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Abstract 

To study the hydrology of peatlands and explore wetness distribution is difficult 
mainly due to the complexity of the surface of peatlands, and also due to the presence 
of permafrost underlain peatlands in the arctic regions. I have chosen the area called 
Stordalen mire in the arctic region in northern Sweden for my study. 

In this thesis, I aimed to study spatially distributed hydrological modelling in general, 
focusing mainly on evaluation and developing tools that can be used to improve 
wetness estimation using Digital Elevation Models (DEMs). The estimated wetness 
can be used as an input for peatland carbon models. 

DEMs with different resolutions are created using high resolution LiDAR data. 
Different search radiuses are used in the interpolations. The accuracy of the generated 
DEMs is studied to select the most accurate DEM for each selected resolution. The 
search radius, but not the cell size, significantly influences the accuracy of a DEM, 
and the accuracy is generally higher the shorter the interpolation search radius. DEM 
resolution versus topographic wetness index variables (i.e. slope and drainage area) is 
studied. Slope values become lower and drainage area values become higher when the 
resolution decreases. Further, a study of DEM accuracy related to different slopes is 
also carried out and shows that the errors in elevation are greater when the terrain is 
steep than when it is flat. 

A new triangular form-based multiple flow distribution and flow accumulation 
algorithm (TFM) was created in this study. We have estimated flow distribution by 
using our new TFM algorithm. With this TFM algorithm, it becomes possible to deal 
with artefacts that normally interrupt flow distribution, like flat areas, sinks and man-
made structures. This will help to overcome the complexity of peatland hydrology. 
The results of comparing our new algorithm with other well-known algorithms used 
in most GIS programs show that the TFM algorithm produces more realistic results 
than other algorithms. Testing shows the capability of the new TFM algorithm to 
distribute the flow in different terrain types, flat areas and sinks, and makes it suitable 
for simulating real flow distribution over any surface/terrain. 

Topographic wetness index (TWI) was estimated for the study area using our new 
flow distribution and flow accumulation algorithm TFM. Estimating TWI values 
depending only on DEMs is a very cost-effective method that can be used to estimate 
wetness data required for the modelling of peatlands. A permafrost model was created 
to demonstrate the possibility of using an analytically based approach with semi-
empirical equations to estimate the maximum thawing depth (active layer thickness) 
above permafrost.  Field work using water level sensors was carried out to measure the 
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temporal fluctuation of water surface. The field work water level measurements led to 
better understanding of flow regime in the peatlands, especially when a seasonally 
frozen layer or permafrost lies under it. The field work also helped to confirm that 
estimated wetness using the proposed flow routing algorithm on digital elevation 
model can be used to distribute wetness to all cells in a DEM. 

Keywords: modelling hydrology, digital elevation models, topographic wetness index, 
LiDAR data, peatland, permafrost, Stordalen. 
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Svensk sammanfattning 

Hydrologiska studier i torvmarker, inkluderat undersökningar avseende rumslig 
fördelning av markfuktighet, är ofta svåra att genomföra. Huvudanledningen till detta 
är torvmarkernas komplexa hydrologi beroende på dess heterogena yta, men även 
påverkan av permafrost, vilken är väl utbredd i arktiska regioner. I detta arbete har 
Stordalens myr i norra Sverige studerats med avseende på hydrologi. 

Syftet med avhandlingsarbetet har varit att studera rumsligt distribuerad hydrologisk 
modellering med hjälp av digitala höjdmodeller. Fokus har legat på att utvärdera 
befintliga modeller, samt på att utveckla nya verktyg för att kunna förbättra 
skattningar av markfuktighet. Huvudsyftet med att skatta markfuktigheten är att den 
skall kunna användas i kolmodeller anpassade till torvmarker. 

Digitala höjdmodeller med olika rumslig upplösning har på olika sätt skapats utifrån 
högupplösande LiDAR-data. Noggrannheten i de skapade modellerna har undersökts 
för att kunna välja optimal höjdmodell för varje upplösning. Man kan konstatera att 
sökradien vid interpolationen, men inte den rumsliga upplösningen (cellstorleken), 
påverkar noggrannheten i modellen, samt att noggrannheten generellt är bättre ju 
kortare sökradie som används. Även förhållandet mellan höjdmodellers rumsliga 
upplösning och olika faktorer som påverkar markfuktighet, nämligen 
sluttningslutning och dräneringsarea, har studerats. Slutsatsen är att den skattade 
sluttningslutningen minskar, och den skattade dräneringsarean ökar, när den rumsliga 
upplösningen minskar. Även en studie avseende eventuella samband mellan 
höjdmodellers noggrannhet och skattad sluttningslutning har genomförts. Resultaten 
visar att höjdfelen är större i kuperad terräng med branta sluttningar än på planare 
mark. 

En ny formbaserad algoritm för skattning av ytvattenflöde och flödesackumulation 
över digitala höjdmodeller, baserad på triangelnät och multipla flödesriktningar, har 
uvecklats inom detta arbete. Ytvattenflöden över såväl naturliga som matematiskt 
genererade höjdmodeller har skattats med hjälp av den nya algoritmen. Även 
funktioner för att vid skattningen kunna behandla artefakter som platta ytor, små 
isolerade dräneringsområden, samt spår av mänsklig aktivitet (t.ex. kulvertar), har 
inkluderats i algoritmen. Detta ökar möjligheterna att modellera ytvatten i 
topografiskt komplexa torvmarker. Jämförelser mellan den nyutvecklade algoritmen 
och andra välkända och frekvent använda algoritmer visar klart att den förstnämnda 
producerar mer realistiska resultat. Tester visar den nyutvecklade algoritmens 
kapacitet att skatta ytvattenflöden i olika typer av terräng, samt över platta ytor och i 
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små isolerade dräneringsområden. Detta gör den lämplig för användning inte bara i 
torvmarker, utan i alla områden. 

Ett topografiskt fuktighetsindex, baserat på den nyutvecklade algoritmen, har skattats 
över hela undersökningsområdet. Att skatta fuktighet uteslutande på grundval av 
digitala höjdmodeller är en förhållandevis kostnadseffektiv metod, och kan bli 
betydelsefull för modellering av hydrologiska förhållanden i bland annat torvmarker. 
Även en modell för skattning av djup till permafrost, så kallat aktivt lager, har skapats 
inom detta arbete. Syftet med detta var att demonstrera möjligheten att använda en 
analytisk metod med (semi-)empiriska ekvationer för att skatta rumslig fördelning av 
permafrost. Fältmätningar av grundvattenyta och det aktiva lagret har genomförts, 
vilket gett ökad förståelse av hydrologin i torvmarker. Fältarbetet har även bekräftat 
att den ovan nämnda utvecklade algoritmen för skattning av markfuktighet ger ett 
realistiskt resultat. Den kan med fördel användas för att skatta den rumsliga 
fördelningen av markfuktighet utifrån en digital höjdmodell.  
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1. Introduction 

1.1. Peatlands, permafrost and global climate change 

The mean annual air temperatures in regions north of 65° N have increased by about 
2–3 oC since the 1950s, which is almost twice the rate of the rest of the world (ACIA, 
2005). The predicted temperature raise may equal to two to three times greater than 
the global average as it is indicated by climate change scenarios for the arctic regions. 
One of the most important environmental and socioeconomic impacts of temperature 
rise is the melting of permafrost (Zhang et al., 2003). 

Permafrost distribution in the subarctic region is discontinuous and patchy, and 
occurs mainly as palsas (peat mounds with a permanently frozen core), but also as 
elevated permafrost plateaus, formed in subarctic mires (Woo, 2012). The peat serves 
as a large storage of carbon that has been accumulated over thousands of years. Once 
the soil starts to thaw, carbon previously stored as frozen peat is released and ‘lost’ 
through microbial activities (CO2 and CH4), as well as through transportation of 
dissolved organic carbon (DOC), by percolated water to surrounding streams 
(Olefeldt and Roulet, 2012). The rates at which these carbon losses occur depend on 
microbial activity (soil temperature), soil wetness, vegetation cover, and active layer 
thickness. 

