
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Security Solutions for Constrained Devices in Cyber-Physical Systems

Gunnarsson, Martin

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Gunnarsson, M. (2020). Security Solutions for Constrained Devices in Cyber-Physical Systems. [Licentiate
Thesis, Department of Electrical and Information Technology]. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/46a4059e-a35d-42e2-91b7-2f228316614f

Security Solutions for Constrained
Devices in Cyber-Physical Systems

Martin Gunnarsson

Advisors: Martin Hell, Christian Gehrmann
Faculty opponent: Patrik Ekdahl

Academic dissertation which, by due permission of the Faculty of Engineering at Lund University,
will be publicly defended on Friday March , , at :, in lecture hall E:B at the Faculty of

Engineering, for the degree of Licentiate of Philosophy in Engineering.

ISBN ---- (printed)
ISBN ---- (electronic)
Series of licentiate and doctoral theses
No. 
ISSN -X

Martin Gunnarsson
Department of Electrical and Information Technology
Lund University
Box 
SE-  Lund
Sweden

Typeset using LATEX.
Printed in Sweden by Tryckeriet i E-huset, Lund, .

©  Martin Gunnarsson
Published articles have been reprinted with the permission from the respective
copyright holder.

iii

Abstract

Industrial Control Systems (ICS) are becoming more and more connected. While
connecting systems increases flexibility productivity in ICS, it also introduces risks
and security vulnerabilities. Media have reported several cyberattacks against ICS,
and security is a top priority in the next generation of ICS. High availability re-
quirements and severe consequences of cyber-attacks make securing ICS a chal-
lenging problem.

In the next generation of industrial control systems, often called Industry .,
most parts are assumed to be connected. These connected things are classified as
Industrial Internet of Things (IIoT). The scale of deployment of these IIoT devices
requires special considerations and solutions.

This thesis will present work on security for industrial control systems and
cyber-physical systems. The contributions include protocols for secure communi-
cations in small, connected IIOT devices and schemes for security life cycle man-
agement of industrial control systems.

On the topic of protocols, this contribution consists of two papers. The first
is an evaluation of the recently standardized protocol OSCORE, in terms of effi-
ciency, to investigate its suitability for constrained devices. We also, in the second
paper, propose a novel way of encrypting sensor data in transit to a remote server
for analytics so that the sender’s identity remains hidden.

The long lifetimes of ICS require the management of devices over an extended
time. On this topic, we also include two papers. In the first, we have utilized the
new concept Digital Twin, for a security architecture where physical components
are synchronized to a Digital Twin, to keep track of their security status. In the
final paper, we observed that long lifetimes of devices in ICS also introduces the
problem of how to deal with the ownership change. We have designed a protocol
that transfers the ownership of IoT devices from one entity to another.

v

Acknowledgements

First, I want to thank my primary supervisor, Christian Gehrmann. During my
work, he has always supported me, given me invaluable feedback, and guided me
in my work. My other supervisor, Martin Hell, also deserves a big thanks for his
valuable input and guidance during my work.

A special thanks have to go to Ludwig Seitz. He can take credit for leading me
onto the research path. He also has been a good and thoughtful supervisor and
always a great company.

I also want to thank the rest of the Ph.D. students and Seniors in the Crypto
and Security group. You have all helped to create an excellent research environ-
ment and a fun place to work.

A special thanks go to Joakim, who combines the roles of sounding board and
the first line of help and support, to be an ideal officemate and friend.

Thanks also to my colleagues at RISE. To the Cybersecurity Lab, I want to
thank you for fruitful collaborations and an inspiring research climate. I want to
give a special thanks to Simon, for his invaluable help with Tamarin Prover and to
Marco and Richard for their willingness to help and guide me with the intricacies
of OSCORE.

To my RISE colleagues in Lund, a special thanks go to Arash and Thomas.
Thank you for your patience and support during my time at SICS and then RISE.

Last but not least, I want to thank my family and friends. Thank you for your
support and understanding during long nights and weekends of work. To my dear
family: mom Karin, dad Svante, and siblings Maria and Olof. Thank you so much
for your unyielding support and encouragement. I doubt I would have been able
to finish this thesis without you.

Martin
Lund, March 

vi

List of included Publications

The following papers are included in this dissertation:

Paper I Martin Gunnarsson, Christian Gehrmann “Secure Ownership Transfer
for the Internet of Things”. In The th International Conference on Infor-
mation Systems Security and Privacy, ICISSP , Valletta, Malta, , in
print.

Paper II Christian Gehrmann, Martin Gunnarsson “An Identity Privacy Preserv-
ing IoT Data Protection Scheme for Cloud Based Analytics”. In  IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, ,
pp. -, IEEE.

Paper III Martin Gunnarsson, Joakim Brorsson, Francesca Palombini, Ludwig
Seitz, Marco Tiloca “Evaluating the Efficiency of OSCORE in Constrained
Environments”. Submitted to Ad Hoc Networks - Special Issue on Commu-
nication and Security in Communicating Things Networks.

Paper IV Christian Gehrmann, Martin Gunnarsson “A Digital Twin Based In-
dustrial Automation and Control System Security Architecture”. In IEEE
Transactions on Industrial Informatics, vol. , no. , pp. -, Jan.
, IEEE.

The work Martin Gunnarsson did for each paper is listen in Chapter Chapter .

vii

Other Contributions

Martin Gunnarsson has also contributed to the following manuscripts, not in-
cluded in this thesis.

• Ludwig Seitz, Marco Tiloca, Martin Gunnarsson and Rikard Höglund: ”Se-
cure Software Updates for Critical Infrastructure”. Under review in IEEE
Conference on Communications and Network Security (CNS).

Contents

Abstract iii

Acknowledgements v

List of included Publications vi

Contents ix

 Introduction 
. Dissertation Outline . 

 Background 
. Industrial Control Systems . 
. Constrained Devices . 
. Object Security . 
. Secure Ownership Transfer . 
. Digital Twin . 

 Contributions and Conclusions 
. Contributions . 
. Conclusions . 

References 

Included Publications 

I Secure Ownership Transfer for the Internet of Things 
 Introduction . 
 Related work . 

x CONTENTS

 System model and assumptions 
 Adversarial model and problem description 
 IoT infrastructure ownership transfer model and protocol design 
 Implementation and experimental evaluations 
 Security analysis . 
 Conclusion . 
References . 

II An Identity Privacy Preserving IoT Data Protection Scheme for Cloud
Based Analytics 
 Introduction . 
 System scenario . 
 Problem setting . 
 Design overview and notations 
 Key generation and distribution 
 Data protection . 
 Security analysis . 
 Performance figures . 
 Related work . 
 Conclusion and future work 
References . 

III Evaluating the Efficiency of OSCORE in Constrained Environments 
 Introduction . 
 Related Work . 
 Background . 
 Motivation and Objectives . 
 Protocol description . 
 Evaluation of Payload and Network Overhead 
 Experimental Evaluation Method 
 Results and Discussion . 
 Conclusion . 
References . 

IV A Digital Twin Based Industrial Automation and Control System Secu-
rity Architecture 
 Introduction . 
 Digital twin concept, related work and definitions 
 Adversary model and security requirements 
 A digital twin based security architecture and state replication design 
 Security analysis . 
 Proof of concept and performance evaluation 
 Conclusion and future work 

CONTENTS xi

References . 

Popular Science Summary in Swedish 

Introduction

Computers have penetrated every aspect of our society. Few things are manufac-
tured today that do not contain a microprocessor or computing device. Many of
these digital devices interact with the physical world, making them cyber-physical
systems (CPS).

One type of cyber-physical system is industrial control systems (ICS). These
production systems can be factories or electrical grids, to name a few examples.
In the middle of the th century, the existing industrial systems started becom-
ing digitalized. First, the programmable logic controllers (PLC) replaced electric
switches. Later, the PLCs gained increased sophistication with network capability.

The first change with the digitalization of industry has been called Industry
.. Now, Industry . is being introduced as the next evolutionary step of the
industry. Industry . is a step towards more automated systems coupled with
computing devices. Industry . will enable optimization of production flows
and more efficient production. Much of this is achieved with increased connectiv-
ity between parts in the system. The increased connectivity in industrial control
systems, together with the proliferation of connected cyber-physical systems, has
led to more systems being connected to the internet. While connectivity provides
many advantages, it also opens systems to remote attacks.

The first significant cyberattack against industrial control systems, STUXNET
in  [FMCa], was quickly followed by other attacks [Cas] [Gil]. There
can be no doubt that when cyber-physical systems, such as factories, power grids,
and water distribution systems, are connected to the internet, they will be subject
to attacks.

The industry is well aware that attacks against cyber-physical systems are a real
threat; for example, the authors of the Industry . report [Kag+] lists cyberse-
curity as one of its key enablers.

In this thesis, we will look at several aspects of security for cyber-physical sys-
tems. Our work can be divided into two topics; security lifecycle management for
cyber-physical systems and encryption protocols for wireless sensor networks.

 Introduction

On the topic of security management of cyber-physical devices, one work deals
with the security management of industrial control systems using Digital Twin.
Digital Twin is a concept where a physical device is connected to a Digital Twin.
This Digital Twin can be used for a multitude of things; we have focused on how
to manage security in complex cyber-physical systems by leveraging a relatively
simple State Synchronization protocol.

We also have investigated the topic of Secure ownership transfer for con-
strained devices. Secure ownership transfer is the process where one entity transfers
the ownership of a set of devices to another entity. We have looked at this prob-
lem for very constrained devices and designed a solution based on symmetric-key
primitives.

Furthermore, in our work on encryption protocols for wireless sensor net-
works, we have included two publications. In the first publication, we have eval-
uated the recently standardized protocol OSCORE in terms of efficiency. In the
second paper, we propose an encryption scheme that provides identity privacy for
constrained devices in a sensor network when transmitting data to a remote server
for analytics.

The nature of cyber-physical devices poses new security challenges. Some
are limited in computational power, network capacity, and energy. Other de-
vices such as industrial control systems are not per se constrained, but the task of
controlling the process with hard real-time deadlines consumes so much of the
available resources that any security solution developed for this purpose must be
light-weight. The requirement for light-weight solutions is present in all works
contained in this thesis.

. Dissertation Outline

We will discuss the background to industrial control systems in Section ., Con-
strained devices in Section ., Object Security ., Secure Ownership Transfer
in Section ., and Digital Twin in Section ..

The background will then serve as a stepping stone for the papers that we
present in Chapter . The papers themselves follow this introduction.

Background

In this chapter, we will present the background to the research fields treated in the
thesis. This thesis covers a few different topics, all of them related, although not
directly. All publications deal with at least two of these aspects, as presented in the
following chapter.

. Industrial Control Systems

The first automated industrial control system can maybe be said to be the loom
developed by Joseph Marie Jacquard in . It can be seen as the first iteration in
the evolution of modern systems. It was a primitive computer ”programmed” by
punch cards to weave patterns in cloth. Since then, automated systems that con-
trol physical processes have become increasingly prevalent and increasingly sophis-
ticated. The technological evolution has gone from pneumatic systems through
electro-mechanic systems to digital systems. Virtually everything on a modern
factory today is automated. This automation has increased efficiency and the pre-
cision of machinery.

But a second technological revolution has happened in parallel to the automa-
tion of the industry. The first device connected to the Internet was a vending ma-
chine at Carnegie Mellon University in . Almost  years later the number
of cyber-physical devices is projected to reach  Billion by .

Modern industrial control systems are an amalgamation of information and
communications technology and the evolved automation systems used in the in-
dustry.

Sometimes during the s, drawbacks were identified with having isolated
industrial control systems (ICS) [WSJ]. Connecting manufacturing systems and
distribution systems with the organization’s Enterprise Resource Planning systems
(ERP) was desired. This integration of ICS systems and traditional IT systems have
increased the efficiency and agility of process control. Complex systems have been

https://www.statista.com/statistics//iot-number-of-connected- devices-worldwide/

 Background

enabled, such as Supervisory Control And Data Acquisition (SCADA). Another
benefit is the ability to configure or control processes and machines remotely.

However, this has opened a new attack surface in the form of remote attacks.
We will describe the security aspects of ICS shortly. First, we will give the reader
an overview of the differences between IT environments and ICS environments
to provide a better understanding of the security implications.

Figure . shows the main parts in an industrial control system, according to
NIST [SFS]. The most important part of the system is the controlled process;
without a process to control, there are little use for a control system and its as-
sociated parts. The Controller uses input values from sensors, which can be, for
example, temperature sensors or flow-meters. These input values are used by the
Controller to calculate commands that the Controller then sends to actuators. Ac-
tuators can be valves, pumps, and industrial robots. The actuators, in turn, alter
the physical properties of the controlled process to give the desired results.

The whole controlled process is, although automatic, still supervised by a hu-
man operator using a Human-Machine Interface (HMI). From the HMI, an op-
erator can modify the setpoints and monitor the status of the process. Part of the
HMI is also an easily overlooked part but essential for safe operations, the STOP
mechanism. The stop buttons are not only found on the screens in the control
rooms but also as big red buttons scattered around the premise.

Lastly, most systems today are connected to remote diagnostics and mainte-
nance systems. These systems can be used to control the process remotely and to
collect and process data, not only about the process but also about each part in the
system, such as individual robots and machines.

Figure 2.1: ICS operation according to NIST, from NIST Special Publication 800-82

Figure . can show an abstract representation of an ICS system. The process

. Industrial Control Systems 

in Figure . can be either a small pump process or an entire factory. We can see
that the model presented is limited in its applications.

A more detailed model, made to represent a total view on an ICS deployment,
is the Purdue Model [Wil]. The Purdue Enterprise Reference Architecture, as
is its full name, was developed in  by members of the Industry-Purdue Uni-
versity. The model is shown in Figure .; it gives a hierarchical view of different
parts of an ICS system.

Starting at the bottom with Level , we have the devices that form the interface
between the physical process and the control system, which are sensors, actuators,
and robots, that contain both sensors and actuators. At Level , we have different
systems of local control, continuous and discrete control of processes and, also the
essential safety control. Moving up to Level , this is the highest level in what
is called a Cell, we have the Human-Machine Interfaces (HMI) and Engineering
Workstations. A plant can have more than one Cell. At Level , the systems that
manage the Cells are located; this is also where the site operations and manufac-
turing operations systems are.

Above Level  is the Demilitarized Zone (DMZ). This area separates the criti-
cal and sensitive parts of process from the rest of the IT environment of the organi-
zation. The DMZ is separated from both sides by firewalls that filter the network
traffic flowing through DMZ. The idea behind the DMZ is to have no direct con-
nection into or out from the Levels  and below. If remote access is used in a
system, this is where gateways for a remote access system is situated. Level  and 
are where traditional IT resides, email servers, the Intranet, and business planning
are located here.

Figure 2.2: The Purdue Enterprise Reference Architecture, a model for ICS.

 Background

Perhaps the most crucial difference between IT and ICS is that in industrial
control systems, the process is the end goal. The process generates value by pro-
ducing something; thus, it gets prioritized when resources are limited.

Another key technical difference between familiar IT systems and ICS systems
is the aspect of real-time tasks in ICS. A process that controls, for example, a
chemical process or an electricity grid, cannot have too high latencies. A correct
control signal that arrives too late is of no use. In IT, there is often no need for
real-time deadlines. Most IT systems process data at the request of a user; as long
as the user perceives the system as responsive, the performance is good enough.

Close to the aspect of real-time deadlines is the property of availability; it is
easier to have redundancy in an IT system. Multiple instances of a cloud server
with a load-balancer can keep a service available even when parts of the system is
undergoing maintenance. But in ICS, an outage can have severe consequences,
e.g., an electricity grid or drinking water supply can impact thousands of people.
To guarantee the availability of critical processes, the process control system must
be available. The control system is often redundant to prevent outages caused by
a faulty control system.

It might, therefore, not come as a surprise that the systems used to control
different processes are highly specialized systems. Not only as ICS devices but also
within the field of ICS control systems for different types of processes have signif-
icant differences. There is very little commonality between, for example, a welder
robot from a car building assembly line and a phase-controller from an electricity
grid. The complexity of the process by itself, together with the specialized systems,
makes almost all ICS deployments unique.

Because of the specialization of systems, component lifetimes are long. Sys-
tems and parts are expensive, a stop in production to install and deploy a system
might be too expensive for an organization. Patches are also slowly applied to sys-
tems, not only because of the risk of breaking some functionality but also because
a certified system might lose the certification when a patch is applied.

Because ICS devices have been developed in silos separated from ordinary IT
devices, the protocols, standards, and technologies used in ICS is different com-
pared to a traditional IT environment. This not only affects the interoperability
of ICS and IT systems but also does not let ICS systems take advantage of the
development of better IT security protocols and mechanisms.

As we have shown here, many aspects differentiate ICS from IT. Of course,
these differences impact security, and we will discuss that in Section ...

.. Industry . and Next-Generation Manufacturing

Sometimes called the fourth industrial revolution, following the third Industrial
Revolution, the digitalization of manufacturing from the mid of the s. In-
dustry . has become the accepted term in Europe on the next generation of the
industry.

. Industrial Control Systems 

In  a German research project presented a set of recommendations to
the German government about the future of the industry [Kag+]. The goal of
Industrie . or Industry . is to improve productivity. The productivity im-
provements will be gained from an increase in flexibility, where factories build to
demand instead of producing to inventory. A critical factor in achieving this will
be collecting, sharing, and spreading information through the factory, together
with decentralized decision making.

The list of technologies and concepts that will realize Industry . is long;
among them are IoT, Cybersecurity, Cloud computing, Big Data, and Simula-
tion. Other technologies are listed, such as Augmented reality and Additive man-
ufacturing, but we will focus on the technologies relevant to this thesis.

IoT is a key component of Industry ., used in this industrial setting. Indus-
trial IoT (IIoT) is often used to describe the connected devices in manufacturing
systems. In Section .. we discuss IoT and IIoT. IoT is also key in Paper I, II,
and III.

ICS data collection is needed for advanced analytics and improved production
performance, to give two examples. Collecting data from a production environ-
ment will often result in large data sets; doing analytics on these big data sets is a
whole discipline called Big Data analytics. In Paper II, we look at this collecting of
data from a privacy perspective. We have identified the need for Identity Privacy
of data items that are transmitted to a server for analytics.

.. Security Aspects of Industrial Control Systems

The properties we have described above make it clear that security for ICS faces
different challenges compared to IT security. In IT security, the Confidentiality,
Integrity, and Availability (CIA) triad is often used [Per] to describe the goals in
IT security activities. Note that the CIA refers to the data used in the system and
not the system itself. The data shall be confidential; that is, it shall not be readable
by any unauthorized entity. The data shall be integrity protected, which means
that an unauthorized entity shall not be able to manipulate the data. Lastly, the
data shall be available since data is of no use if it not readily accessible.

According to several researchers, for example, [GK] and [SFS], the CIA
security model does not map well to ICS. For instance, while the CIA model
considers theft or manipulation of data, in an ICS setting, risk of personal injuries
or equipment damage must also be taken into account. See [SFS] for a more
detailed analysis of this issue.

The availability of systems is more critical in ICS. A production plant can take
days to come back online after a stop. The resulting downtime could cause high
costs for the owner and operator.

In this thesis, we have included papers that deal both with traditional security
properties, like the above mentioned CIA triad, and security life cycle manage-
ment. Since outages due to maintenance and cyber-attacks should be avoided,

 Background

methods for doing security life cycle management in ICS are needed. This secu-
rity life cycle management must not waste the limited resources in ICS. In Paper
IV, we have developed a security architecture using the concept of Digital Twin.
Digital Twin are further discussed in Section ., and as shown in the included
paper, it is a powerful tool for security monitoring with a low impact on legacy
systems and real-time critical systems.

. Constrained Devices

The term constrained devices or constrained nodes can be used to describe computing
devices with limited capability, i.e., they are limited in some way. These limitations
can be CPU-Power, RAM and ROM memory, network capabilities such as latency
and bandwidth, and energy. Energy can be limited because the device is powered
by an energy harvesting device such as a solar panel or from a battery. Devices may
sleep for periods to save energy and not being able to respond to communication
and perform any computation during those intervals.

The Internet Engineering Task Force (IETF) has standardized terminology for
these devices [BEK]. Because not all constrained devices are the same, IETF has
defined several categories that determine how limited a device might be. One
limiting factor when it comes to performing complex computations; is the size of
the available memory. In Table ., we show the categories of constrained nodes as
defined by IETF. Why they use memory instead of a metric such as CPU-speed,
is because memory size results in a more substantial factor of the final cost of a
device. Memory takes up a lot of space on the semiconductor die, and the size of
the die directly influences the price [Koo].

The effect of these memory limitations is that a memory-constrained device is
only capable of doing a small set of computations. A small amount of ROM limits
the amount of code that can be present in the system, thus only a select few tasks
can be done. A small amount of RAM limits the number of intermediary states
and the size of the data that can be handled. For example, in a protocol such as
Datagram Transport Layer Security (DTLS), RAM limitations directly limit the
number of security contexts, which in turn limits the number of simultaneous
connections the device can handle.

Table 2.1: Classes of constrained devices according to RFC7228.

Class Data Size (RAM) Code Size (ROM)
Class 0, C0 <<10 KiB <<100 KiB
Class 1, C1 ∼10 KiB ∼100 KiB
Class 2, C2 ∼50 KiB ∼250 KiB

Apart from memory constraints, energy is one important aspect to consider
when evaluating the capabilities of a system. It is no surprise that running a CPU,

. Constrained Devices 

peripheral, and a radio-modem consumes energy. Constraints of energy have sig-
nificant ramifications when a system is designed, energy-efficient CPUs are gener-
ally less powerful, and the same goes for peripherals and radio-modems. IETF has
put the energy constraints on a scale from  to , where  is no limitation, and 
is energy harvesting.

The different categories can be seen in Table .. For example, an E device
can be an Ethernet-enabled surveillance camera that is powered by Power over
Ethernet. A class E device is, for example, an RFID-tag that harvests energy
when a reader interrogates it, this small amount of energy harvested is then used
to send a reply.

Since constrained nodes might be sleeping periodically, communication is of-
ten asynchronous. The lower layer MAC protocols handle radio duty-cycling and
make sure that the receiving node is powered on when it is going to receive mes-
sages.

Table 2.2: Classes of energy constraints according to RFC7228.

Class Type of energy limitation Example Power Source
E0 Event energy-limited Event-based harvesting
E1 Period energy-limited Periodically recharged battery
E2 Lifetime energy-limited Non-replaceable primary battery
E9 No limitations to available energy Mains-powered

.. Security Aspects for Constrained Devices

After describing the capabilities and limitations of Constrained devices in the pre-
vious section, we will now discuss the implications for security. Because of the
limitation in CPU-power, memory, energy, and network capabilities, traditional
security solutions developed for desktop and server computing environments can
prove unsuitable. The limited performance of constrained CPUs make public-key
encryption time and energy-consuming, hardware-acceleration can be utilized to
make it more feasible.

Traditional x certificates might require too much bandwidth and memory
to be stored in RAM in a device. Research has been done to reduce these numbers
[For+], but also with limited network capability; it might be difficult to validate
an entire certificate chain, thus severely limiting the usefulness of certificates.

The ubiquitous protocol for secure communication in traditional IT Transport
Layer Security (TLS) [Res] uses TCP as the underlying transport mechanism.
Sessions are not desirable when constrained devices communicate asynchronously.
Instead, DTLS is standardized as an alternative to TLS. DTLS uses UDP as the
underlying transport; this removes the need for TCP sessions. Using UDP also
reduces the overhead of each transmitted packet.

 Background

The security protocols and solutions developed for constrained devices must
consider these limitations [GKS]. Security solutions must be resource-efficient.
Limiting message overhead to save bandwidth and energy is a requirement. When
selecting cryptographic primitives, efficient algorithms must be prioritized. This
means using symmetric-key encryption where it is possible and limiting the use of
public-key cryptography. Reducing the transmitted message size is also an essential
goal since sending and receiving data consume energy. The protocol OSCORE,
recently standardized by IETF, was designed with low message overhead as one
of the design goals [Sel+a]. We have evaluated the efficiency of the OSCORE
protocol in Paper III; we investigate message overhead and energy consumption
to examine the efficiency of the protocol.

In Paper I, we have developed a Secure ownership transfer protocol for very
constrained devices. The protocol we have designed uses symmetric cryptography
and results in an efficient protocol. The topic of Secure ownership transfer will
be described in detail in Section .. In Paper II, we have designed a protocol
that gives Identity privacy for sensor data; the protocol is designed using Object
security principles. Object security and identity privacy is described in Section ..
This protocol is also using symmetric cryptography to achieve the stated efficiency
requirements.

.. Wireless Sensor Networks and Internet of Things

Wireless sensor networks are a designation for a network of, often constrained,
devices that communicates with wireless technology. The purpose of the network is
often to collect sensor readings from several different places and collect the data for
further processing in a central server. The shrinking of processors and the decrease
in the price of micro-controllers and associated devices have made it possible to
deploy sensors with a microcontroller and some kind of networking capability very
cheaply. Often these systems are powered by a battery, combined with the need
to keep costs down the resulting systems can usually be classified as Constrained
devices, as described in Section ..

Internet of Things has become the catch-all term for all kinds of connected
devices. Everything from a factory connected to a SCADA network to a refrigera-
tor with WiFi can be called an IoT device. Sometimes distinctions are made such
as Industrial IoT (IIoT) for connected devices used in an industrial setting. The
difference between IIoT and connected control systems described in Section .
is that IIoT has a more direct connection to computing resources such as a cloud
environment [MM]. An IIoT deployment will differentiate from the Purdue
reference model we showed in Figure . in that an IIoT deployment will have a
direct connection between the edge devices and the cloud. There is no DMZ in
IIoT, like the one that can be found in the Purdue model.

. Object Security 

Figure 2.3: A schematic of a Wireless Sensor Network in an industrial setting.

Communications Standard for Wireless Sensor Networks

Many actors have developed Wireless Sensor Networks; as a result of this, there
exists a large number of communication protocols and network stacks. WiFi,
Bluetooth [Haa], Bluetooth Low Energy (BTLE) [HH] and Zigbee [All]
all use the unlicensed . GHz frequency band. LoRa [Sor+] uses unlicensed
frequencies in the sub-gigahertz range to increase the range compared to the pro-
tocols in the . GHz band. NB-IoT[Rat+] uses optimized cellular technology
and base stations to achieve wide coverage.

Several application layer protocols exist, the two most common is MQ Teleme-
try Transport (MQTT) [HTS] and Constrained Application Protocol (CoAP)
[SHB]. MQTT is of type publish-subscribe; clients subscribe to topics, and
publishers publish data to these topics. Message brokers then act as intermediaries
to forward the data from the publishers to the relevant subscribers. MQTT is usu-
ally transmitted over Transmission Control Protocol (TCP), and TLS is used to
secure TLS connections and, in extension, MQTT. CoAP is a RESTful protocol
like Hypertext Transfer Protocol (HTTP). It is transmitted over User Datagram
Protocol (UDP), and the most common way of securing it is with DTLS. In this
thesis, we have evaluated OSCORE, an alternative approach to securing CoAP.
OSCORE uses a security concept called object security that we introduce in Sec-
tion ..

. Object Security

The earliest reference to Object Security was made in  in RFC [Cro+]
titled MIME Object Security Services. The document details how Multipurpose In-

 Background

ternet Mail Extensions (MIME) objects shall be encrypted and processed. MIME
is a standard that relates to email. Encrypting each mail in a self-contained ob-
ject is a good solution. The sender can not know if the recipient can receive the
email at the time of sending, this means that setting up a secure session to the
recipient does not work. The problem with the recipient not being available at
the time of sending is solved by using intermediate servers that store and forward
the emails. Protecting each mail in a self-contained object eliminates the need for
secure sessions between the intermediate servers.

One schematic diagram of an object security message can be seen in Figure
.. It does not show any actual message format, but rather a sample of some
fields that might be present in such a structure. What differs between formats and
standards, not shown in the figure, is encoding.

Encrypted	Data MAC	or	SignatureNonceAlgorithm	IDKey	ID

Figure 2.4: A schematic of a message or data item protected with object security.

Object security is a good fit for when a device sends messages to several re-
ceivers. Transmitting is only done at intervals, thus object security eliminates the
need for keeping a session alive. Apart from email, wireless senor networks and
constrained networked devices have proved a good fit for object security. Because
of the energy limitations and constrained nature of devices, messages are only sent
sporadically.

Object security has also been used in web contexts, such as JavaScript Object
Notation (JSON) Web Signatures (JWS)[JBS], JavaScript Object Signing and
Encryption (JOSE)[Bar] also XML encryption[Ima+]. A similar standard to
JOSE is CBOR Object Signing and Encryption (COSE)[Schb]. CBOR stands
for Concise Binary Object Representation and has been standardized by IETF as
a more compact alternative to JSON[BH]. The difference between JOSE and
COSE is the encoding, JOSE uses JSON while COSE uses CBOR. Due to the
compact serialized format of CBOR, COSE is more compact than JSON [Kal].

One benefit of the object security concept is that it can be used to provide end-
to-end encryption. If a message takes a winding route to its destination, encrypting
the message in a self-contained way is a practical solution to protect the contents
until it arrives at the destination. This is why PGP and all other email encryption
schemes work so well; encrypted email can travel between many email-servers until
they arrive at the receiver. The receiver, provided they possess the correct keys, can
then decrypt the message. These schemes and protocols are quite old now, but
they are still used in email applications today.

Perhaps the first implementation of object security for a constrained wireless
device can be found in [Bro+] were the authors port Pretty Good Privacy (PGP)
to a Research In Motion (RIM) pager. The RIM pager has more memory than a
Class  constrained device, but it is still a relatively limited device, considering

. Secure Ownership Transfer 

it uses a  MHz Intel  CPU from the s. In the paper, they find that
Elliptic curve cryptography (ECC) can be done in a couple of seconds. Elliptic
curve cryptography is a type of public-key algorithms that require smaller keys and
less computation than alternative algorithms for a given level of security. These
qualities make ECC suitable for use in constrained devices. The authors argue
that the performance of ECC can be acceptable for an email solution.

One more recent application for object security is end-to-end security for in-
stant messaging apps. Asynchronous communication makes this method of en-
crypting messages a suitable solution. The person you send a message to might not
have a direct connection to you. Instead of setting up a secure channel, encrypting
the message in a self-contained way, and sending it through intermediaries that do
not possess the key, give end-to-end security for the message.

This use-case is very similar to the problem statement behind OSCORE. Mes-
sages pass through intermediate proxies and middle-boxes, the receiving server
might be sleeping to preserve energy. Because of this, setting up a secure session
is not desirable since a client would have to wait until the sever wakes up.

Even if object security can solve some security issues, one issue that remains
is identity privacy. A message to a receiver like a message shown in Figure . can
have the origin revealed by the Key ID. A server that receives messages from many
sources must be able to choose the correct key to decrypt messages. To enable
the server to select the right key for decryption, a readable Key Identifier must
be present. However, a malicious entity can also read this Key Identifier. Since
symmetric keys are shared between only a single pair of communicating entities,
knowing the Key ID and the receiver, knowing the sender is trivial.

