
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Mechanical behaviour of glassy polymers: experiments and modelling

Engqvist, Jonas

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Engqvist, J. (2016). Mechanical behaviour of glassy polymers: experiments and modelling. Division of Solid
Mechanics.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e4e6b7d0-d8f4-4e61-bc04-02b493115c61


Department of Construction Sciences

Solid Mechanics

ISRN LUTFD2/TFHF-16/1054-SE(1-134)
ISBN: 978-91-7623-816-5 (print)
ISBN: 978-91-7623-817-2 (pdf)

Mechanical behaviour of glassy polymers:

experiments and modelling

Doctoral Dissertation by

Jonas Engqvist

Copyright c⃝ 2016 by Jonas Engqvist
Printed by Media-Tryck AB, Lund, Sweden

For information, adress:
Division of Solid Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden

Homepage: http://www.solid.lth.se





Till Kajsa, mina syskon och mina föräldrar





Preface

This thesis is the result of my Ph.D studies conducted at the Division of Solid Mechanics
at Lund University between summer 2012 and spring 2016.

First and foremost I would like to take the opportunity to thank my main supervisor
Prof. Mathias Wallin without whom I seriously doubt that this thesis would have been
written. Mathias introduced me to the research topic and has been of invaluable assistance
during my scientific work conducted at the division so far. I would also like to direct
a heartfelt thanks to my co-supervisors Assoc. Prof. Stephen Hall and Prof. Matti
Ristinmaa. Without Stephen, it is safe to assume that the experimental part of this thesis
would rapidly been approaching zero. As a consequence of this, the work leading up
to this thesis would had been very different and, I will have to admit, not as fun and
interesting. Our technician Zivorad Zivkovic deserves a special thanks for his hard work
and craftsmanship building the test devices used within this work, and his patience with
the requests (which were not always well defined) during the experimental work. My fellow
Ph.D students and the rest of the staff at the Division of Solid Mechanics all deserve a
big thanks for making the time at the division so joyful. Sara and Johan both deserve a
special thanks for all the interesting and fruitful discussions over the years, as well as all
the fun at, and outside, of work. Finally, I want to thank my family, and especially Kajsa,
for helping me to fill my spare time with things other than the mechanics of polymers.

Lejons, May 1st 2016.

Jonas Engqvist

i





Abstract

This thesis presents experimental investigation and modelling of the mechanical response
of glassy polycarbonate (PC) during deformation. The mechanical response is studied
experimentally over a wide range of length-scales using X-ray scattering techniques and
optical full-field deformation measurement by Digital Image Correlation (DIC). Results
from the experimental work have been used to develop an elasto-viscoplastic model for
glassy polymers. The thesis includes an introductory section on glassy polymers, aspects
of the experimental procedures and a summary of the key aspects of the constitutive
modelling, and four papers.

An experimental method combining X-ray scattering, full-field DIC and tensile loading
has been developed and used within this thesis. Details about the experimental method
are presented in Paper A. By combining the, individually well established, experimental
techniques, the deformation of a material can be studied simultaneously over a wide range
of length-scales, from the macroscopic response down to the behaviour of the molecu-
lar structure. Results from experiments performed using the developed method are also
presented in Paper B. Novel observations of the deformation and reorientation of the mi-
crostructure of glassy PC are presented and related to relevant local macroscopic measures
of deformation.

The experimental results presented in Paper B have been used to develop a constitutive
model for glassy polymers in Paper C. A separate microstructural deformation gradient is
introduced to model the deformation of the polymer network. Moreover, the reorientation
of the microstructure, shown in Paper B, is introduced by an evolution of the directions
of the network chains. By incorporating the evolving reorientation and the deformation of
the microstructure shown by the experiments, the model is able to capture the deformation
at the macroscopic, the mesoscopic and the microscopic levels.

In Paper D, the mechanical behaviour of glassy PC is studied using biaxial tension
loading and DIC. The experiments performed in Paper D show a significant influence of
the multi-axial loading on the localisation behaviour. It is also found that the commonly
used quadratic form of the elastic free energy results in a too stiff initial response during
biaxial loading. To this end, a new format for the volumetric part of the elastic free energy
is proposed which results in a softer response with increasing volumetric deformation. The
proposed format also improves the ability to capture the non-linear, pre-peak behaviour
exhibited by PC.
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Sammanfattning

Polymerer används ofta som konstruktionsmaterial i såväl konsument- som industripro-
dukter. För att säkerställa att produkten klarar av de mekaniska påfrestningar den kan
komma att utsättas för under dess livstid är det viktigt att förstå hur materialet beter sig
under olika belastningsförhållanden. Då polymerer oftast framställs från icke förnyelsebar
råvaror är det även viktigt att förstå, och kunna förutse, dess beteende så att en produkt
utformas så att den är hållbar utan att mer material än nödvändigt förbrukas vid fram-
ställningen. Såväl experimentell verksamhet, som teoretiska modeller är viktiga verktyg
för att öka kunskapen om ett materials beteende.

Inom ramen för detta forskningsprojekt har en testmetod utvecklats vilken kombinerar
avancerade experimentella tekniker för att undersöka det mekaniska beteendet hos material.
Röntgenspridningsmetoder har använts för att studera hur den molekylär strukturen inuti
material deformeras. Samtidigt som röntgenstrålningen används för att mäta molekyler-
nas rörelse mäts deformationen på ytan av provbiten med två kameror kalibrerade för
djupseende. Genom att kombinera olika tekniker kan ett enda experiment ge stora mängder
information, från hur provbiten som helhet beter sig ända ner till hur molekylerna inuti
materialet rör sig. På detta sätt kan deformationen på olika längdskalor i materialet kop-
plas samman. Kunskapen om deformationen på olika nivåer i material kan sedan användas
för att förklara olika deformationsfenomen och även för att etablera noggrannare teoretiska
modeller för att förutse det mekaniska beteendet hos ett material.

Detta forskningsprojekt har fokuserat på polymerer i glastillstånd och främst polykar-
bonat. Experiment utförda med den, inom projektet, utvecklade testmetoden har visat
på hur molekylerna i polykarbonat orienteras under deformation. Denna uppkomna orien-
tering kvarstår efter att provbiten avlastats viket visar att den molekylära strukturen av
material har deformerats permanent. Förutom detta har även experimenten visat på att
molekylerna i materialet sträcks då provbiten belastas. Till skillnad från orienteringen av
molekylstrukturen kvarstår inte förlängningen av molekylerna efter att provbiten avlastats.

Information från experimenten som genomförts med den framtagna metoden har an-
vänts för att utveckla en teoretisk modell för att beskriva och förutse det mekaniska be-
teendet hos polymerer i glastillstånd. Modellen innehåller en evolution av orienteringen av
mikrostrukturen likt den som observerats experimentellt. Genom att inkludera den per-
manenta orienteringen av molekylstrukturen förmår modellen att prediktera det mekaniska
beteendet av polykarbonat från det makroskopiska ner till mikrostrukturen.
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1 Introduction

In an amorphous state, polymer chains are randomly distributed, as opposed to a crystalline
state where the chains are highly ordered, see Figure 1. The lack of order in an amorphous
state implies that the onset of molecular motion can take place at a temperature, the glass
transition temperature, that is lower than the melting point for the crystallites, cf. Cowie
and Arrighi (2007). In a glassy state, i.e., at temperatures lower than the glass transition
temperature, the mobility of the polymer chains is low resulting in a relatively stiff and
brittle material. When the molecular motion increases, as the temperature increases, the
physical properties change and the polymer undergoes a transition from a glassy state,
through a rubber-like state until it melts.

(a) (b)

Figure 1: Schematic of the chain structure of an amorphous polymer (a) and a semi-
crystalline polymer (b).

Glassy polymers are, due to their favourable mechanical and manufacturing properties,
commonly used as, e.g., containers or substitute for glass in the electronics and automotive
industry, machine guards and safety glass. Since glassy polymers, such as polycarbonate
(PC) at room temperature, are used in load carrying structures, they are subjected to
complex loading patterns, which may result in deformation phenomena such as necking,
deformation hardening and evolving anisotropy. The ability to accurately predict these
deformation phenomena is evidently of great importance when simulating the mechanical
response of polymer structures.

To characterise the mechanical behaviour of a material, or to evaluate the mechanical
performance of a product, experimental testing can be conducted. It may, however, be
difficult as well as time consuming to design an experiment to probe the desired property
of the material and to fully understand the outcome of the experiment. To this end,
theoretical modelling can be of great importance to increase the understanding and ability
to predict the behaviour of a structure. In this work, experimental testing has been carried
out to investigate the mechanical behaviour of glassy PC. The experiments involved in-
situ uni-axial tensile tests during X-ray scattering experiments and biaxial tensile tests.
Furthermore, the experimental results have been used to develop a theoretical model to
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describe the mechanical behaviour of glassy polymers.

2 Mechanical characterisation of polymers

To characterise the mechanical behaviour of a material, experimental testing needs to be
conducted. The mechanical response of polymers is often characterised by the macroscopic
response from tension or compression tests where the deformation is measured at the
boundaries of the specimen or locally using strain gauges or extensometers, e.g., Treloar
(1944); G’sell and Jonas (1979); Arruda et al. (1995); Dreistadt et al. (2009); Ames et al.
(2009). The output of such a test is a single force-displacement (or equivalently stress-
strain) curve, see Figure 2.

.....
Displacement

.

Fo
rc

e

Figure 2: Characteristic macroscopic force-displacement curve from a uni-axial tensile test,
using a symmetrically notched polycarbonate specimen shown in Figure 6.

In order for the deformation measured at the boundary of a specimen (or even locally
using, e.g., an extensometer) to be representative, the deformation needs to be homoge-
neous within the gauge section. However, in the presence of inhomogeneous deformation
phenomena, such as necking, barreling or strain localisation, it is evident that these con-
ventional techniques of measuring the deformation are inadequate. Instead, full-field tech-
niques, such as digital image correlation (DIC), must be used. Besides the benefit of being
a full-field method, DIC also possesses the advantage of being a non-contact method, which
reduces the influence of the measurement on the result. In DIC, pixel subsets in a reference
image are correlated to subsets in images of the specimen taken throughout the loading
history. By tracking the motion of these subsets, the displacement field and the corre-
sponding strain field can be constructed at different states of deformation (e.g. Parsons
et al. (2004); Viggiani and Hall (2008); Sutton et al. (2009); Poulain et al. (2013)). When
using images from a single camera for DIC, a two dimensional deformation field can be
reconstructed. By using two cameras calibrated for stereo-vision and so-called 3D-surface
DIC or stereo correlation, it is possible to measure the out-of-plane deformation as well as
the in-plane deformation. This technique involves stereo-correlation of pairs of images of
the specimen surface taken simultaneously by the two cameras. A requirement for DIC is
that the specimen has a random surface texture that is consistent during the deformation.
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If the natural surface of the specimen is too homogeneous, as is the case for PC, a random
speckle pattern can be applied to facilitate the correlation.

Full-field measurements enable deformation to be measured even if the experiment is
performed under inhomogeneous conditions. Therefore, the material behaviour can be
studied under more complex deformations compared to when using boundary measures.
Also, even in what is often regarded as simple test, such as uni-axial tensile tests, inhomo-
geneous deformation phenomena, e.g. strain localisation or necking, are not uncommon.
In this work, DIC has been used to capture the full deformation field to provide both cor-
rect local strain measurements and characterisation of heterogeneous responses, e.g., strain
localisation. Due to the large amount of data acquired using DIC, it is also possible to
identify larger sets of constitutive parameters from fewer tests, performed under multi-axial
and/or inhomogeneous deformation, cf. Hild and Roux (2006); Avril et al. (2008).

Several techniques have been used to achieve multi-axial deformation. Ravi-Chandar
and Ma (2000) achieved multi-axial, homogeneous compression of glassy polymers by using
different confining cylinders. Hu et al. (2003) subjected tube-shaped specimens of epoxy
to multi-axial deformation by combining internal pressure with axial and torsional loads.
Another experimental technique to bring about multi-axial deformation is biaxial tension
loading, e.g., Chevalier et al. (2001); Johlitz and Diebels (2011). As described in Section 3.2
and Paper D, this technique has been utilised within this work to study the mechanical
behaviour of glassy PC during multi-axial deformation and to evaluate the model developed
in Paper C,

While surface DIC is able to capture the deformation at the surface of a specimen, it
is not possible to retrieve information on the deformation within the material using this
technique. To gain knowledge of the internal structure of a material, techniques such as
X-ray or neutron scattering can be used (e.g. Schubach and Heise (1986); Rössle et al.
(1989); Toki et al. (2003)). In this work, X-ray scattering has been used to study the
behaviour of the internal microstructure of glassy PC during deformation.

X-ray scattering is a technique used to examine the microstructure of a material by
measuring the intensity of scattered X-rays at different angles due to the interaction of the
incoming beam with the material. Scattering can, for example, be described in terms of
Bragg’s law,

sin θ =
λ

2d
, (1)

where 2θ is the scattering angle, λ is the wavelength of the X-rays and d is the size of
the repeating structure or, in crystallographic terms, the distance between crystallographic
planes, see Figure 3. As the scattering angle is dependent on the wavelength of the incoming
beam, it is sometimes more convenient to use q, defined as

q =
4π

λ
sin θ, (2)

where q is related to the distance d as

q =
2π

d
. (3)

3



..
.

.

.

.

.

θ

2θ

d

Figure 3: Incoming beams with the incident angle θ, relative to the two crystallographic
planes with the separation d, and the scattering angle 2θ.

In practice, the minimum measurable q-value is governed by the quality of the collima-
tion system whereas the maximum q-value is govern by the level of noise in the signal, cf.
Schnablegger and Singh (2013). The measurable q-range can be altered by changing the
wavelength or, equivalently, the energy of the X-rays or by changing the distance between
the sample and the detector (changing the detectable scattering angles, 2θ); see Figure 4.

2D-detector

Specimen
Incoming beam

Scattered beam

2θ

Figure 4: Principle sketch of the X-ray scattering showing the incoming and scattering
beams, the scattering angle 2θ and the 2D scattering pattern.

The measured scattering intensity is an average value over all objects in the illuminated
sample volume, as the whole sample cross section is investigated. As a consequence of this,
details of e.g., shape, size or orientation will not be visible unless they are representative of
the whole volume, cf. Schnablegger and Singh (2013). Furthermore, to be able to examine
the microstructure using X-ray scattering there must be a difference of electron density
between different parts of the microstructure in the same way that there must exist an
optical contrast between different phases in order for microscopy to work.

It is common to make a distinction between small and wide angle X-ray scattering
(SAXS/WAXS). When using WAXS, the maximum detectable scattering angle is, as the
name suggests, larger than in SAXS. By studying larger angles, the size of the studied
structures decreases, cf. Bragg’s law (1). As indicated in Figure 5, WAXS is typically used
to study the short-range order at the sub-nanometre scale, e.g., intramolecular distances
or intermolecular packing, while SAXS can be used to examine structures with a size in
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the order of 1 nm or larger, e.g. the size of crystallites in semi-crystalline polymers, cf.
Roe (2000).

≈1 nm

SAXS
WAXS
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.

.

Figure 5: Schematic of the length-scales studied using WAXS and SAXS. WAXS is typically
used to study the intramolecular distances while SAXS can be used to study structures
with a size larger than 1 nm, e.g. the size of crystallites in semi-crystalline polymers.

SAXS has been used to examine the microstructure of semi-crystalline polymers such
as polyethylene (e.g. Hubert et al. (2004); Humbert et al. (2009); Farge et al. (2013)).
However, the work done using SAXS to study amorphous polymers, such as polycarbonate,
is very limited. This is most likely a consequence of the assumed lack of long-range order in
amorphous polymers and, thus, the information gained by SAXS is assumed to be limited.
However, Lin and Kramer (1973) showed that the SAXS signal from PC is due to the
structure of the material and not due to defects such as voids. To investigate the influence
of deformation on the long-range order in the microstructure of amorphous PC, this work
contains experiments where SAXS has been used in combination with in-situ loading, i.e.
tensile loading while measuring the X-ray scattering. Although the cause is not yet fully
investigated, the experimental results show a clear change of the SAXS signal due to the
deformation. This is discussed in Paper A.

WAXS has been used to study the microstructure of semi-crystalline (e.g. Brown et al.
(2008); Stoclet et al. (2012); Guo et al. (2015)) and amorphous polymers (e.g. Mitchell
and Windle (1985); Schubach and Heise (1986); Stoclet et al. (2010)). Schubach and Heise
(1986) used WAXS to study the short range order of in PC and they concluded that the
peaks appearing in the WAXS data originated from intra- and intermolecular distances
within the material. They also studied the orientation of the scattering on specimens that
were stretched ex-situ just above the glass transition temperature.

In this thesis, WAXS measurements were performed to study the behaviour of the
structure of glassy PC on a molecular scale during macroscopic deformation. The mea-
surements show a clear reorientation of the chain network, a permanent change in the
distance between neighbouring chains and an elastic response of the molecular segments.
Furthermore, the experiments also revealed a fourth, not previously reported, WAXS peak
within the studied q-range. Even though the origin of this peak is not fully determined,
the behaviour of the scattering suggests that the peak is related to correlation between
closely positioned entities along the polymer chain. A detailed discussion of the results are
presented in Paper B.
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3 Experimental method

During this work, experiments have been performed to characterise the mechanical response
of glassy, amorphous PC. The experiments can be separated into two main categories:
(1) X-ray scattering experiments with simultaneous in-situ uni-axial loading and DIC; (2)
biaxial stretching with DIC. The X-ray scattering experiments were performed at the I911-
SAXS beamline at the synchrotron facility MAX IV Laboratory (Lund University, Sweden)
(Labrador et al. (2013)).

3.1 Material and specimens

The specimens used in the experiments were machined from sheets of transparent, com-
mercial PC. No additional treatment of the material was performed, beside the machining.
To obtain good quality scattering data, the choice of specimen thickness has to be balanced
between the scattering intensity, which increases with thickness, and the absorption, which
attenuates the beam with increasing thickness. The maximum intensity is found when the
thickness, t, is

t =
cos θ

µ(E)
, (4)

where 2θ is the scattering angle and µ(E) is the energy dependent linear absorption coef-
ficient, cf. Roe (2000). Having the absorption coefficient and the X-ray absorption, it is
possible to estimate the current specimen thickness as

t =
ln(I0/IT )

µ(E)
, (5)

where I0/IT is the absorption, I0 is the incident beam intensity and IT is the transmitted
beam intensity. Using µ = 1.328 cm−1 for PC at the energy E = 13.6 keV an optimal
thickness of about 7.5 mm is found (µ is given by tabulated values, cf. The Center for
X-Ray Optics (CXRO) at Lawrence Berkeley National Laboratory (2016)). Because of
practical reasons related to the test device the specimen thickness was chosen as 5 mm
instead of the optimal 7.5 mm. For the experiments with biaxial loading, a sheet thickness
of 2 mm was chosen due to limitations in the grips of the test device.

Two geometries, one symmetrically notched and one asymmetrically notched, were used
during the X-ray scattering experiments, see Figure 6. Both geometries were designed to
focus the deformation into a small area of the specimen in order to have a well defined area
where to measure the X-ray scattering. The asymmetrically notched geometry was chosen
to promote shearing deformation between the notches. For the biaxial tension experiments,
the asymmetrically notched geometry was extended to allow biaxial loading, see Figure 7.

3.2 Macroscopic loading

To investigate the mechanical response of amorphous PC, cold drawing experiments have
been performed where the material was stretched uni-axially and biaxially using the custom
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Figure 6: The geometry of the specimen for uni-axial deformation: (a) symmetrically
notched; (b) asymmetrically notched.
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Figure 7: The dimensions of the specimen used in the biaxial deformation experiments (a)
and the boundary conditions during loading and simulation (b).

built tensile test devices seen in Figure 8. The uni-axial tensile test machine was designed
to fit into the I911-SAXS beamline at MAX IV Laboratory to be able to deform specimens
in-situ while measuring the X-ray scattering. During the scattering experiments, the spec-
imens were loaded using a constant displacement rate of 0.01 mm/min, measured on the
moving machine grips. The low loading rate was chosen to be able to load continuously
during the X-ray scattering measurements without any significant deformation of the spec-
imen during each exposure (using an exposure time of 30 s). As discussed in Paper A, an
alternative approach could have been to use intermittent loading with a higher displace-
ment rate and keeping the deformation fixed during the X-ray measurements. However,
while more time efficient, intermittent loading was found to lead to significant relaxation
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of the material while keeping the deformation fixed. Moreover, when reloading the PC
sample after relaxation beyond the macroscopic force peak, the force-displacement curve
shows a new force peak, see Figure 9. This recurrent force peak and the relaxation makes
it difficult to relate the force-displacement curve from a test with intermittent loading to
a test with monotonic loading. It is also not obvious that the results from the X-ray mea-
surements will be the same from a test with intermittent loading as the measurements will
be made on a relaxed material instead of a material during loading.

Load cell

Moving grips

Specimen

Position sensor

SpecimenMarkers

Moving grips

Uni-axial Biaxial

Figure 8: Custom built tensile test devices used in this thesis.
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Figure 9: Force-displacement curve from a test with intermittent loading using a symmet-
rically notched specimen. The response clearly shows significant relaxation of the material
when the deformation is fixed as well as the recurrent force peak on reload.

To study the strain localisation due to lateral deformation, biaxial loading was per-
formed using a tensile test machine with two loading axis, arranged in a cruciform manner,
see Figure 8. By controlling the motor of each of the two axes independently, the device
allows for individual control of the loading along each axis. The four grips used to clamp
the specimen are designed to move freely in the lateral direction, see Figure 7b. As the
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biaxial test device is designed to allow lateral movement, in order not to subject the speci-
men to unwanted bending moments and to be able to use non-symmetrical specimens, the
compliance of the grips is larger than when using fixed grips. To measure the displace-
ments at the boundary of the specimen, without the compliance of the machine influencing
the result, a camera system that follows the movement of markers placed on the specimen
close to the grips was used, see Figure 8b. The camera system consisted of a 5 megapixel
digital camera that acquired images with an approximate frame rate of 3 frames per sec-
ond and an inhouse developed point-tracking code. The rate control of the machine used
linear displacement sensors measuring the displacement of the two moving grips. These
displacements were also recorded, along with the axial forces, during the experiments.

3.3 Mesoscopic deformation measurement using DIC

The DIC system used in this work involved two 29-Megapixel Prosilica GT6600 (Allied
Vision) digital cameras, calibrated for stereo-vision. The image correlation, as well as the
stereo-calibration, was made using the commercial software Vic-3D 7TM (Correlated Solu-
tions). When calibrating the system for stereo-vision, a series of images were acquired of a
specifically designed calibration pattern in different positions and rotations, cf. Correlated
Solutions (2010).