Subarctic permafrost demarcates the outer border of permafrost existence, and is 
highly sensitive to altered climate conditions (Bosiö et al., 2012). Even modest 
changes in micro-topography and vegetation patterns due to thawing permafrost will 
affect drainage and snow accumulation, which in turn may enhance permafrost 
degradation. Hence, when modelling climate-hydrological interactions in these 
environments it is necessary to take into account the scale of individual peat mounds 
and hollows, which requires high spatial resolution. It is essential to measure and 
model the thickness of the seasonally thawed layer above the permafrost as this will 
lead to estimating all feedbacks which accompany the thawing process. 
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1.2. Hydrologic processes of peatlands 

Hydrology of Peatlands underlined by permafrost is the study of distribution, 
movement, and storage of water as this is directly or indirectly affected by the 
presence of perennially frozen ground (Woo, 2012). Many different hydrological 
processes may occur where permafrost exists; one example of those processes is how 
water is transported in continuous permafrost areas. The rapid runoff and the 
overland flow are very common phenomena because of the relatively impervious 
permafrost layer (Hinzman et al., 2006). For the discontinued permafrost zone (more 
related to this study), the hydrologic processes are even more complicated and will be 
further investigated and discussed in this study. 

The cycling of carbon and the ecological function of northern peatlands are direct 
consequences of their hydrological condition. Persistently wet conditions result in 
accumulation of dead plant material in the form of peat, and the production and 
emission of CH4. These conditions make peatlands relatively unique as a source or 
sink for two greenhouse gases, CO2 and CH4  (Frolking and Roulet, 2007). 

The peatland hydrology is crucial for climate change impacts, and the estimations of 
emissions from coupled models are still crude, lacking tested modules, e.g. the 
hydrological-permafrost-methane link for northern peatlands. To include such a 
feedback loop into the models requires a new processed based rule set that works on a 
relevant scale. Today these processes are parameterized on a scale that is far from the 
high resolutions needed to capture the results (Wania et al., 2010; Baird et al., 2009). 

Since the water content value is different from point to point and is highly dependent 
on the slope and topography (Famiglietti et al., 1998), modelling water accurately is 
very important for accurate, active layer thickness estimations. A dynamic, distributed 
model is presented in this study to model the effect of thawing permafrost on local 
topography, and active layer thickness. The permafrost model in this study was 
applied to a subarctic mire named Stordalen mire near Abisko scientific research 
station north of Sweden. 

As mentioned in section 1.1, most climate scenarios suggest that higher latitudes will 
experience greater temperature increases and more winter precipitation than the 
global mean increase. This will likely lead to an increase of the permafrost active layer, 
which in turn is likely to have a profound effect on surface hydrology. 

When permafrost melts, the surface of the peatlands tends to drop relatively to the 
surrounding landscape, significantly increasing the local wetness of the peatland. This 
often results in a structural change of the peatland ecosystem from a relatively dry 
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raised peatland plateau to a much wetter mineral poor fen.  Figure 1 clarifies the 
process of increasing local wetness due to the thawing process. 

 

 

 

 

Figure 1. Soil cross section with peat and permafrost layers; A) Current state.  B) 
Increasing local wetness due to thawing of permafrost and increasing the active layer 
thickness. 

1.3. Surface flow algorithms over digital elevation models 
(DEM) 

A digital elevation model DEM is a regularly spaced grid with height information in 
each grid cell.  The DEM is a 3D model of the terrain, which means that it is an 
approximation of a real surface and may contain errors. The accuracy of any created 
DEM (to represent the real surface) depends on many factors, e.g. data collection 
method, data density, interpolation algorithm, grid resolution, and slope variability 
(Höhle and Höhle, 2009). 

During the last three decades, a large number of various flow routing algorithms has 
been developed to simulate flow distribution over digital elevation models (DEMs) 
(Zhou et al., 2008). Each surface flow distribution and accumulation algorithm may 
distribute the flow using different approaches and methodologies, and may differently 
deal with the artefacts that normally exist in any DEM (Zhou and Liu, 2002). In the 
following two sections a general presentation of surface flow distribution and 
accumulation algorithms, and the artefacts, are to be presented. 

1.3.1. Single and multiple surface flow algorithms 

Generally, surface flow distribution and accumulation algorithms can be based on 
either single flow direction (SFD) or multiple flow directions (MFD). If working with 
DEM raster data, the flow from any cell has eight different possible directions. The 
first SFD algorithm, known as Deterministic Eight-Node (D8), is presented by 

Zthaw 

Water table Ground surface

Permafrost

B

Zthaw 

Peat layer

Permafrost

Water tableGround surface

A

Peat layer



 

4 

 

(O'Callaghan and Mark, 1984). Another SFD algorithm is the Deterministic Eight-
Node Least Transversal Deviation (D8-LTD), presented by Orlandini et al. (2003). 
With a SFD algorithm, 100% of the flow will be transported from any cell to just one 
adjacent cell, and is normally transported to the cell in the direction of the steepest 
downhill slope (Fairfield and Leymarie, 1991; O'Callaghan and Mark, 1984; 
Orlandini et al., 2003; Parsons and Abrahams, 1992). SFD algorithms are over-
simplified and must be considered illogical, and would obviously create significant 
artefacts in the results as stated e.g. by Freeman (1991), Holmgren (1994), and 
Wolock and McCabe (1995). 

With the multiple flow distribution algorithms, the flow from any cell can be 
transported to more than one cell, and up to a maximum of eight directions. The 
flow is normally distributed to all lower elevation cells in different directions with 
portions depending on the slope as explained in Equation 1. Examples of multiple 
flow distribution algorithms which distributing the flow according to Equation 1 are 
Freeman Multiple Flow Direction (FMFD) (Freeman, 1991), and Quinn Multiple 
Flow Direction (QMFD) (Quinn et al., 1991). 

where i,j = flow directions (1…8), fi = flow proportion (0…1) in direction i, tan βi = 
slope gradient between the centre cell and the cell in direction i, and x = variable 
exponent. 

Using Equation 1 to weight the influence of slope when splitting flow between 
neighbouring cells is the main problem of MFD algorithms. By changing the 
exponent (x) in Equation 1, two extreme approaches in estimating flow distribution 
can be observed. While x = 1, flow will be distributed to downhill neighbouring cells 
proportionally to the slope gradients, as suggested by Quinn et al. (1991). The other 
extreme is when x → ∞, which will approach towards the ‘single flow’ drainage 
distribution mentioned above. This exponent can thus be seen as a parameter that 
causes a gradual transition from SFD (infinite x; in practice values above 25) to slope 
proportional MFD (x=1). Holmgren (1994) suggested an x value between 4 and 6. 
This gives a result between a very homogeneous flow distribution when x = 1, and a 
distinctive flow which occurs when x becomes greater than 10. (Seibert and 
McGlynn, 2007) suggested using Triangular Multiple Flow Direction (MD∞) as a 
MFD algorithm to distribute the flow depending on triangular facets. Two examples 
of MFD that can be considered (partly) vector based algorithms are Digital Elevation 
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Model Networks (DEMON), (Costa-Cabral and Burges, 1994), and Triangular Facet 
Network (TFN), (Zhou et al., 2011). 

1.3.2. Artefacts in the landscape 

Large improvements in flow estimation have been made during the last decades. 
Most, if not all, of the proposed algorithms have been developed and tested on 
mathematical, or manipulated natural, surfaces. There is an urgent need to develop 
algorithms (or practical solutions) dealing with natural and artificial artefacts in the 
landscape, like flat areas and depressions (sinks). Such artefacts are caused by man, 
generalisation (of data type), or by errors in e.g. interpolation. 

Sinks often need to be filled before estimating flow distribution. It should be noted 
that any unfilled sink will result in stopping flow at that sink/cell. Sometimes this is 
not desirable. It would be better if the filling sinks, additional to other knowledge, 
could be based on size and form of the sinks. Area, volume as well as depth of a sink 
might help the user to decide if it should be removed or not. 

