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Populärvetenskaplig
sammanfattning

En samling av partiklar som interagerar med varandra är ett komplicerat system
att försöka beskriva. Hur en enskild partikel uppför sig beror på hur de resteran-
de partiklarna beter sig. Detta gör att det blir väldigt svårt att förutbestämma vad
som kommer att hända med hela systemet även om vi har en mycket god uppfatt-
ning om hur de fundamentala rörelseekvationerna ser ut. Särskilt komplicerat blir
kvantmekaniska system där vi, till skillnad från i klassisk mekanik, i någon mening
måste ta hänsyn till alla möjliga händelser samtidigt. Det är dock viktigt att stu-
dera hela samlingen av dessa växelverkande partiklar då mycket av deras beteende
kommer från just växelverkan. Nya fenomen kan uppkomma som inte alltid inses
direkt från rörelseekvationerna för de enskilda partiklarna och vars behandling kan
kräva nya koncept, regler och angreppssätt. Helheten kan helt enkelt vara mer än
summan av dess delar.

Det finns många system av växelverkande partiklar i naturen som måste beskrivas
med hjälp av kvantmekanik och vars beteende påverkar oss dagligen. Atomkärnor,
elektroner som är bundna till kärnan, molekyler och metaller är några exempel.
Vi människor har även skapat våra egna kvantsystem, både för att lättare kunna
undersöka de naturliga motsvarigheterna, men även dess tekniska tillämpningar.
Exempel är bland annat små kluster av metallatomer som uppför sig liknande
atomkärnor och nanometerstora strukturer av halvledarmaterial som fångar in ett
fåtal elektroner vilka kan fås att efterlikna elektronerna i en atom.

Ett annat artificiellt mångpartikelsystem som på senare tid blivit mycket populärt
att undersöka är atomer som hålls infångade med hjälp av laserljus. Det har visat
sig, kanske något överraskande, att atomerna i en gas går att stoppa och hålla kvar
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på en specifik plats genom att lysa med en väl vald laser på dem. Några fördelar
med dessa ljusbaserade infångningsmetoder är bland annat att atomerna är väldigt
isolerade från omgivningen och att de kan kylas ner till otroligt låga temperaturer,
så att de kvantmekaniska aspekterna blir direkt synliga. De kalla atomsystemen är
dessutom väldigt anpassningsbara så till den grad att det nästan bara är fantasin
hos forskarna som sätter gränsen. Än så länge saknas vardagliga tillämpningar av
de kalla atomsystemen. Istället har de används till att öka den grundläggande för-
ståelsen av kalla atomsystem i synnerhet och mångpartikelsystem i allmänhet. En
möjlig framtida tillämpning är att med hjälp av kalla atomer bygga komponenter
som använder något mångapartikelfenomen för att efterlikna dagens elektronik,
men som kan användas snabbare och mer effektivt. Då dagens elektronik inte ver-
kar gå att skala upp så mycket mer kan detta vara en möjlig väg för fortsatt teknisk
utveckling.

I den här avhandlingen har vi studerat hur några fenomen som är välkända i la-
serinfångade gaser av många atomer påverkas av antalet partiklar i gasen. Vi har
i många fall jämfört egenskaper hos gaser med väldigt många partiklar mot en
gas med färre atomer. I gasen med väldigt många partiklar är det rimligt att bara
använda medelvärdet av påverkan mellan partiklarna, medan de exakta kvantme-
kaniska rörelseekvationerna kan lösas för systemet med få partiklar. Vi härledde
bland annat en exakt formel för hur en ensam vågfront i partikeltätheten färdas
runt i en ring. Utifrån det bestämde vi olika tidsskalor för hur vågfronten försvin-
ner och sedan dyker upp igen, samt hur dessa tidsskalor beror på antalet partiklar
i ringen.

Kvantiserade virvlar är en annan karaktäristisk egenskap hos ett kvantmekaniskt
system och vi har studerat dessa på flera olika sätt. En av undersökningarna gäll-
de hur virvlarna skapas när en samling partiklar roteras. Beroende på formen av
behållaren som innesluter partiklarna kunde vi observera två olika sätt som dessa
virvlar uppstår. Det krävs dock ett större antal partiklar innan de olika sätten kan
särskiljas och beteendet är då mycket annorlunda från fallet när antalet partiklar
är väldigt litet. Vi fann också att dessa två typer av virvelbildningar bestämmer om
systemet uppvisar hysteres, fenomenet att övergången inte sker på samma plats
beroende på om man ökar eller minskar rotationen, eller inte. Virvlar kan också
skapas när partiklarna växelverkar som dipoler, vilket vi visade i en annan stu-
die. Dessa dipoler kan liknas vid små stavmagneter som repellerar eller attraherar
varandra beroende på deras orientering. En sådan växelverkan har nyligen blivit
möjlig att ha i experiment med kalla atomgaser.
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Kalla atomer kan också uppvisa skalstruktur, ett fenomen som kommer från en
underliggande symmetri hos systemet och är känt från många naturliga system
såsom hur atomernas elektroniska struktur samt atomkärnan är uppbyggda. Vi
undersökte hur denna skalstruktur påverkades av växelverkan mellan dipoler och
hur egenskaperna hos systemet kunde ändras med hjälp av egenskaper hos denna
växelverkan.
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Popular science summary

A collection of particles that interacts with each other is a complicated system to try
to describe. How a single particle behaves depends on how the remaining particles
behave. This makes it very difficult to predict what will happen with the whole
system even if we have a very good understanding of how the fundamental equa-
tions of motion look like. Especially complicated becomes quantum mechanical
systems where we, unlike in classical mechanics, in some sense need to take into
account all possible events at the same time. It is however important to study the
whole collection of these interacting particles as much of their behavior precisely
comes from the interactions. New phenomena can arise that can not always be
realized directly from the equations of motion and whose treatment can demand
new concepts, rules and approaches. The whole can simply be more than the sum
of its parts.

There exist many systems of interacting particles in nature that have to be de-
scribed with the help of quantum mechanics and whose behavior affects us daily.
Atomic nucleus, electrons that are bound to the nuclei, molecules and metals are
some examples. We humans have also created our own quantum systems, both
to easier be able to investigate the natural counterparts, but also their technical
applications. Examples are among other small clusters of metal atoms that behave
like atomic nucleus and nanometer sized structures of semiconductors that traps
a few electrons which can be made to mimic the electrons in an atom.

Another artificial many-particle system that lately has become very popular to
study is atoms that are trapped with the help of laser light. It has been shown,
maybe somewhat counterintuitively, that the atoms in a gas can be stopped and
kept at a specific place by shining a cleverly chosen laser on them. Some advan-
tages with these light based trapping methods are among other that the atoms are
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very isolated from the environment and that they can be cooled down to incredi-
bly low temperatures, such that the quantum mechanical aspects become directly
observable. The cold atom systems are also very customizable to such a degree that
only the scientist’s imagination sets the limit. So far no everyday application exists
for these cold atomic systems. Instead, they have been used to advance the basic
knowledge of cold atoms systems in particular and many-particle systems in gen-
eral. A possible future application is with the help of cold atoms to build devices
that utilize some many particle phenomenon to imitate todays electronics, but
can be used faster and more efficient. As todays technology does not seem to be
able to scale up much more this can be a possible way for continued technological
advancement.

In this thesis we have studied how some phenomena that are well known in laser
trapped gases of many atoms are affected by the number of particles in the gas.
We have in many cases compared properties of the gases with very many particles
to a gas with less atoms. In the gas with very many particles it is reasonable to
only use the mean value of the influence between the particles, while the exact
quantum mechanical equations of motion can be solved for the system with few
particles. Among other we derived an exact formula for how a solitary wavefront
in the particle density traveled around in a ring. From this we determined different
time scales for how the wavefront disappears and then comes back, as well as how
these time scales depend on the number of particles in the ring.

Quantized vortices is another characteristic property of a quantum mechanical
system and we have studied these in a number of different ways. One of the
investigations were concerned about how vortices are created when a collection
of particles is rotated. Depending on the shape of the container that encloses
the particles we could observe two different ways these vortices can be created.
However, it requires a larger number of particles before the different ways can
be distinguished and the behavior is then much different from the case when the
number of particles is very small. We also found that these two types of vortex
formations determine if the system exhibit hysteresis, the phenomenon that the
transition does not happen at the same place depending on if one increases or
decreases the rotation, or not. Vortices can also form when the particles interact as
dipoles, which we showed in another study. These dipoles can be seen as small bar
magnets that repel or attract each other depending on their orientation. Such an
interaction has recently become possible to attain in experiments with cold atomic
gases.
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Cold atoms can also exhibit shell structure, a phenomenon that comes from an
underlying symmetry of the system and is known frommany natural systems such
as the electronic structure of atoms as well as how atomic nuclei are structured.
We investigated how this shell structure was affected by the interaction between
dipoles and how the properties of the system could be changed with the help of
properties of this type of interactions.
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Chapter 1

Introduction

In our quest to better understand the world around us we encounter many situ-
ations where we have to study how interacting bodies behave together. The scale
of such systems can be very large, e.g. astronomical objects orbiting each other.
On this scale classical mechanics and the theory of general relativity can be used
to make predictions with good accuracy. Interacting systems can also be found on
the very small scale, necessitating a quantum mechanical treatment instead. The
governing equations for such systems are by now well established. However, these
equations are notoriously difficult to solve for interacting systems with more than
two particles, as the complexity grows extremely fast when their number increases.
Thus, to understand large systems new concepts and perspectives often need to be
used, as the behavior many times cannot be feasibly inferred from the basic laws
that govern the microscopic constituents. The collective phenomena that emerge
for large interacting systems can be seen as being equally fundamental as these ba-
sic laws [1]. To get a proper understanding of the world, we thus need to not only
study the fundamental equations, but also the complete many-body systems. The
phenomena they exhibit together with how the collective behavior is altered as the
number of particles is changed is also important to investigate.

One may also go the other way around. Due to the macroscopic behavior and
properties mentioned above, often when modeling a quantum mechanical many-
body system one assumes it contains an infinite number of particles and extends
over all of space. This is however only an approximation to the natural systems.
At very large particle numbers the difference is usually negligible, but as the parti-
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cle number is decreased these finite-size effects might become important, or even
dominant. Another scientific challenge is thus to quantify these effects and un-
derstand how they alter the overall behavior.

Finite-sized quantum many-body systems of interacting particles can be found in
many places in nature such as atomic nuclei, atoms and molecules. These sys-
tems, that in many ways could have direct implications on our lives, exhibit a vast
collection of different behavior and phenomena, e.g. shell structure, non-linear
effects, irrotational flow and strongly correlated states. In addition to the few-
body systems found directly in nature, during the last couple of decades, several
possibilities for creating artificial ones have been developed. Clusters of metallic
atoms e.g. show many similarities to atomic nuclei [2, 3] and by confining elec-
trons in semiconductor structures so called artificial atoms can be created [4]. Due
to their similarities to the natural systems the artificial ones can be used to perform
experiments that would be very difficult if done using real atoms or atomic nuclei.

This thesis will however focus on few-body systems in ultracold gases of atoms
trapped and cooled by laser light. This is another type of a man-made collection
of interacting particles that has matured in the last couple of decades. Now they
are routinely used to study many-body effects in quantum-mechanical systems
where they have many advantages compared to other types of artificial systems,
such as being well isolated from their environment and the ability to observe and
manipulate them using the precise tools of laser physics [5]. We have here exam-
ined how some phenomena known to appear in large, infinite, collections of atoms
behave when the number of particles is reduced, but also how few-body systems
that could be realized in atomic gases transition into their larger versions.

In Chap. 2 ultracold atomic gases and their basic properties will be introduced to-
gether with the basic concepts of many-body quantum mechanics. The numerical
methods used to investigate these system will then be presented in Chap. 3. The
main results of the studies will be given in Chap. 4 together with a brief outlook
in Chap. 5. This is then followed by the papers this thesis is based on that are
included at the end.

14



Chapter 2

Many-body quantum physics with
ultracold atoms

This chapter introduces the many-body systems realizable with ultracold atoms
that will be considered in this thesis. First, in Sec. 2.1, the trapping and cooling of
the atoms using light and magnetic fields is discussed. Techniques for detection
and manipulation will briefly be mentioned as well. The basic concepts of many-
body quantum mechanics using the formalism of second quantization needed to
describe these systems will be touched upon in Sec. 2.2. Here rotating systems
will also be discussed. Many of the complicated phenomena that arise in ultra-
cold atomic systems come from interactions between the particles, we thus de-
scribe those in more detail. The short range interactions present in most ultracold
atomic gases will be discussed first in Sec. 2.3. This is followed by a short intro-
duction to long-range dipole-dipole interactions which have also been realized in
experiments. Gases of ultracold atoms have also become a well-used platform to
study degenerate quantum gases, a regime where quantum mechanical effects are
prevalent. The basic principles of such degenerate gases will be briefly discussed in
Sec. 2.4, especially the case of Bose-Einstein condensates for bosonic gases. This
finally leads up to Sec. 2.5 where the recent progress in realizing few-body systems
with a low and controllable number of particles will be discussed. Such few-body
systems will be the main topic of the rest of the thesis.
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Figure 2.1: The left part shows a sketch of a Zeeman slower. The gray part is a solenoid through which the current
I is running as indicated by the arrow. This creates a magnetic field B such that the intensity is varying
along the z axis. If atoms are traveling with velocity v along the same axis, the varying magnetic field
alters the transition frequency between two states |0⟩ and |1⟩ in the atoms by the amount ΔωZ. The
solenoid is shaped such that this is the same frequency shift ΔωD for the laser light photons γ due to the
Doppler shift, as depicted to the right. This keeps the laser light with a fixed frequency ω in resonance
with the transition along the whole solenoid. As the atoms absorb photons from the forward direction
but emit in a random direction they experience a force slowing them down. Adapted from figures in
[7, 8].

2.1 Trapping, cooling and detection of atoms

The cross-section for a collision between a photon and an atom has a large resonant
enhancement if the energy of the incoming photon is matched to a transition in
the atom. If the atom absorbs a photon, the change in momentum will result in a
force opposite to the incoming light. The atom will eventually deexcite and send
out another photon, but it will be in a random direction, such that the force from
this process averages to zero. If a laser is tuned to a frequency slightly lower than an
atomic transition it will slow down the atoms going towards the light source due to
the Doppler shift bringing it into resonance. Because of the generated reduction in
the average speed of the atoms in the gas, the temperature is also reduced. Using
the Doppler shift to cool and slow down the motion of atoms is now a widely
used technique and is described in more detail in many textbooks on the subject,
e.g. see [6, 7]. The development of these techniques was first driven by the desire
to improve atomic clocks and atomic spectroscopy, but it was soon realized that
they could also be used to realize and probe very controlled quantum many-body
systems [8].

The technique of laser cooling was first used to cool Mg ions in 1978 [9], but
was later extended to a beam of neutral Na atoms in 1982 [10]. Here a varying
magnetic field was used to keep the atoms in resonance with the laser as their
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velocities continued to decrease. Such a device is called a Zeeman slower and
Fig. 2.1 sketches how it works. A Zeeman slower can be used to initially slow down
a beam of atoms, but it only operates in one direction and it does not produce a
trapping potential.

By employing pairs of counter-propagating lasers in each of the three spatial direc-
tions, (x, y, z), one may create a region in which the atoms experience a significant
damping of their velocities and hence the atoms stay in this region for a consid-
erable amount of time. This is called the optical molasses technique and it can
be used to further cool the gas before the atoms diffuse out of the central region
[6, 7]. The optical molasses technique, however, does not provide a restoring force
and hence does not actually trap the atoms. One way of creating a trap for the
atoms is to add a pair of coils to the setup, producing a small magnetic field with
a magnitude that is linear for small distances away from the origin. Together with
using circularly polarized light such a magnetic field will result in an imbalance
of the scattering force from the photons that depends on the distance from the
center [6, 7]. Thus a restoring force is created, such that the particles feel a trap-
ping potential with an approximately harmonic shape. This type of trap is called
a magneto-optical trap and has become a widely used tool in atomic physics. The
set-up of both the optical molasses technique and a magneto-optical trap is shown
in Fig. 2.2.

Other ways of producing a trap for the atoms include using a magnetic field that is
varying in space. Some of the hyperfine states of the atom, the so called low-field-
seekers, increase in energy as the strength of the magnetic field is increased. As the
name suggests, this will result in a restoring force to a region where the field has a
minimum [7]. However, if one uses a quadrupole field, as in the magneto-optical
trap, the minimum is a zero field and the levels can mix into a state that is not
trapped and hence the atoms can escape. The hole in the middle of the trap has
to be plugged in some way and this can be done by e.g. adding a time-varying
magnetic field to the trap, or adding a static field in the perpendicular direction.
Adding such fields to the trap will, for small distances from the center, produces a
harmonic potential [6, 7]. In the left part of Fig. 2.3 the resulting magnetic field
for a commonly used set-up is shown.

