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Abstract

The topic of this thesis is the optimal control of transportation networks.
The problem studied is a dynamical extension of a classical problem in
economics, in which the objective is to distribute goods to maximize welfare,
whilst satisfying constraints on production and consumption. The main
contribution is to show that for a class of welfare functions and dynamics,
the optimal control is highly structured, and can be implemented in a way
that scales gracefully with network size.

More specifically, it is shown that if the underlying transportation net-
work is structured by a string graph with delays on the edges, an LQ optimal
controller can be found by explicitly constructing the solution to a Riccati
equation. Next the problem is studied from a user perspective. A method
to compensate the users in the network, so that that their choices of levels
are also the social optimum is derived. Finally the results are extended
to handle directed tree graphs, more general cost functions, and variable
production in the network.

In all cases the optimal control can be found by sweeping through the
graph once, calculating aggregate utilities and levels. This gives a serial
implementation, that is suitable for systems were the is no need for high
sample times, such as district heating systems and transportation networks.
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1
Introduction

Optimal resource utilization is important both to maximize the output of an
economy, and reduce environmental impact. In this thesis, a transportation
problem is studied, with the goal of optimizing the usage of a resource. This
will be done mainly from a control perspective, where the goal is to design
a controller that can handle large-scale systems.

Many control problems have natural interpretations as dynamical wel-
fare maximization problems. On the other hand, many welfare maximiza-
tion problems can be solved using methods from control. Examples include
transportation networks and district heating systems, where the goal is to
distribute the available commodity (goods, heat) optimally among a set of
agents. The notion of optimality is typically based on the notion of wel-
fare (or utility) of the individual agents. This thesis will consider problems
where the objective is to maximize the sums of the utilities of all the agents
in a network (further discussion can be found in Sections 2.4 and 2.1).

Due to globalization and digitalization, these systems, and many oth-
ers, are growing in size. This leads to new challenges when it comes to
controlling them. A major issue is how to handle communication. For ex-
ample, in current district heating networks it is infeasible for every house
to communicate with all the others. This makes it very di�cult to imple-
ment strategies to optimize performance of the overall network, because the
individual agents do not have the required information to implement the
optimal control law. Furthermore, it is natural for these systems to change
operating point, or change structurally through the addition or removal of
agents. To handle this requires scalable control design methods. Finally one
must also consider privacy aspects. For example individual agents might
not want to (nor be allowed to) share information with the rest of the net-
work. These issues are discussed in Section 2.2, and an overview of previous
results in the literature is given in Section 2.3.

In this thesis the classical welfare maximization problem is extended
by introducing a transportation network and transportation delays (see
Figure 1.1 for a graphical illustration when the transportation network is
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Figure 1.1 An illustration of the type of problems considered in this thesis.

a string). The delays and topology introduce dynamical constraints, and
one must now consider how the system schedules resource allocation over
time when maximizing welfare. The idea is that this captures dynamical
aspects that are important for applications that are absent in static problem
formulations. This is further described in Section 3.2.

One of the main contributions of this thesis is to derive closed form
expressions for the optimal control of such networks when LQ costs are
considered. Such controllers typically do not maintain the structure of the
network. However, we show that in this case the controller is structured,
and can be implemented e�ciently using local communication. The com-
munication is implemented by a sweep through the network. Furthermore,
the control law is easily updated as agents are added and removed form
the network. In the case of string graphs it is also shown how to connect
this solution to a market equilibrium, allowing for a price based controller
implementation. The results are summarized in Section 3.3, and can also
be found in the three papers at the end of the thesis.
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2
Background

In this chapter we will give some background to the work presented in the
thesis. The chapter starts with some examples of large scale systems. Then
follows motivation for why there is a need to develop new methods for design
and implementation of controllers for such systems and a brief survey of
previous work in the area. Finally some economic background relevant to
the problems studied will be given.

2.1 Examples of Large Scale Systems

Tra�c and Transportation
The demand on the tra�c system increases as more and more people move
into urban areas and the transportation of goods increases. A poorly reg-
ulated tra�c system can lead to congestion, which leads to a severe de-
crease in performance. There are many tools available to try to increase
the throughput of a road network. Such as tra�c lights [Nilsson and Como,
2018], variable speed limits and ramp meters [Hegyi et al., 2005].

Transportation of goods around the globe can also be seen as a large
transportation system with many di�erent goods, destinations and means
of transportation. If the e�ciency of such systems can be improved, it would
lead to big benefits both in terms of monetary and environmental aspects.
For an interesting e�ciency measure for such systems, see [Terelius and
Johansson, 2015].

District Heating Networks
In todays cities there are many buildings requiring either heating or cooling.
The cooling usually results in the excess heat not being utilized. Another
example where this can be seen is in the placement of big data centers in
cold areas, where the cost of land and cooling is low.

Ideally the heating and cooling of all buildings in a city should be part
of the same system so that excess heat can be utilized. Recent initiatives in
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Chapter 2. Background

doing so includes ectogrid by EON [Ectogrid, 2020], which is a system for
combining heat pumps and cooling machines. On a similar theme, Bahnhof
plans to build a data center in central Stockholm, with the aim that all the
excess heat can be utilized [Elementica, 2020].