The displacement fields from the correlation software were used to calculate the dis-
placement gradients using the closest neighbour subsets on a regular pixel grid, with an
in-house developed code. These displacement gradients were, in turn, used to construct
the strain fields. Since the deformation is measured at the surface of the specimen, it
is necessary to approximate the out-of-plane displacement when calculating the displace-
ment gradient. By assuming that the deformation is homogeneous through the thickness
of the specimen, and by introducing a fixed Cartesian coordinate system, the deformation
gradient can be written as

FDIC =


1 + ∂u

∂X
∂u
∂Y

0

∂v
∂X

1 + ∂v
∂Y

0

∂w
∂X

∂w
∂Y

1 + 2w
T0

 , (6)

where u, v and w are the displacements in the x, y and z directions, measured by DIC at the
surface and T0 is the thickness of the undeformed specimen in the z-direction (out-of-plane
direction).

To facilitate the DIC, a random speckle pattern was applied to the surface of the
specimens using a water based paint, see Figure 10a. The water based paint was chosen to
ensure that the paint did not react with, or damage, the polymer. For the SAXS/WAXS
experiments, the area where the X-ray beam hit the specimen was left unpainted to ensure
that the speckle pattern did not affect the result of the measurements. This resulted in
a blank area in the deformation fields, see Figure 10b. The deformation in the blank
area can however be approximated by interpolating the measured data around the blank
area. This was done in order to get the current specimen thickness, which was used to
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normalise the X-ray data in Paper A, B and C. When calculating the current thickness
of the specimens from DIC, care was taken to remove rigid body motion. The thickness,
calculated from DIC, showed good agreement with the specimen thickness calculated from
the X-ray attenuation using (5).

λ11.01 1.69

(a) (b)

Figure 10: (a) Image showing a specimen for uni-axial deformation with a random speckle
pattern applied. (b) A major principle stretch field from DIC. The blank area down the
middle of the specimen is where the X-ray beam hit the specimen during the scattering
experiments.

3.4 Microscopic deformation measured using X-ray scattering

To investigate the behaviour of the microstructure of glassy PC during deformation, small
and wide angle X-ray scattering (SAXS/WAXS) experiments were performed. Due to the
design of the beamline, the SAXS and WAXS measurements were performed at separate
times using the set-ups shown in Figure 11. Scattering experiments were performed a total
of five times, three times using SAXS and two times using WAXS. The SAXS experiments
included an introductory experiment without in-situ DIC. Specimens of amorphous, glassy
PC were deformed in-situ during the scattering measurements, as discussed in Section 3.2.
Both monotonic and cyclic loading were performed during the experiments, using both
geometries shown in Figure 6. At this time, only results from experiments with mono-
tonic loading have been studied in detail. To be able to correlate the behaviour of the
microstructure and the mesoscopic deformation, 3D-surface DIC was used to measure the
deformation at the surface of the specimen in-situ, simultaneously as the scattering was
measured. The three different systems used during the scattering experiments, the uni-
axial loading system, the DIC system and the X-ray scattering were synchronised using a
trigger signal from the X-ray detector.

Even though a distinction is made between SAXS and WAXS, the two techniques are
very similar from the point of performing the measurements and the experimental set-
up. The scattering data were recorded using a bi-directional hybrid pixel X-ray detector
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Figure 11: Experimental set-ups used during the X-ray scattering experiments. The figures
on the left shows the SAXS set-up and on the right is the WAXS set-up. On top is a sketch
of set-ups showing the X-ray beam path, the tensile test machine and the two DIC cameras
(the sketch is not to scale). On the bottom are the actual set-ups inside the hutch of the
beamline.

(Dectris Pilatus 1M). To get the scattering from the sample, the recorded data need to
be corrected. The recorded scattering data were corrected by considering: (1) the trans-
mission of the X-rays estimated from the intensity of the direct beam using a pin-diode
detector placed on the beamstop; (2) the current specimen thickness at each spatial point,
calculated from the out-of-plane deformation measurement from the DIC; (3) air scattering
by subtraction the background scattering. Figure 12a shows a normalised two dimensional
scattering pattern. From such scattering patterns, data profiles were extracted in two ways:
(1) radially averaged azimuthal profiles or (2) radial profiles averaged over an angular sec-
tor, see Figure 12. The azimuthal profile (I(φ) vs φ where φ is the azimuthal angle) can
provide information on the orientation of the scattering at the length scale over which the
averaging is made whereas radial profiles (I(q) vs q) can provide details about the size and
shape of the scattering entities.

In isotropic samples, the scattered intensity is constant around the azimuth. If, on the
other hand, there exists a preferred orientation in the specimen at the studied length-scale,
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Figure 12: (a) X-ray scattering pattern as recorded by a 2D-detector. (c) Radial- (red)
and azimuthal (green) profile averaged over the sectors indicated over the pattern in (b).
The rectangular mesh in the scattering patterns is due to space between the modules of
the Pilatus detector used to collect the scattering data. The gap in the azimuthal profile
is due to the asymmetry of the pattern.

the intensity around the azimuth oscillates or shows peaks at certain angles, see Figure 12c.
The degree of orientation can be described using different measures. One such measure is
the Hermans orientation parameter, defined as

Anano =
3 ⟨cos2 φ⟩ − 1

2
, (7)

where ⟨
cos2 φ

⟩
=

∫ π

0
I(φ) cos2 φ sinφdφ∫ π

0
I(φ) sinφdφ

, (8)

I is the intensity and φ is the azimuthal angle, cf. Roe (2000). The Hermans orientation
parameter takes the value 0 for isotropy and 1 or −0.5 for full orientation parallel to the
vertical and horizontal directions, respectively.

Depending on the scattering technique and prior knowledge of the scattering system,
different approaches are available to analyse the radial profiles. If the radial profile shows
peaks at certain q-values, the corresponding correlation distance can be determined by
fitting probability density functions, e.g., Gaussian, to the data (see e.g. Stoclet et al.
(2011); Guo et al. (2015)). An example of such a fitting is shown in Figure 13 where the
sum of five Gaussian functions is fitted to experimental data. The resulting position of the
peak(s) can then be used to determine the size of the objects through Bragg’s law (1).

To investigate the spatial variation of the scattering, line scans were used to collect
scattering data at points along the vertical centreline of the specimens. As discussed in
Paper A and B, the spatial mapping revealed different behaviour of the scattering from
points with different deformation history. This shows the importance of measuring at dif-
ferent points on the specimen. By mapping the spatial variation of the scattering while
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Figure 13: Analysis of a radial scattering profile by fitting the sum (cyan curve) of five
Gaussian functions to the experimental data (open symbols).

deforming the specimen in-situ, a single experiment provides data from several points with
different deformation histories as opposed to experiments were the scattering is measured
at a single point. As discussed in Paper A, the spatial mapping can reveal unique charac-
teristics in the scattering at other spatial locations than the centre points, which often is
the most natural point to study when measuring at a single point.

By combining spatially resolved X-ray scattering with simultaneous 3D-surface DIC and
in-situ loading, the local deformation, in terms of orientation and strain in the molecular
structure, can be linked to local macroscopic measures of strain, while the specimen is
deformed. This method provides a large amount of data from a single experiment and, by
using the different techniques simultaneously, the coupling of the different measurements
is more reliable, as the uncertainties related to combining data from different experiments
are avoided.

4 Constitutive modelling of glassy polymers

A considerable work has been done over the years to improve the constitutive models used
to predict the mechanical behaviour of glassy polymers. Boyce et al. (1988) proposed a
3-chain model to represent the polymer network using the non-Gaussian statistical model
by Wang and Guth (1952). In the 3-chain model, the polymer network is represented
by three chains, aligned along the sides of a cube. This approach is, however, unable
to accurately distinguish between different states of deformation. To this end, Arruda
and Boyce (Arruda and Boyce (1991, 1993)) proposed the 8-chain model which uses eight
chains to represent the polymer network. In the 8-chain model, which better reproduces
the mechanical response of glassy polymers, the chains extend along the diagonals from the
centre to the corners of a unit cube. Another way of representing the underlying polymer
network is to use a chain orientation distribution function (CODF) to distribute a large
number of chains in space during the deformation. This approach was used by Wu and
van der Giessen (1993) where they used the full-network model by Treloar and Riding
(1979) to model the response of glassy PC under three dimensional loading. The approach
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of using a CODF to distribute the chains was later used by Harrysson et al. (2010), who
proposed a model capable of having a non-affine evolution of the microstructure.

The non-linear response at small strains before the macroscopic force peak, exhibited
by many amorphous polymers, has been addressed in different fashions. Hasan and Boyce
(1995) developed a one-dimension framework for the viscoplastic flow of glassy polymers
based on evolving free volume. The flow theory by Hasan and Boyce, which uses a set of
internal state variables to describe the evolution of the microstructure, predicts a smooth
pre-peak behaviour. Anand and Gurtin (2003) used an approach with one internal variable
related to the local free volume to predict the pre-peak behaviour. Chowdhury et al.
(2008) proposed a split of the variable related to the strain softening in two parts. The
split results in a smoother transition from elastic to viscoplastic response compared to the
original model.

4.1 Kinematic framework for the continuum

Consider a body in the reference configuration Ω0 ∈ R3 at time t0. The motion of this
body from the reference configuration to the current configuration Ω ∈ R3 at time t > t0 is
described by the non-linear mapping χ(X, t), where X denotes the position of a material
particle in Ω0 and the position of the same particle is x = χ(X, t). The deformation
of the body is described by the deformation gradient, F = ∇Xχ with J = det(F ) > 0.
Elasto-viscoplasticity is modelled by assuming that a multiplicative split of the deformation
gradient can be used, i.e.,

F = F eF vp, (9)

where F e defines the elastic deformation and F vp the viscoplastic deformation. The mul-
tiplicative split (9) introduces a stress free intermediate configuration; see Figure 14. The
elastic and viscoplastic deformation gradients can be split into a stretch part and a rota-
tional part using polar decomposition, i.e.,

F e = V eRe and F vp = V vpRvp, (10)

where V e and V vp are the symmetric, positive definite, left elastic and viscoplastic stretch
tensors and Re and Rvp are the orthogonal elastic and viscoplastic rotation tensors. Fol-
lowing Boyce et al. (1988), the elastic rotation tensor will be assumed to be equal to unity,
i.e. Re = 1 . This choice leads to a symmetric elastic deformation gradient, F e = F eT .

The evolution of the viscoplastic deformation is given by

˙F vp = LvpF vp, (11)

where a superposed dot denotes the material time derivative, Lvp is the material viscoplas-
tic velocity gradient which can be additively decomposed as

Lvp = sym(Lvp) + skew(Lvp) = Dvp +W vp, (12)

where Dvp is the symmetric viscoplastic rate of deformation tensor and W vp is the skew-
symmetric viscoplastic spin tensor.
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Figure 14: Illustration of the kinematic description of the continuum and the microstruc-
ture.

4.2 Kinematic framework for the microstructure

The results from the X-ray scattering experiments presented in Paper B show that the de-
formation of the microstructure differs from that measured on the macroscopic scale. Based
on this observation, in Paper C it is assumed that the deformation of the microstructure
can be described by a microstructural deformation gradient, denoted F̄ . This approach
has previously been used by Wallin et al. (2003) and Wallin and Ristinmaa (2005) to
model the deformation of the crystal lattice in metal. Similar to (11), the evolution of the
microstructural deformation is given by

˙̄F = l̄F̄ , (13)

where l̄ is the microstructural velocity gradient. By splitting l̄ into a symmetric and a
skew-symmetric part and following the discussion in Dafalias (2001), the microstructural
velocity gradient is postulated as

l̄ = d̄+ w̄ = ηDp +W p, (14)

where η is a parameter associated with the deformation of the microstructure. If η = 1,
the microstructural deformation follows the macroscopic, viscoplastic deformation while
η ̸= 1 results in a microstructural deformation that differs from the macroscopic since l̄
will differ from Lvp.

The model in Paper C also includes a permanent reorientation of the microstructure by
introducing a set of unit vectors, ē, describing the orientation of the microstructure. The
director vectors, ē, are obtained by mapping a set of vectors in the reference configuration,
e0, to the intermediate configuration using F̄ , i.e.,

ē =
F̄ e0

∥F̄ e0∥
. (15)

This reorientation of the microstructure is justified by the experimental results in Paper
B, which clearly show a permanent reorientation of the molecule segments.
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4.3 Thermodynamic framework

The thermodynamic framework can be used to derive constitutive relations. In this work,
a hyperelastic format is used. The hyperelastic format implies the existence of a potential,
i.e., the Helmholtz free energy ψ, which is a function of variables that characterise the
system. These variables are defined as state variables, which must be chosen with some
care since the choice will dictate which features of the system that will be modelled.

By fulfilling the dissipation inequality, it is ensured that a model obeys the second law of
thermodynamics, which should be fulfilled for a physically sound model. Using isothermal
conditions, the dissipation inequality can be formulated as

D = τ : d− ψ̇ ≥ 0, (16)

where ψ is the Helmholtz free energy per unit volume in the reference configuration, τ is
the Kirchhoff stress and d is the symmetric part of the spatial velocity gradient, l = Ḟ F−1.
In Paper C, the Helmholtz free energy is split into an elastic part, ψe and an inelastic part,
ψie, i.e.,

ψ(Ce, C̄) = ψe(Ce) + ψie(C̄), (17)

where Ce and C̄ are the elastic and microstructural right Cauchy-Green tensors respec-
tively defined as

Ce = F eTF e and C̄ = F̄
T
F̄ , (18)

which are used as state variables that characterise the deformation of the system.

4.4 Elasticity

The initial response of the material is assumed to be isotropic and any resulting anisotropy
is assumed to be a consequence of permanent reorientation of the microstructure, thus
elastic anisotropy is neglected. Furthermore, a decoupled volumetric-isochoric format of
the elastic response is used, i.e.,

ψe = ψe,vol + ψe,iso. (19)

Through the experiments in Paper D, it was found that the quadratic form of ψe commonly
used to model the elastic response of glassy polymers, results in a too stiff initial response
when the material is loaded in biaxial tension. To this end, a format of the volumetric
part of the elastic free energy, that results in a softer response with increasing volumetric
deformation, was chosen, i.e.,

ψe,vol =
K1

2
(ln Je)2 +K2 arctan(β(J

e − 1))(Je − 1)− K2

2β
ln
(
(β(Je − 1))2 + 1

)
, (20)

where K1, K2 and β are model parameters and Je = det(F e). To get the correct initial
response, K2 is defined as K2 =

K−K1

β
where K is the initial bulk modulus. In addition to

an improved initial stiffness, the proposed format of the elastic free energy also improves
the behaviour around the macroscopic force peak, see Figure 15.
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Figure 15: Comparison of the initial macroscopic response during biaxial loading from the
experiment, the model using the proposed volumetric part of the elastic free energy in (20)
and the model using a quadratic form of the elastic free energy. The dashed lines show the
initial slope of the curves.

4.5 Viscoplasticity

The polymer network is modelled using the inelastic part of the Helmholtz free energy, ψie

in (17), from non-Gaussian statistical mechanics. Each chain in the network is modelled as
an ideal free chain, assumed to consist of N rigid segments of equal length l, i.e., the total
contour length, L, is L = Nl. The force, acting on the chain is related to the stretch of the
chain, λ̄ = r

r0
, where r is the current end-to-end distance and r0 is the end-to-end distance

of the unstrained chain. Each free chain can be described by a random walk, neglecting
any interactions between the segments, leading to r0 =

√
Nl. As the chain becomes fully

extended, the end-to-end distance approaches the contour length, L, and the chain stretch
approaches the limit stretch λ̄ =

√
N . The deformation of the chain network is taken as

the orientation average of the stretch of the chains therein. By using the m-root average
operator, the network stretch is calculated as

λNW = m

√
1

4π

∫
U2

[λ̄m]dA, (21)

where m > 0 and U2 is the unit sphere, cf. Miehe et al. (2004). An alternative kinematic
variable is the relative stretch, λr, defined as

λr =
λNW

√
N
, (22)

approaching unity as the network is fully extended.
Since each chain is assumed to be ideal, thus rotations about the bonds are considered

to be unrestricted, the internal energy of the chain is the same for all conformations and
the Helmholtz free energy is determined by the entropy term. It is further assumed that
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the entropy of the network is equal to the sum of the entropies of the individual chains,
i.e., the inelastic free energy is

ψie = nψchain, (23)

where n is the number of chains in the network. The free energy of one chain, ψchain, is,
following e.g. Treloar (1975), taken as

ψchain = kNθ

(
λrL−1(λr) + ln

L−1(λr)

sinhL−1(λr)

)
− ψ0, (24)

where θ is the absolute temperature, k is the Boltzmann constant, ψ0 is an arbitrary
constant and L−1 is the inverse of the Langevin function.

5 Summary

Through the course of the work resulting in this thesis, an experimental method has been
developed that combines X-ray scattering with simultaneous in-situ tensile loading and
full-field deformation measurement using DIC. The developed method has been used to
investigate the deformation of glassy PC over a wide range of length-scales. The ex-
periments have resulted in novel observations on the correlation of the evolution of the
molecular structure and the relevant local macroscopic measures of strain. Furthermore,
biaxial tension experiments of glassy PC have been performed with 3D-surface DIC mea-
surements. The experiments, in comparison with the model, revealed that the commonly
used quadratic form of the elastic free energy results in a too stiff initial response as the
material is deformed biaxially.

The motivation for performing the experiments has been based on the constitutive
modelling of glassy polymers and the ambition of developing a model based on a sound
experimental foundation. Based on the experimental results, a model that includes evolv-
ing directions of the idealised chain network and a microstructural deformation gradient
has been developed. The model shows good agreement with the experimental data for
the macroscopic force-displacement response, the local mesoscopic deformation in terms of
strain fields and evolving orientation of the network. On the basis of this thesis it can be
concluded that experiments performed using advanced experimental techniques, tradition-
ally used by chemists and physicists, can provide important information when developing
macroscopic constitutive models.

6 Future work

It is evident that much more work remains to be done to fully understand, and to fully
be able to predict, the mechanical behaviour of glassy polycarbonate. To gain a more
profound understanding of the link between micro- and macroscopic deformation, in-situ
experiments combing multiple techniques such as X-ray or neutron scattering, full-field
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deformation measurements and macroscopic deformation could be utilized to a greater
extent.

In the presented work, the spatial variation of the scattering has been investigated by
measuring at fixed spatial positions on the specimens. It would be desirable to instead
follow the same material points during deformation. This, however, will require closed
loop control where real time DIC controls the translation stage on the beamline, which
positions the beam on the specimen.

The current work does not consider several important effects, such as temperature and
strain rate dependence. By taking advantage of modern synchrotron facilities that allow
for shorter exposure times, it will be possible to increase the loading rate without having
to stop the loading while collecting the scattering data. Even without measuring the
scattering, it would be of interest to include DIC to a greater extent when investigating
the temperature and rate dependence.

The model parameters used in Paper C and Paper D (except the elastic parameters E
and ν and the microscopic parameters η) have been found by fitting the model to macro-
scopic experimental data from uni-axial and plane strain compression tests with assumed
homogeneous deformation. Since the assumption of homogeneous deformation may be
questioned, a more appealing method of finding the parameters would be to minimize the
deviation between deformation fields acquired using DIC and the model, cf. Hild and Roux
(2006); Avril et al. (2008).

7 Summary of the papers

Paper A: In Paper A, an experimental method to simultaneously investigate the behaviour
of (polymeric) materials over a wide range of length-scales by combining X-ray scattering
with in-situ digital image correlation (DIC) and tensile loading is presented. The method
is applied to experiments on specimens of amorphous, glassy polycarbonate. Using the
presented method, the deformation is measured in-situ, simultaneously across different
scales from the macroscopic deformation, measured using sensors on the tensile machine, to
the full-field mesoscopic deformation, measured using DIC, down to the deformation of the
nano-scale structure, studied using small and wide angle X-ray scattering (SAXS/WAXS).
The evolution of the microstructure, with respect to both load level and spatial position, is
given by measuring the X-ray scattering at several spatial points during continuous loading.
By using spatial mapping of the scattering, characteristics in the scattering are observed
that would not be seen when only measuring at the centre point of the specimen or when
measuring on a large area of the specimen, e.g. wide beam SAXS/WAXS. The SAXS data
show an orientation of the microstructure, in the SAXS region, follows the direction of
the mesoscopic deformation, measured with DIC. Studying the intensities of radial profiles
shows some elastic recovery in the SAXS data, while the scattering intensities remain
unchanged after unload in WAXS. The azimuthal profiles from SAXS also show an elastic
rebound of the orientation after unload. This indicates that the elastic recovery of the
deformation after unload is due to reversible mechanisms in the SAXS range, while residual
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deformation is mostly due to changes in the intermolecular structure of the material.
Paper B: In Paper B, the deformation of amorphous, glassy polycarbonate is char-

acterised over a wide range of length-scales using tensile loading, DIC and WAXS with
the method presented in Paper A. Novel observations of the evolution of the molecular
structure, as the specimen deforms, linked to local macroscopic measures of deformation
are shown. By measuring the scattering while deforming the specimen, a fourth, not previ-
ously reported WAXS peak is observed. Strains and evolving anisotropy are observed, and
quantified, at different length scales identified from the WAXS measurements connected to
inter- and intra-molecular structures. After unloading the specimen to zero macroscopic
force, the inter-molecular structures show permanent deformations in the form of unrecov-
erable strains and reorientations. The intra-molecular structure, i.e. the chain segments,
shows recoverable strains and unrecoverable reorientations after unload.

Paper C: A constitutive model for amorphous glassy polymers is developed in Pa-
per C, motivated by the experimental results presented in Paper B. The model utilises a
microstructural deformation gradient to incorporate the experimentally obtained deforma-
tion, and evolving orientation, of the microstructure. Using this approach, the model is able
to accurately predict the deformation of glassy polycarbonate over a wide range of length-
scales, from the macroscopic response down to the deformation of the microstructure. The
proposed model is evaluated by comparing the numerical response to experimental results
from an inhomogeneous cold drawing experiment of glassy polycarbonate, presented in
Paper B. The simulated response is compared to experimental data of the macroscopic
response, the mesoscopic deformation measured using DIC and the microscopic response
measured using X-ray scattering. The model shows good agreement with the experimental
data throughout the studied length scales.