Having readable key identifiers is a privacy problem, if a malicious adversary
can learn what messages originate at a particular device or person, learning that
specific entity’s patterns become likely, for some application, this might not be a
problem. In others, however, it might reveal patterns about the originating device.
Information might be deduced from encrypted messages, even if the contents of
which are not known, by analyzing when messages are sent and where they origi-
nate. One possible solution to this would be to encrypt either the entire message or
just the Key ID with the recipient’s public key. Doing that, only the intended re-
cipient can decrypt the message. Using public-key cryptography might, however,
be too resource-intensive for some devices.

. Secure Ownership Transfer

Secure ownership transfer is the process of transferring the control of a secure
system from one entity to another. The general premise is that each device has
some kind of key or credentials; these keys and credentials are shared with the
owner. Some kind of server usually represents the owner. Here we will stick to
using key for any such credential.

 Background

The process of transferring the keys from the old owner to the new is not a
suitable solution. The terms New owner privacy and Old owner privacy have been
used to describe desirable features [Taq+]. Old owner privacy is that the new
owner shall not be able to decrypt recorded traffic and access data from the old
owner. New owner privacy is that the old owner shall not be able to learn secrets
from the new owner after the transfer is complete.

The topic of ownership transfer has been studied both for IoT and networked
devices but more intensively for RFID-tags. RFID-tags are a relevant problem
because RFID-tags attached to things, such as parcels, change hands, and move
around. RFID-tags can be read remotely close by the tag; this has raised privacy
issues. In [Jue], the author describes a scenario were RFID-tags carried on a
person can be read to reveal sensitive information about their owner. Using keys to
enable authorization of RFID-tag access and encryption of the data in transmission
has been proposed as a solution to this privacy issue.

When items with RFID-tags that use keys to authorize reading and provide
encryption of the transmitted data change hands, the new owner must be able to
access the RFID-tag after the transfer. Ownership transfer is the name given to
this problem. The first publication that tries to solve this problem was [SIS].
Several approaches for ownership transfer exists, protocols have been proposed
for single tag transfer or multiple tag transfer. There is also another aspect of
proposed solutions, with protocols featuring a trusted third-party and protocols
only involving the old and new owner.

A schematic view of RFID deployment and ownership transfer can be seen
in Figure .. One crucial property for RFID-tags is that they are only powered
on when they are read, i.e., interrogated. The RFID-tag reader is an essential part
of the system since that is the only device that can directly read the RFID-tags.
The RFID-tag reader is usually able to do more advanced computation and is not
usually limited in energy. Thus it can be used in the system to perform more
complicated calculations.

A recent and comprehensive survey of the research into ownership transfer
can be found in [Taq+]. Some ownership transfer solutions for IoT [TN],
use public-key encryption to solve this problem straightforwardly. However, con-
strained systems might not be able to handle the complex computations needed
for public-key encryption. Besides the computational issue, not all devices might
have the memory needed to store the necessary keys and the code needed to do
public-key computations.

In Figure ., we show a schematic overview of an IoT deployment. The Man-
agement server does not directly connect to the individual devices, but often com-
municate over the internet, through some gateway. The presence of the gateway is
an essential property of such a system. This gateway sometimes needs to translate
protocols and terminate DTLS sessions to work correctly. Since individual IoT
devices are connected to the Internet, the attack surface is larger compared to an
RFID tag. An attacker must be in proximity to an RFID-tag to be able to commu-

. Secure Ownership Transfer 

Internet

Ownership relation

RFID Tag
Reader

Management
Server 2

Management
Server 1

Transfer of Ownership

RFID-Tags

Figure 2.5: RFID-System and ownership transfer

nicate with it and to intercept messages. Thus many of the security requirements
for RFID-systems can not be directly applied to IoT systems.

Security requirements for secure ownership transfer protocols are the same as
for conventional security protocols. Properties such as confidentiality, integrity
protection, availability, and resistance to impersonation attacks are essential to a
secure protocol. But then there are new properties that need to be also considered.
According to [Taq+], the authors have proposed the security requirements stated
below. These requirements apply equally to both RFID-tag solutions and IoT
protocols since they are general to the problem of ownership transfer:

• New owner privacy: The old owner shall not be able to access data after
ownership transfer is completed.

• Old owner privacy: The new owner shall be unable to learn anything that
the old owner has done before the transfer.

• Windowing problem: There shall be no place in time where both the new
and the old owner has access to the device at the same time.

• Exclusive ownership transfer: It shall be possible to verify that the ownership
transfer has gone according to plan.

The properties of New owner privacy and Old owner privacy is similar to For-
ward Security and Backwards Security in a protocol such as TLS. For example,

 Background

Internet

Ownership relation

IoT
Gateway Management

Server 2
Management

Server 1

Transfer of Ownership

IoT-Devices

Wireless Network

Text

Figure 2.6: IoT deployment and ownership transfer

TLS ephemeral keys are negotiated with a key agreement protocol such as Diffie-
Hellman [DH]. Using such a solution work in theory for ownership transfer,
but it fails when considering the computational complexity of public-key cryp-
tography. Achieving New owner privacy and Old owner privacy using symmetric
cryptography is the challenge here.

The Windowing problem means that the transfer must be immediate, so there
can be no point in time where both the New owner and the Old owner have access
to the device that is switching hands. The challenge here is not apparent; when
the step that transfers the ownership occurs, it will either succeed or fail. If it
completes, then the New owner will have control of the device, but if it fails, the
Old owner shall retain control of the device. This has to be done to prevent the
device from becoming orphaned and left in a state where neither the New owner
or the Old owner can access it. Exclusive ownership transfer means that the New
owner shall be able to verify that devices have been transferred and that they are
now under the New owner’s control. The requirement here is that the new owner
must be able to authenticate all devices after a transfer is complete.

. Digital Twin

Digital Twin is the name given to techniques where a physical device is mirrored to
a digital copy. This Digital Twin can then be used to perform computations, such
as optimizations that can be implemented on the physical twin. Several definitions

. Digital Twin 

of the term exist, ”A Digital Twin is a real-time digital replica of a physical device”
is a succinct definition from [Bac]. Digital Twin as a concept has its origin in
aviation manufacturing, where aircraft engines were one of the first applications.
The concept was developed during the s and was published in  [Gri].
Since then, the application of Digital Twin has spread to Wind Turbines, HVAC
(Building Automation), health applications, and many more.

In Figure ., we show how such a workflow with continuous improvements
can look. Academia [BR] has studied the concept of continuous simulation.

In [Grib][GV], the authors present their idea of how to use Digital Twin
to facilitate life-cycle management for complex systems. They discuss how to test,
simulate, and improve the physical systems using a Digital Twin. But this is not
the only application; many industries and fields investigate what benefits they can
get from Digital twin. A summary of these results can be found in [El ].

Figure 2.7: A schematic representation of a physical device and its Digital Twin surrounded
by the workflow of continuous optimization.

Digital Twin can also be used to improve security. In heterogeneous systems,
it can be challenging to establish a picture of the system. A Digital Twin of the
system can provide such a view. This twin can be used for finding vulnerabilities,
both by scanning for known vulnerabilities, static threat modeling and also to
create a replica of the system to be used in a Cyber Range.

ICS systems are often so vulnerable to a cyberattack that techniques used in
penetration testing such as port scanning can cause systems to crash. Since these
systems are connected to a process, a crash is unacceptable, but stopping the pro-
cess to do a penetration test is usually not possible either. If this penetration test
can be made on a twin of the system, it would solve both these problems.

 Background

In [Bit+b], the authors provide a way to generate a Digital Twin of a system
that can be used in a penetration test. The Digital Twin can also be used in a cyber
range to teach operators of ICS about cybersecurity applied to their system.

Digital Twin has been proposed to be useful for many things, such as docu-
mentation and continuous improvement. For cybersecurity in industrial control
systems and Constrained devices, the ability to synchronize the physical device to
a Digital Twin can be used to overcome the limitations we described in Section
. and ..

The ability to replicate a state from a device to a remote entity makes it possible
to add functionality to the remote entity. This entity can be a cloud environment,
and with a state replication protocol, the results of this added security functionality
can be mirrored to the physical device. We have investigated such a concept in
Paper IV, where we propose a simple state synchronization protocol for use in
industrial control systems.

.. State Machine Replication

Finite-state machines can be used for representing and modeling a variety of com-
puter and automation systems. State machines can also be used to design and
specify the behavior of a system. State Machine Replication is a technique to syn-
chronize the states between two or more Finite-state machines [Lam].

It might also come as no surprise that computers and automation systems
sometimes fail. Adding redundancy to provide fault-tolerance is one way to over-
come the problem. By viewing a part of the system as a state machine and then
replicating the state to another part of the system, one can achieve redundancy
and reducing the probability of a system-wide outage.

Internal	State:	S Internal	State:	S'Receive	Input:	I Receive	Input:	I'

Transfer	own	State:	S'

Transfer	own	State:	S

Figure 2.8: A conceptual model of a state replication mechanism

As can be read in [CPS], Replication and State Machine Replication have
been investigated for over  years. The techniques have been applied to different
fields, such as distributed systems and databases. The goal of replication has been
both performance gains, by scaling a system and fault tolerance, by duplication
of stored data. By mirroring a physical system with a Digital Twin, a new type of
application emerges. Here the goal is to provide a single digital image of a system
that can be used for further processing.

. Digital Twin 

Above, Digital Twin was defined as ”... a real-time digital replica of a physical
device”, State machine synchronization is one way of achieving real-time replica-
tion.

Using replication to improve the security of IoT devices has been suggested in
[GAb]. The authors present a method to mirror an IoT device to a server. The
server can provide more extensive security mechanisms than the constrained IoT
device. By using a rigid communications protocol that only allows for synchro-
nization between the device and the mirror, a high level of security can be achieved
for a constrained device.

The technique of state machine replication has been applied to industrial con-
trol systems. In [EEa], the authors propose a state replication mechanism to be
used for intrusion detection in ICS. The authors use a state replication approach
to avoid prohibitive overhead in terms of network and computation overhead in
the physical devices.

Physical	Device

Digital	Twin

State
Replication	
Mechanism

Added	Security
Mechanisms

Physical
Process

Controller	Input

Controller	Output

Figure 2.9: Adding security mechanism by replicating the physical devices to Digital Twin
and perform the complex security mechanisms there.

Both [GAb] and [EEa] propose a similar approach to adding more com-
plex security mechanisms to constrained devices and industrial control systems. In
Figure ., we show a system overview of such a solution. For constrained devices,
this type of solution is attractive because of the limitations in the capabilities we
discussed in Section .. A state synchronization protocol can be implemented
with small overhead, so this approach is workable. For ICS, the limitations in
available resources that we discussed in Section ., the long lifetimes of devices
in ICS, and the complexity of these devices can benefit from the added security
mechanisms with the relatively low cost of implementing a State Replication Pro-
tocol.

 Background

In Paper IV, we have used a State machine synchronization protocol to syn-
chronize a physical device with a Digital Twin. The low overhead of a state machine
synchronization protocol makes this an attractive solution to realize a Digital Twin
for ICS, considering the limitations described in Section ..

Contributions and
Conclusions

. Contributions

The following sections introduce each contribution, the individual contributions
of the author, and the changes made to the publications for print in this thesis.

Authors and acronyms; Martin Gunnarsson (MG), Christian Gehrmann
(CG), Joakim Brorsson (JB), Marco Tilcoa (MT), Ludwig Seitz (LS), Francesca
Palombini (FP).

.. Secure Ownership Transfer for the Internet of Things

Content

In this paper, we investigate the problem of Secure ownership transfer. The process
of transferring ownership of devices has mainly been studied for RFID-tags but not
for IoT devices. The core problem with ownership transfer is New owner privacy
and Old owner privacy. After the transfer of ownership, the new owner shall be
unable to learn anything that has happened on the device or any message sent. The
old owner shall not learn anything the new owner does after the transfer. The work
that has been done on Secure ownership transfer for IoT has focused on solutions
using public-key cryptography. In our intended system, the devices we consider for
ownership transfer are Constrained devices, as described in Section .. Because
of the limitations in performance, we have developed a Secure ownership transfer
protocol using symmetric-key cryptography.

Individual Contribution

MG has together with CG, designed the Secure ownership transfer protocol. CG
stated security requirements and, together with MG, did the security analysis of
the protocol. MG did the Tamarin model and formal verification of the protocol.

 Contributions and Conclusions

MG implemented the experimental evaluation and produced the experimental
results.

For this Thesis

The paper has been formatted to match the rest of this thesis.

.. An Identity Privacy Preserving IoT Data Protection Scheme for
Cloud Based Analytics

Content

Wireless sensor networks are being deployed in larger numbers. The data that is
sampled is usually sent to a remote server for analytics. This server might be owned
by a third party or running in a cloud environment. This is a scenario envisioned
in both Industry . and Industrial IoT, as described in Sections .. and ...

Collecting and analyzing data in such a way can provide increase efficiency.
However, sending data can reveal secrets about the origin of the data, being ei-
ther individuals or company secrets in an industrial setting. To solve this privacy
problem, we propose a new scheme of identity-privacy for data items. We have
described the problem of readable Key Identifiers in Section .. Our proposed
scheme only uses symmetric key operations and is suitable for very constrained
sensors of the type we described in Section .. The proposed protocol uses the
concept Object Security that we detailed in Section ., and encrypts each data
item individually. These data items can then be stored intermittently in an en-
crypted form without extra processing.

Individual Contribution

CG designed the protocol with minor input from MG. CG performed the security
analysis and defined the property of Identity Privacy. MG wrote the proof-of-
concept implementations and performed the performance evaluation.

For this Thesis

The paper has been formatted to match the rest of this thesis. Some spelling errors
have been corrected. One error in a definition, noticed by a sharp-eyed reader, has
been corrected.

.. Evaluating the Efficiency of OSCORE in Constrained Environ-
ments

Content

OSCORE is a protocol recently standardized by the IETF. It is a protocol for Con-
strained devices that used the Object security concept to protect CoAP messages.

. Contributions 

We have discussed the limitations of Constrained devices in Section . and the
concept of Object security in Section .. In this work, we have evaluated the first
constrained implementation of OSCORE and compared it against DTLS., the
state of the art solution for protecting CoAP messages.

Individual Contribution

MG wrote the constrained OSCORE implementation. MG and JB performed
the performance evaluation. All authors, MG, JB, MT, FP, LS, collaborated in
writing the background and the description of OSCORE.

For this Thesis

The paper has been formatted to match the rest of the thesis.

.. A Digital Twin Based Industrial Automation and Control System
Security Architecture

Content

In this paper, we propose a novel security architecture for industrial control systems
based on the concept of Digital Twin. Digital Twin is a concept that has been
previously used for process simulation and continuous optimization. We have
discussed the concept of Digital twin in detail in Section ..

We propose a way to utilize Digital twin to automate security mechanisms
that provide scanning of firmware for vulnerabilities and automated patching of
industrial control systems. By using Digital Twin and State machine synchroniza-
tion, we have shown that it is possible to offload complex security mechanisms to
a remote Digital Twin. This can be used to overcome the limitations in industrial
control systems that operate under strict real-time deadlines, as we described in
Section ..

Individual Contribution

CG designed the Digital Twin replication model and security architecture. CG
performed the security analysis. MG implemented the state synchronization pro-
tocol and performed the performance evaluation.

For this Thesis

The paper has been formatted to match the rest of the thesis.

 Contributions and Conclusions

. Conclusions

In this thesis, we have looked at Industrial control systems, cyber-physical systems,
and IoT in the context of future industrial applications. Industry . is a con-
cept where increased connectivity and data-sharing together with new technolo-
gies such as cloud computing can increase the productivity of industrial systems.
We focused on edge devices in these networks; many such devices are limited in
terms of performance and can be categorized as Constrained devices.

We have investigated two main topics of security for these systems; security life
cycle management for both industrial control systems and Wireless Sensor nodes
and secure communications protocols for Constrained IoT devices.

On the topic of security life cycle management, we have presented a novel
security architecture for industrial control systems using Digital Twin. We have
evaluated the state synchronization protocol that synchronizes the physical devices
with the Digital Twin and found it to be lightweight and suitable for use in indus-
trial control systems.

We have also presented a protocol to securely transfer the ownership of con-
strained wireless devices from one owner to a new owner. The protocol uses a
Trusted Third Party to enable the use of symmetric cryptography while still pro-
viding the desired security properties. The protocol was formally verified to prove
that the stated security requirements hold, and it was evaluated in terms of perfor-
mance. We found it to be suitable for deployment in constrained environments.

On the topic of communications protocols for constrained wireless devices,
we have presented two works.

In the first paper, we present a new protocol that provides Identity privacy
for sensor data in a wireless sensor network. We show that the proposed protocol
can achieve K-anonymity using only symmetric cryptography. The protocol was
evaluated on a constrained device and found to have acceptable performance for
use in its intended setting.

The second paper on the topic of communications protocols for constrained
wireless devices is an evaluation of the OSCORE protocol. We have evaluated the
recently standardized protocol OSCORE to the current state-of-the-art method
of securing CoAP messages, namely DTLS.. We have found that OSCORE
performs roughly the same as DTLS in terms of computational complexity, while
OSCORE has lower network per-message overhead.

References

[All] Z. Alliance. “Zigbee alliance”. In: WPAN industry group,
http://www. zigbee. org/. The industry group responsible for the ZigBee
standard and certification ().

[Bac] G. Bacchiega. Developing and Embedded Digital Twin. June .

[Bar] R. Barnes. “Use cases and requirements for JSON object signing
and encryption (JOSE)”. In: Internet Eng. Task Force, Fremont, CA,
USA, RFC  ().

[BEK] C. Bormann, M. Ersue, and A. Keränen. Terminology for
Constrained-Node Networks. RFC . May .

[BH] C. Bormann and P. Hoffman. Concise Binary Object Representation
(CBOR). RFC  (Proposed Standard). RFC. Fremont, CA,
USA: RFC Editor, Oct. .

[Bit+b] R. Bitton et al. “Deriving a cost-effective digital twin of an ICS to
facilitate security evaluation”. In: European Symposium on Research
in Computer Security. Springer. , pp. –.

[BR] S. Boschert and R. Rosen. “Digital twin—the simulation aspect”.
In: Mechatronic futures. Springer, , pp. –.

[Bro+] M. Brown et al. “PGP in Constrained Wireless Devices.” In:
USENIX Security Symposium. .

[Cas] D. U. Case. “Analysis of the cyber attack on the Ukrainian power
grid”. In: Electricity Information Sharing and Analysis Center
(E-ISAC)  ().

[CPS] B. Charron-Bost, F. Pedone, and A. Schiper. “Replication”. In:
LNCS  (), pp. –.

[Cro+] S. Crocker et al. MIME Object Security Services. RFC . RFC
Editor, Oct. .

 References

[DH] W. Diffie and M. Hellman. “New directions in cryptography”. In:
IEEE transactions on Information Theory . (), pp. –.

[EEa] M. Eckhart and A. Ekelhart. “A Specification-based State
Replication Approach for Digital Twins”. In: Proceedings of the 
Workshop on Cyber-Physical Systems Security and PrivaCy. CPS-SPC
’. Toronto, Canada: ACM, , pp. –.

[El ] A. El Saddik. “Digital Twins: The Convergence of Multimedia
Technologies”. In: IEEE MultiMedia . (Apr. ), pp. –.

[FMCa] N. Falliere, L. O. Murchu, and E. Chien. “W. stuxnet dossier”.
In: White paper, Symantec Corp., Security Response . (), p. .

[For+] F. Forsby et al. “Lightweight x.  digital certificates for the
internet of things”. In: Interoperability, Safety and Security in IoT.
Springer, , pp. –.

[GAb] C. Gehrmann and M. A. Abdelraheem. “IoT protection through
device to cloud synchronization”. In:  IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE. , pp. –.

[Gil] M. Giles. “Triton is the world’s most murderous malware, and it’s
spreading”. In: Online: https://www. technologyreview.
com/s//cvbersecuritv-critical-infrastructure-triton-malware
().

[GK] D. Gollmann and M. Krotofil. “Cyber-Physical Systems Security”.
In: The New Codebreakers: Essays Dedicated to David Kahn on the
Occasion of His th Birthday. Ed. by P. Y. A. Ryan, D. Naccache,
and J.-J. Quisquater. Berlin, Heidelberg: Springer Berlin
Heidelberg, , pp. –.

[GKS] O. Garcia-Morchon, S. Kumar, and M. Sethi. State-of-the-Art and
Challenges for the Internet of Things Security. Internet-Draft
draft-irtf-ttrg-iot-seccons-.
http://www.ietf.org/internet-drafts/draft-irtf-
t2trg-iot-seccons-16.txt. IETF Secretariat, Dec. .

[Grib] M. Grieves. “Digital twin: manufacturing excellence through
virtual factory replication”. In: White paper  (), pp. –.

[Gri] M. W. Grieves. “Virtually Intelligent Product Systems: Digital and
Physical Twins”. In: Complex Systems Engineering: Theory and
Practice (), pp. –.

[GV] M. Grieves and J. Vickers. “Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems”. In:
Transdisciplinary perspectives on complex systems. Springer, ,
pp. –.

http://www.ietf.org/internet-drafts/draft-irtf-t2trg-iot-seccons-16.txt
http://www.ietf.org/internet-drafts/draft-irtf-t2trg-iot-seccons-16.txt

References 

[Haa] J. C. Haartsen. “The Bluetooth radio system”. In: IEEE personal
communications . (), pp. –.

[HH] R. Heydon and N. Hunn. “Bluetooth low energy”. In: CSR
Presentation, Bluetooth SIG https://www. bluetooth.
org/DocMan/handlers/DownloadDoc. ashx ().

[HTS] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. “MQTT-S—A
publish/subscribe protocol for Wireless Sensor Networks”. In: 
rd International Conference on Communication Systems Software
and Middleware and Workshops (COMSWARE’). IEEE. ,
pp. –.

[Ima+] T. Imamura et al. “XML encryption syntax and processing version
.”. In: WC, Recommendation ().

[JBS] M. Jones, J. Bradley, and N. Sakimura. “JSON web signature
(JWS)”. In: Internet Requests for Comments, RFC  ().

[Jue] A. Juels. “RFID security and privacy: A research survey”. In: IEEE
journal on selected areas in communications . (),
pp. –.

[Kag+] H. Kagermann et al. Recommendations for implementing the strategic
initiative INDUSTRIE .: Securing the future of German
manufacturing industry; final report of the Industrie . Working
Group. Forschungsunion, .

[Kal] P. Kalvoda. “Implementace a evaluace protokolu CBOR”. In:
().

[Koo] P. Koopman. Embedded $ystemEngineering Economics. Oct. .

[Lam] L. Lamport. “Using Time Instead of Timeout for Fault-Tolerant
Distributed Systems”. In: ACM Transactions on Programming
Languages and Systems (Apr. ), pp. –.

[MM] P. McLaughlin and R. McAdam. “The undiscovered Country: The
future of industrial automation”. In: Honeywell Process Solutions.
Honeywell ().

[Per] C. Perrin. “The CIA triad”. In: Dostopno na ().

[Rat+] R. Ratasuk et al. “NB-IoT system for MM communication”. In:
 IEEE wireless communications and networking conference. IEEE.
, pp. –.

[Res] E. Rescorla. The Transport Layer Security (TLS) Protocol Version ..
RFC . RFC Editor, Aug. .

[Schb] J. Schaad. “Cbor object signing and encryption (cose)”. In: RFC
, Standards Track, IETF ().

 References

[Sel+a] G. Selander et al. Object Security for Constrained RESTful
Environments (OSCORE). RFC . RFC Editor, July .

[SFS] K. A. Stouffer, J. A. Falco, and K. A. Scarfone. Sp -. guide to
industrial control systems (ics) security: Supervisory control and data
acquisition (scada) systems, distributed control systems (dcs), and other
control system configurations such as programmable logic controllers
(plc). .

[SHB] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). RFC . June .

[SIS] J. Saito, K. Imamoto, and K. Sakurai. “Reassignment scheme of an
RFID tag’s key for owner transfer”. In: International Conference on
Embedded and Ubiquitous Computing. Springer. ,
pp. –.

[Sor+] N. Sornin et al. “LoRa Specification .”. In: Lora Alliance Standard
specification., Jan ().

[Taq+] E. Taqieddin et al. “Tag Ownership Transfer in Radio Frequency
Identification Systems: A Survey of Existing Protocols and Open
Challenges”. In: IEEE Access ().

[TN] P. Tam and J. Newmarch. “Protocol for ownership of physical
objects in ubiquitous computing environments”. In: IADIS
international conference E-Society. Vol. . , pp. –.

[Wil] T. J. Williams. The Purdue enterprise reference architecture: a technical
guide for CIM planning and implementation. Instrument Society of
America, .

[WSJ] M. Wollschlaeger, T. Sauter, and J. Jasperneite. “The future of
industrial communication: Automation networks in the era of the
internet of things and industry .”. In: IEEE industrial electronics
magazine . (), pp. –.

Included Publications

Pa
p
er

I

Secure Ownership Transfer
for the Internet of Things

 Introduction

The amount of connected devices deployed are increasing. Connected devices can
take the form of sensors and actuators in home, industrial or smart-city settings.
They can also be connected medical devices or connected cars. In particular, we see
a trend towards usage of very large IoT infrastructures consisting of a huge number
of heterogeneous devices [Vög+] . Managing such heterogeneous infrastructures
is challenging and an issue that has been addressed in several recent research works
[Lan+] [DMR].

Large IoT infrastructures must also be managed and controlled from a secu-
rity perspective. An expectation of such a system is secure communication as well
as authentication and authorization, thus credentials for the IoT devices must be
issued and updated [RNL]. Credential management can be done using stan-
dard protocols and procedures such as IKE and HIP [Ero+][SO] and these
procedures are working well as long as a single organization is controlling the in-
frastructure.

However, transferring ownership of a complete infrastructure is more com-
plicated. One core problem is backward and forward secrecy with respect to the
old and new owners. The new owner of the system shall not be able to deduce
anything the old owner has done before the transfer of ownership. Vice versa, the
old owner shall not be able to learn anything of what the new owner does after
the transfer of ownership. Furthermore, there should not be any time slot when a

Martin Gunnarsson, Christian Gehrmann “Secure Ownership Transfer for the Internet of Things”.
In The th International Conference on Information Systems Security and Privacy, ICISSP ,
Valletta, Malta, , in print.

 Paper I: Secure Ownership Transfer for the Internet of Things

single IoT unit is under control of both the old and new owners simultaneously.
The problem of IoT infrastructure ownership transfer is related to the problem

of transferring ownership of RFID tags, a topic that has been extensively treated in
the literature in the past [Taq+]. Especially, it is related to the problem of group
ownership transfer of RFID tags [Zuo][KZP][HGY]. Inspired by these ear-
lier works we have looked into the ownership transfer problem again, now from
the IoT infrastructure perspective. Similar to some previous work for tag own-
ership transfer, we are interested in finding symmetric key solutions not being
dependent on public key support on the IoT side. This allows ownership transfer
also for very resource constrained IoT units in the system[Eis+]. By analyzing
the security expectations for such scenario, we have identified the main security
requirements for IoT infrastructure ownership transfer. The requirements then al-
lowed us to suggest a suitable ownership transfer model based on the assumption
of trusted third party, or what we refer to as a ‘’Reset Server’’ (RS) present in the
system. We present a protocol for ownership transfer under this model. Our own-
ership transfer protocol meets the identified requirements, and has not previously
presented in the literature. Our suggested approach does not need active involve-
ment of the RS during normal operation, a property we see as a major advantage.
Furthermore, the RS does not need to store individual IoT device keys, reducing
the storage requirements of the RS.

The main contributions of the paper are the following

• We analyse the IoT infrastructure ownership transfer problem and conclude
that it has similar but not equal security requirements compared with those
identified in previous analyses of group ownership transfer for tags.

• We suggest a novel IoT infrastructure ownership transfer model and proto-
col for symmetric keys based on the usage of an RS in the system.

• We present a proof of concept implementation and performance evaluation
of the proposed ownership transfer scheme.

• We make a security analysis of the proposed ownership transfer protocol
using both Tamarin Prover and logical reasoning.

We proceed as follows: we discuss related work (§), we introduce our system
model (§), identify security requirements and give a problem definition (§),
we present our ownership transfer model and protocol design (§), we describe
our proof-of-concept implementation including performance benchmarks (§),
we perform security analysis of the proposed transfer protocol (§) and conclude
(§).

 Related work 

 Related work

Protocols for ownership transfer have been studied in several fields. Both recently
for IoT devices and earlier for RFID-tags. IoT infrastructures and RFID systems
are not equal but share some characteristics. RFID-tags and IoT systems are de-
ployed in large numbers and efficient management of a large number of devices is
necessary. IoT devices might have constrained resources and RFID-tags typically
even less resources for computation and storage. IoT units though have connec-
tivity, usually wireless, and the ability to initiate communication with external
entities. RFID-tags however are only capable of responding to requests. RFID-
tags can only be read and written to locally, a reader must be in physical proximity
to the RFID-tag to be able to communicate with the device. An IoT device can
however receive communication originating practically anywhere, this creates a
bigger attack surface on IoT devices since an attack on the system can, in theory,
originate from anywhere on the planet.

. IoT Ownership Transfer

Internet of Things (IoT) are a very wide category of devices with the common
property that they are connected to a network in some way. When ownership
transfer is studied in the realm of IoT devices authors often have different views
of what types of devices constitute an IoT device. Devices considered can be con-
nected medical equipment, wearables, smart consumer electronics such as fridges
and CCTV-cameras. Other devices that are often grouped into IoT are sensor
networks, building automation and connected equipment for industry.

Tam and Newmarch state the problem of transferring ownership in [TN]
for Ubiquitous Computing Networks, a term that predates IoT. They define the
term ownership and provide requirements for an ownership system. They also
provide an example of an ownership transfer protocol. The protocol is based on
public-key cryptography and defines how two parties transfer the ownership of a
device.

Khan et. al. discuss ownership transfer for connected consumer products
[Kha+]. The focus of the ownership transfer process is less about re-keying the
device and more about preserving privacy for information stored on the device.
They also propose a novel idea of how to automatically start the ownership transfer
process by detecting changes in the environment to determine if the device has
been sold or given away.

Pradeep and Singh propose a protocol in [PS] utilizing a trusted third party
that they call a Central Key Server. The protocol requires physical proximity when
the ownership transfer process is about to take place. The protocol does not specify
exactly what type of IoT device that is considered, but only one device is transferred
during each execution of the protocol.

 Paper I: Secure Ownership Transfer for the Internet of Things

. Ownership Transfer Protocols for RFID-tags

The subject of secure ownership transfer has been studied in the field of RFID tech-
nology since  [SIS]. In the paper ”Tag Ownership in RFID systems: Survey
of Existing Protocols and Open Challenges”[Taq+] the authors list the research
done in the field from  to . The authors also group protocols by features;
Group transfer protocols and individual tag transfer protocols, trusted Third Party
(TTP) protocols, and protocols where only the new and current owner take part.
Lastly EPC-CG [Inc] compliant protocols and protocols that require more
resources from the tags. The first papers for RFID-tag ownership transfer gener-
ally suffered from not satisfying some important security requirements. The early
Satio paper [SIS], does for instance not provide forward and backwards secrecy
for the owners.

