

Radiations from a Water Jet Plasma Source

Fullagar, Wilfred; Uhlig, Jens; Walczak, Monika; Canton, Sophie; Wahlström, Claes-Göran; Sundström, Villy

2007

Document Version: Other version

Link to publication

Citation for published version (APA): Fullagar, W., Uhlig, J., Walczak, M., Canton, S., Wahlström, C.-G., & Sundström, V. (2007). Radiations from a Water Jet Plasma Source. 7.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Radiations from a Water Jet Plasma Source

Wilfred Fullagar, Jens Uhlig, Monika Walczak, Sophie Canton, Claes-Göran Wahlström, Villy Sundström

Division of Chemical Physics Division of Atomic Physics

X-ray shadow image of a leaf

converging

laser beam

CCD

(direct

detection)

10000

1000

100

dian.secon me jet prok

 p-polarised s-polarised

<u>Laser system</u>

water

jet

200 μm

Helium or

aspirator

vacuum

frame intensity (+ offset)

Integrated

X-rays

Goals:

In-house subpicosecond chemical structure dynamics, via

This source:

Yes

Yes (LLC collaboration)

Yes (Maxwellian, $T = 10-50 \times 10^6 \text{ K}$)

Yes (oxygen $K\alpha$ too soft for typical filter transmission)

Yes (EXAFS) but requires detection development

Yes (multi-shot images \Rightarrow ~30 μ m in target plane)

40 shots

22 shots, manual

- pump-probe EXAFS

Everyday local development access

Source ambitions:

Broadband radiation

Sub-picosecond burst

Adequate X-ray flux

Small source size

^c Collimation

itter-free laser synchronisation

- pump-probe Laue crystallography

Simplicity → in-house development & maintenance

No emission lines (→ detection & mechanism issues)

Shadow of ightbulb filament & 250µm Cu grid Blurring ⇒ source ~30 μm

Typical temporal contrast (courtesy Filip Lindau)

A typical setup, shield chamber removed

Effective temporal spread (ps) Instrumental resolution on X-ray streak camera

Adaptable to typical kHz laser. Selected relevant literature: * R.J. Tompkins et al, Rev.Sci. Inst 69(9), 3113 (1998)

Handy bunch of numbers (corresp. 10 Hz Energy/pulse (mJ) optical pulse durat

~200 fs (optimum)

~40 fs (shortest)

	Single shot Ti K $_{\alpha}$ XAS e	dge spectrum (5 μm Ti	foil)
ers (corresp. 10 Hz , 1 atm He operation)			
optical pulse duration	N ₀ (ph/[eV.sr.sec])	T(K)	
~200 fs (optimum)	71500	17.4×10^6	

 12.7×10^6

 11.5×10^6

Add s-pol prepulse, several 10s ps parly, 1:1 pwr ratio ⇒ X-ray-free, controllable preplasma (vast parameter space)

Time during manual scan (s)

Manual scan of jet through focus

Electron beams away from and through the water jet

Also! : dramatic change of interaction geometry for continuum X-rays (typical literature \Rightarrow 30° - 60° incidence for assorted K_{α})

> Clear flashes on GdOS screen after ~1cm air \Rightarrow observe strong scatter by 50 μm Be window

including strong filter scatter & assoc 2ndary radiation <10° FWHM

Electrons

10000

X-ray energy (eV)

A typical mono-temperature spectrum & fit (table at right)

Deflects like electron in magnetic field (detector view from source)

Electron ranges (CSDA, ESTAR, NIST). ρ^{-1} (cm³/g): $H_2O = 1$; He = 5590, Be = 0.541, air = 769, Si = 0.429 Suggests observed beams are 20 – 200 keV.

 H_2O , He, Be, air = red

Si = grey

* K. Eidmann *et al*, *Europhys Lett.*, 55(3) 334 (2001)

Repeat, with prepulse e- beams at shortest pulses Note rescale to include saturation

Strong e⁻ generation when s- & p- pulses briefest. Suggests: * proton motion during p-pulse unimportant

- * e beam emission = non-resonant phenomenon * e- beam pulse duration ← energy range, distance from src

Selected literature precedents: * S. Bastiani et al, Phys. Rev. E, 56(6), 7179 (1997) * X.-Y. Peng et al, Chin. Phys. Lett., 21(4), 693 (2004)

Selected relevant literature: * A. Rousse et al, Phys. Rev. Lett., 93(13), 135005 (2004) * W.P. Leemans et al, Nature Physics, October(2), 696 (2006)

Protons??

14702

29200

H+ emission conceivable with long pulses, high NA focus

Circuit observes all ionization in chamber → strong signal when hitting jet. But! : only partial correlation with X-ray yield.... why?

Protons stopped in chamber by He (→ ionisation) : see below However: 524 eV oxygen K_{α} (1/e in He \rightarrow 12 cm), & possible other contibutions