A city-wide district heating system will naturally be huge in size, con-
taining thousands of buildings, rendering them impossible to control by
centralized strategies. Small improvements to the performance of such sys-
tems could have big economical and environmental benefits.

Power Networks
A higher penetration of renewable energy production in the grid is very
important to reduce the emission of greenhouse gases. However, it gives
new challenges for the grid operators. The grid operators need to control the
power balance and the voltage of the network. These are heavily coupled as
an excess of power increase the voltage. Traditional methods of generating
electricity contains a synchronous machines with large inertia, which can
be used to easily regulate the power output. It is natural to equip a nuclear
plant with a synchronous generator, however it would lead to lower e�ciency
to do so for a wind farm or a solar panel system. Thus new methods to
regulate the power networks must be developed. Failing to do so will, for
example, limit how large a percentage of the energy production can be from
wind power, while still maintaining grid stability [Mc Garrigle et al., 2013].

The performance requirements will also be increased as with more and
more renewables added to the grid there will be a lot more producers
to control. Furthermore it is much harder to estimate the possible power
output of a renewable compared to a coal or water power plant. This will
lead to that the controller must be faster to react to changes power output.

2.2 Need for Structured Controllers

In this section we will motivate the need for structured controllers for
large-scale systems. First we will illustrate some of the di�erent control
strategies for controlling interconnected systems. We will then discuss some
of the issues that appear. That is the communication requirements for each
subsystem, how well the controller can handle if components are added to or
removed from the network, and also some privacy and coordination aspects.

Di�erent Strategies
In this section we will use the system in Figure 2.1 to illustrate di�erent
methods for controlling interconnected systems. The system consists of four
subsystems which each have their own input. Furthermore, the subsystems
have a direct e�ect on each other if they are connected by a link. If a
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2.2 Need for Structured Controllers

1 2 3 4

u1 u2 u3 u4

Figure 2.1 A schematic illustration of an interconnected system. The sys-
tem consists of four parts, indicated by circles. Each subsystem has its own
input. Two subsystems a�ect each other if there is a link between them.
Subsystem one then have a direct e�ect on system two, but not on system
three and four.

controller were to be designed for this system using standard methods,
such as H2 or HÜ control, the controller would generally be dense, i.e. have
the following sparsity pattern
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To calculate any of the inputs ui it is necessary to know the state of the
entire system. For a small number of systems this is no problem, but as
more subsystems are added the resulting communication demands will be
too great to implement in practice.

One could instead try to design one controller for each subsystem. This
would give the following sparsity pattern

S

W

W

U

u1
u2
u3
u4

T

X

X

V

=

S

W

W

U

§ 0 0 0
0 § 0 0
0 0 § 0
0 0 0 §

T

X

X

V

S

W

W

U

x1
x2
x3
x4

T

X

X

V

.

This would be very simple to implement, as each subsystem could calculate
its input without knowing anything about the other systems. Thus the e�ort
to calculate the input ui for each input is independent of the network size.
However, a new di�culty arises, as it will in general be di�cult to ensure
stability and design the controllers so that they improve the performance
for the entire system. Especially if the controllers are designed with only
the local system in mind. Also, the performance is generally expected to be
be worse, as less information is available for each decision.

One could also try to design controllers that only use neighboring infor-
mation. This would give the following sparsity pattern
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Chapter 2. Background

This again scales nicely with the size of the network, as the number of other
subsystems that need to be communicated with is constant. However the
issue of ensuring stability, and optimizing performance when each controller
only consider a small part of the system remains. One approach to solve this
issue is to design all the controllers together. However, such design might
also be infeasible if the network is large, or if it often changes in size.

Another alternative is to try to aggregate information through the graph.
For example using the following pattern:
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This can be implemented using local communication of states and inputs.
For example

u3[t] = c1 x3[t] + c2u4[t].

Furthermore the scheme allows a simple way for information to propagate
through the graph. The obvious downside is that the the time needed to
implement the communication will scale with the size of the network. To
counteract this one could instead consider a feedback law on the form

u3[t] = c1 x3[t] + c2u4[t 1].

Communication
As already hinted previously, it would be impossible for for many large scale
applications to let every part of the network have global information. Both
power networks and district heating networks could consist of thousands of
subsystems and if every subsystem were to communicate with each other it
would lead to millions of communication channels. This would not be feasible
to implement. Alternatively, each subsystem could communicated with some
coordinator. Then each subsystem would send its state to the coordinator
and receive all other states from the coordinator. This limits the number of
communication channels to be proportional the the number of subsystems.
However, it still has some issues. Firstly, the size of the messages sent by
the coordinator could be very large, leading to increased latency. Secondly,
if there is some failure in the coordinator the entire systems breaks down.
If there are distributed controllers all over the system, it is likely that the
network can handle that a controller breaks.

One way to overcome this issue is to design controllers in each subsystem
that only require communication with a subset of the the other subsystems.
Typical choices are to only require local information or only communication
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2.2 Need for Structured Controllers

with neighbors, as illustrated previously. However, any subset of subsys-
tems is in principle possible as long as it doesn’t grow with the number of
subsystems.