There are however some reasons for not using a magnetic field to trap the atoms,
e.g. wanting to use the magnetic field to tune the interactions which will be briefly
mentioned in Sec. 2.3. Fortunately there are techniques where one uses only laser
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Figure 2.2: The left part shows the setup of the six lasers used in the optical molasses technique. Similar to the
Zeeman slower in Fig. 2.1 this causes the atoms to experience a force F proportional to, and in the the
opposite direction of, their velocity v. Here α is the proportionality constant. Adding a pair of coils
carrying a current I as the arrows indicate on the right side creates a magnetic field. Together with
making the laser light circularly polarized this results in a restoring force on the atoms, trapping them
in the center. The force exerted on the atoms in the z direction now includes a term −βz, where β is
the spring constant, and similarly in the other directions. Such a device is called a magneto-optical trap.
Adapted after figures in [7].

light to trap the atoms. Due to the Stark shift of the energy levels of the atom
when perturbed by an oscillating electric field, the atoms will feel a potential that
is proportional to the intensity of the light [7]. This is sketched in the right part
of Fig. 2.3. By focusing a laser beam, one can make the intensity vary in space and
thus create an optical dipole trap for the atoms. As the shape of the optical dipole
traps is basically only limited to the shape of the intensity, a large number of dif-
ferent geometries have been realized. Examples ranging from harmonic traps with
possibly different trapping frequencies in the different directions, creating quasi-
two or one-dimensional systems, to more exotic configurations such as tori [11],
double wells [12] or small tunnel constrictions between bigger particle reservoirs
[13]. One may also use this technique to obtain a periodic potential by producing
a standing wave with the lasers. For such light fields the intensity obviously vary
in space. The resulting periodic potentials are called optical lattices [6, 7] and has
been used extensively in experiments with ultracold atoms [5].

Even though the optical molasses technique for alkali atoms cooled the gas to a
temperature lower than was expected to be possible with Doppler cooling [14],
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Figure 2.3: The resulting magnetic field of the four perpendicular conductors in gray, carrying current as indicated,
is shown to the left. Field intensity is indicated by the colors of the field lines. Close to the center
of the trap the resulting force on the atoms, given for the z direction in the figure, is approximately
linear with respect to the distance from the center and with proportionality constant α. This results in
a harmonic trap for the atoms. The resulting dipole force from the spatially varying light field intensity
I is sketched in the right part of the figure. Here the force will be proportional to the gradient of the
intensity. Adapted after [7].

it is possible to cool the gas to even lower temperatures. This is usually done by
evaporative cooling, a technique that can be used for both magnetic and optical
dipole traps. Schematically, this is done by cutting off the trap at some height and
thus letting high energy atoms escape [6, 7]. The remaining atoms have a lower
mean energy and thus, after thermalization, a lower temperature. In a magnetic
trap one may instead use radio-frequency radiation to make the high-energy atoms
escape the trap. As the magnetic field is varying with distance from the center, the
transition between trapped and untrapped states of the atoms will also depend
on the distance. Hot atoms will reach further from the center, so by tuning the
radiation to match this distance these atoms will be made to escape the trap. In an
optical dipole trap one has to lower the trap strength instead. Evaporative cooling
has been successfully used to obtain temperatures of the order of nK in atomic gases
[7]. Some parts of the history behind the breakthroughs of trapping and cooling
neutral atoms can be found in the Nobel prize lectures from 1997 [8, 15, 16].

Once the atoms are cooled and trapped they can also be manipulated by the same
techniques used to trap them, both by magnetic fields and optical dipole forces.
The trap can e.g. be modulated in time to induce excitations in the gas. Another
way to produce excitations is to use radio-frequency radiation to induce transitions
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in the atoms that could affect the collective behavior of the gas. Most experiments
rely on the imaging of the particle density. By turning off the trap and releasing the
particles, as the particle cloud expands one can observe features too small to resolve
directly. If one waits long enough after turning off the trap, distribution of particles
will correspond to the momentum distribution of the system instead, due to the
ballistic expansion of the cloud. This can thus be used to get more insight into the
system. Performing a sequence of non-destructive measurements, or performing
several release experiments after different times one may follow the time-evolution
of the system. For a review of manipulation and detection techniques for ultracold
atomic gases, see e.g. [17]. Recently there has been a lot of progress towards single-
atom imaging, especially in optical lattice systems [18].

The systems realized using optical and magnetic trapping of neutral atoms are
very isolated from the environment compared to e.g. semiconductor based elec-
tronic devices [19]. Combined with the very low temperatures obtainable, this
makes them an excellent platform to investigate quantum mechanical many-body
effects. Furthermore, these systems offer a wide range of powerful manipulation
and detection techniques that are not available for other types of systems. For a
review of some many-body phenomena that have been studied in these systems
see [5]. Optical lattices have e.g. been used extensively in ultracold atomic experi-
ments mimicking condensed matter models [20], where one can produce physical
systems that are much cleaner than the electronic counterparts. It also offers the
possibility to vary dimensionality, geometry, depth of the potential and includ-
ing effects such as disorder or artificial magnetic fields [21]. Using the different
hyperfine states of the atoms as a pseudo spin offers the possibility to study multi-
component mixtures and other phenomena associated with spin, e.g. spin-orbit
coupling [22]. Ultracold atoms have also been an advantage for studying dynam-
ics of many-body systems, such as e.g. thermalization of a many-body quantum
system [23] or the transport of particles between reservoirs [24].

2.2 Many-body quantum systems

In non-relativistic quantum mechanics, the time-evolution of the state |Ψ(t)⟩ is
governed by the Schrödinger equation

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ(t)|Ψ(t)⟩, (2.1)
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where Ĥ(t) is the Hamiltonian of the system. In the case of a time-independent
Hamiltonian, the above equation can be recast into an eigenvalue equation and
the problem becomes finding eigenstates to observables that commute with the
Hamiltonian, as the time-evolution is a trivial phase factor depending on the cor-
responding eigenvalues [25]. For an interacting N-body system, the Hamiltonian
typically has the form

Ĥ =

N∑
n=1

ĥ0(n) +
∑
n<m

V̂int(n,m), (2.2)

where the sums run over the particles n and m, ĥ0 is the single-particle part in-
cluding the operators only acting on each particle separately, and where V̂int is the
pairwise-interaction between two particles. For systems of identical particles it is
convenient to use the formalism of second quantization, see e.g. [26, 27]. One
then uses the so called Fock states |Ψ⟩ = |n0, n1, n2, . . .⟩ where only the occupa-
tions ni of some single-particle orbitals |φi⟩ are specified. Introducing a basis of
Fock states, one can work with the creation and annihilation operators, â†i and âj,
which create and annihilate particles in the orbital |φi⟩ and |φj⟩ respectively. These
operators satisfy a set of commutation or anticommutation relations depending on
if the particles are bosonic or fermionic respectively, in this way taking care of the
identical-particle symmetry properties. In second quantization, the Hamiltonian
in Eq. (2.2) is transformed into

Ĥ =
∑
i,j

hij â
†
i âj +

1
2

∑
i,j,k,l

vijkl â
†
i â

†
j âlâk, (2.3)

where the sums now run over the different orbitals instead of the different particles.
In Eq. (2.3) one also only needs to be concerned about the matrix elements hij =∫
φ∗
i (r)ĥ0φj(r)dDr and vijkl =

∫
φ∗
i (r)φ

∗
j (r

′)V̂intφk(r)φl(r
′)dDr dDr′ of the

operators ĥ0 and V̂int with respect to the single-particle orbitals, and with D being
the dimension of the space.

Using the position eigenstates |r⟩ as the single-particle basis give rise to the so
called field operators, Ψ̂†(r, t) and Ψ̂(r, t), which create and annihilate a par-
ticle at the specific position r respectively. Written as a sum of the previously
used single-particle orbitals |φi⟩ together with their respective annihilation or cre-
ation operator for given particle statistics, the field operators are given by Ψ̂(r) =∑

i φi(r)âi and similarly for Ψ̂†(r). The field operators offer a more convenient
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way to express observables depending on the spatial position, such as an inho-
mogeneous particle density. At time t, for the state |Ψ(t)⟩, the particle density
is given by ρ(r, t) = ⟨Ψ(t)|Ψ̂†(r)Ψ̂(r)|Ψ(t)⟩ giving the probability to find a
particle at position r, normalized to N. When working with the full solution
to the Schrödinger equation, the eigenstates to the Hamiltonian will simultane-
ously be eigenstates to the symmetry operators commuting with the Hamilto-
nian. Thus, the internal structure can be hidden in, e.g., ρ. In order to reveal
those structures, one may break the symmetry by using the pair-correlated den-
sity ρc(r, r′, t) = ⟨Ψ(t)|Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)|Ψ(t)⟩. This quantity gives the
probability of finding a particle at r given that one particle is at r′.

In Papers i, iii, iv and Sec. 4.4 we will consider rotating systems. Tomodel this, we
will make a transformation to a frame of reference that is rotating around a sym-
metry axis, here taken to be in the z direction, with angular velocity Ω. Making
such a transformation results in an extra single-particle operator in the Hamilto-
nian. This term arises when considering the Schrödinger equation for the rotated
state |Ψ̃(t)⟩ = R̂(t)|Ψ(t)⟩ [28], where the operator R̂(t) = e−iθ(t)L̂z/ℏ rotates
the state by an angle θ around the z axis [25]. The Hamiltonian will then get
an extra term iℏ∂R̂

∂t R̂
†(t). By assuming that θ is varying in time according to

θ(t) = −
∫ t
t0 Ω(t ′)dt ′ where t0 is the initial time and Ω(t) is the instantaneous

angular velocity of the rotation, the time derivative ∂R̂
∂t = i

ℏΩ(t)L̂zR̂(t), we end
up with the extra term −Ω(t)L̂z where L̂z is the angular momentum in z. Fur-
thermore, if all the operators in the lab frame are rotating with the same constant
frequency Ω, the problem becomes time-independent in the rotating frame.

In the systems considered in this thesis, the single-particle part ĥ0 of the many-
body Hamiltonian, Eq. (2.2), can be written in the form

ĥ0(t) =
p̂2

2m
+ u(r̂, t)− Ω(t)L̂z, (2.4)

where p̂ is the momentum operator, r̂ is the position operator, u(r̂) is the trapping
potential and the last term is for rotation. The trapping potential is usually taken
to be the here isotropic harmonic oscillator u(r̂) = 1

2mω
2r̂2, where m is the mass

of the particles and ω is the trapping frequency, as it is a good approximation to
many of the potentials produced by the trapping techniques described in Sec. 2.1.
In addition, we will also consider deformed traps such as an anisotropic oscillator
confinement along the different axes, as well as ring shaped potentials u(r̂) =
1
2mω

2(r̂− R)2 with radius R.
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Figure 2.4: A schematic picture of the interaction potential for two atoms as a function of the relative distance r.
The red curve shows the typical interaction potential in an open channel. The dotted red line shows the
typical r−6 dependence of the long-range tail. The black-dotted line shows the energy E of the incident
particle. The blue curve shows the closed channel used in a Feshbach resonance for which the energy
of the bounded states, shown as dashed horizontal lines, is altered by the external magnetic field B.
Adapted after [5].

2.3 Interactions in cold atomic systems

The interaction potential for particle-particle collisions in an ultracold gas of alkali
atoms is usually rather complicated. Typically the atoms are strongly repulsive for
very short distances, but the interaction have an attractive region for intermediate
separations. As the relative distance approaches infinity the potential goes to zero
with some power law dependence. A typical interaction potential V (r), where r
is the relative distance between the two particles, is sketched in Fig. 2.4. In a gas
of atoms, the interaction potential is of van der Waals type and can be calculated
using second order perturbation theory. It has the form VvdW(r) = −C6/r 6,
where r is the magnitude of r between the two particles and C6 is the strength of
the interaction. See e.g. [29].

In principle one would need to solve the full time-dependent problem of the
collision process. However, a time-independent treatment is sufficient to obtain
the low-energy behavior [25, 30], which is usually what is important in ultracold
atomic systems [5]. Consider a Hamiltonian Ĥ for the relative motion of two
particles colliding assumed to be of the form Ĥ = Ĥ0 + V̂. Here Ĥ0 is the free
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particle Hamiltonian with eigenstates |Φk⟩ that are plane waves with momentum
ℏk and eigenenergy E = ℏ2k2

2mr
, where mr = m/2 is the reduced mass, and V̂ is the

interaction potential. The outgoing scattered state |Ψ(+)
k ⟩ of an elastic collision

for such a system is given by the Lippmann-Schwinger equation [25], which in the
spatial representation is

⟨r|Ψ(+)
k ⟩ = ⟨r|Φk⟩+

∫
dDr ′ ⟨r| 1

E− Ĥ0 + iϵ
|r′⟩︸ ︷︷ ︸

≡(2mr/ℏ2)G+(r,r′)

⟨r′|V̂ |Ψ(+)
k ⟩, (2.5)

where D is the dimension of the space. By inserting a complete set of plane wave
states, which are eigenstates to the free particle Hamiltonian Ĥ0, the matrix ele-
ments G+(r, r

′) can be evaluated for different dimensions as

G+(r, r
′) =



e ik|r−r′|

2ik D = 1

K0(−ik|r−r′|)
−2π D = 2

e ik|r−r′|

−4π|r−r′| D = 3

, (2.6)

where K0 is the zeroth order modified Bessel function of the second kind [31]. For
a point far away from the region where the interaction potential has an appreciable
strength we have that |r| ≫ |r′|, and we can expand |r − r′| ≈ |r| − r · r′/|r|.
Inserting this into Eq. (2.5), we get in a three-dimensional space

⟨r|Ψ(+)
k ⟩ = ⟨r|Φk⟩+

1
(2π)3/2

e ikr

r

(
− 1
4π

(2π)3
2mr

ℏ2

)
⟨k′|V̂ |Ψ(+)

k ⟩︸ ︷︷ ︸
≡ f (k′,k)

, (2.7)

where we have defined k′ = k r/|r|. See Fig. 2.5 for a schematic picture of the
vectors used. We can then identify the important quantity f, called the scattering
amplitude. The scattered state far away from the scattering region is thus the
incoming wave plus a spherical wave with amplitude f (k′,k). Similar results are
obtained in the other dimensions, with their respective type of spherical wave.

One may also expand the scattered state using partial waves with angular momen-
tum l according to ⟨r|Ψ(+)

k ⟩ =
∑∞

l=0 Pl (cos θ)χkl(r)/kr where Pl are the Leg-
endre polynomials. At large distances the radial equation has solutions χkl(r) =
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Figure 2.5: A sketch of the different vectors involved in the Lippmann-Schwinger equation at long distances,
Eq. (2.7), where the red shaded area represents the spatial extent of the scattering potential V̂. The
free particle plane wave state has momentum ℏk and the vector k′ forms an angle θ with the direction
of k. Adapted after [25].

Al sin (kr− πl/2+ δl) where δl is called the phase-shift and is generally a func-
tion of k [32]. Comparing to Eq. (2.7) one may derive that the scattering ampli-
tude f, which, due to the spherical symmetry, here only depends on the mag-
nitude of k and the angle θ between k and k′, can be written as f (k, θ) =∑∞

l=0(2l+ 1)Pl (cos θ)fl (k) with, the partial-wave amplitude

fl (k) ≡
(e 2iδl − 1)

2ik
=

1
k cot δl − ik

. (2.8)

For collisions of slow particles, i.e. when k → 0, with a finite-range potential, it
can be shown that the phase-shifts vary as k 2l+1 [33]. If the potential goes as r−n at
large distances r, the phase-shifts for partial waves with l above (n− 3)/2 vary as
k n−2. Thus, in the limit k → 0, since fl ≈ δl/k, only the term for l = 0 survives.
When this is the case it is said that we have s-wave scattering. The term k cot δ0
in Eq. (2.8) can furthermore be expanded using the effective range expansion [34].
For ultracold atoms it turns out that all terms in the expansion except the first one
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are negligible [5]. Eq. (2.8) for l = 0 can then be written as

f0 (k) = − a
1+ ik

. (2.9)

In the limit k → 0 this expression becomes constant, f0 = −a, i.e. the two-
particle scattering at low energies is determined by only a single parameter of the
interaction potential, the scattering length a.

In many cases for ultracold atomic gases one may use a Feshbach resonance to
change the scattering length by tuning an external magnetic field [5, 29, 35]. This
can be performed when the scattering process has an open and a closed channel.
The situation for such a scattering process is depicted in Fig. 2.4. In the open
channel, the energy of the system is high enough such that this state can be the
asymptotic result of the process. For the closed channel this is not the case. How-
ever, if there are bound states for the closed channel and these states are coupled
to the open channel, the scattering length for the open channel can effective be al-
tered. A very pronounced effect can be seen if a bound state of the closed channel
is very close to the incident energy E of the collision where the scattering length
diverges. In ultracold gases the different channels can have different magnetic
moments and thus the relative energy can be altered by an external magnetic field.
By carefully tuning the strength of the magnetic field the scattering length can be
made to take almost any value. A Feshbach resonance in a Bose-Einstein conden-
sate was first observed in 1998 [36]. Since then it has become an important tool in
investigating many-body effects in ultracold atoms as it allows for the possibility to
effectively alter the strength of the interactions in the system by tuning an external
parameter. For a review of Feshbach resonances in ultracold atoms see [35].

If the scattering potential is not very strong one may use the Born approximation
in order to determine the scattering length [25]. In the Born series the scattering
amplitude is expanded in orders of V as a series f = f (1) + f (2) . . . and to get
the first-order Born amplitude f (1) one assumes that the incoming scattering state
|Ψ(+)⟩ is not very different from a plane-wave. On the right hand side of Eq. (2.5)
the state |Ψ(+)⟩ is then replaced by a plane-wave state. At large distances, the
scattering amplitude becomes

f (1)(k,k′) = − 1
4π

2mr

ℏ2

∫
d 3r ′e i(k−k′)·r′V (r′). (2.10)
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From this we get that when |k− k′| → 0 the scattering length is given by

a =
mr

2πℏ2

∫
V (r)d3r. (2.11)

One may then substitute the complicated true interaction potential V (r) with an
effective pseudopotential Veff (r)with the same scattering length. Utilizing a pseu-
dopotential that gives the same scattering length already in the first-order Born ap-
proximation can be seen as an effective interaction where effects of the short-range
correlations from the interactions have already been incorporated. This works well
when combined with a mean-field treatment, where only long-wavelength effects
are considered, and is then expected to give correct low-energy results [29].