We are considering a model with IoT ownership transfer with the assistance
of a trusted third party node, the so-called ”Reset Server” (RS) (see Section  and
Section ). This entity has a very similar role as a TTP in RFID ownership transfer
solutions. However, different from prior art work, we think that for IoT infras-
tructures, one would like to avoid the TTP to actual choose the credentials for the
devices in the system but merely ”supervise” the transferring process. This has the
main advantage that the RS, unlike the TTP in prior-art solutions, will not have
complete knowledge of the final device credential after completing the ownership
transfer process. TTP based protocols in prior-art are the ones that most closely
resemble the model we consider and we will in the related work summary below,
focus on TTP based protocols.”

. RFID Single ownership transfer

Much work has been done for owner transfer of single RFID-tags. Since we con-
sider group transfer of IoT devices these protocols are mainly mentioned for com-
pleteness sake. Protocols that are intended for EPC-compliance are often forced
to use non-standard solutions due to the extremely constrained nature of EPC-
compliant RFID-tags. One such scheme can be found in [Cao+]. The protocols
that are not restricted by EPC-compliance often make use of standard cryptolog-
ical functions such as symmetric ciphers and hash functions. One example of an
ownership transfer protocol using a TTP can be found in [ZYP].

. RFID Group ownership transfer

Several group transfer protocols with a TTP have been proposed in the literature
[KZP] [Zuo] [Sun+] [HGY] [BAS]. The design goals of the different
protocols are not uniform. They do not work with the very same security re-
quirements. They also differ with respect to that one solution wants to achieve
EPC-CG compliance [Sun+] and another want to have a group of nodes to
switch ownership simultaneously for instance [Zuo].

 System model and assumptions 

A core characteristic we expect from an ownership transfer protocol, is back-
ward and forward secrecy. This is not offered by the protocol suggested by Sun-
daresan et al. [Sun+]. The group transfer protocol by Kapoor [KZP] is an
extension of an earlier variant for singe tag transfer [KP]. Even if this is a simple
and rather straightforward protocol, these protocols were later shown by Bagheri
et al [BAS] to be vulnerable to de-synchronization attacks (due to the simple fact
that the message exchange between the TTP and the tag was not authenticated).
The authors in [BAS] also showed how to fix these shortcomings, but unlike our
suggested protocol, their solution is dependent on a direct session between the tag
(the IoT unit in our case) and the TTP. They also give the full power to the TTP
that must have access to all key information (both the old and the new).

Inspired by an earlier work on grouping proofs for RFID tags [BMM], Zuo
proposed a new TTP based protocol for RFID ownership transfer [Zuo]. Simi-
lar to the earlier grouping proof protocols, the design goal is to provide a proof of
the ownership transfer of all tags in a group simultaneously, i.e., without the need of
having connection to the back-end system representing the tag owner during the
ownership switch. This means that the ownership transfer interactions only take
place locally between the tag reader and the tags in the group connected to this
reader. Later, the back-end system just can verify that the transfer has occurred.
In and RFID system scenario this has some communication overhead reduction
advantages but not in a system scenario with distributed IoT units. Hence, the off
line requirement makes the ownership transfer unnecessarily complex for the IoT
scenario we are considering. Furthermore, similar to other ownership protocols,
the TTP is given full power by selecting all the new credentials using the solution
in [Zuo].

In [HGY] another group ownership transfer protocol was proposed. This
protocol shares our design goals with respect to forward and backward secrecy.
Furthermore, it allows arbitrary location and grouping of tags based on group
keys. This is a property most suitable also for IoT infrastructures. However, similar
to other prior art, the solution in [HGY] gives the TTP full knowledge of the
key information. It also must has active sessions with all tags taking part in the
ownership transfer process. Our protocol does not have these two limitations.

 System model and assumptions

This paper considers IoT deployments as seen in Figure , comprised by a large
number of IoT nodes deployed managed by a Device Management Server (DMS)
owned and operated by some entity. The considered system can be part of an Inter-
net connected industrial automation system or smart sensors deployed to monitor
the environment for e.g. pollution. The IoT nodes communicate with the DMS
through intermediate parties and the last hop to the IoT nodes can be assumed
to be wireless communication. The IoT nodes can be resource constrained nodes,
this means that their hardware capabilities; such as processing power and memory

 Paper I: Secure Ownership Transfer for the Internet of Things

Figure 1: An overview of the considered system

are limited. The IoT devices are capable of symmetric cryptography, asymmetric
cryptography is not feasible for these devices, mainly due to the increased band-
width required. The used wireless communication technology is limited in band-
width and latency. The DMS is assumed to be a server, in a cloud environment
or located on premise in the organization.

In the scenario depicted in Figure , the different IoT units are connected to
the Internet and consequently vulnerable to all kinds of network based attacks.
Hence, it is important that the IoT units are properly authenticated and that only
well protected communications are allowed over the Internet and over the wireless
network. In particular, independent of Internet access technology, there must be
credentials in place on the IoT units so that they can securely perform mutual
authentication with the back-end system. For an ownership transfer to take place
we assume that there exists another organization, with its own DMS, to transfer
the ownership to.

We furthermore assume the existence of a trusted third party in the form of an
RS. RS i operated by an organization that both organizations trust to a high degree.
The RS will facilitate the ownership transfer process. The RS and DMS are not
constrained in what types of cryptographic operations they can do i.e. asymmetric
cryptography is possible. We also assume that the DMS servers and RS can ex-
change keys and authenticate each other, possibly with a PKI. The cryptographic
functions are assumed to be secure.

 Adversarial model and problem description

. Adversarial model

Similar to many existing work in IoT and cloud security, we assume that the ad-
versary is acting according to the Dolev-Yao adversarial model [DY]. This means
that an attacker is able to intercept, delete, change order or modify all messages

 Adversarial model and problem description 

sent over the communication channel between any entity. The adversary can also
destroy messages, but is not able to break cryptographic functions. Furthermore,
we assume the IoT nodes are placed into an environment such that physical at-
tacks from an insider adversary (such as the current owner) have to be considered
while the DMS and the RS are assumed to be in a secure location or in protected
isolated environments protected from both external and insider software attacks.

With respect to the direct physical attacks on the IoT units, we assume that
an adversary as well as the old and new DMS are able to compromise, with a given
effort, some or a limited number of IoT units through direct physical attacks on
the devices. Here a compromised node refer to a node where the attacker has
full control of the execution environment as well as volatile and persistent storage
units of the device. Such a model is motivated by the fact that the needed effort
for direct physical attacks is at least proportional to the number of compromised
units. Attacks from the current or new owner on a large scale can be very hard to
perform in practice due to hardware protection mechanisms on the IoT units for
instance.

. Trust model

The RS is assumed to be ‘’honest but curious’’ [Ode], which means the RS will
be a legitimate participant in protocol interactions. It will not deviate from the de-
fined protocol, but will attempt to learn all possible information from legitimately
received messages. The Old Owner and the New Owner are assumed to not fully
trust each other, i.e. the Old Owner has interest in learning the secrets used by
the New Owner. Similar, the New Owner would like to get hold of the secrets
used by the Old Owner.

. Requirements

Given the previously introduced adversary model, we have looked over the general
ownership transfer security requirements identified in previous work on RFID tags
[Taq+] and adapted them to our system and adversary model:

R. IoT unit impersonation security: The protocol shall not allow an adversary
to impersonate legitimate IoT units during or after ownership transfer.

R. OldDMS impersonation security: The protocol shall not allow an adversary
or the new DMS to impersonate the old DMS.

R. New DMS impersonation security: The protocol shall not allow an adver-
sary or the old DMS to impersonate the new DMS.

R. RS impersonation security: The protocol shall not allow an adversary, any
IoT unit or any DMS in the system to impersonate the RS.

 Paper I: Secure Ownership Transfer for the Internet of Things

R. Reply attack resistance: The protocol shall be resistant against attacks where
an adversary tries to complete sessions with any entities in the system by
replaying old, observed messages.

R. Resistance to Man-in-the-Middle attacks (MitM): The protocol shall not
allow insertion or modification of any messages sent between trusted entities
in the system.

R. Resistance to de-synchronization attack: The protocol should not allow the
IoT units and the new or old DMS to enter a state where necessary secure
communications is prevented by a credential mismatch.

R. Backward security: During and after an IoT ownership transfer, the new
owner shall not be given access to any secrets allowing the new owner to
get access to any identities or confidential information used in past sessions
between the old DMS and the IoT units.

R. Forward security: During and after an IoT ownership transfer, the old owner
shall not be given access to any secrets allowing the old owner to get access to
any identities or confidential information used in sessions between the new
DMS and the IoT units.

R. No double ownership: There shall not be any time period during the owner-
ship transfer process when both the old and the new owner has control over
an IoT unit in the system.

In addition to these requirements, our adversary model does not imply full
trust in the RS and we also take into account the risk of that IoT units might
be compromised through direct physical attacks. These two assumptions give the
following additional two requirements:

R. Protection of new credentials : After the completion of the ownership trans-
fer, the RS shall not have knowledge of the new IoT credentials and shall not
be able to set impersonate the new DMS or have access to secure sessions be-
tween the new DMS and the IoT units in the system.

R. IoT compromise resilience: A successful compromise of an IoT unit by
an external or internal adversary shall only give the adversary the power to
impersonate this single IoT unit in the system and not impersonate or break
any secure sessions between other, non-compromised IoT units in the system
and the new DMS.

In many IoT infrastructures, some IoT units are placed in local networks not
publicly open but they are accessible by the owner system only. In our case, this
means that the current DMS can access the units but not for instance an external
entity like the RS. Opening up the system and allowing direct interactions between

 IoT infrastructure ownership transfer model and protocol design 

all IoT units in the system and the RS is a potential security risk. Hence, we have
the following additional requirement on the system solution:

R. IoT unit isolation: An ownership transfer shall not require any direct inter-
actions between the IoT unit and the RS but only between the IoT unit and
the DMS (old or new) in the system.

. Problem statement

We want to transfer the ownership of a set of deployed IoT devices from one
entity to another. Each IoT device has some form of credentials that it shares with
a remote entity. Ownership is defined as holding the credentials of the individual
IoT-nodes. Ownership transfer then is the process of updating the credentials from
keys shared with the old owner to keys shared with the new owner. We want to find
an ownership transfer protocol and solution secure under the previously defined
threat model and which meets the identified security requirements in Section ..

 IoT infrastructure ownership transfer model and proto-
col design

The ownership transfer process can, according to our solution, be divided into
three phases:

• Deployment

• Ownership transfer preparation

• Ownership transfer

In the deployment stage the RS and the first owner provisions keys to the individ-
ual devices, the devices are then deployed.

In the ownership-transfer preparation phase, the owner, now called old owner,
and the new owner signs a list of all devices that shall be transferred and forwards
this list to the RS. The RS then distributes the needed keys for the transfer and
generates an ownership transfer token as well as the individual keys to the new
owner.

In the final ownership transfer stage, the old owner sends the ownership trans-
fer token to the IoT units. After receiving the token the IoT devices verify and
decrypt the token. The information in the token is used to contact the new owner.
The new owner and the IoT units then authenticate each other and new creden-
tials are provisioned to the IoT devices. The detailed protocol description is done
in the subsection below, using terminology defined in Table , and illustrated in
Figure . The steps from Figure  are references by bold numbers e.g. (.).

 Paper I: Secure Ownership Transfer for the Internet of Things

DMSold Old Device Management Server
DMSnew New Device Management Server
RS Reset server
Sign(P,d) Digital signature of data d by party P.
E(k,m) Symmetric encryption of message m with key k.
D(k,c) Symmetric decryption of ciphertext c with key k.
MAC(k,m) Message Authentication Code of message m with key k.
PRF(s) Pseudo-random function with seed s, generating

a pseudo random key.
IoTi IoT device number i.
IDi Identifier of IoT device i.
IDnew Identifier of DMSnew.
URLnew Uniform resource locator to DMSnew.
Ki Key for IoT device number i, shared with RS
KRE Reset-key used for encryption.
KRM Reset-key used for message authentication.

KOi
Owner-key for IoT device number i, divided into two parts
KOi = {KOi1,KOi2}

KRS Master-key for RS used for deriving Ki.
N Ownership-transfer nonce.
Ctri Counter for node i is used for verifying freshness of nonces.

CtrRS
Counter for RS, incremented at every ownership transfer.
Used for verifying freshness of nonces.

KSi
Ownership transfer key for node i composed by: KSi =
PRF(Ki||N||CtrRS)

T Ownership-transfer token, calculated by:
T = E(KRE , IDnew||URLnew||N||CtrRS||
MAC(KRM, IDnew||URLnew||N||CtrRS))

PSKi
DLTS-PSK for IoT device i, generated by PSKi =
PRF(KSi||KOi2)

ID List of IoT device identities ID = {ID1, ID2, ..., IDi}
ID-K List of pairs of IoT device identities and KOi2:

ID-K = {(ID1,KO12), ...,(IDi,KOi2)}
K List of keys Ki K = {K1,K2, ...,Ki}
KO List of owner-keys KOi, KO = {KO1,KO2, ...,KOi}
KS List of keys KSi, KS = {KS1,KS2, ...,KSi}
ID-KS List of IoT device identities and keys:

ID-KS = {(ID1,KS1), ...,(IDi,KSi)}

Table 1: Notations used in protocol description.

 IoT infrastructure ownership transfer model and protocol design 

. Deployment

RS generates the keys KRE , KRM and KRS. RS provides each IoT device with a
unique identifier IDi. KRS is then used to generate Ki for each IoTi by calculating
Ki = PRF(KRS||IDi). Each device IoTi is provided with the corresponding KRE ,
KRM, IDi and Ki. After transferring the keys RS can discard all keys Ki. RS
sets its counter CtrRS = 0 and all IoT devices counters Ctri are also set to zero.
These counters are used to verify the freshness of the ownership tokens later on.
The first owner, DMSold , takes control of the system and provides the owner-key
KOi = {KOi1,KOi2} to each device IoTi. The system is then ready for deployment
and regular use, with KOi used for securing the communication with DMSold .

. Ownership transfer preparation

The ownership transfer process starts with a preparation phase with interactions
between the RS, DMSold and DMSnew. DMSold creates a list of all IoT device iden-
tities IDi called ID and a list of identities and partial keys {IDi,KOi2} called ID-K
that shall switch owner (.). The list of identities is signed Sign(DMSold , ID).
Both lists are sent to DMSnew (.), DMSnew first verifies the signature of the list,
the list of identifiers are then signed by DMSnew.

The result is Sign(DMSnew,Sign(DMSold , ID)), ID-K is kept by DMSnew
(.). The list ID is sent to RS, to prove that ownership transfer shall take place
and that both DMSold and DMSnew are agreeing to the transfer (.). DMSnew
also sends its identifier and URL to RS. After verifying that the list ID is correctly
signed by both DMSold and DMSnew (.), RS can start the ownership transfer
protocol.

. Ownership transfer

RS start the ownership transfer process by re-generating the keys Ki. A nonce N is
generated, that together with CtrRS is used to generate the individual ownership
transfer keys KSi = PRF(Ki||N||CtrRS) (.). The list of ownership transfer keys
ID-KS is sent to DMSnew (.). The RS creates the ownership transfer token T ,
with information needed by the IoT devices, authorizing an ownership transfer
and information for how to do it. T = E(KRE , IDnew||URLnew||N||CtrRS||
MAC(KRM, IDnew||URLnew||N||CtrRS)) RS sends the token T to DMSold (.).
DMSold forwards the Ownership Transfer Token T to all IoT devices (.). The
devices decrypts T with KRE and verifies the MAC with KRM. If the MAC ver-
ification succeed, the freshness of the nonce is checked by verifying CtrRS >Ctri
(.). After these checks each IoT device IoTi can compute the ownership trans-
fer key KSi = PRF(Ki||N||CtrRS) (.). With KSi and KOi2 the IoT devices can
connect to DMSNew using DTLS-PSK[Tsc]. The parameters used are PSK-ID =
IDi and PSK = PRF(KSi||KOi2) (.). After a successful contact has been made
with DMSnew IoTi destroys KOi1 (.). DMSnew then generates a new key KO′i

 Paper I: Secure Ownership Transfer for the Internet of Things

(.). The new key KO′i is sent to IoTi, that also sets Ctri to the received value
CtrRS(.). After DMSnew has provisioned new keys to all IoT devices the own-
ership transfer process is concluded. DMSnew can securely communicate with all
IoT devices using the new keys KO′i.

. Handling of ownership transfer failures

In the previous sections we have described the ownership transfer process in detail.
However, there is a risk that the ownership transfer succeeds for one set of IoT units
but not for another set due to communication errors or similar. Such situation
will be detected by the DMSNew as it will notice that it has not been able get in
contact and authenticate some units part of the IoT transfer list given in step ..
DMSNew can first retransmit the ownership transfer token T to the devices that
has not changed ownership. Some protocols provide a mechanism of notifying a
sender that a message has been received. Such a mechanism can be used to verify
the proper delivery of T . If T has been delivered but an IoT device still does not
connect to DMSNew the issue lies with the device IoTi, that situation will have to
be resolved by DMSOld before a new attempt can be made. In such situation, it is
possible is for DMSNew to issue a ”recovery” procedure by sending a signed list of
missing units back to DMSOld , which then will be requested to contact each of the
missing IoT units (still under ownership of DMSOld) over a mutual authenticated
DTLS channel re-sending the transfer token, T . Such procedure can be repeated,
until the whole set of IoT units are successfully transferred to DMSNew.

 Implementation and experimental evaluations

We have implemented our proposed protocol for an IoT environment running
Contiki-NG. Contiki-NG is a light-weight operating system designed for con-
strained devices. We have used some other protocols to structure our data. Most
significantly we use COSE [Scha] to encode and encrypt the ownership transfer
tokens. We assume secure communication between the RS, DMSold and DMSnew.
The connections to the IoT devices are secured with DTLS[RM].

We have designed the system to use the REST-model[Fie]. Sending the
ownership transfer token to the IoT device is done with a PUT operation to
/transfer-ownership. The IoT device then sends a GET message to /key to receive
the new keys K′i and KO′i.

. Test Setup

The evaluated scenario is executed on the following setup. One Desktop PC run-
ning the RS, DMSOld and DMSNew. The PC is connected to a Border-Router that
acts as an IEEE .. network interface. We have used four Zolertia Firefly-A

https://github.com/contiki-ng/contiki-ng

https://github.com/contiki-ng/contiki-ng

 Security analysis 

development boards that are going to transfer from owner Old to New. The IoT
devices are based on the cc system on chip made by Texas Instruments[Tex].
They have an ARM Cortex-M CPU clocked at MHz together with KB of
RAM and KB of flash. Connectivity is provided by an IEEE .. radio
providing about Kb/s of bandwidth.

. Test Scenario

The test scenario consists of an initial setup phase where keys are distributed to the
individual IoT nodes and an ownership transfer phase. The initial setup phase is
not in scope for the performance evaluation, only the ownership transfer process
is included. We ran the ownership transfer scenario, of the four IoT devices, ten
times.

. Ownership transfer time

In order to evaluate the efficiency of our proposed scheme from a system per-
spective we timed the entire ownership transfer process. We measured the time
elapsed from that the RS sends out the token T to when all IoT devices has been
provisioned with new owner keys KO′i. The time taken for the ownership transfer
process is measured to a mean of .s with a % confidence interval between .s
and s.

. Energy consumption

Since the devices considered for this protocol usually are powered by a battery
it is important that the energy consumed by the IoT device when executing the
ownership transfer protocol is reasonable.

We have measured the energy usage on the constrained nodes for both the
radio modem and the CPU. The total energy consumption was measured to a
mean of .mJ. With a % confidence interval of the mean between .mJ and
.mJ. For comparisons sake, the mean energy consumption of .mJ is equal
to the energy consumed by the CPU executing at full power for four seconds.

 Security analysis

We will now analyze our proposed ownership transfer protocol in the scope of the
system model presented in Section  and the threat model from Section . We will
address each requirement from . except R that is a functional requirement. We
give special attention to the requirements R, R and the requirement for PSKi
to be secure. We formally prove these requirements with Tamarin Prover[Bas+].

https://github.com/Zolertia/Resources/wiki/Firefly

https://github.com/Zolertia/Resources/wiki/Firefly

 Paper I: Secure Ownership Transfer for the Internet of Things

The requirement to protect PSKi from an outside adversary is important for re-
quirements R, R and R while backward (R) and forward (R) secrecy are a
core features of the suggested protocol.

R. IoT unit impersonation security: Each IoT unit i holds a unique key Ki.
The nonce and counter in the token together with this key are used to cal-
culate KSi. In turn, KSi and the second part of KOi are used to calculate
the PSK, used to authenticate the connection between the IoT unit and
DMSNew. Both key parts needed to calculate the PSK are only known to
DMSNew apart from the IoT unit as long as the RS and old owner do not
collude, which contradicts the trust assumption regarding the reset server.
Hence, given that the IoT unit itself can securely store and keep Ki, IoT
impersonation is not possible for an external attacker or DMSOld .

R. Old DMS impersonation security: The ownership transfer is triggered by
letting DMSOld send a signed list of IoT identities (step .). This signature
is verified by the RS at step .. As long as the signature scheme is secure
and the private key of the DMSOld not is compromised, an attacker cannot
impersonate the DMSOld at the ownership transfer ”triggering moment”.
As we do not require protected transfer of the token (step .), DMSOld
impersonation at this step is possible. However, it is not crucial for the pro-
tocol that it is indeed DMSOld that sends the token but it can be transferred
in arbitrary way, as the IoT unit does not finally accept the token unless
the authentication in step . is performed successfully. The latter requires
the genuine key KOi2 from old owner, and this key is sent protected to the
DMSNew at step ..

R. New DMS impersonation security: Similar to the DMSOld , DMSNew signs
the list of IoT IDs subject to ownership transfer (step .). This signature
is verified by the RS at step .. As long as the signature scheme is secure
and the private key of the DMSNew not is compromised, an attacker can-
not impersonate the DMSNew at the ownership transfer ”trigering moment”.
Mutual authentication applies at step . when the IoT unit connects to the
DMSNew. Impersonation at this step requires knowledge of the PSK, which
(similar to the reasoning regarding R above), requires knowledge of both
KSi and KOi, and if not the RS and old owner collude, these two values
are only known to DMSNew and the IoT unit itself. Hence, DMSNew im-
personation is not possible unless DMSNew is compromised such that the
secure keys leaks or the secure key transfers at step . or step . are broken.
The latter is not possible if not the mutually authenticated secure channel is
weak.

R. RS impersonation security: Only DMSNew and DMSOld communicate di-
rectly with RS. They do so over a secure channel that protects against im-
personation of RS.

 Security analysis 

R. Reply attack resistance: All messages between RS, DMSOld and DMSNew
are sent over secure channels that provides protection against replay attacks
(steps ., ., . and .). The Token T transferred from DMSOld to IoTi
(step .) contains CtrRS that is verified against Ctri by IoTi. This provides
replay attack resistance since a replayed T will be rejected due to the counter
check. When IoTi connects to DMSNew (step .) it is done with DTLS
protected by PSKi, which is only known to DMSNew and IoTi. This DTLS
channel is also used to protect the transfer of the new credentials KO′i (step
.).

R. Resistance to Man-in-the-Middle attacks (MitM): All messages between
RS, DMSOld and DMSNew are sent over secure channels that provides mu-
tual authentication (steps ., ., . and .) and thus prevents against
MitM attacks. Communication with the IoT devices and DMSNew (steps
. and .) is done over DLTS-PSK that provides mutual authentication
and with MitM protection. An attacker with knowledge of the keys KRE
and KRM

, can perform a successful man-in-the-middle substitution attack
at step .. Potential values to substitute are IDnew, URLnew, N or CtrRS.
The IoT unit will not accept a wrong CtrRS as it is checked against the inter-
nal counter. Furthermore, substituted IDnew or N will not match the PSK
values used in the mutual authentication in step . and the MitM substitu-
tion attack will fail. A substitution of URLnew will have no affect as long as
the IoT unit still reach the legitimate DMnew with the given URL. If this not
is the case,the ownership transfer for the affected unit will simple be aborted
(see also the recovery discussion in Section .).

R. Resistance to de-synchronization attack: If DMSOld should send a modified
token, T ′ (through access to the keys KRE and KRM), with modified nonce
N′, in step ., the key KS′i will not match the key KSi held by DMSNew.
Hence, in this case, the IoT device will not remove the KOi key, and will
remain in the ownership of DMSOld .

R. Backward security: All traffic sent between the DMSOld and the IoT devices
is sent over a channel protected by the key KOi, the IoT devices destroy KSi
when contact is made with DMSNew. DMSNew can not recover KOi and is
unable to learn any previous secrets (see also the Tamarin proof of Section
.).

R. Forward security: After DMSNew has made contact with the IoT devices and
the old key KOi has been destroyed, DMSNew provisions a new key KO′i and
sends it to the IoT devices over a secure channel protected by the key KSi

These keys are included not to give protection against IoT compromise but to make denial-of-
service type of attacks less likely.

 Paper I: Secure Ownership Transfer for the Internet of Things

that DMSOld does not hold. DMSOld is thus unable to decrypt any future
message sent to the IoT devices (see also the Tamarin proof of Section .).

R. No double ownership: The ownership hand-over is made when the IoT de-
vice connects to DMSNew with PSKi and removes ownership from DMSOld
by removing KOi. DMSNew takes ownership when it provisions KS′i to IoTi.
Failure in any protocol step might results in that some IoT units are still
owned by the DMold . However, as we discuss in Section . below, such sit-
uation can be detected by DMSNew and a recovery process can be initiated.

R. Protection of new credentials: After the ownership transfer process IoTi is
provided with new credentials KO′i. The only way RS can gain access to
the system is by launching a MitM attack on the DLTS connection between
IoTi and DMSNew. Thus this property hinges on PSKi, RS does not know
KOi2 needed to derive PSKi. As long as RS does not gain access to KOi2 by
collusion with DMSOld , the new credentials are protected.

R. IoT compromise resilience: If an adversary compromises an IoT device IoTi
it will gain the following keys: KOi, KRE , KRM and Ki. KOi is only shared
with the current owner and used for securing communication between the
owner and IoT device, the adversary can not impersonate or compromise
any other IoT device. KRE and KRM are shared with all IoT devices, an
adversary could try to spoof an ownership transfer token T . Since the adver-
sary only have KOi it is impossible for the adversary to complete a malicious
ownership transfer with an other IoT device IoTj since the adversary does
not know KO j, thus providing resilience against compromises.

. Tamarin Prover

Tamarin Prover is a tool for formal analysis of security protocols. By creating a
symbolic model of a protocol, stating security lemmas and then using the auto-
matic reasoning to analyse the model the prover can show that the security lemmas
hold or show a counter-example of when they do not hold. Tamarin represents
protocols as a multi-set rewrite rules using first order logic. The automatic prover
represent the state of the execution as a bag of multi-set of Facts. The adversary
model used in Tamarin is the Dolev-Yao model.

. Modeling the Ownership Transfer Protocol

We have modeled a simplified version of our proposed Ownership Transfer Pro-
tocol in Tamarin. We have excluded the steps . - . and . - . to prove
the correctness of the core ownership transfer steps. During our process to verify
the security of our proposed protocol we have introduced four lemmas. We have
created one lemma, Protocol Correctness, to verify that our protocol can execute
with a successful conclusion of the ownership transfer process. We have created

 Security analysis 

another lemma, Outsider secrecy, to prove that PSKi is secret from an outside
adversary. The next two lemmas Old Owner Secrecy and New Owner Secrecy
are lemmas about attacks done by a party in the protocol that misbehaves. These
types of attacks are not included in a standard Dolev-Yao model. To solve this
problem, we have chosen to give the Dolev-Yao adversary all keys and secrets from
the malicious party. The Dolev-Yao adversary then has all the capabilities to inter-
cept, replay and send any message together with the capability to decrypt, encrypt
and sign messages with the keys from the malicious party. We argue that this is a
stronger attacker than a real-world malicious Old owner or New owner would be.
We have assumed that to provide New Owner secrecy PSKi has to be kept secret
from DMSOld . To Provide Old Owner Secrecy the two keys KOi1 and KOi2 have
to remain secret from DMSNew. For the Outsider Secrecy Property we state that
no outside party can learn PSKi.

Below we list the four lemmas:

L Protocol Correctness. The modeled protocol shall execute as specified.

lemma protocol_correctness :
exists_trace
”∃PSK1PSK2#i # j.
((New_owner_PSK(PSK1)@ #i) ∧
(IoT _PSK(PSK2)@ # j)) ∧
(PSK1 = PSK2)”

L Outsider secrecy. The Ownership Transfer protocol shall be secure against
outside attackers. No outside party shall be able to learn PSKi.

lemmaoutsider_secrecy :
all− traces
”∀PSK #i # j.
((((IoT _PSK(PSK)@ #i) ∧
(New_owner_PSK(PSK)@ # j)) ∧
(¬(∃Old_owner #k.Reveal(Old_owner)@ #k))) ∧
(¬(∃New_owner #l.Reveal(New_owner)@ #l))) →
(¬(∃#k.K(PSK)@ #k))”

L Old Owner secrecy. The New Owner shall not be able to learn anything
that has been sent before the ownership transfer, thus KOi1 and KOi2 has
to be secure against an adversary that knows everything DMSNew knows.
lemmabackwards_secrecy :
all− traces
”∀New_owner PSK #i # j #k.
((((IoT _PSK(PSK)@ #i) ∧
(New_owner_PSK(PSK)@ # j)) ∧
(Reveal(New_owner)@ #k)) ∧

 Paper I: Secure Ownership Transfer for the Internet of Things

(¬(∃Old_owner #l.Reveal(Old_owner)@ #l))) →
(¬(∃OwnerKey1OwnerKey2#m #n.
(K(OwnerKey1)@ #m)∧ (K(OwnerKey2)@ #n)))”

L New Owner secrecy. The Old owner shall not be able to learn anything that
occurs after the ownership transfer is complete. No adversary that knows
everything DMSOld shall be able to learn PSKi.

lemma f orward_secrecy :
all− traces
”∀Old_owner PSK #i # j #k.
((((IoT _PSK(PSK)@ #i) ∧
(New_owner_PSK(PSK)@ # j)) ∧
(Reveal(Old_owner)@ #k)) ∧
(¬(∃New_owner #l.Reveal(New_owner)
@ #l))) → (¬(∃#m.K(PSK)@ #m))”

Using our modeled protocol we let Tamarin prove the four stated lemmas. All
of them were found to hold. We conclude that our protocol gives us the required
security properties. Our Tamarin model of our proposed protocol can be found
here for further study .