Tunnels and culverts are normally not captured within the data collection, and thus 
not included in the terrain model. A DEM covering an area including man-made 
barriers may thus result in non-natural sinks close to these structures. The barriers are 
often roads and railways, where structures like culverts, siphons and tunnels have been 
hidden when constructing the DEM. The resulting sinks should be removed since, in 
these cases, all cells are actually connected and the flow should continue through the 
culvert beneath the man-made artefact. It is thus crucial to identify cells on both sides 
of the artefact, and let water flow between these points e.g. by breaching the barrier. 
Such connecting flow structures cannot normally be detected in the data when 
creating DEMs. 

Solving problems related to the quality of DEMs, and to use appropriate flow routing 
algorithms are crucial in hydrological modelling, and will lead to better representation 
of real world hydrological processes. 

1.4. Topographic wetness index (TWI) 

The topographic wetness index (TWI) concept was first introduced by (Beven and 
Kirkby, 1979) within the runoff model TOPMODEL. The effect of topography on 
runoff generation can be linked to TWI. TWI serves as a physically-based index 
approximating the location of zones of surface saturation and the spatial distribution 
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of soil water (Barling et al., 1994; Beven and Kirkby, 1979; O'Loughlin, 1986). TWI 
is widely used in many applications, like studies of spatial scale effects on hydrological 
processes (Beven and Jakeman, 1988; Famiglietti and Wood, 1991; Sivapalan and 
Wood, 1987), and in precision agriculture (Schmidt and Persson, 2003), as well as to 
identify hydrological flow paths for geochemical modelling (Robson et al., 1992), 
forest site quality (Holmgren, 1994), and vegetation patterns (Moore et al., 1993). 

For the calculation of TWI a gridded DEM can be used. The calculation of TWI 
value is estimated using Equation 2. 

 

         (2) 

 

where A is the upslope contributing specific catchment area (calculated by dividing 
total upslope area draining through a certain point by width of flow), and tan β is the 
slope gradient in the direction of flow. 

TWI is influenced by the algorithm used to estimate the upslope contributing area 
(A), and the method used to estimate the slope gradient tan β (Guntner et al., 2004). 

On a continental and regional scale Curmi et al. (1998), Gedney and Cox, (2003), 
and Kirkby et al. (1995) used TWI for modeling peatlands. They achieved better 
modelled results when they used higher resolution DEM. In small and medium-sized 
catchments, models have been proven to work well for resolutions high enough to 
capture the wetlands. Rodhe and Seibert (1999) showed that a too coarse resolution 
(>50m) will affect the result negatively in both wetland occurrence modelling and 
wetness estimations. The resolutions in their studies are, however, too coarse for the 
biogeochemical processes occurring in peatland complexes. The scales important to 
wetlands are defined by Baird et al. (2009) as the microtopography (1m scale), the 
mesotopography (10m scale) and the general morphology (100 to 1000m scale). The 
microtopography (1m scale) is necessary to detect the hollows and hummocks in 
peatlands. For the peatland as a whole, which to a large extent is a product of the 
hydrological conditions, the modelled TWI with the mesotopography (10m scale) 
may be used to separate different type of areas. This is not only valid for areas that are 
distinctly different like the fen (wet parts of peatlands), and the palsa (dry parts of 
Peatlands), but also for intermediate peatland conditions as the internal fen. 

  






= βtanln ATWI



 

7 

 

1.5. Objective and aims of the thesis 

The main objective of this thesis is to study, evaluate and develop tools that can be 
used to improve wetness estimation for peatlands using Digital Elevation Models 
(DEMs). 

 In order to achieve this objective a number of specific aims are defined: 

1. To evaluate the accuracy of the predicted elevation in different resolution DEMs, 
created from LiDAR data, using LiDAR data points as ‘ground truth’. 

2. To create a new flow distribution algorithm that can better simulate natural flow 
and overcome artefact problems. 

3. To study how estimated slope and drainage area varies with DEM resolution and 
to conclude how estimated Topographic Wetness Index (TWI) then might vary 
with different DEM resolution. 

4. To study how soil wetness represented by TWI can be used to reflect Site Specific 
Wetness (SSW), and also the thawing of Active Layer Thickness (ALT) above the 
permafrost in a Peatland. 

5. To investigate the potential of modelling hydrological conditions on a permafrost 
underlain mire by the use of topographical wetness index. 
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2. Materials and methods 

2.1. Study area 

The study is based on earth surface elevation data and fixed observations measured at 
the Stordalen mire and its catchment area. Stordalen is a peatland area in the Arctic 
region 10 km west of Abisko scientific research station (68º 20' N, 19º 03' E) in 
northern Sweden. Figure 2 is a hill-shade of the used DEM covering the Stordalen 
area.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Hill-shade of the used DEM with location map of the study area (Stordalen 
mire and its catchment) close to Abisko scientific research station, in northern Sweden. 
(Hill-shade is in SEREFF99). 
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The hydrology and soil moisture conditions of the Stordalen mire have been 
described and documented previously by Rydén et al. (1980). The mean annual 
temperature for the period 1913-2003 was -0.7 °C for Abisko (Table 1), (Johansson 
et al., 2006). A regional rain shadow affects the precipitation and makes it among the 
lowest in Scandinavia, with a mean annual precipitation of 304 mm for the period 
1913-2003 (Table 1), (Johansson et al., 2006). Apart from studies associated with the 
International Biological Program (IBP) (see e.g. Sonesson et al., 1980), the Stordalen 
area has been included in many research programs, and its climatological records 
extend from 1913 to the present date (Andersson et al., 1996). The peatland in the 
Stordalen area is a palsa complex, including fen areas, and permafrost underlain palsa 
bog areas. The thawing permafrost in the palsa bog part has led to the collapse of the 
palsa structure and a moister surface in this part (called the ‘internal fen’). The 
permafrost active layer depth has been measured since 1978 (Christensen et al., 2004; 
Akerman and Johansson, 2008). Data on the waterborne export of carbon from the 
Stordalen catchment has also been correlated with TWI for the catchment as a whole 
(Olefeldt and Roulet, 2012). This site is thus suitable for investigating methods of 
estimating changes in carbon storage, providing the possibility of validating tools for 
the prediction of changes in peatlands with past and future changes in permafrost. An 
area of approximately 18 km2, containing the Stordalen mire, was selected as the 
study area in this project. 

Table 1. Climate characteristics measured at Abisko Scientific Research Station (ANS) for 
the study years 1970 and 2000, and the long term mean (1913–2003), (Johansson et al., 
2006). 

Year  TA T´ 

1970 °C -0.9 -0.2 

2000 °C 0.5 1.2 

1913-2003 °C -0.7  

Year  PT PT´ 

1970 mm 242.0 -61.3 

2000 mm 359.0 55.7 

1913-2003 mm 303.3  

TA, mean annual air temperature; T´, temperature anomaly from long time mean; 
PT, accumulated precipitation; PT´, precipitation anomaly from the long time mean. 
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2.2. Organization of the study 

The study is organized to cover all the listed specific aims (see section 1.5). Each 
paper in this study is targeting one or more of those specific aims. As illustrated in 
Figure 3, the work within each paper is represented with different colour shading. 

Paper I (colour light red in Figure 3). The study started with measuring surface 
elevation of our study area using an airborne LiDAR device. DEMs with different 
resolutions, and search radius are generated from the LiDAR data. Accuracy of the 
generated DEMs is studied to select the most accurate DEM for each selected 
resolution. DEM resolution versus topographic wetness index in northern peatlands, 
and the relation between slope and drainage area estimation and DEM resolution is 
studied. Further, a study of DEM accuracy related to different slopes is also 
conducted. 

Paper II (colour light purple in Figure 3). A new triangular multiple flow distribution 
(TFM) algorithm is created. The new TFM algorithm is tested for flow distribution 
over DEMs using mathematical standard surfaces, and also using real world data. The 
new TFM is compared with other already existing SFD and MFD algorithms. 

Paper III (colour light blue in Figure 3). Problems related to flow distribution 
algorithms are discussed. Solutions are presented to deal with natural and artificial 
artefacts in DEMs. A multiple flow distribution solution for estimating flow 
directions in flat cells is presented. A new interactive solution to fill sink cells 
depending on their volume, width, and depth is also performed. Artificial artefacts in 
the DEMs, like man-made structures are solved by breaching them with a culvert 
function. The problem of the exponent value (x) in Equation 1 is studied and 
discussed. 