A simple pseudopotential for which a is easily calculated through Eq. (2.11) is

Veff (r) = g δ(r), (2.12)

where δ is the Dirac delta function. This contact pseudopotential has been used
extensively, and with much success, in the context of ultracold atoms [5, 29, 32].
However, in treatments beyond mean-field it must be used with caution as it is
not a proper physical interaction potential in two or higher dimensional spaces.
The resulting Hamiltonian operator is not self-adjoint [37]. This issue can actually
be seen directly in the scattering problem by considering Eq. (2.5) for such a local
potential [38],

Ψ
(+)
k (r) = Φk(r) + g G+(r, 0)Ψ

(+)
k (0), (2.13)

where the singular behavior of G+(0, 0), as can be seen in Eq. (2.6), prohibits a
consistent solution for the point r = 0. In Paper ii we have analyzed a simple way
to anyway use the contact-type interactions for higher dimensions when perform-
ing exact diagonalization calculations, a numerical method that will be discussed
in Sec. 3.3, on few-particle systems.

Recently there has been a lot of progress in realizing laser cooled gases of atoms and
molecules with large permanent dipole moments. In such gases the interactions
between the particles would be dominated by the dipole-dipole interaction, a type
of interaction that can not be described by only the contact pseudopotential and
gives rise to new behavior and phenomena in these gases. For reviews see [39–41].
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The interaction potential VDD of two dipoles with dipole moments d1 = d ê1
and d2 = d ê2 with the same magnitude d and separated by r is given by

VDD(r) =
C
4π

(ê1 · ê2) r 2 − 3 (ê1 · r) (ê2 · r)
r 5

, (2.14)

where C = d 2/ϵ0 for electric dipoles and C = d 2µ0 for magnetic dipoles, with ϵ0
and µ0 being the permittivity and permeability of free space respectively [42]. In
principle there would be an additional term proportional to δ(r), but as we here
will only use this potential for spin polarized fermions it can be disregarded. If
the dipoles are of the same magnitude and aligned along the same direction, i.e.
ê1 = ê2 and d = d1 = d2, then Eq. (2.14) reduces to

VDD(r) =
C
4π

1− 3 cos2 θrd
r 3

, (2.15)

where θrd is the smallest angle between r and d, such that r · d = |r||d| cos θrd.
Fig. 2.6 shows the constituent vectors for the different configurations.

At large distances the dipole-dipole potential goes as r−3 and thus extends much
longer than the normal van der Waals type interactions previously discussed. Due
to this slow decay at large distances, for scattering with the dipole-dipole interac-
tion, other partial waves other than the s-wave also give a significant contribution
to the scattering amplitude. Furthermore, the dipole-dipole interaction does not
just depend on the relative distance, but also on the angles between the dipole
moments. This anisotropy allows the mixing of different partial waves. Thus, the
scattering problem is more complex and one can not substitute the true interaction
potential with a contact pseudopotential [39].

Since the experimental realization of a Bose-Einstein condensate with a significant
dipolar character of 52Cr in 2005 [43], condensates of other atomic species with
large permanent magnetic dipole moments, such as 164Dy [44] and 168Er [45],
have also been realized. Fermi gases with strong dipole-dipole interactions, e.g.
of 167Er [46], have also been reported. Another type of laser-cooled and trapped
gases with dipolar interactions that has recently seen major experimental progress
is gases of polar molecules, where experimental realization has been reported for
e.g. KRb [47], Cs2 [48], RbCs [49, 50], NaK [51] and NaRb [52]. A third possi-
ble candidate for a gas with long-range interactions is to use Rydberg atoms [53].
Dipolar condensates have e.g. been observed forming self-bound droplets [54], a
system that has demonstrated signatures of supersolidity [55–57].
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Figure 2.6: A sketch of the different vectors involved in the dipole-dipole interaction is shown in the upper part
of the figure. The left upper panel shows the dipole field generated by the dipole in the middle. The
middle upper panel depicts a situation where two dipoles point in different directions. In the panel
to the upper right the two dipole moments are pointing in the same direction. The vector r between
the different positions of the dipole moments and the angle θrd between the dipole moments d and
the separation vector r is also shown. In the lower part of the figure the interation potential VDD(r) of
Eq. (2.15) for two dipolar particles with dipole moments pointing in the same direction is shown for three
different anglesΘ between d and the xz axis. Below the so called magical angle arccos 1/

√
3 ≈ 54.7◦

attractive regions are formed.

2.4 Degenerate quantum gases

When cooled down to extremely low temperatures, the quantum statistics of the
particles making up a gas will start to become important. After reaching such low
temperatures, the gas would have properties that differ substantially from a classical
gas, and is therefore referred to as a degenerate quantum gas [58]. Themost striking
example is probably for bosons. In a series of seminal works in 1924-1925 by Bose
and Einstein [59–61], for which translations to English can be found in [62], it
was realized that below a certain critical temperature a gas of ideal and massive
bosonic particles would undergo a transition into a new type of phase, nowadays
well known as a Bose-Einstein condensate. In this phase, a large fraction of the
total number of particles macroscopically occupy a single-particle orbital.

29



The concept of Bose-Einstein condensation can be generalized to interacting sys-
tems, where a priori the single-particle orbitals do not have a direct physical mean-
ing, with the help of the one-particle density matrix [63]. In position representa-
tion, the one-particle density matrix is defined as

ρ1(r, r
′, t) = ⟨Ψ̂†(r′, t)Ψ̂(r, t)⟩, (2.16)

where Ψ̂†(r, t) and Ψ̂(r, t) are the field operators. As ρ1 is an Hermitian matrix, it
can be diagonalized with real, possibly time-dependent, eigenvalues ni(t) [32, 64].
It can then be written as

ρ1(r, r
′, t) =

∑
i

ni(t)χi(r, t)χ∗
i (r

′, t), (2.17)

where the orthonormal eigenfunctions χi, called the natural orbitals, fulfill the
eigenvalue equation∫

ρ1(r, r
′, t)χj(r

′, t)dr′ = nj(t)χj(r, t). (2.18)

These orbitals need not be eigenfunctions to the single-particle part of the Hamil-
tonian, but they will give the orbital with the largest possible occupation, even
in the presence of interactions. The maximum occupation is given by the largest
eigenvalue. In the limit of vanishing interactions, these orbitals reduce to the
eigenstates of the single-particle part of the Hamiltonian. The system is said to be
a simple Bose-Einstein condensate if all eigenvalues ni(t) are of order unity except
one which is of order N [64]. If there are several eigenvalues that are of order N,
the system has condensed into several condensates and is said to be fragmented
[65].

If one uses the natural orbitals in the expansion of the field operators and if we
take the orbital |χ0⟩ to be the macroscopically occupied orbital, it is convenient
to single it out in the form

Ψ̂(r, t) = χ0(r, t)â0 + δΨ̂(r, t), (2.19)

where, due to the asymmetric occupations, the effect of δΨ̂ ≡
∑

i ̸=0 χi(r, t)âi on
the Fock states is negligible compared to the one by Ψ̂0 ≡ χ0(r, t)â0. This form
can then be used as the starting point for a mean-field approximation, which will
be covered in Sec. 3.1 [32].
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The possibility for an interacting bosonic system to form a condensate comes has
statistical and energetical reasons. For classical particles, due to their distinguisha-
bility, many-particle states with most particles in one specific single-particle orbital
are heavily out-numbered compared to the states with a roughly equal distribu-
tion of the occupancies. If it is a system of indistinguishable bosons the states
with macroscopic occupations are instead equally numerous as the states with a
uniform distribution, and thus they are not statistically unfavored. Due to the
symmetric nature of the state, it is also, perhaps counter-intuitively, most likely
energetically favorable for the bosonic system to have all particles in the same nat-
ural orbital [64]. As one of these states with macroscopic occupation is likely to be
the ground state at zero temperature, when lowering the temperature below some
critical temperature Tc the system will start to exhibit properties coming from the
exceptional occupations.

A characteristic property of a condensate is the occurrence of a non-classical mo-
ment of inertia when it is set rotating [64]. The response to rotation is not an
immediate and smooth increase in angular momentum. Instead, one has to ro-
tate the system above a certain rotational frequency for it to pick up a substantial
amount of angular momentum, that keeps increasing in distinct steps at specific
frequencies. Similarly, a condensate rotating in a vessel will usually continue ro-
tating even when the vessel stops, a so called persistent current. These two phe-
nomena can be taken as defining properties of a superfluid [64], a fluid with zero
viscosity, and can be related to the formation of quantized vortices [32, 64], to be
introduced in Sec. 4.3.

Although it has been suggested that Bose-Einstein condensation is the reason for
superfluidity in liquid helium since 1938 [66], it has been difficult to confirm this
by experiments [64]. Due to the advances in atomic cooling and trapping from the
1970’s and onwards it was speculated that a gas of hydrogen atoms would be the
first system to be experimentally confirmed to exhibit Bose-Einstein condensation
[67, 68]. Instead, it turned out to be the alkali atoms that offered the best possibil-
ities. The experimental signal from a gas of 87Rb obtained in 1995 was very clear,
distinct from the normal thermal velocity distribution was a sharp peak coming
from a macroscopic occupation of the zero-momentum state [69]. More of the
history by the pioneers in the field of Bose-Einstein condensates in systems of ul-
tracold alkali atoms can be found in the Nobel lectures from 2001 [70, 71]. More
thorough discussions of the phenomenon of Bose-Einstein condensation and its
consequences, in general and in the special case of ultracold atoms, can be found
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in specialized textbooks on the subject, e.g. [29, 32, 64].

A Bose-Einstein condensate is a consequence of the indistinguishability of the
bosonic particles, and it can be considered a quantum liquid, a system where both
quantum mechanical effects and the quantum statistics of the particles are impor-
tant [64]. Fermionic particles as long as there is no pairing involved, are forbidden
by the Pauli exclusion principle to form a condensate. However, at sufficiently low
temperatures, due to the quantum statistics of the particles, the properties of the
gas will anyway start to deviate from the classical behavior. For an ideal Fermi gas
this can be seen as a consequence of the filling of the single-particle energy levels
according to the Fermi-Dirac distribution, creating a Fermi sea of inert particles
[72].

As most of the optical and magnetical trapping and cooling mechanisms discussed
in Sec. 2.1 do not depend on the particle statistics, it is possible to reach quantum
degeneracy using such techniques also with fermionic isotopes of the atoms. The
first experimental realization of such a degenerate Fermi gas in ultracold atomic
systems was reported in 1999 [73]. Fermi gases have also been realized with weak
attractive interactions, where the particles form very loosely bound pairs, well de-
scribed by the Bardeen-Cooper-Schrieffer theory of superconductivity [74]. Such
ultracold Fermi gases have been used to study the crossover from the loosely bound
pair to a gas of tightly bound dimers forming a Bose-Einstein condensate. For a
review on ultracold fermionic gases see [75].

2.5 Few-particle systems

Magneto-optical traps have also earlier been used for single-atom trapping [76].
However, due to the continuous absorption and emission of photons, the control
of the quantum state of the atom is troublesome. Tomitigate this problem one can
use an optical dipole trap created by a highly focused laser beam, such that only one
atom can fit in the trap. Such a setup was demonstrated in 2001 [77]. Confining
one atom this way does however not allow for the control of the system’s quantum
state in a simple way. For larger numbers of bosons, it has also been difficult to tune
the chemical potential of the system such that the trap contains a pre-determined
number of them, although experiments with as few as 60 bosonic atoms have been
reported [78]. In experiments with optical lattices one can control the filling of the
different sites by altering the lattice parameters [5]. However, in such experiments
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Figure 2.7: A sketch of the microtrap method used to prepare a fermionic few-body system according to [79].
The top part shows the additional microtrap on top of the usual harmonic confinement. The shading
represents the filling of the states according to the Fermi-Dirac distribution, sketched on the left side.
On the right, the microtrap is shown in greater detail, depicting how all the levels are occupied. The
lower part of the figure depicts the spilling mechanism used to prepare the few-body system with a
specific number of atoms. As the large trap is turned off only the particles trapped in the microtrap are
left, as shown in the panel to the left. Adding a linear potential as in the middle panel, the particles
close to the top edge can tunnel out of the microtrap in a controllable way. Removing the linear one is
left with a few-body system, depicted to the right. Adapted after [79, 80].

one then has a lot of small systems next to each other, and possibly also coupled.
This could create problems if one is interested in isolated few-body systems. In
order to also be able to study a single few-particle system using ultracold atoms,
the number of particles in the trapped gas has to be controlledmuchmore precisely
than what most of the setups commonly employed allow.

However, if one is interested in fermionic systems this problem can be overcome.
Here one can use the Pauli exclusion principle to prepare a few-particle system [79].
By superimposing a smaller and narrower dipole trap on top of an ordinary, larger,
trap and cool the gas well below the critical temperature for fermionic degeneracy,
for weakly or non-interacting particles, all the single-particle levels in the smaller
trap will be occupied. Such a situation is shown in the upper portion of Fig. 2.7.
Turning off the larger trap will then leave only the particles in the small dimple
still trapped by the lasers. Now, if a magnetic field that is varying linearly in space
is a applied, one can tilt the trapping potential such that it spills out most of the
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particles left in the trap in a controlled way [79]. A schematic picture of this process
is shown in the lower part of Fig. 2.7. Using such a technique, the deterministic
preparation of few-fermion systems ranging from one to ten particles was reported
in 2011 [79]. Since then, this technique has been used to e.g. study the pairing of
a few fermions with attractive interactions [81], investigating the crossover from
few- to many-body physics [82], create a two-well Hubbard-like system [12] and
realize Heisenberg spin chains [83].

Currently, this technique hasmainly been used for a quasi-one-dimensional fermionic
gas, but extension to higher dimensions is possible. However, there are still exper-
imental challenges in order to be able to control the shape and simultaneously the
number of particles in smaller traps. This scheme could possibly be extended to
be used for bosons as well [84]. One could first fermionize the bosonic particles
by increasing the scattering length, and hence the strength of the interactions, to
a very high value using a Feshbach resonance. The strong repulsive interactions
keep the particles from not being close to each other, creating an artificial exclu-
sion principle and making the bosons behave more like fermions [85]. This has
been done experimentally for two distinguishable fermions [86]. The number of
particles trapped can now be controlled in the same way as for real fermions. Af-
ter the spilling is completed the interaction strength would be ramped down to
recover the bosonic behavior again. However, such a scheme might induce un-
wanted excitations in the system or be difficult to control with enough precision.
Thus, for obtaining isolated general few-body quantum systems using ultracold
atoms there still exists many experimental hurdles to overcome before the theoret-
ical predictions can be tested.
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Chapter 3

Approximate and numerical
methods

Solving the Schrödinger equation for an interacting many-body system is usually
very cumbersome. The interaction term induces direct correlations between the
motion of the different particles, such that the Schrödinger equation can not be
separated. Consequently, many different methods to find approximate solutions
to these problems have been developed over the years. In this chapter the methods
used in this thesis will be briefly introduced.

Sec. 3.1 discusses the method of approximating the effects of interaction in a system
by replacing themwith an averagedmean-field potential. Applied to fermionic sys-
tems and Bose-Einstein condensates, this method leads to the widely usedHartree-
Fock approximation and theGross-Pitaevskii equation respectively. For a fermionic
system the Hartree-Fock state can be the starting point for many-body pertur-
bation theory, where correlations are added to the reference state successively to
different order of the perturbation. The basic concepts for this method will be in-
troduced in Sec. 3.2. In Sec. 3.3 the method of quadratic configuration interaction
will be introduced. This is a method similar to perturbation theory, but where the
corrections are instead ordered by the type of substitutions made compared to the
reference state. Including all correlations leads to the method of exact diagonaliza-
tion, discussed in Sec. 3.3. Using this method the full many-body problem can in
principle be solved exactly, although at a substantial computational cost, limiting
it to only very small systems with moderate interaction strengths. Finally, in order
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to study the dynamical behavior of a quantum system, two methods to perform
time-propagation will be briefly discussed in the last section, Sec. 3.4.

3.1 Mean-field approximation

One of the simplest ways to try to account for the interactions in a system is to
map the interacting problem on single-particle motion in an effective mean-field
potential. Replacing the actual interaction term in the many-body Hamiltonian
Ĥ in Eq. 2.2 with V̂MF, we get a new approximate Hamiltonian ĤMF according to

Ĥ =

N∑
i=1

ĥ0(i) +
∑
i<j

V̂int(i, j) → ĤMF =

N∑
i=1

(
ĥ0(i) + V̂MF(i )

)
︸ ︷︷ ︸

ĥ(i)MF

. (3.1)

Using ĤMF instead of Ĥ, the many-body problem now conveniently turns into
N single-particle problems that are more easily solved. Depending on how the
mean-field potential is constructed and what type of states are considered, this
scheme leads to many methods that have been and are still being widely used, e.g.
Hartree, Hartree-Fock and density functional theory [27, 87–89].