 Conclusion

In this paper we have identified the need for a light-weight, i.e. symmetric key
based, ownership transfer protocol for IoT devices. We have studied the related
field of ownership transfer for RFID tags and, inspired by previous work, identi-
fied the main security requirements for IoT infrastructure ownership transfer. A
novel protocol was then constructed. We believe the proposed scheme fulfils all
the identified requirements. The protocol was verified in a proof-of-concept imple-
mentation and shown to be indeed as light-weight as expected. The transfer-time
is non-negligible for resource constrained IoT units, but on the other hand, own-
ership transfer typically happens quite rarely. We performed a security analysis of
the proposed scheme with special attention to the backward and forward secrecy
with respect to old and new owner. These security properties were formally proven
using the Tamarin Prover.

Since the field of ownership transfer protocols and mechanisms in IoT is rel-
atively unexplored we see many approaches for further work. Evaluating the per-
formance of protocols in very large infrastructures, i.e. in the order of ten to
hundred thousand IoT units. We would also like to verify the protocol in real
systems such as industrial control systems or building automation. Investigating
other approaches to the solution where no trusted third party is involved is also

www.github.com/Gunzter/iot-ownership-transfer-protocol-tamarin-model

www.github.com/Gunzter/iot-ownership-transfer-protocol-tamarin-model

References 

an interesting avenue of research. Lastly, since the field of IoT is in its infancy it
would be interesting to look into more complex ownership models with multiple
owners and the ability to temporary transfer ownership and control, i.e. to lend
or rent, the IoT devices to another entity for a limited time.

References

[Bas+] D. Basin et al. “Symbolically Analyzing Security Protocols using
Tamarin”. In: ACM SIGLOG News (Oct. ).

[BAS] N. Bagheri, S. F. Aghili, and M. Safkhani. “On the security of two
ownership transfer protocols and their improvements”. In: Int. Arab
J. Inf. Technol. . (), pp. –.

[BMM] M. Burmester, B. de Medeiros, and R. Motta. “Provably Secure
Grouping-Proofs for RFID Tags”. In: Smart Card Research and
Advanced Applications. Ed. by G. Grimaud and F.-X. Standaert.
Berlin, Heidelberg: Springer Berlin Heidelberg, , pp. –.

[Cao+] T. Cao et al. “RFID ownership transfer protocol based on cloud”.
In: Computer Networks  (), pp. –.

[DMR] M. DÃ az, C. MartÃ n, and B. Rubio. “State-of-the-art, challenges,
and open issues in the integration of Internet of things and cloud
computing”. In: Journal of Network and Computer Applications 
(), pp. –.

[DY] D. Dolev and A. C. Yao. “On the Security of Public Key Protocols”.
In: Proceedings of the Nd Annual Symposium on Foundations of
Computer Science. SFCS ’. Washington, DC, USA: IEEE
Computer Society, , pp. –.

[Eis+] T. Eisenbarth et al. “A Survey of Lightweight-Cryptography
Implementations”. In: IEEE Design Test of Computers . (Nov.
), pp. –.

[Ero+] P. Eronen et al. Internet Key Exchange Protocol Version  (IKEv).
RFC . .

[Fie] R. Fielding. “Representational state transfer”. In: Architectural Styles
and the Design of Netowork-based Software Architecture (),
pp. –.

[HGY] L. He, Y. Gan, and Y. Yin. “Secure group ownership transfer
protocol with independence of old owner for RFID tags”. In:
Computer modelling and new technologies .B (),
pp. –.

[Inc] E. Inc. Report ... EPCglobal Inc., .

 Paper I: Secure Ownership Transfer for the Internet of Things

[Kha+] M. S. N. Khan et al. “chownIoT: Enhancing IoT Privacy by
Automated Handling of Ownership Change”. In: Privacy and
Identity Management. Fairness, Accountability, and Transparency in
the Age of Big Data: th IFIP WG ., ./., ./SIG ..
International Summer School, Vienna, Austria, August -, ,
Revised Selected Papers. Cham: Springer International Publishing,
, pp. –.

[KP] G. Kapoor and S. Piramuthu. “Protocols for Objects with Multiple
RFID Tags”. In:  th International Conference on Advanced
Computing and Communications. Dec. , pp. –.

[KZP] G. Kapoor, W. Zhou, and S. Piramuthu. “Multi-tag and
multi-owner RFID ownership transfer in supply chains”. In:
Decision Support Systems . (), pp. –.

[Lan+] J. Lanza et al. “Managing Large Amounts of Data Generated by a
Smart City Internet of Things Deployment”. In: Int. J. Semant. Web
Inf. Syst. . (Oct. ), pp. –.

[Ode] G. Oded. Foundations of Cryptography: Volume , Basic Applications.
st. New York, NY, USA: Cambridge University Press, .

[PS] B. H. Pradeep and S. Singh. “Ownership authentication transfer
protocol for ubiquitous computing devices”. In:  International
Conference on Computer Communication and Informatics. Jan. ,
pp. –.

[RM] E. Rescorla and N. Modadugu. Datagram Transport Layer Security
Version .. RFC . Jan. .

[RNL] R. Roman, P. Najera, and J. Lopez. “Securing the Internet of
Things”. In: Computer . (Sept. ), pp. –.

[Scha] J. Schaad. CBOR Object Signing and Encryption (COSE). RFC .
RFC Editor, July .

[SIS] J. Saito, K. Imamoto, and K. Sakurai. “Reassignment scheme of an
RFID tag’s key for owner transfer”. In: International Conference on
Embedded and Ubiquitous Computing. Springer. ,
pp. –.

[SO] Y. B. Saied and A. Olivereau. “D-HIP: A distributed key exchange
scheme for HIP-based Internet of Things”. In:  IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM). June , pp. –.

[Sun+] S. Sundaresan et al. “Secure ownership transfer for multi-tag
multi-owner passive RFID environment with
individual-owner-privacy”. In: Computer Communications 
(), pp. –.

References 

[Taq+] E. Taqieddin et al. “Tag Ownership Transfer in Radio Frequency
Identification Systems: A Survey of Existing Protocols and Open
Challenges”. In: IEEE Access ().

[Tex] I. Texas Instruments. “Cc powerful wireless microcontroller
system-on-chip for .-ghz ieee .. , lowpan, and zigbee
applications”. In: CC datasheet (April ) ().

[TN] P. Tam and J. Newmarch. “Protocol for ownership of physical
objects in ubiquitous computing environments”. In: IADIS
international conference E-Society. Vol. . , pp. –.

[Tsc] H. Tschofenig. and T. Fossati,” Transport Layer Security
(TLS)/Datagram Transport Layer Security (DTLS) Profiles for the
Internet of Things. Tech. rep. RFC , DOI ./RFC,
July ,< http://www. rfc-editor. org/info …, .

[Vög+] M. Vögler et al. “A Scalable Framework for Provisioning
Large-Scale IoT Deployments”. In: ACM Trans. Internet Technol.
. (Mar. ), :–:.

[Zuo] Y. Zuo. “Changing hands together: a secure group ownership
transfer protocol for RFID tags”. In: System Sciences (HICSS), 
rd Hawaii International Conference on. IEEE. , pp. –.

[ZYP] W. Zhou, E. J. Yoon, and S. Piramuthu. “Simultaneous multi-level
RFID tag ownership & transfer in health care environments”. In:
Decision Support Systems . (), pp. –.

 Paper I: Secure Ownership Transfer for the Internet of Things

Reset	Server DMSold DMSnew IoTi

Generate	K	
Generate	nonce	N	and

KS.
Generate	token	T.

Compile	and	sign	list	of
IDs	ID.	Create	list	of
Partial	KOi	and	IDi	

ID-K.	

ID,	ID-K
Sign(DMSold,	ID)

Extract	URI	and	ID	for	
DMSnew

Compute	KSi.
Compute	PSKi.

Connect	to	DMSnew.

Decrypt	token,	verify
MAC	and	verify	CtrRS.

Destroy	KOi1Generate	KO'i

KRS, KRE, KRM,
CtrRS, Pold, Pnew ID

ID
KO
Sold

Pold, Snew
IDi, KOi, KRE, KRM,

Ki, Ctri

Verify signature of ID
Sign ID,

Save ID-K.

ID,	Sign(DMSnew,	
Sign(DMSold,	ID))Verify	signatures	of	ID.

T

ID-KS

Forward token T to
all IoT devices

T

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)(2.9)

(2.10)

Authenticate with
DTLS-PSK=PSKi.

PSK-ID=IDi

KO'i

Figure 2: Messages and computations done during the ownership transfer.

Pa
p
er

II

An Identity Privacy
Preserving IoT Data

Protection Scheme for Cloud
Based Analytics

 Introduction

Internet-of-thing (IoT) is a network of physical objects or things embedded with
electronics, software, and sensors, connected through the Internet to collect and
exchange data with manufacturers, operators and other connected devices. IoT
includes a variety of connected objects from tiny stuff (e.g. smart dust) to enor-
mous stuff (e.g. an entire city). Most IoT devices are used in factories, businesses
and healthcare systems. By , there might be more than . billion connected
devices  generating  trillion gigabytes of data, and total global worth of IoT
technology would reach to USD . trillion by . This trend opens up to
completely new possibilities with respect to data analysis services utilizing device
data from a huge number of distributed devices [Mar+]. The applications are
very wide-ranging from healthcare and market analytics to industrial systems. In
this paper, we consider big data IoT analytics from a privacy perspective. Even if
the IoT units producing the data are not necessarily owned by an individual, the

https://www.statista.com/statistics//iot-number-of-connected-devices-worldwide/
https://www.seagate.com/gb/en/our-story/data-age-/
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

Christian Gehrmann, Martin Gunnarsson “An Identity Privacy Preserving IoT Data Protection
Scheme for Cloud Based Analytics”. In  IEEE International Conference on Big Data (Big
Data), Los Angeles, CA, USA, , pp. -, IEEE.

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

data they produce as well as communication patterns can reveal important busi-
ness and industry secrets which should be avoided whenever possible [SWW]
[Map].

Huge scale analytic on powerful, third-party back-end cloud resources raises
security and privacy concerns. One problem is that typically the cloud computing
resources cannot be fully trusted. Another related problem is that if an adversary is
able to observe the analytic operations or data storage read/write requests, sensitive
information might be leaked. One way to tackle this problem is to use privacy-
preserving cryptographic techniques [Pap+] [Pop+], [Wan+]. However, so
far these approaches have large overhead and thus severely limits the type of ana-
lytic operations that can be supported in the system. Especially the area of fully
homomorphic encryption has achieved lots of attentions even if it is not yet fully
practical [Aca+]. An alternative approach is to operate on original data using
analytic engines executed in Trusted Execution Environments (TEEs) such as In-
tel's SGX. This line of research has gained quite a lot of attention during the past
years [Xu+][Zhe+][Sch+]. In these approaches, it is assumed that the data
subject to data analysis is already encrypted with a suitable encryption key avail-
able to the trusted application running in the TEE. Hence, before these protection
techniques can be applied, the database content must be properly encrypted with
the expected keys. In a scenario, where a large amount of IoT devices regularly
uploads new data items subject to analysis, the data items must also be protected
prior to arriving at the cloud storage resources and they should be protected end-to-
end without leaking any information about the source IoT unit. How to perform
such encryption in an identity privacy-preserving and efficient way is the problem
tackled in this paper.

One key difference that needs to be taken into account when designing an
IoT system solution is that in many applications, the IoT devices are resource-
constrained [MDK]. They can, for instance, be constrained both in terms of
computation power, as well as, being energy-constrained since they can be powered
by a battery. Besides being more resource-constrained, they are also often deployed
in a decentralized manner. These constraints limits, to a varying degree, what kind
of security mechanisms that can be put in place, as well as, what kind of algorithms
that can be executed on the IoT units [RNL]. Hence by efficient, we here mean
to avoid the trivial solution using public key encryption, which both is costly on
the resource-constrained devices as well as when processing a large number of data
items on the cloud resources.

Using a model of the availability of trusted computing engines in the cloud
like the solutions in [Zhe+] and [Sch+], we consider the additional and orthog-
onal security problem of privacy preserving data cloud upload of IoT subject to
data analysis. Especially, we consider this problem in the context of not requiring
any public key operation on the data collection, i.e. IoT, side but pure symmetric
operations. Furthermore, we require IoT individual symmetric encryption keys as
global encryption keys constitute a major security risk (a compromise of a single

 System scenario 

IoT unit will destroy the security for all or many devices). In this context, the main
challenge is to design a symmetric data encryption scheme allowing fast encryp-
tion and decryption while preventing an attacker, observing the data in transfer or
at cloud storage, deducing any information bout the data origin like the identity
of the IoT unit producing the data. Still, it must be possible for the analytic en-
gines running at the cloud resources to efficiently to decrypt the data. We address
this challenge suggesting a data item identity preserving encryption scheme and
corresponding key management scheme.

The main contributions of the paper are the following:

• We identify main security requirements for large scale, light-weight and
identity privacy preserving, individual IoT data encryption and give formal
security definitions.

• We present a novel encryption and corresponding key management scheme
meeting the identified requirements.

• We evaluate the security properties of the proposed scheme and prove the
security of the scheme for a couple of different attacker scenarios.

• We present a proof of concept implementation of the encryption scheme
and make a performance evaluation.

We proceed as follows: we present the system scenario we are considering
(§), we introduce our adversary model and derive security requirements as well
as make formal security definitions (§), we give an overview of our novel IoT
data encryption scheme and introduce notations (§), we describe our proposed
key management solution (§), we present the detailed data encryption and de-
cryption procedures (§), We make a formal security analysis of the proposed solu-
tion (§) and present a proof of concept implementation, including performance
figures (§). Lastly we discuss related work (§) and conclude (§).

 System scenario

We consider a system consisting of distributed IoT units, a management domain
and a third-party cloud back-end (cloud provider) responsible for IoT data storage
as well as data analytic operations. Figure  depicts an overall system scenario which
includes the following components:

• The Key Management System (KMS) deployed in a management domain
is responsible for generating different credentials for IoT units and cloud
execution containers, as well as the other entities running at a Cloud Service
Provider (CSP) that need key material. The KMS may also collect analytic
results.

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

Figure 1: System scenario.

• CSP Storage Resource (SR), which is a repository responsible for storing
IoT data.

• Storage Manager (SM) which is the interface for collecting and accepting
IoT data and storing it on the SR.

• IoT units or what we refer to as devices (u) producing data which is sent
securely to the SM component. The architecture is agnostic with respect to
how the devices are deployed and in what type of network. All devices are
assumed to have global network connectivity.

• Database Manager (DM) responsible for sharing IoT data with analytic en-
gines. The DM is deployed in a suitable execution container on the cloud
resources in the form of a Virtual Machine (VM) or in a protected execution
container like SGX.

• Analytical engines (A) perform data analytics on IoT data through the DM.
The analytics engines in the system are deployed on suitable execution con-
tainers on the cloud resources in the form of Virtual Machines (VMs) or in
protected execution containers like SGX.

• Aanalytics consumer (C) which is authorized to receive analytics results pro-
duced by an A.

The boundary of the CSP is the space that contains SM,SR,DM and A. The
management domain might also be deployed in an cloud environment but must
in the model we are considering be fully trusted. We discuss the adversary model
and requirements in the next section.

 Problem setting 

 Problem setting

Next, we discuss the details of the data protection problem we are considering.
We start by defining our adversary model and use this model to identify privacy
requirements. Although the system scenario and architecture we are considering
implies several additional requirements, the focus here are on the privacy/security
requirements under the assumption of resource constrained IoT units. Next, we
identify security and functional requirements on the system we are considering.
Finally, we give formal security definitions.

. Adversary model

We consider a powerful adversary who may control the CSP network domain as
well as having access to the SM and SR. We do not consider denial-of-service
(DoS) types attacks on these nodes though and assume that SM and SR are being
able to operate properly. The adversary might also try to get full access to the com-
puting resources but we assume the A and DM to be deployed in secure containers
using secure launch in combination with secure VMs or secure launch of SGX ma-
chines. Hence, the adversary has no possibility to directly modify or eavesdrop A
or DM. This model is motivated, as we stated in the introduction, with reference
to trusted computing techniques in combination with secure launch as reported
in [PGM] and protected SGX analytics as described in [Sch+]. Recent attacks
like Metldown [Lip+] and Spectre [Koc+] have shown that one cannot even
trust the fundamental hardware functions needed for secure isolation currently in
use. Despite this fact, the security with respect to secure execution environment
for virtualized systems is steadily improving and we will in this paper disregard
attacks on the isolation properties of the execution containers.

In line with many other works on IoT and cloud security, we assume that the
adversary is acting according to the Dolev-Yao adversarial model [DY]. This im-
plies that an attacker is able to intercept, delete, change order or modify all com-
munication messages sent over the communication links between the IoT units
and the CSP domain. The adversary can also destroy messages but is not able to
break any cryptographic mechanisms. The devices are assume to be semi-trusted.
This means that as long as an external attacker has not compromised a unit, it will
be trustworthy. However, we do not exclude the possibility of that a limited set
of the IoT units in the system are completely taken over by the adversary.

The management domain including the KMS is assumed to secure not in the
control of the adversary.

. Requirements

Starting from the previously presented system architecture and the given adversar-
ial model, we have identified the following security requirements:

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

R. Data items confidentiality: All data items sent from a device u needs to be
confidentiality protected, all the time, until they are processed by A in a secure
execution environment.

R. Data items integrity: All data items sent from a device u needs to be integrity
protected, all the time, until they are processed by A in a secure execution
environment.

R. Analytics results confidentiality and integrity: All analytics results must be
confidentiality and integrity protected before they are returned to the C.

R. Data items identity privacy: It shall not be possible for an external adversary
or a compromised IoT unit, u′ to determine which data item that is produced
by a, non compromised, specific IoT unit, u. This implies that it shall not
be possible to trace data items from different IoT units through potential
identities used in protected data items.

Many of the devices might be placed in internal network not accessible from the
outside. Furthermore, a particular device, u, might for security reasons be re-
stricted not to set up secure sessions with external entities. It might also be an
advantage if several data items can be buffered at an intermediate node, before
they are transferred to the SM for storage. Altogether, this gives us the following
additional design requirement on the wanted solution:

R. IoT unit isolation: A data transfer from u shall not require any direct inter-
actions (session) between the IoT unit and the SM.

Among these, requirements, it is particular challenging to fulfill requirement R in
combination with R and R for the scenario we are considering. This is due to the
fact, that it shall be possible for analytic engines deployed in the cloud, to quickly
decrypt data items uploaded to the cloud using symmetric encryption only. This
on the other hand, requires that the symmetric key for the data items must be
available which in turn typically means that the data item must be ”marked” with
a key identity to allow symmetric key lookup. If a fixed identity is used, we do not
fulfil R and this is the main security design challenge we address in this paper.

. Formal security definitions

Next, we give formal security definitions. We here focus on formally defining R,
R and R. The reason for this choice is that R can be fulfilled with standard
secure channel and security association techniques and it is not the main problem
we address here even this is a requirement for a complete system solution. Further-
more, R is not a security requirement as such, but a property on the solution we
want to have in order to offer practical and broadly applicable solution. Hence,
we here do not either give a formal definition for R.

 Problem setting 

Denote by u ∈U an arbitrary IoT unit and by m ∈Mn, where Mn is a plain
text space index by n (message of length n bits), a data item produced by such
unit. Furthermore, let Ke ∈ Ke and Kmac ∈ Kmac, be a symmetric encryption
and integrity keys respectively, known to the u and the DM. We then denote
by c = EKe(r,m) the encryption of m with Initialization Vector (IV) = r ∈ R
and using a suitable symmetric encryption algorithm, E. Similar, we denote by
x = MACKmac(m), the message tag calculation for a message, m, using a suitable
MAC function , MAC.

Let K be an arbitrary key space and v = fK(u,m),K ∈ K be the random
packaging of message m for unit u. Here the function fK denotes the combination
of one or several encryption and/or MAC functions for a particular unit. v is then
the actual message ”observed” by an external entity when the message is transferred
to SM.

We use the classical security by indistinguishability definition to define the
expected confidentiality property of the scheme [Gol].

Definition .. An IoT protection schemes provides confidentiality protection if for
all (non-uniform) polynomial time limited adversaries, AT , there exist a negligible
function ε(n), such for all ∀m0,m1 ∈Mn,∀r ∈ R:

|Pr[AT (EKe(r,m0)) = 1]−Pr[AT (EKe(r,m1)) = 1]|
< ε(n), ()

where the probability is taken over all choices of Ke and coin tosses by AT .

Let the adversary, AT having access to MACKmac . We then consider the fol-
lowing security game (unforgeability under chosen message attack):

Game UF-CMA

• Setup: Kmac←R Kmac

• Query phase: AT makes a set of quires, by selection of message m ∈M to
get x = MACkmac

• Guess phase: AT → (m′,x′)

• Verify: If m′ /∈M and x′ = MACKmac(m
′), AT wins, else AT loose.

We then use the classical unforgeability MAC security definition for message in-
tegrity security.

In the scheme we consider the encryption and message authentication message scopes are not
always the same. However, for simplicity, we here just use the notion of m for the message input
both to a encryption function and a MAC function

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

Definition .. A family of functions, MAC, is said to be (q, l,ε) unforgeable
under chosen message attack if for all adversaries, AT who makes q queries with
total size of the queries bits maximum equal l:

Pr[AT win game UF-CMA]≤ ε ()

Definition .. An IoT data protection scheme which protects messages by a
(q, l,ε) unforgeable MAC is said to provide integrity protection if q is greater than
the maximum number of MAC values that the attacker can observe from a single
IoT unit, ε i negligible and l is greater than the maximum number of bits in d,
i.e, the maximum number of bits produced by any IoT unit for a single message.

Next, we give our identity privacy definitions. Now, let the adversary, AT hav-
ing access to the output of fk. We consider the following security game (Identity
attack):

Game IDA

• Setup: K←R K

• Query phase: AT makes a set of queries to get v = fK(u,m)
together with u for random u ∈U and chosen message m ∈M.

• Observe phase: For random û and chosen m ∈M,
AT observes v′ = fK(û,m)

• Guess: AT → u′

• Verify: If u′ = û, AT wins, else AT loose.

Definition .. A data and identity protection scheme, f , is said to be (q, p)
unforgeable if for all adversaries, AT who makes q queries:

Pr[AT win game IDA]≤ p ()

Furthermore, we say that a (q, p) unforgeable protection scheme with p≤ 1/k+ε,
for an integer k,and ε≪ 1/k provides k-anonymity.

 Design overview and notations

Our goal is to provide confidentiality, integrity and identity privacy of cloud up-
loaded data items. The goal with the design has been to use, due to resource
consumption reasons, pure symmetric key algorithms and without any require-
ment on session handling at the IoT side and with individual encryption keys on
the IoT side avoiding that a single or few compromised IoT units will destroy the
security of the complete system.

 Key generation and distribution 

Our solution is based on the following assumption:

• Referring to solutions like the one presented in [Sch+] [PGM], a trusted
analytics provider is able to securely launch analytics applications (A) as well
as a database manager (DM) on secure/isolated VM/containers on the CSP
computing resources. The DB server is working on encrypted data stored
at general available storage resources (SR) in the provider cloud.

We suggest a solution where the DB server is pre-configured (prior to secure
launch) with IoT data item symmetric key material that will allow it to read en-
crypted data items stored on the provider storage resources. Similarly, all IoT units
are pre-configured with matching (but not the same) symmetric key material al-
lowing them to upload or release (for instance through a third entity in the local
network) encrypted data items to the provider storage resources.

Data items are directly or indirectly uploaded to the storage resources (SR)
through the SM in the provider network. The solution is agnostic with respect to
how the data items are uploaded to the SM. The encryption of the data items are
done so that an attacker who only observes stored or sent data items neither can
obtain the clear text of the individual data items nor being able to know which
particular IoT node that uploaded the protected data item.

Once a set of new data items are uploaded to the provider storage resource,
the DM is able to immediately fetch any new items, and with low computational
overhead (only symmetric encryption), decrypting these items. When the items
have been decrypted, the DM updates the internal database index such that ef-
ficient search of the data items are possible. The DM server keeps the index in
internal protected memory and/or in protected external non-volatile memory.

The data analytic application, or applications, can contact the DM through a
protected channel to issue database quires on the encrypted data items. The DM
server then efficiently fetches encrypted data items using the internal index and the
clear text of the data items are obtained using the symmetric encryption scheme
together with the shared (with the IoT units) key management scheme.

Table  summarizes the notations we use throughout the rest of the paper.

 Key generation and distribution

Next, we describe the principles for key generation and distribution in the system.
According to our design, the KMS is responsible for generating keys and to dis-
tribute them to the IoT units as well as the DB manager (DM), analytic engine
(A) and storage manager (SM) in the system.

The design is based on the usage of four different master keys: IK,KM1,KM2
and KM3. The IK is a system global integrity protection key and the other keys
different encryption master keys. Before system deployment, the KMS uses a good
random source to generate these four different keys. The key IK is securely trans-

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

ferred and stored at SM while KM1,KM2 and KM3 are all securely transferred to
the DB.

To give a k-anonymity on visible device index, the set of IoT units, U , is
divided IoT subsets of at least size k:

U = {U0,U1, . . . ,Us−1},∀t,0≤ t ≤ s−1, |Ut | ≥ k. ()

Each IoT unit is associated with a random index, i selected by the KMS. i is
configured into the DB together with the rest of the key material but is not given
to the device (u) itself. Instead, each device ui ∈U is given a device unique index
set:

Li = {li0, li1, . . . , liw−1}, lip = r||EKM3(r, i), ()

where r is chosen uniformly and at random by the KMS and EKM3 is suitable
symmetric encryption function. The device uses the index to ”mark” data items
produced by the item (see Section  for the detailed data protection procedure).
In addition, ui is configured with three different symmetric keys:

• IK: the global integrity protection key.

• IKi = PRF(KM1,”MAC”||i): an individual integrity protection key.

• K1i = PRF(KM1,”Enc”||i): a symmetric inner encryption key

• K2i = K2t = PRF(KM2, t): a symmetric outer encryption key

Figure  gives an overview of the different key configurations done during system
deployment.

Figure 2: Deployment key configurations.

 Data protection

We are considering a model where a huge number of IoT devices regularly uploads
new data items to the storage server SM. According requirement R, this shall

 Data protection 

be possible to do without the need for any security sessions. A straight forward
way to handle this is to use an object security model. Object security for the
IETF session protocol for constraint devices, CoAP [SHB] is standardized in
the Object Security for Constrained RESTful Environment (OSCORE) standard
[Sel+a]. While this is a very resource efficient protocol, it gives not identity
anonymity of the sending party. Furthermore, it is closely aligned to the CoAP
protocol. In our scenario, we do not want to just protect the data from the sending
device to the storage manager end-to-end as offered by OSCORE, but actually also
data storage at the SR as we considering a model where the attacker might have
access to both the SM and SR. Hence, we have defined a new privacy preserving
object security format. The format is completely independent of the actual bearer
protocol but can for instance be transferred over CoAP as standard non-protected
payload. Below, we describe the encryption procedure (at the device side) and
format as well as decryption procedures (database side of the system).

. Data encryption procedure

Each devices regularly uploads data to the SM in protected format. We suggest
the following encryption procedure:

. ui uses a good random source to generate two random values: n1,n2.

. ui selects uniformly and at random an index, lip, from the set Li.

. ui selects a first encryption IV, IV1 = lip||n1.

. ui selects a second encryption IV, IV2 = t||n2.

. ui encrypt the data item, d to obtain a first ciphertext: c1 = EK1i(IV1,d).

. ui encrypt IV1 to obtain a second ciphertext: c2 = EK2i(IV2, IV1).

. ui compute the inner message authentication code over IV2||c2||c1 :
hin = MACIKi(IV2||c2||c1)

. ui calculates a message authentication code over IV2||c2||c1||hin: ho =
MACIK(IV2||c2||c1||hin).

Finally, ui sends the protected message, IV2||c2||c1||hin||ho, using an arbitrary
communication channel to SM, which verifies the message authentication tag, ho,
and if the verification is successful, stores IV2||c2||c1||hin for future processing at
SR. The protected message format is illustrated in Figure .

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

Figure 3: Protection format.

. Data decryption procedure

According to the system scenario we are considering, the DB is responsible for de-
cryption protected IoT data items on SR and to index them for future processing.
However, there is no need for the DB to re-encrypt the data items but they can be
kept in protected form on the SR as the decryption process is quick as we show
below. The decryption procedure is as follows:

. DB fetches a protected data item from the SR: IV2||c2||c1|hin

. DB extracts t from IV2.

. DB calculates: K2t = PRF(KM2, t).

. DB decrypts c2 to obtain: IV1 = DKM2(IV2,c2).

. DB extracts l = r||c from IV1.

. DB obtains the true device index i through decryption: i = DKM3(r,c)
(corresponding to the index encryption in ()).

. DB calculates KIi = PRF(KM1,”MAC”||i).

. DB calculates h′in = MACIKi(IV2||c2||c1). If h′in equals hin, the data, the
item is accepted, otherwise it is rejected.

. DB calculates K1i = PRF(KM1,”Enc”||i).

. DB uses K1i and IV1 to obtain the clear text data item d′ = DK1i(IV1,c1)
.

 Security analysis

Next, we analysis the security properties of the proposed protection scheme. The
focus of the analysis is the security requirements R, R and R (see Section .).
R is here omitted as this is a pure back-end system property that can be achieved
by state-of-the-art protection mechanisms.

Proposition . Given that the symmetric encryption algorithm, E, provides con-
fidentiality protection and for a non-compromised IoT unit encryption key, K1i,
the proposed scheme provides confidentiality protection.

 Security analysis 

Proof. The worst case attack scenario given the prerequisites in the proposition, is
when the attacker has full knowledge of IV1 but no knowledge of the key K1i.
In this case, for all different data items, d0, d1 and corresponding encrypted ci-
pher texts, c0 = EK1i(IV1,d0),c1 = EK1i(IV1,d1), the distinguish probability
() equals the very same probability for the used symmetric encryption algorithm.
This proofs the Proposition.

According to our attacker model, adversary knowledge of K1i only happens
when the IoT unit ui is compromised. However, if this IoT input is compromised,
the attacker will have access to all data protected by this particular unit anyway, and
our any protection scheme is not useful. Hence, we conclude that the proposed
scheme give good protection for the data for the majority of the IoT units. This is
true as we assume it will only be feasible for an attacker to compromise a limited
number of the IoT units in the system.

Proposition . For a non-compromised IoT unit ui, given that the chosen func-
tion MAC is (q, l,ε) unforgeable, the proposed scheme provides data item integrity
if: l is greater than the maximum number of bits in d, q is larger than the maxi-
mum number of messages produced by ui and ε is negligible.

Proof. A data item produced by ui is first encrypted into c1, which in turn is
protected by (q, l,ε) unforgeable MAC using key IKi. Hence, if IKi is not com-
promised, d is (indirectly) protected by a (q, l,ε) unforgeable MAC. Furthermore,
it follows from the assumptions in the Proposition that l is greater than the maxi-
mum number of bits in d, that ε is negligible and that q > maximum number of
messages produced by ui. Hence, the Proposition follows directly from Definition
.