Paper IV (colour light orange in Figure 3). Water table fluctuation and active layer 
thickness (ALT) are measured in the field to study moisture pattern and site specific 
wetness (SSW) in peatlands. Field measurement values for SSW are compared with 
the TWI values estimated with our new TFM algorithm. 

Paper V (colour light green in Figure 3). A distributed permafrost hydrologic model is 
created to estimate the ALT for all cells in a DEM. Multiple data layers are used as 
input to the permafrost hydrologic model. The results from papers I, II, III, and IV 
contributed in estimating TWI as one of the important input layers. Other external 
input data, not related to this study, are presented in Figure 3 with a light grey colour. 
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Figure 3. General study organization. The different colours demarcate the work 
conducted within different papers. Paper I (colour light red), paper II (colour light 
purple), paper III (colour light blue), paper IV (colour light orange), paper V (colour 
light green). Other input data layers for paper V are shaded with a light grey colour. 

   

  

Raw LiDAR data

Wetness data 
estimation 

Problems related to flow 
distribution algorithms

TWI 
estimation 

Create and evaluate 
DEMs 

Drainage area 
estimation for different 

resolutions 

 
Slope estimation 

for different 
resolutions 

Field work to 
study SSW

Flow in 
flat cells

Flow in 
sink cells

Flow through 
man-made 
structures

Flow patterns 
in peatlands 

Permafrost hydrologic
 model 

DEM accuracy 
VS.  slopes 

New triangular flow 
distribution 

algorithm TFM

Different x 
for different 

forms



 

13 

 

2.3. Digital elevation models (DEMs) 

Different steps can be taken for generating DEMs. To start, we need to have 
measured elevation data. For the present study, DEMs were generated from LiDAR 
data. The evaluation data points need to be selected and excluded before generating a 
DEM. An interpolation algorithm is applied to estimate elevation values at each cell 
centre in the DEM. Finally, the DEM needs to be evaluated against ground truth 
evaluation data. The next five sections describe the steps we took to generate DEMs 
for the study area. 

2.3.1. LiDAR surface elevation data 

The surface elevation data used in this project are measured by an airborne LiDAR 
device. LiDAR is an acronym for ‘Light Detection And Ranging’, and is a laser-based 
remote sensing system used to collect various kinds of environmental data, including 
topographic data (Fowler, 2001). Over the area defined above the total number of the 
measured elevation raw data points is around 77 million. This results in a high 
resolution data set with an average spatial distribution of approximately 13 points/m2. 
The accuracy of any LiDAR data point is related to the accuracy of the LiDAR device 
components (sensors). With recently developed LiDAR components, GPS and an 
Inertial Measurement Unit (IMU), range precision can reach 2-3 cm (Lemmens, 
2007). Airborne GPS accuracy is within 5 cm horizontally and 10 cm vertically, while 
the accuracy of IMU is less than a couple of centimetres. For LiDAR data in general, 
the root mean square error (RMSE) can get 15 cm vertically and 20 cm horizontally 
(BC-CARMS, 2006). 

The LiDAR data in the present study were retrieved with a TOPEYE S/N 425 system 
mounted on a Helicopter SE-HJC. The altitude when sampling was 500 m. The 
LiDAR data have been post-processed and adjusted against 54 known points 
connected to the national geodetic network. The mean vertical error after post-
processing corrections is +0.4 cm, and the average magnitude of errors is 2.2 cm. The 
RMSE is 3.1 cm, and the standard deviation is 3.1 cm. 

2.3.2. Selection of evaluation data points 

Evaluation data points need to be selected before creating DEMs. The most common 
techniques used for the generation of evaluation points are the `leave-one-technique` 
within cross validation, the split-sample technique, and the independent set of sample 
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(Declercq 1996;  Erdogan 2009;  Smith et al., 2005). For our high density data we 
decided to use the split-sample technique. In this method, part of the raw LiDAR 
data is omitted before performing the interpolation. 

The criterion for selecting the evaluation points was that the distance between a cell 
centre in the DEM that will be constructed and the selected evaluation point should 
be less than, or equal to, 10 mm. This enables us to validate the estimated elevations 
at the cell centres in the DEMs using data values that were measured at almost the 
same location (maximum 10 mm away from the point of interest). 

The calculation of the nearest centre points, and thus the selection of evaluation data 
points are dependent on the resolution (cell size) of the DEM that will be created. 
The following six resolutions were used: 0.5, 1.0, 5.0, 10, 30, and 90 meters cell size. 
This implies dividing the raw data into 12 subsets, six for interpolation and six for 
evaluation. 

2.3.3. Interpolation and DEM generation 

The use of different interpolation algorithms for DEM creation has been discussed by 
several authors (see e.g. Anderson et al., 2005; Erdogan 2009; Lee 2003; Liu, 2008; 
Myers, 1994). Erdogan (2009) also investigates and reviews the role of interpolation 
parameters (like search radius) for the results. It is obvious that different algorithms 
give different results, and that some techniques are more suitable than others 
depending on terrain and data. 

An interpolation method named the inverse distance weighted (IDW) interpolation 
(Shepard, 1968) is used in this study. This method is based on the assumption that an 
interpolated point is influenced more by nearby data points than a point further away 
(Burrough and McDonnell, 1998). It can be discussed if this is the most appropriate 
method when working in relatively flat areas, and having access to a large number of 
dense data points for the interpolation. Childs (2004), and Liu et al. (2007) pointed 
out that LiDAR data have high sampling density, and even for complex terrains the 
IDW approach is suitable for DEM generation, which justifies the choice. In 
addition, the aim of this study is not to compare different interpolation algorithms, 
but rather to test a commonly used one, and to look at the influence of primarily cell 
size on the result. 

Our high density LiDAR data were used to create different resolution DEMs. 
Twenty-four different DEMs were created. The resolutions used were 0.5, 1, 5, 10, 
30, and 90 meters. The value of the search radius when interpolating varied between 
four different values (1, 2, 5, and 10 meters) for each resolution (cell size). The larger 



 

15 

 

the search radius, the more data are used, and the risk of including outliers in the 
interpolation increases. 

2.3.4. DEM evaluation 

The purpose of evaluating DEMs with different resolutions is to detect possible 
differences, and possibly to identify the resolution that represents the evaluation data 
most accurately. In order to accomplish this, we calculated the deviations between the 
measured evaluation data points and the interpolated values for the overlapping cell 
centre for all combinations of resolution and search radius. Simply the differences 
were calculated between the predicted and measured (previously omitted) values. 

The technique the most appropriate for measuring the accuracy of the DEM depends 
on the kind of error distribution. A normal distribution of the errors is rare in a DEM 
derived from data collected by LiDAR, due to e.g. filtering and interpolation errors 
(Höhle and Höhle, 2009). An accuracy estimation of a non-normal error distribution 
suggested by Höhle and Höhle (2009) was therefore used. This procedure requires 
the calculation of four parameters, namely the median, the normalized median 
absolute deviation (NMAD), and two sample quantiles. 

The measurement accuracy is determined by calculating sample quantiles of the 
absolute differences (|Δh|), (Höhle and Höhle, 2009). Absolute errors were used 
because we are interested in the magnitude of the errors, and not in their signs. The 
sample quantiles is the order of the sample [x(1),…, x(n)], where x(1) denotes the 
minimum and x(n) the maximum value in the dataset. For example, the 95% sample 
quantile of |Δh| means that 95% of the errors have a magnitude within the interval 
[0; Q|Δ|(95)]. This means that 5% of the dataset have an error larger than the 95% 
quantile of |Δh|. The 50% quantile is denoted as the median. The median of the error 
is a robust measure, which provides or measures any systematic shift in the DEM. 
Moreover, the median is less sensitive to outliers in a dataset than the mean. 

The NMAD is used as a measure of the standard deviation. In comparison with the 
standard deviation, NMAD is more resilient to outliers in the dataset (see Equation 
3).  

            (3) 

where 

Δhj denotes the individual errors j = 1,……, n and, 

mΔh denotes the median of the differences in elevation. 