In a dilute system of condensed bosons, as described in Sec. 2.4, the Hartree
mean-field equation takes on a rather simple form. Due to the large number of
particles in the same quantum state, it is possible to derive a classical field equa-
tion that governs the behavior of the system - much like Maxwell’s equations are
a good description of a large number of photons. If the condensate fraction is
large enough, i.e. Ψ̂ in Eq. (2.19) is dominated by Ψ̂0, we can neglect the con-
tribution from the other orbitals and follow the Bogoliubov approximation [32].
This amounts to replacing the field operator Ψ̂(r, t) with the complex function
Ψ0(r, t) =

√
n0 ψ0(r, t) ≈

√
Nψ0(r, t), called the order parameter or conden-

sate wave function. Starting from the time-evolution of Ψ̂ in the Heisenberg pic-
ture, one may obtain a non-linear equation of motion

iℏ
∂

∂t
ψ0(r, t) =

(
ĥ0(r, t) + gN |ψ0(r, t)|2

)
ψ0(r, t) (3.2)

for the macroscopically occupied orbital ψ0 [29, 32, 64]. Here ψ0(r, t) is nor-
malized to unity and g =

∫
Veff(r)dr, which can be expressed in terms of the
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s-wave scattering length a according to g = 4πℏ2a
m . Equation (3.2) is the Gross-

Pitaevskii equation, proposed in 1961 [90, 91], which is valid for a dilute gas for
which na3 ≪ 1 [29], where n is the particle density. It has since then been success-
fully applied to a large variety of experiments involving ultracold atomic systems.
See e.g. the books [29, 32, 64].

As the Gross-Pitaevskii equation is the Hartree equation for condensed bosons,
the corresponding many-body state is given by the simple product state where all
bosons are in the orbital ψ0 [64]. In the second quantized form, this many-body
state is written as

|ΦGP⟩ =
(â†0)

N
√
N !

|0⟩, (3.3)

where â†0 is the bosonic creation operator for the state ψ0. The state in Eq. (3.3) is
usually not an eigenstate to, and will in general also not have the same symmetries
as, the full Hamiltonian. For the product state the energy functional E [Ψ0] =
⟨Ψ0|Ĥ |Ψ0⟩ is given by

E [Ψ0] = N
∫ (

ψ∗
0(r, t)ĥ0(r, t)ψ0(r, t) +

1
2
g (N− 1)|ψ0(r, t)|4

)
dr. (3.4)

Equation (3.2) can also be obtained by taking the functional derivative of Eq. (3.4)
[32], resulting in the difference of the factor 1/2 in front of the interaction terms.
This shows that it is actually not the energy, but instead the chemical potential
µ = ∂E/∂N, that governs the time-evolution of the condensate [32, 64]. This
type of time-evolution is reflecting the reservoir character of the condensate. As
Ψ0 can be seen as the expectation value of Ψ̂, ⟨α| in ⟨α|Ψ̂|α⟩ has to have one
particle less than |α⟩. Thus, if the states time-evolve by a phase factor e−iE(N)t/ℏ

the time-dependence of the order parameter will be determined by the difference
E (N )− E (N− 1) ≈ µ. One can also see that the dependence of the interaction
energy on the particle number in Eq. (3.2) should be N (N− 1). When N is large
and when using the approximation Ψ0 ≈

√
Nψ0, the difference is assumed to be

negligible.

TheHartree state in Eq. (3.3) is obviously not a good approximation for a fermionic
state due to not being antisymmetric. This can be remedied by instead considering
a state of the form of a Slater determinant. Optimizing the orbitals of a single
determinant to give the lowest expectation value of the full Hamiltonian leads to
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the Hartree-Fock equations [27, 87, 88, 92]

(ĥ0 + V̂HF)|φi⟩ = ϵi|φi⟩, (3.5)

where V̂HF is the Hartree-Fock potential. If the solution is expanded as |φi⟩ =∑
n c

(i)
n |ϕn⟩ the matrix elements of the potential are given by

⟨ϕm|V̂HF|ϕn⟩ =
N∑

p=1

(
⟨ϕmφp|V̂int|ϕnφp⟩ − ⟨ϕmφp|V̂int|φpϕn⟩

)
. (3.6)

By solving this self-consistently one optimizes the N first orbitals, but if the num-
ber of basis functions in the expansion of |φi⟩ is larger than the number of parti-
cles one also obtains a set of orbitals that are not used. These extra orbitals, called
virtual orbitals, can be used to add correlations to the reference state with e.g.
many-body perturbation theory.

3.2 Many-body perturbation theory

The Hartree-Fock approximation is uncorrelated, i.e. effects beyond exchange are
said to be correlation effects [92]. A significant amount of work has been done
to develop methods to try to account for these correlations, density functional
theory being a well known example [89]. Another way of systematically adding
these correlations is with many-body perturbation theory.

In perturbation theory one starts with the Schrödinger equation and tries to divide
the Hamiltonian into two parts according to Ĥ = Ĥ0+ Ĥp, where the eigenstates
|Ψ(0)

i ⟩ to the Schrödinger equation for Ĥ0 are known and Ĥp is the perturbation.
The correct energy and eigenstate is then expressed as a sum of the zero order solu-
tion |Ψ(0)

i ⟩ together with corrections in orders of Ĥp. Expanding the corrections
in terms of the eigenstates to Ĥ0 leads to the Rayleigh-Schrödinger type of pertur-
bation theory. We then get a series of equations for the different correction terms
where the next order corrections are expressed in the previous one, such that they
can be calculated systematically to any order. A full derivation of the perturba-
tion expansion can be found in most textbooks on topics involving many-particle
quantum physics, see e.g. [27, 87, 88, 92].

However, for perturbation theory to be useful, the sum of corrections needs to
converge. In order for this to be the case no singularities to the operator Ĥ0+zĤp,
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where z is a complex number, should exist for |z| ≤ 1, i.e. the distance between
the singularity and the unperturbed system is smaller than to the perturbed system
[93]. Furthermore, for practical calculations the perturbation needs to be small
enough such that the number of orders needed to be included for the desired
precision is computationally feasible. In many-particle systems, the single-particle
part can typically be solved easily, either exactly or numerically. The interactions
are however usually too strong to be used directly as the perturbation. One way
to try to come around this problem when dealing with fermionic systems is to
take the Hartree-Fock solution to be the reference state from which we start the
expansion. Thus, the perturbation is taken to be

Ĥp = Ĥ− ĤHF =
∑
n<m

V̂int(n,m)−
∑
n

V̂HF (n). (3.7)

This is motivated by the assumption that the Hartree-Fock approximation has ac-
counted for most of the effects of the interactions already. This type of many-body
perturbation theory is calledMøller-Plesset perturbation theory and was suggested
in 1934 [94] and has been used extensively in e.g. quantum chemistry [87, 88, 92].
This form of the perturbation leads to particularly simple expressions for the en-
ergy corrections. It can also be shown that the Hartree-Fock energy, the expecta-
tion value of the Hartree-Fock solution with respect to the full Hamiltonian Ĥ, is
equivalent to perturbation theory to first order.

The corrections can furthermore be reduced to sums over two-body matrix ele-
ments. The second order energy correction becomes

E (2)
MP =

1
4

occ∑
i,j

vir∑
a,b

|⟨φiφj|V̂int|φaφb⟩ − ⟨φiφj|V̂int|φbφa⟩|2

ϵi + ϵj − ϵa − ϵb
, (3.8)

where the sums over i and j are over the orbitals that are occupied in |Ψ(0)
0 ⟩ and

the sums over a and b are over the unoccupied virtual orbitals, with εk being
the eigenvalue of orbital k in Eq. (3.5). Similarly, higher order corrections can
also be expressed as sums over two-body matrix elements with the Hartree-Fock
orbitals. The equations for all of the terms up to partial fourth orderMøller-Plesset
perturbation theory can be found in Appendix A.

A possible disadvantage of many-body perturbation theory is that it is not varia-
tional. The approximate energy is not guaranteed to be an upper bound of the real
energy eigenvalue and as higher and higher orders are included it usually oscillates

39



around the correct value. However, an advantage of the Rayleigh-Schrödinger
type of perturbation theory, which in some instances can be more desirable than
using a variational method, is that the perturbation theory is size extensive at all
orders. Being size extensive means that the energy scales correctly with the size
of the system [92]. If the energy is not scaling correctly, the method will not in-
clude the same amount of correlations as the system size is changed [88]. Thus, if
one wants to compare systems of different sizes a method that is size extensive is
preferred.

3.3 Exact diagonalization and quadratic configuration in-
teraction

Inmany-body perturbation theory the eigenstates |Ψ⟩ and their energy eigenvalues
E are expanded in orders of the perturbation Ĥp. As higher and higher orders are
considered, states with more and more substitutions of orbitals compared to the
reference state |Ψ0⟩ are included. Alternatively to expanding |Ψ⟩ in terms of Ĥp
one may consider the eigenstate consisting of some certain classes of substitutions
instead. One then uses the substitution operators T̂n

T̂1 =

occ∑
i

vir∑
a

a ai t̂
a
i , T̂2 =

1
4

occ∑
ij

vir∑
ab

a abij t̂
ab
ij , T̂3 =

1
36

occ∑
ijk

vir∑
abc

a abcijk t̂
abc
ijk . . . ,

(3.9)

where n is the number of substitutions, t̂ ab...ij... are elementary substitution operators
moving particles occupying the orbitals i, j, . . . to the unoccupied orbitals a, b, . . .
and a ab...ij... are expansion coefficients. The eigenstate |Ψ⟩ is then assumed to be of
the form

|Ψ⟩ = f (T̂1, T̂2, T̂3, . . . )|Ψ0⟩, (3.10)

where f is some function of the substitution operators in Eq. (3.9). Making suitable
projections by the states |Ψ0⟩, |Ψa

i ⟩, |Ψab
ij ⟩, . . . onto the equation (Ĥ−E )|Ψ⟩ = 0

give a series of coupled equations that can solved in order to obtain E and the
coefficients a. Using a linear function f of the T̂n operators leads to the method of
configuration interaction [87, 88]. The equations for E and the coefficients a can
then be recast into a matrix eigenvalue equation.
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Including all T̂n up to n = N using a linear f gives the so called full configuration
interaction method. All possible substitutions in the single-particle basis set are
then considered. It is then not necessary to order the different states according to
their substitutions as they are all used. Expanding the sought eigenstate in the Fock
states |Φn⟩ according to |Ψ⟩ =

∑
n cn|Φn⟩ gives the matrix eigenvalue problem

⟨Φ0|Ĥ |Φ0⟩ ⟨Φ0|Ĥ |Φ1⟩ ⟨Φ0|Ĥ |Φ2⟩ · · ·
⟨Φ1|Ĥ |Φ0⟩ ⟨Φ1|Ĥ |Φ1⟩ ⟨Φ1|Ĥ |Φ2⟩ · · ·
⟨Φ2|Ĥ |Φ0⟩ ⟨Φ2|Ĥ |Φ1⟩ ⟨Φ2|Ĥ |Φ2⟩ · · ·

...
...

...
. . .



c0
c1
c2
...

 = E


c0
c1
c2
...

 . (3.11)

By diagonalizing this matrix one then obtains the eigenstates and their correspond-
ing energies. This method is commonly referred to as full configuration interac-
tion in quantum chemistry [87, 88], no core shell model in nuclear physics [95],
or, as it is in principle just a diagonalization of the system Hamiltonian in a set of
many-body states, exact diagonalization.

The method of exact diagonalization has some advantages over other methods
for describing a quantum many-body system, such as, as its name suggests, it is
exact. In the case of numerical diagonalization it is exact to the desired numerical
precision, in the subspace that is spanned by the states used. As we are here only
interested in systems with only one-body and two-body operators the different
Fock states can only couple to other states which differ by at most two orbitals.
The resulting matrix will then be rather sparse and this sparseness can be used
to efficiently calculate the low-lying eigenstates with e.g. the Lanczos method
[96, 97]. The precise numerical implementation used in Papers i-iv is described
in more detail in [98].

In principle exact diagonalization allows one to access the whole excitation spec-
trum and all excited states. It is also variational, i.e. the energy obtained for the
ground state is an upper bound for the true ground state energy. Another ad-
vantage is that the method is very general and can be applied to a wide variety of
systems. It can e.g. be used for both fermions and bosons, different types of poten-
tials and different types of interactions or other operators. The major disadvantage
being that the size of the matrix needed to be diagonalized, and thus the compu-
tational complexity, is increasing extremely fast with the number of particles and
orbitals used, limiting the method to be useful only for very small systems.

Similar to the previously discussed many-body perturbation theory, full configu-
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ration interaction is size extensive. However, due to the very fast growth of the
numerical complexity as the basis or system size is increased, onemight be tempted
to truncate the function f = 1+ T̂1+ T̂2+ · · ·+ T̂n at some n < N to get a more
manageable problem. Although it appears to be very similar to perturbation the-
ory and would be a very systematic way of including more and more correlation,
the resulting method will not be size extensive. There exists simple corrections to
make such truncated configuration interaction results approximately size exten-
sive, e.g. Davidson corrections, but these methods have many drawbacks on their
own, such as not giving the correct value even for a two-particle system [88].

In the related method of “coupled clusters” the function f is taken to be an expo-
nential of substitution operators T̂n [92]. This method can be seen as including
all substitutions of a given type to all orders. Such a construction can be shown
to give a size extensive result [92]. A method that can be seen as something in
between truncated configuration interaction and coupled-cluster theory can be
constructed by including only the smallest number of terms needed to make the
results size extensive into the projection equations. This is known as the quadratic
configuration interaction method [99].

Using the Hartree-Fock ground state as the reference state |Ψ0⟩ the correct energy
will be E = EHF + EQCISD where EHF is the Hartree-Fock energy and EQCISD is
the sought-after correction. Including up to double substitutions the projection
equations become

⟨Ψ0|ĤT̂2 |Ψ0⟩ = EQCISD, (3.12)

⟨Ψa
i |(Ĥ− EHF)(T̂1 + T̂2 + T̂1T̂2)|Ψ0⟩ = a ai EQCISD, (3.13)

⟨Ψab
ij |(Ĥ− EHF)(1+ T̂1 + T̂2 + T̂ 2

2 /2)|Ψ0⟩ = a abij EQCISD, (3.14)

where the coefficients a ab...ij... are the ones from Eq. (3.9), and the additional terms
for size extensivity are T̂1T̂2 in Eq. (3.13) and T̂ 2

2 /2 in Eq. (3.14). These equations
are then not linear in the coefficients a such that they can not be written as a matrix
eigenvalue equation. They can however be solved iteratively until self-consistency
is achieved.

Similar to many-body perturbation theory Eqs. (3.12)-(3.14) can be expressed in
terms of two-body matrix elements. Including also triple substitutions is straight-
forward, but as in many-body perturbation theory it might become unfeasible for
larger systems. A common way to incorporate some of the effects of triple substi-
tutions is to treat them only as a perturbation on top of the solution to the full
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problem with single and double substitutions. Here some care must be given to
what terms are included as some have already been considered in Eq. (3.13). The
full equations for quadratic configuration interaction including triple substitutions
perturbations expressed in two-body matrix elements are given in App. B.

3.4 Time-evolution

The dynamical behavior of a quantum system is governed by the time-dependent
Schrödinger equation, Eq. (2.1). If the system is in the state |Ψ(t0)⟩ at time t0,
at a later time t0 + Δt it is in a state |Ψ(t0 + Δt)⟩ = Û (t0,Δt)|Ψ(t0)⟩ where
the time-evolution operator Û (t0,Δt) can be expressed e.g. as a Dyson series
[25], or as an exponential e Ω̂(t0,Δt), where Ω̂ can be written as a series expansion
Ω̂(t0,Δt) =

∑∞
k=1 Ω̂k(t0,Δt) [100, 101]. If the Hamiltonian is independent of

time, the series expansion of Ω̂ is reduced to a single term such that

|Ψ(t0 + Δt)⟩ = e−iĤ Δt/ℏ |Ψ(t0)⟩ (3.15)

which can be easily calculated if one expands the state in eigenvectors to Ĥ. In the
case of a time-dependent Hamiltonian the series expansion is more complicated.
The first term in the expansion of Ω̂ is given by

Ω̂1(t0,Δt) = − i
ℏ

∫ t0+Δt

t0
Ĥ(τ)dτ (3.16)

which is also the only term needed if the Hamiltonian at different times commutes
[25]. In case of a time-dependentHamiltonian that does not commute for different
times, the whole expansion needs to be considered. However, if the time-step is
sufficiently small, higher terms should be negligible and one may approximate
the time-evolution operator with only the first order term Ω̂1 or even take the
Hamiltonian to be constant over the time-interval.

Calculating the operator exponential by diagonalizing the Hamiltonian can be
computationally expensive if the basis used is large. The Lanczos algorithm [96]
can then be used to efficiently create a good approximation. Starting from an ini-
tial state |Ψ⟩, after performing the Lanczos iteration m times, one obtains a set of
m orthogonal states |Λi⟩ that span the Krylov subspace, a space that is also spanned
by the states |Ψ⟩, Ĥ |Ψ⟩, Ĥ 2|Ψ⟩ up to Ĥ m−1|Ψ⟩ [102]. The time-independent
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Hamiltonian ĤK within the Krylov space is also obtained. This Hamiltonian can
be diagonalized, producing an orthonormal set of eigenvectors |Υk⟩ with eigen-
values εk. By projecting the initial state |Ψ(t0)⟩ ≡ |Λ0⟩ onto the eigenvectors
|Υk⟩, propagating the state one time step forward becomes

|Ψ(t0 + Δt)⟩ =
m−1∑
i=0

m−1∑
k=0

|Λi⟩⟨Λi|Υk⟩e−
i
ℏ εkΔt⟨Υk|Λ0⟩, (3.17)

where it is then used that the Hamiltonian is diagonal in |Υk⟩, i.e. ⟨Υk|ĤK |Υl⟩ =
εkδkl. The performance gain here is that the dimension m of the Krylov space can
be taken to be very small compared to the full basis size [102]. This can be made
plausible by considering that the exponential in Eq. (3.15) can be expanded as a
power series

∑
n(−iΔt/ℏ)nĤ n/n! such that when Δt is small only Ĥ n with small

n has any appreciable impact. As m is small the diagonalization of ĤK can be
performed quickly for each time-step. Another advantage of this method is that
the Lanczos algorithm only involves matrix-vector multiplications, an operation
where one can use the sparseness of the matrix to reduce the workload.