Paper D: In Paper D, the mechanical behaviour of glassy polycarbonate is studied
during biaxial tension loading. The biaxial loading is found to have a significant influ-
ence on the localisation behaviour, captured using DIC. By comparing the constitutive
model developed in Paper C to the experimental data, it is found that the commonly used
quadratic form of the elastic free energy results in a too stiff initial response during biax-
ial loading. To this end, a new format for the volumetric part of the elastic free energy,
which results in a softer response with increasing volumetric deformation, is proposed. The
proposed elastic free energy also improves the ability to accurately capture the non-linear,
pre-peak behaviour exhibited by glassy PC.
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Abstract

This paper presents a method to investigate the behaviour of polymers on different
scales during deformation using simultaneously collected synchrotron X-ray scatter-
ing, digital image correlation (DIC) and tensile loading. The method is demonstrated
through experiments made on specimens of amorphous polycarbonate. Deformation
is measured in-situ, simultaneously across different scales from the macroscopic de-
formation, measured using sensors on the tensile machine, to the full-field mesoscopic
deformation, measured using DIC, down to the deformation of the nano-scale struc-
ture, studied using small and wide angle X-ray scattering (SAXS/WAXS). The DIC
reveals highly inhomogeneous deformations that render conventional techniques for
measuring deformation, such as extensiometers, virtually useless. The X-ray scatter-
ing is measured in several spatial points during continuous loading giving the evolution
of the microstructure with respect to both spatial location and load level. The spatial
mapping of the scattering reveals characters that would not be observed when only
measuring at the centre point or measuring on a large area of the specimen, e.g. wide
beam SAXS/WAXS or small angle neutron scattering (SANS). With these data, the
macroscopic and the mesoscopic deformation can be correlated to the behaviour of
the microstructure providing relevant information when developing micro-mechanical
based constitutive models. The experimental results shown here indicate a direct cor-
relation between the major principal strain direction and the maximum anisotropy
direction of the SAXS patterns. The current approach can be extended to any kind
of polymeric materials or polymer-based nano-composites.
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1 Introduction

For many polymers inhomogeneous deformation phenomena, such as necking and strain
localisation, occur at relatively small strains (e.g. Lu and Ravi-Chandar (1999)). These
phenomena have been seen to involve micro- and nano-scale rearrangement of the polymer
material (e.g. Humbert et al. (2009); Choi et al. (2012)). Accurate material models should
describe these different scale-length mechanisms. However, whilst a number of models
have been proposed that include the evolution of the polymer arrangement and might be
able to capture the inhomogeneous deformation (e.g. Wu and van der Giessen (1993);
Miehe et al. (2009); Harrysson et al. (2010)), the experimental support and understanding
to describe the micro-structural mechanisms is limited. This limited understanding arises
largely due to the heterogeneous nature of the deformation and the need to capture a
variety of mechanisms occurring over a wide range of length-scales.

Nuclear magnetic resonance (NMR), small and wide angle X-ray scattering (SAXS/
WAXS) and small angle neutron scattering (SANS) have been used previously to investi-
gated the evolution of nano- and micro-structural order in polymers during, or resulting
from, deformation (e.g. Vogt et al. (1990); Hubert et al. (2004); Schubach and Heise
(1986); Rössle et al. (1989) ), but in general taken as an average over a large area of the
specimen. Furthermore, in such experiments, the stresses and strains of the material are
only measured globally. Such measurements can not be regarded as representative of the
material behaviour in the presence of the observed, significant heterogeneity of the pro-
cesses. In this work we present an approach to monitor the heterogeneity of the different
processes across the different scales using three experimental techniques simultaneously:
(i) spatially resolved X-ray scattering (SAXS and WAXS) to investigate polymer ordering
at the nano- and micro-scales associated with (ii) concurrent mechanical loading (with
measurement of the global stress-strain response) and (iii) simultaneous measurement of
mesoscopic strain fields by digital image correlation (DIC). An overview of the different
methods for experimental characterisation and theoretical modelling of polymer deforma-
tion is first presented. This is followed by a description of the experimental set-up. The
approach is demonstrated with an example involving application to an amorphous glassy
polymer (polycarbonate) using SAXS and WAXS with in-situ loading and DIC. The ex-
ample is followed by a discussion of the results, conclusions and perspectives for future
work.

2 Experimental observations and modelling of deforma-
tion mechanisms in polymers at different scales

Methods for measuring the heterogeneous deformation of polymeric materials at large
strains have been developed during the last four decades. For example, G’sell and Jonas
(1979) developed a method of conducting tensile tests at constant local strain rate using
hourglass shaped specimen and a circumference gauge to control the tensile machine. This
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allowed true stress vs true strain curves to be measured at constant local strain rate. In
Buisson and Ravi-Chandar (1990) the true stress vs stretch variation along the necking
zone of polycarbonate (PC) specimen was estimated using a fine mesh applied on the
surface of specimen, with square cross section, that was photographed during loading. The
displacements were calculated from the images, which in turn were used to calculate the
displacement gradient by a polynomial fit. Assuming the same stretch along the two lateral
directions, due to square cross section area, they were able to study variation of the stretch
along the necking zone. They measured the true stress using photoelasticity. A similar,
more automated, method where a grid was screen printed on the surface of a specimen was
used by Haynes and Coates (1996).

Full-field methods, such as the grid based methods above, have been shown to have an
advantage in that they provide insight into the heterogeneity of the deformation. Digital
image correlation (DIC) has become a more standard full-field technique for displacement
and strain field measurement. Using DIC, the displacement field is constructed by cor-
relating pixel subsets in a reference image of the undeformed specimen to subsets in the
image of the specimen in the deformed state. The correlation requires a random sur-
face texture, if the natural surface is too homogeneous a random speckle pattern can be
applied to enable the correlation. The displacement data can be used to construct the
displacement gradients which in turn can be used to calculate the full strain field (e.g.
Viggiani and Hall (2008); Sutton et al. (2009)). Parsons et al. (2004) used 2D-surface DIC
with a single charge coupled device (CCD) camera to measure the in-plane deformation
field of rectangular bar-type PC specimen with different compositions. True stress-strain
curves and full-field strain plots were constructed from the displacement data. To obtain
3D information two consecutive tests, measuring the 2D displacement fields in the two
lateral directions were made. Data from these tests where combined to calculate the vol-
umetric strain. A continuation of these experiments was made by Parsons et al. (2005)
where the two lateral directions were depicted simultaneously using a right-angle prism
avoiding uncertainties arising when combining data from separate tests. Daiyan et al.
(2012) used 3D-surface DIC with two cameras calibrated for stereo-vision to investigate
the modes of deformation during shear tests of polypropylene (PP). They concluded that
DIC is an important tool that can provide the strain distribution and the ability to ob-
serve how the strain state of every point on the specimen changes during shearing. David
et al. (2013) investigated the mechanical properties of poly-methyl-methacrylate (PMMA)
during uniaxial tension using 2D-surface DIC. The PMMA was reinforced with carbon
nanotubes (CNT) to different degree. Using DIC they studied the behaviour of Young’s
modulus, Poisson’s ratio, the ultimate tensile stress and the failure strain at different CNT
concentrations. Poulain et al. (2013) used cylindrical specimens of epoxy resin loaded in
tension and compression, and measured the strains using 3D-surface DIC and two types
of video-based extensometry: video-based surface extensometry (VSE) and video-based
radial extensometry (VRE). It was shown that VRE is a simple method to get a very good
estimate of the true stress-strain behaviour of the polymer. However, compared to DIC,
VSE based on vertical markers is less reliable when the specimen experiences structural
instabilities such as necking in tension and barreling in compression.
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DIC can provide the full-field deformation of a specimen, but techniques such as X-
ray or neutron scattering must be used to gain information on the microstructure within
the material. Previously X-ray methods such as small and wide angle X-ray scattering
(SAXS/WAXS) have been used to study the microstructure on a nanometre scale of both
amorphous and semi-crystalline polymers. For example, the small angle X-ray scattering
of PC was investigated by Lin and Kramer (1973). By doping PC specimens with small
amounts of iodine and observing a decrease in the scattered intensity, they concluded that
the SAXS signal was due to the structure of the material and not due to defects, such as
voids. To obtain the microscopic strain, Hubert et al. (2004) measured the interlamellar
spacing in two types of high density polyethylene (HDPE) with SAXS, at the centre point
of 1 mm thick hourglass shaped specimen while deforming the specimens in-situ. The in-
terlamellar spacing was used to calculate the microscopic strains parallel and perpendicular
to the loading. These microscopic strains were compared to the macroscopic local strains
measured ex-situ using video extensometry on a different specimen. They concluded that
SAXS with in-situ loading could be used to asses the intercrystalline tie chain density
of the materials as an alternative to conventional methods. Further in Humbert et al.
(2010) the deformation of the microstructure of PE with different degrees of crystallinity
was measured. The microscopic strain was measured using SAXS with in-situ loading and
compared with the macroscopic strain measured using an optical extensometer. The SAXS
was measured in the centre point of dumbbell-shaped specimens with a thickness of 500 µm.
They concluded that the ratio between the microscopic and macroscopic strain was nearly
constant for different degrees of crystallinity. Using WAXS, Schubach and Heise (1986)
studied the short range order of the microstructure in PC. They concluded that the scatter-
ing signals originated from the intra- and intermolecular length scales within the material.
The orientation of the scattering was studied on a stretched specimen that was deformed
ex-situ above the glass transition temperature. Toki et al. (2003) studied the moleculare
orientation and strain-induced crystallisation of rubber using WAXS with in-situ uniaxial
loading. The WAXS was measured at the same spatial location on the specimen during
deformation at a relatively large deformation rate of 10 mm/min with a typical acquisition
time of 30 s. They concluded that the main part of the polymer chains remained unori-
ented even at large strains and that only about 20% of the molecules crystallised. The
strain-induced crystallised molecules were highly oriented along the deformation direction.
The chain orientation and the amorphous-crystalline microstructure of polyurea (PU) un-
der uniaxial tension has been studied by Choi et al. (2012) using SAXS and WAXS. The
specimens used were stretched ex-situ and clamped to remain stretched during the X-ray
measurements. They showed that the microstructure, and thus the mechanical response, of
PU varied continuously with deformation even at a very low deformation rate. They con-
cluded that this contradicts a common assumption when modelling elastomers that strain
and strain rate effects are separable, at sufficiently low strain rate, cf. Choi et al. (2012).
In the recent work by Farge et al. (2013) the anisotropy of semi-crystalline HDPE was
analysed on multiple scales during deformation using data from SAXS, incoherent steady
light transport (ISLT), synchrotron radiation X-ray tomographic microscopy (SRXTM) or
DIC. During SAXS, ISLT and DIC measurements the specimens were loaded in-situ while
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the SRXTM were made postmortem. The measurements were made at the centre point of
different specimens. It was concluded that the evolution of the anisotropy observed at the
micro scales is strongly correlated with the macroscopic behaviour.

In constitutive modelling of polymeric materials different approaches have been used
to incorporate the microstructure. Amorphous polymers such as polycarbonate have been
modelled using idealised network models to represent the chain structure. These network
models include the “3-chain” model by Wang and Guth (1952), the “8-chain” model by
Arruda and Boyce (1993) and the full-network model by Wu and van der Giessen (1993).
The full-network model considers a large number of polymer chains and averages over all
orientations using a chain orientation distribution function (CODF). The CODF has been
further utilised by Harren (1995), Harrysson et al. (2010) among others. Miehe et al.
(2004) proposed a micro-sphere model with a non-affine coupling of the micro-structural
chain network and the macroscopic response. The model makes use of a micro-sphere
approach to represent the full chain network using 21 orientations in space.

A key objective of the current work is to use simultaneous X-ray scattering with in-situ
loading and DIC to provide the experimental data necessary to support micromechanically
based models such as those described above. The aim is thus to develop a method that
can provide a correct understanding of the relationship of the macro- and meso-scopic
deformation with the evolution of the microstructure.

3 Experiments

The experiments in this study were performed at the I911-SAXS beamline at MAX IV
Laboratory (Lund University, Lund, Sweden), cf. Labrador et al. (2013). The experiments
involved uniaxially loading of specimens in-situ during SAXS or WAXS measurements.
The deformation of the specimen was measured using 3D-surface DIC. The experimental
set-up mounted on the beamline consist of the tensile test machine and two digital cameras
for 3D-surface DIC, see Figure 1. The experiments were conducted at room temperature.

3.1 Material and specimens

The specimens used in this study were made of Makroclear R⃝, a transparent, amorphous
commercial PC manufactured by Arla Plast. The material was delivered in a sheet of
5 mm thickness. Asymmetrically notched specimen with a vertical offset between the
notches were machined from the sheet, see Figure 2. A geometry with offset notches was
chosen to promote a shearing mode of deformation.

3.2 In-situ loading

The loading device used was a custom built uniaxial tensile test machine, see Figure 3.
During the experiment the axial force and displacement of the grips were measured by
a force transducer and a linear displacement sensor, respectively. The loading rate was
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Evacuated chamber

Figure 1: Experimental set-up. On top is a sketch of the set-up showing the X-ray beam
path, the tensile machine and both DIC-cameras (not to scale). During the WAXS ex-
periments the DIC-cameras were mounted on the left side of the tensile test machine (the
same side as the incoming X-ray beam). On the bottom is the actual set-up for SAXS
experiments inside the hutch of the beamline.

0.01 mm/min, measured on the machine grips, which were displaced symmetrically around
the centre of the specimen. This slow loading rate was chosen to allow continuous loading
during the X-ray measurements and thus avoid relaxation of the material.

3.3 X-ray scattering

SAXS measurements were carried out using a wavelength, λ, of 0.91 Å and a sample-to-
detector distance of about 1.94 m giving an approximate q-range from 0.08 to 4 nm−1

(where q = (4π/λ) sin(θ) and 2θ is the scattering angle). Q-range calibration was made
using silver behenate. The X-ray beam size was 300×300 µm2. WAXS measurements were
carried out using the same equipment as for SAXS, but with a sample-to-detector distance
of about 0.37 m giving an approximate range in q from 0.4 to 20 nm−1. The beam size
during the WAXS experiments was 500× 500 µm2. The local scattering from the sample
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Figure 2: The geometry of the asymmetrically notched specimen (a) and a specimen with
painted speckle pattern (b). The unpainted area shown in (b) is where the X-ray beam hit
the specimen; this part was not painted to avoid scattering by the paint.

Load cell

Moving grips

Specimen

Position sensor

50 mm

Figure 3: The custom built tensile test machine used for the in-situ loading.

was mapped at 30 points, with an equal spacing of 0.3 mm along the vertical centreline
of the specimens by moving the translational stage of the beamline on which the loading
device was mounted. The translational stage consisted of two Pro115 (Aerotech) linear
stages with an accuracy of ±6 µm and a repeatability of ±1 µm. The starting point of
the X-ray vertical scan was positioned by performing vertical and horizontal transmission
scans and considering the geometry of the specimens. The X-ray acquisition times were
30 s per point for both SAXS and WAXS. The scattered X-rays were recorded using a
Pilatus 1M (Dectris) 2D hybrid pixel detector and analysed using an in-house developed
program. Data correction was made considering the transmission of the X-rays, the thick-
ness of the specimens and subtracting the background contribution to the X-ray data. The
transmission of the X-ray through the specimen is estimated measuring the intensity of
the direct beam at a pin-diode detector placed on the beamstop. Specimen thickness is
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estimated using the out-of-plane deformation measure with DIC. All X-ray scattering data
were normalised by the appropriate specimen thickness. Figure 4 shows a corrected 2D
SAXS pattern. 1D azimuthal (I(φ) vs φ where φ is the azimuthal angle) and radial plots
(I(q) vs q) were extracted from the corrected 2D X-ray patterns to quantitatively evaluate
the patterns. Azimuthal SAXS plots were made by averaging the scattering intensity at
each azimuthal angle over a q-range from 0.25 to 0.61 nm−1, the q-range is indicated in
Figure 4. Radial plots from SAXS and WAXS patterns were made by averaging the scat-
tering intensity for each radius over an angular sector of ±10◦ around lines parallel and
perpendicular to the loading direction, as indicated in Figure 4.

20◦

2
0
◦

Beamstop

0.25 nm−1

0.61 nm−1

Figure 4: Full SAXS pattern as recorded by the Pilatus sensor on the left. The dark
blue rectangular mesh in the images is due to space between the modules of the Pilatus
detector. To the right is a magnified view of the area around the centre of the beam. The
figure shows the radial interval over which the azimuthal data are averaged (red circles) as
well as the two angular sectors over which the radial data are averaged (green lines). The
uniaxial loading direction is vertical and is taken as the beginning of the azimuthal plot
(φ = 0 at the bottom of the image).

3.4 Digital image correlation

Mesoscopic displacement fields were measured using 3D-surface digital image correla-
tion (DIC). This was done using two Prosilica GT6600 (Allied Vision Technologies) 29-
Megapixel digital cameras. The cameras were calibrated for stereo-vision allowing mea-
surement of the out-of-plane deformation as well as the in-plane deformation. This involved
stereo-correlation of pairs of images of the sample surface taken by the two cameras at the
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same instance. A random speckle pattern was applied to the specimens surface, to facil-
itate correlation, using a water based paint (to ensure that the paint did not damage or
react with the polymer). To avoid scattering by the paint, the area where the X-ray beam
hit the samples was masked during the painting leaving an unpainted area down the centre
of the specimen (see Figure 2). Due to this fact there were no deformation measurement
at the points where the X-ray beam hit the specimens. This deformation can however be
calculated by interpolating the measured deformation obtained in the pained region. This
was done when correcting the X-ray data by normalisation using the specimen thickness.
The thickness was interpolated linearly over width of the unpainted area. The largest
relative error of the calculated thickness was estimated to about 1 % in the areas with the
largest thickness gradients, i.e. at the edges of the necking zone. The error estimation is
based on tests with full DIC fields (i.e. without the unpainted area). On this DIC field the
measured data was removed over an area matching the unpainted area and replaced with a
linearly interpolated field. This interpolation was then compared to the measured values.
The DIC system was set up to take an image every time the X-ray detector acquired data
using a trigger signal from the detector.

The stereo calibration as well as the image correlation was made using the commercial
software Vic-3D (Correlated Solutions). The stereo calibration was performed using images
of a reference grid in different positions and rotations, cf. Solutions (2010). The overall
calibration error was 0.042 and 0.052 pixels for the DIC during the SAXS experiments and
the WAXS experiments respectively. The calibration error is defined as the standard devi-
ation of the residuals (i.e. the difference between the measured position of the calibration
grid points and their theoretical positions) for all calibration images, cf. Solutions (2010).
The image correlation used to calculation of the mesoscopic deformation was made using
a correlation window of 61× 61 pixels and a step size (the distance between the analysed
points) of 10 pixels. The image pixel size for the DIC was approximately 12 µm on the
specimen during the SAXS experiments and 13 µm during the WAXS experiments. With
this pixel size the physical size of the DIC correlation windows, for deformation calcula-
tions, was approximately 730 × 730 µm2 and 790 × 790 µm2, for the SAXS and WAXS
experiments respectively. Pixel subsets in the reference images (of the undeformed speci-
mens) were correlated to subsets in each of the images of the sample in a deformed state.
The displacements from the correlation software were used to calculate the displacements
gradients using an in-house developed code. These were in turn used to construct the full
strain field (using the same code). The strain was calculated using the closest neighbour
points on a regular 10 pixel grid.

4 Results

A number of experiments have been performed with the described set-up and a selection of
these is presented to illustrate the new insight that can be gained by using this integrated
multi-scale approach.
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4.1 SAXS with in-situ loading and DIC

Figure 5 shows the force-displacement curve measured by the tensile test machine for a
characteristic experiment on PC. The slightly noisy response is due to non-optimal gearing
on the tensile machine for the low displacement rate. Figure 5 also shows the strain field
measured using DIC, the white area down the centre is where the specimen was masked
during painting. The presented strain measure, E1, is the major principal strain, i.e. the
largest eigenvalue of the Green-Lagrange strain tensor, E, defined as

E =
1
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Figure 5: Force-displacement curve measured by the tensile test machine for an asymmet-
rically notched PC specimen. The test was conducted with a constant displacement rate of
0.01 mm/min. The figure also shows the major principal strain field, E1, measured using
DIC at six load levels, as well as the SAXS azimuthal plots at three spatial points at the
six load levels. The scale of the axes are the same for all azimuthal plots. The spatial
points are indicated in the DIC images as black dots down the centreline of the specimen.
The presented strain fields corresponds to the X-ray measurement at the centre point of
the specimen. The loading direction is vertical.
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Figure 6: Correlation of the direction of the major principal strain and the orientation of
X-ray scattering patterns. The figure shows the major principal strain field, E1, between
the notches. The white lines show the major principal strain direction (from DIC) while
the black lines at the central white strip of the specimen indicate the angle of the maximum
intensity of the azimuthal SAXS plots (see Figure 5).

where F is the deformation gradient and I is the identity tensor. The DIC result shows an
inhomogeneous deformation state before the force peak with strain concentrations at the
notches (load step 1). A localised band of high strains evolves around the force peak and
broadens with increasing local strain with further increasing grip displacement (load steps
2-4). The unloaded state shows large residual deformations (load step 5).

Azimuthal SAXS plots from three spatial points of the specimen at each load level are
also shown in Figure 5. The three points are the start and end points of the line scan and
the centre point of the specimen. These were positioned using the coordinates from the
DIC and from the translational stage at the beamline. At each X-ray measurement along
the vertical line the following was measured simultaneously during the continuous loading:
macroscopic force, DIC for mesoscopic deformation measurements and X-ray scattering.
The macroscopic grip displacement was 0.005 mm during the 30 s X-ray acquisition. For
presentation purposes, the strain fields correspond to the X-ray measurement taken at
the centre point, see Figure 5. Due to the low deformation rate, there are no qualitative
differences between the presented strain fields and the strain fields corresponding to the
X-ray measurements at the other spatial points at the same load step. The azimuthal
SAXS plots show an evolution of the scattering, with respect to the load, from an initial
isotropic pattern (with the same scattering in all directions) at each point, to an anisotropic
scattering. The anisotropic scattering evolves from a broad, almost double, central peak
(at φ = 180◦) alignment to a narrow, single central peak (seen in the plots from the lowest
spatial point at load step 2-4). The spatial mapping reveals a character in the scattering
that is not visible when only looking at the centre point, namely an extra, secondary
alignment almost perpendicular to the main alignment. This effect is seen as two extra
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peaks (at approximate 90◦ and 270◦) in the azimuthal plots from the lowest spatial point
at load step 2 and 3. The secondary alignment is only visible during a limited displacement
range following the force peak, after which it is no longer visible. After unloading some
of the aligned scattering is still present. The alignment of the strongest SAXS signal is
almost parallel to the load direction, which suggests main changes perpendicular to the
deformation. The azimuthal SAXS plots from the centre point of the specimen show a
similar behaviour, except the secondary alignment and larger intensity at φ = 180◦. The
azimuthal plots from the top point show a slight alignment that are more or less constant
between load step 1 to 5, after unload this alignment disappears. This is consistent with
the strain field from DIC.

