron densities. The change in electron density for

the simulation of Fig. 7(d), shown in Fig. 8, shows an increase

in the occupation near the bottom of the ULS. Thus, in ac-

cordance with Fig. 7(d), this is not expected to result in a sig-

nificant decrease in gain. In contrast, the change in densities

shown in Fig. 9, which correspond to Fig. 7(e), shows an

increase in charge density at higher energies in the LLS. This

indicates that electrons are scattered elastically and then

relaxes by optical and acoustic phonon scattering. This lowers

the inversion between the ULS and LLS, and consequently

reduces the gain.

Comparing the values in Fig. 7, one finds that interfaces

at the lower side of the well affect gain more, in agreement

with the results from the current density simulations. Large

decreases in gain are observed at the interfaces where the

ULS and LLS have high wavefunction values.

For the case of the four-well QCL, shown in Fig. 4, the

thicker barriers affect gain similarly to the other structures.

However, the effect of the interfaces of the thin barriers is

dominating the reduction in gain, as displayed in Fig. 10. For

FIG. 6. Relative gain at operation bias per period. In (a), the two-well

laser18 at 47.5 mV, (b) the three-well laser19 at 55 mV, and (c) four-well

laser20 at 80 mV. In this study, g is increased.

FIG. 7. Changes (relative gain) due to

alteration of a single interface in each

period of the three-well laser.19 Also

included are the changes in current in

units of A/cm2. The respective interfa-

ces are denoted in Fig. 3. Either g or k
were increased by 50%. The bias is

57.5 mV per period.

FIG. 8. Changes in spatially and energetically resolved charge density due

to increase of g on one interface (marked by black line). This configuration

results in shift in gain as shown in Fig. 7(d). Results for the three-well laser

for a bias of 57.5 mV per period.
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these barriers, the aforementioned rule, that the (wb) interfa-

ces are the most important, does not hold. This can be under-

stood by examining the probability density of the ULS in

Fig. 4. Here, it is clear that it has a larger value at interface

(d) compared to (c).

V. CONCLUSION

In this work, we numerically investigate the influence of

interface roughness on the operation of several THz QCL

designs. We confirm that IFR scattering is an important phe-

nomenon that may greatly affect both current density and

gain. The most sensitive interfaces are the ones, where the

wavefunctions have significant values. This makes interfaces

at the lower potential side of wells more important than those

on the side of higher potential. Thin barriers work differ-

ently, impacting transport and gain significantly more since

they are usually placed where the ground state wavefunc-

tions have their maximum values. Increased current and

decreased gain indicate that a certain leakage current forms

at the interfaces. At certain interfaces, this leakage mecha-

nism strongly reduces population inversion. Due to altera-

tions in the scattering potential, a shift of the gain peak

frequency is observed for some interfaces. This can be

explained by changes in the real parts of the self-energy.
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FIG. 9. Changes in spatially and energetically resolved charge density due

to increase of g on one interface (marked by black line). Simulation shows

strong reduction in gain as shown in Fig. 7(e). Results for the three-well

laser for a bias of 57.5 mV per period.

FIG. 10. Gain spectrum of the four-well laser. g is increased on the indicated

interfaces, as labeled in Fig. 4, by 50%. Only the most important interfaces

are shown for clarity.
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Appendix



Appendix: Tables with details
for simulated structures

Table 1 contains the material data used for structures with well of the specified
material compositions. This data is mainly used for calculating the phonon
scattering matrix elements and gain.

Table 1: Material parameters for the well materials of the QCLs examined in this thesis.
GaAs is used for all THz structures. In0.53Ga0.47As, which is lattice matched to
InP is used for the structure of Ref. [25] studied in Papers IV and V, as well as
the structures in Sec. 5.2. In0.71Ga0.29As is used in Secs. 5.3 and 5.4. m∗ is the
effective mass as defined in eq. (2.10). εr and ε∞ are respectively the static and
high frequency relative dielectric functions, and ELO is the optical phonon energy.
Vdef. is the deformation potential, vl the lognitudinal sound velocity, ρmass the
mass density, and Vmol the mol volume, used for accoustic phonon scattering.

Material m∗ εr ε∞ ELO Vdef. vl ρmass Vmol

GaAs 0.067 13.0 10.89 36.7 7.2 4730 5317 0.04517
In0.53Ga0.47As 0.043 13.9 11.6 34 7.79 4253 5500 0.08610
In0.71Ga0.29As 0.0336 14.3 11.9 34 7.79 4082 5576 0.0525

Table 2 shows simulation parameters used for simulating the mid-IR samples
in this Thesis. Their layer sequences are shown in Tables. Table 3 shows
parameters for the THz structures simulated in Secs. 3.3 and 6. The layer
sequences of the structures are given in their respective referenced publications
or in the sections referenced.
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Table 2: Simulation parameters for the mid-IR QCLs discussed in Chap. 5 and Papers IV
and V.

Ref. ∆Ec Eg/m
∗ mwell mbarr IFR distr. η λ n2D

[25] 0.520 18.35 0.043 0.08 Gauss 0.1 9 7.8
Expon 1 0.17 3.6
Expon 2 0.1 6.3

Sec. 5.2 0.520 18.35 0.043 0.08 Expon 1 0.17 3.6 5.46
Sec. 5.3 0.63/1.41a 20.91 0.039 0.0978/0.15a Gauss 0.1 9 64.2

aFor InAlAs/AlAs barriers, respectively

Table 3: Simulation parameters for the THz QCLs discussed in Chap. 6 and Papers I-III
and VI.

Ref. ∆Ec Eg/m
∗ mwell mbarr IFR distr. η λ n2D

[37] 0.2175 22.67 0.067 0.0877 Expon 0.2 10 3.25
Paper II 0.2175 22.67 0.067 0.0877 Expon 0.2 10 3.46

[90] 0.1347 22.67 0.067 0.07945 Expon 0.2 10 3.0
Chap. 6.2, [39], [31] 0.1347 22.67 0.067 0.07945 Gauss 0.1 9 1.5-3