We have also considered a different numerical approach for performing time-
propagation. Using the expansion |Ψ(t)⟩ =

∑
n cn(t)|Φn⟩ in the Schrödinger

equation one obtains a set of coupled differential equations for the coefficients
cn(t). There exists many numerical scheme to integrate these coupled differential
equations, e.g. the Runge-Kutta methods [103]. If the Hamiltonian is domi-
nated by a diagonal time-independent part Ĥ0 as compared to a time-dependent,
possibly non-diagonal, part ĤI(t) one may perform this integration efficiently us-
ing the method of exponential time differencing [104]. We then start with the
matrix representation of the Schrödinger equation for the state vector c(t) =
{c0(t), c1(t), . . . }

iℏ
∂

∂t
c(t) = [H0 +HI(t)]c(t), (3.18)

where H0 and HI(t) are the matrix representations of Ĥ0 and ĤI(t) respectively.
Multiplying with the integrating factor e

i
ℏH0t and integrating from t to t+Δt, i.e.

one time-step yields the exact equation

c(t+ Δt) = e−
i
ℏH0Δtc(t)

− i
ℏ
e−

i
ℏH0(t+Δt)

∫ t+Δt

t
e

i
ℏH0(t+τ)HI(t+ τ)c(t+ τ)dτ. (3.19)

44



Typically, the part I(τ) = − i
ℏHI(t + τ)c(t + τ) of the integrand is nicely be-

having in time when dominated by the low-energy states. Such a scenario is com-
mon when, e.g., starting the simulation from the ground state. The numerically
problematic part comes when multiplying with the factor e

i
ℏH0(t+τ), which in-

duces fast oscillations for the high-energy components. However, the integral in
Eq. (3.19) can be solved exactly if I(τ) is approximated by a finite polynomial. This
is the method of exponential time differencing [104]. As I(τ) is nicely behaving,
the polynomial should not require a high degree for a good approximation. In
Sec. 4.4 we will use a method utilizing the approximation

I(τ) ≡
m−1∑
k=0

τ k

k!
bk, (3.20)

and where the coefficients bk are found by a continuous Runge-Kutta method, as
given in [105]. The full expression for propagating a time-step using the method
of Ref. [105] can be found in Appendix C.
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Chapter 4

Finite-size physics with ultracold
atoms

In this chapter the five papers on which this thesis is based on will be given a some-
what more extended introduction together with a summary of the main results.
The focus of these works has been on small droplets of quantum liquids recently
made possible using ultracold atoms, introduced in Chap. 2. In the limit of large
particle numbers, these systems are known to exhibit a wide variety of different
phenomena related to their quantum mechanical nature, such as solitary waves
and quantized vortices. Using the methods outlined in Chap. 3, we have investi-
gated how some of these phenomena are affected by a finite system size and how
this scales with the number of particles.

Section 4.1 will introduce solitary waves which are known to form in nonlinear dif-
ferential equations such as the Gross-Pitaevskii equation. The results from Paper i
about the effects of a finite sized system and how those scale with the number of
particles will also be presented. Moving on to two-dimensional systems, Sec. 4.2
discusses the problem of using a contact-type pseudopotential in exact diagonal-
ization and presents the scheme to handle this which was analyzed in Paper ii.
The well known phenomenon of quantized vortices and their formation in super-
fluid condensates will then be discussed in Sec. 4.3. Here the results from Paper iii
about correlated states during the formation of the first vortex in a finite-size sys-
tem and how this scales with the number of particles will also be summarized.
These correlated states appear to be related to the hysteretic behavior observed in
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the mean-field treatment, leading to the discussion in Sec. 4.4 about the driving of
such a system across the transition for both a finite and infinite system. Vortices
can be found in repulsive fermionic systems as well, drawing many connections
to the quantum Hall effect. This will be introduced in Sec. 4.5 together with the
vortices of a dipolar fermionic droplet found in Paper iv. Finally, shell structure
in fermionic systems and how the anisotropy of the dipole-dipole interaction af-
fects this phenomenon in small droplets, which was analyzed in Paper v, will be
explained in Sec. 4.6.

4.1 Finite-size effects in solitary wave dynamics

In the thermodynamic limit the Gross-Pitaevskii energy functional in many cases
gives the correct ground state energy [106]. The extent of the validity for smaller,
finite, stationary systems has been the topic of several previous investigations, see
e.g. [107–109]. Here we are instead interested in the finite-size effects in the dy-
namical behavior. For this we used solitary wave states as their time-evolution
within the mean-field approximation is very simple, and thus easy to use for
comparison. On the other hand, for a finite system where one would use the
Schrödinger equation to predict the exact many-body dynamics, such states are
not supported. As the particle number is reduced from infinity, there must then
be differences between the two approaches. To quantify these differences, in Pa-
per i we compared the dynamics of a solitary-wave state predicted by the Gross-
Pitaevskii equation to that of a many-body state where all N particles initially are
in the same solitary-wave orbital as in the mean-field calculation, but propagated
in time using the Schrödinger equation.

A solitary wave is a solution ϕ(x, t) to a wave equation that only depends on the
position x and the time t in the combination z = x − vt. It is thus a traveling
wave that does not change its shape as it travels forward with a constant velocity
v. Furthermore, the region of the wavefront should be localized. If a solitary wave
has not changed its shape or velocity after colliding with another solitary wave, it
is said to be a soliton. The linear Schrödinger equation does not support solitary
waves, but the Gross-Pitaevskii equation, Eq. (3.2), supports them as the nonlinear
term compensates the dispersion [110–112]. Solitary waves were first observed in
1834 in water waves in a canal, but have since been found in a large variety of
physical systems [112]. Just a few years after the first realization of a Bose-Einstein
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Figure 4.1: The upper part shows a schematic picture of the one-dimensional ring with bosons interacting via a
contact-type interaction considered in Paper i and how the solitary wave solution becomes sinusoidal
as the radius of the ring is decreased. The black curves show the ring in the plane. Blue curves are the
particle density ρGP for the solitary wave solutions to Eq. (4.1) according to [121]. Lower part shows the
dispersion relation for the mean-field yrast state. The solitary-wave solutions are marked by the solid
green line, which starts at L/N = 0 and ends at the cusp at L/N = 1. The blue-dotted line shows the
continuation of the dispersion relation.

condensate, solitary waves were observed in ultracold atomic systems [113, 114].
For a review of solitary waves and solitons in condensates, see e.g. [115].

With the realization of atomic condensates in ring shaped potentials, e.g. [11,
116–120], one may study solitary waves in a quasi-one-dimensional system with
periodic boundary conditions. The Gross-Pitaevskii equation for a condensate of
N particles of massM interacting with a contact pseudopotential of strength g on
a ring with radius R is

iℏ
∂ψ(θ, t)
∂t

= −ϵ∂
2ψ(θ, t)
∂θ2

+ 2πϵγ|ψ(θ, t)|2ψ(θ, t), (4.1)

where θ is the position along the ring, ϵ = ℏ2/(2MR 2) is the kinetic energy per
particle and γ = g (N−1)/(2πϵ) is the ration between the interaction and kinetic
energy.
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For Eq. (4.1) there are traveling wave solutions [121]. These solutions are given
by the so called Jacobi elliptic functions and the shape will depend on the size of
the ring. The size is characterized by the ratio of the circumference of the ring
Lring = 2πR and the healing length ξ = ℏ/

√
2Mgn of the condensate, where n is

the particle density. In the limit of a large ring, where Lring ≫ ξ, the wavefront
is localized to a specific region on the ring. In the opposite limit, for small rings,
Lring ≪ ξ, the wave is instead sinusoidal. The two different limits of the solution
are illustrated in the upper part of Fig. 4.1. It also turns out that the solitary wave
states are equivalent to the yrast states [122, 123], i.e. the state with the lowest energy
for a given value of the angular momentum. These states can thus be found by
minimizing the energy functional Eq. (3.4) under the constraint of fixed angular
momentum ℓ. The dispersion relation for the ring system is sketched in the lower
part of Fig. 4.1. Solitary waves can also be created by stirring the condensate using
a potential barrier [124].

In Paper i we solved Eq. (4.1) for weak interactions, γ ≪ 1, and angular mo-
mentum per particle ℓ = L/N such that 0 ≤ ℓ ≤ ℏ. The single-particle density
ρGP(θ, t) predicted by the Gross-Pitaevskii equation was found to be

2πρGP(θ, t) = 2π|ψ(θ, t)|2 = 1+ 2
√
ℓ(1− ℓ) cos (θ − ΩGPt), (4.2)

where

ΩGP = [1+ γ(1− 2ℓ)]
ϵ

ℏ
(4.3)

is the angular frequency of rotation of the solitary wave solution. As the inter-
actions are weak, the healing length is long and the ring is thus considered to be
small. Hence, the sinusoidal form of the solution. Similarly, we were also able to
solve the time-evolution of the corresponding full many-body state. The single-
particle density ρ(θ, t) for the finite system is

2πρ(θ, t) = 1+ 2
√
ℓ(1− ℓ)A(t) cos [θ − Ω(t)t] (4.4)

with

A(t) =
[
1− 4ℓ(1− ℓ) sin2

( gt
2πℏ

)](N−1)/2
, (4.5)

Ω(t) =
ϵ

ℏ
+

(N− 1)ω(t)
t

, (4.6)

tan [ω(t)] = (1− 2ℓ) tan
( gt
2πℏ

)
. (4.7)
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Figure 4.2: Time-evolution of the particle density at θ = 0 of a solitary-wave state in a ring potential according to
Eqs. (4.2) and (4.4). Here γ = 0.05 and ℓ = 1/2. In the top panel the collapse of the solitary wave
for finite-size systems is shown for both N = 8 and N = 16 as well as the corresponding mean-field
solution. The two lower panels show revivals of the solitary wave at longer times. Note here that the
unit of time is scaled by a factor of (N − 1). Taken from Paper i where it is Figure 1.

A comparison of the resulting time-evolution of the particle density for a system
withN = 8 orN = 16, ℓ = 1/2 and γ = 0.05 using Eqs. (4.2) and (4.4) is shown
in Fig. 4.2. Although the sinusoidal structure is the same, the finite-size system ex-
periences periodic collapses and revivals of the wavefront in the particle density.
Starting out clearly visible, the wavefront gradually becomes less pronounced until
it completely disappears. However, after some more time the wavefront begins to
appear again. This cycle then repeats forever. Collapses and revivals of a quantum
system are to be expected in the time-evolution of a system with discrete energy
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spectrum and a time-independent Hamiltonian, as has been observed in e.g. sim-
ulations of the Jaynes-Cummings model [125] or experimentally using ultracold
atoms in optical lattices [126, 127].

The specific properties of this system lead to a highly regular periodicity of the col-
lapses and revivals. Examining the expression for the particle densities, we found
a hierarchy of timescales when N is large, but finite, together with γ and ϵ fixed,
as

TGP ≪ τs ≪ TA, (4.8)

separated by a factor
√
N . Here TGP is the time it takes for the wavefront to travel

around the ring once, τs is the time it takes for A(t) to go from its largest value to
half of that, i.e. an estimate for the width of the region where the solitary wave
behavior is present, and TA the time between the revivals. These scalings were also
found to hold for stronger interactions. We can also see that in the limitN → ∞,
with γ and ϵ fixed, A(t) → 1 and Ω(t) → ΩGP, such that the two approaches
agree in the large-N limit.

The parameter regime considered in Paper i should be within reach of current ex-
perimental setups [11, 116–120], although the very low particle number presents a
difficult experimental challenge. If such low numbers could be achieved and the
collapses and revivals are observed, they could together with the hierarchy of the
scaling of the different timescales e.g. be used to give an estimate of the particle
number. The exact solution could also be used to further study the build-up of the
nonlinear term in the Gross-Pitaevskii equation and the scalings found could give
an estimate of how long these nonlinear effects might survive. Additionally, the ex-
act solution could potentially also be analyzed further by e.g. examining its density
matrix and natural orbitals in order to get a better understanding of the connection
and differences between the Schrödinger equation and Gross-Pitaevskii equation
dynamics.

4.2 Renormalization of contact interactions in two dimen-
sions

In Sec. 2.3 it was shown that in the limit of low energy, the scattering is deter-
mined by only one parameter of the scattering potential, the scattering length a.
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One may then replace the true potential with a pseudopotential that will give the
same scattering length but is easier to use in calculations and still get the correct
results. Ultracold atomic systems are usually in the regime of low-energy scatter-
ing and the contact-type pseudopotential in Eq. (2.12) has been successfully used
in many investigations of these systems. There, the pseudopotential can be seen as
an effective interaction where effects of the short-range correlations from the in-
teractions have already been incorporated. This works well when combined with
a mean-field treatment, where only long-wavelength effects are considered [29].

When studying few-particle systems, it is feasible to not just rely upon the mean-
field approximation, but to also utilize the full Schrödinger equation. However,
using the delta function potential directly in the Hamiltonian of the system is
problematic, as was noted already in the scattering problem in Sec. 2.3. It turns
out that in two or three dimensions, the resulting Hamiltonian operator is not
self-adjoint [37] and, as the spectral theorem is then not applicable, one is not
guaranteed to be able to find eigenvectors with real, i.e. physical, energy eigenval-
ues.

There exists a plethora of different ways to try to remedy this problem. As one is
typically only interested in the low-energy behavior, one way is to make a cut-off
in the integrals over all momenta. Another way is to use a well-behaving mod-
ified, regularized, potential. E.g. it turns out that the boundary conditions of
hard spheres, requiring that the wave function is identically zero for relative dis-
tances less than the diameter of the spheres, can be rewritten as a regular contact
interaction [128–130]. This potential,

V (r)(. . . ) =
4πℏ2a
m

δ(r)
∂

∂r
r (. . . ), (4.9)

where the dots indicate that this is an operator that needs to act on a wave function,
can be shown to exactly give the s-wave scattering amplitude in Eq. (2.9) [128, 129].
It can also be shown that such a potential can be extended to a family of regularized
contact pseudopotentials given by

Vreg(r) = − 2πδ(r)
ln (AaΛ)

[
1− ln (AΛr)r

∂

∂r

]
, (4.10)

where Λ is a arbitrary constant for which no observable will depend on and A =
e γ/2 with γ being the Euler-Mascheroni constant [130].
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Regularized potentials have been used to solve few-body systems analytically, e.g.
two and three particles in a harmonic trap [37, 131, 132]. For two particles in a
harmonic trap we can transform the problem to the center-of-mass and relative
motion coordinates. The center-of-mass problem is just a normal harmonic oscil-
lator for which the solutions are well known, but for the relative coordinate r we
have a non-trivial Hamiltonian H reg

rel including the regularized interaction poten-
tial Vreg(r). Expanding the solution in the harmonic oscillator eigenstates together
with the requirement of normalization, one may rewrite the eigenvalue problem
for H reg

rel into the equation

ψ(1/2− E reg
rel/2) = ln (2/a 2), (4.11)

where E reg
rel is the eigenstate energy andψ here is the digamma function [37]. Com-

bined with the center-of-mass system, the total energy is given by

E reg = Ecom + E reg
rel , (4.12)

where Ecom is the energy associated with the center-of-mass system. If the angular
momentum for the relative motion is even, the solution is valid for both two spin-
polarized bosons and a singlet state of two fermions.

Although regularized potentials can be used successfully in analytical treatments,
to use them in numerical calculations, e.g. if one would try to solve the eigen-
value problem by constructing a matrix representation of the Hamiltonian, is not
straightforward [129]. Using basis functions that do not explicitly take into ac-
count the corresponding boundary conditions, the matrix might not be Hermi-
tian [38]. Thus, it is again not guaranteed to give a reasonable result. On the other
hand, using the bare contact potential on a finite basis of well-behaved functions
will produce a Hermitian matrix that can be diagonalized. Here, the problem is
instead that the obtained eigenvalues will not converge as the size of the finite basis
is increased.

In some instances it could still be desirable to be able to use the contact interaction
in exact diagonalizations of few-particle systems, e.g. for its simplicity or for direct
comparisons to mean-field simulations. To this end, in Paper ii we investigated a
scheme where one does not view the coupling constant of a bare delta potential in
the many-body Hamiltonian to be directly given by the scattering length. Instead,
the coupling strength, for the specific model space basis considered, is linked to its
corresponding physical value of the scattering length by comparison of the two-
particle ground state energy in the exact regularized problem, Eq. (4.12), and the
diagonalized value.
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Figure 4.3: The upper left part shows a schematic picture of the system considered in Paper ii, a harmonically
trapped and few-body system with contact type interactions in two dimensions. In the upper right
corner the single-particle spectrum and its relation to the basis size parameter Nb and angular momen-
tum quantum number m is shown. The addition of another oscillator shell to the diagonalization basis
is sketched. The lower part of the figure briefly describes the algorithm for connecting the physical
scattering length parameter a to the diagonalization coupling strength g used in Paper ii.