The directions of the major principal strain are plotted in Figure 6 together with the
direction of the maximum intensity of the azimuthal curves shown in Figure 5. These
results indicate a direct correlation between both measurements. The figure shows how
the principal direction of the major strain in the bridge between the notches and the
direction of maximum intensity of the azimuthal SAXS curves evolves; from a vertical, or
slightly right-tilted direction before the macroscopic force peak (load step 1) to a clearly
left-tilted direction after the force peak (load step 2-5). The orientations remain after
unload (load step 5).

Figure 7 shows radial plots extracted from corrected SAXS patterns from the centre
point of the specimen at the load steps shown in Figure 5. The curves obtained parallel to
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Figure 7: Radial plots extracted from the corrected 2D SAXS patterns from the centre
point of the specimen at the load steps shown in Figure 5. (a) Curves parallel to the
loading direction and (b) curves perpendicular to the loading direction.
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the loading direction (Figure 7a) show a clear change in slope as the specimen is deformed,
with a very clear change as the deformation passes beyond the macroscopic force peak
(load step 1-2). The change in slope indicates modifications of the size and/or shape of the
scattering objects, some of which remains after unload. The curves obtained perpendicular
to the loading direction (Figure 7b) do not show any significant change in slope or intensity
as the specimen deforms.

4.2 WAXS with in-situ loading and DIC

Figure 8 shows results from a test using the WAXS set-up. The figure shows the strain
field, E1, at six load levels measured using DIC, plus 2D WAXS patterns at three spatial
points down the centreline of the specimen at each load level. As for the results in Section
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Figure 8: Force-displacement curve measured by the loading device for an asymmetri-
cally notched PC specimen. The test was conducted with a constant displacement rate of
0.01 mm/min. The figure also shows the major principal strain field, E1, measured using
DIC at six load levels, as well as the 2D WAXS patterns at three spatial points at the six
load levels. The spatial points are indicated in the DIC images as black dots down the cen-
treline of the specimen. The presented strain fields corresponds to the X-ray measurement
at centre point of the specimen. The direction of load is vertical.

13



(a)

q [nm−1]

In
te

ns
it
y

[a
rb

.u
.]

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20

d = 1 nm

d = 0.5 nm

d = 0.36 nm

104

(b)

q [nm−1]

In
te

ns
it
y

[a
rb

.u
.]

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20

d = 1 nm

d = 0.5 nm

d = 0.36 nm

104

Undeformed
Load step 1
Load step 2
Load step 3
Load step 4
Load step 5

Undeformed
Load step 1
Load step 2
Load step 3
Load step 4
Load step 5

Figure 9: Radial plots from the centre point WAXS patterns shown in Figure 8. (a)
Curves parallel to the load direction and (b) curves perpendicular to the loading. The
arrows indicate the three main peaks of the diffractogram.

4.1 the presented strain fields in Figure 8 correspond to the X-ray measurement at the
centre point of the specimen. The mesoscopic deformation at load steps 1-3 is similar as
for load steps 1-3 in Figure 5. Due to time limitation the unloading was made earlier
during the WAXS experiments. In the same way as for the SAXS experiments the three
points are the start and end point of the line scan and the centre point of the specimen.
The WAXS measurements show an initial isotropic scattering at each point that evolves
into an anisotropic scattering with a larger intensity in the direction perpendicular to the
macroscopic loading direction. Most of the alignment in the WAXS is still present after
unload.

Figure 9 shows radial plots extracted from the corrected 2D WAXS patterns from
the centre point of the specimen shown in Figure 8. The curves show three main peaks
associated with the intermolecular correlation distance (q = 6.5 nm−1, d = 1 nm), the
average correlation distance between neighbouring chains (q = 12.1 nm−1, d = 0.5 nm) and
a combined inter- and intramolecular correlation (q = 17.4 nm−1, d = 0.36 nm) indicated
by arrows in Figure 9. Due to the different q-range in both directions, the third peak
(q = 17.4 nm−1, d = 0.36 nm) is only clearly observed in Figure 9b. The position of these
peaks is consistent with the results reported by Schubach and Heise (1986). The positions
of the peaks seem to change slightly as the specimen deforms, which indicates small changes
in correlation distances. The curves obtained parallel to the macroscopic loading direction
(Figure 9a) show a large decrease in intensity of the peak at approximately 12 nm−1 as the
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specimen is deformed, with a significant decrease in intensity after the macroscopic force
peak. The reduced intensity remains after unload. The curves extracted perpendicular
to the loading direction (Figure 9b) show an increase in intensity of the peak centred at
q = 12 nm−1 as the specimen is loaded beyond the macroscopic force peak (load step 1-2).
Other than this there are no significant changes in intensity in the curves perpendicular to
the loading direction.

5 Discussion

5.1 Material response

Due to the highly inhomogeneous deformation revealed by the DIC in the presented tensile
tests of PC, it is clear that it is insufficient to use conventional techniques such as exten-
someters when measuring the deformation. Instead full-field methods such as DIC must
be utilised. DIC provides the possibility to output all components of the displacement
gradient over the full sample area. Although not fully shown here, this makes it possible
to study different modes of deformation such as axial stretching or shearing. The need
for 3D-surface DIC is evident due to the large out-of-plane deformation of PC. Relative
out-of-plane displacements of over 0.7 mm have been measured in the centre point of the
specimen (the relative displacement is zero close to the grips) during the presented exper-
iments, this implies a thickness reduction of over 1.4 mm (about 30 % less than the initial
value). 3D-surface DIC allows the true in-plane and out-of-plane deformations to be mea-
sured. The measured out-of-plane deformation must be used when correcting the X-ray
data for changes in specimen thickness, as the thickness of the specimen will influence the
total scattered intensity. If this significant change in thickness is not taken into account,
comparisons of the scattering intensity at different load levels of spatial locations will be
incorrect.

The azimuthal SAXS plots presented in Figure 5 show a well oriented scattering parallel
to the macroscopic loading direction. The plots also show features that would not be
observed when only probing the centre point of a specimen or with an average over a
large area (e.g. with SANS or NMR). Figure 6 shows a qualitative correlation between
the direction of the major principal strain and the orientation of the scattering at small
angles. The figure shows that the orientation of the microstructure of PC in the SAXS
region follows the directions of the mesoscopic deformation measured with DIC. Similar
correlation has previously been shown for semi-crystalline HDPE, e.g. Farge et al. (2013).
However, the nature of the SAXS signal for HDPE can have different origin than in our case.
The SAXS data show a change in size and/or shape of the scattering objects perpendicular
to the macroscopic loading as the specimen is deformed (seen as the change in slope of
the curves in Figure 7a). The origin of the scattering entities at small angles is not yet
established and is out of the scope of the manuscript.

Following the same tendency as the azimuthal SAXS plots, the WAXS patterns in
Figure 8 show oriented scattering. The largest change in the wide angle scattering is in
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the direction parallel to the macroscopic loading at the peak centred at q = 12 nm−1, see
Figure 9a. This result indicates a significant loss of order between neighbouring chains
oriented perpendicular to the loading direction. Furthermore, the increase of intensity at
the same peak, in the direction perpendicular to the loading, suggests alignment of the
polymer chains in the loading direction.

The radial plots shown in Figures 7 and 9 show some elastic recovery of the scattering
in the SAXS region, while the scattering remains unchanged after unload in the WAXS
region. This indicates that the elastic recovery of the deformation (after unload) shown by
DIC in Figure 5 and 8 is due to reversible mechanisms in the SAXS region while the residual
deformation is mostly due to changes in the intermolecular structure of the material in the
WAXS region.

The use of full-field DIC provides the ability to investigate different modes of deforma-
tion (not shown here) on a local scale. By combining DIC with spatial mapping of SAXS
and WAXS new insights of the coupling between the local micro-structural behaviour and
different mesoscopical deformation modes can be provided.

5.2 Experimental method

The results discussed in this study are from experiments using a constant displacement
rate of the machine grips of 0.01 mm/min. This rate was chosen to be able to load con-
tinuously without the material undergoing too large deformation while acquire scattering
data. An alternative approach is to use intermittent loading with a higher displacement
rate and keeping the deformation fixed during the X-ray measurements. While more time
efficient, this approach has the negative effect that polymeric material will undergo signifi-
cant relaxation when the deformation is fixed. When reloading PC after relaxation beyond
the force peak the force-displacement curve will show a new force peak. The relaxation
and the recurrent force peak make it difficult to relate the measured points to points on
a force-displacement curve using monotonic load. Also the X-ray measurements will be
made on a relaxed material instead of, as in this study, a loaded material.

The evolution of the scattering, with respect to the deformation, is captured over a
large area of the specimen by performing the spatial mapping of the X-ray scattering while
deforming the specimens continuously using a slow loading rate. This, in combination with
full-field DIC measuring the deformation, provides a large amount of experimental data
from a single experiment. This is not only time efficient, but also makes the coupling of
the different measurements more reliable since the uncertainties of combining data from
different experiments are avoided.

To avoid scattering from the painted speckle pattern needed for DIC, an area down
the centre of specimen where the X-ray measurements were taken was left unpainted. As
a consequence of this, no deformation were measured at the exact points of the X-ray
measurements. However, the mesoscopic deformation at that points can be calculated by
interpolating the measured deformation data over the unpainted area. This was done when
correcting the X-ray data by normalisation using the specimen thickness.
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6 Conclusion

The method presented in this paper has combined well established methods of X-ray scat-
tering, digital image correlation and uniaxial loading in one simultaneous experiment and
with good spatial resolution. This approach can be extended to any kind of polymeric
materials or polymer-based nanocomposites. The X-ray data provide information on the
supramolecular and molecular level (nanometric scale). The deformation is measured in-
situ; the macroscopic deformation is measured using sensors on the tensile machine and
the full-field mesoscopic deformation is measured using 3D-surface DIC. Thus allowing
investigation of the material behaviour on macro-, meso- and nano-scales simultaneously.
The use of full-field DIC and X-ray mapping reveals inhomogeneous behaviour in the meso-
scopic deformation as well as in the local behaviour of the microstructure on a nanometre
scale. A direct correlation between the major principal strain direction and the maximum
anisotropy direction of the SAXS data is indicated for amorphous polycarbonate. The
inhomogeneous deformation behaviour of this type of material renders conventional mea-
suring techniques, such as extensometers, virtually useless. The same applies for one and
two dimensional video-based methods, such as video extensometry or DIC using a single
camera, due to the large out-of-plane deformations during necking. This makes it a ne-
cessity to use a three-dimensional, full-field method when characterising the deformation.
By deforming the specimens continuously in-situ, the X-ray scattering is measured on a
loaded specimen. If intermittent loading is used the scattering will be measured on a re-
laxed specimen, as the polymer starts to relax as soon as the loading is stopped. The use
of in-situ DIC enables correlation of the mesoscopic deformation to the local behaviour
of the nanoscopic microstructure. It is shown that the X-ray scattering is dependent on
the spatial location as well as the local deformation. The spatial mapping reveals unique
characters in the scattering present at other locations than the centre point. This shows
the importance of measuring the X-ray scattering at more points than merely the centre
point, to fully characterise the behaviour of the microstructure. By combining SAXS and
WAXS, information is gained about structures with sizes in the range from about 100 nm
down to intermolecular distances of a few Ångström. A more detailed analysis of this
information will be presented in a future paper. With these data the macroscopic and
mesoscopic deformation can be correlated to the behaviour of the microstructure during
deformation, and provide important information when developing micro-mechanical based
constitutive models.
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Abstract

Deformation of amorphous, glassy polycarbonate (PC) is characterised over a wide
range of length-scales using spatially-resolved wide angle X-ray scattering (WAXS)
with simultaneous digital image correlation and in-situ uni-axial loading. Novel ob-
servations are presented on the correlation of the evolution of the molecular structure
linked to the relevant local macroscopic measures of strain as the sample deforms.
This provides new insights into the mechanisms of deformation in amorphous, glassy
polymers. Strains and evolving anisotropy are observed, and quantified, at differ-
ent length scales identified from the WAXS measurements connected to inter- and
intramolecular structures. The inter-molecular structures show permanent deforma-
tions in the form of unrecoverable stretches and reorientations, whilst intra-molecular
structures show recoverable strains and unrecoverable reorientations. Such insights
pave the way for development of enhanced constitutive models for amorphous glassy
polymers with a correct micro-mechanical basis and calibrated evolution of anisotropy.
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1 Introduction

Polycarbonate (PC) is a glassy polymer at room temperature with good mechanical prop-
erties, such as high impact strength, good optical properties and a comparatively high glass
transition temperature, cf. Mark (2007). Due to these favourable properties it is widely
used in industry and consumer products, e.g., as protective glass and equipment housing
in the electronics industry. The design process for such applications requires accurate un-
derstanding of the material properties and, importantly, how the material responds and
evolves under mechanical load. However, PC (as many other polymers) exhibits highly
inhomogeneous deformation phenomena, e.g., necking and strain localisation, such that
local deformation differs from the overall macroscopic response, e.g., Buisson and Ravi-
Chandar (1990); Lu and Ravi-Chandar (1999); Engqvist et al. (2014). Such deformation
responses are generally attributed to mechanisms occurring at the molecular-scale. As
such, commonly used material models for the mechanical behaviour of PC invoke idealised
representations of polymer chain networks (e.g., the “3-chain” model by Wang and Guth
(1952), the “8-chain” model by Arruda and Boyce (1993), the full-network model by Wu
and van der Giessen (1993) and the micro-sphere model by Miehe et al. (2009)). Common
to these models is that the permanent deformation, i.e., the plasticity, is modelled to occur
within the individual chains. In an extension to such approaches, Harrysson et al. (2010)
presented a model in which plasticity originates from both stretching of polymer chains and
their reorientation via an evolving chain orientation distribution function (CODF). The ex-
perimental support for the molecular-scale assumptions underlying all of these models is,
however, limited. For example, it is not clear for PC if the polymer chains themselves
show permanent stretching and there are very few data on the evolution of the orientation
distribution function of the chains. Furthermore, due to the spatially heterogeneous nature
of the deformation in PC described above, any measurement of the molecular structure
and its evolution should be spatially resolved and linked to appropriate local macroscopic
strain measurements.

The molecular structure in undeformed PC has been studied using neutron scattering
together with numerical simulations, e.g., Červinka et al. (1987); Lamers et al. (1992, 1994);
Eilhard et al. (1999). Changes in the microstructure of amorphous glassy polymers due
to deformation and/or heat treatment on predeformed specimen have been studied using
wide angle X-ray scattering (WAXS), e.g., Mitchell and Windle (1985); Schubach and Heise
(1986); Del Val et al. (1995). Neutron or X-ray scattering techniques have also been used
during in-situ deformation studies on semi-crystalline polymers, e.g., Butler and Donald
(1998); Yeh et al. (2003); Brown et al. (2008); Stoclet et al. (2012); Farge et al. (2013);
Wang et al. (2014); Guo et al. (2015), but not on amorphous glassy polymers. Also, in
general such studies lack spatial resolution in the scattering data and use macroscopic or,
at best, ex-situ local “full-field” deformation measurements.

Neutron and X-ray techniques, such as those described above, can provide details on
the molecular-scale structures of PC and indicate the micro-/nano-scopic mechanisms of
interest. However, to understand how these mechanisms are linked to overall material
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behaviour requires coupling to measurements at larger scales. In particular, the molecular-
scale observations should be linked to macroscopic strain measurements. Further to this,
the heterogeneity of the strain response requires that local “full-field” measurements are
made. Spatially-resolved (full-field) mesoscopic surface deformation can be measured using
optical techniques, such as digital image correlation (DIC), cf. Grytten et al. (2009);
Poulain et al. (2013).

If the molecular-scale mechanisms of deformation can be linked to the macroscopic
scale material response by integration of X-ray/neutron scattering and strain-field mea-
surements, then all of the necessary ingredients are in place for developing a physically-
based model to describe the mechanical behaviour. This is the ultimate objective of this
work.

This paper presents new results from simultaneous, spatially resolved WAXS and full-
field 3D-surface DIC measurements of in-situ uni-axial loading of PC, following the ap-
proach developed by Engqvist et al. (2014). This approach permits the local deformation
to be studied in terms of the evolution and strain in the molecular structure linked to
local macroscopic measures of strain, as the sample deforms under uni-axial loading. The
experiments are first described, followed by a presentation and discussion of the results and
observations at the different scale lengths before concluding on the molecular-scale origins
of the observed macroscopic response of the material.

2 Experiments

The experiment described in the following involved in-situ tensile loading with simulta-
neous WAXS and 3D-surface DIC. A detailed description of the experimental set-up used
in this study is given in Engqvist et al. (2014). The PC material used in the study is
Makroclear R⃝, a commercial amorphous PC manufactured by Arla Plast.

Symmetrically notched specimens, with a notch radius of 5 mm and a rectangular cross
section area of 8 × 5 mm2 were machined from a sheet of 5 mm thickness, see Figure
1. Apart from the machining, no additional treatments of the material were made. The
specimens were loaded under uni-axial tension in-situ during wide angle X-ray scattering
(WAXS) measurements, using a custom built tensile testing device. Both loading and un-
loading was performed using a constant macroscopic displacement rate of 0.01 mm/min,
measured on the machine grips. The experiments were performed at the I911-SAXS beam-
line at the synchrotron MAX IV Laboratory (Lund University, Lund, Sweden). WAXS
measurements were made using a wavelength, λ, of 0.91 Å and a sample-to-detector dis-
tance of 0.36 m giving a q-range of around 0.5-22 nm−1 (where q = (4π/λ) sin θ and 2θ is
the scattering angle). Q-range calibration was made using lanthanum hexaboride (LaB6).
A bi-dimensional hybrid pixel X-ray detector (Pilatus 1M, Dectris) was used to record the
scattering data, which were corrected for: the transmission of the X-rays, the current spec-
imen thickness (calculated from the DIC analysis) and air scattering (by subtracting the
background scattering). The transmission of X-rays through the specimen was estimated
using the intensity of the direct beam, measured using a pin-diode detector placed on the
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beamstop. The local scattering was mapped using line scans of 20 spatial points along the
centreline of the specimen. The distance between the points in the line scan was 0.5 mm
and the exposure time for each WAXS image was 10 s. During the experiment a total of
100 line scans were performed. The time between two consecutive WAXS measurements at
the same spatial point was 300 or 510 s, where the longer time was because of a background
measurement which was made after every third line scan. For clarity, only scattering data
from two of the 20 spatial points of the line scans are presented: point 1 (centre point)
and point 7 along the line. From here on the points are referred to as point A and B,
respectively (see Figure 3).

b
b

8

20

R5

5

3

[mm]

Figure 1: The geometry of the notched specimen. The dots indicates the positions from
which measured X-ray scattering data is presented.

X-ray data are presented from the two points A and B. These points are selected to
represent positions between the localisation bands (point A) and where the localisation
front passes through (point B). Points far out from the localisation zone do not show any
significant permanent changes in the microstructure.

3D-surface DIC was used to measure the deformation at the surface of the specimen
in-situ, simultaneously with the scattering measurements. The synchronisation of the data
from the different measurements (loading, DIC and WAXS) was achieved using a signal
from the X-ray detector to the DIC-system that also was recorded in the loading system
control software. A random speckle pattern was painted on the specimen using a water-
based paint to facilitate the DIC. To avoid scattering by the paint, the area where the
X-ray beam hit the specimen was left unpainted resulting in a blank area in the stretch
fields, see Figure 3. Image correlation was made using the Vic-3D software (Correlated
Solutions Inc.), using a correlation window size of 61× 61 pixels and a step size of 7 pixels
(distance between two adjacent windows). The pixel size of the photographs used in the
DIC was approximately 13 µm on the specimen. Stretch calculations were made using the
closest neighbouring windows on a regular, 7 pixel grid.
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3 Results and discussion

3.1 Macroscopic deformation

Figure 2 shows the macroscopic force-displacement curve measured on the grips of the ten-
sile test machine for the presented experiment on PC using a notched specimen. The curve
exhibits a characteristic peak in the force after which the force suddenly drops, reaches a
plateau and increases slightly with further grip displacement due to strain hardening of the
material. After unloading to zero macroscopic force, the curve shows a large permanent
deformation. When reloading (after unloading) the force reaches the same level as before
the unloading. The highlighted points on the force-displacement curve show six sampling
points for the line scans for which DIC stretch fields are presented in Figure 3.
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Figure 2: Macroscopic force-displacement curve. The symbols show six sampling points
for the line scans at which DIC stretch fields are presented in Figure 3.

3.2 Mesoscopic deformation from 3D-surface DIC

To calculate the current thickness of the specimen as well as the mesoscopic stretch, 3D-
surface DIC was used. Figure 3 shows the stretch fields at six sampling points. The
presented DIC fields are measured simultaneously with the X-ray measurements at the
centre point of the specimen (point A). Due to the low deformation rate, there are no
qualitative differences between the different deformation fields during the same line scan.
In the following, the principal stretches (Λmeso

I ≥ Λmeso
II ≥ Λmeso

III ), i.e., the square root of the
eigenvalues to right Cauchy-Green deformation tensor, are used as a deformation measure.
Due to the geometry of the specimen, Λmeso

I is dominated by the longitudinal in-plane
deformation, Λmeso

II by the transverse in-plane deformation and Λmeso
III by the out-of-plane

deformation. The right Cauchy-Green deformation tensor, C, is defined as

C = FTF, (1)
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where F is the deformation gradient. The deformation gradient is calculated using a sym-
metry assumption of the displacements of the front (photographed) and back surfaces of
the specimen. This assumptions also implies an assumption of homogeneous deformation
through the thickness of the specimen. Figure 3 shows the evolution of the major (tensile)
principal stretch fields, Λmeso

I . It can be concluded that the deformation is inhomogeneous
even before the macroscopic force peak in Figure 2 is reached (line scan 20), with higher
stretches between the notches, see Figure 3. Two bands of highly localised deformation
are formed at the force peak (line scan 27). With increasing grip displacement, a cross-like
pattern of large stretches is formed connecting the two localisation bands, which evolves
into a broad zone of large deformations with further loading (line scans 40-61). The defor-
mation fields just before and after unloading, as well as after reloading are, qualitatively,
very alike although the magnitude changes (line scans 61, 79 and 99). Large permanent
deformations are still present after unloading to zero macroscopic force (line scan 79).

Line scan 20

1.00 1.07

Line scan 27

1.00 1.62

Line scan 40

1.01 1.69

Line scan 61

1.01 1.89

Line scan 79

1.01 1.83

Line scan 99

1.01 1.92

Pt. A

Pt. B

Figure 3: Deformation fields showing the major principal stretch, Λmeso
I , measured using

DIC at six line scans. The two black dots down the centreline of the specimen indicates
the spatial points, point A and B, from which measured X-ray scattering data is presented.
The loading direction is vertical.

Figure 4 presents the evolution of all the mesoscopic principal stretch components at
the two spatial points from which measured X-ray scattering data are presented. These
local values were calculated by linear interpolation of the measured displacements across
the width of the unpainted area and averaged over an area of the same size as the X-ray
beam, cf. Engqvist et al. (2014).