Network grows or shrinks
It is natural for a system to change its operating conditions, for example
due to a change in weather for a district heating system or a power grid
with a high penetration of renewable energy sources. In some cases the
network could also change due to the addition or removal of components
to the system. This could for example happen in a power system where
di�erent producers are added or removed due to maintenance or shifting
weather conditions.

It is thus important that a controller for large scale systems can over-
come these issues. A change in operating condition could be overcome by
designing a controller that is robust to variations in operating conditions.
However, performance will generally be better if the controller is designed
with the exact operating conditions in mind. On the other hand, scalable
methods for control design will generally give worse performance compared
to centralized methods. This results in a choice between having an optimal
design for a model that does not take the change in operating conditions
into account, or a suboptimal design for a model that does take the changes
into account.

When components are added to a system then one must update the
controller design, by at the very least designing how to control the new
subsystems. To be able to update the controllers e�ciently as the system
changes in size requires new design methods that are inherently scalable.
This could for example be methods that only uses local information, or
neighboring information for the design of the controller. However, this will
naturally lead to worse performance. A centralized controller synthesis
that considers the entire system when designing the controllers for each
system will scale poorly with the size of the system. So a centralized design
procedure for a distributed controller would be infeasible if the networks is
expected to change often.

Privacy and Coordination
Many large scale systems are built by subsystems owned by di�erent enti-
ties. Examples include power grids, where solar panels, wind turbines, and
other power plants or owned by di�erent persons or companies. And district
heating networks where each building might have a di�erent owner. There
are also many example where this is not the case, such as when controlling
a factory, where each subsystem has the same owner, who only cares about
the total performance of the system.

15



Chapter 2. Background

The di�erent owners might want to keep both their performance met-
ric and current states private. Decentralized synthesis and implementation
overcomes this issues, by only using local information. However, if the per-
formance of the system is improved by sharing some information with the
rest of the network, then the willingness to share information might in-
crease. This gives rise to a trade-o� between privacy and performance.

The owners might also care more about their own cost than the cost of the
entire systems. It can not be expected for the di�erent players in the systems
to make altruistic decisions. Instead there must be some mechanism that
makes the individual users choice align with the social optimum. This can
be achieved by adding a cost to the users that depends on the choice they
make. For example by having road tolls in transportation networks, a price
on the heat level in a district heating system, or on the watt usage in a
power network.

2.3 Overview of Structured Control

The issues discussed in the previous section has lead to an e�ort in de-
signing structured controller, that can handle large scale systems. In this
section we give an overview of previous work. We make a distinction between
when the structure is enforced and when it follows from the plant.

Enforced Structure
Early work on distributed control includes the study of team games
[Marschak, 1955; Radner, 1962]. A team consists of member who has access
to di�erent information and attempts to make decisions that are optimal
for the entire team. The initial results were mainly static.

For LQ control with full information it is well known that the optimal
controller is linear and memoryless. However, an important counterexample
was given in [Witsenhausen, 1968], where it is shown that this does not
need to hold when the controller has information constraints. However,
in [Ho et al., 1972] it was shown that for a partially nested information
constraint, the optimal LQ controller is linear. Other early examples were
the optimal controller was still linear includes [Sandell and Athans, 1974].
Another negative result is [Blondel and Tsitsiklis, 1997], where it is shown
that some decentralized control problems are NP hard.

Multilevel or Hierarchical control is a strategy relying on splitting the
control problems into di�erent layers. The lowest layer typically is decen-
tralized control of the lowest components of a system, and the higher layers
tries to coordinate the lower layers. This approach has for example been
applied to power systems [Mansour and El Abiad, 1977; Schweppe, 1978]
and manufacturing systems [Jones and McLean, 1986; Boukas et al., 2003].
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2.3 Overview of Structured Control

One way of simplifying the control of large scale systems is to find the
optimal equilibrium for the system, and then try to stabilize the system
around this equilibrium. This method has for example been applied in
internet congestion control [Low et al., 2002] and power systems [Kundur,
1994]. If the operating conditions changes often, and thus also the optimal
equilibrium, then the transient of the system can be an important part
of the performance of the system. Then another approach is most likely
desirable.

Mean field control is another approach. Each subsystem is typically only
a�ected by the average of all other subsystems, and thus only needs to know
the average to make its decisions. Recent work include control of charging for
electrical vehicles [Parise et al., 2014], and demand management of electric
loads [Grammatico et al., 2015]. A benefit of the mean field approach is that
it easily allows to control agents, where each agent make their own egoistic
choice.

One simple method to enforce structure is via decentralized or dis-
tributed PI controllers. Decentralized PI control would be an elegant so-
lution. However, there exists a class of systems where such a controller
can never reject a constant disturbance and constant measurement noise
[Andreasson et al., 2014]. It is also shown that letting the integral part
depend on neighboring nodes extends the class of systems for which the
steady state error is zero. However, distributed PI control has been shown
to be able to stabilize district heating networks [De Persis et al., 2014].