The same reasoning around IoT encryption key compromise, K1i for unit ui
applies also to integrity key compromise, IKi of the unit. Hence the scheme also
give good integrity data protection for the majority of the IoT units.

Proposition . Given that the symmetric encryption algorithm, E, provides con-
fidentiality protection and for a non-compromised group encryption key, K2t , the
proposed protection scheme provides k-anonymity.

Proof. In the IDA game, the attacker, for chosen messages m ∈M observes q dif-
ferent evaluations of fK2i(ui,m) = c1,c2,hin together with ui. Here we have,
c2 = EK2t (IV2, IV1), where IV1 is an encrypted index, lip randomly mapped
from random selections of ui. As the input to the calculation of c1,c2, and con-
sequently, also the input to the calculation of hin are depending on random num-
bers n1,n2, these values are randomly distributed on the encryption and MAC
spaces independently of the chosen message, m. Next, the attacker can choose any
previously observed value t (part if IV1) and corresponding previously observed

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

message m and get the corresponding, v′ = c1′,c2′,h′in. If c1′,c2′ equals a previ-
ous observed c1,c2, the attacker wins with probability one as he/she can choose,
in this case, a previously observed, hin. This probability is less than the probabil-
ity that just c2′ equals a previously observed crypto text c2. Due to the random
selections of n1, n2, lip by the IoT unis, observation of a previously observed c2
happens with probability less than 2log2(q)−log2(w)−log2(||n1||)−log2(||n2||) = ε. If, c2′

does not equal a previously observed crypto text, an attacker that tries to decrypt
c2′ to obtain l′, can in the worst case map l′ to a particular user u′. However, since,
the group key, K2t , not is known to the attacker, and the encryption algorithm
gives confidentiality protection, it follows from () that this attack game succeeds
with a probability of at most ε(n). Hence, in case of that c2′ does not equal a
previous observed crypto text, a random selection of u′ ∈Ut (as t is known to the
attacker) gives the best chance of success. As |Ut | ≤ k,Pr(u′ = û)≤ 1/k, this gives
an overall probability of success ε+(1− ε) · (1/k)≈ 1/k.

This proposition shows that as long as the group unique key not is leaked, the
scheme provided k-anonymity. However, as the size of a group can be rather large
(equal to t), compromise of this key cannot be excluded in same cases. However,
even in this situation, the proposed scheme gives some anonymity guarantees as
showed by the following proposition.

Now, denote by Bin(q;k/|U |) the binomial distribution, i.e. with the density
function:

P(X = j) =
(

q
j

)
(k/|U |) j(1− k/|U |)q− j.

Then let:
BSum[(k,w),Bin(q;k/|U |)] =

q
∑

j=0

1
k− j

w
P(X = j), if q≤ w(k−1)

w(k−1)
∑

j=0

1
k− j

w
P(X = j)+

q
∑

w(k−1)+1
P(X = j) otherwise

Proposition . Assume, q < w|U |, then the proposed protection scheme is
(q,q/(w|U |+(1−q/w|U |)BSum[(k,w),Bin(q;k/|U |)]) unforgeable.

Proof. A worst case scenario is an attacker with full knowledge of K2t for all pos-
sible choices of t. Under these circumstance, the attacker can ask for q number of
different values fLi(ui) = IV1 = (lip,n1) together with ui (outer encryption and
message selection can be disregarded in this case). Next, in the game, the attacker
observes v′= fLi(û). If v′ has been previously observed, the attacker wins the game
with probability one. For each data protection occasion at most q different (li,ui)
pairs have been recorded by the attacker. Furthermore, as û is selected at random
and the index li is chosen at random among the w different available indices, the

 Performance figures 

probability that v′ has previously been observed is then less than q/(w|U |). This
follows from the fact that the total number of (li,ui) pairs equals w|U | and that
maximum q unique different pairs have been observed by the attacker. If v has not
previously been observed, an optimal game strategy for the attacker is to choose
u′ as the identity of the least number of previously observed identities in {v′}
belonging to set Ut . Denote this number by z. Furthermore, assume, the num-
ber of observed elements Ut equals j. Then the probability of successful attack
for this strategy is less than (w− z)/(wk− j)≤ w/(wk− j) = 1/(k− (j/w)), if
j ≤ w(k− 1). While if j > w(k− 1), the probability is less than . The proba-
bility of having j elements in the previous observation belong to set Ut is due to
the random selections, equal to the binomial density function. Hence, by taking
the expected value of 1/(k− (j/w)) for the binomial distribution and summing
up to the number of observations, q, we end up with the an expected probability
which is less than BSum[(k,w),Bin(q;k/|U |)].

This proposition is proved under the scenario that all keys K2t are leaked which
is typically not possible to achieve for a limited attacker. Even under this circum-
stance, as the proposition shows, the scheme still provides a level of anonymity.
The strength of the anonymity can be tuned using the size of the parameter w.
However, a larger w comes with higher IoT non-volatile memory cost. It is im-
portant to also notice though, that unforgeability is made under the worst chosen
message attack scenario and in many practical situations it will not be possible for
an attacker to gather enough number of clear text (li,ui) pairs for protected data
items. Especially, it is hard for an attacker to get knowledge of the real identity
behind an observed index value, li.

 Performance figures

. Proof of Concept Implementation

To evaluate the feasibility of our suggested privacy protection scheme, we have
implemented a proof of concept system. We have developed an application for
IoT devices that generate data items that are encrypted according to our proposed
scheme. These encrypted data items are then sent to a SM where h0 is verified and
then to DM where they are decrypted. The KMS is left out of scope. Our IoT
application for data encryption is written in C and is running on Contiki-NG, an
open source operating system for constrained IoT devices. The IoT devices that we
have run our tests on are Zolertia Firefly development boards based on the Texas
Instruments cc[Tex] system on chip. The cc features an ARM Cortex-
M clocked at MHz, with KB of RAM and KB of ROM. The back-end
system that consists of the SM and DM is written in Java and running on a Linux

https://github.com/contiki-ng/contiki-ng/
https://zolertia.io/product/firefly/

https://github.com/contiki-ng/contiki-ng/
https://zolertia.io/product/firefly/

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

host, specifically a Lenovo T laptop with an Intel Core i-U CPU clocked
at . GHz. We have chosen the following algorithms in our implementation:

• EK(m)&DK(c) AES-CTR

• PRF(K,a) HKDF-SHA

• MACK(m) HMAC-SHA

The AES-CTR algorithm and the SHA algorithm used was implemented
in software on the IoT devices. The encrypted device indexes lip was selected to be
 Bytes long, the IoT device was provisioned with |Li|= 10. The encrypted data
items were transferred from the IoT device to the back-end using CoAP [SHB].
The transfer of data is left out-of-scope for these performance measurements since
our proposed scheme is independent of underlying protocols.

. IoT Device Performance

As discussed in Section , energy is a major concern for IoT devices, especially
those that rely on battery power. CPU-time is also limited on constrained sys-
tems. Both these metrics are important when considering solutions aimed at IoT
devices. We have measured the time taken to encrypt data items. To investigate
how the performance depends of the size of time data item d we have tested the
following sizes of d; ,,, and  bytes. For each size of data items d we did
the encryption  times. The times were measured and the energy consumption
was calculated from the times and the stated power consumption in the cc
data-sheet. The results can be seen in Figure .

 Performance figures 

Figure 4: Execution time and energy consumption for encrypting data. The graphs show
the mean of the of the execution times and derived energy consumption with
a 95% confidence interval.

. Back End Server Performance

To evaluate how the throughput of a back-end server would be affected by the pri-
vacy protection scheme we have measured the time taken to verify h0, furthermore
we have measured the time taken to decrypt the data item d including verifying
hin. The performance was measured running in a single thread. We have mea-
sured the for different encrypted payloads d; ,,, and  bytes. The times
for a single payload size d varies considerably, we have made  measurements
for each payload size. The times can be seen in Figure .

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

Figure 5: Execution time, left graph shows verifying h0, right graph decryption of en-
crypted d and verifying hin. The graphs show the means of the of the execution
times with a 95% confidence interval.

To give an estimation of the throughput of our solution we use conservative
numbers of 50µs for verifying h0 and 150µs for decrypting and verifying d, this
gives us a total time of 200µs for one data item. The total throughput for one core
would then be  data items per second.

. Memory usage on IoT devices

IoT devices have limited resources in terms of memory, any scheme developed for
such a device must keep this in mind. Here we present numbers for the memory
utilization of our implementation. The total utilization of ROM was  Bytes
and  Bytes of RAM. This was used by SHA  Bytes, HMAC-SHA
 Bytes, AES-CTR  Bytes, Encryption Function  Bytes. The RAM
was divided between  Bytes of keys in RAM and buffers for the encryption
process of  Bytes. This is manageable amounts of memory needed for such
a scheme. If the cipher and hash algorithms would be hardware-accelerated the
memory usage would be even lower.

 Related work 

 Related work

Privacy is a major concern in the IoT paradigm[Per+]. People and devices are
surrounded by billions of IoT devices gathering zettabytes of data, device manu-
facturers still do not pay enough attention to privacy while IoT devices are not
capable of handling costly solutions to preserve privacy.

When discussing privacy it is worthwhile to note that there are several types
of privacy[Por+]. Data privacy aims at preserving privacy by not revealing data
created or owned by an entity, while identity privacy aims at protecting the identity
of a user or entity. There are also the notion of spatial or location privacy, here
the goal is to hide or obfuscate the location of the user or entity. This is mostly
relevant in the domain of mobile devices[Che+] but can also have an impact for
VX networks and IoT networks. Location privacy is not directly related to the
work we present in this paper.

The principle of k-anonymity was first introduced  by Pierangela and
Sweeney and has been extensively use as an annonymization measure in differ-
ent privacy settings [Swe]. An overview of different k-anonymity approaches
is given in [Aya+]. In our paper we adapt the k-anonymity principle in an IoT
identity privacy setting.

General privacy-preserving solutions include differential privacy [Dwo+],
homomorphic encryption [Gen+][NLV], and secure multi-party computa-
tion [BCP]. Another general line of research which is relevant to IoT is privacy-
preserving aggregation of time-series data [JL][BJL][Emu+][Shi+].

Many sensors periodically generate data on e.g. temperature and sends it to
a server for analysis. A recent summary of these more general problems can be
found in [Sha+b]. Bista et. al. provides a survey of privacy-preserving data
aggregation protocols for wireless sensor networks (WSN). In [Con+], a scheme
for anonymous data transfer using only symmetric key operations is presented.
The paper introduces the notion of twin-keys, keys negotiated between two nodes
where the nodes does not know the identity of the other node in the pair. This
provides anonymity of individual devices when doing data aggregation.

However, all these approaches are so far elusive for the IoT paradigm: they are
too computationally costly for resource-constrained IoT devices.

Going into solutions aimed specifically at IoT it is worth to note that IoT
includes a wide spectrum of devices and technology. While different solutions
have been proposed for IoT, the work has primarily aimed at data privacy. One
application of IoT is smart electricity meters (SM), a device measures the elec-
tricity consumption at a customer. The measurements needs to be forwarded to
the utility-company for billing, but the customers privacy needs to be consid-
ered. Learning when the customer utilizes electricity can reveal the users habits.
In [Sil+] Silva et. al. presents a scheme for data aggregation in smart electricity
meters using an Intel SGX enclave to perform the data aggregation while providing
end user privacy.

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

In [Zha+] Zhang et. al. survey the entire fields of security and privacy in
edge computing. They give an overview of edge computing, list issues regard-
ing security and privacy, list requirements. They also provide descriptions of key
technologies: Identity-based encryption, Attribute-based encryption, proxy re-
encryption, homomorphic encryption and searchable encryption. They give an
overview of state-of-the-art solutions for data confidentiality, data integrity, pri-
vacy preserving and more. They have a section on both data-privacy and identity-
privacy, they list some proposed schemes for identity privacy.

Identity privacy has been researched primarily in the fields of Mobile Commu-
nications and Vehicular Networks. in the field of Mobile Communications Khan
et. al. presents their scheme for dynamic credential generation in [Kha+], they
also provide an extensive overview of work in the field. Their proposed scheme uses
public-key encryption, which makes their proposed solution too computationally
intensive for our use-case.

In the field of Vehicular Networks Identity privacy is important[Why+]
since a vehicle broadcasting the the identity of the vehicle or driver would enable
location tracking of the vehicle or driver. Most of the identity privacy issues of
Vehicular networks are solved by pseudonyms, the vehicle is issued with a public-
key pair that is periodically changed. Much research has been done on how to
improve these schemes [LL], [Lin+]. However, since the basis of these sys-
tems are based on public-key cryptography they are to computationally complex
for constrained IoT devices.

 Conclusion and future work

In this paper, we presented a novel principle for IoT identity protection when us-
ing pure symmetric key based data confidentiality and integrity protection. The
symmetric key approach has big advantages compare to a public key-based ap-
proach as it allows fast analytic processing directly on the protected data items
on cloud resources. Identity privacy in this context has not been treated in the
literature before and we provided basic security definitions. Using these defini-
tion, we presented a novel combined identity protection, encryption and integrity
protection scheme for IoT data objects. The suggested protection scheme gives
not full privacy in all adversary scenarios but, as we view it, gives a fair trade-off
between identity protection and complexity. In particular, the proposed schemes
uses a two layered protection approach where an ”outer” protection schemes gives
k-anonymity based on symmetric keys shared by several IoT units. If such key
would be compromised, an ”inner” identity protection schemes based on random
encryption gives a second level of privacy defense. The security analysis we pre-
sented, shows that a reasonable level of identity privacy is achieved with this ap-
proach, as long as the adversary not has access to a large number of compromised
IoT units or a large number of mappings between specific protected data items and
the IoT identity behind the data items. Furthermore, by tuning the protection

References 

parameters, increased privacy can be achieved thought the price of more memory
usage at the IoT device side. Our proof of concept implementation verifies that
the proposed principle indeed offers both low energy consumption encryption at
the IoT side as well as fast decryption at the analytic engine side. In future work,
we intend to make a full-scale implementation of the approach on IoT data from
an industrial control system. In this extended system trial, we will also integrate
the solution with a selected set of state-of-the art analytic engines. It is also left
for future work to investigate if even more efficient identity privacy preserving
schemes for symmetric encryption can be constructed.

References

[Aca+] A. Acar et al. “A Survey on Homomorphic Encryption Schemes:
Theory and Implementation”. In: ACM Comput. Surv. . (July
), :–:.

[Aya+] V. Ayala-Rivera et al. “A Systematic Comparison and Evaluation of
k-Anonymization Algorithms for Practitioners”. In: Trans. Data
Privacy . (Dec. ), pp. –.

[BCP] J. Bringer, H. Chabanne, and A. Patey. “Privacy-preserving
biometric identification using secure multiparty computation: An
overview and recent trends”. In: IEEE Signal Processing Magazine
. (), pp. –.

[BJL] F. Benhamouda, M. Joye, and B. Libert. “A New Framework for
Privacy-Preserving Aggregation of Time-Series Data”. In: ACM
Trans. Inf. Syst. Secur. . (Mar. ), :–:.

[Che+] L. Chen et al. “Robustness, security and privacy in location-based
services for future IoT: A survey”. In: IEEE Access  (),
pp. –.

[Con+] M. Conti et al. “Privacy-preserving robust data aggregation in
wireless sensor networks”. In: Security and Communication Networks
. (), pp. –.

[Dwo+] C. Dwork et al. “Calibrating Noise to Sensitivity in Private Data
Analysis”. In: Theory of Cryptography, Third Theory of Cryptography
Conference, TCC , New York, NY, USA, March -, ,
Proceedings. , pp. –.

[DY] D. Dolev and A. C. Yao. “On the Security of Public Key Protocols”.
In: Proceedings of the Nd Annual Symposium on Foundations of
Computer Science. SFCS ’. Washington, DC, USA: IEEE
Computer Society, , pp. –.

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

[Emu+] K. Emura et al. “Privacy-Preserving Aggregation of Time-Series
Data with Public Verifiability from Simple Assumptions and Its
Implementations”. In: The Computer Journal . (Dec. ),
pp. –. eprint:
http://oup.prod.sis.lan/comjnl/article-
pdf/62/4/614/28247463/bxy135.pdf.

[Gen+] C. Gentry et al. “Fully homomorphic encryption using ideal
lattices.” In: Stoc. Vol. . . , pp. –.

[Gol] O. Goldreich. “On the foundations of modern cryptography”. In:
Advances in Cryptology — CRYPTO ’. Ed. by B. S. Kaliski.
Berlin, Heidelberg: Springer Berlin Heidelberg, , pp. –.

[JL] M. Joye and B. Libert. “A Scalable Scheme for Privacy-Preserving
Aggregation of Time-Series Data”. In: Financial Cryptography and
Data Security. Ed. by A.-R. Sadeghi. Berlin, Heidelberg: Springer
Berlin Heidelberg, , pp. –.

[Kha+] A. N. Khan et al. “Enhanced dynamic credential generation scheme
for protection of user identity in mobile-cloud computing”. In: The
Journal of Supercomputing . (), pp. –.

[Koc+] P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”.
In:   IEEE Symposium on Security and Privacy (SP).
Vol. . , pp. –.

[Lin+] X. Lin et al. “TSVC: Timed efficient and secure vehicular
communications with privacy preserving”. In: IEEE Transactions on
Wireless Communications . (), pp. –.

[Lip+] M. Lipp et al. “Meltdown: Reading Kernel Memory from User
Space”. In: th USENIX Security Symposium (USENIX Security ).
Baltimore, MD: USENIX Association, , pp. –.

[LL] X. Lin and X. Li. “Achieving Efficient Cooperative Message
Authentication in Vehicular Ad Hoc Networks”. In: IEEE
Transactions on Vehicular Technology . (Sept. ),
pp. –.

[Map] C. Maple. “Security and privacy in the internet of things”. In:
Journal of Cyber Policy . (), pp. –. eprint:
https://doi.org/10.1080/23738871.2017.1366536.

[Mar+] M. Marjani et al. “Big IoT Data Analytics: Architecture,
Opportunities, and Open Research Challenges”. In: IEEE Access 
(), pp. –.

http://oup.prod.sis.lan/comjnl/article-pdf/62/4/614/28247463/bxy135.pdf
http://oup.prod.sis.lan/comjnl/article-pdf/62/4/614/28247463/bxy135.pdf
https://doi.org/10.1080/23738871.2017.1366536

References 

[MDK] D. Mun, M. L. Dinh, and Y. Kwon. “An Assessment of Internet of
Things Protocols for Resource-Constrained Applications”. In: 
IEEE th Annual Computer Software and Applications Conference
(COMPSAC). Vol. . June , pp. –.

[NLV] M. Naehrig, K. Lauter, and V. Vaikuntanathan. “Can
homomorphic encryption be practical?” In: Proceedings of the rd
ACM workshop on Cloud computing security workshop. ACM. ,
pp. –.

[Pap+] A. Papadimitriou et al. “Big Data Analytics over Encrypted
Datasets with Seabed”. In: th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ). Savannah, GA:
USENIX Association, , pp. –.

[Per+] C. Perera et al. “Big data privacy in the internet of things era”. In:
IT Professional . (), pp. –.

[PGM] N. Paladi, C. Gehrmann, and A. Michalas. “Providing User
Security Guarantees in Public Infrastructure Clouds”. In: IEEE
Transactions on Cloud Computing . (July ), pp. –.

[Pop+] R. A. Popa et al. “CryptDB: Protecting Confidentiality with
Encrypted Query Processing”. In: Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. SOSP ’. Cascais,
Portugal: ACM, , pp. –.

[Por+] P. Porambage et al. “The quest for privacy in the internet of things”.
In: IEEE Cloud Computing . (), pp. –.

[RNL] R. Roman, P. Najera, and J. Lopez. “Securing the Internet of
Things”. In: Computer . (Sept. ), pp. –.

[Sch+] F. Schuster et al. “VC: Trustworthy Data Analytics in the Cloud
Using SGX”. In:  IEEE Symposium on Security and Privacy.
May , pp. –.

[Sel+a] G. Selander et al. Object Security for Constrained RESTful
Environments (OSCORE). RFC . RFC Editor, July .

[Sha+b] Z. Shan et al. “Practical secure computation outsourcing: a survey”.
In: ACM Computing Surveys (CSUR) . (), p. .

[SHB] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). RFC . June .

[Shi+] E. Shi et al. “Privacy-preserving aggregation of time-series data”. In:
Annual Network & Distributed System Security Symposium (NDSS).
.

 Paper II: An Identity Privacy Preserving IoT Data Protection Scheme for …

[Sil+] L. V. Silva et al. “Security and Privacy Preserving Data Aggregation
in Cloud Computing”. In: Proceedings of the Symposium on Applied
Computing. SAC ’. Marrakech, Morocco: ACM, ,
pp. –.

[Swe] L. Sweeney. “K-anonymity: A Model for Protecting Privacy”. In:
Int. J. Uncertain. Fuzziness Knowl.-Based Syst. . (Oct. ),
pp. –.

[SWW] A. Sadeghi, C. Wachsmann, and M. Waidner. “Security and privacy
challenges in industrial Internet of Things”. In:  nd
ACM/EDAC/IEEE Design Automation Conference (DAC). June
, pp. –.

[Tex] I. Texas Instruments. “Cc powerful wireless microcontroller
system-on-chip for .-ghz ieee .. , lowpan, and zigbee
applications”. In: CC datasheet (April ) ().

[Wan+] D. Wang et al. “A faster fully homomorphic encryption scheme in
big data”. In:  IEEE nd International Conference on Big Data
Analysis (ICBDA)(. Mar. , pp. –.

[Why+] W. Whyte et al. “A security credential management system for VV
communications”. In:  IEEE Vehicular Networking Conference.
IEEE. , pp. –.

[Xu+] M. Xu et al. “Using Differential Privacy to Efficiently Mitigate Side
Channels in Distributed Analytics”. In: Proceedings of the th
European Workshop on Systems Security. EuroSec’. Porto, Portugal:
ACM, , :–:.

[Zha+] J. Zhang et al. “Data security and privacy-preserving in edge
computing paradigm: Survey and open issues”. In: IEEE Access 
(), pp. –.

[Zhe+] W. Zheng et al. “Opaque: An Oblivious and Encrypted Distributed
Analytics Platform”. In: th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ). Boston, MA:
USENIX Association, , pp. –.

References 

Table 1: Notations.

U Set of devices in the system
|U | Cardinality of set U
{U0,U1, · · · ,Uq−1}=U Set of q distinct subsets of U
u ∈U A device in the system
i Device index
t Group index
ui Device with index i
d Data item produced by a device
IK System wide integrity protection key
KM1 First symmetric master key
KM2 Second symmetric master key
KM3 Third symmetric master key
IKi Device unique integrity protection key
K1i First device unique encryption key
K2i = K2t Group unique,

second device encryption key
IV1 First Initialization Vector (IV)
IV2 Second IV
c1 First ciphertext
c2 Second ciphertext
ho Outer message authentication tag
hin Inner message authentication tag
r,n1,n2 Random numbers
||a|| Size of parameter a
a||b Concatenation of value a and b
Li = {li0, li1, · · · , liw−1} Set of indices given to unit ui

EK(a,m) Symmetric encryption of message m
with key K and IV = a.

DK(a,c) Decryption of ciphertext c
using key K and IV = a

MACK(m) Message authentication code for
key K and message m

PRF(K,a) A Pseudo Random Function taking a
key K and additional data, a, as input

Pa
p
er

III

Evaluating the Efficiency of
OSCORE in Constrained

Environments

 Introduction

The Internet of Things (IoT) refers to a networked scenario where all connectable
devices are reachable over the Internet and can communicate with each other. This
has led to many new application scenarios, e.g. smart buildings, plant and home
automation, smart electricity grids and smart transportation.

In such deployments, several IoT devices, also called nodes, are units with lim-
ited resources such as memory, computing power and energy (if they are battery-
powered). Having constrained resources results in constrained network segments,
e.g. due to lossy channels and limited bandwidth [BEK]. In order to cope with
this, resource-constrained nodes tend to adopt an asynchronous and intermittent
communication model, i.e. they handle network traffic according to sending/re-
ceiving timeslots. To save energy, nodes can go offline (sleep), between two active
timeslots, considerably extending their lifetime.

To manage these limitations, proxies are used as intermediaries to enable access
to server nodes that are not always online, by caching and forwarding requests.
With this in mind, the Constrained Application Protocol (CoAP) [SHB] has
been developed with support for proxying functionality, and is now a de-facto
standard application-layer protocol for IoT. CoAP is a RESTful protocol, REST
being an acronym for Representational State Transfer [FT]. The REST model

Martin Gunnarsson, Joakim Brorsson, Francesca Palombini, Ludwig Seitz, Marco Tiloca
“Evaluating the Efficiency of OSCORE in Constrained Environments”. Submitted to Ad Hoc
Networks - Special Issue on Communication and Security in Communicating Things Networks.

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

considers a Client and a Server as communicating parties, where the Client sends a
Request to the Server, which replies by sending a Response. Based on the intended
operation to perform, CoAP Requests can be of different types, e.g. GET, PUT,
POST, FETCH, PATCH and DELETE.

Most applications require secure communications between client and server
nodes. To this end, the CoAP specification [SHB] considers Datagram Trans-
port Layer Security (DTLS) [RM] as the only method to achieve secure com-
munication for CoAP. In particular, DTLS establishes a secure channel at the
transport layer over unreliable datagram protocols such as UDP, and hence pro-
vides hop-by-hop security by protecting CoAP messages in their entirety. Due to
proxies not being able to read encrypted CoAP messages, a DTLS channel must
terminate at a proxy, so that the proxy can read the data needed for proxying func-
tionality. As a consequence, a single DTLS channel cannot be established directly
between the Client and the Server. Instead, a first secure channel has to be estab-
lished between a Client node and the proxy, and then a second secure channel has
to be established between the proxy and the Server node. This in turn results in
the two following issues and limitations.

First, it is necessary to perform a double security processing of CoAP messages,
as the proxy has to decrypt a message received on the client DTLS channel, and
then re-encrypt the same message for delivery on the server DTLS channel, which
impacts performance. Second, the proxy is necessarily required to be trusted, as
it is able to fully access the CoAP messages. Mandating trust in proxies and the
service providers operating them to such an extent results in unnecessary exposure
of data.

This paper presents Object Security for Constrained RESTful Environments
(OSCORE), an application-layer approach for message protection based on object
security that efficiently overcomes these issues. To this end, OSCORE selectively
protects certain parts of the CoAP messages at the application layer, providing end-
to-end secure communication between client and server nodes. In particular, some
parts of CoAP messages can be encrypted, while other parts can be only authenti-
cated and integrity-protected. This makes it possible to deploy non-trusted prox-
ies, which are still able to perform their intended tasks. Furthermore, this greatly
mitigates privacy threats otherwise possible for proxies to exploit, thus preserv-
ing the personal sphere of human users related to the information exchanged and
the operations performed by the communicating endpoints. OSCORE has been
recently standardized in the Internet Engineering Task Force (IETF) [Sel+b].

We have implemented OSCORE for the Contiki-NG OS , and tested it on
the resource-constrained platform Zolertia Firefly  equipped with the CC
system-on-a-chip . Then we used our implementation to experimentally evaluate

https://github.com/contiki-ng/contiki-ng/wiki
https://zolertia.io/product/firefly
http://www.ti.com/lit/ds/symlink/cc2538.pdf

https://github.com/contiki-ng/contiki-ng/wiki
https://zolertia.io/product/firefly
http://www.ti.com/lit/ds/symlink/cc2538.pdf

 Related Work 

OSCORE, considering a CoAP client and a resource-constrained CoAP server
that securely communicate through a CoAP proxy.

In particular, we evaluated performance in terms of memory and CPU usage
as well as energy consumption on the server side, and Round Trip Time experi-
enced on the Client side. In our evaluation, we compared OSCORE performance
against both an insecure baseline scenario using plain CoAP and a secure scenario
using CoAP over DTLS. Our results show that OSCORE outperforms DTLS in
terms of message overhead, round-trip time and energy efficiency, while still allow-
ing a (non-trusted) proxy to perform its intended operations. To the best of our
knowledge, this paper provides the first comprehensive performance evaluation of
the standardized OSCORE protocol on a real IoT device, including a comparison
against DTLS.

The rest of the paper is organized as follows. Section  presents the related
work. Section  describes background technologies and concepts. Section  pro-
vides the motivation behind this work, while Section  presents OSCORE. Sec-
tion  analyzes the overhead introduced by OSCORE, while Section  describes
our experimental setup. In Section , we present and discuss experimental results.
Finally, in Section , we draw our conclusions.

 Related Work

A number of approaches have been proposed for optimizing channel security pro-
tocols to constrained devices and networks. In particular, Raza et al. adapted
DTLS to improve performance for resource constrained devices by using header
compression mechanisms from LoWPAN [Raz+]. This reduces message over-
head, thus increasing energy efficiency and avoiding fragmentation. Raza et al.
also proposed to use Next Header Compression, so that IP Security can be adapted
to resource constrained devices [Raz+]. Hummen et al. considered the viability
of certificate-based DTLS and suggested to offload parts of the DTLS handshake
to trusted gateways [Hum+]. Sethi et al. proposed a similar approach, provid-
ing also end-to-end data integrity and with particular focus on performance of
public-key cryptography for resource constrained devices [SAK].

All these approaches aim at reducing message overhead and ultimately improv-
ing performance of constrained devices and networks. However, none of them
aims at providing end-to-end secure communication between client and server
devices, in the presence of intermediate (untrusted) entities such as proxies. For
example, one article has been presented by Van den Abeele et al. in [Van+]
where the authors identify the problem with DTLS and proxies. The aim of their
work is to offload the work of the constrained servers, however they do not achieve
end-to-end security through proxies.

To achieve end-to-end security, other schemes based on object security have
been proposed. One approach which is similar to OSCORE is OSCAR [Vuc+],
which also provides object security for the Internet of Things, but with a focus

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

on access control. Besides, the object security format in OSCAR is designed
for protection of publish-subscribe communications, rather than client-server end-
to-end communications. That is, OSCAR considers a many-requests-one-response
communication model, where many requests can be answered with the same re-
sponse. Instead, OSCORE considers a one-request-one-response communication
model, where request and response are strictly associated.

Work has also been done on how to protect CoAP messages. In [NI], the au-
thors present an alternative scheme relying on object security, aimed at providing
integrity-protection and authentication of CoAP messages. However, unlike OS-
CORE, the proposed scheme does not leverage standard efficient building blocks
such as CBOR [BH] and COSE [Scha], and requires the addition of several
new CoAP options, thus resulting in a considerable overhead for each secure mes-
sage. Moreover, the usage of the HMAC-SHA algorithm for message integrity
protection results in 32 byte Message Authentication Codes (MACs) for each pro-
tected message, which is a further significant overhead for constrained devices.

Another end-to-end security scheme for CoAP was proposed in [Uki+]. This
relies on a new CoAP option and uses AES-CCM- for encryption and authen-
tication. However, this scheme does not leverage CBOR and COSE either, with
consequent overhead due to inefficient encoding. Also, unlike OSCORE, it pro-
tects only the message payload, without securing CoAP options and header fields.