)(4826.1 hjj mhmedianNMAD Δ−Δ×=
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2.3.5. Accuracy of DEM for different slope intervals 

Many different authors have discussed alternative algorithms in estimation of slope 
from digital elevation models (see e.g. Grimaldi et al. (2007); Santini et al. (2009); 
Pilesjö et al. (2006); Skidmore (1989); Tang and Pilesjö (2011)). As a result, several 
slope calculation algorithms employed on DEMs have been used in GIS (Geography 
Information System) software (e.g. ARC/INFO and ERDAS IMAGINE). In this 
study, we have used a polynomial surface approximation. A second-order trend 
surface (TS), was applied on each 3 x 3 window, based on a least-square 
approximation. For full reference of slope estimation from a trend surface see Pilesjö 
et al. (1998). 

In order to study the accuracy of the DEM in relation to the slope of the terrain, the 
evaluation points were divided into six subsets, corresponding to six slope intervals. 
Slopes with gradients from 0 to 50 degrees were divided into five equal intervals, 
while the sixth interval consisted of slopes steeper than 50 degrees. A DEM with a 
resolution of 0.5 m created with a search radius of 1 m was used to estimate the slope. 
The evaluation points were divided into six equivalent datasets, and the accuracy of 
the DEM was calculated for all these datasets. 

2.4. Flow distribution 

Each surface flow distribution and accumulation algorithm may distribute the flow 
using different approaches and methodologies, and may differently deal with the 
artefacts that normally exist in any DEM. In the following two sections a new surface 
flow distribution and accumulation algorithm is to be presented, and solutions for the 
natural and artificial artefacts (i.e. sinks, man-made structures, and flat areas), are to 
be demonstrated. 

2.4.1. New triangular flow distribution (TFM) algorithm 

The proposed triangular form-based multiple flow algorithm (TFM), presented in 
this study, combines the advantages of different flow distribution algorithms in a 
simple way. The TFM algorithm is based on multiple flow distribution allowing 
overland flow to all lower cells surrounding a centre cell. It is developed to be 
consistence for all terrain types: convex, concave, and plane terrain, as well as their 
combinations. 
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Around the midpoint (M, see Figure 4) of the cell in question (the centre cell from 
where the flow is estimated), eight planar triangular facets are constructed with 
midpoints of two adjacent cells (C1 and C2). With the aid of these eight triangular 
facets, our current grid cell (centre cell) is divided into eight triangular facets (Figure 
4). The slope and slope direction (aspect) of each of these triangular facets can be 
calculated. The form of the current grid cell is represented by the combined surface of 
the eight triangular facets. The area of each facet is equal to 1/8 of the cell size, and 
represents the flow portion contributed by that facet. The overland flow of each 
triangular facet is to be routed out of the facet (towards other facet(s) or neighbouring 
cell(s)), or stays in the same triangular facet depending on slope direction. 

 

 

 

 

 

 

 
Figure 4. In a 3 by 3 cells window, the centre cell is divided into eight triangular facets (1-
8). Each facet is formed from three points; one is the centre cell (M) and the two other 
points are two adjacent cells (e.g. C1 and C2). 

 

We take triangular facet number one in Figure 4 as an example to explain the possible 
estimations of flow routing within the eight facets. The same approach will be 
naturally applied when estimating the flow from another of the eight facets (2-8) to 
its neighbouring facets. 

The first step is to calculate the slope direction/aspect value for the facet intended to 
be analysed. Depending on the aspect value three flow routing alternatives are 
possible; water can be directly routed from a facet to a neighbouring cell. This 
alternative results in no routing to other facets and is denoted as stay; all water on a 
facet can be routed to one other neighbouring facet and is denoted as move; water in a 
facet can be routed to a neighbouring facets and a neighbouring cell, or to two 
neighbouring facets and is denoted as split. As a result of the first step, each one of the 
eight facets forming the cell in question will be denoted with one of the flow routing 
alternatives (i.e. move, split, or stay). Next we need to apply the corresponding flow-
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routing alternative to the water accumulated at each facet. We start with facets 
denoted as move, and then we do facets denoted as split. For the facets denoted as stay, 
no action should be taken.  

After doing the flow routing on each cell, consisting of eight individual facets, the 
routing of water to adjacent cell(s) takes place. In one or more of the eight facets 
water is accumulated to be routed to the neighbouring cell(s). If the centre cell 
represents a concave land form we can have only one facet holding all the water 
(directly proportional to the area, 1, of one cell), and if the cell represents a convex 
surface (compare a pyramid) there might be water in all eight facets. 

Each facet has two neighbouring cells (see e.g. cells C1 and C2 for facet number one 
in Figure 4) and the next step is to distribute the flow between these cells. Two 
different cases can then be found: 

If one neighbour cell is lower in elevation than the centre cell (where the facet is 
located) and the other cell is higher or equal to the centre cell, then the water 
accumulated in the facet will all be distributed to the lower cell. 

If both neighbouring cells are lower in elevation than the centre cell, then the water 
accumulated in the facet will be distributed to both lower cells proportionally to slope 
(i.e. an x value of 1in Equation 1). 

As an example to visualize the possible estimations of flow-routing within the eight 
facets, we use a 3 by 3 cells window (part of a saddle surface, Figure 5). The area at 
each facet is to be routed to other facets according to the slope direction of that facet 
(Figure 5B). The area accumulated in the facets is to be distributed to adjacent cells 
(Figure 5C). 

  

 

 

 

 

Figure 5. An illustration of a 3 by 3 cells window in a saddle surface. A) Synthetic 
elevation data. B) The centre cell is divided into 8 triangles. Each triangle is formed by 
three points: one is the centre cell (M) and the two others are any of adjacent cells like C1 
and C2. C) Estimated flow directions. 
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The algorithm is further developed to add the possibility to deal with natural and 
artificial terrain artefacts, e.g. sinks, man-made structures, and flat areas. For the 
method as to how to deal with these artefacts, see sections 2.4.2, 2.4.3, and 2.4.4 
below. 

2.4.2. Filling sinks 

Sinks in the DEM data might be a result of artificial artefacts, and need to be 
removed. In order to do this, and also include flexibility regarding area, depth and 
volume of the sink, a function was created in MATLAB (MathWorks, 2008). With 
this function, it is possible for the user to select threshold values (area, depth and 
volume) for sink removal through filling. The idea behind the function is rather 
straight forward; if we fill a sink, a flat area will be created. The number of cells in the 
flat area multiplied by the cell size equals the area of the sink, the maximum 
difference in elevation equals the depth of the sink, and the sum of all differences in 
elevation multiplied by the cell size equals the volume. The user is presented statistics 
(area, depth and volume) of the sinks, and then has the possibility to eliminate sinks 
of decided form and size by filling. The function also makes it possible to identify 
sinks which should be removed by breaching (see section 2.4.3 below). 

2.4.3. Breaching break lines  

Artificial artefacts in the DEM data can be man-mad structures, like roads, train lines 
or walls. If we know that artificial artefacts are present in the data, or we suspect their 
presence by visual interpretation of the DEM or by analysis of the forms and sizes of 
sinks (see above), there will be a need for breaching these artefacts. Thus a function to 
breach the cells was added, in order to enable users to deal with e.g. man-made flow 
barriers like roads and railway lines, or any other type of break lines. This function 
breaches the barrier by connecting two user-defined points/cells on the opposite sides 
of the obstruction. This is done in a semi-automatic way, where the user selects the 
approximate location of the two end points of the breach line. Then the program 
searches and proposes suitable points/cells (to be confirmed or changed by the user). 
Rules used to propose these points are that the starting point (higher elevation) 
should be the lowest point on the up-slope side of the barrier, and higher than the 
end point, being the highest point on the other side of the barrier. When the points 
are selected the elevation of all cells in between the points will be changed according 
to a linear regression line between the elevations of the starting and ending point. 
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2.4.4. Flat areas 

Two different functions have been developed and added to the main flow distribution 
program in order to handle flow over flat areas.  

Flat-flow-out is a function directing the flow from flat cells when a way out of the flat 
area can be found. Estimating the flow directions is done by routing flow over 
neighbouring cells to the out flow cell, and then stepwise move further and further 
away from the out flow cell assigning flat cells flow directions to neighbours with a 
defined direction (towards the outflow). Cells with the highest number of neighbours 
with defined flow directions are processed first, followed by cells with lower numbers 
of defined neighbours. 