One method is to formulate the controller design as an optimal control
problem, and enforce a structure on the controller. If the resulting problem
is convex, it can easily be solved. An important contributions was given
in [Rotkowitz and Lall, 2006], where a su�cient conditions for when this
is possible was given by defining the notation of quadratic invariance. It
was later shown that it is also a necessary condition [Lessard and Lall,
2011]. To just name a few examples, quadric invariance led the way to an
optimal controller for a decentralized two player problem [Lessard and Lall,
2012] and a characterization of distributed controllers subject to delays
constraints [Matni, 2014].

An alternative to enforcing structure on the plant is to instead have spar-
sity promoting terms in the optimization problem, see for example [Fardad
et al., 2011] and [Lin et al., 2013]. This method should in theory allow for
better understanding of the trade o� between sparsity and performance.

The convex optimization approach often leads to centralized synthesis,
which could be problematic if the size of the network often changes. In
[Langbort et al., 2004] distributed synthesis algorithms are derived for HÜ
control over arbitrary graphs. More recent work includes include system
level synthesis [Anderson et al., 2019] where the synthesis can in some
cases be of order O(1).
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Chapter 2. Background

Achievable Performance It is in general unknown how controller con-
straints a�ect the achievable performance of the control system. However
there exists results for specific cases, and some of those are presented here.

In [Pates et al., 2017] it is shown that for a platoon of vehicles an
accordion like motion will emerge for any controller using only local mea-
surement.

It is also generally unknown how the communication constraints a�ects
the achievable performance. In [Langbort and Delvenne, 2010] it is shown
that for a class of LTI discrete systems a controller without communication
is at least twice as bad as the optimal controller in the worst case.

Robustness analysis of sparsely interconnected systems using IQC is
considered in [Andersen et al., 2014]. A graphical test for robust stability
test of interconnected systems was derived in [Kao et al., 2009].

Structure from the plant
An alternative to enforcing the structure is to find problems where the
optimal unconstrained controller can be implemented in a structured way.
This has the obvious downside that it is not applicable to most systems, and
generally requires simple models. However, when the method is possible it
allows for the usage of results from the general theory of control, such as
robustness and performance guarantees. Furthermore, controllers resulting
in this way are often easy to understand. The downside of results of this
nature is that they will often not generalize well.

In [Madjidian and Mirkin, 2014] it is shown that the optimal control of
a set of wind turbines can be optimally controlled using a combination of a
distributed control and a rank one coordination term. This means that the
centralized coordinator only need to send out one measurement instead of
measurements for every subsystem.

For infinite dimensional spatially invariant systems it is shown that
the optimal controller for quadratic objectives has an inherent degree of
decentralization [Bamieh et al., 2002].

For HÜ control it is harder to know if there exists a structured optimal
controller as the optimal controller is not unique. For systems with symmet-
ric and Hurwitz state matrix, it is shown in [Lidström and Rantzer, 2016]
that there exists a structured HÜ controller that is suitable for distributed
implementation.

2.4 Two Classical Problems in Economics

The economical aspects of control systems are often not considered. However,
there could be an increasing need for doing so when they are applied to
systems with multiple entities. Mainly to ensure that the systems are fair
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2.4 Two Classical Problems in Economics

for all its users, but also to understand how economic decisions within the
systems a�ects the performance of the control systems.

In this section we will give a brief introduction to two classical economics
problems. These problems are static, and the models studied in this thesis
will be shown to be a natural dynamic extension of these problems.

Competitive Market Equilibrium
A classical problem in economics is to find the equilibrium in a market.
We will limit ourself to study only one good. Then any equilbrium is called
a partial equilibrium. Often every agent in a system will consider multi-
ple goods at the same time, and then an equilibrium is called a general
equilibrium.

Here a simple problem is considered. A set of n agents are each given
an initial endowment wi of some good. The agents can then buy and sell
goods from each other. It is assumed that the price p is the same between
all agents. Let the amount of the good for each agent after the trade be xi
and that each agent value that level according to Ui(xi). Then the payo� of
each agent is given by

Ui(xi) p(xi  wi). (2.1)

For the market to be in equilibrium the total demand must be equal to the
total supply: ÿ

i
xi =

ÿ

i
wi. (2.2)

The supply is fixed, but the demand depends on the price, so a prices can
only be an equilibrium price if the corresponding choices of xi satisfy. (2.2).

In general the agents choice of xi could depend on how it a�ects the
prices p. Often each agent assumes that the prices are outside of their
control. Such a market is called a competitive market. Then each agent
will chose the x that maximizes (2.1). Every competitive equilibrium will
be Pareto e�cient, i.e. satisfy that there is no way to make any individual
better o� without making someone else worse o�.

Welfare Maximization
The welfare maximization problem instead aims to maximize the total util-
ity. That is to choose the amount of quantity each individual has so that
the welfare for the entire system is maximized. This can be formulated as
an optimization problem,

maximize W(U1(x), . . . , Un(x))

subject to
ÿ

i
xi =

ÿ

i
wi. (2.3)
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Chapter 2. Background

We let Ui(x) only depend on xi and the welfare function W is given by the
the sum of the individual utilities. Then the optimal welfare distribution is
also Pareto e�cient.