The mesoscopic stretch curves in Figure 4 follow the same trend; (1) the curves start
off with a moderate change until the localisation zone is formed (and passes through the
WAXS measurement points on the specimen, cf. Figure 3); (2) after the localisation is
formed, the stretch rate increases significantly. The increase in stretch rate of Λmeso

III at
point A starts slightly earlier than for the other principal stretches. As for the macroscopic
curve in Figure 2, the unloaded state shows large permanent deformations on the local
level.
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Figure 4: Principal stretches Λmeso
I ( • ), Λmeso

II ( ■ ) and Λmeso
III ( ▲ ) calculated from

the DIC fields at two spatial point on the specimen: point A (dashed line) and point B
(solid line). The symbols on the curves indicate the line scans for which the stretch fields
are presented in Figure 3.

3.3 Deformation of the microstructure analysed using WAXS

Figure 5 presents normalised 2D WAXS patterns at the centre point, point A, for seven
different line scans. As reported in Mitchell and Windle (1985) and Schubach and Heise
(1986), the undeformed state shows a uniform amorphous halo that looses its isotropy as
the material is deformed. Data were extracted from 2D scattering patterns in two ways:
(1) 1D radial profiles (I(q) vs q) and (2) 1D azimuthal profiles (I(φ) vs φ).

Line scan 0 Line scan 20 Line scan 27 Line scan 40 Line scan 61 Line scan 79 Line scan 99

Figure 5: WAXS patterns from point A, the centre point of the specimen, at seven line
scans. The main diffraction peak is visible as a red ring in line scan 0. Direction of load is
vertical.

3.3.1 Radial plots

Radial plots (I(q) vs q) were extracted by averaging the data in small angular sectors (±5◦)
around the loading direction and perpendicular to this direction. To fill in the gaps in the
radial data due to the detector mesh (see Figure 5), the averaging was made over the two
opposing angular sectors (e.g. over both the left and right directions perpendicular to the
loading). Values extracted on the dark detector mesh were removed prior to the averaging.
The radial data were smoothed across the load history using a robust discretised smoothing
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spline, cf. Garcia (2010). Figure 6 shows 1D profiles extracted in the two directions for the
undeformed state as well as the six line scans shown in Figure 3. Other authors, Mitchell
and Windle (1985), Schubach and Heise (1986), Lamers et al. (1992) and Eilhard et al.
(1999), have identified three peaks in the studied q-range and have related these to: the
correlation between consecutive carbonate groups along the chain (q = 6.2 nm−1, d =
1.0 nm); the distance between directly neighbouring chains (q = 12 nm−1, d = 0.52 nm);
a mixture of inter- and intramolecular correlations (q = 18 nm−1, d = 0.35 nm). However,
the current WAXS measurements performed during in-situ deformation show that the
slightly asymmetric (in the undeformed state) amorphous halo consists of two distinct
peaks, which become more apparent with the increasing deformation, see Figure 6.
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Figure 6: Radial plots from the two points on the specimen, parallel and perpendicular to
the loading direction. The plots on top show data extracted from point B and the lower
plots corresponds to point A on the specimen. Line scan 0 is the undeformed state.

During deformation the amplitude of the halo decreases strongly in the direction parallel
to the loading while the intensity of the halo in the perpendicular direction increases
slightly. This indicates a reorientation of the chains towards an alignment in the direction
of load. The radial profiles in Figure 6 from the spatial point A show an earlier, and more
pronounced decrease in intensity compared to point B.

The radial WAXS data, in a q-interval from 5.0 to 18 nm−1, were fitted with a sum of
five Gaussian functions, cf. Stoclet et al. (2011); Guo et al. (2015), where the fifth peak is
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a broad background, i.e.,

Ifit(q) =
5∑
i

ai exp

(
−(q − bi)

2

2σ2
i

)
, (2)

where ai are the amplitudes, bi the positions and σi the standard deviations. An example of
the result of the fitting procedure is shown in Figure 7. The fitting was made by minimising
the function S using an interior point algorithm in the software Matlab R⃝. S is defined as

S =
n∑

j=1

(
Iexpj − Ifitj

Iexpj

)2

, (3)

where n is the number of sampling points.

0

1

2

0 5 10 15 20

q [nm−1]

In
te

n
si

ty
[a

.u
.]

◦

◦◦◦◦◦◦◦
◦
◦◦

◦◦◦ ◦◦
◦
◦

◦

◦

◦

◦

◦
◦

◦

◦
◦

◦
◦

◦
◦

◦

1

2

3

4

Figure 7: Profile analysis by fitting the sum (cyan line) of five Gaussian functions to the
experimental data (open symbols). Dashed line is the background.

The position of the fitted peaks is used to calculate the deformation of the microstruc-
ture. The nanoscopic stretch related to peak number, i, is defined as

λnano
i =

di
d0i

=
b0i
bi
, (4)

where di is the microstructural spacing and bi is the peak position obtained from the fitting
and subscript 0 refers to the quantity in the undeformed state. Henceforth the nanoscopic
stretch in the direction parallel and perpendicular to the direction of the macroscopic
loading will be denoted λnano,∥ and λnano,⊥, respectively. The evolution of the nanoscopic
stretch of the four fitted peaks as a function of loading (line scan) is presented in Figure 8.

The stretches from the first and third peaks in the direction parallel to the loading
direction follow largely the same trend: an increase until line scan 20 (just before peak
force), after which the stretches take a more or less constant value of about 4% and 2% for
the first and third peak, respectively. After the macroscopic unloading, small stretches, in
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Figure 8: The nanoscopic stretch of the four fitted peaks: peak 1 ( • ), peak 2 ( ■ ),
peak 3 ( ▲ ) and peak 4 ( ∗ ). The stretches are presented for two spatial points on the
specimen, point A (dashed lines) and point B (solid lines).

tension for the first peak and in compression for the third peak, are present (see Figure
8a).

During the initial loading, until line scan 20, the stretch from the second peak, λnano,∥
2 ,

follows the same trend as for the third peak. For point A (the centre point of the specimen),
λ
nano,∥
2 continues to increase until line scan 40, after which the stretch rate is reduced. At

point B, λnano,∥
2 reaches a plateau at line scan 20 before it increases monotonically until

the macroscopic unloading after line scan 61. The stretch of the second peak decreases
linearly during the macroscopic unload for both spatial points and after unload permanent
stretches of 4% and 3% are observed for point A and B, respectively. For the fourth peak,
the stretch increases slightly during loading and decreases during unloading. Even though
the stretch of peak 4 is of some interest, the conclusions from this peak are restricted by
the limited q-range during the WAXS measurements.

In the direction perpendicular to the macroscopic loading, the stretches seen in the
fitted peaks are quite small, except for peak 1 (for both spatial positions); see Figure 8b.
The oscillating stretch of peak 1 may be an artefact of the peak fitting, as this peak is not
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well defined in the direction perpendicular to the loading (see the radial plots in Figure
6). However, there is a clear increase in λnano,⊥

1 as the localisation front passes through
each of the two points. A more detailed analysis of this behaviour would however require
better resolution in q of the X-ray data to be able to accurately trace the small changes in
position of the peaks perpendicular to the loading.

The observation that the amorphous halo is formed from two peaks (peaks 2 and 3),
indicates that the halo originates from two features with similar size in the undeformed
state. During deformation, the size of these scatterers changes differently leading to two
clearly visible peaks; see Figure 6. The nanoscopic stretch of peak 2 increases (with in-
creasing macroscopic deformation) in the direction parallel to the macroscopic deformation
while λnano,⊥

2 decreases; see Figure 8. This behaviour suggests that peak 2 is related to the
distance between neighbouring chains, as the behaviour is consistent with chains oriented
along the loading direction getting closer and chains oriented perpendicular becoming sep-
arated, when the specimen is stretched. The similar behaviour of the stretch of peaks 1
and 3 indicates that peak 3 is related to a correlation between closely positioned entities
along a single chain, as peak 1 is related to correlation along the chain, cf. Eilhard et al.
(1999); Mitchell and Windle (1985).

The similar behaviour of λnano,∥
1 and λ

nano,∥
3 can be observed clearly when plotting the

nano-scopic stretch vs the major principal mesoscopic stretch from the DIC, Λmeso
I (see

Figure 9a). Besides showing the resemblance in behaviour of λnano,∥
1 and λ

nano,∥
3 , Figure 9a

also shows that the values of each of the two nanoscopic stretches are very much alike at
the two spatial points on the specimen. The smaller values of λnano,∥

3 compared to λ
nano,∥
1

are expected since this is assumed to be related to the correlation between entities that
are more closely positioned along the chain than the carbonate groups and hence has fewer
atomic bonds in between.

The different behaviour of the λ
nano,∥
2 at the two points A and B, shown in Figures 8a

and 9b, can be explained by an increase of this stretch when the thickness of the specimen is
reduced, which occurs at different moments in the test for the two points. Macroscopically
the passage of the localisation front includes a thickness reduction. As point A is located in
between the two localisation bands, the specimen thickness is reduced at this point when
the localisation is formed, explaining the larger value of λnano,∥

2 . Returning to Figures 3
and 4 it is concluded that the localisation front passes through point B between line scan
40 and 60, or at Λmeso

I value of between 1.4 and 1.5, which is consistent with the increase
of λnano,∥

2 from point B (see Figure 9b).
Figure 9 clearly shows the non-affine relation between the deformation on the mesoscale

and the deformation of the microstructure. λnano,∥
1 and λ

nano,∥
3 indicate that chain segments

oriented along the loading direction stretch, due to the macroscopic load, until they reach
maximum stretches of about 4% and 2%, respectively. This behaviour suggests that the
chain segments start to slide past each other, after being stretched elastically to a limit
stretch. The sliding of the chain segments is initiated simultaneously at the two points,
point A and B, before the macroscopic force peak. As the sliding is initiated at a state of
deformation with the same mesoscopic stretches at the two points (see Figure 3), before
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Figure 9: λnano,∥ vs Λmeso
I for the two spatial point on the specimen (dashed lines point A

and solid lines point B). (a) shows λnano,∥
1 ( • ) and λ

nano,∥
3 ( ▲ ). (b) shows λnano,∥

2 ( ■ )
and λ

nano,∥
4 ( ∗ ).

the localisation band is formed, the evolution of λnano,∥
1 and λ

nano,∥
3 from the two points

is similar as the specimen is deformed further. When the macroscopic load is removed
the chains appear to unload elastically, without any large permanent deformation. The
stretches in Figure 9 also suggest that any observed permanent deformation at a molecular
level is manly due to changes in the distance between neighbouring chains, i.e. in λ

nano,∥
2 .

3.3.2 Azimuthal plots

To analyse the evolution of the anisotropy at the different microstructural distances, the
fitting of the peaks identified in Figure 6 was made for radial profiles extracted in 72
different directions around the azimuth. This detailed procedure was performed due to the
large overlapping area of the scattering peaks. The amplitude of the fitted peaks (I(φ) vs
φ, where φ is the azimuthal angle from 0 to 360◦ and φ = 0 is at the meridian) is shown
in Figure 10 in polar coordinates for the same line scans presented earlier. To reduce noise
from the peak fitting, the azimuthal profiles are filtered using a moving average filter before
plotting. In the undeformed state all four peaks are isotropic. During deformation, peak
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1 becomes strongly oriented parallel to the loading direction while peaks 2 and 3 become
strongly oriented in the direction perpendicular to the loading. This is clearly seen in
Figure 10. The anomaly in the polar plot for peak 4 at 45◦ is due to limited q-range of the
detector in this direction.
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Figure 10: Azimuthal profiles of the fitted peaks from the points A and B on the specimen,
plotted in polar coordinates. The plots on top show the amplitude of the peaks fitted
to data extracted from point B on the specimen and the bottom plots show data from
point A. The anomaly at 45◦ in peak 4 is due to the limited q-range of the detector in
this direction. The loading direction is on the line 0-180 degrees. The intensity scale is
arbitrary for the different peaks.

The degree of orientation, or anisotropy, for a specific peak i is quantified using the
Hermans orientation parameter, cf. Roe (2000); Ran et al. (2002); Choi et al. (2012),

Anano
i =

3 ⟨cos2 ϕ⟩i − 1

2
, (5)

where ⟨
cos2 ϕ

⟩
i
=

∫ π/2

0
Ii(ϕ) cos

2 ϕ sinϕdϕ∫ π/2

0
Ii(ϕ) sinϕdϕ

(6)

and ϕ is the azimuthal angle, being zero at the equator and π/2 at zenith (corresponding
to φ = 90 and 180◦). Hermans orientation parameter takes the values 0 for isotropy and
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1, −0.5 for full orientation perpendicular and parallel to the loading direction, respec-
tively. Figure 11 shows the evolution of the orientation parameter of the azimuthal trend
corresponding to the four peaks identified in the radial plots.

The evolution of the anisotropy of peaks 1 and 3 (Anano
1 and Anano

3 ) is similar, but with
opposing sign, for each of the two considered spatial points. For point A, the evolution of
the anisotropy of peaks 1 and 3 is as follows: (1) a small change until line scan 20; (2)
a rapid decrease/increase (decrease for peak 1 and increase of peak 3) between line scan
20 and 40; (3) a slower decrease/increase until line scan 61; (4) a moderate change during
unloading/reloading. The evolution of Anano

2 is similar to Anano
1 . Peak 4 becomes slightly

oriented in the direction perpendicular to the loading. Significant permanent orientation
of peaks 1, 2 and 3 is present after unloading; see Figure 11 line scan 79. Similar to the
evolution of the third principal stretch, Λmeso

III , the evolution of Anano for peaks 1, 2 and 3
at point B is much like the evolution at the lower point, but slightly delayed. At point B
the rapid change of Anano of peaks 1, 2 and 3 begins at line scan 40 and continues until
the unloading after line scan 61.
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Figure 11: Hermans orientation parameter, Anano, for the four fitted peaks seen in the
radial plots in Figure 6: peak 1 ( • ), peak 2 ( ■ ), peak 3 ( ▲ ) and peak 4 ( ∗ ) at
point A (dashed lines) and point B (solid lines).

It should be noted that the decrease of the orientation parameter of peak 1 is due to
an increase of the intensity parallel to the loading direction while for peaks 2 and 3 the
increase is due to a decrease of intensity parallel and a slight increase perpendicular to
the loading; see Figure 10. For peak 4 the increase of the orientation parameter is due
to a decrease of the intensity along the loading direction and not due to an increase of
intensity perpendicular to the loading direction. This indicates: (1) a loss of order in the
microstructure perpendicular to the loading related to peaks 2, 3 and 4 and increase of
order for peak 1; (2) an increase of order parallel to the loading for peaks 2 and 3.
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4 Conclusions

Using WAXS and DIC with in-situ uni-axial loading, the deformation of amorphous glassy
polycarbonate has been measured simultaneously over a range of length-scales. This has
revealed a non-affine relation between the observed deformation on the macro- and meso-
scale and the deformation of the microstructure.

A first result from this work is that the WAXS measurements of in-situ loading, have
revealed that the amorphous halo at q = 12 nm−1 (in the undeformed state) consists of two
peaks (Figure 6). Previously, this halo has been seen as a single peak. In total four peaks
have been identified in the studied q-range, which are attributed to: correlations between
consecutive carbonate groups along the chain (q = 6.2 nm−1, d = 1.0 nm); correlations
between neighbouring chains (q = 11.8 nm−1, d = 0.53 nm); correlations between closely
positioned entities along the chain (q = 12.7 nm−1, d = 0.49 nm); a mixture of inter- and
intramolecular correlations (q = 18 nm−1, d = 0.35 nm), cf. Lamers et al. (1992).

The characteristic force peak, seen in the macroscopic force-displacement curve (Figure
2), is preceded by the change in slope of the mesoscopic stretch (Λmeso

III ) from the DIC, at the
centre point of the specimen (point A) (see Figure 4). At approximately the same line scan
(line scan 20), the Hermans orientation parameters for WAXS peaks 1, 2 and 3 (from the
same spatial point) show an increasing orientation of the microstructure, due to an increase
of order of the chains in the direction of the loading and a loss of order between chains
oriented perpendicular to the loading. The increase of Hermans orientation parameter of
peak 2 (seen in Figure 11) suggests that the orientation of neighbouring chains is dominated
by an alignment parallel to the loading direction, due to a loss of order of chains oriented
perpendicular to the loading. The decrease of the orientation parameter of peak 1 indicates
an alignment of the polymer chains parallel to the loading. Due to the deformation, peak
3 becomes aligned towards the direction perpendicular to the loading. This behaviour
may be explained by conformational changes due to the deformation and the non-linear
structure of the polycarbonate molecule; cf. Figure 12.

The local yield, identified as a rapid increase of Λmeso
I in Figure 4, is preceded by the

nanoscopic stretches λnano,∥
1 and λ

nano,∥
3 attaining a more or less constant value, see Figure

9. This indicates that the chains stretch until they reach a maximum elongation after which
they start to slide past each other, leading to a non-recoverable reorganisation of the chains.
The evolution of the anisotropy (Anano

1 and Anano
3 ) shows that the reorganisation of the

microstructure continues after λ
nano,∥
1 and λ

nano,∥
3 reach maximum values. This further

supports that the yield at the studied length-scale is caused by activation of a permanent
reorganisation of the microstructure.

After macroscopic unloading, the nanoscopic stretch curves determined from the WAXS
peak shifts (Figure 9) show small permanent stretching within the polymer chains whilst
there is significant permanent deformation between neighbouring chains. This suggests
that the plastic deformation, at the considered microscopic level, is due to reorganisation
of the chain network and not due to permanent deformation of the individual chains. The
permanent deformation at the considered molecular level is however not of the order of the

15



C

CH3

CH3

O

C

O

O O

C

O

O

n

1.0 nm

Figure 12: Sketch of a repeating unit of the polymer chain indicating the bent structure
of the polycarbonate molecule. The distance between consecutive carbonate groups along
the chain is indicated in the figure. A more detailed discussion of the molecule structure
of PC is found in Červinka et al. (1991).

permanent deformation at the macro- or mesoscopic level.
In summary, novel observations on the deformation and reorientation of the microstruc-

ture and their relation to the meso- and macroscopic deformation have been presented
herein. These observations provide new insights into the mechanisms of deformation in
amorphous, glassy polymers and pave the way for development of enhanced constitutive
models with a correct micro-mechanical basis and calibrated evolution of anisotropy.
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Abstract

Recent multi-scale experiments have been used to develop a micro-mechanically
motivated constitutive model for amorphous glassy polymers. Taking advantage of
the experiments, the model makes use of a microstructural deformation gradient to
incorporate the experimentally obtained deformation of the microstructure, as well as
its evolving orientation. It is shown that this approach is able to predict accurately
glassy polymer deformation over a wide range of length-scales, from the macroscopic
response (mm range) down to the deformation of the microstructure (nm range). The
proposed model is evaluated by comparing the numerical response to experimental
results on multiple scales from an inhomogeneous cold drawing experiment of glassy
polycarbonate. Besides the macroscopic force-displacement response, a qualitative
comparison of the deformation field at the surface of the specimen is performed.
Furthermore, the predicted evolution of the fabric orientation is compared to exper-
imental results obtained from X-ray scattering experiments. The model shows very
good agreement with the experimental data over a wide range of length scales.
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1 Introduction

Due to favourable mechanical and manufacturing properties, glassy polymers are commonly
used for containers or substitute for glass in the electronics and automotive industry. In
such applications, glassy polymers are load carrying which implies that they risk being
subjected to complex deformation phenomena, such as necking, deformation hardening and
evolving anisotropy. The ability to accurately predict these phenomena is evidently of great
importance when simulating the mechanical response of polymer structures. Many existing
models are capable of capturing the global, macroscopic response of polymer structures in a
satisfactory manner. However, the ability to predict the local, inhomogeneous deformation
and the evolution of the microstructure in an experimentally motivated manner, which is
of great importance, e.g., under multi-axial deformation, is lacking in these models.

Boyce et al. (1988) modelled polymer networks using a 3-chain network model with
the chains aligned along the principal stretch axes. This approach is, however, unable to
accurately distinguish between different modes of deformation. To this end, Arruda and
Boyce (1991, 1993) reformulated the model using an eight-chain representation of the net-
work, which better captures the macroscopic mechanical behaviour found experimentally.
The eight-chain model is based on the assumption that a representative volume element
consists of eight polymer chains oriented along the diagonals of a cubic unit cell. With this
approach, the stretch will be the same in each of the eight chains and the chain stretch
can be expressed in terms of the principal stretches. Wu and van der Giessen (1993)
applied the so-called full-network model, that Treloar and Riding (1979) previously ap-
plied to rubber-like material under bi-axial deformation, to glassy polymers under general
three-dimensional loading. The full-network model considers a large number of chains to
mimic the polymer network using an orientation averaging involving a chain orientation
distribution function (CODF). The approach of using a CODF was later used by Harrysson
et al. (2010) in a model for non-affine deformation of polymer microstructure with evolving
anisotropy. Anand and Gurtin (2003) developed a thermodynamically consistent model
for amorphous polymers introducing an internal state variable representing the local free
volume. Using this approach, Anand and Gurtin were able to improve the non-linear pre-
peak behaviour displayed by many amorphous solids. The non-linear pre-peak behaviour
have also been addressed by Benzerga an co-workers, e.g. Chowdhury et al. (2008); Kweon
and Benzerga (2013). The approach of Anand and Gurtin (2003) was used to develop a
thermo-mechanically coupled theory in Anand et al. (2009) and Ames et al. (2009). Miehe
et al. (2009) formulated constitutive models in the logarithmic strain space using both the
eight-chain network model and a non-affine micro-sphere model. By formulating the model
using an additive split of the strain instead of the multiplicative split of the deformation
gradient, Miehe et al. could avoid the problem of determining the plastic rotation. Com-
mon to these models is that they combine isotropic elasticity, viscous plastic flow, to model
the segment motion in the polymer chains, and a strain hardening due to locking of the
polymer chains. The experimental observations, motivating the assumptions regarding the
deformation of the microstructure in these models are, however, limited.
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Traditionally, the characterisation of the mechanical response of polymers has been ad-
dressed mainly by the macroscopic force-displacement (or equivalently stress-strain) curves
from uni-axial or biaxial tensile and compression tests, e.g., G’sell and Jonas (1979); Boyce
and Arruda (1990); Boyce et al. (1994); Dreistadt et al. (2009), or from multi-axial deforma-
tion tests, e.g., Ravi-Chandar and Ma (2000); Qvale and Ravi-Chandar (2004); Chakkara-
pani et al. (2006). The mechanical response can also be characterised using indentation
tests from witch the macroscopic force-indentation depth response and/or the hardness is
retrieved, e.g., van Melick et al. (2003); VanLandingham et al. (2005). The influence of
the geometry of the indenter, the indentation rate and model parameters has been stud-
ied numerically by e.g. Tvergaard and Needleman (2011, 2012). As these approaches
gives the macroscopic force-displacement response, they evidently lack the ability to take
inhomogeneous deformation phenomena, such as necking in tension and barreling in com-
pression, into account, as the local response differs from the macroscopic in the presence of
inhomogeneous behaviour. To include inhomogeneous deformation in the characterisation,
full-field measurement techniques must be used, e.g., Parsons et al. (2004); Poulain et al.
(2013). With micro-mechanically based models, the need for more advanced experimental
techniques that can probe the molecular structure of the material is crucial. Available
techniques for studying the evolution of the microstructure of polymers include X-ray and
neutron scattering, e.g. Schubach and Heise (1986); Rössle et al. (1989); Stoclet et al.
(2010); Engqvist et al. (2014). Recent X-ray scattering experiments (cf. Engqvist et al.
(2016)) have shown that plastic deformation of amorphous glassy polycarbonate (PC) is, at
least partially, a result of reorganisation and reorientation of the polymer chain segments.
In the experiments by Engqvist et al., PC specimen were loaded in-situ during wide angle
X-ray scattering (WAXS) measurements with simultaneous full-field 3D-surface digital im-
age correlation (DIC) measurements of the mesoscopic deformation of the specimen. Using
this approach the deformation was measured simultaneously and locally over a wide range
of length-scales from the macroscopic down to the deformation of the molecular structure,
i.e. from the macro-scale to the nano-scale.