If one would like to numerically diagonalize a system of N particles in a harmonic
trap with contact interactions with strength g one needs to specify a basis of the
finite-dimensional Hilbert space to be used. The size of this space is characterized
by a parameter Nb and the obtained eigenvalues will then depend on both g and
Nb. The system and the single-particle spectrum together with the basis size pa-
rameter Nb are illustrated in the top part of Fig. 4.3. For such a system we then
say that the coupling strength in this truncated space corresponds to the system
with a scattering length a according to

E diag
GS (N = 2, g,Nb) = E reg

GS(N = 2, a), (4.13)

where E diag
GS is the ground state energy for two particles obtained by the numerical

diagonalization and E reg
GS is the ground state energy of the regularized problem,
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Eq. (4.12). A flow chart of this algorithm is shown in the lower part of Fig. 4.3.

The analysis in Paper ii showed that this scheme does indeed give converging eigen-
values as the basis size is increased. The results are also consistent with the analytical
solutions for two and three particles. It was also determined that the truncation of
the basis can be seen as a cut-off parameter in real space, limiting the resolution of
short-range features. Thus, the method is more suitable for unpolarized fermionic
systems compared to bosonic ones due to the repulsion coming from the Pauli
principle. Finally it was also demonstrated that the convergence persists for larger
particle numbers, validating the results of e.g. Refs. [133, 134] obtained using this
scheme.

4.3 Correlated states during the nucleation of a vortex

One of the peculiar features of Bose-Einstein condensates are the so called quan-
tized vortices, in analogy to the vortex patterns that were found in liquid Helium
[64]. The occurrence of vortices is often associated with the rotation of the super-
fluid. Likewise, such as the critical velocity [135] and the non-classical rotational
inertia [32, 64], the so called Hess-Fairbank effect [136] are consequences of the
superfluid flow. In ultracold atomic systems, such quantized vortices can become
macroscopically observable [137].

As the wave functionΨ is complex valued, one may write it as an amplitude n and
a phase S according to

Ψ({ri}, t) =
√

n({ri}, t)e iS({ri},t), (4.14)

where ri is the position of particle i and t is the time. Inserting this into the
Schrödinger equation, we instead obtain two alternative equations similar to clas-
sical hydrodynamics. For a condensate this becomes particularly simple as one can
do the same reformulation with the macroscopic wave function, which is a single-
particle object, together with the time-dependent Gross-Pitaevskii equation. The
first equation one then obtains is a Bernoulli-type equation that is appropriate
to use when describing a superfluid [137]. The second equation is a continuity
equation

∂n
∂t

+∇ · j = 0 (4.15)
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relating the probability density n = |Ψ|2 to the probability current j, which is
given by

j =
iℏ
2m

(Ψ∇Ψ∗ −Ψ∗∇Ψ) . (4.16)

Applying this to Ψ in the form Eq. (4.14), we immediately get

j(r, t) = n(r, t)
ℏ
m
∇S(r, t) ≡ n(r, t)v(r, t), (4.17)

where we have identified a velocity v = ℏ
m∇S. That the fluid velocity is given by

the gradient of the phase has the consequence that the flow must be irrotational,
i.e. the vorticity ∇× v = 0. This implies that a line integral of the velocity field
over a closed curve is identically zero. Such a line integral is called the circulation.
However, if there are singularities inside the region encircled by the curve, the line
integral need not to be zero. Since the phase is only defined modulo 2π, we get
that the circulation around a singularity is quantized according to∮

C
v · d l = ℏ

m
2πk, (4.18)

where C is the curve and k is an integer. In the region near the singularity, the
velocity goes as 1/r, where r is the distance to the singularity, and in order for
the energy of this solution not to diverge the particle density must vanish at the
center [32]. Thus, the quantized phase-singularity is accompanied by a node in
the density, around which there is a circular flow, forming a quantized vortex.

Early on in the studies of ultracold atomic gases several different ways of creating
quantized vortices were developed. The first reported vortices were created in a
two-component gas using a method of imprinting the phase by a moving laser
[138], driving the transition between the two different components [139]. Later,
vortices were also created by stirring the condensate using a rotating potential.
Such stirring has now been achieved using both optical [140] and magnetic [141]
traps.

The nucleation, stability and dynamical behavior of vortices in ultracold atomic
gases have since been extensively investigated both theoretically and experimen-
tally. See e.g. [137, 142] for reviews. Below a certain rotational frequency of the
system, the configuration with no vortex is found to be the lowest in energy. In-
creasing the rotational frequency to above the critical frequency the configuration
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Figure 4.4: Upper left part shows a schematic picture of the system considered in Paper iii, a harmonically trapped
few-body system with contact type interactions rotating with angular velocity Ω around the z-axis.
Contours of the trapping potential with the different deformations used are shown in the upper right
part of the figure. The lower part sketches the single-particle spectrum and the formation of Landau
levels, and in particular the lowest Landau level used as the basis in the calculation, as the rotation is
increased.

of a vortex with one quantum of circulation becomes the lowest in energy instead.
Thus, for such rotations the vortex is energetically stable. Within the mean-field
approximation this has been found to be valid in both the strong-coupling limit
[143, 144], where the first experiments were performed, as well as in the weakly
interacting regime [145, 146]. Going beyond the mean-field approach, similar re-
sults have also been found when examining the full many-body eigenstates where
the analysis is greatly simplified by the grouping of the single-particle orbitals into
Landau levels, as depicted in the lower portion of Fig. 4.4. Due to the weak in-
teractions it is sufficient to consider the lowest Landau level, within which this
problem is exactly solvable [147–149].

In the experiments where the gas was stirred by a rotating elliptic trap however, the
vortex did not enter the particle cloud at the value where a single vortex is predicted
to become energetically stable. To resolve this discrepancy the whole dynamical
process had to be considered [150–153]. Mean-field studies in the strong-coupling
regime have shown that an elliptic stirring deformation of quadrupolar form, ∝
x 2 − y 2, at some critical rotation resonantly excites a quadrupole mode in the
condensate [150]. If the deformation is larger than a specific value, the quadrupole
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mode becomes unstable. This leads to a so called dynamical instability, meaning
that the system exhibits turbulent and chaotic dynamics [150].

It has been suggested that chaotic mean-field dynamics could be a sign of quantum
entanglement [154]. Indeed, this seems to be the case for the nucleation of vor-
tices by a quadrupolar stirrer. A system consisting of a small, but even, number
of weakly interacting bosons, sketched in the upper left of Fig. 4.4, shows large
differences compared to the mean-field results [155]. Due to the symmetries of the
system, it was found that the system passes through a point during the nucleation
process where the density matrix has two equally large eigenvalues. At this critical
frequency Ωc the ground state is entangled and strongly correlated [156]. There
is however a significant difference in the reported behavior of this system when
the system size is small, N ≤ 20 as in [156, 157], and when the system is large,
N > 160 as in [155]. There has recently been an increasing interest in correlated
macroscopic quantum states, see e.g. [158] for a review. We thus characterized
this system at the critical point for an intermediate range of sizes in Paper iii and
reconcile the different results previously reported.

At the critical point Ωc, most of the weight of the ground state can be found in the
subspace spanned by the Fock states |N− n, n⟩ = |ψ1⟩⊗N−n⊗|ψ2⟩⊗n containing
particles only in the two natural orbitals |ψ1⟩ and |ψ2⟩ with the largest associated
eigenvalues of the density matrix [156]. We constructed a two-mode model and
solved it in the semiclassical approximation similar to [159], giving an energy of
Ẽ = Ẽ0(ϕ) +

f1(ϕ)
2 cos θ +

f2
2 cos

2 θ, where f1 and f2 are terms constructed using
the interaction matrix elements and ϕ and θ are spherical angles characterizing
where on the Bloch sphere the state is found [160]. The minimum was found to
be for ϕ = 0 and, depending on the sign of the quantity f1 , either cos θ = 0 or
cos θ = ±1. This implies that the ground state is either of the form |N/2,N/2⟩
or (|0,N ⟩+ |N, 0⟩) /

√
2 for f1 > 0 or f1 < 0 respectively.

Our numerical analysis in Paper iii confirmed this behavior and we were able to
identify the few-body precursor states to the two different types of states men-
tioned in the previous paragraph, as shown in Fig. 4.5. However, we were not
able to obtain a state on the form (|0,N ⟩+ |N, 0⟩) /

√
2 using only a quadrupole

deformation α(x 2 − y 2). This could however be achieved by adding an addi-
tional quartic potential βr 4. Contour plots of the different potentials used can be
seen in the top right of Fig. 4.4. In addition, we also found that as both f1 and
f2 scale roughly linear with N the behavior predicted in Paper iii becomes more
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Figure 4.5: The energy term f1 in the semi-classical ground state energy for different system sizes. The top part, in
blue, shows the behavior of the system with a small quadrupole deformation of the form α(x̂ 2 − ŷ 2),
and the bottom part, in red, is for a systemwith the same quadrupole deformation together with a small
extra quartic potential of the form βr 4. The squares mark the systems whose expansion coefficients
⟨N − n, n|Ψ⟩ are shown in the insets at the top and bottom. Taken from Paper iii where it is Fig. 2.

pronounced as N is increased. This also means that if N is decreased, the system
starts to deviate from the behavior of the semiclassical solution and it was found
that the ground state starts to resemble the form (|N, 0⟩ + |N− 2, 2⟩ + · · · +
|0,N ⟩)/

√
N/2+ 1, linking together the results of the previous studies [156] and

[155].

As the matrix elements used in the above two-mode model are constructed from
the natural orbitals, they require a diagonalization of the full many-body problem
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to be performed. Therefore it would be desirable if a way to approximate the
orbitals was conceived, giving the model some predictive power. As the mean-
field approximation does not distinguish between even and odd N for this parity-
conserving potential, investigating the effects of a parity-breaking perturbation
and the behavior of a system with N odd is however a straightforward extension.
The addition of a quartic perturbation causes the vortex nucleation to experience
hysteresis and the difference between the mean-field behavior and the full many-
body dynamics will be discussed in Sec. 4.4.

4.4 Hysteresis in vortex nucleation for a deformed trap

When a system experiences hysteresis the current state depends on the history of
the system. A well known example is the response of a ferromagnet to an external
magnetic field. After becoming magnetized, up to a point, the magnetization will
stay pointing in that direction even if the external field is reversed to the opposite
direction. Going back to the first orientation also requires the strength of the
field to reach a certain value before the flip happens. In a bosonic condensate the
persistent currents can be seen as a hysteretic response to rotation [161]. It has been
observed and investigated both experimentally [162] and theoretically [163] for a
condensate in a ring-like potential.

A hysteretic behavior can be explained if the energy landscape as a function of an
order parameter has more than one minimum for some strength of an external
field [161]. This is illustrated in Fig. 4.6 where two cases are considered, either an
energy landscape with one or two local minima. When there is only one minimum
the system will stay there as the field is changed at a slow speed. In the case of two
local minima separated by a barrier between them, the system will instead stay in
the minimum it was in at the beginning even though it is no longer the global
minimum. Only when this minimum ceases to exist will the system jump to the
other. This will be indicated by a structure similar to a swallow tail in the energy
when viewed as a function of the external field.

The phenomenon of hysteresis is more complicated to describe using the full
many-body Schrödinger equation. When doing so one cannot get a simple en-
ergy surface as a function of an order parameter. There might not be eigenstates
corresponding to such configurations [161]. Furthermore, if the change of the
driving field is done very slow, the system should stay in the ground state and only

61



Figure 4.6: Schematic picture of hysteresis when the energy landscape has two local minima. The panels to the
left shows the situation when there is only one local minimum at each value of an external field F. In
the panels to the right the mean-field energy has as region where there are two local minima. The top
panels schematically sketch the mean-field energy E as a function of the order parameter K at three
different values of F, for the both the cases of one and two local minima. Squares and dots indicate
minima and the pentagon indicates the local maximum. In the lower panels the minima and maxima
are shown as a function of F. For the case of two minima the energy exhibit the swallow tail structure,
leading to a hysteretic behavior.

acquire the normal phase factor of time-evolving an eigenstate. In order to facil-
itate the memory effect of the hysteresis, the system is thought to pass through
a very narrow avoided crossing in the many-body energy spectrum as it is driven
through the transition [162].

In Sec. 4.3 we observed two different types of avoided crossings in the forma-
tion of vortices in a rotating Bose-Einstein condensate depending on the shape
of a rotating perturbation. Thus, we here investigate if these different systems
exhibit hysteresis when ramping the rotational frequency up and down through
the avoided crossing. Starting off, we numerically minimize the Gross-Pitaevskii
energy functional, Eq. (3.4), for a fixed value of the order parameter, here the an-
gular momentum per particle L/N. The results are shown in the upper panels
of Fig. 4.7. The energy surface is shown as a function of L/N and the rotational
frequency Ω, obtain through E(Ω) = E0 − ΩL, where E0 is the minimum en-
ergy for zero rotation. For the pure quadrupolar deformation we observe only
one energy minimum for all values of Ω close to the critical frequency Ωc of the
many-body system, defined in the previous section. However, when adding an
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Figure 4.7: The upper panels show the minimum energy surfaces for the two different deformations considered,
as a function of angular momentum and rotational frequency. The dark curve marks the local minima at
each Ω. In the upper right panel the lighter curve marks the local maximum in the region where there
are two local minima. In the middle panels the minimum energy for each value of L/N is shown for
the three values of Ω marked by dashed lines in the upper panels. Squares and circles indicate the local
minima and the pentagon marks the maximum. The lower panel shows as a function of Ω, in relation
to Ωc, the energy of the extreme points.
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additional quartic deformation there appears a region with two energy minima.
The middle panels of Fig. 4.7 show the energy as a function of L/N for the three
rotational frequencies marked by dashed lines in the upper panels. The region
with two minima can clearly be seen for the system with β > 0. We also observe
a difference in the two minima where the energy surface is smooth around the
minima for L/N close to zero, but a very sharp cusp at L/N ≈ 1. In the lower
panel the energy as a function of the external field Ω is shown and we clearly see
the swallow tail structure when adding the quartic deformation.
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A direct comparison of the stationary states of the Gross-Pitaevskii equation in
Fig. 4.7 and the low-lying energy eigenstates for a system withN = 30 can be seen
in Fig. 4.8. Here the mean-field results have been shifted in Ω to fit the many-body
spectrum due to the vortex formation being dependent on the interaction energy,
which will be different compared to the full many-body state. With this shift we
observe a reasonable agreement between the full many-body ground state and the
minimal energy state of the mean-field, despite there being a correlated state the
mean-field equation should not be able to reproduce at Ωc. We can also see that
the minimum at L ≈ N ceases to be a minimum very abruptly. This is the case for
both types of deformations, although for the additional quartic deformation the
mean-field minimum does overshoot the eigenstates angular momentum before
vanishing. The region of the hysteresis loop when β > 0 can be seen to roughly
correspond to the region of the many-body spectrum where the avoided crossings
are much sharper and are described by states on the form (|N, 0⟩+ |0,N ⟩)/

√
2,

shown in the inset of the upper right panel in Fig. 4.8.

As hysteresis is a dynamical phenomenon, we would like to calculate the time-
evolution when driving these systems through the critical points. Such a driving
can be done by ramping up, and down, the rotational frequency past Ωc. All the
time-dependence will then be in the Coriolis term, i.e. the Hamiltonian will be
of the form Ĥ(t) = Ĥ0 − Ω(t)L̂z. The ramping is further assumed to be linear
such that Ω(t) = Ωi+γt, where Ωi is the initial rotational frequency and γ is the
driving speed. We can then get an approximate value of the driving speed needed
to achieve an adiabatic transition from the full many-body solution [156]. The
probability of a transition p0→j from the ground state |Ψ0⟩ to another eigenstate
|Ψj⟩ can be approximated using a perturbative calculation as

p0→j ≤ max

(
αj 0

ωj 0

)2
, (4.19)

where αj 0 = ⟨Ψj|(d |Ψ0⟩/dt) and ωj 0 = Ej−E0 is the difference in energy of the
two eigenstates [164]. The chain rule gives us d |Ψ0⟩/dt = Ω̇d |Ψ0⟩/dΩ, where
Ω̇ is the time-derivative of the rotational frequency, which here is γ. Using the
instantaneous time-independent Schrödinger equation and projecting onto |Ψj⟩
we get αj 0 = Ω̇⟨Ψj|L̂z|Ψ0⟩/ωj 0, such that the driving speed in order to achieve
an adiabatic passage is given by

γadiabatic ≪
ω2
j 0

⟨Ψj|L̂z|Ψ0⟩
≡ η. (4.20)
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The result of Eq. (4.20) when applied to the two systems we here consider is shown
in Fig. 4.9 for three different particle numbers N. We clearly see that when the
crossing starts to be described by the state (|N, 0⟩+ |0,N ⟩)/

√
2, atN > 20 from

Sec. 4.4, the driving of the system has to be done incredibly slow for an adiabatic
sweep. Thus, for large particle numbers and experimentally realistic driving speeds
the system will not stay in the ground state, but instead make a transition to and
follow an excited state on the other side of Ωc. This excited state would have a
different angular momentum compared to the ground state and the time-evolution
of L would show a hysteresis loop.