Finally, in [Mus+], the authors present an evaluation of OSCORE only.
That is, they show how offloading AES-CCM encryption and decryption opera-
tions to hardware significantly improves performance, especially as to energy ef-
ficiency. However, the evaluation does not include a performance comparison
against any alternative security solution, e.g. DTLS. Also, it is based on their im-
plementation of an old version of OSCORE, well before its standardization as
[Sel+b].

This paper provides an experimental evaluation of the OSCORE standard on
a real IoT device, and includes a comparison against both an insecure baseline
scenario using plain CoAP and a secure scenario using CoAP over DTLS. To the
best of our knowledge, no such comprehensive contribution has been done before.

 Background

This section introduces background concepts referred to throughout the paper.

. Channel Security and Object Security

Channel security refers to the transmission of data over a secure channel [RK].
This can be negotiated at the data link, network or transport layer in the protocol
stack, through a specific establishment protocol. Most important, a secure channel
handles data agnostically, i.e. it has no knowledge of the conveyed secure data.

 Background 

Object security refers to protection mechanisms for data objects, as an alterna-
tive to secure channels [RK]. Instead of relying on a communication protocol
at a lower layer to provide message protection, applications also take care of pro-
tecting and verifying data objects of their own generated messages.

. CoAP

The approach presented in this paper is aimed at the Constrained Application
Protocol (CoAP) [SHB], which is an application layer web transfer protocol,
designed for resource constrained devices and networks. CoAP typically runs on
top of UDP [Pos], is not session-based and can handle loss or delayed delivery
of messages. Also, it features an asynchronous messaging model and has native
support for proxying.

A CoAP message is divided into header and payload. The CoAP header may
include a number of options, which follow a Type-Length-Value scheme and are
used to control various functions of the protocol. For example, options can be used
to instruct a proxy on how to handle messages, specify for how long a message is
valid, or even indicate message fragmentation at the application layer.

. CBOR and COSE

Concise Binary Object Representation (CBOR) [BH] is a data encoding format
designed to handle binary data, with the primary goal of achieving very small
parser code size, and the secondary goal to achieve small message size. CBOR Ob-
ject Signing and Encryption (COSE) [Scha] specifies how to perform encryption,
signing and Message Authentication Code (MAC) operations on CBOR data and
to encode the result in CBOR.

. DTLS

DTLS [RM] is an Internet standard providing channel security at the transport
layer to protect communications over unreliable datagram protocols, such as UDP.
That is, security is ensured hop-by-hop, i.e. between two nodes that are adjacent
transport-layer hops. DTLS is a close copy of the TLS protocol [DRb] and
provides equivalent security guarantees, i.e. it prevents tampering, eavesdropping
and message forgery. In particular, DTLS is adapted for use over UDP [Pos]
instead of TCP [Pos], which is important for constrained devices and networks
relying on UDP as a connectionless transport protocol. The original CoAP spec-
ification [SHB] indicates DTLS as the only security mechanism to protect the
exchange of CoAP messages.

Two communicating devices initially use the DTLS Handshake protocol to
exchange network information and cryptographic key material for later message
protection. In particular, one device acts as client, while the other acts as server.
The default Handshake relies on certificates, but extensions based on symmetric

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

pre-shared keys [ET] or on raw public keys [Wou+] are often preferred in
constrained applications. Once completed the Handshake and established a secure
session, client and server start exchanging data protected through the negotiated
key material.

Secure communication is then carried out using the DTLS Record protocol,
which provides security and reliability of message transfers. This works as an en-
capsulating protocol that transports data and connection state information among
the two communicating parties. The Record layer header conveys information in-
cluding data type, sequence number, and length of the message content.

 Motivation and Objectives

A significant part of IoT devices are resource-constrained, with many even be-
ing battery powered. It is therefore important to limit resource consumption,
especially in terms of energy, to achieve a long device lifetime and acceptable per-
formance. As introduced in Section , energy performance may rely on device
sleeping, which in turn leads to an asynchronous communication model. In order
to still provide a well functioning service, it is thus necessary to schedule requests
to sleeping nodes with the help of proxies, used as intermediaries between clients
and servers.

Figure 1: Hop-by-hop vs. end-to-end security

The original CoAP specification [SHB] indicates DTLS [RM] as the only
method to achieve secure communication for CoAP. This in turn means that, when
a proxy is deployed between a client and server, message protection is enforced
hop-by-hop between client, proxies and server, as shown in Figure (a). Thus, in
the presence of an intermediary proxy, DTLS cannot provide end-to-end secure
communication between a client and server node. Instead, a first secure channel
has to be established between the client and the proxy, and a second secure channel
has to be established between the proxy and the server. This in turn results in the
issues and limitations discussed in Section , i.e. the double security processing on
the proxy as well as having to fully trust the proxy.

Figure (b) shows the alternative end-to-end security approach, where a client
and a server rely on a two-way secure communication context. This approach
essentially consists in tunneling channel security through the proxy, and hence

 Protocol description 

successfully overcomes the two limitations discussed before. However, in order to
be practically deployable and functional, a solution based on end-to-end security
must not prevent proxies to correctly perform their intended functionalities, es-
pecially the caching of CoAP requests. Therefore it must be possible to selectively
protect different parts of a same CoAP message in different ways, i.e. some en-
crypted, others only integrity protected and finally some parts fully accessible by
the proxy.

This flexibility can be achieved by using object security, so that applications
can choose which parts of an outgoing message have to be integrity-protected,
encrypted, or both. Note that protecting only the CoAP payload is not sufficient
against attacks such as changing the REST Code field in the CoAP header, e.g.
from GET to DELETE, which tricks the server into deleting a resource instead of
just returning its value.

The above motivates a need for lightweight end-to-end security with pre-
served proxying functionality, and has in turn led to the design of OSCORE,
an application-layer protocol based on object security, which fulfills these require-
ments.

 Protocol description

This section describes Object Security for Constrained RESTful Environments
(OSCORE). For the reader’s convenience and due to space constraints, we only
present the main features, while a complete description is available at [Sel+b].
OSCORE provides message confidentiality, integrity and reordering/replay pro-
tection, as well as a weak freshness protection through sequence numbers for CoAP
messages. To this end, OSCORE transforms an unprotected CoAP message into a
protected CoAP message. A protected CoAP message includes the newly defined
OSCORE option [Sel+b], which signals the usage of OSCORE to protect the
message, as well as an encrypted COSE object [Scha] in the CoAP payload.

OSCORE is designed for providing end-to-end security between two CoAP
endpoints, while preventing intermediaries to alter or access any message field
that is not related to their intended operations. The security concerns not only
the actual payload of the original CoAP message, but also all the fully protected
CoAP options, the original request and response REST code, as well as parts of
the URI to resources targeted in request messages (see Section .).

To be able to use OSCORE, the following two criteria must be fulfilled. First,
the two CoAP endpoints are required to support CBOR and COSE (see Section
.), as well as the specific HMAC-based Key Derivation Function (HKDF) and
Authenticated Encryption with Associated Data (AEAD) algorithms they want to use
for key derivation and authenticated encryption, respectively. This assumption is
often already fulfilled in the vast majority of IoT applications using CoAP. Second,
the two CoAP endpoints are required to have an OSCORE security context (see
Section .), or the necessary information and keying material to derive it. While

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

this has to happen in a secure and authenticated way, and some suitable approaches
are proposed in [SMP][Pal+], OSCORE is not tied to any particular approach
for context establishment, and further details are out of the scope of this paper.

. The security context

OSCORE uses parameters and keying material included in an OSCORE security
context, and used to perform encryption and integrity protection operations. For
this reason, every pair of communication endpoints, i.e. a CoAP client and a
CoAP server, share the same security context.

The security context consists of three parts: a Sender part, a Recipient part
and a Common part. The Sender part is used to protect outgoing messages (i.e.
requests on the client and responses on the server). The Recipient part is used
to verify incoming protected messages (i.e. requests on the server and responses
on the client). Finally, the Common part contains shared data. This division is
illustrated in Figure . An instance of a security context is present as a copy on
the client and server, containing the same data values. However, as can be seen in
Figure , the sender and recipient parts are mirrored, so that the sender part of the
server corresponds to the recipient part of the client, and vice versa.

Sender
Context

Client	ID

Symmetric	key	A

Sender identity:

Sender key:

Sender
Context

Server	ID

Symmetric	key	B

Sender identity:

Sender key:

Recipient
Context

Server	ID

Symmetric	key	B

Recipient identity:

Recipient key:

Recipient
Context

Client	ID

Symmetric	key	A

Recipient identity:

Recipient key:

Sequence	number Sequence	number

Recipient
sequence number:

Sender
sequence number:

Client OSCORE Security Context Server OSCORE Security Context

Common	IV

Common IV:

Common	IV

Common IV:

Figure 2: OSCORE Security Contexts for a Client and Server pair showing only the fields
used during operation.

In more detail, the Common part includes: i) an identifier of the AEAD al-
gorithm used to encrypt and authenticate exchanged messages; ii) an identifier of
the HMAC-based key derivation function used to derive keys and initialization
vectors (IVs); iii) the Master Secret, a random byte string used to derive keys and
IVs; iv) the Master Salt, an optional byte string used with the Master Secret to
derive the keys and IVs; v) a Context ID, used to identify the Common Context
and to derive keys and IVs; vi) a Common IV to generate AEAD nonces.

The Sender part includes: i) a Sender ID, a byte string identifying the Sender
part of the security context; ii) a Sender Key, the symmetric key to protect outgoing

 Protocol description 

messages; iii) a Sequence Number, used for nonce generation to protect outgoing
messages, and for replay protection of incoming messages (see Section .).

The Recipient part includes: i) a Recipient ID, a byte string identifying the
Recipient part of the security context; ii) a Recipient Key, the symmetric key to
decrypt incoming messages; iii) a Replay Window to verify freshness of incoming
messages on the CoAP server (see Section .).

The combination of Context ID, Sender ID, Master Secret and Master Salt
must be unique for each communicating pair of Client and Server. This ensures
unique keys and nonces for the AEAD. Further details on establishing Sender/Re-
cipient IDs and the ensuring their uniqueness are out of the scope of OSCORE
and of this paper.

. Protecting the CoAP message

Different parts in a CoAP message are protected in different ways. That is, Confi-
dential data, which should neither be read or altered by a proxy, are both encrypted
and integrity protected. Static data, which should be readable but not changed, are
integrity protected but not encrypted. Dynamic data, which a proxy should be able
to modify, are not protected. Finally, there are also Mutually known data, which
the sender and receiver have agreed upon before exchanging messages. These data
are part of the input to the integrity protection process, to ensure that the two
communicating endpoints behave correctly and possibly detect anomalies. How-
ever, they are never sent as both parties already know them.

Figure  shows a comparison between an unprotected CoAP message and the
resulting OSCORE-protected CoAP message. We can see that sensitive parts of
a message are encrypted, e.g. some options and the payload, while others are
left unencrypted, e.g. some options and some fields of the CoAP header. The
encrypted content is placed into the payload of the protected message.

The actual protection process takes as input an unprotected CoAP message
and produces a protected OSCORE message as follows.
) The confidential data are enclosed into a COSE object [Scha]. These include
the REST code of the original CoAP message, a subset of the CoAP options, and
the CoAP payload (if present). The CoAP options considered at this step are the
ones not relevant for operations of intermediary (proxy) units.
) The static fields of the CoAP header and static proxy-readable CoAP options
needs to be authenticated and integrity protected, but not to encrypted. This set
of data composes the Additional Authenticated Data (AAD).
) The COSE object is finalized, by encrypting and integrity protecting the data it
encloses, while only integrity protecting the AAD. To this end, the Sender Key and
the Sender Sequence Number from the Sender Context are used. The resulting
ciphertext and AEAD-tag is included in the Message Content field of the COSE
Object.

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

Version Type Token Length CoAP-Code Message ID

Token
Option A Option B Option C Option D

Payload delimiter CoAP-Payload

(a) CoAP message format.

Version Type Token Length CoAP-Code Message ID

Token
Option B OSCORE Option Payload delimiter

Encrypted{Option A, Option C, Option D, CoAP-Code, CoAP-Payload} + AEAD-tag

(b) OSCORE message format.

Figure 3: Message layout for unprotected and protected CoAP messages.

) The COSE object is used as payload of the protected CoAP message, and any
encrypted options are removed from the CoAP message. The original REST code
is replaced with POST (.) for a CoAP request (response), or with FETCH
(.) for a CoAP request (response) using the Observe mechanism [Har].

An analogous reverse process is performed upon receiving a protected message,
together with anti-replay checks (see Section .). To decrypt the protected mes-
sage, the recipient CoAP endpoint uses the Recipient Key from its own Recipient
Context associated to the message originator.

. Proxy functionalities and data protection

Building on the previous sections, we can now describe how OSCORE handles
proxying of encrypted messages. OSCORE is designed to uniquely bind each re-
quest to the corresponding response, thus preventing proxies from serving cached
responses to clients different from the one originating the request.

As previously stated, OSCORE cannot encrypt entire CoAP messages. An
example of static data in a CoAP message which can not be encrypted but should
be integrity protected is the Version field of the CoAP header. This field has to
remain readable, so that the receiver endpoint knows how to process an incoming
message, but should be integrity protected to prevent future version-based attacks.

The Token field of the CoAP header also has to remain readable, as it is used for
binding each request to the corresponding response. However, unlike the Version

 Evaluation of Payload and Network Overhead 

Payload overhead for DTLS 1.2 and OSCORE messages (bytes).

Table 1: DTLS-record message.

Type 1
Version 2
Epoch 2
Sequence Number 6
Length 2
AEAD Tag 8
Total overhead 21

Table 2: OSCORE message.

Request Response
Option Byte 1 1
Flag Byte 1 -
Partial IV 0-5 -
Kid 0-7 -
CoAP Code 1 1
Payload Marker 1 1
AEAD Tag 8 8
Total overhead 12-24 11

field, theToken field cannot be integrity protected, as it can be modified by proxies,
when a message traverses the network.

. Replay protection

OSCORE provides protection against replay and message reordering attacks. To
this end, both the client and server store a sequence number and a replay window
as part of the security context (see Section .) and including said sequence number
in every outgoing request, before incrementing it by . Upon receiving a protected
request, the server verifies that the conveyed sequence number was not received
before. To correctly handle messages received out of order, OSCORE relies on a
sliding window of sequence numbers, where the server accepts only messages with
sequence number greater than the lower bound of the replay window. In such
a case, the server updates its replay window accordingly. Otherwise, the server
considers the message to be a retransmission and discards it.

 Evaluation of Payload and Network Overhead

To aid reasoning and facilitate further discussion in the next sections, we have
analyzed the payload overhead in bytes, as introduced by DTLS and OSCORE
with respect to plain CoAP. To ensure a fair comparison, we have considered the
same AEAD cipher for both DTLS and OSCORE, namely AES--CCM-.
Tables  and  show the overhead of the two different protocols. The entry ”AEAD
Tag” refers to the resulting Integrity Check Value produced by the AEAD cipher.

As we can see in Table , DTLS displays a fixed overhead of 21 bytes, which is
equal for both requests and responses. This results in a total overhead of 42 bytes
for a full message exchange. Note that, as defined in the DTLS profile for IoT in
[Tsc] (Appendix B), devices using DTLS are expected to additionally include an

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

8-byte explicit nonce to the DTLS header. This would result in an overhead of 29
bytes per message, i.e. of 58 bytes for each two-way message exchange.

In OSCORE, the overhead can vary, due to the following reasons. First, the
”Partial IV” field in the OSCORE option includes the message sequence number,
whose value is incremented and size grows over time as Requests are transmitted,
up to a maximum size of 5 bytes. Second, the ”Kid” field (Key Id) in the OSCORE
option is immutably set by the user during early configuration, with possible sizes
ranging between 0 (empty Key Id) and 7 bytes.

With reference to Table , we can see that, as long as the Key Id is chosen
to have a length of maximum 4 bytes, OSCORE will display the same or lower
overhead for all Requests. Note that a Key Id of maximum 2 bytes is expected
to be the practical choice for most applications using OSCORE. Furthermore,
OSCORE Responses omit a number of implicit fields in the OSCORE option,
and thus showing a smaller fixed overhead of 11 bytes. Note that, unlike DTLS,
OSCORE has a (much) smaller overhead for responses than requests. Assuming
a high-value Partial IV of 5 bytes and a Key Id of 2 bytes, this would result in an
overhead of 19 bytes per request message and of 11 bytes per response message,
i.e. of 30 bytes for a two-way message exchange.

Also, an application relying on IEEE .. typically displays an effective
data rate (i.e. excluding headers, CRCs and control packets) of about 8.4 kbit/s
(out of 250 kbit/s). However, as shown by Latré et al., IEEE .. networks can
actually achieve a throughput of about 140 kbit/s, even if acknowledgement frames
are transmitted [B L]. Using these numbers together with the energy consump-
tion numbers stated in the CC datasheet, we get the numbers shown in Table
.

Time (ms) Energy (µJ)
DTLS OSCORE DTLS OSCORE

Request 1.2 1.086 95.04 71.676
Response 1.2 0.628 79.2 49.738
Exchange 2.4 1.714 174.24 121.414

Table 3: Overhead in transmission time and energy consumption for a cc2538 server re-
ceiving and sending DTLS and OSCORE messages.

 Experimental Evaluation Method

To evaluate the feasibility and convenience of OSCORE, we developed a prototype
implementation for resource-constrained CoAP servers. This section presents the
conducted experiments which evaluates the performance of OSCORE. We chose
to evaluate OSCORE against both plain CoAP and CoAP secured with DTLS

http://www.ti.com/lit/ds/symlink/cc2538.pdf

http://www.ti.com/lit/ds/symlink/cc2538.pdf

 Experimental Evaluation Method 

since CoAP recommends DTLS as a security mechanism. The plain CoAP sce-
nario, namely ”COAP”, acts as a baseline comparison for the DTLS-based sce-
nario, namely ”COAPS”, and for the OSCORE-based scenario, namely ”OS-
CORE”. We show that, even with no particular optimizations, OSCORE displays
an affordable overhead, and outperforms DTLS in terms of resource utilization
and energy consumption on the server side, as well as responsiveness perceived on
the client side.

Client Proxy Border Router Server

IP USB IEEE ..

Figure 4: Experimental test scenario.

For our experiments, we considered the test scenario in Figure , which con-
sists of a CoAP client, a CoAP proxy and a CoAP server. The client (C) and the
proxy (P) were implemented using an extended version of the Java library Cali-
fornium/Scandium , which provides both CoAP and DTLS. The client and the
proxy ran as two distinct processes on a same commodity PC. To enable commu-
nication between P and the server (S), we relied on a dedicated border router (BR)
device. In particular, both BR and S were resource-constrained Zolertia Firefly
boards , and ran the Contiki-NG OS  together with an extended version of the
Erbium library providing the communication stack. The Firefly boards are based
on the CC chipset and equipped with  KB of ROM,  KB of RAM, a
 MHz ARM Cortex-M CPU, and an IEEE .. [Soc] radio interface.

We considered and compared three different test cases: ”COAP”, ”COAPS”
and ”OSCORE”. In all three test cases, P acts as CoAP proxy and relays CoAP
requests from C to S, as well as corresponding CoAP responses from S to C. More
specifically, the three test cases were defined as follows.
• ”COAP”. The ”COAP” test case considered plain CoAP communication, with
no security provided.
• ”COAPS”. The ”COAPS” test case considered CoAP communication with
the addition of DTLS ., providing hop-by-hop secure communication. DTLS
was configured with a first secure channel between C and P, and a second se-
cure channel between P and S. Both DTLS channels used the DTLS ciphersuite
TLS_PSK_WITH_AES__CCM_ [MB].
• ”OSCORE”. The ”OSCORE” test case considered CoAP communication with
the addition of OSCORE, providing end-to-end secure communication between
C and S, as described in Section .

http://www.eclipse.org/californium
https://zolertia.io/product/firefly
https://github.com/contiki-ng/contiki-ng/wiki

http://www.eclipse.org/californium
https://zolertia.io/product/firefly
https://github.com/contiki-ng/contiki-ng/wiki

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

Note that neither ”COAPS” nor ”OSCORE” relied on hardware acceleration
for cryptographic operations, and that ”COAP” does not make use of cryptogra-
phy.

In all three test cases, the client sent POST requests addressed to a dedicated
target resource at the server S. Also, S was configured to reply to each such request
by sending a response with the same payload size. The client was pre-configured
in order to skip the resource discovery process.

In the considered setup, the server did not rely on the Radio Duty Cycling
mechanism provided by Contiki for switching off the node’s radio interface if not
in use . In the ”COAPS” and ”OSCORE” test cases, the involved parties had
already established a security association which enabled a secure message exchange.
That is, the completion of the DTLS handshake, as well as the establishment of
OSCORE security contexts, were out of scope for this paper and our performance
evaluation, which focused on the (secure) exchange of messages.

For each test case, we performed separate experiments. During a given exper-
iment, the payload size of every CoAP message was either 1, 16, 32, 48, 64, 80,
96, 112 or 128 bytes. For each listed payload size, we performed 500 message ex-
changes between the client and the server, through the proxy. In all the test cases,
we performed the following measurements: i) Responsiveness as experienced by
C for a message exchange with S; ii) CPU usage by the server; iii) Memory usage
by the server, i.e. RAM and ROM; iv) Radio usage by the server; and v) Energy
usage by the server. In particular, we performed the measurements as follows.
Responsiveness. We evaluated the Round Trip Time (RTT), as experienced by
the client when performing a full Request-Response exchange. The statistical sig-
nificance of these results were verified with the method of paired t-tests.
CPU usage. We measured the execution time needed to process both incoming
messages from a client and outgoing response messages. For the ”COAPS” and
”OSCORE” test cases, this includes decryption and integrity verification of in-
coming messages, as well as encryption of outgoing messages. Paired t-tests were
used for verification of statistical significance.
Memory usage. The static memory utilization was determined by using the GNU
utility size. Since Contiki-NG does not use dynamic memory allocation on the
heap, dynamic memory utilization is limited to the stack. Hence, in our exper-
iments, we used the stack painting painting technique, where a known value is
written to all addresses of the stack part of the memory. After the experiments,
the number of bytes that had been overwritten by the program execution were
counted.
Radio usage. We have measured the time needed by the server to receive and
transmit messages using Energest, a Contiki-NG utility for monitoring system uti-
lization. Energest makes it possible to measure the time intervals where the CPU
has been active, or where the radio interface has been active either in reception

https://github.com/contiki-os/contiki/wiki/Radio-duty-cycling

https://github.com/contiki-os/contiki/wiki/Radio-duty-cycling

 Results and Discussion 

mode (RX) or transmission mode (TX). Furthermore, Energest has been proven
to enable an accurate estimation of energy consumption, while increasing the com-
puting time only of the 0.7% [A D].
Energy usage. We measured the energy consumed at the server, both by the CPU,
and by the radio interface in transmission and reception mode. Each measure-
ment was computed as the product between the overall related time collected by
Energest, and the power consumption of the related hardware component as doc-
umented in the respective manuals.

 Results and Discussion

This section presents and discusses the results of our experiments, with reference
to the test cases and scenario described in Section . The data presented here
represent the average for a single message from a sample set of 500 messages.

. Responsiveness

The top graph in Figure  shows the average RTT experienced by the client for
different payload sizes, with the different curves showing the three different test
cases. The bottom graph shows the calculated difference in mean response time
between OSCORE and COAPS, with error-bars showing the standard deviation.

Figure 5: Measurement of responsiveness comparing RTT between COAP, COAPS and
OSCORE.

https://zolertia.io/product/firefly
http://www.ti.com/lit/ds/symlink/cc2538.pdf

https://zolertia.io/product/firefly
http://www.ti.com/lit/ds/symlink/cc2538.pdf

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

Figure 6: number of packages needed to transport a single message.

Table  shows the statistical significance (t-statistics and p-values) for the values
in the bottom graph in Figure . For each payload size, the statistics are derived
using paired t-tests, comparing response time sample populations.

Table 4: Statistical significance for RTT, (t-statistics and p-values)

Payload
(Bytes) 1 16 32 48 64 80 96 112 128

t 7.8 3.2 14.5 12.2 1.0 3.0 1.7 13.8 1.9
p 0.0 0.0 0.0 0.0 0.30 0.0 0.09 0.0 0.06

As it can be seen in Figure , there is a notable difference in the mean response
time between the protocols, with OSCORE being more efficient than COAPS for
all payload sizes. The statistical significance of the difference, see Table , is strong
for most packet sizes, achieving a % confidence interval. However, for , 
and  bytes payload, statistical significance is not achieved. This is likely due to
a large variance in transfer time on the IEEE .. network. Overall, the lines
in the top graph of Figure  resemble a staircase. Further investigation showed
that this is due to package fragmentation.

Figure  shows the number of packages needed to transport one message for
the different protocols and payloads. We can see that the biggest possible payload
that can be carried in a single frame has a different size in the three scenarios,
with COAP being able to fit the most data into a single frame and COAPS the
least. This is because the total header sizes for the used protocols vary between the
COAP, OSCORE and COAPS scenarios, i.e. 76, 90 and 105 bytes, respectively.
The Maximum Transmission Unit for a IEEE .. network is  bytes.

 Results and Discussion 

. CPU usage

Figure a and Figure b show the CPU time for processing incoming and outgoing
COAP, COAPS and OSCORE messages. The left graphs show the total CPU time
for the different protocols, including cryptographic operations. The right graphs
show the CPU time excluding cryptographic operations.

(a) Measurement of CPU time when processing incoming messages with COAP, COAPS and OSCORE.

(b) Measurement of CPU time when processing outgoing messages with COAP, COAPS and OSCORE.

In particular, Figure a shows the CPU-time for processing incoming mes-
sages. The left graph shows the total CPU-time for processing incoming messages
with COAPS, OSCORE and COAP. The graph shows that OSCORE is faster
than COAPS when processing incoming messages, for all message sizes. In the
right graph of Figure a, we show the CPU-time for processing incoming mes-
sages excluding the CPU-time spent for decryption. Here we see that OSCORE
takes longer time than COAPS for all message sizes.

Similarly, Figure b shows the CPU-time for processing outgoing messages.
The left graph shows the total CPU-time for processing outgoing messages with
COAPS, OSCORE and COAP. Where cryptographic operations are taken into
account, OSCORE is faster than COAPS when processing outgoing messages,

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

for all messages sizes. In the right graph of Figure b, we show the CPU-time
for processing outgoing messages excluding the CPU-time spent for encryption.
Again, here we see that OSCORE takes longer time than COAPS for all message
sizes.

The observed difference between the right and left side of the graphs is due to
the following reasons. Other than the actual encryption/decryption processing of
messages, OSCORE is slower than DTLS due to: i) a more complex handling of
OSCORE security contexts (i.e. retrieval and update), compared to the handling
of DTLS sessions; ii) a more complex preparation of a protected OSCORE mes-
sage from an original CoAP message and vice versa (see Section ), compared to
the preparation of a protected DTLS record from an original CoAP message and
vice versa. However, when also cryptographic operations are taken into account,
OSCORE outperforms DTLS as more efficient in protecting/unprotecting han-
dled messages. Ultimately, OSCORE achieves this result especially by leveraging
a more efficient implementation of the AES-CCM algorithm.

The results in both Figure a and Figure b are verified for statistical signif-
icance with % confidence interval using a paired t-test. The results of these
experiments show that the CPU performance for both protocols hinges on a fast
cipher implementation. In these experiments we used software implementations
of AES-CCM. Hardware acceleration of the encryption will increase the per-
formance of both OSCORE and COAPS.

. Memory usage

Figure  shows the memory usage results. In particular, the left bar chart shows
the RAM usage, including the maximum stack usage, while the right bar chart
shows the ROM usage. In order to be independent from the particular used cryp-
tographic primitives, e.g. cipher and hash functions, the shown memory results do
not include memory usage due to such primitives. Furthermore, since the DTLS
Handshake protocol is not comparable against anything analogous in OSCORE,
the memory usage due to the DTLS Handshake is also excluded from the shown
results. Nevertheless, for the sake of information completeness, the right bar chart
highlights the memory utilization due to such contributions with faded color areas
at the top of the bars.

We can see that OSCORE uses less RAM and ROM than DTLS. Further-
more, OSCORE only uses 2% more RAM than COAP, while COAPS uses 17%
more RAM than COAP. When comparing the ROM usage excluding crypto-
graphic primitives, OSCORE uses 12% more ROM than COAP, while COAPS
uses 27% more ROM than COAP when excluding the DTLS Handshake protocol
and cryptographic primitives.

 Results and Discussion 

Figure 8: Memory utilization. The lighter parts in the ROM usage graph on the right
indicates the memory used for the DTLS Handshake (in the ”COAPS” test case)
and for cryptographic primitives (in the ”COAPS” and ”OSCORE” test cases).

. Radio usage

Figure  shows the radio utilization rates for the tested protocols. The left graph
shows the percentage of time spent in transmit mode while the right graph shows
the percentage of time spent in listening mode.

Figure 9: Measurements of radio time occupancy for transmit and receive for the three
protocols.

Compared to COAPS, OSCORE displays less radio usage when transmitting
messages for most packet sizes. The time in listening mode is also smaller for OS-
CORE for most payload sizes. We conclude that OSCORE requires less network
resources compared to COAPS.

These results were acquired using Energest, which uses timers to measure the
time the radio has spent in either transmit-mode or receive-mode. Note that
switching one timer off and the other on, e.g. going from transmit-mode to
receive-mode cannot be done instantly. Therefore, the sum of the time in transmit-
mode and the time in receive-mode does not always add up to the total elapsed

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

time. However, the difference between these times and the error percentage is
negligible.

. Energy usage

We used Energest to measure the energy used for CPU, radio transmission and
radio receiving by the different protocols for a message transaction. These results,
along with a summation of total energy usage, can be seen in Figure .

Figure 10: Energy consumption per message exchange. Note that scales are different for
the y-axes.

We can see that the impact of the CPU power consumption is larger than
the impact of the radio power consumption. A contributor to this is the fact
that these CPU measurements include power consumed when the CPU idles in
between messages (which are sent at a rate of  messages per second). This factor
can be reduced by letting the CPU sleep instead of idling in between messages.

Most significant, we can see that OSCORE uses less energy in total compared
to COAPS for all payload sizes. OSCORE has a per-exchange energy consump-
tion about -% higher than COAP. This shows that OSCORE is more energy
efficient than COAPS, which has an energy consumption about -% higher
than COAP.

 Conclusion

We have presented OSCORE, a method for securing CoAP messages at the appli-
cation layer based on object security. Unlike channel security approaches such as

References 

the DTLS protocol, OSCORE always ensures end-to-end security between client
and server, even in the presence of intermediary (untrusted) proxies, with ad-
ditional benefits in terms of privacy. OSCORE has been recently standardized
as a security protocol at the Internet Engineering Task Force (IETF) [Sel+b].
We have evaluated our implementation of OSCORE for the Contiki OS against
DTLS on the SmartRF resource-constrained platform. Experimental results show
that OSCORE outperforms DTLS in important metrics, namely radio transmis-
sion overhead, round trip time as experienced by CoAP clients, and memory usage
as well as energy efficiency for constrained servers. Future work will focus on us-
ing OSCORE to secure multicast CoAP messages in use cases relying on group
communication.