In this work, the evolution of the polymer network, revealed in the multi-scale experi-
ments by Engqvist et al. (2016), is incorporated in a constitutive model for the mechanical
behaviour of glassy polymers with finite elasto-viscoplastic deformation. The reorientation
of the microstructure is modelled using a separate, microstructural deformation gradient.
This approach was introduced by Wallin et al. (2003) and Wallin and Ristinmaa (2005)
to describe the deformation of the microstructure of metals, i.e., the crystal lattice. In
the present work, the polymer network is modelled using a large number of chains with
evolving directions as proposed by Harrysson et al. (2010). Using the proposed approach,
the local behaviour of the microstructure and the overall response are predicted accurately.

The paper is organised as follows. The experimental procedure is presented in Section 2
followed by the kinematic description of the continuum and the microstructure in Section
3. The steps that are taken for the model to fulfil the second law of thermodynamics
is presented in Section 4. The specific model is presented in Section 5 followed by an
evaluation of the model against experimental data in Section 6. The paper ends with
concluding remarks in Section 7.
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2 Experimental procedure

Cold drawing experiments with multi-scale deformation measurements were performed at
the I911-SAXS beamline at the synchrotron MAX IV Laboratory (Lund University, Lund,
Sweden), Labrador et al. (2013). The experiments involved continuous tensile loading
of notched specimens of glassy polycarbonate (PC) at room temperature. During the
experiments, deformation measurements were simultaneously performed at the surface of
the specimen, using DIC, and at the bulk of the material on the molecular scale, using
WAXS. The samples were loaded in-situ using a custom built tensile test machine with a
constant macroscopic displacement rate of 0.01 mm/min. Figure 1 shows the experimental
set-up inside the hutch of the beamline.

X-ray beam

DIC Cameras

Tensile test machine

Sample

Figure 1: Experimental set-up inside the hutch of the beamline showing the X-ray beam
path, the tensile test machine and the two DIC-cameras. The detector is placed down-
stream at 0.36 m from the sample position.

WAXS measurements, performed to investigate the evolution of the molecular structure
of the specimen during deformation, were made using a wavelength, λ, of 0.91 Å and a
sample-to-detector distance of 0.36 m resulting in a q-range of about 0.5 to 22 nm−1 (where
q = (4π/λ) sin θ and 2θ is the scattering angle). The scattering data were corrected for:
the transmission of the X-rays (estimated using the direct beam intensity measured on
the beamstop); the current specimen thickness (calculated from the DIC analysis); air
scattering (by subtracting the background scattering). The scattering was mapped using
line scans of 20 points, separated by 0.5 mm, along the centreline of the specimen with a
beam of 500× 500 µm2 to give local measurements.

Full-field 3D-surface DIC was used to measure the deformation at the surface of the
specimen in-situ, simultaneously with WAXS. By using two digital cameras, calibrated for
stereo-vision, the out-of-plane displacements as well as the in-plane displacements were
measured. When calculating the current thickness of the specimens using the out-of-plane
deformation (used to normalise the X-ray data), care was taken to remove rigid body
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motion from the DIC data. The image correlation, from which the displacement fields
were obtained, and the stereo-calibration were made using the commercial software Vic-
3D (Correlated Solutions Inc.). A random speckle pattern was applied on the specimen to
enable the correlation. The area where the X-ray beam hit the specimen was left unpainted
to avoid scattering by the paint. This resulted in a blank area in the deformation fields,
see Figure 7.

Using the method described above, the deformation was measured simultaneously over
a wide range of length-scales during the deformation of the specimen. The experimen-
tal results indicate that the deformation on the molecular level is not of the same order
of magnitude and do not follow the same evolution, as the macroscopic deformation. A
permanent reorientation of the polymer chains is seen as the major source of permanent de-
formation on the molecular scale. The experimental results indicate that the reorientation
of the chains is a result of the polymer chain segments being stretched to a limit stretch,
after which they start to slide past each other. Furthermore, the results show that the
polymer chain segments unload elastically with only a small residual deformation, when
the macroscopic force is removed, i.e., the intra-chain deformation is predominately elastic.
The result does, however, not exclude permanent deformation of the polymer chains due to
change of conformation, e.g. by unravelling of the chains. Full details on the experimental
procedure and results are found in Engqvist et al. (2014, 2016).

3 Kinematic description

Ω0
Ω

F

F vp F e

χ

e0

ē

e

Figure 2: Illustration of the kinematic description of the microstructure and the continuum.

3.1 Kinematic description of the continuum

The motion of a body is described by the non-linear mapping χ(X, t) from the reference
configuration Ω0 ∈ R3 at the time t0 to the current configuration Ω ∈ R3 at the time
t > t0, where X denotes the position of a material particle in the reference configuration,
see Figure 2. The position of a material particle in the current configuration is x = χ(X, t)
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and the deformation of the body is provided by the deformation gradient F , mapping
line segments from Ω0 to Ω with J = det(F ) > 0. To model elasto-viscoplasticity a
multiplicative split of the deformation gradient into an elastic and a viscoplastic part is
assumed, i.e.,

F = F eF vp, (1)

where F e and F vp defines the elastic and the viscoplastic deformation, respectively. The
multiplicative split (1) introduces a stress free intermediate configuration, cf. Figure 2.
Using the polar decomposition, the elastic and viscoplastic deformation gradients in (1)
can be decomposed into

F e = V eRe and F vp = V vpRvp, (2)

where Re and Rvp are the orthogonal elastic and viscoplastic rotation tensors and V e and
V vp are the symmetric, positive definite, left elastic and viscoplastic stretch tensors. Later,
the elastic rotation tensor will be assumed to be equal to unity, i.e. Re = 1 following Boyce
et al. (1988), which leads to a symmetric elastic deformation gradient, F e = F eT . The
spatial velocity gradient is defined as

l = Ḟ F−1, (3)

where a superposed dot denotes the material time derivative. The spatial velocity gradient
can be additively split into symmetric and skew-symmetric parts as

l = d+w, (4)

where d is the symmetric spatial rate of deformation tensor and w is the skew-symmetric
spatial spin tensor. Making use of (1), the spatial velocity gradient can be decomposed as

l = le + lvp = le + F eLvpF e−1, (5)

where the elastic and viscoplastic velocity gradients are defined as

le = Ḟ eF e−1 and Lvp = ˙F vpF vp−1, (6)

respectively. For later purposes the viscoplastic velocity gradient is additively decomposed
as

Lvp = Dvp +W vp, (7)

where Dvp is the symmetric viscoplastic rate of deformation tensor and W vp is the skew-
symmetric viscoplastic spin tensor. In the same manner as (7), the spatial form of the
viscoplastic velocity gradient, lvp = F eLvpF e−1, can be additively split as lvp = dvp+wvp.
The symmetric part of the spatial velocity gradient, dvp, is obtained by performing a
push-forward of Dvp to the current configuration using F e, i.e.

dvp = F eDvpF e−1. (8)
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Moreover, the right Cauchy-Green and the elastic right Cauchy-Green deformation tensors
are defined as

C = F TF and Ce = F eTF e, (9)

respectively. Taking the material time derivative of C and making use of (3) and (5) leads
to

F vp−T ĊF vp−1 = Ċ
e
+

˙̂
Cvp, (10)

where
˙̂
Cvp = 2sym[CeLvp], (11)

where sym[·] = 1
2
([·] + [·]T ) denotes the symmetric part of the tensor.

3.2 Kinematic description of the microstructure

Based on the results from the X-ray scattering experiments by Engqvist et al. (2016), which
indicate that the deformation of the molecular network differs from the macroscopic defor-
mation, it is assumed that the viscoplastic part of the deformation of the microstructure
can be described by a microstructural deformation gradient, denoted here as F̄ . F̄ maps
vectors related to the microstructure from the undeformed to the intermediate configura-
tion following Wallin et al. (2003) and Wallin and Ristinmaa (2005). The evolution of F̄
is assumed to be governed by

˙̄F = l̄F̄ , (12)

where l̄ is the microstructural velocity gradient. Similar to (7), the microstructural velocity
gradient is split into a symmetric and a skew-symmetric part, i.e. l̄ = d̄+w̄. Subsequently
d̄ and w̄ will be chosen as d̄ = ηDvp and the spin tensor w̄ = W vp, cf. Dafalias (2001).
Thus, the microstructural velocity gradient is postulated as

l̄ = ˙̄F F̄
−1

= ηDvp +W vp. (13)

The coefficient η in (13) is a constitutive parameter, associated with the deformation of
the microstructure. η is introduced to be able to include the difference in the deformation
levels on the macroscopic and microscopic scale, as motivated by the experimental data
of Engqvist et al. (2016). As a special case, if η = 1.0 the microstructural deformation
follows the viscoplastic part of the macroscopic deformation, other values of η results in a
deformation of the microstructure that differs from the macroscopic since l̄ will differ from
Lvp. In the same manner as for the continuum, the right Cauchy-Green tensor C̄ and the
Finger tensor b̄ associated with the deformation of the microstructure are defined as

C̄ = F̄
T
F̄ and b̄ = F̄ F̄

T
, (14)

respectively. Time differentiation of the Cauchy-Green deformation tensor associated with
the microstructural deformation provides

˙̄C = 2F̄
T sym[̄l]F̄ , (15)
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which will be useful later on. To include the rotation of the microstructure observed
in the experiment, a set of unit vectors, ē, describing the microstructural orientation is
introduced and obtained by mapping the vector e0 from the reference configuration using
the microstructural deformation gradient, F̄ , i.e.,

ē =
F̄ e0

∥F̄ e0∥
. (16)

Evidently, ē is a unit vector in the intermediate configuration, see Figure 2. The permanent
reorientation of the microstructure achieved through (16) is motivated by the experiment
of Engqvist et al. (2016), in which a clear permanent reorientation of the chain segments,
due to macroscopic deformation, is observed.

4 Thermodynamical basis

The second law of thermodynamics, which should be fulfilled for a physically sound model,
can be reformulated as the dissipation inequality. For simplicity, isothermal conditions will
be assumed throughout this paper. Expressed in terms of the Kirchhoff stress tensor, τ ,
and the rate of deformation tensor, d, the dissipation inequality takes the following form

D = τ : d− ψ̇ ≥ 0, (17)

where ψ is the Helmholtz free energy per unit volume in the reference configuration. It is
assumed that the Helmholtz free energy can be divided into an elastic part, ψe, described
through Ce and an inelastic part, ψie, described through C̄, i.e.,

ψ(Ce, C̄) = ψe(Ce) + ψie(C̄). (18)

Inserting (18) into the dissipation inequality (17) and utilising the arguments of Coleman
and Gurtin (1967) together with (10) and Ċ = 2F TdF , the dissipation inequality can be
rewritten as

D =
∂ψe

∂Ce :
˙̂
Cvp − ∂ψie

∂C̄
: ˙̄C ≥ 0 (19)

and the Kirchhoff stress tensor, τ , can be expressed as

τ = 2F e ∂ψ
e

∂CeF
eT . (20)

Using (20) together with (8), (11), the evolution law (13) and (15), the dissipation inequal-
ity (19) is reduced to

D = (Σ−B) : Dvp ≥ 0, (21)

where Σ is the Mandel stress defined as Σ = F eTτF e−T and B is referred to as the
back-stress defined as

B = 2ηF̄
∂ψie

∂C̄
F̄

T
. (22)
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Since ψe is an isotropic function in Ce, it can be shown that the Mandel stress tensor
is symmetric and corresponds to a rotation of the Kirchhoff stress, i.e. Σ = ReTτRe.
Finally, it is noted that since, Re = 1, the dissipation inequality (21) can be written as

D = (τ −B) : Dvp ≥ 0. (23)

Next, the specific model will be discussed.

5 Specific model

5.1 The elastic free energy

In the present model, elastic anisotropy is neglected and the elastic part of the free energy,
ψe, is chosen as

ψe =
1

2
K(Ie1)

2 + 2GJe
2 , (24)

where K and G are the bulk and shear modulus, respectively. The invariants in (24) are
defined as

Ie1 = tr[lnV e] and Je
2 =

1

2
(lnV e)dev : (lnV e)dev. (25)

These invariants are related to the volumetric and isochoric part of the deformation, re-
spectively. The superscript dev denotes the deviatoric tensor defined as [·]dev = [·]− 1

3
tr[·]I

where tr[·] is the trace of the tensor. Using (20) and (24) the Kirchhoff stress, τ , is given
as

τ = KIe11+ 2G(lnV e)dev. (26)

5.2 The plastic free energy

The polymer network is assumed to consist of n number of ideal chains per unit volume,
each of which is built up by N rigid segments of equal length l. Using non-Gaussian chain
statistics, the Helmholtz free energy for a single ideal polymer chain at a constant absolute
temperature, θ, is described by

ψchain = kNθ

(
λrL−1(λr) + ln

L−1(λr)

sinhL−1(λr)

)
− ψ0, (27)

cf. Treloar (1975); Wu and van der Giessen (1993); Miehe et al. (2009), where

λr =
λNW

√
N

(28)

is the relative network stretch, λNW is the network stretch,
√
N is the limit stretch of a

chain, k is Boltzmann’s constant, ψ0 is an arbitrary constant and L−1 is the inverse of
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the Langevin function defined by L[·] = coth[·] − 1/[·]. The total inelastic free energy is
assumed to be given as

ψie = nψchain. (29)

Using (27), (28), (29) and making use of the chain rule, the backstress (22) can be calculated
as

B = 2ηF̄
∂(nψchain)

∂λNW

∂λNW

∂C̄
F̄

T
= 2ηCR

√
NL−1(λr)F̄

∂λNW

∂C̄
F̄

T
, (30)

where CR = nkθ is a constitutive parameter known as the rubber modulus. In the micro-
sphere model by Miehe et al. (2004), a stretch fluctuation field acting on the chain stretch,
was introduced to multiplicatively links the chain stretch to the network stretch. The
fluctuation field is assumed to be constrained by the condition that the average chain
stretch is equal to the average network stretch in terms of the m-root average. This yields
a closed form for the network stretch, λNW , calculated as an average of the chain stretches,
λ̄, using the m-root average operator, i.e.,

λNW = m

√⟨
(λ̄)m

⟩
, (31)

cf. Miehe et al. (2004). Choosing the parameter m to be equal to m = 2, which will be the
case in this study, leads to an affine relation between λ̄ and λNW . The orientation average,
or homogenisation, of any quantity [·] is given by

⟨[·]⟩ = 1

4π

∫
U2

[·]dA, (32)

where U2 represents the unit sphere. The stretch λ̄, in the direction of the microstructural
unit vector ē, is denoted as the chain stretch which is related to the change of the end-to-
end distance of a polymer chain. The chain stretch is chosen as

λ̄ =
√
ē · b̄ē. (33)

Using the stretch expressions (31) and (33) together with (30) leads to the following ex-
pression for the backstress (30),

B = ηCR

√
NL−1(λr)

(
λNW

)1−m
F̄

⟨(
λ̄
)m−2

[
2sym[m0C̄]

∥F̄ e0∥
− (λ̄)2m0

]⟩
F̄

T
, (34)

with m0 = e0 ⊗ e0 where ⊗ denote the dyadic product.

5.3 Viscoplastic flow and strain hardening

The macroscopic viscoplastic part of the rate of deformation is given by

Dvp = γ̇vpN , (35)

10



where γ̇vp is the plastic shear strain rate and the flow direction N is assumed to be aligned
with the driving stress τ̃ , i.e.,

N =
1√
2τ

τ̃ dev, τ =

√
1

2
τ̃ dev : τ̃ dev. (36)

The driving stress, τ̃ , is defined as

τ̃ dev = τ dev −Bdev. (37)

The plastic shear strain rate γ̇vp is taken as

γ̇vp = γ̇0 exp

[
−Ass

θ

(
1−

(
τ

ss

)5/6
)]

, ss = s+ αp, (38)

as proposed by Argon (1973), where γ̇0 and A are model parameters, τ is the equivalent
stress defined in (36), p = −1

3
tr(σ) is the pressure, σ = 1

J
τ is the Cauchy stress, J = det(F )

and α is the pressure dependence factor. Boyce et al. (1988) proposed an evolution of the
athermal shear stress, ṡ, to incorporate the stress softening behaviour of glassy polymers.
The expression for the athermal shear stress is s = s1 + s2 and the evolution laws of the
hardening parameters are

ṡ1 = h1

(
1− s1

sss

)
γ̇vp, s1(0) = s0,

ṡ2 = h2γ̇
vp, s2(0) = 0,

(39)

where h1, h2, s0 and sss are model parameters. In (39), s1 is the athermal shear stress from
the original model while s2 was introduced by Holopainen and Wallin (2013) to overcome
the problem of over-predicting the Bauchinger effect on unloading as shown by Dreistadt
et al. (2009).

6 Model evaluation

In this section, the capacity of the developed model is investigated by simulating the
mechanical response of glassy polycarbonate (PC). The model is calibrated to uni-axial and
plane strain compression experiments with assumed homogeneous deformation. After this,
the calibrated model is compared to a full-scale inhomogeneous deformation experiment.
For this purpose, the model was implemented as a user-defined material model (UMAT)
in the commercial software Abaqus R⃝/Standard.

Details about the numerical treatment of the orientation average in (32) is presented
in A. In the numerical implementation, the inverse Langevin function in (34) is evaluated
using the Padé approximation proposed by Cohen (1991), i.e. L−1(x) ≈ x(3−x2)/(1−x2).
The algorithmic treatment of the model is discussed in B.
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6.1 Homogeneous deformation

For the calibration, a fixed Cartesian coordinate system was introduced by the orthonormal
basis vectors Ex, Ey and Ez. For uni-axial and plane strain conditions the deformation
can be characterised by the deformation gradient

F = λxEx ⊗Ex + λyEy ⊗Ey + λzEz ⊗Ez. (40)

The uni-axial deformation was achieved by deformation controlled loading in the Ez di-
rection, while the unknown stretches, λx = λy, ensure that the constraint on the Cauchy
stress components, σx = σy = 0, was satisfied. Plane strain compression was achieved by
loading in the Ez direction and simultaneously preventing deformation in the Ey direction,
i.e., λy = 1. As for the uni-axial deformation, the extra unknown, λx, was solved to satisfy
σx = 0.

Uni-axial and plane strain compression data of PC were taken from Ames et al. (2009)
and Boyce et al. (1994), respectively. Both sets of tests were performed at room tempera-
ture using a constant strain rate of | ˙lnλz| = 10−2 s−1. During the calibration, the elastic
parameters, Young’s modulus and Poisson’s ratio were kept fixed as E = 2300 MPa and
ν = 0.3, respectively. The values of the elastic parameters were taken to coincide with
those found in Boyce et al. (1994). Furthermore, the parameter m in (31) was kept fixed
at m = 2. To investigate the influence of the coefficient η, the calibration was performed
using different values of this parameter. The constitutive parameters, obtained using a
least-squares fitting, are shown in Table 1.

Table 1: Constitutive parameters obtained by calibrating the model to data for uni-axial
compression by Ames et al. (2009) and plane strain compression by Boyce et al. (1994).

η s0 sss h1 h2 γ̇0 A CR N α
- MPa MPa MPa MPa s−1 MPa−1K MPa - -

0.25 70.2 35.8 156 26.1 4.51·1010 342 42.1 1.30 0.08
0.50 70.2 36.5 155 27.0 4.51·1010 342 16.1 1.80 0.08
0.75 70.2 37.2 156 29.0 4.51·1010 342 7.50 2.41 0.08
1.0 70.2 36.3 154 39.3 4.51·1010 342 2.87 3.18 0.08

The macroscopic stress-strain curves from the calibration are presented in Figure 3.
From these curves it is clear that the proposed model is able to capture the macroscopic
response, regardless the value of η, within the studied range. To fully characterise the
material it is, however, insufficient to only study macroscopic curves and more advanced
experimental techniques must be employed. Next, the proposed model will be evaluated
by comparison to experimental data from WAXS and full-field deformation measurements
from DIC.
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Figure 3: Stess-strain response for uni-axial and plane strain compression. The solid lines
represent the simulated response, fitted to the experimental data using four values of η.
The dashed lines show experimental data for uni-axial compression by Ames et al. (2009)
and plane strain compression by Boyce et al. (1994).

6.2 Inhomogeneous deformation

To further evaluate the predictive capacity of the developed model, a three-dimensional
cold drawing experiment of a notched polycarbonate (PC) tensile specimen, as discussed
in Section 2, was simulated. The geometry of the tensile specimen is shown in Figure 4.
The specimen was subjected to a displacement controlled elongation by a displacement, u,
of the top and bottom surfaces whereas the other surfaces were traction free; see Figure
4. A constant displacement rate of u̇ = 5 · 10−3 mm/min was used during loading and
unloading. The final displacement before unload was 2u = 3.35 mm. Due to symmetry,
only an eighth of the geometry was taken into consideration during the simulation. The
analysed part of the geometry was discretised using a finite element mesh consisting of
27 062 eight node C3D8 brick elements, see Figure 4.

u

u

25
m
m

20 mm

5 mm

8 mm

10
m
m

A
B

Figure 4: Undeformed geometry and finite element mesh of the analysed structure.