Performing the time-evolution with the full many-body state is challenging. The
number of orbitals, and thus in the end also the Fock state basis size, needed to
describe the many-body states at the crossing increases rapidly withN. In order to
facilitate the calculation of the time-evolution when driving the system as slow as
η, we instead diagonalize the system at Ωc using the appropriate number of Fock
states from which we then use the 200 lowest energy eigenstates as a basis for the
propagation. This turns out to be adequate for the low-energy spectrum around
Ωc as the crossings we are interested in are these states coupled to each other. Thus,
the Hamiltonian we use can be written as

Ĥ(t) = Ĥsp + V̂int − ΩcL̂z︸ ︷︷ ︸
Ĥ0

−(Ω(t)− Ωc)L̂z︸ ︷︷ ︸
ĤI(t)

, (4.21)
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where Ĥsp is the single-particle part, V̂int is the interactions and L̂z is the an-
gular momentum. The operator Ĥ0 is diagonal in the basis used and all time-
dependence is in ĤI(t). This system can then be propagated using the method
of exponential time differencing discussed in Sec. 3.4. Similarly, the correspond-
ing Gross-Pitaevskii equation can be time-evolved using the same method, but
can directly use the single-particle orbitals making up the Fock states of the full
many-body state.

In Figures 4.10 and 4.11 the time-evolutions of the systems with only quadrupolar
deformation and the one with both quadrupolar and quartic deformations respec-
tively are shown. Here a system ofN = 30 particles is used, three different driving
speeds γ are considered and both the exact dynamics and the mean-field dynamics
is presented. We can see that the system without the quartic deformation can be
made to stay almost entirely in the ground state at the driving speeds predicted by
Eq. (4.20). At similar driving speeds we instead see the separation of the angular
momentum curves when ramping up and when ramping down Ω with the ad-
ditional quartic deformation added. The angular momentum also does not fully
reach N or 0 when ramping up or down respectively, consistent with a transition
to an excited state as predicted by Fig. 4.9. This is also supported by the expec-
tation value of the energy which shows that the system is not in the ground state
after the transition.

Comparing the dynamics of the full many-body state with the corresponding
mean-field time-evolution we observe a surprisingly good agreement for the slow-
est driving speed considered. Perhaps the most prominent difference is the ten-
dency for the Gross-Pitaevskii equation to predict the system to stay in the vortex
state when ramping down the rotation. This can be seen in both the angular mo-
mentum and in the energy expectation value. This is noticeable for both types of
deformations and is likely to be caused by the the very sharp cusp in the energy
surface at that point, as was seen in Fig. 4.7.

In conclusion we have seen that the systems considered in Sec. 4.3 shows hysteresis
only when the quartic deformation is added. This can be traced back to the region
of avoided crossings that are of the cat-like type. In such avoided crossings the
coupling is very strong between the ground state on one side of the transition and
the excited states on the other. The driving can thus not be done adiabatically
for realistic speeds and the angular momentum will trace out a loop when plot-
ted against Ω. These results are similar for both the full many-body simulations
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and the mean-field treatment. The mean-field approximation can however not
describe the correlated states making up these avoided crossings and the energy
surface will not go any lower. In the dynamics study we observe that the mean-
field simulations overestimate the time the system stays in the vortex state when
ramping down, potentially due to the very sharp cusp in the energy surface for
the vortex state. This will then cause the hysteresis loop to appear larger than it
should be and might help explain the discrepancy between simulations and the
experiments in [162].

In order to remove the residual angular momentum after the ramping is done to get
a clearer hysteresis loop, more dissipation could potentially be phenomenologically
included in the simulations. Despite the energy changing by the time-dependent
Hamiltonian, the system can not get rid of enough energy for it to drop down
to the instantaneous ground state. However, such a phenomenological approach
has already been tested in mean-field simulations, but the agreement has so far
not been very good [162, 165]. This study is a bit further along the way in order
to understand the emergence of hysteresis in a quantum mechanical systeme, but
many questions about what happens to these states in the limit of large N remain
to be answered.

4.5 Vortices in fermionic droplets with dipole-dipole inter-
actions

The quantized circulation in a superfluid previously introduced in Sec. 4.3 also
has implications for faster rotation. If one continues to increase the rotational fre-
quency after the vortex has been nucleated, the size or the circulation of the vortex
does not increase. The system only picks up more circulation after another critical
frequency is reached. However, this circulation is in many cases not added to the
existing vortex, but instead a new one is formed. It turns out that in these cases it
is energetically favorable for a condensate to have several singly-quantized vortices
compared to having fewer, but multiply-quantized, vortices [29, 64, 137]. Partic-
ularly, this is the case for a harmonically trapped condensate [144]. The presence
of multiple singly-quantized vortices in a trapped condensates were observed al-
ready in one of the first experiments demonstrating vortices in atomic gases [140].
The decay of a doubly-quantized into two singly-quantized vortices has also been
experimentally observed in harmonically trapped atomic condensates [166].
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Asmore andmore vortices enter the system, they start to arrange in ordered shapes.
For sufficiently high rotations the particle cloud becomes pierced by a lattice of
quantized vortices. Such vortex lattices were first seen in superfluid Helium and
have been experimentally observed in ultracold atomic condensates as well [167].
The existence of vortex lattices in Fermi gases with attractive interactions have also
been experimentally verified [75]. Other examples of attractive fermionic systems
that exhibit vortices include type-II superconductors in magnetic fields, as rotation
and charged particles in magnetic fields give rise to a similar Hamiltonian [168].

At very high rotation of a bosonic condensate there comes a point when the num-
ber of vortices in the system starts to become larger than the number of particles. It
was realized that at this point the system would transition into a new regime where
the mean-field approximation would not be valid anymore [169, 170]. Here, the
system would be described by states that were identified as the bosonic counter-
parts to the ones that show up in the fractional quantum Hall effects of a two-
dimensional electron gas [171, 172]. Such strongly correlated states do not exhibit
Bose-Einstein condensation and some even have anyon statistics, making them
highly interesting in applications such as quantum computing. For more details
about fractional quantum Hall states in rotating bosonic gases see e.g. the reviews
[170, 173].

The regime of very fast rotating ultracold atomic systems has however been difficult
to achieve experimentally, one problem being that the rotation effectively lowers
the harmonic trapping potential and the gas becomes almost untrapped at the
transition. However, the use of an additional quartic trapping potential has been
shown to stabilize the system around these frequencies [174]. Another way that has
been proposed is to try to go around this problem by using artificial gauge fields
[137], i.e. using other processes that also have equivalent effects on the equation
of motion. It has also been suggested to use spin-flips induced by dipole-dipole
interactions to reach the quantum Hall regime [175].

Let us now finally comment on a remarkable similarity between slowly rotating
condensates, and the quantum Hall effect in electron systems. For electrons in
semiconductor devices, the integer quantum Hall effect is also interesting in the
context of finite-size systems. A finite-size system of electrons can be created by
confining the electron gas in all spatial directions. This can be done using e.g.
electrodes or by the shape of the semiconductor itself. In many cases the confin-
ing potential can be approximated by a harmonic trap. Such a system is known
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as a quantum dot [19]. For moderate strengths of the confinement and external
magnetic fields, these quantum dots show a rich electronic structure with a wide
variety of particle densities and spin configurations depending on e.g. the shape of
the dot or the effective interaction strength. At strong magnetic fields, the quan-
tum dot systems show many similarities to the quantum Hall effect in the bulk,
from which many of the concepts can be generalized and utilized for finite-size
systems.

In a quantum dot in a strong, uniform external magnetic field, the spins of the elec-
trons start to align along the direction of the field. Above a certain field strength,
the electrons may become spin polarized. As we here have a system of fermions,
each electron is then occupying a distinct orbital. Here, the most natural single-
particle orbitals to use are the lowest Landau level states, the same orbitals that were
used in Sec. 4.3 to describe vortex formation in a weakly interacting bosonic gas.
The many-body state with the lowest possible total angular momentum L is then
the state where theN particles have occupied the lowest Landau level orbitals with
angular momentum m from 0 up to N− 1. Thus, this state has L = N(N− 1)/2
and is called the maximum density droplet, as it also has the highest possible par-
ticle density [176]. The structure is sketched in the upper right part of Fig. 4.12.
Using transport measurements, the existence of the maximum density droplet in
semiconductor quantum dots has been confirmed [177].

Using ν = N(N−1)/2L as the finite-size version of the Landau level filling factor
from the quantum Hall theory, one sees that the maximum density droplet corre-
sponds to the integer quantum Hall state with unit filling. Due to the form of the
lowest Landau level orbitals, this state has one vortex attached to each particle, a
so called Pauli vortex, coming from the antisymmetry of the fermionic wave func-
tion. By removing these Pauli vortices, one obtains the L = 0 bosonic condensate
state [178]. Thus, the maximum density droplet can be thought of as the fermionic
counterpart to the non-rotating bosonic droplet.

For a quantum dot containing many electrons, increasing the strength of the mag-
netic field further the edge of the maximum density droplet may reconstruct into
ring-like structures outside the droplet core [179–181]. However, for smaller dots,
N ≲ 12, instead a single vortex may form in the center of the electron liquid. This
is a free vortex, as opposed to the Pauli vortices, and the approximate single-particle
structure of this state is shown in the lower right part of Fig. 4.12. Further increas-
ing the magnetic field, successive free vortices enter the particle cloud and arrange
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Figure 4.12: A sketch of the system considered in Paper iv is shown in the upper left part. The trapping potential
is a harmonic oscillator, the fermionic particles interact via their dipole moments and the system is
rotated with angular velocity Ω. In the lower left part the geometry of the dipole moments is shown.
They are all aligned in the same direction, forming an angle Θ with the x-axis in the xz-plane. To the
right the structure of the maximum density droplet many-body state, occupying the N lowest m-states
in the lowest Landau level, is sketched. Below is a schematic picture of the structure of the unit vortex
state which the system transitions into as the rotation is increased.

themselves into clusters and, if the system size and angular momentum grows even
more, a lattice of vortices. Starting from the maximum density droplet and going
up in field strength is thus very similar to starting from the non-rotating bosonic
condensate and increasing the rotational frequency, and these two systems share
much of their behavior. Such analogies exists even though the fermionic droplet
here consists of particles repelling each other, thus not pairing up and forming a
superfluid as in the case of a gas of attractive fermions. For a review of the analo-
gies and the universality of vortex formation in fermionic and bosonic few-body
systems see [168].

Even though the free vortices in quantum Hall droplets have been extensively in-
vestigated theoretically, and the existence of the maximum density droplet state in
quantum dots was experimentally confirmed, detecting these vortices has proven
to be difficult. Typically one has to rely on indirect signals in e.g. transport and
magnetization measurements for these systems. The limited resolution and the
large amount of noise in such measurements have not permitted a clear identifi-
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cation of the vortex states [19]. The realization of few-particle fermionic systems
in ultracold atomic systems [79], as discussed in Sec. 2.5, may provide new or
improved types of measurements on cleaner samples.

However, atoms are charge neutral. This means that they do not interact via the
long-range Coulomb interaction as electrons would do. A short-range interaction,
modeled as a contact-type interaction, would not affect a spin-polarized fermionic
system due to the Pauli principle and could give a different response to rotation.
The use of atoms with large dipole moments, discussed in Sec. 2.3, could provide
long-range interactions when trying to mimic the Coulomb interaction of elec-
trons. Even though the dipole-dipole interaction is not exactly like the Coulomb
interaction, possibly making the comparison to semiconductor quantum dots less
precise, it opens up new possibilities as well. Unlike the Coulomb interaction,
the dipole-dipole interaction can e.g. be made anisotropic. This will break the
rotational symmetry of the system, revealing more of the internal structure, and
possibly affect the rotational response in new ways.

In Paper iv we showed that vortices are indeed possible in rotating dipolar fermionic
droplets, for which the system is sketched in Fig. 4.12. The response to rotation
was found to be very similar to that of electrons in quantum dots in magnetic fields
and rotating few-body bosonic systems with short-range interactions. Tilting the
angle Θ of all dipole moments does not affect the vortices more than that they
are now directly revealed in the particle density, which were not visible when the
system was isotropic. As the local minima are not perfectly zero, in addition we
calculated the probability current. In the current, circular flow around the density
minima can be clearly seen, which is shown in Fig. 4.13. The vorticity is however
not contained to a single point due to the finite size of the system and hence the
circulation is not quantized either. Furthermore, we found that similar to a few
electrons in quantum dots, the vortices are only the ground state for moderate
rotation [168]. Increasing the rotation further, there is a transition to a crystalline
state. Arrays of more vortices have since been found in dipolar fermion droplets
with larger N using density-functional theory calculations [182].

The use of particles interacting with dipole-dipole interactions has also been seen
to be better suitable for realizing fractional quantum Hall states [183]. The long-
range interactions lift energy degeneracies prohibiting these states from become
important when the size of the system is increased. How such fractional quan-
tum Hall states would react to the anisotropy when tilting the dipole moments
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Figure 4.13: Probability current, shown as black arrows, for two and one vortex states. The color gradient from
blue, indicating low values, to red, high values, represents the particle density. Both states are for tilted
dipole moments, θ ≈ 55.6◦. The area shown goes from −4 to 4, in dimensionless units, for both
directions. Taken from Paper iv where it is Fig. 3.

could possibly be an interesting direction to continue the theoretical investigation
presented here.

4.6 Shell structure in fermionic droplets with dipole-dipole
interactions

In a few-body system of identical fermionic particles, the Pauli exclusion principle
plays an important role for the structure of the many-body state. For N non-
interacting particles, the ground state fills up theN single-particle orbitals with the
lowest energy. If the one-particle system possesses some symmetry, these orbitals
will have degeneracies and the density of single-particle states will be high at these
energies. Such a bunching of the energy levels is called a shell. A system with
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Figure 4.14: A sketch of shell structure in a fermionic system. On the left the energy of the orbitals |ϕi⟩ are
shown and their degeneracy is marked by the number of segments of the lines. A splitting of these
degeneracies, in the mean-field picture, can be made by both a deformation of the trap and the
inclusion of interactions, indicated by the dashed blue lines. Due to the underlying symmetry of the
system the mean-field orbital energies are still bunched around certain values of the energy. Such a
bunching is called an energy shell. As the many-particle state is constructed by occupying the lowest
orbitals different scenarios can occur. To the right are sketched the configurations for both N = 5 and
6. For N = 5 the Fermi energy EF lies inside of a shell and for N = 6 EF lies at the upper edge of
a shell. The open shell configuration of the five particle system is thus less stable and more reactive
compared to the system of six particles.

the Fermi energy at the energy of degeneracy will e.g. be less stable as the cost in
energy of add, removing or rearranging the particles is small. The structure of these
energy shells has been used to explain many properties of finite fermionic systems.
Examples are the stability, ionization energy and chemical reactivity of atoms [7],
a consequence of the shells of the atomic orbitals, as well as the increased stability
and separation energy of atomic nuclei for some particular number of nucleons
[184].

However, particles in many-body systems are usually interacting, and the single-
particle orbitals have no direct physical meaning. If the interactions are weak, we
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may utilize a mean-field description to obtain an approximate single-particle prob-
lem in which the orbitals of this new, approximate mean-field potential again can
be used to characterize the system. The solutions to the mean-field equation might
have broken the symmetries of the many-body Hamiltonian, but there might still
be a significant bunching of the energy levels of the orbitals, forming a shell. An-
other way to split up the degenerate orbitals is if the single-particle Hamiltonian
is perturbed directly, e.g. by deforming the trapping potential. The formation of
energy shells is sketched in Fig. 4.14 where the solutions to the single-particle prob-
lem is split up due to interactions or a deformation of the trap, but the bunching
from the underlying symmetry still persists.

Going beyond mean-field methods one may still observe the consequences of the
shell structure. If the system is not very correlated and the single-particle orbital
picture is still valid to some extent, one may determine if system is in an open
or closed shell configuration by examining the excitation energy. The first excited
state would be the configuration where the particle occupying the highest occupied
energy level has been lifted up to the lowest unoccupied level. For an open shell
configuration the difference in energy between the two levels is small. In compar-
ison the energy difference is much larger for a closed shell, where the particle must
be lifted up all the way to the next shell. Further signals of the shell structure can
be found by studying the addition energy µ(N ) = E0(N ) − E0(N − 1) and in
particular the difference in addition energy

Δ2(N ) = µ(N+ 1)− µ(N )

= E0(N+ 1)− 2E0(N ) + E0(N− 1), (4.22)

where E0(N ) is the ground state energy for a system of N particles. Similar to
the first excited state, when the system has a closed shell at the Fermi energy, Δ2
will have a peak, while it will have a low value for open shells. The shell structure
of artificial many-body systems of interacting particles such as clusters of metal
atoms [2, 3] and electrons in semiconductor quantum dots [19] have been studied
extensively using these quantities.

The shell structure of a one-dimensional ultracold atomic system has been exam-
ined experimentally [81]. Inspired by this, in Paper v we investigated how the shell
structure of a system of harmonically trapped dipolar fermionic particles, similar
to the one in Sec. 4.5, behaved and could be altered. This was done by both chang-
ing the trapping potential and making the two-body interactions anisotropic by
tilting the dipoles, forming an angleΘ in the xz direction as sketched in the lower
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left part of Fig. 4.12. As in Paper iv, the dipolar particles are assumed to be in
a quasi-two-dimensional harmonic trapping potential. The trapping potential is
taken to be

V (x, y) =
1
2
mω2

⊥
(
αx2 + α−1y2

)
, (4.23)

where the deformation parameter α determines the ration between the trap fre-
quencies ωx and ωy in the x and y direction respectively, and ω2

⊥ = ωx ωy. Thus,
the area enclosed by an equipotential curve at a certain energy is independent of
α. We here also keep the same trapping frequencies for allN considered, as ωx and
ωy are set by the external laser field in experiments with ultracold atomic system.
When more and more particles are added this means that the particle density is
increasing and hence the interaction energy is also rapidly increasing. This is dif-
ferent from electrons in semiconductor quantum dots where the particle density
often is observed to be constant and the confinement is weakened asN is increased
[19].