Actually every welfare maxima is a competitive equilibrium [Varian,
2003]. We illustrate this point via an example. Consider the welfare maxi-
mization problem

maximize
ÿ

i
Ui(xi)

subject to
ÿ

i
xi =

ÿ

i
wi

(2.4)

where Ui is concave. The Lagrangian of the system is given by

L(x, �) =
ÿ

i
Ui(xi) + �(

ÿ

i
wi  

ÿ

i
xi)

There exists x§ and �§ so that x§ is the maximizer of (2.4) and

ÄL
Äxi

(x§i , �§) = U z
i (x§i ) �§ = 0

ÄL
Ä� (x§i , �§) =

ÿ

i
wi  

ÿ

i
x§i = 0

Then if we pick the price p to be p = �§ the first equation implies that
x§i is the maximizer of the node utility (2.1) and the second implies that
supply is equal to demand, that is (2.2) holds. We have thus constructed a
competitive equilibrium based on the welfare maximizer.
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3
Contributions

The main part of this thesis is the three publications presented in Section
3.1. We give a slightly di�erent motivation for the problem, compared to the
one given in the papers in Section 3.2. The results will be briefly summarized
in Section 3.3 and some possible directions for future work will be given in
Section 3.4.

3.1 Publications

This Licentiate thesis is based on the following three papers where the
contribution of the author has been noted.

Heyden, M., R. Pates, and A. Rantzer (2018). “A structured linear quadratic
controller for transportation problems”. In: 2018 European Control Con-
ference (ECC). IEEE, pp. 1654–1659.

The model was suggest by A. Rantzer. M. Heyden noticed the interest-
ing controller structure, derived the results and wrote the manuscript. A.
Rantzer and R. Pates helped revise the manuscript.

Heyden, M., R. Pates, and A. Rantzer (2020). “Price based linear quadratic
control under transportation delay”. Accepted to IFAC World Congress
2020.

The idea to use prices as coordination is due to A. Rantzer. M. Heyden
derived the results and wrote the manuscript. A. Rantzer and R. Pates
helped revise the manuscript.

Heyden, M., R. Pates, and A. Rantzer (2020). “Optimal transportation on
directed tree graphs”. Manuscript prepared for journal submission.

M. Heyden derived the results and wrote the manuscript. A. Rantzer
and R. Pates helped revise the manuscript.
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Chapter 3. Contributions

3.2 The Problem Studied

Consider the problem in (2.3). A natural extension is to only allow trans-
portation between some of the individuals. Then the problem would be

maximize W
1

U1(x1), . . . , Un(xn)
2

subject to xi = wi +
ÿ

j
ui j

ui j =  uji.

In the above the sum is over nodes j that are connected to i and uij is
the transportation from node j to node i. It must hold that uij =  uji.
However, the optimal x will not change as long as the corresponding graph
is connected, as then goods can be transported between all the nodes in
the system. It is natural to also introduce transportation delays. Then the
problem becomes dynamic, and we must consider the optimization over a
time horizon T. If we also allow for the goods to be decaying with a rate
1  �, where 0 < � 2 1 and � = 1 corresponds to no decay, the welfare
maximization problem can be stated as

maximize
Tÿ

t=0
W
1

U1(x1), . . . , Un(xn)
2

subject to xi[t + 1] = �(xi[t] +
ÿ

j
ui j[t 1]) 

ÿ

h
uhi[t]

xi[0] = wi.

(3.1)

In the above the sum over j are the nodes that send goods to node i. And the
sum over h are the nodes to which i sends goods. Here it could in principle
hold that uij ,= uji. However, it would be a suboptimal choice as long as the
utility functions are increasing. Throughout this thesis we will assume that
the welfare function is on the form

W
1

U1(x1), . . . , Un(xn)
2

=
ÿ

i
Ui(xi).

The problem is solved by a two step approach. First, the optimal equi-
librium of the system is found. That is finding the x§i and u§

i j that are the
maximizer of

maximize
x,u

ÿ

i
Ui(xi)

subject to xi = �(xi +
ÿ

j
ui j) 

ÿ

h
uhi.
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3.2 The Problem Studied

� �

z4

�

z3

�

z2

�

z1
� � � �

Figure 3.1 An illustration of the type of problems considered in this thesis.
Here the transportation network is that of a string graph. There is a factory
that produces a good, which is then transported to the di�erent stores in the
network. The goal is to optimize the inventory level of each store.

The problem can be solved using standard methods from convex optimiza-
tion. The folows uij will in general not be unique. However if the underlying
graph is a directed tree, i.e. does not contain any directed cycles, then the
solution is unique. And if one want a solution with as few transportation
links as possible, then the network should be a directed tree.

The contribution of this thesis lies in the second step, where the dynam-
ical aspect of the problem is considered. We define zi to be the shift from
the equilibrium level according to

xi = x§i + zi

The system is studied relative to the equilibrium and the problem is to find
the optimal time dependent flows.

In Paper I we study this problem for a string graph. See fig. 3.1 for an
illustration. We also assume that the utilities relative to the equilibrium is
given by

Ui(x§i + zi) Ui(x§i ) =  qiz2
i .