The ability of the proposed model to capture local inhomogeneous deformation phe-
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nomena is investigated by comparing contour plots of the major principal stretch, λ1, from
the model with those measured using DIC, λDIC

1 . Since the DIC measures the deformation
at the surface of the specimen, an assumption on the gradient of the out-of-plane dis-
placement is needed. Engqvist et al. (2016) assumed that the deformation is homogeneous
through the thickness of the specimen. Using this assumption, the deformation gradient
can be written as

FDIC =

1 + ∂u
∂X

∂u
∂Y

0
∂v
∂X

1 + ∂v
∂Y

0
∂w
∂X

∂w
∂Y

1 + 2w
t0

 (41)

in a fixed Cartesian coordinate system, where u, v and w are the displacements measured
by DIC at the surface and t0 is the thickness of the undeformed specimen in the Ez, out-
of-plane, direction. The principal stretches are calculated using the spectral decomposition
of the Cauchy-Green deformation tensor evaluated using FDIC , i.e.,

CDIC = FDIC,TFDIC =
3∑

i=1

(λDIC
i )2N i ⊗N i, (42)

where λDIC
1 ≥ λDIC

2 ≥ λDIC
3 are the principal stretches and N i, i = 1, 2, 3, are the

corresponding principal directions.
It was shown previously, in Figure 3, that for each value of η it was possible to obtain a

set of material parameters such that the macroscopic force response could be matched. As
η controls the evolution of the microstructure, i.e., the re-orientation of the polymer chain
network, advantage will be taken of the experimental data obtained by Engqvist et al.
(2016) to determine the value of this parameter. In these experiments, the evolution of the
orientation distribution of carbonate groups along the polymer chain were measured during
loading by WAXS. The experimental findings will be compared to the model predictions
to obtain a micro-mechanically justified value of η.

The evolution of the anisotropy from the simulation is visualised using a chain orien-
tation distribution function (CODF) defined as

F = F0
λ3ODF

det(F̂ )
, where λODF = ∥F̂ e0∥, (43)

and F̂ = F eF̄ is the mapping of the microstructure to the current configuration. It is
assumed that the elastic part of the microstructural deformation follows the macroscopic
elastic deformation. F0 in (43) is the value of the CODF in the reference configuration, cf.
Harrysson et al. (2010); Dafalias (2001). Since the initial state is assumed to be constant
and isotropic, the factor F0 becomes F0 =

1
4π

. Figure 5 shows the CODFs before unload, at
the end of the loading, for different values of η compared to experimental data from WAXS
by Engqvist et al. (2016). The CODFs in Figure 5 are visualisations of data extracted from
two spatial points, A and B, shown in Figure 4; Point A is the centre point of the specimen
and point B is located 3 mm from the centre point along the centreline. The experimental
data in Figure 5 shows the orientation distribution of carbonate groups along the polymer
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chain, i.e. the orientation of the chain segments, obtained in Engqvist et al. (2016). To
be comparable to the experimental results, the CODFs are computed using the through
thickness average of F̂ . As seen in Figure 5, η = 1.0 (the microstructural deformation
follows the viscoplastic part of macroscopic deformation) overestimates the reorientation
of the microstructure to a large extent whereas an η close to 0.75 predicts the reorientation
accurately.

Pt. A

Pt. B

η = 0.25 η = 0.50 η = 0.75 η = 1.0

Figure 5: Visualisation of the microstructural orientation at two points on the specimen,
point A and B, defined in Figure 4, using different values of the parameter η. The results
are taken before unload, load step (d) shown in Figure 7. The dotted lines show the outer
contour of the orientation distributions obtained experimentally from WAXS. The colors
of the CODFs from the simulations are to emphasis the amount of orientation.

To further analyse the reorientation of the microstructure obtained in the simulation
to the experiments, the degree of orientation is calculated using the Hermans orientation
parameter (cf. Roe (2000); Ran et al. (2002)),

Anano =
3 ⟨cos2 ϕ⟩ − 1

2
, (44)

where ⟨
cos2 ϕ

⟩
=

∫ π/2

0
I(ϕ) cos2 ϕ sinϕdϕ∫ π/2

0
I(ϕ) sinϕdϕ

(45)

(not to be confused with the orientation average in (32)), I is the intensity related to
consecutive carbonate groups along the polymer chain (or the value of the CODF, F )
and ϕ is the azimuthal angle, being zero perpendicular to the macroscopic loading and
π/2 parallel to the loading. The Hermans orientation parameter takes the values 0 for
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isotropy and 1 or −0.5 for full orientation perpendicular or parallel to the loading direction,
respectively.

A comparison of the orientation parameters from the experiments and from the simu-
lation for different values of η is shown in Figure 6. The overall trend of the orientation
parameter is captured well by the model. Again, it is shown that if the microstructural
deformation is assumed to follow the viscoplastic macroscopic part, i.e., η = 1.0, the reori-
entation of the microstructure is largely overestimated. To capture the level of orientation
shown in the experiments, η should have a value between 0.5 and 0.75. Based on these
observations, η = 0.75 will be used in the remaining discussion.
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Figure 6: Hermans orientation parameter of the CODF (solid lines) and the experimental
data (dashed lines) for the two spatial points shown in Figure 4.

Contour plots of λDIC
1 are presented in Figure 7 at five load steps, from DIC and from

the proposed model using η = 0.75. To be comparable to the experiments, the stretch
from the simulation is calculated using the same approximation of the deformation gradient
as for the experiments, i.e., using (41). The presented steps represents the macroscopic
deformation stages shown in the load curves in Figure 7: (a) just before the peak force; (b)
post-peak (0.5 mm after the peak force); (c) plateau (midway between the peak force and
unload); (d) before unload; (e) fully unloaded. To avoid influence of the compliance of the
loading system, the displacement was extracted from the displacement fields measured with
digital image correlation. Even though the maximum stretch level is in general slightly
underestimated, especially in the localisation band just after the macroscopic force peak
(step (b)), the stretch fields from the proposed model show very good agreement with the
experiment. The proposed model is able to capture local features of the stretch field such
as: the thin localisation bands just after the force peak at load step (b); the hourglass
shape between the notches at load step (c); the evolution of the localised zone between the
notches with further loading and unloading (steps (c)-(e)).

The evolution of the principal stretches, for η = 0.75, is shown in Figure 8, extracted
from the two spatial points, A and B. Figure 8 shows that the proposed model is able to
capture the local evolution of the stretch well.
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Figure 7: Contour plots of the major principal stretch, λDIC
1 , from experiment (top row),

the proposed model using η = 0.75 (bottom row). The stretch fields are presented at the
load steps (a)-(e) shown in the macroscopic force-displacement curves on the far left.
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Figure 8: Principal stretches from the simulations (solid lines) and experiments for the two
spatial points shown in Figure 9.

Figure 9 shows the evolution of the microstructural anisotropy, from the simulation and
measured using WAXS by Engqvist et al. (2016), at the spatial points A and B. The CODFs
in Figure 9 show the evolution of the microstructure from an isotropic state to a strong
alignment towards the longitudinal direction as the specimen necks and the localisation
front propagates along the specimen (steps (b)-(d)). After the macroscopic unload (step
(e)), the CODFs show significant permanent alignment. The predicted evolution of the
anisotropy shows good qualitative agreement with the experimental data.
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Figure 9: Visualisation of the microstructural orientation at two points on the specimen,
point A and B, at the load steps shown in Figure 7. The results are from simulations using
η = 0.75. The experimental results from WAXS (dotted lines), show the outer contour of
the orientation distributions. The colorbars are related to the strain fields, not the CODFs
whose colors are to emphasis the amount of orientation.

7 Concluding remarks

A new a physically-motivated, microstructural deformation gradient based model has been
proposed to describe the mechanical behaviour of amorphous glassy polymers at finite
elasto-viscoplastic deformation. The evolution of the microstructural deformation gradient
is motivated by recent advanced multi-scale measurements of the deformation of PC made
simultaneously over a wide range of length-scales. It is shown that to fully evaluate the
predictive capacity of micro-mechanically based models, data from multi-scale experiments
probing the microstructure of the material is needed. Furthermore, the polymer network
is modelled using a large number of chains with evolving directions resulting in permanent
reorientation of the microstructure, as indicated by the experiments.

The predicted evolution of the microstructural orientation from the model, visualised
using a chain orientation distribution function, shows good qualitative agreement with
wide angle X-ray scattering data. Furthermore, the predicted degree of orientation of
the microstructure, quantified using Hermans orientation parameter, also agrees well with
the experimental results. The comparison shows that the evolution of the anisotropy is
captured by the proposed model in a physically sound manner, when choosing the mi-
crostructural parameter η based on relevant experimental data. By accurately predicting
the behaviour of the underlying microstructure, the proposed model is able to capture
inhomogeneous deformation phenomena, such as strain localisation, as well as the overall
evolution of the deformation, measured using digital image correlation.

The good agreement between the numerical results and the experimental data, over
a wide range of length-scales, indicates the great potential of accurately predicting the
mechanical behaviour of glassy polymers using the proposed model. Furthermore, models
that are able to a accurately predict the evolution of the anisotropy are of great impor-
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tance when predicting the mechanical behaviour under multi-axial deformation as well as
predicting inhomogeneities such as strain localisation, damage and fracture.
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A Orientation average

The orientation average in (32) is evaluated by discretising the unit sphere into M orien-
tation vectors {ei

0}i=1,...,M , i.e.,

⟨[·]⟩ = 1

4π

∫
U2

[·]dA ≈
M∑
i=1

[·]iwi, (46)

where {wi}i=1,...,M are the corresponding weight factors. The accuracy of the integration
will increase with the number of directions, at the expense of increasing computational
work. Miehe et al. (2004) concluded that for an isotropic setting, i.e. constant influence in
all directions, a 42-point integration scheme was sufficient. With evolving anisotropy, the
situation is more delicate since the chains will become aligned and concentrated in certain
directions. To reduce the numerical error, the number of integration points needs to be
increased. In this work, 368 integration points, as suggested by Heo and Xu (2001), is used
for integration over the unit sphere.

B Algorithmic treatment

The algorithmic treatment of the constitutive relations used in this work is described in
detail in Holopainen and Wallin (2013) and is therefore, only briefly be summarised below.
An implicit Euler scheme combined with the exponential update is used to update the
unknown variables, which results in the residual functions:

R1 = F e − FF vp−1
n exp (−∆t(Dvp +W vp)) ,

R2 = F̄ − exp (∆t(ηDvp +W vp)) F̄ n,
R3 = F eT − F e,
R4 = W vpT +W vp,

R5 = (s1 − s1n − h1

(
1− s1

sss

)
γ̇vp∆t)/s0,

R6 = (s2 − s2n − h2γ̇
vp∆t)/s0.

(47)
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An exponential approximation is used to update the plastic and microstructural deforma-
tion gradients. The tensor exponent in (47) is calculated using the Padé approximation
(cf. Steinmann and Stein (1996)). In (47), [·]n refers to the quantity from the last state
of equilibrium and ∆t > 0 is the time increment. The antisymmetric plastic spin tensor,
W p, is introduced to satisfy the constraint, Re = 1. The non-linear system in (47) is
solved using a Newton-Raphson iteration scheme. To this end, the residual functions are
collected in the vector, R = [R1 R2 R3 R4 R5 R6]

T and the unknown variables are col-
lected in the vector, Y = [F e W vp F̄ s1 s2]

T . The updated variables are calculated as
Y n+1 = Y n +∆Y where

∆Y = −J−1R and J =
∂R

∂Y
(48)

is the Jacobian, obtained through automatic differentiation using the tool OpenAD Utke
et al. (2008).
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Abstract

Experimental data are needed to evaluate constitutive models. The richer the ex-
perimental data, in terms of different deformation modes for example, the better the
constraints on the model. To this end, the mechanical response of glassy polycarbon-
ate (PC) is studied using biaxial tension experiments. Deformation fields, measured
using full-field digital image correlation (DIC), reveal a large difference in the strain
localisation behaviour of the material, depending on the amount of lateral deforma-
tion. The difference in the localisation behaviour is also reflected in the macroscopic
force-displacement response. The experimental data acquired in experiments are used
to examine the ability of a physically-motivated constitutive model to predict the me-
chanical response of glassy PC during biaxial deformation. To improve the numerical
predictions, the elastic part of the constitutive model is modified such that the initial
non-linear response due to volumetric deformation is accurately captured. This new
elastic model is motivated by the experimental results that show that the commonly
used quadratic form of the elastic free energy results in a too stiff response during
biaxial tension.

1



1 Introduction

Polycarbonate (PC) is an amorphous polymer with a relatively high glass transition tem-
perature, a high impact strength and good optical properties. Due to theses favourable
features, PC is often used in industry and consumer products such as safety glass, machine
guards and containers. Glassy amorphous polymers, such as PC at room temperature, are
commonly used as load carrying components in which the material will likely be subjected
to multi-axial loading conditions and complex deformation history. The understanding
of, and the ability to predict, the mechanical properties and the evolution of the material
under mechanical load is, therefore, of great importance during the design process of such
components.

Over the years, a considerable amount of work has gone into refining the constitutive
models for predicting the mechanical behaviour of glassy polymers. Many models make
use of non-Gaussian chain statistics to represent the macromolecular network. Boyce et al.
(1988) proposed a 3-chain model to represent the polymer network using the non-Gaussian
statistical model by Wang and Guth (1952). As the 3-chain model was unable to accu-
rately distinguish between different states of deformation, Arruda and Boyce (1991, 1993)
proposed a model using eight chains to represent the polymer network that better captures
the mechanical behaviour found experimentally. In the 8-chain model, the chains extend
from the centre to the corners of a unit cube. Wu and van der Giessen (1993) showed that
the three- and eight-chain models can represent an upper and lower bound for the network
stiffness, respectively. Motivated by this, Wu and van der Giessen (1993) proposed a linear
combination of the two models. In the same paper, they also used the full-network model
by Treloar and Riding (1979) to model the response of glassy PC under three-dimensional
loading. The full-network model uses a chain orientation distribution function (CODF)
to distribute a large number of chains during deformation. Later, Harrysson et al. (2010)
proposed a model capable of having a non-affine evolution of the microstructure using a
CODF.

Many amorphous solids exhibit a non-linear response at small strains prior to a stress
peak. Different approaches have been suggested to predict the smooth, pre-peak transi-
tion.Hasan and Boyce (1995) developed a one-dimensional framework for the viscoplastic
flow of glassy polymers, using a set of internal state variables to describe the evolution of
the microstructure. The flow theory by Hasan and Boyce, which is based on evolution of
free volume, is able to predict a smooth pre-peak transition. This flow theory was later
implemented in a three-dimensional setting by Miehe et al. (2011). Anand and Gurtin
(2003) used a single internal state variable related to the local free volume to capture the
non-linear pre-peak behaviour. Chowdhury et al. (2008) used a different approach to im-
prove the small strain behaviour by splitting the variable related to the strain softening,
introduced by Boyce et al. (1988), into two parts, which results in a smooth transition
from elastic to plastic response compared with the original model.

When characterising the mechanical response of polymers, the focus has often been
on the macroscopic stress-strain response from uni-axial or multiaxial compression tests
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where the deformation is measured at the boundaries of the specimen, or using an exten-
someter, cf. e.g. Arruda et al. (1995); Dreistadt et al. (2009); Ames et al. (2009). For
such macroscopic response to be representative, the deformation must be homogeneous
within the gauge length, i.e. necking, barreling or buckling are not allowed. When the
deformation is inhomogeneous the need for full-field measurement techniques that pro-
vide displacement measurement at a large number of measurement points is evident. One
available full-field technique is digital image correlation (DIC) where the deformation is
measured by tracking the motion of pixel subsets in images taken of a specimen during dif-
ferent stage of deformation, cf. Parsons et al. (2004, 2005); Grytten et al. (2009); Poulain
et al. (2013). As full-field measurements can be applied to experiments performed under
inhomogeneous condition, the outcome of such experiments can provide richer informa-
tion about the material behaviour. By performing experiments under multiaxial and/or
inhomogeneous deformation conditions, a few tests can be used to identify large sets of
constitutive parameters, cf. Hild and Roux (2006); Avril et al. (2008). Multiaxial loading
can be achieved in several ways, such as: multiaxial compression (e.g. Ravi-Chandar and
Ma (2000)); using tube specimen and combining pressure with axial and/or torsional loads
(e.g. Hu et al. (2003)) or biaxial tension loading (e.g. Chevalier et al. (2001); Johlitz and
Diebels (2011)).

Various approaches, many of which use relatively pure deformation modes, have been
used to evaluate the performance of constitutive models. Tests performed under uni-
axial, simple shear or plane strain conditions where the experimental data consists of the
macroscopic response has been used by, e.g., Boyce and Arruda (1990); Tomita (2000);
Harrysson et al. (2010); Holopainen and Wallin (2013) to validate the performance of the
models developed within each work. As has been discussed above, to capture inhomoge-
neous deformation experimentally, full-field methods should be utilised. In the works by,
e.g., Miehe et al. (2009) and Engqvist et al. (2016b) DIC has been used in combination
with uni-axial tension tests of dog-bone shaped or notched specimens to evaluate constitu-
tive models. By comparing the simulated response to measured deformation fields, a more
comprehensive evaluation of the model is possible, as not only the macroscopic response of
the structure is available for comparison but also local variations of the deformation can
be studied. While a comparison to uni-axial tensile experiments tests the ability to cap-
ture inhomogeneous deformation in terms of necking and neck propagation, it does not, in
general, include much information about the influence of shear or volumetric deformation.
To this end, more general deformations have been studied by e.g., combined tensile and
shear deformation of glassy PC by Holopainen and Wallin (2013), biaxial tensile loading
of silicone rubber by Johlitz and Diebels (2011) and creasing of paperboard by Borgqvist
et al. (2015).

An aggravating factor when studying more complex deformation is the general lack of
experimental data, since this often requires non-standard test equipment. To this end,
biaxial tensile experiments of glassy PC have been conducted within this work. The de-
formation of the specimen is measured using full-field 3D-surface DIC. The experimental
data are used to explore, and improve, the ability of the physically-motivated constitutive
model by Engqvist et al. (2016b) to predict the mechanical response of glassy PC.
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2 Preliminaries

Referring to the coordinate system defined in Figure 1, the x, y and z directions are denoted
lateral, axial and out-of-plane or thickness direction, respectively. Second order tensors and
vectors are denoted by bold-face Roman letters and the second order unit tensor is denoted
by 1. The transpose and the inverse of a second order tensor are denoted as [·]T and [·]−1,
respectively. The superscript [·]dev denotes the deviatoric part of a second order tensor,
defined as [·]dev = [·] − 1

3
tr[·]1 where tr[·] denotes the trace of the tensor. The symmetric

part of a second order tensor is denoted as sym[·] = 1
2
([·]+ [·]T ). A superposed dot denotes

the material time derivative, i.e., ˙[·]. The dyadic product is denoted as ⊗.

3 Experimental procedure

The experiments involved biaxial cold drawing of amorphous glassy PC to study the be-
haviour during multi-axial deformation. During the experiments, the mesoscopic deforma-
tions, at the surface of the specimens, were measured using DIC. Asymmetrically notched
specimen, designed to focus the deformation into a well defined area, were machined from
2 mm thick sheets of commercial PC, see Figure 1a. By having an offset of the notches,
the geometry promotes shear deformation between the notches when stretched uni-axially.
All experiments have been performed at room temperature.
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Figure 1: (a) The dimensions of the specimen used in the biaxial deformation experiments
and (b) the boundary conditions during loading and simulation. The area where the
deformation is measured using DIC is indicated in (b).
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3.1 Biaxial tensile testing

Biaxial loading was performed using a custom built tensile test device equipped with two
motors, arranged in a cruciform manner, see Figure 2. Harrysson and Ristinmaa (2008)
used the same device previously to study the biaxial response of paperboard. The device
allows for independent control of the motors, making it possible to apply non-proportional
loading along the two loading axes. All four grips are fitted with ball bearings to allow
them to move freely sideways, see Figure 1b. As the loading device is designed to let the
grips move sideways without resistance, and to not constrain the specimen, the compliance
of the machine is larger than when using fixed grips. To compensate for this compliance,
the loading system was equipped with a camera system to track the displacements close to
the grips. This system consisted of a 5-Megapixel camera and a Raspberry Pi computer
which acquired images with an approximate frame rate of 3 frames per second and an
inhouse developed point-tracking code. During the experiments, the displacements of the
moving grips and the axial forces were recorded using linear displacement sensors and load
cells, respectively. The deformation at the surface of the specimen was measured using
3D-surface DIC, zoomed in on the area surrounding the notches to gain spatial resolution,
see Figure 1b.

SpecimenMarkers

Moving grips

(a) (b)

Figure 2: (a) The experimental set-up showing the biaxial tensile test device and a spec-
imen. (b) Zoomed in at the specimen with applied speckle pattern and markers for the
point-tracking.

To study the influence of lateral deformation, experiments were performed with a fixed
macroscopic deformation rate of |v̇| = 1 mm/min in the axial direction while the defor-
mation in the lateral direction was varied; see Figure 1. Three different load cases were
used with the following deformations in the lateral direction: (1) traction free; (2) half
the displacement rate as in the axial direction; (3) same displacement rate as in the axial
direction. The different load cases are summarised in Table 1. Due to the compliance of
the tensile device, the resulting displacement rates in the lateral direction differed slightly
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from the intended ones. It is, however, assumed that the overall results of the experiments
is unaffected by the deviation from the intended displacement rates. Note that the true
displacements were measured by tracking the markers on the specimens.

Table 1: The different load cases used in the experiments.
Load case umax |u̇| vmax |v̇|

mm mm/min mm mm/min

1 Free 3 1
2 1.5 0.5 3 1
3 3 1 3 1

3.2 Digital image correlation

Full-field 3D-surface DIC was used to measure the deformation at the surface of the spec-
imen during loading. Two Prosilica GT6600 (Allied Vision Technologies) 29-Megapixel
digital cameras, calibrated for stereo-vision, where used for the DIC system. The stereo-
vision enabled measurement of both the in-plane and the out-of-plane deformation. As
PC exhibits large out-of-plane deformations when the specimen necks in tension, the out-
of-plane measurement is needed. The commercial software Vic-3D (Correlated Solutions)
was used for the stereo calibration and the image correlation. A correlation window size of
61× 61 and a step size of 7 pixels were used during the image correlation. Due to the lack
of texture of the specimen surface, a random speckle pattern was applied on the surface to
enable the correlation, see Figure 2b.

The displacement field acquired from DIC was used to approximate the deformation
gradient using the closest neighbouring windows on a regular, 7 pixel, grid. When calculat-
ing the deformation gradient, the out-of-plane displacement must be approximated since
the DIC only measures the deformation at the surface of the specimen. By assuming that
the deformation is homogeneous through the thickness of the specimen, the deformation
gradient can be expressed as

FDIC =

1 + ∂u
∂X

∂u
∂Y

0
∂v
∂X

1 + ∂v
∂Y

0
∂w
∂X

∂w
∂Y

1 + 2w
T0

 (1)

in a fixed Cartesian coordinate system, where u, v and w are the displacements in the x,
y and z direction (see Figure 1b), measured at the surface using DIC. The thickness of
the undeformed specimen in the z-direction (out-of-plane direction) is denoted T0. In the
following, the major principle stretch, λDIC

1 , will be used as a deformation measure. The
principal stretch is calculated using the spectral decomposition of the right Cauchy-Green
deformation tensor calculated using FDIC , i.e.,

CDIC = FDIC,TFDIC =
3∑

i=1

(λDIC
i )2N i ⊗N i, (2)
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where λDIC
1 ≥ λDIC

2 ≥ λDIC
3 are the principal stretches and N i, i = 1, 2, 3, are the

corresponding principal directions.