Flat-flow-in is a fuction used when there is no way out from the flat area. All cells just 
outside the border of the flat area have elevations higher than the flat area cells, and 
this result in a converging flow into the centre of the flat area. This centre cell will 
have no defined flow and will be treated as a sink. The flow directions of the 
surrounding cells will be estimated (by vector addition) starting from the flat cells that 
have the maximum number of known distributed flow directions cells (i.e. the border 
cells of the flat area). 

2.5. Topographic wetness index (TWI) estimation 

The estimation of TWI (Equation 2) is dependent on the estimation of drainage area 
and slope for each cell in the DEM, which in turn depends on the algorithms used to 
estimate these. The computation of the contributing drainage area A is dependent on 
the flow direction algorithm. Our new triangular flow direction algorithm TFM is 
used to calculate the upslope contributing area. The slope gradient (tan β) is 
estimated using trend surface method (Pilesjö et al, 1998), (see section 2.3.5). 

 Three different DEM resolutions were used to investigate the relationship between 
TWI and the DEM resolution. TWI indices (slope and drainage area) were estimated 
on the one hand, and the DEM resolution on the other. Resolutions of 10, 30 and 90 
m were used, due to the overlapping evaluation centre cell points for these resolutions 
(see Figure 6 below). The slope and drainage area evaluation cells selected from the 10 
and 30 m resolution DEMs are thus the ones that have the same cell centre position 
as the location of the 90 m resolution evaluation cells. This results in three subsets of 
data that have the same number of evaluation points with the same locations, but 
contain slope and drainage area values estimated using different DEM resolutions. 
The results obtained from the three subsets are then compared to identify/reveal 
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possible differences in the estimated slopes and drainage areas. The differences 
between pairs of different resolutions were calculated (i.e. 30 m -10 m, 90 m -30 m, 
and 90 m -10 m).  

 

 

 

 

 

 

 

 

 

 

Figure 6. Point (P) is the common centre point where the 10, 30 and 90 m cell resolution 
cells are overlapping in a DEM. 

2.6. Field work 

Water level sensors were installed in the field (Stordalen mire) to conduct site specific 
measurements in our study area. The hydrological scheme of the field measurements 
consists of 30 sites where both manual measurements and continuous water level 
recording have been sampled in wells. The 30 sites are distributed in a way to cover 
most parts of the peatland mire (i.e. palsa with hollows and hummocks, internal fen 
and fen). Each well consists of a 2 m PVC pipe which is attached to a wooden stick, 
both driven as far down in the ground as possible. The pipes have got a bottom lid to 
prevent organic and mineral material from getting into the pipe from beneath and 
affect the measurements. Each pipe has 4 mm holes drilled every 10 cm, on each level 
four holes, for water to run freely in and out of the pipe. Since permafrost is present, 
the pipes were installed in late October when the active layer was as deep as possible, 
and they were driven down to the permafrost table. 

The manual measurements were conducted biweekly after the peak of snowmelt and 
throughout September for the season 2010. Active layer depth was measured with a 
steel rod probe in the direct vicinity of the pipes. The depth to the permafrost table 
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inside the pipe was measured with a folding ruler that was wetted by possible water in 
the pipe. This gave the water table depth and the magnitude of the water above the 
permafrost table. Odyssey capacitive water level sensors with 1.2 m cables, and short 
counter weights were installed at each site to track the changes in water tables every 
second hour. To allow the sensors to follow the active layer as it expanded downwards 
over the season, the sensor’s positions relative to the water table and the permafrost 
table were monitored weekly and adjusted by cutting the pipe to lower the sensor to 
the permafrost table. All cuts were logged and referenced against the wooden stick to 
which the pipes were attached. 

2.7. Modelling active layer thickness (ALT) 

Water content value (wetness value) is different from point to point and is highly 
dependent on the topography. Distributing water content accurately is important for 
accurate ALT estimations. In this study a permafrost hydrologic model is created to 
estimate the ALT for all cells in a DEM. The proposed dynamic distributed model is 
for modelling the effect of thawing permafrost on local topography and ALT 
estimation. Estimated TWI values are used to estimate how water content is 
distributed to all cells in the grid within the study area. 

The model consists of three main parts, input datasets, main equation for the 
calculation of thawing depth, and the output data. Five different data inputs from 
different sources are required for modelling ALT. The input data in this model are: 
soil moisture (wetness), regional climate data, snow cover, vegetation, and the thermal 
properties of peat soil. The output data are estimated ALT values. Distributed wetness 
values were estimated from TWI values as one of the important data inputs in this 
model. 

For the analytical representation of the ALT and the thawing of permafrost 
calculations, a modified Kudryavtsev’s approach has been used. Kudryavtsev’s 
approach is described thoroughly by Shiklomanov and Nelson (1999). The proposed 
model has a time step of one year, and can be used to simulate and predict the ALT 
for any number of years. The model will use the output ALT results after each time 
step to update the input distributed wetness. 

For the running of the model, all input data were given constant values, except for the 
soil thermal conductivity. The thermal conductivity of the peat soil is set to be 
different for different cells according to its state as thawed or frozen depending on 
cold or warm days. Further, the thermal conductivity is different for each cell 
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depending on the soil water content in that cell which is estimated depending on the 
changes in the TWI. 
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3. Results and discussion 

3.1. Digital elevation models (DEMs) 

The generation and evaluation of different resolution DEMs from LiDAR data is one 
of the aims of this study. In sections 3.1.1 to 3.1.5 the results and discussion 
regarding the different steps are presented. 

3.1.1. LiDAR surface elevation data 

The scanning company delivered the LiDAR data for this study in ASCII file format 
that contains x, y, z data for each point. The x and y represent the coordinates of each 
data point while z represents the bare earth elevation at that point which is the last 
reflection of the scanning laser beam. Due to the large number of the scanned data 
points, the data were delivered in 52 files. The LiDAR data were processed in a 
developed MATLAB program. The developed MATLAB program was used to unify 
the multiple data files in order to create one data matrix, and to control the 
interpolation process, including the problem of processing such a large number of 
elevation data points. 

3.1.2. Selection of evaluation data points 

Selected points of evaluation to evaluate the DEMs with the six different resolutions 
were excluded from the original raw data. The resulting number of points is presented 
in the last row of Figure 7. Applying our selection criteria to the LiDAR data results 
in a relatively low number of selected data points for the 30 and 90 m resolutions (see 
Table 2). The maximum distances for the 30 and 90 m were increased to 30 and 50 
mm, respectively, in order to increase the number of evaluation points, giving 230 
and 68 points, instead of 57 points and 6 points, respectively. The minimum number 
of evaluation points should be set at 60, e.g. according to the American Society for 
Photogrammetry and Remote Sensing (ASPRS, 2005). The initial relatively low 
number of points is of course a weakness of the methodology. However, the results 
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obtained using the extended evaluation dataset show the same trend in errors as the 
evaluation using the limited number, confirming that the use of the modified 
selection criteria did not affect the results significantly. The extended selection was 
justified for statistical reasons. In this study the relative errors between different 
DEMs, and not the absolute errors, were in focus, which justifies the use of the 
LiDAR data points as ground truth, even if the errors in elevation can be up to 10 cm 
(see e.g. Lemmens (2007)). 

 

Table 2. The number of selected points for each DEM resolution (Sample size) out of the 
total 77 million points and the NMAD for the DEMs with different combinations of 
resolution (cell size) and search radius (SR). 

Cell size 
(m) 

Sample 
size (n) 

NMAD  (mm) 

1 m SR 2 m SR 5 m SR 10 m SR 

0.5 154071 29.7 44.5 59.3 74.2 

1 38736 29.6 44.4 59.3 88.6 

5 1579 29.6 44.4 59.3 88.9 

10 417 29.7 44.5 59.3 74.2 

30 57(230)* 29.6 44.4 59.3 88.9 

90 6(68)* 29.7 44.5 59.0 82.0 

* The distance was increased at resolutions of 30 and 90 to obtain a minimum of 60 
points. 