In Paper II the dynamical versions of (2.1) and (2.2) are considered. It
is assumed that each agent has to pay for its change in level at every time
point, as this is consistent with the payment for the static problem. Then
each node considers the following problem

maximize
zi

Tÿ

t=0
Ui(zi[t]) pi[t](zi[t] zi[t 1]). (3.2)

Note that the price is allowed to be both time varying and di�erent for
di�erent nodes. We also extend the utility functions to contain a linear
term,

Ui(z) = Ui(xi + zi) Ui(xi) = bizi  qiz2
i .

In Paper III the case for directed tree graphs is studied. Furthermore,
it is shown how to handle variable production and general concave utility
functions.
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Chapter 3. Contributions

3.3 Results

In Paper I it is shown that the optimal unconstrained controller is highly
structured, with the following diagonal structure pattern

S

W

W

W

W

W

W

W

U

un 1,n[t]
un 2,n 1[t]
un 3,n 2[t]

...
u32[t]
u21[t]

T

X

X

X

X

X

X

X

V

=

S

W

W

W

W

W

W

W

U

v ⌥ ⌥ · · · ⌥ ⌥ ⌥
0 v ⌥ · · · ⌥ ⌥ ⌥
0 0 v · · · ⌥ ⌥ ⌥
...

...
. . . . . .

...
...

...
0 0 · · · 0 v ⌥ ⌥
0 0 · · · 0 0 v ⌥

T

X

X

X

X

X

X

X

V

S

W

W

W

W

W

W

W

U

zn[t]
zn 1[t] + un 1,n[t 1]

zn 2[t] + un 2,n 1[t 1]
...

z2[t] + u32[t 1]
z1[t] + u21[t 1]

T

X

X

X

X

X

X

X

V

In the above each ⌥ indicates that the elements are the same on that row.
Thus to calculate the optimal input only the local level and the aggregate
downstream level is needed. Furthermore, it is shown that there exists
a distributed method for calculating the parameters needed to implement
the controller using local communication. This method consists of a sweep
through the graph, starting at the most downstream node, and then going
upstream.

In Paper II a each node considers the cost function

Tÿ

t=0
Ui(zi[t]) + pizi[t].

It is shown that this problem is equivalent to a natural dynamic extension
of (3.2) Expressions for prices pi[t] are given so that the market equilibrium
is also a welfare maximizer. The outflow from each node i is shown to be
given by

ui 1[t] = �(zi[t] + ui[t 1]) 1
qi

!

pi[t + 1] bi
"

.

In the above pi is the price, and bi and qi are problem data. It is also shown
that the prices have a distributed update rule, similar to the the one for the
parameters in Paper I.

In Paper III it is shown that the optimal production only depends on
the total level in the graph. Furthermore the optimal transportation is only
dependent on the aggregate level in the two subsets of the graph. These
aggregates can be e�ciently calculated by iterating through the graph and
only using local communication. The structure for the optimal controller for
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1

2

3

4

5

6

87

9

Figure 3.2 An example of a directed tree. The structure of the optimal
controller can be seen in (3.3)

the graph in Figure 3.2 is
S

W

W

W

W

W

W

W

W

W

W

W

W

U

u10[t]
u21[t]
u32[t]
u41[t]
u54[t]
u65[t]
u74[t]
u84[t]
u98[t]

T

X

X

X

X

X

X

X

X

X

X

X

X

V

=

S

W

W

W

W

W

W

W

W

W

W

U

§ § § § § § § § §
v ⌥ ⌥ v v v v v v
0 v ⌥ 0 0 0 0 0 0
v v v ⌥ ⌥ ⌥ ⌥ ⌥ ⌥
0 0 0 0 v ⌥ 0 0 0
0 0 0 v v v ⌥ v v
0 0 0 v v v v ⌥ ⌥
0 0 0 0 0 0 0 v ⌥

T

X

X

X

X

X

X

X

X

X

X

V

S

W

W

W

W

W

W

W

W

W

W

W

W

U

v10[t] + z1[t]
v21[t] + z2[t]
v32[t] + z3[t]
v41[t] + z4[t]
v54[t] + z5[t]
v65[t] + z6[t]
v74[t] + z7[t]
v84[t] + z8[t]
v98[t] + z9[t]

T

X

X

X

X

X

X

X

X

X

X

X

X

V

(3.3)

In the above v and ⌥ indicates that the elements on that rows are the same.

In summary the main contribution of the thesis lies in showing that
the optimal LQ problem is highly structured and can be implemented by
using local communication. It is also shown how to design prices so that the
welfare maximum is also a market equilibrium.

3.4 Future Work

It is expected that the results presented here could be extended to allow
for multiple commodities. It should also be straightforward to extend the
results in Paper II to directed trees.

The results presented here could be used to try to analyze the properties
of the solution. One could for example consider how a nodes position in the
network a�ect its utility.
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Chapter 3. Contributions

From a structured control point of view it would be interesting to add a
transportation penalty, and impose the structure of the controller to be the
same as presented in the thesis.
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Paper I

A Structured Linear Quadratic
Controller for Transportation

Problems

Martin Heyden Richard Pates Anders Rantzer

Abstract

We study a linear quadratic control problem for transportation opti-
mization on a directed line graph. We show that the solution to the
Riccati equation associated with this problem is highly structured. The
feedback law is almost upper triangular, and the synthesis of the feed-
back law is given by a recursion, making it scalable. The structure of
the feedback law also allows for an e�cient realization of the controller
using a local communication scheme.