4 Experimental results

Figure 3 shows the macroscopic response from three tests, where the displacements are
measured using the point tracking system discussed in Section 3.1. The macroscopic force-
displacement curves in the axial direction show a significant dependence on the deformation
in the lateral direction. Load cases 1 and 3 show a broad, s-shaped macroscopic force peak
whereas only one peak with a rapid decrease of the force is visible in load case 2. The initial
stiffness in the axial direction increases as the amount of lateral deformation increases. As
will be shown later, the stiffness does not increase as much as predicted by the commonly
used quadratic form of the elastic free energy.
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Figure 3: Characteristic macroscopic force-displacement curves from the three different
load cases. The markers indicate the load steps from which contour plots of the major
principle stretch from DIC, λDIC

1 , are presented in Figure 4. The straight, dashed lines
show the initial stiffness in the axial direction for each load case. As a comparison, the
initial stiffness in load case 1 is shown as dotted lines in load cases 2 and 3.
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Figure 4 presents contour plots of the major principle stretch from DIC, λDIC
1 , in which

an explanation for the different macroscopic responses can be found. The contour plots
from load cases 1 and 3 show that the first drop in the macroscopic force (load steps (i)-(ii)
shown in Figure 3) is associated with the formation of pairs of localisation bands close to the
notches while the second force drop (load steps (ii)-(iii)) is associated with the formation
of a localisation band connecting the two previous localisations. The double localisation
bands associated with the first force drop in load cases 1 and 3 are not as pronounced in
load case 2, but the sharp force peak is rather associated with the formation of a single
localisation band between the notches at the force peak (load steps (i)-(ii)). Another
significant difference, shown by the DIC, is the inclination angle of the localisation band
that eventually is formed between the notches. For load case 1, the inclination angle is
about 30◦ while the angle for the two other load cases is about 10◦ going the other direction,
see load step (iii) in Figure 4.
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Figure 4: Contour plots of the major principle stretch measured using DIC, λDIC
1 , from

the different load cases. The load steps, for which the contour plots are presented, are
shown in Figure 3. The white lines at load step (i) show from where the section line plots
in Figure 5 are extracted.

To study the progress of the strain localisation cross the specimen, line section plots
of λDIC

1 are presented in Figure 5. The stretch in Figure 5 is plotted along the vertical
lines indicated in Figure 4. At load step (i), the deformation along the line section shows
small variations for all three load cases. The line plots for load case 1 show the formation
of the two pairs of localisation bands at load step (ii) which is followed by the central
localisation band going across the specimen at load step (iii). After the formation of the

8



central localisation, the progress of the smaller localisation pairs decreases significantly
and further deformation occurs mainly in the central localisation. For the two other load
cases, the section line plots show a single localisation formed in the centre of the notches at
load step (ii) and (iii) for load case 2 and 3, respectively. As the macroscopic deformation
progress, the width of the localisation zone increases along with increasing stretch levels.
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Figure 5: Section line plots of the major principle stretch, λDIC
1 , at the load steps shown

in Figure 3. The stretch is extracted along the line indicated in Figure 4 midway between
the notches.

5 Model description

In the following, the model developed by Engqvist et al. (2016b) is used. For completeness
the model is summarised below. However, the elastic response of the model is modified
based on the experimental results presented in the preceding section.

5.1 Kinematic

The different configurations used to describe the motion of a body are shown in Figure 6
where the regions that are occupied by the body at time t0 and time t > t0 are denoted
as the reference configuration Ω0 and current configuration Ω, respectively. The kinematic
quantities are summarised Table 2.

Motivated by the X-ray scattering experiments of Engqvist et al. (2016a), Engqvist
et al. (2016b) introduced separate deformation gradients to describe the deformations of
the macro- and microstructures. The microstructural deformation gradient, denoted F̄ ,
maps vectors related to the microstructure from the undeformed reference configuration
to the intermediate configuration. The microstructural velocity gradient, l̄ = ˙̄F F̄

−1, is
split into a symmetric and a skew-symmetric part as l̄ = d̄+ w̄ where d̄ is the symmetric
part and w̄ is the skew-symmetric part. Following Dafalias (2001), d̄ and w̄ is chosen as
d̄ = ηDvp and w̄ = W vp, i.e.,

l̄ = ηDvp +W vp, (3)
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Figure 6: Illustration of the kinematic description of the continuum and the microstructure.

where Dvp is the macroscopic viscoplastic rate of deformation, W vp is the macroscopic
viscoplastic spin tensor and η is a constitutive parameter associated with the deformation
of the microstructure. If η ̸= 1, the deformation of the microstructure will differ from the
macroscopic deformation since l̄ will differ from Lvp. The right Cauchy-Green tensor C̄
and the Finger tensor b̄ associated with the deformation of the microstructure are defined
as

C̄ = F̄
T
F̄ and b̄ = F̄ F̄

T
, (4)

respectively.
The experiments by Engqvist et al. (2016a) showed a permanent reorientation of the

chain segments due to macroscopic deformation. This reorientation is included in the
model by a set of unit vectors, ē, describing the orientation of the microstructure. The
vector ē is obtained by mapping e0 in the reference configuration using the microstructural
deformation gradient, i.e.,

ē =
F̄ e0

∥F̄ e0∥
, (5)

as obtained by a mapping of e0 using F̄ , where ē is a unit vector in the intermediate
configuration, cf. Figure 6.

5.2 Specific model

The evolution of the macroscopic viscoplastic deformation is given by

Dvp = γ̇vpN , (6)

where γ̇vp is the plastic shear strain rate. The direction of the viscoplastic flow, N , is
assumed to be aligned with the deviatoric part of driving stress τ̃ dev, i.e.,

N =
1√
2τ

τ̃ dev, τ =

√
1

2
τ̃ dev : τ̃ dev, (7)
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Table 2: Kinematic quantities
χ(X, t) Motion
F = ∇Xχ, J = det(F ) > 0 Deformation gradient
F = F eF vp Elasto-viscoplastic split of F
F e = V eRe, Re = 1 Polar decomposition of F e

F vp = V vpRvp Polar decomposition of F vp

l = Ḟ F−1 = le + F eLvpF e−1 Spatial velocity gradient
Lvp = ˙F vpF vp−1 = Dvp +W vp Additive split of the viscoplastic velocity

gradient
C = F TF Right Cauchy-Green deformation tensor
Ce = F eTF e Elastic right Cauchy-Green deformation

tensor
F̄ Microstructural deformation gradient
l̄ = ˙̄F F̄

−1
= d̄+ w̄ = ηDvp +W vp Microstructural velocity gradient

C̄ = F̄
T
F̄ Microstructural right Cauchy-Green defor-

mation tensor
b̄ = F̄ F̄

T Microstructural Finger tensor

ē =
F̄ e0

∥F̄ e0∥
Orientation vector

with the driving stress, τ̃ dev, defined as

τ̃ dev = τ dev −Bdev, (8)

where τ is the Kirchhoff stress and B is the backstress.
The elastic response of the model is assumed to be isotropic and described by the

isotropic strain energy ψe that is split into a volumetric part and an isochoric part, i.e.
ψe = ψe,vol + ψe,iso. The two parts of the elastic free energy are chosen as

ψe,vol =
K1

2
(ln Je)2 +K2 arctan(β(J

e − 1))(Je − 1)− K2

2β
ln
(
(β(Je − 1))2 + 1

)
(9)

and
ψe,iso = 2GJe

2 , (10)

where the invariant Je
2 is defined as

Je
2 =

1

2
(lnV e)dev : (lnV e)dev. (11)

In the special case of K2 = 0, (9) is reduced to the commonly used quadratic form of
the elastic free energy. Comparison of the modelled macroscopic response and those from
the experiments presented in Section 4, shows that the quadratic formulation is able to
capture the initial macroscopic response during uni-axial deformation, but it predicts a
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too stiff biaxial response (see Figure 10). Motivated by this experimental observation,
the volumetric free energy is augmented with the term related to K2, which results in a
softer initial response with biaxial deformation. Furthermore, using the proposed form
of the elastic free energy it is possible to capture the non-linear, pre-peak behaviour of
the material in a more satisfactory manner. In (9) and (10) β, K1, K2 and G are model
parameters where G represents the initial shear modulus. To get the correct initial stiffness,
K2 is chosen as K2 =

K−K1

β
where K is the initial bulk modulus.

Based on the strain energies (9) and (10), the Kirchhoff stress, τ , is given as

τ = 2F e ∂ψ
e

∂CeF
eT = (K1 ln J

e +K2J
e arctan(β(Je − 1)))1+ 2G(lnV e)dev. (12)

The viscoplastic response is described by the inelastic free energy assumed to be given as

ψie = nψchain, (13)

where n is the number of polymer chains per unit volume and ψchain is the Helmholtz free
energy for a single polymer chain taken as

ψchain = kNθ

(
λrL−1(λr) + ln

L−1(λr)

sinhL−1(λr)

)
− ψ0, (14)

cf. Treloar (1975), where k is Boltzmann’s constant,
√
N , is the limit stretch of the chain,

θ is the absolute temperature, ψ0 is an arbitrary constant and L−1 is the inverse of the
Langevin function defined by L[·] = coth[·]− 1/[·]. The inverse Langevin function in (14)
is evaluated numerically using the Padé approximation proposed by Cohen (1991), i.e.
L−1(x) ≈ x(3 − x2)/(1 − x2). Similar to the Kirchhoff stress, the backstress is given by
(14) as

B = 2ηF̄
∂ψie

∂C̄
F̄

T
= ηCR

√
NL−1(λr)

(
λNW

)1−m
F̄ B̂F̄

T
, (15)

where CR = nkθ is the rubber modulus and B̂ is

B̂ =

⟨(
λ̄
)m−2

[
2sym[m0C̄]

∥F̄ e0∥
− (λ̄)2m0

]⟩
, (16)

where m0 = e0 ⊗ e0. The relative network stretch, λr, is given as

λr =
λNW

√
N
, (17)

where λNW is the network stretch calculated as the m-root average of the chain stretches,
λ̄, given as

λNW = m

√⟨
(λ̄)m

⟩
, (18)
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cf. Miehe et al. (2004). The orientation average of a quantity [·] is given by integration
over the surface of the unit sphere U2. Numerically, the integration is approximated as

⟨[·]⟩ = 1

4π

∫
U2

[·]dA ≈
M∑
i=1

[·]iwi, (19)

where the unit sphere is discretised into M points and wi
i=1,...,M are the corresponding

weight factors. By increasing the number of discretisation points, the accuracy of the
numerical integration will increase. This will, however, come at the cost of increasing
computational time. Since the evolving anisotropy will result in an alignment of the
microstructure into certain directions, 368 integration points will be used to reduce the
numerical error, cf. Alastrué et al. (2009).

The chain stretch, λ̄, related to the change in the end-to-end distance of a polymer
chain is chosen as

λ̄ =
√
ē · b̄ē . (20)

The plastic shear strain rate, γ̇vp, is given by the double-kink model proposed by Argon
(1973) as

γ̇vp = γ̇0 exp

[
−Ass

θ

(
1−

(
τ

ss

)5/6
)]

, ss = s+ αp, (21)

where γ̇0 and A are model parameters, s is the athermal shear stress, the equivalent stress
τ is defined in (7), p = −1

3
tr(σ) is the pressure calculated using the Cauchy stress, σ = 1

J
τ ,

and α is the pressure dependence factor. The athermal shear stress s = s1+ s2 is governed
by the evolution laws

ṡ1 = h1

(
1− s1

sss

)
γ̇vp, s1(0) = s0,

ṡ2 = h2γ̇
vp, s2(0) = 0,

(22)

where h1, h2, s0 and sss are constitutive parameters. The first part of the athermal shear
stress, s1, is the shear stress from the original model by Boyce et al. (1988) while s2 was
introduced by Holopainen and Wallin (2013) to overcome the problem of over-prediction
of the Bauchinger effect on unloading.

6 Numerical evaluation of the model

The capability of the proposed model is demonstrated in this section by simulating the
mechanical response of glassy PC during homogeneous and inhomogeneous deformation.
First, the model is calibrated to uni-axial and plane strain compression experiments, in
which the deformation is assumed to be homogeneous. After this, the model is used to
simulate full-scale biaxial deformation experiments with inhomogeneous deformation using
the commercial software Abaqus R⃝/Standard. Details on the algorithmic treatment of the
model is given by Engqvist et al. (2016b).
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6.1 Model calibration

The model was calibrated by fitting the macroscopic stress-strain response to uni-axial
compression data from Ames et al. (2009) and plane strain compression data from Boyce
et al. (1994). A detailed description of the calibration procedure is given in Engqvist et al.
(2016b). By comparing the model response to wide angle X-ray scattering data, Engqvist
et al. (2016b) showed that by choosing the microstructural parameter to be η = 0.75, the
orientation of the microstructure was captured accurately by the model. The constitutive
parameters, found using a least-square fitting of the model to the experimental data, are
found in Table 3. The elastic parameters E, Young’s modulus, and ν, Poisson’s ratio, were
taken from Boyce et al. (1994) whereas K1 and β were calibrated to fit the experimental
biaxial response presented in this study. For the biaxial calibration, a full three dimensional
simulation was performed of load case 3, as described in Section 6.2. In addition, the
parameter m in (18) was kept fixed at m = 2.

Table 3: Constitutive parameters obtained by fitting the model to data for uni-axial com-
pression by Ames et al. (2009) and plane strain compression by Boyce et al. (1994).

E ν K1 β η s0 sss h1 h2 γ̇0 A CR N α
MPa - MPa - - MPa MPa MPa MPa s−1 K

MPa MPa - -

2300 0.3 480 1000 0.75 70.2 34.7 152 26.4 4.51·1010 342 10.5 2.53 0.10

The macroscopic stress-strain curves from the calibration are shown in Figure 7, pre-
sented together with the experimental data. Both sets of tests were performed using a
constant strain rate of | ˙lnλ| = 10−2 s−1. As seen in Figure 7, the calibrated model is able
to capture the macroscopic response in a satisfactory manner. Next, the model will be
evaluated by comparing the predicted response to the deformation fields measured using
DIC.
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Figure 7: Stress-strain response for uni-axial and plane strain compression from the model
(solid lines) and experiment (dotted lines).
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6.2 Simulations of biaxial deformation

To demonstrate the predictive ability of the model, the response of glassy PC during biaxial
loading has been simulated and compared to results from the experiments discussed in
Section 3. The geometry, shown in Figure 1, was discretised using a finite element mesh
consisting of 10 404 eight node C3D8 brick elements, see Figure 8. Four elements were
used through the thickness of the geometry and a vast majority of the elements were placed
around the notches. Due to assumed symmetry in the thickness direction, only one half
of the geometry was simulated. The boundary conditions in the simulation are shown in
Figure 1.

.

Figure 8: Finite element mesh, zoomed in at the area surrounding the notches.

A comparison of the macroscopic response from the model to that from the experiments
is shown in Figure 9 and the model is shown to be able to capture the macroscopic force-
displacement response well for all three load cases. The initial stiffness, the pre-peak non-
linearity and the overall peak behaviour are captured well by the model. The deviation
during unloading is due to a slow response of the test machine when changing from loading
to unloading, resulting in some relaxation of the material.
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Figure 9: Comparison of the macroscopic response from the proposed model (solid lines)
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Figure 10 shows the initial response using the proposed format for the elastic free energy,
cf. (9) and (10), and a quadratic format (using the same Young’s modulus and Poisson’s
ratio). The remaining material parameters for the model using the quadratic format of
the elastic free energy are taken from Engqvist et al. (2016b). As seen in Figure 10, the
conventional quadratic format results in a significantly stiffer initial response, compared to
the proposed format and the experimental data. It is also shown that the proposed format
(9) is able to capture the non-linear, pre-peak behaviour in a more satisfactory manner
than the quadratic format.
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Figure 10: Comparison of the macroscopic initial response from the experiments, the model
using the proposed elasticity and the model using the quadratic format of the elastic free
energy.

Contour plots of the major principle stretch, λDIC
1 , from the experiments and the

simulations are compared qualitatively in Figures 11 to 13. As shown by the contour
plots, the model is, to a large extent, able to reproduce the measured deformation fields
well. The predicted stretch levels in load steps (iv) and (v) are, however, slightly lower
than shown by the experiments and the width of the localisation bands are, in general,
somewhat over predicted.

The microstructural deformation gradient, F̄ , contains information about the anisotropy
of the material. To visualise the evolution of the anisotropy, a chain orientation distribu-
tion function (CODF), is used. Figure 14 shows the reorientation of the microstructure at
the centre point of the specimen for the three load cases. The CODF, used to visualise the
microstructure, is defined as

F = F0
λ3ODF

det(F̂ )
(23)

where λODF = ∥F̂ e0∥, F̂ = F eF̄ is the mapping of the microstructure to the current
configuration and F0 is the value of the CODF in the reference configuration. It is assumed
that the initial state of the material is isotropic and homogeneous, i.e. F0 = 1

4π
(cf.

Harrysson et al. (2010); Dafalias (2001)).
The CODFs in Figure 14 show a significant evolution of the anisotropy of the material

at the centre point between the notches. As seen in Figure 14, the reorientation of the
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Figure 11: A comparison of the contour plots of the major principle stretch, λDIC
1 , from

the experiments and the simulation for load case 1.
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Figure 12: A comparison of the contour plots of the major principle stretch, λDIC
1 , from

the experiments and the simulation for load case 2.

microstructure at the centre point is modest before passing the macroscopic force peak
at load step (iii). The considerably reorientation taking place between load steps (ii)
and (iii) is, as seen in Figures 11 to 13, related to the formation of the localisation band
connecting the two notches. As the macroscopic loading continuous, the alignment gets
more pronounced.

The degree of anisotropy and the orientation can be quantified using the anisotropy
factor, AF , and the orientation angle, χ (proposed by Cinader and Burghardt (1998) to
characterise the anisotropy of 2D azimuthal profiles of small angle X-ray scattering data).
AF takes the value 0 for isotropy and 1 for perfect orientation. Details about AF and χ
are given in Appendix A.
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Figure 13: A comparison of the contour plots of the major principle stretch, λDIC
1 , from

the experiments and the simulation for load case 3.
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Figure 14: Visualisation of the evolving orientation of the microstructure at the centre
point of the specimen for the three load cases using the CODF defined in (23). The colors
of the CODFs are to emphasis the amount of orientation.

Figure 15 shows AF and χ of the CODFs from the centre point of the specimen, for
the three load cases. Both quantities in Figure 15 are shown as functions of the local value
of the major principle stretch, λDIC

1 , extracted from the model at the centre point of the
specimens. In Figure 15b, 0◦ corresponds to the direction parallel to the axial direction.

The evolution of the anisotropy for the three load cases is shown in Figure 15a. As the
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Figure 15: Evolution of the anisotropy factor, AF , of the CODF and the average orientation
angle,χ, of the CODF at the centre point of the specimen for the three load cases. Both
quantities are plotted as functions of the local value of the major principle stretch, λDIC

1 .
As reference points, load steps (i) and (iii) (shown in Figure 14) are marked on the curves.

local stretch increases, the degree of anisotropy increases, from an initial isotropic state,
in a similar fashion for all load cases, even though load case 1 shows a slightly higher
degree of anisotropy in the later stage of the loading. During unload, all load cases show
an decreasing degree of anisotropy.

While the evolution of AF is similar, the average orientation angle shown in Figure 15b
differs significantly between the three load cases. This can also been seen in Figure 14,
which shows a different rotation angle of the CODFs for the three load cases. The curves in
Figure 15b show a rapid change of the orientation angle when approaching the macroscopic
force peak at λDIC

1 ≈ 1.05 (at load step (i)). As the local stretch increases further, the
orientation angles for both load cases 1 and 3 deviate more from an alignment towards the
axial direction (0◦). For load case 2, the orientation angle is almost constant until load
step (iii), after which the angle increases towards 0◦.

7 Concluding remarks

The biaxial tension experiments performed in this work show that the mechanical response
of glassy PC is significantly influenced, both on the macroscopic and mesoscopic scale, by
the amount of lateral deformation. The deformation fields, measured using DIC, reveal a
large difference in the localisation behaviour depending on the loading. In two of the load
cases, the strain localisation is initiated as two pair of smaller localisation bands, which
evolve into a single localisation going across the specimen. For the third load case, a single
localisation band going across the specimen is formed directly and the smaller bands is not
as pronounced as for the other load cases.

The experimental results have been used to evaluate and refine the physically-motivated
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constitutive model developed by Engqvist et al. (2016b). By deforming PC specimens
biaxially, it is found that, even though the model by Engqvist et al. is able to capture the
uni-axial response in a satisfactory manner, the initial biaxial response is too stiff. To this
end, a new format of the elastic free energy is proposed that results in a better prediction of
the initial response during biaxial loading. The proposed format for the elastic free energy
also results in a better prediction of the non-linear pre-peak behaviour and an overall better
prediction of the macroscopic peak. It should be noted that to observe the deviation in the
initial response, experiments performed under multi-axial loading were required. Using the
proposed format of the elastic free energy, the model is able to capture the macroscopic
mechanical response for the three load cases considered within this study. The model is also
able to capture well the overall mesoscopic response in terms of the strain field, compared
to full-field 3D-surface DIC.
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A Anisotropy tensor

The anisotropy tensor proposed by Cinader and Burghardt (1998) is defined as

A =

[
A11 A12

A21 A22

]
=

[
{cos2 ϕ} {cosϕ sinϕ}

{cosϕ sinϕ} {sin2 ϕ}

]
, (24)

where {[·]} is

{[·]} =

∫ π

0
[·]F (ϕ)dϕ∫ π

0
F (ϕ)dϕ

(25)

calculated from a 2D profile of the outer contours of the CODF projected onto the xy-
plane, cf. Figure 1b. In (24) and (25), ϕ is the azimuthal angle and F (ϕ) is the value of
the CODF as a function of the azimuthal angle. Cinader and Burghardt (1999) introduced
the anisotropy factor as the difference between the eigenvalues of A, i.e.,

AF =
√
(A11 − A22)2 + 4A2

12, (26)

which is 0 for isotropy and 1 for perfect orientation. The average orientation angle, χ, is
given by the direction of the eigenvector associated to the largest eigenvalue of A.
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