3.1.3. Interpolation and DEM generation 

The results from interpolating the high density LiDAR data with IDW interpolation 
method are twenty-four DEMs (six different DEMs, each with four different search 
radius). The resolutions used were 0.5, 1, 5, 10, 30 and 90 meter resolution (cell size), 
and four search radius values (1, 2, 5 and 10 meters) were applied. The number of 
interpolations was thus 24 (six resolutions times four search radiuses) as shown in 
Figure 7. 

When choosing the different resolutions of the DEM, we logically assumed that a 
high resolution should reflect reality better than a lower resolution. However, it is still 
interesting to create and test DEMs with different resolutions since, in most cases, 
DEMs with lower resolutions are more commonly available, and thus more frequently 
used. Evaluation of the accuracy of different resolutions showed approximately the 
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same results regarding elevation. This was expected, since the same interpolation data 
set was used for all resolutions, and the evaluation points are all located close to, or 
very close to, the cell centres. The interpolation algorithm can then be expected to 
work equally well for all resolutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Digital elevation models created in six different resolutions (R) each using four 
different interpolation search radiuses (SR). The last row shows the evaluation data 
points that were excluded from the raw LiDAR data before creating the DEMs. 
  

R 90, SR 1 R 30, SR 1 R 10, SR 1 R 5, SR 1 R 1, SR 1 R 0.5, SR 1 

R 90, SR 2 R 30, SR 2 R 10, SR 2 R 5, SR 2 R 1, SR 2 R 0.5, SR 2 

R 90, SR 5 R 30, SR 5 R 10, SR 5 R 5, SR 5 R 1, SR 5 R 0.5, SR 5 

R 90, SR 10 R 30, SR 10 R 10, SR 10 R 5, SR 10 R 1, SR 10 R 0.5, SR 10 

R 90 R 30 R 10 R 5 R 1 R 0.5 
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3.1.4. DEM evaluation 

Using the robust accuracy measures appropriate for non-normal error distributions, 
the evaluation results of the 24 different DEMs are as follows. We calculated the 
median, the NMAD, and the two quantiles (68.3% and 95%) for each combination 
of resolution and search radius (see Table 2). The medians were all zero except for the 
median at 90 m resolution, which varied between -10 and -20 mm depending on the 
search radius. The results of the NMAD calculations indicate that the accuracy of the 
DEM is the same for different resolutions when using the same interpolation search 
radius. The accuracy is generally higher, the shorter the interpolation search radius. 
The results of the two quantiles confirm the NMAD results. This is an expected 
result, as when increasing the interpolation search radius, it can be expected to 
increase the errors in the created DEM. According to the measures of accuracy, the six 
most accurate combinations of resolution and search radius are those with the 1 m 
interpolation search radius. For these six cases, the maximum errors in the elevations 
are around 40 mm within the 68.3% quantile of the data. Moreover, the maximum 
errors in the DEM elevations are around 100 mm within the 95% quantile of the 
data. 

3.1.5. Accuracy of DEM for different slope intervals 

The results of evaluating the relationships between the six different slope intervals and 
the errors represented by the NMAD are shown in Figure 8. When visually analysing 
the shape of the slope error curve, it is obvious that there are larger errors in elevation 
when the terrain is steep than when it is flat. The first point in Figure 8A shows that 
for slopes between 0 and 9.99 degrees the error in elevation is around 0.03 m. Figure 
8B illustrates two different quantiles of errors, also confirming that errors are larger in 
areas with steeper slopes. 
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Figure 8. The relationship between the slope of the terrain and the errors in the estimated 
elevation. The figure A illustrates the NMAD for all data as a function of  slope interval, 
while the figure B shows the results for the 68.3% and 95% quantiles of the errors. Both 
figures are based on a resolution of 0.5 m. 

3.2. Flow distribution 

3.2.1. New triangular flow distribution (TFM) algorithm 

The flow direction of our new TFM algorithm is identical to FMFD (Freeman, 
1991), and QMFD (Quinn et al., 1991), i.e. receiving cells are all lower in elevation, 
but the percentage of flow distributed to the cells is different. Other flow distribution 
algorithms are distributing the flow to one cell or more but not to all lower cells. 

Figure 9 illustrates the flow distribution using different flow distribution algorithms, 
and also shows the percentage of flow from the centre cell to receiving cells. Following 
the basic rule that flow lines should always be perpendicular to contour lines 
(Wesseling, 1973), the flow lines on a saddle surface (Figure 9A) are drawn in Figure 
9B. The results of testing our algorithm on a complex saddle surface are shown in 
Figure 9D, while the results from four other commonly used flow distribution 
algorithms are shown in Figure 9E, 9F, 9G, and 9H. From Figure 9B, one can see 
that 50% of the flow on this surface is supposed to be directed towards the upper left 
corner. The results of all flow distribution algorithms show that our new TFM 
algorithm (Figure 9D) is the only algorithm that gives 50% of the flow to the upper 
left cell. This test on a complex saddle surface demonstrates that the proposed TFM 
algorithm is the only algorithm that follows the logical flow direction and the 
percentage of distributed flow. 
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Figure 9. Distribution of flow from a centre cell to its eight neighbouring cells on a 
mathematical saddle surface. A) The contour lines. B) Logical flow lines. C) Synthetic 
elevation data. The percentage of flow distributed to neighbouring cells is as follows: D) 
TFM algorithm, E) D8 algorithm, F) MD8 algorithm, G) D∞ algorithm and F) MD∞ 
algorithm. 

3.2.2. Artefacts (sinks, flat areas and break lines) 

Four important functions named filling-sinks, flat-area-out, flat-area-in, and culverts 
were created to deal with natural and artificial artefacts (i.e. sinks, flat areas, and break 
lines). With the use of those four functions, it becomes possible to interactively deal 
with frequently existing natural and man-made (artificial) artefacts. 

An interactive function for filling sinks is important when removing sinks in peatland 
catchment areas underlined by patchy permafrost. Sinks should not be filled 
automatically in order to take all the water out to the outlet, as we normally do when 
estimating flow routing in other flow systems without permafrost. The reason for this 
is that some sinks, as the one shown in Figure 13 is a natural sink, where the water is 
not delivered but will be evaporated or stay in small ponds until frozen layer depth is 
changed, which may lead to changing the topography and finding way out of this 
sink. With the filling-sink function, the sink can be filled according to user threshold 
(i.e. area, depth and volume), or the sink can be breached with culverts function if it 
is judged to be a sink formed by a break line. Additionally, it should be noted that 
with our new flat area functions, a multiple flow distribution will be estimated on flat 
areas. This will lead to better and more natural flow estimation. 

75 

25

100

A B C D

E F G H
13 55

13

19

100

6.25 37.5 

6.25 

50 99.6 100 100.7

100 100 99.8

98.899.8100.4



 

31 

 

3.3. Topographic wetness index (TWI) estimation 

The results of TWI estimation are to be explained by the results of estimating the 
upslope contributing area (A), and the results of estimating the slope gradient (tan β) 
using different resolution DEMs. 

3.3.1. Slope estimation using different DEM resolutions 

The results of estimating slope using different DEM resolutions are obtained for the 
three overlapping DEMs with resolutions 90, 30 and 10 metres. Estimating slopes 
using different resolutions DEM shows that the medians of the differences between 
pairs of different resolutions (i.e. 30 m -10 m, 90 m -30 m, and 90 m -10 m) have 
negative signs, i.e. lower resolution (larger cell size) generates lower values of slope 
(Table 3). The slopes in high resolution DEMs seem to be overestimated compared to 
low resolution DEMs. This is logical, since smaller terrain forms, yielding larger slope 
estimations, will be filtered when a lower resolution is used. The NMAD and the 
quantile results also confirm the relationship between the slope values and the 
resolution. Lower resolution yields lower (less steep) slope estimations. 

3.3.2. Drainage area estimation using different DEM resolutions 

The results of the effect of estimating drainage area using different DEM resolutions 
are obtained for the three overlapping DEMs with resolutions of 90, 30 and 10 m. 
The medians of the differences between pairs of different resolutions (i.e. 30 m -10 m, 
90 m -30 m, and 90 m -10 m) give positive signs, i.e. the lower the resolution (the 
larger the cell size), the higher the values of the drainage area (Table 3). This is logical, 
since water divides, yielding smaller drainage area estimations, will be filtered when a 
lower resolution is used. The NMAD and the quantile results also confirm the 
relationship between the values of the drainage areas and resolution. Lower resolution 
yields larger values in estimated drainage area. 
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Table 3. Measures of accuracy showing that lower slope values are obtained with lower 
resolution of the DEM, and higher drainage area values are obtained with lower 
resolution of the DEM, Sample size is equal to 2310 points. 