Acknowledgements

The authors sincerely thank the anonymous referees and the associate editor for
their insightful comments and suggestions. This work received funding from the
European Union’s Seventh Framework Programme for research, technological de-
velopment and demonstration under grant agreement no. . This work was
also supported by the EIT-Digital High Impact Initiative ACTIVE; VINNOVA
for the Celtic-Plus project CyberWI and the Celtic-Next project CRITISEC; SSF
Grant RIT- and the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation. The
authors thank Rikard Höglund and Jiye Park for their help and comments.

References

[A D] A. Dunkels, F. Österlind, N. Tsiftes and Z. He. “Software-based
On-line Energy Estimation for Sensor Nodes”. In: Proceedings of the
th Workshop on Embedded Networked Sensors. EmNets ’. Cork,
Ireland: ACM, , –.

[B L] B. Latré, P. De Mil, I. Moerman, N. Van Dierdonck, B. Dhoedt,
and P. Demeester. “Maximum throughput and minimum delay in
IEEE ..”. In: The st International Conference on Mobile
Ad-Hoc and Sensor Networks. Springer, , –.

[BEK] C. Bormann, M. Ersue, and A. Keränen. Terminology for
Constrained-Node Networks. RFC . May .

[BH] C. Bormann and P. Hoffman. Concise Binary Object Representation
(CBOR). RFC  (Proposed Standard). RFC. Fremont, CA,
USA: RFC Editor, Oct. .

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

[DRb] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version .. RFC  (Proposed Standard). RFC.
Fremont, CA, USA: RFC Editor, Aug. .

[ET] P. Eronen and H. Tschofenig. Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS). RFC  (Proposed Standard).
RFC. Fremont, CA, USA: RFC Editor, Dec. .

[FT] R. T. Fielding and R. N. Taylor. Architectural styles and the design of
network-based software architectures. Vol. . University of California,
Irvine Doctoral dissertation, .

[Har] K. Hartke. Observing Resources in the Constrained Application
Protocol (CoAP). RFC  (Proposed Standard). RFC. Fremont,
CA, USA: RFC Editor, Sept. .

[Hum+] R. Hummen et al. “Towards Viable Certificate-based
Authentication for the Internet of Things”. In: Proceedings of the
Nd ACM Workshop on Hot Topics on Wireless Network Security and
Privacy. HotWiSec ’. Budapest, Hungary: ACM, ,
pp. –.

[MB] D. McGrew and D. Bailey. AES-CCM Cipher Suites for Transport
Layer Security (TLS). RFC  (Proposed Standard). RFC.
Fremont, CA, USA: RFC Editor, July .

[Mus+] A. Musaddiq et al. “A Survey on Resource Management in IoT
Operating Systems”. In: IEEE Access  (), pp. –.

[NI] H. V. Nguyen and L. L. Iacono. “REST-ful CoAP Message
Authentication”. In:  International Workshop on Secure Internet
of Things (SIoT). Sept. , pp. –.

[Pal+] F. Palombini et al. OSCORE profile of the Authentication and
Authorization for Constrained Environments Framework.
Internet-Draft draft-ietf-ace-oscore-profile-. Work in Progress.
IETF Secretariat, July .

[Pos] J. Postel. User Datagram Protocol. RFC  (Internet Standard).
RFC. Fremont, CA, USA: RFC Editor, Aug. .

[Pos] J. Postel. Transmission Control Protocol. RFC  (Internet
Standard). RFC. Fremont, CA, USA: RFC Editor, Sept. .

[Raz+] S. Raza et al. “Lithe: Lightweight Secure CoAP for the Internet of
Things”. In: IEEE Sensors Journal . (Oct. ), pp. –.

[Raz+] S. Raza et al. “Secure communication for the Internet of Things - a
comparison of link-layer security and IPsec for LoWPAN”. In:
Security and Communication Networks . (), pp. –.

References 

[RK] E. Rescorla and B. Korver. Guidelines for Writing RFC Text on
Security Considerations. RFC  (Best Current Practice). RFC.
Fremont, CA, USA: RFC Editor, Aug. .

[RM] E. Rescorla and N. Modadugu. Datagram Transport Layer Security
Version .. RFC . Jan. .

[SAK] M. Sethi, J. Arkko, and A. Keraenen. “End-to-end security for
sleepy smart object networks”. In: Local Computer Networks
Workshops (LCN Workshops),  IEEE th Conference on. Oct.
, pp. –.

[Scha] J. Schaad. CBOR Object Signing and Encryption (COSE). RFC .
RFC Editor, July .

[Sel+b] G. Selander et al. Object Security for Constrained RESTful
Environments (OSCORE). RFC (Proposed Standard), Internet
Engineering Task Force. July .

[SHB] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application
Protocol (CoAP). RFC . June .

[SMP] G. Selander, J. Mattsson, and F. Palombini. Ephemeral
Diffie-Hellman Over COSE (EDHOC). Internet-Draft
draft-selander-lake-edhoc-. Work in Progress. IETF Secretariat,
Oct. .

[Soc] I. C. Society. IEEE Standard for Local and Metropolitan Area
Networks, Part .: Low-Rate Wireless Personal Area Networks
(LR-WPANs). Sept. .

[Tsc] H. Tschofenig. and T. Fossati,” Transport Layer Security
(TLS)/Datagram Transport Layer Security (DTLS) Profiles for the
Internet of Things. Tech. rep. RFC , DOI ./RFC,
July ,< http://www. rfc-editor. org/info …, .

[Uki+] A. Ukil et al. “Lightweight security scheme for IoT applications
using CoAP”. In: International Journal of Pervasive Computing and
Communications . (), pp. –.

[Van+] F. Van den Abeele et al. “Secure Service Proxy: A CoAP(s)
Intermediary for a Securer and Smarter Web of Things”. In: Sensors
. ().

[Vuc+] M. Vucinic et al. “OSCAR: Object Security Architecture for the
Internet of Things”. In: A World of Wireless, Mobile and Multimedia
Networks (WoWMoM),  IEEE th International Symposium on.
Sydney, Australia, June .

Paper III: Evaluating the Efficiency of OSCORE in Constrained Environments

[Wou+] P. Wouters et al. Using Raw Public Keys in Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS). RFC 
(Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, June
.

Pa
p
er

IV

A Digital Twin Based
Industrial Automation and

Control System Security
Architecture

 Introduction

Industrial Automation and Control Systems (IACS) is a very broad term covering
everything relating to control, monitoring and production in different industries
and encompasses all parts of such systems.

While security for IACS in the past was neglected, in recent years security has
obtained a lot of attention in the research community and indeed within the in-
dustry. Major security incidents such as the STUXNET worm in  [FMCb],
the Shamoon Saudi Aramao spear-phishing attack in  [Ley] and the Ger-
man steel factory attack in  [Rob] have highlighted the risk of attacks on
IACS. Even if the attacks have been of many different types and origins, they have
highlighted the need for enhanced security mechanisms and countermeasures.

Clear evidence that the industry nowadays takes security issues seriously is the
development of best practice security guidelines [PH+] and the large number
of security standards targeting the IACS domain, like ISO/IEC  series, the
ISA/IEC IEC  series and the NIST SP series. Among those, IEC 

https://www.iso.org/isoiec--information-security.html
ISA, ISA, Industrial Automation and Control Systems Security, https://www.isa.org/isa/

Christian Gehrmann, Martin Gunnarsson “A Digital Twin Based Industrial Automation and
Control System Security Architecture”. In IEEE Transactions on Industrial Informatics, vol. , no.
, pp. -, Jan. , IEEE.

Paper IV: A Digital Twin Based Industrial Automation and Control System …

is based on the very general ISO  but specified for the IACS area and also
the NIST SP - [] in the SP series is an IACS standard. In addition, the
industrial internet consortium has developed a new security framework [Sch+a].

New technology trends affect IACS as well as the entire society. Security so-
lutions, security recommendations as well as standards, need to adapt to the new
technologies. One clear current trend is the move from legacy ISA- to highly
distributed and cloud based architectures according to the Industry . and RAMI
. models [LBK]. This transition is demanding in many ways, one challenge is
control and information sharing between production units and cloud based con-
trol functions. This constitutes a major security risk and requires careful system en-
gineering not to jeopardize IACS reliability [Del]. We tackle this general security
issue in this paper by looking into the digital twin model as an enabler for enhanced
security when opening up IACS low level control functions and data exchange
according to the Industry . vision. Digital twins and state replication as se-
curity enablers were recently proposed by different researchers [Bit+a],[EEa],
[EEb]. Previous works have not taken an IACS holistic view and in this pa-
per we look into the problem from a system security point of view. The work is
focused on identifying main design driving requirements for a digital twin based
IACS security architecture and with special attention to a state synchronization
model fulfilling the requirements. Detailed design of the different components
and protocols in the architecture as well as formal security analysis of these are left
for future work. The main contributions of the paper are the following:

• We introduce a digital twin IACS adversary model and identify security
requirements for this model.

• We suggest a novel digital twin based security architecture including a new
state replication model.

• We evaluate the security of the proposed state replication model as well as
present a proof of concept implementation for a PLC software upgrade case
including performance figures.

We proceed as follows: we discuss the digital twin model and make basic defini-
tions which we use throughout the paper (§), we introduce our adversary model
and derive security requirements (§), we suggest a new digital twin security ar-
chitecture and a novel digital twin design, including a state replication model
(§). We make a security analysis of the proposed model and architecture (§)
and present a proof of concept implementation, including performance figures
(§). Lastly we discuss related work (§.) and conclude (§).

 Digital twin concept, related work and definitions 

 Digital twin concept, related work and definitions

. Digital twin model and scenario

The digital twin was according to Grives [Gria], a terminology invented around
 years ago by John Vickers of NASA and the term was introduced publicly by
NASA in  [Sha+]. Originally, the concept was used to refer to the digital
representation of a product used in simulations software but has been expanded to
a concept where not only a physical product is represented in virtual form (soft-
ware) but each product is directly connected with a virtual counterpart, the digital
twin. The general model is depicted in Fig. .

Figure 1: The original digital twin model.

The overall goal with this concept is to be able to closely follow products during
production (the physical twin) and simulate the process to adjust the production
with results of these simulations. This can be done in real-time or close to real-time
to optimize production flows etc. [Uhl+]. The concept has then been extended
to include all units (robot loading stations, conveyor belts etc.) in a production
system allowing advanced simulations of a complete manufacturing system and the
units involved in an autonomous system [Ros+]. Typically, then the digital twin
part is represented and executed on cloud resources [Sha+a]. Fig.  illustrates
the overall scenario and model.

As can be seen in Fig. , according to this model not only are the products
themselves reflected as digital twins in the virtual (cloud) domain but also the man-
ufacturing units or what we here refer to as ”components”. Typical components
here are PLCs, historians, sensors, actuators data acquisition units, HMI units
etc. Several different models and principles for reflecting such units are possible
[EEb]. Here we focus on the network and logical state of a physical twin rather
than the physical properties. The definitions and notations we use are introduced
in Section . below.

. Related work

Lots of work has been devoted to security in IACS. We will here briefly discuss
literature surveys and how our architecture relates to the main security issues pre-

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

Figure 2: Digital twin cloud system scenario.

viously identified. Next, we will discuss some important previously introduced
digital twin models and their relations to our approach. We mainly focus on prior
work devoted to digital twin and state replication as enablers for enhanced security.

Security in IACS in general has been treated in several good surveys [KG;
Uch+]. The work by Krotifil and Gollmann [KG] focusing on different types
of attacks on existing systems but also concluding that most efforts so far have
been devoted to IDS. Many existing IDS are compatible with our suggested ar-
chitecture but it has the benefit that such systems can be deployed in the virtual
domain. A very broad systematic overview of security in cyber-physical systems
in general (including IACS) is given in by Humayed et al. in [Hum+]. The
authors identify that major security challenges in IACS are change management
(including SW update) as well as the ability to handle legacy systems. Both these
issues are tackles with the architecture we proposed in this paper. In addition,
as we discussed in the introduction, several existing standards and new standard
initiatives, are addressing IACS security in current and future systems. None of
the main standardization bodies have so far been working with the digital twin
concept as an enabler for enhanced security.

State machine replication has a very long history. Most of the work in this
domain has been devoted to fault tolerance [Lam; Sch]. Achieving state repli-
cation under the assumption of fault is much more demanding than the security
oriented state replication we consider in this paper. We use a different, simpler
model, allowing to choose the correct level of state reflection on the digital twin
side depending on the security needs (see our state replication model in Section
.). This is justified by the fact that the design goal of a digital twin security sys-
tem is disparate from a fault tolerance system, as the digital twin cannot replace
the physical twin if it fails, but is there to reflect the physical twin and protect it
from direct, potential hostile, external interactions.

 Digital twin concept, related work and definitions 

The digital twin model was first introduced in [Sha+]. Lots of work has then
been devoted to the topic in resent years and good overview is given in [NFM].
The main focus has been on support of health analysis and improved maintenance
as well as digitally mirroring the life of the physical entity. We are following the
second approach but different from prior the majority of prior art, we are focusing
on using the digital twin as an enabler for enhanced security.

The usage of digital twins for penetrations testing is discussed in a recent work
by Bitton et al. [Bit+a]. The author investigate the relation behind a penetration
test specification and system realization with focus on system cost optimization. A
non-linear programming solution to find an optimal digital twin implementation
level needed to perform certain security analysis tasks is presented. This is an
approach that also is applicable to the sub-problem of digital twin realization in a
system realizing the security architecture we present in this paper.

In [GAa] the idea of using state synchronization as an IoT security enabler
was suggested. However, the model presented in [GAa] does not cover state
changes on the IoT device side and no complete digital twin state synchronization
model is given. Most recently, a digital twin security framework was presented in
[EEb] and later extended in [EEa]. In [EEb], a digital twin specification
principle using Automation ML (AML) was described together with a proof of
concept implementation detecting a man-in-the-middle PLC attack. In the follow
up work, [EEa], also the state replication problem is considered. In this work,
a passive state replication model is presented where state updates are purely done
based on inputs in the physical domain. The strength with such a model is that it
avoids the negative performance impacts of active state monitoring. Inspired by
the work in [EEb] and [EEa], we have also looked into the problem area of
state modeling as security enabler. However, different from the work in [EEa],
we are looking into how digital twin can protect IACS from external attacks and
not attacks on the factory domain. With this goal, we have proposed a different
state propagation model and a security design allowing to identify attacks at the
virtual domain and preventing them for even reaching the physical domain. Fur-
thermore, we have analyzed a complete digital twin system scenario and proposed
an overall security architecture for such scenario.

. Digital twin definition and notations

For the purpose of the paper we denote by u ∈U , a physical twin, where U de-
notes the set of physical twins in the system. Similarly, we denote by u′ ∈ U ′,
a digital twin where U ′ is the set of digital twins in the system. Let then Su =
{su0,su1, ...,sum−1} and Su′ = {su′0,su′1, ...,su′n−1},m ≥ n, be the finite set of
states of u and u′, i.e., we assumes that the digital twin always only reflects a subset
of the physical twin states and no states which are not represented in the physical

Actually, automation ML for digital twin modelling was already suggested by Grecyce et al. in
 [Sch+b] but not for any security applications.

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

twin. Furthermore, denote by Iu = {iu0, iu1, ..., iur−1} the set of possible finite
inputs to physical twin u and by Iu′ = {iu′0, iu′1, ..., iu′d−1}, the set of finite pos-
sible inputs to digital twin u′. We denote by su,t ∈ Su, the state of physical twin
u at clock cycle t and by iu,t ∈ I the input to u at clock cycle t. Similarly, denote
by su′,t ∈ Su′ , the state of digital twin u′ at clock cycle t and the input to u′ at
clock cycle t by iu′,t ∈ I′. Hence, the initial state of the physical twin is su,0 and
the initial state of the digital twin is su′,0. Then we can define both the physi-
cal and digital twin as finite state machines. We then let δu : Su× Iu → Su and
δu′ : Su′ × Iu′ → Su′ be the transition functions for the physical and digital twin
respectively, i.e. su,t+1 = δu(su,t , iu,t) and su′,t+1 = δu′(su′,t , iu′,t).

We assume a clock based digital twin state synchronization model where a
each clock cycle, t, the state of the twins are synchronized with a message ex-
change starting with a first synchronization message from the u′ to u and with
a response synchronization message from u to u′. We denote these message as
mu′→u(t) and mu→u′(t), respectively. These messages are typically not transferred
in clear between the twin and intermediate nodes, but in protected/transformed
form. We denote protected version of the synchronization messages by eu′→u(t)
and eu→u′(t).

 Adversary model and security requirements

Next, using the digital twin model and definition introduced in Section , we
describe a digital twin threat model. Using this threat model we identify security
requirements for a digital twin based IACS architecture.
. Adversary model

Adversary models for digital twin systems have not been extensively treated in
the literature as the concept mostly so far has been used for production opti-
mization and not security. Certain security aspects regarding using digital twin
as security enablers in IACS are considered in [EEa] and [Bit+a]. The au-
thors in [EEa] consider state replication for active monitoring and intrusion
detection while [Bit+a] consider the problem of penentration testing of IACS
with focus on cost optimization for specific security penetration tests (performed
on simulated or emulated digital twin or on an acutal physical component in the
IACS). However, since these works have very specific security functions goals, they
lack adversary model definitions for the digital twin scenario we are considering.
Hence, we have developed a new adversary model below. This is not a generic
digital twin adversary model but a model that makes sense in systems with cloud
based data sharing and control in IACS. We also give the main motivations for
using this rather restrictive adversary model.

Traditionally, IACS has been separated with firewalls from other networks such
as corporate network and the internet. Several good architectures and recommen-
dations are available [Sch+a]. Here, we assume such principles are deployed and

 Adversary model and security requirements 

we have adopted an adversary model where we do not consider any attacks on the
physical twin part or local factory network part of the system but assume these
parts can be properly isolated from hostile external networks.

We assume that the digital twin can run in a separate process even on a third
party cloud resource. Then the digital twin can be realized using virtualization
techniques where the virtualization is offered on the most suitable level [SN].
Providing strong isolation for virtualization and protection against hostile cloud
providers is a very challenging topic which has been widely addressed with sev-
eral different models and solutions the past ten years [Liu+; Sch+; PGM].
Recent attacks Metldown [Lip+] and Spectre [Koc+] have shown that one
cannot even trust the fundamental hardware functions needed for secure isolation
currently in use. However, the security with respect to secure execution environ-
ment for virtualized systems is steadily improving and we will for simplicity in this
paper disregard attacks on the isolation properties of the digital twin and assume
that a secure execution environment and data storage is provided for the digital
twin in the system.

We adopt the Dolev-Yao model [DY] and assume that the attacker can in-
fluence the system in all other aspects including the following capabilities of the
adversary:

• The attacker is able to intercept, modify and replay all communication from
the physical domain to the digital domain and vice versa.

• The attacker is able to launch input attacks by sending arbitrary messages to
a digital twin and input requests, i.e. he or she can choose to send arbitrary
input from the set Iu′ to the digital twin u′.

• The attacker is able to launch intercept, modify and replay any information
sent between digital twins or between digital twins and other units executing
in the virtual domain.

. Security definitions

Next, we give basic security definitions. The basis of the new security architecture
is the introduction of state replication between the physical and digital twin. An
expectation from such model from robustness perspective is that the synchroniza-
tion is accurate over all system states and inputs. The synchronization consistent
expectation is fundamental for deploying the architecture and very different from
architectures introduced in the literature before. The main reason why consistency
is important is that without it, one cannot rely on that all system changes in the
digital twin part are correctly propagated to physical part of the system and vice

Internal factory network attacks are of course also possible, but we do not consider those in our
adversary model.

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

versa, which will make it impossible to use the model in practise as the system be-
haviour would be unreliable. Hence, even if the synchronization consistency not
is a pure security requirement, it is fundamental for the proposed architecture and
we make a precise definition of synchronization consistent ency. It is also impor-
tant to notice that one would expect from a specific design and implementation
of our architecture to provide the synchronisation consistency property also under
attack conditions. Hence, it is important to introduce a proper definition also in
this regard.

Another fundamental, pure security expectation, with respect to the synchro-
nization is the confidentiality and integrity of the synchronization process as such.
Hence, we also provide precise definitions for these two aspects. Apart from these
definitions, we adopt widely used computer and communication security defini-
tions [SB].

Definition .. A digital twin system is consistent if there exist functions ∀u ∈
U, fu : Su→ Su′such that the following is true:

∀s ∈ Su, fu(δu(s, /0)) = δu′(fu(s), /0), ()
su′,0 = fu(su,0). ()

This definition reflects the requirement that when the digital twin starts in a
state consistent with the staring state of the physical counterpart and whenever
neither the physical twin nor the digital twin receive any input, they are both
always transitioned to states that are consistent. i.e. the physical to digital twin
state mapping agree with the state of the digital twin.

Definition .. A digital twin system synchronization protocol provides confiden-
tiality protection if an adversary, who observes information, eu′→u(t) and eu→u′(t)),
sent from the digital twin and from the physical twin respectively at time t, cannot
execute any attack, A, that in polynomial time will allow the attacker to distinguish
the state of the physical twin from any randomly selected state, i.e., after execution
of A, the following is true:

∀s ∈ Su,Pr(su = s|eu′→u(t),eu→u′(t)) = Pr(su = s) ()

Definition .. A digital twin system synchronization protocol provides synchro-
nization protection if the adversary cannot execute any attack replacing message
exchange eu′→u(t) with e′u′→u′(t) and/or replacing eu→u′(t)£ with e′u→u′(t) which
will be accepted by u and u′ and making the twins out of synchronization, i.e.
fu(su,t) = su′,t is always true after successful synchronization independent of ad-
versary substitution choices.

This definition does not take a DoS attack into account and assumes that the synchronization
messages arrives at each time slot.

 Adversary model and security requirements 

Figure 3: Security architecture overview.

. Requirements

We have used the previously presented adversary model and security definitions to
identify a set of system security, performance and accuracy requirements. This is
not an exhaustive list but the major identified system architecture requirements.

R. Synchronization security: We require the digital twin state replication model
and protocol to be consistent (Definition .), provide confidentiality protec-
tion (Definition .) and synchronization protection (Definition .).

R. Synchronization latency: The synchronization message exchange must not
cause any delays which prevent time critical control functions to be propa-
gated to from the physical to the digital twin. The precis requirements are
application dependent.

R. Digital twin external connections protection: All connections between the
digital twin and the external entities must be authenticated. According to the
adopted adversary model, we assume each digital twin to run in a protected
execution environment but all request external to this environment must be
properly authenticated and all information sent from the digital twin to ex-
ternal trusted parties must be confidentiality and integrity protected.

R. Access control: The digital twin itself or a secure entity in direct connec-
tion with the digital twin needs to make sure access control is applied on on

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

all incoming requests. This includes request and information exchange with
external parties as well as information exchange with other digital twins.

R. Software security: The physical twin software must always be in a trustworthy
state. This implies that the physical twin must be protected from installation
of harmful software. Mechanisms shall be in place to recover the system in
case of zero-days attacks on the physical twins.

R. Local factory network isolation: The local factory network shall not accept
any connection requests except for protected synchronization requests with
the digital twin (see R above). Physical twins should be protected from DoS
attacks through boarder unit such as a gateway or firewall making sure that
only protected synchronization requests reach a physical twin and no other
outside traffic.

R. Digital twin Denial-of-Service (DoS) resilience: The digital twin must be
protected from DoS attacks such as network flooding or distributed DoS di-
rectly targeting a digital twin. Proper DoS filters and router configurations
must be deployed in the factory cloud domain to prevent or limit the DoS
possibilities of the attacker. At the same time, filters and router policies must
not prevent synchronization exchanges to reach the digital twins in the sys-
tem.

 A digital twin based security architecture and state repli-
cation design

. Security architecture

We now have the definitions and requirements in place to define a generic digital
twin security architecture. Fig.  gives a high-level picture of the proposed archi-
tecture. We have here focused on the main security properties and entities in the
system. This is not a complete design in all details but a high level design includ-
ing main components and their roles in the architecture. We verify the key digital
twin design of it in our proof of concept evaluation but leave detailed design and
evaluation of other components for future work.

A basic security assumption in this architecture is the possibility to launch
digital twins as well as security services in trusted execution containers as Virtual
Machines (VMs) on suitable cloud resources. The architecture is completely ag-
nostic on the virutalization technique used for this or on which actual level the
vitalization is applied [SN] [GAa]. However, the architecture requires the
virtualization technology to provide trusted execution in the sense that different
VMs are strongly isolated from each other and that they have access to protected
volatile and non-volatile storage.

 A digital twin based security architecture and state replication design 

Using the numbering introduced in Fig. , we discuss the different properties
of the components in the architecture below.

Digital twin component

The digital twin component is running as a VM in an isolated environment. An
overview picture of the main logical functions of the twin is given in Fig. .
The core functionality of the digital twin is the actual simulation of the physi-
cal counterpart. Only two direct external network interactions are allowed: the
synchronization (which occurs over the synchronization GW) and the exchange
with external requests and responses. This takes place either through the cloud
server which takes all incoming requests and responses from external entities or
directly to other digital twins or back-end components. The virtual domain exter-
nal connections are protected through the cloud Virtual Private Network (VPN)
(see Section .). The state of the digital twin is exported directly to a common (for
several digital twins in a system) security analysis component (see also Subsection
.). Also the intermediate state, ŝu′ , is exposed to an analyzer in this way. This
implies that an external analyzer can have access (if allowed by the access policy)
to all digital twin states in the system. This in turn allows abortion of state prop-
agation in case of detection of a fatal security issue by the external analyzer. The
digital twin has access to a secure clock, t, for precise synchronization operations
with the physical twin. The actual state propagation design we use is described in
Section ..

Twin	core-simulator

Twin	State
Ŝu'	Su'

Synchronization
module

Network	stack

Secure	clock
t

Digital	twin To/from	
external	server

To/from	
synch.	GW

State	property	to	
security	analyzer

Abortion-signals
from	security
analyzer

Figure 4: Digital twin main functions

Physical twin component

An overview picture of the main logical functions of the physical twin is given in
Fig. . Similar to the digital counterpart, the physical twin executes the defined
synchronization protocol. Depending on if the physical twin actually has network

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

connectivity or not, it might run the synchronization itself or it is done through
a ”measurement unit”. A physical twin deployed in an isolated factory network
will only exchange synchronization information with a dedicated synchronization
GW on the same network. On the other hand, a single deployed physical twin
outside such a network will need to directly exchange synchronization information
with the synchronization GW in the virtual domain and needs access to the key
material needed for such secure interactions. The physical twin will apart from
this, not need any specific security adaptations at all. The state propagation design
applicable to the physical twin is described in Section ..

Physical	twin	or
physical	twin

measurement	unit

Twin	State
Ŝu	Su

Synchronization
module

Network	stack

Secure	clock
t

Physical	twin Factory-local
interactions

Synch.	GW	
keys

To/from	synch.
GW

Figure 5: Physical twin main functions.

Protected connection between synchronization gateways

The connection between the synchronization GW on the local factory and the vir-
tual domain is protected through a secure channel. We have chosen this principle
instead of end-to end synchronization protection as we assume it will be possible
to deploy synchronization GWs in trusted containers in the virtual domain. Stan-
dard IPsec [KS] VPN or a TLS/DTL channels [DRa] [RM] are assumed.
A major advantage with such solution from security management point of view
is that this allows a single security relation between the physical and digital do-
main. Such single relation is very easy to maintain from security perspective. For
instance, can a pres-shared key TLS or DTLS relation for instance be used. This
can be compared to a situation where external entities are allowed to directly con-
nect to the physical domain. In such situation, each external connection would
need a separate security relation with the physical domain. Now, such relations
are instead moved to the digital domain, where the security risk is much lower and
where it is much less complex to handle such relations from a security configura-
tion management point of view.

For a physical twin that is in production, it could be that it has no program execution capabil-
ities, but its state is only measured through external sensors for instance.

 A digital twin based security architecture and state replication design 

Protected connection from isolated physical twin to synchronization gateway

A physical twin not deployed in a protected local factory network, needs to directly
connect to the synchronization GW in the virtual domain. This connection then
obviously needs to be confidentiality and integrity protected using a suitable secure
channel (see Section .).

Production system external server

The architecture assumes all external requests arrives in the virtual domain, i.e.
external input to digital twin u′ from the set Iu′ arrives to the production system
external server prior to (potential) being forwarded to the digital twin u′. Similar
responses from a digital twin are routed through this sever as well. This allows
advanced network filtering at a single point and avoids having such functionality
duplicated at each digital twin virtual instance.

Intrusion Detection System (IDS)

State-of-the art IDS are best deployed at the boarder to the internet [Kru+]. We
adopt this principle and assume the actual intrusion analysis to be done by a VM
with direct access to the external network interface traffic.

Security analysis service

The core benefit from a security perspective with a digital twin model like the one
we have defined, is the possibility to do security analysis directly on the digital
twin state and even on the states of a whole family of digital twins. By letting the
analyzing engine having access not only to the final states, but also intermediate
states, i.e. the ŝu′ states in the system, it is possible for a security analysis function
to detect harmful state transitions (prior to the state propagating to the physical
twin) and take direct action in the digital domain (see also Fig. ).

Central access control

By letting all external digital twin access be subject to a single point access control,
system wide policies can easily be deployed in the system. Advanced security poli-
cies can be defined through standard access control frameworks such as Extensible
Access Control Markup Language (XACML) [Ris]. In order to allow direct in-
teraction between digital twins, this is preferably combined with component local
policy enforcement through tokens issued at the central access control entity using
standard tokens such as SAML [CMJ] or OAuth [Har].

Recall that in our adversary model we assume all inputs to a physical twin to be trustworthy
and not subject to direct security analysis

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

Protected virtual network

Most cloud providers offer network isolation between VMs launched on cloud
resources. Even if we have not assumed all trusted execution services to be de-
ployed as complete, ”traditional” VMs in the virtual domain, higher layer VMs
can be launched on such VMs allowing re-use of standard principles for network
isolation. There are also other, non-provider dependent solutions to achieve this
[LW].