©2018 IEEE. Reprinted, with permission, from 2018 IEEE European Con-
trol Conference, June 13-15, Limassol, Cyprus.
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Paper I. A Structured LQ Controller for Transportation Problems

1. Introduction

In this paper we study a transportation problem on a line graph. The
problem can be formulated as an infinite horizon Linear Quadratic (LQ)
problem:

minimize
u

E
A Üÿ

t=0
x[t]T Qx[t]

B

subject to x[t + 1] =
~

� Ax[t] + Bu[t] + w.
(1)

In the above, A, B, Q are compatibly dimensioned matrices. The constant �
a scalar, and w a vector of normally distributed zero mean random variables.
Our main contribution, which is presented formally in Section 3, is to show
that when A, B, Q have a particular structure, an optimal control u can be
obtained from the formula

uk = �k(àk+1 + rk+1) (1 �k)
kÿ

i=1
ài + ri.

Here àk and rk can be interpreted as local measurements for node k.
We give a closed form expression of �k, which is iteratively calculated.
Furthermore, when the system is extended to larger size, the �k’s need
not be recalculated. Interestingly this means that the resulting controller
is inherently structured, and exhibits a closed form solution that is easily
updated as the graph shrinks or grows. Moreover, for the transportation
problem, the control loop has a natural scalable interpretation that relies
on a simple and local communication scheme. These important observations
will be highlighted in Section 4.

The described properties are interesting for large scale system since
classical methods such as LQ- and HÜ-control often becomes infeasible as
the feedback matrices are generally dense. This leads to requirements on
each actuator to have global information. Furthermore, if there were to be
a small change to the system, the entire control synthesis would normally
need to be recalculated.

At its heart, this work is another contribution to the field of structured
optimal control. Early work include studies on team game problems. In
those problems, a set of agents have di�erent information and work toward
a common goal. See for example [Radner, 1962], [Ho et al., 1972].

More recently, attempts to formalize the role of structure have been
made. In [Rotkowitz and Lall, 2006], it is shown that subject to satisfying a
quadratic constraint, the Youla parameterization inherits the structure of
the control, allowing for e�cient computation of optimal controllers. [Lam-
perski and Lessard, 2015] presents a class of decentralized controllers for
the LQ problems, where the controller and plant satisfy the same delay and
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2 Motivating Problem

à3 à2 à1
r2 r1

Figure 1. Illustration of the states for delayed mass transfer on a linegraph
of three nodes.. The delays are implemented using states at the links, ri that
corresponds to the mass in transit. The value àk is the mass in each node.

sparsity constraints. In [Shah and Parrilo, 2013], a poset-causal constraint
on the controller is added to the H2 problem. This constraint is similar to
the structure of the controller that we attain, by solving a unconstrained
problem.

Examples where the structure is not imposed on the controller, but
rather a consequence of the plant include [Bamieh et al., 2002], where
it is shown that for spatially invariant systems, the optimal controller is
localized in space. In [Madjidian and Mirkin, 2014], an optimal control
problem for coordination is solved. The solution is structured, containing a
diagonal part and a rank one part.

Our controller allows for a structured controller that solves the uncon-
strained problem. Furthermore, the controller can be e�ciently calculated
via a closed form iterative expression. Our work relies on a classical Riccati
based method.

Notation
We let 0 denote a column vector of zeros, and 1 a column vector of ones. The
first basis vector is written as e1 = [1, 0, . . . , 0]T . For these three type of
vectors, the size is always clear from context. Furthermore, we let E denote
expectation and R the rational numbers.

2. Motivating Problem

Consider transportation of goods with unit delay on a line graph. Such
dynamics can be described by the following di�erence equations,

àk[t + 1] = àk[t] uk 1[t] + rk[t] + wk

rk[t + 1] = uk[t]. (2)

Here àk is the amount of goods in node k and rk is the goods in transit,
about to be received at node k. wk is zero mean white noise. The input uk
is the amount of goods that is sent from node k+ 1 to node k. See Figure 1
for an illustration of the three node case.

33



Paper I. A Structured LQ Controller for Transportation Problems

R����� 1
We do not restrict the input uk to be positive. We will instead work around
a nominal flow, a negative input will correspond to sending less goods
compared to the nominal flow. 2

Now, for N nodes, let the state space x B R2N 1 be described by

x = [àN, rN 1, àN 1, . . . , r1, à1], (3)

and input space u B RN 1 by

u = [uN 1, . . . , u1]. (4)

Starting with N = 2 the system can be described by x[t + 1] = A2 x[t] +
B2u[t], with

A2 =

S

U

1 0 0
0 0 0
0 1 1

T

V , B2 =

S

U

 1
1
0

T

V . (5)

Now, given that we have a state space description for k 1 nodes, we can
find one for k nodes by adding one node, one delay state, and one input
according to (3) and (4). This gives the following recursion

Ak =

S

U

1 0 0T

0 0 0T

0 e1 Ak 1

T

V , Bk =

S

U

 1 0T

1 0T

0 Bk 1

T

V . (6)

For a graph of N nodes we let A = AN and B = BN . We can then write the
dynamics for the N node system as x[t + 1] = Ax[t] + Bu[t]. If there were
a decay of goods with decay rate

~
�, the dynamics would be x[t + 1] =~

� Ax[t] + Bu[t].
Note that the problem is not symmetric, and the underlying graph is

directed. We say that the links are in the direction from the sender to the
receiver. We also define downstream as in the direction of the links, and
upstreams as the opposite direction.