Type of measure 30 m – 10 m 90 m – 30 m 90 m – 10 m 

Difference in the median of slope 
(degrees) 

-0.372 -0.613 -0.879 

Relative slope differences 7.0% 9.0% 16% 

Difference in median of drainage 
area (m2) 

3133 21480 29205 

Relative drainage area differences 81% 83% 97% 

These effects on estimated drainage area and slope, related to resolution, will be even 
more pronounced when calculating wetness indices, as these are normally based on 
the ratio between the slope and drainage area (see e.g. Sorensen et al. (2006). Thus, 
higher wetness indices will be predicted when you use low resolution DEMs, and 
relatively low values will be estimated when you use high resolution DEMs. In the 
present study, when changing the resolution from e.g. 10 to 30 metres, we have many 
examples of an increase in estimated drainage area of 50%, and a decrease of the 
estimated slope of 50%, resulting in a change in the estimated wetness (drainage area 
divided by slope) of a factor three.  

Based on the results, presented above we conclude that the median of the differences 
in drainage area is positive, while the median of the differences in slope is negative. 
This indicates that high resolution DEMs will yield lower estimated values of 
drainage area, and higher estimated values of slope, than low resolution DEMs. Our 
findings of the relation between slope estimation and DEM resolution are supported 
by Chang and Tsai (1991), who have reported similar results for low resolution data. 
Zhang and Montgomery (1994) tested the grid size impact on TWI calculations, and 
found that a higher resolution yields better results. 

TWI values were estimated using our proposed new TFN algorithm for four different 
resolutions (90 m, 30 m, 10, and 1m). A small part of the study area (area = 360 x 
360 m) was selected to visualize the differences of the estimated TWI values between 
the different resolutions (Figure 10). A visual interpretation of the estimated TWI 
values resulted in the wetness pattern shown in Figure 10, the deeper the blue colour, 
the wetter the conditions. 
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Figure 10. Topographical wetness index (TWI) estimated for different resolution DEMs. 
A) Hillshade of the DEM (area = 360 x 360 m). TWI estimated for the following 
resolutions: B) 90 m, C) 30 m, D) 10 m, E) 1 m. 

The calculated mean of the estimated TWI for the same area (Figure 11) shows a 
decreasing trend with increasing DEM resolution, while the calculation of the 
standard deviation of the estimated TWI shows an increasing trend with increasing 
DEM resolution. The results of the calculated mean and standard deviation for the 
estimated TWI confirm our finding on TWI estimation for different resolution (i.e. 
TWI is overestimated for lower DEM resolution). 
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Figure 11. Calculated mean and standard deviations (STD) for TWI values estimated 
using different resolution DEMs. 

3.4. Field work 

The results of the fieldwork were divided into two parts; results from manual 
measurements, and the results from the water level sensors. The manual measurement 
results of active layer depth and water table depth were registered for two seasons. 
Season 1 started on the 5th of June and continued to the 26th of September 2010. 
For the second season, the measurements started on the 12th of June and continued 
to the 27th of October 2011. 

The manual measurement results of active layer depth show that it is increasing for 
the internal fen over the whole season, and reaches a maximum of 0.5 m in the dry 
sites and more than 1.5 m in the wet sites. For the palsa bog area the active layer 
thickness and the water table depth follow each other over the season. The active layer 
thickness reaches a maximum of 0.5 m in this part of the peatland, while the water 
table depth is approximately 0.1 m measured from the bottom of the active layer 
throughout the season. 

A plot of the manual measurements of the mean water table depths for 2010 versus an 
estimated (modelled) TWI is presented in Figure 12.  It is shown that the estimated 
TWI values are higher for the fen (wet part) where the water table is near the ground 
surface, and lower for the plasa (dry part) where the water table is relatively deep. A 
visual interpretation of the TWI for the different parts of the wetland is difficult. The 
heterogeneity is great with similar characteristics; therefore statistical tests are 
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conducted for the estimated TWI, applying both the ANOVA and the t-test. The 
results of the plot in Figure 12 and the statistical tests confirm that estimated TWI 
can be used to separate (distinguish) the different types of peatland (i.e. palsa, fen, and 
internal fen). 

 

 

 

 

 

 

 

 

 

Figure. 12. Plot of the modelled TWI against the manually measured water table depth 
(WTD) for 2010. 

 

From the field measurement of the study (i.e. manual and water level sensors), the 
flow regime above seasonally frozen layer or above permafrost has become clearer. A 
conceptual illustration of the flow in peatland is presented in Figure 13, showing that 
flow regime above seasonally frozen layer or above permafrost depends on the micro 
topography of a peatland. 

 

 

 

 

 

 

Figure 13. Conceptual illustration of flow within active layer above permafrost. The flow 
depends on micro topography and the active layer depth of a peatland (results from field 
observations and measurements). 
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3.5. Modelling active layer thickness 

The results from running our permafrost model to estimate active layer thickness may 
be divided into two steps; ALT simulation and the ALT future prediction. 

3.5.1. Active layer thickness (ALT) simulation 

The current state of the ALT was simulated by running the permafrost model using 
the current mean annual air temperature at our study area equal to 0 oC. All input 
data of wetness, temperature, vegetation, snow cover, and thermal characteristics were 
distributed to all DEM cells in our study area. The model estimates the ALT at each 
grid cell using the distributed input data. The estimated ALT in this model represents 
the maximum thawing depth in one year. The model was calibrated using our ALT 
field measurements. 

3.5.2. Active layer thickness prediction 

Following the future expectation that temperature will increase at least one degree in 
100 years; the permafrost model calculation was repeated after changing the air 
temperature from 0 oC to 1 oC.  The estimation of new ALT values after changing the 
mean annual air temperature is to demonstrate the ability of our permafrost model to 
predict the future ALT distribution. The predicted ALT using +1 oC mean annual air 
temperature showed that changing temperature +1 oC may increase ALT by +0.46 m. 

The intention was not to use our permafrost model to estimate the exact values of 
ALT in each cell as real values, but to show the possibility of using an analytically 
based approach with semi empirical equations to estimate the maximum thawing 
depth of permafrost. Our study also indicates that the topographical wetness index 
TWI can be used to redistribute the soil water/ice content to all cells in a grid using 
minimum field measurements. This approach may enable us to use different input 
values for different cells depending on the changes in topography, which will lead to a 
more reliable simulation. 
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4.Conclusions 

In accordance with the objectives, the main conclusions of this study are presented 
below. 

Regarding the relation between DEMs generated from high resolution LiDAR data 
and topographical derivatives (e.g., drainage area, slope, and wetness) we can conclude 
that: 

1. The estimates of the slope and drainage area, and thus also the topographic wetness 
index, differ significantly with the resolution of the digital elevation model. Slope 
values become lower and drainage areas values become higher when the resolution 
decreases (i.e. cell size is increasing). 

2. The search radius, but not cell size, significantly influences the accuracy of a DEM, 
and that the accuracy is generally higher the shorter the interpolation search radius. 

3. The accuracy of the DEM differs significantly with the slope of the terrain, and 
that the errors in elevation are larger when the terrain is steep compared to when it is 
flat. 

Regarding flow distribution algorithms we can conclude that our newly created flow 
distribution algorithm supported by artefact removal functions works well to estimate 
flow over both mathematical and natural surfaces, compared to other tested 
algorithms. 

The field work water level measurements led to better understanding of flow regime 
in peatlands, especially when they are underlain by a seasonally frozen layer or 
permafrost. The field work also helped to confirm that estimated wetness using the 
proposed flow routing algorithm on digital elevation model can be used to distribute 
wetness to all cells in a DEM. 

Additionally, the study has shown the possibility of using an analytically based 
approach together with semi-empirical equations to estimate the maximum thawing 
depth (active layer thickness) above permafrost. 
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