. State replication model and design

Several different state replication principles for digital twins are possible. Re-
cently, a specification-based state replication model for digital twins was proposed
[EEa]. We have adopted a similar physical and digital twin state transition
model. However, the state replication design in [EEa] is built upon measure-
ment of input values and that the physical and digital twin runs functional identi-
cal programs or what the authors refers to as ”passive state replication”. This is an
approach that is efficient if the main purpose of the design is to evaluate security
breaches stemming from the physical domain. Instead, we in our security architec-
ture use the digital twin as a ”guard” against all, potential hostile, external stimuli
on the physical domain. Hence, even if demanding from real-time perspective,
we instead have adopted a direct state replication or what the authors in [EEa]
refers to as ”active monitoring”. This different security goal and approach also
allow us to abandon the functional identical program requirements. We assume
a model, where the physical and digital twin are synchronized on regular basis.
Without loss of generality, we assume that a synchronization is done at each clock
cycle. Let zu : Su× Su′ → Su be a synchronization function and hu : Su → Su′ a
physical to digital state mapping function for twin u. The complete synchroniza-
tion (including the twins state updates) then consists of the following operations:

ŝu,t+1 = δu(su,t , iu,t), ()
ŝu′,t+1 = δu′(su′,t , iu′,t), ()
su,t+1 = zu(ŝu,t+1, ŝu′,t+1), ()
su′,t+1 = hu(su,t+1). ()

This synchronization model works such that the physical and digital twin treat
their respective inputs independently. We assume that the input will change the
state of the (respective) twins independently, and then at the next time slot, they
will synchronize their states to make them consistent considering the inputs re-
ceived before last synchronization.

https://docs.aws.amazon.com/vpc/index.html#lang/en_us
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

 A digital twin based security architecture and state replication design 

The choice of the functions zu and hu will depend on the digital twin model
and the exact relation between the physical and digital twin. Many different mod-
els are possible. For the purpose of this paper, we choose a simple twin model
but still a model allow to cover several important security cases as we show in
Section . Denote by Su = S1u

∪
S2u

∪
S3u, we then make the following assump-

tion: S1u
∩

S2u = S1u
∩

S3u = S2u
∩

S3u = /0. Let Su′ = S1u′
∪

S2u′ and we as-
sume that S1u′

∩
S2u′ = /0. Then we can write the state of the physical twin as

su = (s1u,s2u,s3u) and the state of the digital twin as su′ = (s1u′ ,s2u′). We then
apply the following restrictions:

S2u = S1u′ , ()
S3u = S2u′ , ()

∀su ∈ Su,∀iu ∈ Iu,δu(su, iu) =
= (δ1u(su, iu),δ2u((s2u,s3u), iu),s3u), ()
∀su′ ∈ Su′ ,∀iu′ ∈ Iu′ ,δu′(su′ , iu′) =

= (s1u′ ,δ2u′(su′ , iu′)) ()

In addition, we let

su′,0 = (s1u′,0,s2u′,0) = (s2u,0,s2u′,0), ()
su,0 = (s1u,0,s2u,0,s3u,0) = (s1u,0,s2u,0,s2u′,0) ()

With these restrictions, we then let zu(ŝu,t , ŝu′,t) = (ŝ1u,t , ŝ2u,t , ŝ2u′,t) and

hu(su,t+1) =

{
(s2u,0,s3u,0) if t < 0
(ŝ2u,t+1, ŝ2u′,t+1) otherwise ()

To send the complete state at each synchronization occasion is very inefficient.
Instead, the state changes (deltas) are calculated:

mu′→u(t) = ∆ŝu′ = Diff(ŝu′,t+1,su′,t), ()
mu→u′(t) = ∆su′ = Diff(ŝ2u,t+1,s2u,t), ()

This implies that the digital twin calculates a first delta, ∆ŝu′ , and sends it to the
physical twin. This delta is then used by the physical twin to reconstruct ŝu′,t+1,
which is the input to the z function, i.e. equation (). Next, the physical twin cal-
culates the ”return delta”, ∆su′ , that is sent back to the digital twin. The principle
is illustrated in Fig.  below. Observe, that we here only illustrate the synchroniza-
tion information exchange and not the protection of the synchronization messages
as such. The protection principles we apply was described in Section ..

It is important to notice from real-time and communication overhead perspec-

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

Physical	twin
current	state:

Su,t

Physical	twin
intermediate	state:

Ŝu,t+1

Physical	twin	
final	state:
Su,t+1

Digital	twin
current	state:

Su',t

Digital	twin
intermediate	state:

Ŝu',t+1

Digital	twin
final	state:
Su',t+1

Real	space Virtual	space

Input:	iu,t Input:	iu',t

Synch:	Δ	ŝu'

Syn
ch:
	Δ	
s u'

Figure 6: Synchronization principle.

tives that when no input is received neither on the physical or digital side, there is
no need for the twins to exchange any deltas. This is true given a consistent digital
twin system synchronized with accurate clocks.

 Security analysis

Next, we analyze the proposed framework from security and performance perspec-
tives. We here mainly focus on the synchronization security characteristics. We
also give arguments regarding how the proposed architecture meets the other se-
curity requirements listed in Section .. As the architecture in many aspects only
include a high level design, we here postpone detailed security evaluation of these
aspects to future work and for specific implementation designs.

Synchronization security

Proposition . The digital twin synchronization model and protocol is consistent.

Proof. Let:
fu(s) = fu((s1,s2,s3)) = (s2,s3). ()

From () we have that su,0 = (s1u,0,s2u,0,s2u′,0) and from () and (), it then
follows that fu(su,0) = hu(su,0) = (s2u,0,s3u,0) = (s1u′,0,s2u′,0) = su′,0, which
fulfils condition ().
Now, using the assumptions (), (), () and (), let:

δ̂u(su, iu) = (δ1u(su, iu),δ2u((s2u,s3u), iu),δ2u′((s2u,s3u), /0).
Then, it follows from (),

fu(δ̂u(su, /0)) = (δ2u((s2u,s3u), /0),δ2u′((s2u,s3u, /0)).
Similar, let: δ̂u′(su′ , iu′) = (δ2u((s1u′ ,s2u′), /0),δ2u′(su′ , iu′)).
Then by direct calculation:

 Security analysis 

δ̂u′(fu(su), /0) = δ̂u′((s2u,s3u), /0) =
(δ2u((s2u,s3u), /0),δ2u′((s2u,s3u), /0)) = fu(δ̂(su, /0)).

By then letting the state su taking any value in Su, it follows that also condition
() is fulfilled.

Proposition . If the secure channel used for communication towards and be-
tween synchronization GW in the architecture provides confidentiality, the digital
twin synchronization design also provides confidentiality.

Proof. According to our attacker model, an adversary can intercept any message
sent from the digital twin to the synchronization GW in the virtual domain or
any messages sent between synchronization GWs. He or she might also intercept
message sent from physical twins towards the GW deployed in the virtual domain.
The attacker has no other option to intercept any synchronization information.
According to () and (), at each clock cycle, one delta message is sent from the
digital twin towards the physical twin and a replay delta message is sent in return.
An adversary has two options to intercept the first message, eu′→u(t); Either he or
she intercept it when it is sent from the digital twin the synchronization GW in
the virtual domain or when it is forwarded from the synchronization to the GW in
the factory domain (or physical twin in the second option). As long as both these
channels provide confidentiality the attacker will not get any information on su.
As the return message follows the very same path, the also the return message,
eu→u′(t) , will have the very same protection and equation () is fulfilled.

Proposition . If the secure channel used for communication towards and be-
tween synchronization GW in the architecture provides integrity and replay pro-
tection, the digital twin synchronization design also provides synchronization pro-
tection.

Proof. According to Proposition  the proposed synchronization model is consis-
tent and consequently if no input is received on neither the digital nor physical
twin, hu(su,t+1) = su′,t+1. Furthermore, if the synchronization messages also ar-
rives unmodified equation () guarantees that hu(su,t+1) = su′,t+1 holds also in
this case. Hence, the only option for an attacker would be to modify any messages
eu′→u(t) or eu→u′(t)). In analogue with the proof of Proposition , if the used
secure channels provides integrity and replay protection, such modification will
be detected and a modified or replayed message will be rejected.

Latency

The architecture as such does not make any direct assumption regarding the syn-
chronization real-time behaviour. Depending on the specific IACS application,
the networks must be chosen and configured accordingly. Similarly, the synchro-
nization GW must be implemented on platforms powerful enough to fulfill real-

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

time requirements. For some applications, deploying the virtual domain on an
edge cloud [Del] can be used to meet R.

External connections

The architecture assumes all external connection to be intermediates by the exter-
nal server entity at the boarder of the external network. The external server will
only accept authenticated requests. Furthermore, the final hop for the external
server to the digital twin runs through the virtual domain VPN. This, if properly
implemented, implies that the system fulfills the requirement R.

Access control

According to the proposed security architecture, the centralized access control VM
deployed in the virtual domain makes sure all access requests towards the digital
twin are properly authorized. Access control enforcement then takes place at the
digital twin VM. This means that the main building blocks are included to fulfil
R. However, the actually authorization and access control mechanisms which are
supported are subject to detailed design, which have been left for future work.

Software security

The software state of the physical twin can be replicated to the digital counterpart.
A security service with direct access to the twin state can be launched. This service
then controls the physical twin software state and upgrade. This is a very efficient
way to both monitor the SW status and control upgrades as we show with the
experimental evaluation in Section Section . Even if this is an important step to
meet R, further SW monitoring tools needs to be deployed in the system to give
the wanted software security level.

Network isolation and DoS resilience

The architecture adopts best practise for factory network isolation [] to meet R.
In addition, external interaction with the factory domain is only possible indirectly
through the protected synchronization. All direct requests towards digital twin are
subject to IDS and filtering and additional security protection mechanism can be
launched as security service VMs in the virtual domain. With proper design and
implementation, such measures will provide network isolation and DoS resilience
as required by R.

 Proof of concept and performance evaluation

In order to test the feasibility of the proposed architecture and approach, we have
implemented a low complexity system with digital twins using our proposed state

 Proof of concept and performance evaluation 

synchronization protocol. Our main goal here is to get an impression of how
the proposed synchronization framework, which is the fundamental basis of the
proposed architecture, affects the production units in the system as well as the
bandwidth consumption. It was argued in [EEa] that direct state synchro-
nization or what the authors refer to as ‘’active monitoring’’ is not feasible in real-
time critical systems due to large bandwidth overhead. While we argue that this
is not the case for low complexity digital twin state models and for moderate syn-
chronization frequencies, we are interested to measure the production unit actual
computation and bandwidth overhead in a real system. To make the evaluation
feasible, we here focus on the first three components in the architecture in Fig. .
We have implemented a simple manufacturing scenario, as seen in Fig.  con-
sisting of a PLC unit, u1, controlling an industrial process. In addition, we have
a software upgrade server, u2, holding software upgrade information, that is de-
ployed in the factory local network. The PLC and the upgrade server are reflected
as digital twins: u′1,u

′
2. The goal with introducing the virtual domain is to allow

secure software control and upgrade of the production system units. To facilitate
this, the software state and software control state are replicated to the digital twin
domain.

It should be noted, that additional components and more complex production
scenarios, will give a more detailed picture of how the proposed synchronization
model effects the system performance. However, as the proposed synchronization
protocol scales linear with the number of units with respect to bandwidth con-
sumption, we argue that measurements in a small systems will give a good view
of the overall system impact. Furthermore, the actual effect in terms of compu-
tational overhead on a particular production unit, will obvious depend on the
computational power of the unit. Here, we use a fairly constrained platform, a
RaspberryPI, for the evaluation. Other platforms and systems will be affected
in similar ways but obviously platforms with less resources will be affected more.
How, different platforms with different resources are affected, is left for future
work as our main goal here is to verify the general feasibility of the approach.

Our proof-of concept implementation shows that as long as we have moderate
state changes and the synchronization happens less than  times a second, clock
synchronization is not an issue. The platform we have worked with can timely
process a request and send a response without major delays. Hence there is no
need to have a more precise clock synchronization. Here we let the digital twin
act as a ”master” and the physical twin as a ”slave” unit at each synchronization
occasion.

The state information for the supported twins are selected to be:
su′1 = [ctrl_flag, ctrl_url, sw_state] and

We recall that the synchronization including the protection of the synchronization is the only
parts of the architecture that directly affects the production domain.

Paper IV: A Digital Twin Based Industrial Automation and Control System …

Update-
server

digital twin
u'2

PLC digital
twin
u'1

Operator w

PLC
u1Update server

u2

Industrial process

Figure 7: Setup of out digital twin and software update scenario.

su′2 = [ctrl_url, sw_package]. ctrl_flag is a value holding software up-
grade request control and error information and the ctrl_url is a URL of a new
software package to be installed. sw_state is a list of all current software packages
and versions installed on a unit and sw_package is a new software package. We
also assumes a remote operator, w, to be present in the system controlling software
upgrades through a remote user device over standard internet.

. PLC software update process

w identifies a new software package, q, and connects to the external server u′2. w
then downloads q to u′2 and w receives a ctrl_url value for the package in return.
u′2 then updates the state ŝu′2,0 to reflect the storage of the new software package.
Then a synchronization takes place between u′2 and u2. The synchronization is
done by sending ∆ŝu′2

= ctrl_url+q from u′2 to u2. This in turn, triggers u2
through the functions hu2 and zu2 , to update its internal state, resulting in the
storage of q which can be downloaded from ctrl_url to other units within the
local factory network.

w makes a second request using the newly received ctrl_url and with in-
formation regarding the new software packages towards u′1. The request trigger
u′1 to update states su′1,1: ctrl_flag, ctrl_url, sw_state, where ctrl_flag
contains ”available software update indicator”, ctrl_url contains the URL to the
new software package on u2 and sw_state contains version information for the
pending new software. In the clock cycle , this information is propagated to u1
through ∆ŝu′1

. This values in combination with the functions hu1 and zu1 give an
updated state su1,2. The SW update flag in state su1,2 triggers u1 to set the state to
update pending allowing to u2 using ctrl_url to download and install the new
SW package, q. Once, the update is finalized, the update status information as

Here is actually no state information with origin from the physical twin, u2, but just digital
twin state information which is propagated to the physical twin.

 Proof of concept and performance evaluation 

well as the new SW state information is propagated back to u′1 through updates
of the ctrl_flag and sw_state.
. Performance evaluation

We have implemented the scenario, described above, with a SW update process
using digital twins. As the PLC u1 we have used OpenPLC[Alv+], a free, open
source PLC implementation, running on a RaspberryPI. The Raspberry Pi we
have used is a model  v. with an ARM Cortex-A quad-core processor, clocked
at MHz.

The digital twins u′1,u
′
2 are running as separate processes in a Ubuntu .

desktop host. The same host also functions as the update server u2. Since the phys-
ical entities synchronize with digital-twins outside the protected factory network
the synchronization protocol is secured by DLTS.

Update time depending on synchronization frequency

In order to evaluate the state synchronization protocol we have looked at the SW
update scenario. We want to examine how the state synchronization process affects
other processes running on the system.

First we ran tests without state synchronization to establish a base line for how
long time the update process takes. Then we ran the SW update process with state
synchronization at different frequencies. We evaluated performance at ,  and
 state synchronizations per second. The result can be seen in Fig. .

As can be seen from the figure the performance impact of the state synchro-
nization is very small. Only at a large number of synchronizations per second is
the performance noticeable.

Figure 8: Update times when using state synchronization at different frequencies.

https://www.raspberrypi.org
In the simple system we are using, actually, the state exchange can be omitted in most cases as

we very seldom have state changes, but in our evaluation, we anyway forced a state exchange to take
place in order to test the synchronization frequency performance impact.

Paper IV: A Digital Twin Based Industrial Automation and Control System …

Compassion of DTLS Cipher Suites

We have compared different DLTS cipher suites to evaluate if this impacts per-
formance. The default strong suite AES--GCM with SHA was compared
to the weaker AES--GCM with SHA. The results can be seen in Figure
. It can be noted that the choice of ciphers has only a very small impact on the
performance of the update process.

Figure 9: Comparison of update times with different DTLS cipher-suites.

Computation cost

A PLC is not a constrained device in a traditional sense, however, since it controls
a time-critical process CPU-time is limited. Any added features must consider this
so time-critical deadlines are kept.

We have measured the CPU-time needed by the PLC to implement our state
synchronization protocol. By running the protocol over an extended time we have
come to the following numbers as seen in Table .

As shown in the table the CPU-time needed by the PLC to implement the
state synchronization protocol is very small. An even slower CPU will still be able
to run the state synchronization without overloading the processor.

CPU-time (ms)
per synchronization

CPU-load
10 synchronizations/s

CPU-load
100 synchronizations/s

0.3772 (s = 0.0602) 0.0038% 0.0377%

Table 1: Measurements of CPU-time per state synchronization message and CPU-load.

Network performance

Evaluating network performance for the state synchronization process is difficult
to do without real ICS network traffic to base an evaluation scenario on. Hence,
instead we evaluated the performance in an isolated system. We measured the
bandwidth consumption for the PLC during the update process. We then mea-
sured the bandwidth for the update process while synchronizing with the PLC’s

 Conclusion and future work 

digital-twin. The synchronization messages were of size  bytes in each direction.
The bandwidth consumption can be seen in Table . As can be seen from the Table
the bandwidth consumption is reasonable for small synchronization frequencies.

Bandwidth to PLC Bandwidth from PLC
No synch 0.97 KB/s 2.06 KB/s
1 synch/s 1.20 KB/s 2.38 KB/s
10 synch/s 2.16 KB/s 3.35 KB/s
100 synch/s 10.88 KB/s 12.06 KB/s

Table 2: Bandwidth to and from the PLC when updating.

 Conclusion and future work

Motivated by the need for new security models and principles in IACS to open
up the systems for cloud based processing and data sharing, we investigated how
digital twins can work as a security enablers in IACS. We introduced a new ad-
versary model, made basic security definitions, identified security requirements,
made a novel security architecture and in particular state replication design for a
digital twin based IACS. The new state replication design as well as the architec-
ture were then security evaluated against the identified requirements. We showed
that the proposed synchronization design meets the introduced digital twin syn-
chronization requirements. Furthermore, we made a high-level design of the other
security components in the architecture and argue about how the suggested func-
tions will help in meeting the identified security requirements. Through our proof
of concept implementation and performance evaluation, we also showed that the
new digital twin synchronization model works well in practice for a small but real
production case with reasonable performance impact. Especially, we show that
as long as we have not too high update frequency, the performance impact on a
platform like RaspberryPI is negligible. As expected, the bandwidth increases lin-
ear with the synchronization frequency. In our evaluation, we only reflected a few
PLC states, and obviously, the more fine grain states that are reflected, the more
impact it will have on the system performance and bandwidth consumption.

The results shows that a digital twin based security architecture is a promising
way to protect IACS while open them up for external data sharing and access. We
have here worked with defining a suitable overall architecture and synchronization
model. In order to develop a fully working system based on our architecture and
approach, more work is needed. Below, we discuss the most important future
work:

• Performance: We have here made first proof of concept of the architec-
ture. In order to see the effect of the architecture on different platform and

Paper IV: A Digital Twin Based Industrial Automation and Control System …

production scenarios, more performance evaluations on different platform,
with more complex digital twin state models and with larger amount of
production nodes are needed.

• Intrusion detection: In our security architecture, we have only show how
on principle level how to integrate intrusion detection at the boarder to the
virtual domain. It is left for future research to design and integrate intrusion
detection in a fully working system.

• Access control: The architecture allows for advanced access control in the
virtual domain. The main advantage with this approach is that this can be
supported without affecting the production domain at all. It remains to
design and evaluate this approach in a full system implementation of the
architecture.

• Formal security analysis: We have proven the consistency of the proposed
synchronization protocol and showed that the security of the protocol de-
pends on the security of the underlying used secure channel. Formal analysis
of the security of the complete system design and all protocols are left for
future work.

• Security analysis services: Apart from IDS and access control enforcement
in the virtual domain, additional security analysis services may be supported
as virtual components as we showed in our architecture design. This include
services such as virus scan, DoS prevention etc. The design and evaluation
of such services is left to future research as well.

Acknowledgement

We would like to thank the SSF SECFACTORY project team for valuable dis-
cussions regarding the research direction and results presented in the paper. In
particular we would like to thank the TetraPak project members for their valuable
feedback and suggestions.

References

[] Guide to Industrial Control Systems (ICS) Security. NIST Special
Publication -, , Version . .

[Alv+] T. R. Alves et al. “OpenPLC: An open source alternative to
automation”. In: IEEE Global Humanitarian Technology Conference
(GHTC ). Oct. , pp. –.

References 

[Bit+a] R. Bitton et al. “Deriving a Cost-Effective Digital Twin of an ICS
to Facilitate Security Evaluation”. In: Computer Security. Ed. by
J. Lopez, J. Zhou, and M. Soriano. Cham: Springer International
Publishing, , pp. –.

[CMJ] B. Campbell, C. Mortimore, and M. Jones. Security Assertion
Markup Language (SAML) . Profile for OAuth . Client
Authentication and Authorization Grants. RFC . May .

[Del] J. Delsing. “Local Cloud Internet of Things Automation:
Technology and Business Model Features of Distributed Internet of
Things Automation Solutions”. In: IEEE Industrial Electronics
Magazine . (Dec. ), pp. –.

[DRa] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version .. RFC  (Proposed Standard). Internet
Engineering Task Force, Aug. .

[DY] D. Dolev and A. C. Yao. “On the Security of Public Key Protocols”.
In: Proceedings of the Nd Annual Symposium on Foundations of
Computer Science. SFCS ’. Washington, DC, USA: IEEE
Computer Society, , pp. –.

[EEa] M. Eckhart and A. Ekelhart. “A Specification-based State
Replication Approach for Digital Twins”. In: Proceedings of the 
Workshop on Cyber-Physical Systems Security and PrivaCy. CPS-SPC
’. Toronto, Canada: ACM, , pp. –.

[EEb] M. Eckhart and A. Ekelhart. “Towards Security-Aware Virtual
Environments for Digital Twins”. In: Proceedings of the th ACM
Workshop on Cyber-Physical System Security. CPSS ’. Incheon,
Republic of Korea: ACM, , pp. –.

[FMCb] N. Falliere, Murchu, and E. Chien. W.Stuxnet Dossier. Symantec
Security Response online report. Feb. .

[GAa] C. Gehrmann and M. A. Abdelraheem. “IoT Protection through
Device to Cloud Synchronization”. In:  IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
Dec. , pp. –.

[Gria] M. Grieves. Digital Twin Manufacturing Excellence Through Virtual
Factory Replication. Dassault Syst’emes. Paris, France, .

[Har] D. Hardt. The OAuth . Authorization Framework. RFC .
Oct. .

[Hum+] A. Humayed et al. “Cyber-Physical Systems Security–A Survey”. In:
IEEE Internet of Things Journal . (Dec. ), pp. –.

Paper IV: A Digital Twin Based Industrial Automation and Control System …

[KG] M. Krotofil and D. Gollmann. “Industrial control systems security:
What is happening?” In:  th IEEE International Conference on
Industrial Informatics (INDIN). July , pp. –.

[Koc+] P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”.
In:   IEEE Symposium on Security and Privacy (SP).
Vol. . , pp. –.

[Kru+] C. Kruegel et al. “Stateful intrusion detection for high-speed
network’s”. In: Proceedings  IEEE Symposium on Security and
Privacy. May , pp. –.

[KS] S. Kent and K. Seo. Security Architecture for the Internet Protocol.
RFC  (Proposed Standard). Internet Engineering Task Force,
Dec. .

[Lam] L. Lamport. “Time, Clocks, and the Ordering of Events in a
Distributed System”. In: Commun. ACM . (July ),
pp. –.

[LBK] J. Lee, B. Bagheri, and H.-A. Kao. “A Cyber-Physical Systems
architecture for Industry .-based manufacturing systems”. In:
SME Manufacturing Letters  (Dec. ).

[Ley] A. Leyden. Hack on Saudi Aramco hit , workstations, oil firm
admits. .

[Lip+] M. Lipp et al. “Meltdown: Reading Kernel Memory from User
Space”. In: th USENIX Security Symposium (USENIX Security ).
Baltimore, MD: USENIX Association, , pp. –.

[Liu+] C. Liu et al. “ObliVM: A Programming Framework for Secure
Computation”. In:  IEEE Symposium on Security and Privacy.
May , pp. –.

[LW] L. E. Li and T. Woo. “VSITE: A scalable and secure architecture for
seamless L enterprise extension in the cloud”. In:  th IEEE
Workshop on Secure Network Protocols. Oct. , pp. –.

[NFM] E. Negri, L. Fumagalli, and M. Macchi. “A Review of the Roles of
Digital Twin in CPS-based Production Systems”. In: Procedia
Manufacturing  (). th International Conference on Flexible
Automation and Intelligent Manufacturing, FAIM, - June
, Modena, Italy, pp. –.

[PGM] N. Paladi, C. Gehrmann, and A. Michalas. “Providing User
Security Guarantees in Public Infrastructure Clouds”. In: IEEE
Transactions on Cloud Computing . (July ), pp. –.

References 

[PH+] F. M. P. Didier P, J. Harstad, et al. Converged Plantwide Ethernet
solution - Converged Plantwide Ethernet (CPwE) design
implementation guide. Cisco Systems and Rockwell Automation.
.

[Ris] E. Rissanen, ed. eXtensible Access Control Markup Language
(XACML) Version .. OASIS Standard. .

[RM] E. Rescorla and N. Modadugu. Datagram Transport Layer Security
Version .. RFC . Jan. .

[Rob] P. F. Roberts. Cyberattack inflicts massive damage on German steel
factory. The security ledger. .

[Ros+] R. Rosen et al. “About The Importance of Autonomy and Digital
Twins for the Future of Manufacturing”. In: IFAC-PapersOnLine
. (). th IFAC Symposium onInformation Control
Problems inManufacturing, pp. –.

[SB] W. Stallings and L. Brown. Computer Security: Principles and
Practice. rd. Upper Saddle River, NJ, USA: Prentice Hall Press,
.

[Sch+] F. Schuster et al. “VC: Trustworthy Data Analytics in the Cloud
Using SGX”. In:  IEEE Symposium on Security and Privacy.
May , pp. –.

[Sch+a] S. Schrecker et al. The industrial Internet of Things - Volume G:
Security Framework. Industrial Internet Consortium. .

[Sch+b] G. N. Schroeder et al. “Digital Twin Data Modeling with
AutomationML and a Communication Methodology for Data
Exchange”. In: IFAC-PapersOnLine . (). th IFAC
Symposium on Telematics Applications TA , pp. –.

[Sch] F. B. Schneider. “Implementing Fault-tolerant Services Using the
State Machine Approach: A Tutorial”. In: ACM Comput. Surv. .
(Dec. ), pp. –.

[Sha+] M. Shafto et al. Modeling, simulation, information technology &
processing roadmap. National Aeronautics and Space Administration
(NASA). .

[Sha+a] M. R. Shahriar et al. “MTComm Based Virtualization and
Integration of Physical Machine Operations with Digital-Twins in
Cyber-Physical Manufacturing Cloud”. In:  th IEEE
International Conference on Cyber Security and Cloud Computing
(CSCloud)/ th IEEE International Conference on Edge
Computing and Scalable Cloud (EdgeCom). June , pp. –.

 Paper IV: A Digital Twin Based Industrial Automation and Control System …

[SN] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer
Architecture and Design). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., .

[Uch+] P. Uchenna et al. “Review of cybersecurity issues in industrial
critical infrastructure: manufacturing in perspective”. In: Journal of
Cyber Security Technology . (), pp. –.

[Uhl+] T. H.-J. Uhlemann et al. “The Digital Twin: Demonstrating the
Potential of Real Time Data Acquisition in Production Systems”.
In: Procedia Manufacturing  (). th Conference on Learning
Factories, CLF , pp. –.

Popular Science Summary
in Swedish

 Populärvetenskaplig sammanfattning

Sedan Joseph Marie Jacquard  uppfann en vävstol som kunde program-
meras med hålkort och inte behövde styras manuellt har industrin blivit mer och
mer automatiserad. Under mitten av -talet började digitala system och olika
datorsystem ta plats på fabriksgolv.

Denna utveckling gjorde att industriprocesser kan styras med högre
noggrannhet och köras utan direkt inblandning av en arbetare. Dessa system för
automation av industriella styrsystem har sedan dess blivit mer och mer sofistik-
erade.

Under slutet av -talet och början av -talet började industrin få upp
ögonen för nätverksteknik och möjligheterna med internet. De industriella styr-
systemen som tidigare varit skiljda från nätverk utanför fabriken fick nu kontakt
med omvärlden.

Detta möjliggjorde en mer effektiv styrning av olika processer och informa-
tionsdelning mellan t.ex. olika fabriker i en koncern. Men upkopplingen till in-
ternet har också skapat sårbarheter för cyberangrepp.

Nästa generations industriella styrsystem, ofta kallat Industri ., förväntas
att i större utsträckning vara uppkopplade för att kunna utbyta information och
genomföra analys och optimeringar som tidigare inte har varit möjliga.

Detta tillsammans med det som har kallats Sakernas Internet, eller IoT, har
lyfts fram som både framtiden för industriella styrsystem och ett stor datasäk-
erhetsproblem. Dessa båda egenskaperna, speciellt kombinerat, har fått mycket
uppmärksamhet.

Denna avhandling är en del av arbetet med att undersöka hur framtidens in-
dustriella styrsystem ska kunna kombinera de önskade egenskaperna i form av
internetuppkoppling utan att ge avkall på datasäkerhet.

I denna avhandling har vi tittat på två problem inom området: protokoll för
krypterad kommunikation mellan uppkopplade IoT-enheter och säker hantering
av industriella styrsystem under deras livscykel. För det senare problemet har vi
undersökt två aspekter. Hur man kan använda digitala tvillingar för att skapa och
hålla en klar överblick över ett system. Att kontinuerligt upprätthålla ett säkert
system kräver lösningar för att hantera systems egenskaper över tiden. Ett annat
problem vi har identifierat är att när enheter får längre och längre livslängd så är
det inte säkert att dessa kommer ägas av en enda ägare under hela livstiden. Vi
har därför undersökt hur man säkert kan överföra ägarskapet och kontrollen över
uppkopplade IoT-enheter.

Med dessa publikationer hoppas vi kunna bidra till att framtidens uppkop-
plade fabriker och produktionsanläggningar klarar de krav för säkerhet som ställs.

	Abstract
	Acknowledgements
	List of included Publications
	Contents
	Introduction
	Dissertation Outline

	Background
	Industrial Control Systems
	Constrained Devices
	Object Security
	Secure Ownership Transfer
	Digital Twin

	Contributions and Conclusions
	Contributions
	Conclusions

	References
	Included Publications
	Secure Ownership Transfer for the Internet of Things
	Introduction
	Related work
	System model and assumptions
	Adversarial model and problem description
	IoT infrastructure ownership transfer model and protocol design
	Implementation and experimental evaluations
	Security analysis
	Conclusion
	References

	An Identity Privacy Preserving IoT Data Protection Scheme for Cloud Based Analytics
	Introduction
	System scenario
	Problem setting
	Design overview and notations
	Key generation and distribution
	Data protection
	Security analysis
	Performance figures
	Related work
	Conclusion and future work
	References

	Evaluating the Efficiency of OSCORE in Constrained Environments
	Introduction
	Related Work
	Background
	Motivation and Objectives
	Protocol description
	Evaluation of Payload and Network Overhead
	Experimental Evaluation Method
	Results and Discussion
	Conclusion
	References

	A Digital Twin Based Industrial Automation and Control System Security Architecture
	Introduction
	Digital twin concept, related work and definitions
	Adversary model and security requirements
	A digital twin based security architecture and state replication design
	Security analysis
	Proof of concept and performance evaluation
	Conclusion and future work
	References

	Popular Science Summary in Swedish