Due to the increasing influence of the interactions as the particle number is in-
creased we expect the mean-field approximation to break down for largerN and we
should go beyond Hartree-Fock calculations. In order to study the shell structure
we will however need to simulate systems of different number of particles and also
use larger N than is feasible for full configuration interaction calculations. As was
discussed in Sec. 3.2, when comparing systems of different particle numbers one
would like to utilize a size extensive method in order to assure the same amount of
correlations are included for all N. Thus, we have performed both Møller-Plesset
perturbation theory, as described in Sec. 3.2, and quadratic configuration interac-
tion, introduced in Sec. 3.3, for this system.

The results of both perturbation theory to different orders and quadratic configu-
ration interaction at a moderate interaction strength and a trapping deformation
of α = 1.15 for two different angles Θ of the dipoles are shown in Fig. 4.15. As
N increases the results of the different methods start to diverge. However, par-
tial fourth order perturbation theory and quadratic configuration interaction give
very similar results with an absolute difference in energy less than 0.3% for all
system parameters considered. Already third order perturbation theory gives sim-
ilar qualitative behavior, indicating that quadratic configuration interaction with
single and double substitutions gives a proper description of the system.

The shape of the Δ2 curve in the upper part of Fig. 4.15 indicates that the shell struc-
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Figure 4.15: Addition energy difference Δ2 as a function of N calculated using only Hartree-Fock, Møller-Plesset
perturbation theory to second, third and partial fourth order, as well as quadratic configuration in-
teraction with single and double substitutions. Here α = 1.15 for both panels. Upper panel is for a
system with the dipoles pointing in the direction perpendicular to the plane of the two-dimensional
system. In the lower panel the dipoles are tilted to an angle Θ = 50◦ in the xz plane.

ture is quickly lost even though the dipole-dipole interactions are kept isotropic
when the trap is deformed. However, by tilting the dipoles in the same direction as
the stronger trapping frequency a strong signal of shell structure can be obtained,
with distinct peaks in Δ2, as seen in the lower part of Fig. 4.15. A thorough sweep
of Θ was performed in Paper v and it was found that there is indeed a region in
the parameter space where the result of an anisotropic dipole-dipole interaction
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can counter a trap deformation on the form of Eq. (4.23), restoring a strong shell
structure. This is shown in Fig. 4.16.

At the point where the anisotropy of the interactions counteract the trap deforma-
tion, the system is in a situation where the symmetry breaking of the single-particle
part is, almost, canceled by a two-body part. Thus, the direct correlations of the
interaction, which the mean-field equations cannot describe, determines the ex-
act point where the elongation of the particle density changes direction. While
the state with a particle density elongated in the direction perpendicular to the
direction of stronger trapping is not significantly affected by the anisotropic in-
teractions, the state with the particle density elongated in the same direction as
the dipoles are tilted, reduces its interaction energy. This reduction in interaction
energy will be enhanced, the more correlations are included in the calculation.
There will thus be a region around this point where the mean-field approach un-
derestimates the effect of the interactions and the true many-body ground state is
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approximated by an excited mean-field state.

The starting point for both the Møller-Plesset perturbation theory and quadratic
configuration interaction calculations is here taken as a solution to the Hartree-
Fock equations and thus care must be taken to choose the one that will actually be
the ground state after the corrections have been applied. Converging to other local
minima on the Hartree-Fock energy surface other than the global minimum is not
trivial. In Paper v we had to utilize the method of maximum overlap in order to
guide the self-consistent iterations to the nearest minimum from the initial guess
[185]. This was also supported by the method of direct inversion in the iterative
subspace in order to achieve convergence [186].

Shell structure in dipolar fermionic droplets could have future applications in e.g.
atomtronics devices. These are devices constructed from ultracold atomic systems
intended to be used the same way as ordinary electronics [187]. In a single-electron
transistor made using a semiconductor quantum dot, the shell structure can e.g.
be seen in the transport spectrum [19]. Similar transport experiments have already
been realized in experiments with ultracold atoms [13, 24, 188, 189] and the inclu-
sion of dipole-dipole interactions in particle transport is known to produce new
behavior [190]. Increasing the strength of the interactions will also increase the ef-
fect of the behavior examined in Paper v, but in order to simulate such a system we
would need to include more correlations. One immediate improvement would be
to include the effect of triple substitutions in the quadratic configuration interac-
tion calculations as described in Sec. 3.3 and App. B.This would however require a
more efficient implementation which has not yet been done, or alternatively more
powerful computers, as the complexity grows significantly.
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Chapter 5

Outlook

Research is an evermoving process. Sometimes there is a major breakthrough, but
more often the advances are made in smaller steps. This thesis represents steps
forward in the understanding of some of the many different collective phenomena
that are present in many-body quantum systems of ultracold atomic gases, and also
how these phenomena are altered when the particle number is small. As with most
basic research, the direct implications beyond the immediate increase in knowledge
of the particular system in question is difficult to predict. The hope is however that
it some day can be used as a building block for practical applications such as in
atomtronics devices [191]. Or in the development of new fundamental concepts
and approaches for collective behavior in many-body quantum systems.

Ultracold atomic systems will continue to see progress both experimentally and
in the theoretical understanding, together with new predictions. With the highly
adaptable technology of optical lattices quantum simulations of model systems
from condensed matter physics will continue to be performed [21]. Here it might
help in e.g. uncovering the mechanism for high temperature superconductors, a
question that is still waiting to be answered. Other investigations could focus on
the many exotic topological phases predicted to exist in many-body systems and
the quasiparticles used to describe them. Utilizing the possibility to follow many-
body quantum systems in time using ultracold atoms makes it possible to study
questions like thermalization and opens up the possibility to perform transport
measurements of neutral atoms [24].
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Many of these questions could potentially benefit from the knowledge of the be-
havior of a similar systems, but with a finite number of particles. The separation
of scales as new collective behavior emerges is a very complicated matter. Here,
the recent experimental progress in achieving small particle numbers in systems
of laser-trapped atoms could help us unravel the mysteries. The ability to create
highly tunable artificial few-body systems could also lead to new understandings of
natural finite-sized systems, with the simulation of atomic nuclei as a major goal.
Together with the continued development of numerical methods and algorithms,
as well as the general improvement of computational power, there will arise many
possibilities for new investigations in the region between collections of very few
particles and ones with infinitely many.
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Appendix A

Møller-Plesset perturbation theory

As discussed in Sec. 3.2 using theHartree-Fock ground state as the reference state in
many-body perturbation theory for a fermionic system leads toMøller-Plesset per-
turbation theory [94]. After applying the formulas for Rayleigh-Schrödinger per-
turbation theory to the perturbation in Eq. (3.7) one may use the Slater-Condon
rules [88] to express the energy corrections in terms of two-body matrix elements
of the Hartree-Fock orbitals [192–195]. The first order correction is given by

E (1)
MP = −1

2

occ∑
ij

⟨ij ||ij ⟩, (A.1)

where ⟨ij ||kl ⟩ = ⟨ij |V̂int|kl ⟩−⟨ij |V̂int|lk ⟩ and the sums are over the occupied or-
bitals. To first order, the total energy is the Hartree-Fock energy [88]. Continuing,
the second order correction

E (2)
MP =

1
4

occ∑
ij

vir∑
ab

⟨ij ||ab ⟩aabij (A.2)

with aabij = (ϵi+ ϵj− ϵa− ϵb)−1⟨ab ||ij ⟩ and where the sums over a and b are over
the virtual, unoccupied, orbitals. This is Eq. (3.8). The third order correction can
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similarly be expressed as

E (3)
MP =

1
8

occ∑
ij

vir∑
abcd

(aabij )
∗acdij ⟨ab ||cd ⟩

+
1
8

occ∑
ijkl

vir∑
ab

(aabij )
∗aabkl ⟨kl ||ij ⟩

+
occ∑
ijk

vir∑
abc

(aabij )
∗acbkj ⟨ak ||ic ⟩. (A.3)

At the fourth order, the expressions become more cumbersome. The fourth order
energy correction can be divided into five different terms according to what type
of substitutions they include:

E (4)
MP = E (4)

S + E (4)
D + E (4)

T + E (4)
Q +

(4)
R . (A.4)

Here E (4)
R is the so called renormalization term. For single substitutions s of the

occupied orbital i with the virtual orbital a, we have

E (4)
S =

S∑
s

|us|2

(E0 − Es)
, (A.5)

where S is the set of all single substitutions and

uai = −1
2

occ∑
j

vir∑
bc

⟨ja||bc⟩abcij −
1
2

occ∑
jk

vir∑
b

⟨jk||ib⟩aabjk . (A.6)

The contributions from the double substitutions have a similar expression

E (4)
D =

D∑
t

|ut|2

(E0 − Et)
, (A.7)
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where, for the double substitution t : ij → ab in the setD of all such substitutions,

uabij =
1
2

vir∑
cd

⟨ab||cd⟩acdij +
1
2

occ∑
kl

⟨kl||ij⟩aabkl

−1
2

occ∑
k

vir∑
c

(
⟨kb||jc⟩aacik + ⟨ka||jc⟩acbik

+ ⟨kb||ic⟩aackj + ⟨ka||ic⟩acbkj
)
. (A.8)

The contribution from quadruple substitutions can be expressed as

E (4)
Q =

D∑
t

atyt, (A.9)

where

yabij =
1
4

occ∑
kl

vir∑
cd

⟨kl ||cd⟩
(
aabij a

cd
kl + acdij a

ab
kl

−2
(
aacij a

bd
kl + abdij a

ac
kl

)
− 2

(
aabik a

cd
jl + acdika

ab
jl

)
+ 4

(
aacika

bd
jl + abdik a

ac
jl

))
. (A.10)

It can be shown that the terms E (4)
S , E (4)

D and E (4)
T are proportional to N, i.e.

they are size extensive. This is also true for the total energy corrections at all order
in Møller-Plesset perturbation theory [92]. The renormalization term E (4)

R turns
out to be proportional to N 2, such that there must be a part or the whole of E (4)

Q
cancels it. It was found that it is the first term in Eq. (A.10) which is responsible
for this [194]. By excluding the canceling terms the calculation can be performed
faster. From this one may also see that excluding the term E (4)

T gives an approxi-
mate value of the fourth order energy contribution that is still size extensive [194].

If one would like to include also the triple substitution contributions, an expres-
sion for these can be found in [195]. Going to higher orders is straightforward,
but as already the triple substitutions are difficult to include for computational
reasons, the higher order terms are unlikely to be useful in general. A review of
the development of higher order Møller-Plesset perturbation theory in quantum
chemistry can be found in [93].
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Appendix B

Quadratic configuration
interaction

As mentioned in Sec. 3.3 the quadratic configuration interaction equations can be
expressed using two-body matrix elements [99]. As the reference state |Ψ0⟩, the
Hartree-Fock state is chosen. The energy of the eigenstate |Ψ⟩ is assumed to be
given by E = EHF+EQCISD+ΔET where EHF is the Hartree-Fock energy, EQCISD
is the correlation energy from the single and double substitutions and ΔET is the
energy correction when considering triple substitutions as a perturbation.

Starting with the correlation energy from single and double substitutions, we have

EQCISD =
1
4

occ∑
ij

vir∑
ab

⟨ij ||ab⟩a abij . (B.1)

This equation looks the same as the second order correction in Møller-Plesset per-
turbation theory, Eq. (A.2). However, the coefficients a abij are here obtained by
solving the following equations iteratively

a ai = −[u a
i + v ai ] (ϵa − ϵi)

−1 (B.2)

a abij = −[⟨ab ||ij⟩+ u ab
ij + v abij ]

(
ϵa + ϵb − ϵi − ϵj

)−1
, (B.3)

where ϵi is the corresponding eigenvalue for orbital i. The vectors u and v are given
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by

u a
i = −

occ∑
j

vir∑
b

⟨ja ||ib⟩a bj − 1
2

occ∑
j

vir∑
bc

⟨ja ||bc⟩a bcij − 1
2

occ∑
jk

vir∑
b

⟨jk ||ib⟩a abjk

(B.4)

u ab
ij =

vir∑
c

[
⟨ab ||cj⟩a ci − ⟨ab ||ci⟩a cj

]
+

occ∑
k

[
−⟨kb ||ij⟩a ak + ⟨ka ||ij⟩a bk

]
+

1
2

vir∑
cd

⟨ab ||cd ⟩a cdij +
1
2

occ∑
kl

⟨kl ||ij⟩a abkl

−
occ∑
k

vir∑
c

[
⟨kb ||jc⟩a acik + ⟨ka ||jc⟩a cbik + ⟨kb ||ic⟩a ackj + ⟨ka ||ic⟩a cbkj

]
(B.5)

and

v ai =
1
2

occ∑
jk

vir∑
bc

⟨jk ||bc⟩
[
a bi a

ca
jk + a aj a

cb
ik + 2a bj a

ac
ik

]
(B.6)

v abij =
1
4

occ∑
kl

vir∑
cd

[
a cdij a

ab
kl − 2

(
a acij a

bd
kl + a bdij a

ac
kl

)
−2

(
a abik a

cd
jl + a cdik a

ab
jl

)
+ 4

(
a acik a

bd
jl + a bdik a

ac
jl

)]
, (B.7)

where for the first iteration they are taken to be zero, i.e. u = v = 0.

The effect of the triple-substitutions can be calculated by

ΔET = − 1
36

occ∑
ijk

vir∑
abc

(
2ū abc

ijk + ¯̄u abc
ijk

)
¯̄u abc
ijk

ϵa + ϵb + ϵc − ϵi − ϵj − ϵk
, (B.8)

where

ū abc
ijk = a ai ⟨jk ||bc⟩+ a bi ⟨jk ||ca⟩+ a ci ⟨jk ||ab⟩

+ a aj ⟨ki ||bc⟩+ a bj ⟨ki ||ca⟩+ a cj ⟨ki ||ab⟩

+ a ak ⟨ij ||bc⟩+ a bk ⟨ij ||ca⟩+ a ck⟨ij ||ab⟩ (B.9)
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and

¯̄u abc
ijk =

vir∑
e

[
a aeij ⟨bc ||ek⟩+ a beij ⟨ca ||ek⟩+ a ceij ⟨ab ||ek⟩

+ a aeki ⟨bc ||ej⟩+ a beki ⟨ca ||ej⟩+ a ceki ⟨ab ||ej⟩

+a aejk ⟨bc ||ei⟩+ a bejk ⟨ca ||ei⟩+ a cejk ⟨ab ||ei⟩
]

+
occ∑
m

[
a abim⟨cm ||jk⟩+ a bcim⟨am ||jk⟩+ a caim⟨bm ||jk⟩

+ a abjm ⟨cm ||ki⟩+ a bcjm⟨am ||ki⟩+ a cajm⟨bm ||ki⟩

+a abkm⟨cm ||ij⟩+ a bckm⟨am ||ij⟩+ a cakm⟨bm ||ij⟩
]
. (B.10)
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Appendix C

Exponential time differencing

Continuing from Sec. 3.4 we here present the complete formula for time-propagation
using the method of exponential time differencing from Ref. [105]. After inserting
the approximation Eq. (3.20) into Eq. (3.19) the latter can be solved exactly [104].
One then ends up with the following equation for propagating one time-step for-
ward

c(t+ Δt) = e−
i
ℏH0Δtc(t) +

m∑
k=1

Δt kϕk(Δt)bk−1, (C.1)

where ϕk(Δt) is given by

ϕk(Δt) =
1
Δt k

∫ Δt

0

τ k−1

(k− 1)!
e−

i
ℏH0(Δt−τ)dτ. (C.2)

These can also be obtained via a recursion equation, starting from

ϕ1(Δt) =
(
e−

i
ℏH0Δt − 1

)(
− i
ℏ
H0Δt

)−1
(C.3)

which is easily computed as H0 is diagonal and with subsequent ϕk’s given by

ϕk(Δt) =
(
ϕk−1(Δt)−

1
(k− 1)!

)(
− i
ℏ
H0Δt

)−1
. (C.4)
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Seeing that the integrand I(τ) in Eq. (3.20) is a function of the variable τ , one
might get the coefficients bk by a Taylor expansion. However, using a fourth
order continuous Runge-Kutta scheme to approximate the coefficients might lead
to better properties of the algorithm [105]. Such a scheme leads to the following
equations

c(1) = c(t) k1 = − i
ℏ
HI(t)c(1)

c(2) = e−
i
ℏH0

Δt
2 c(1) k2 = − i

ℏ
HI(t+

Δt
2
)c(2)

+
Δt
2
ϕ1(

Δt
2
)k1

c(3) = e−
i
ℏH0

Δt
2 c(1) k3 = − i

ℏ
HI(t+

Δt
2
)c(3)

+
Δt
2

[
ϕ1(

Δt
2
)− 2ϕ2(

Δt
2
)

]
k1

+ Δtϕ2(
Δt
2
)k2

c(4) = e−
i
ℏH0Δtc(1) k4 = − i

ℏ
HI(t+ Δt)c(4)

+ Δt [ϕ1(Δt)− 2ϕ2(Δt)]k1

+ Δtϕ2(Δt)2k3 (C.5)

and the final equation for performing a step in time

c(t+ Δt) = e−
i
ℏH0Δtc(t)

+ Δt [4ϕ3(Δt)− 3ϕ2(Δt) + ϕ1(Δt)]k1

+ Δt [−4ϕ3(Δt) + 2ϕ2(Δt)] (k2 + k3)

+ Δt [4ϕ3(Δt)− ϕ2(Δt)]k4. (C.6)
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