We can let à = 0 correspond to the optimal inventory level. This will not
change the dynamics. Then it is reasonable to penalize deviation from this
inventory levels. Let Q = QN be defined as

QN = diag(qN, 0, qN 1, 0, . . . , q1). (7)

Then xT Qx will describe the total penalty, where we allow for di�erent
nodes to have di�erent weighting.

Now assume that we can never reach the optimal inventory levels ev-
erywhere, due to there not being enough goods. Then there will be no need
to penalize goods in transit, as they are already implicitly punished by not
being available in any node.
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3 Sparse Controller for a LQ problem

3. Sparse Controller for a LQ problem

In this section we aim to solve two optimal control problems subject to
the dynamics and cost function in the previous section. The first problem
is the infinite horizon LQ problem, given in (1). The second problem is
a discounted infinite horizon LQ problem. Let the discount factor � take
values 0 < � < 1. The problem is formulated as

minimize
u

E
A Üÿ

t=0
�t x[t]T Qx[t]

B

subject to x[t + 1] = Ax[t] + Bu[t] + w.
(8)

R����� 2
The reader has by now noticed that there is no penalty on the input. This
is not a coincidence, and will indeed be necessary for the results that will
be presented. 2

We now aim to solve problems (1) and (8). This is done using a Riccati
based approach.

The di�erence Riccati equation appears when solving finite horizon LQ
problems, see for example [Bertsekas, 2012]. If the iteration of the di�erence
equation converges to a fix-point, then that fix-point solves the algebraic
Riccati equation. This equation can then be used to solve the infinite horizon
problem. Some of the available convergence and uniqueness results can be
found in [Bitmead and Gevers, 1991]. These do however require a penalty
on the input given by a positive definite matrix. Work on Riccati equation
with singular input penalty includes [Ntogramatzidis and Ferrante, 2015].
We will use a simple proof to show that the feedback law given by the
solution to the Riccati equation is indeed optimal.

It is easy to show that for both problem formulations in (1) and (8), the
corresponding di�erence Riccati equation is

X j+1 = � AT X j A � AT X j B(BT X j B) 1 BT X j A + Q.

Note that the index j denotes the iteration number, instead of the size of
the system. Any fix-point satisfies the algebraic Riccati equation,

� AT X A X + Q = � AT X B(BT X B) 1 BT X A. (9)

We show that, for these matrices, there exist at least one positive definite
solution of (9) by explicitly constructing it. The proposed solution is highly
structured. Next, we show that the solution can be used to construct the
optimal feedback law.
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T������ 1
Given A = AN, B = BN as in (5)-(6) and Q = QN as in (7), recursively
define �k as

�k+1 = � qk+1�k

qk+1 +�k
, �1 = �q1.

Also define X̃ = X̃ N by the recursion:

X̃k+1 =

S

W

U

0 0 0T

0 �k �k1T

0 �k1 �k11T + X̃k

T

X

V
, X̃2 =

S

W

U

0 0 0
0 �1 �1

0 �1 �1

T

X

V
.

Then one positive definite solution to the Riccati equation (9) is given by

X =
1

1 ��N11T + Q + X̃ , (10)
2

For the proof see the appendix.
The corresponding feedback matrix for (8) K =  (BT X B) 1 BT X A for

X in (10) is given by

Kk+1 =

S

U

qk+1

qk+1 +�k
 

�k

qk+1 +�k
 

�k

qk+1 +�k
1T

0 Kke1 Kk

T

V ,

K2 =
5 q2

q2 +�1
 

�1

q2 +�1
 

�1

q2 +�1

6

,

(11)

This gives the input u = K x,

uk =
qk+1

qk+1 +�k
(àk+1 + rk+1) 

�k

qk+1 +�k

kÿ

i=1
ài + ri

uN 1 =
qN

qN +�N 1
àN  

�N 1

qN +�N 1

N 1ÿ

i=1
ài + ri.

(12)

The corresponding version for (1) is given by K =  (BT X B) 1 BT X
~

� A,
which gives

uk =
~

� qk+1

qk+1 +�k
(àk+1 + rk+1) 

~
� �k

qk+1 +�k

kÿ

i=1
ài + ri

uN 1 =
~

� qN

qN +�N 1
àN  

~
� �N 1

qN +�N 1

N 1ÿ

i=1
ài + ri.

(13)
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T������ 2
The feedback law in (13) is optimal for (1) and the feedback law in (8) is
optimal for (12).

Proof We prove the theorem for (1). The closed loop system (
~

� A+ BK) is
asymptotically stable (see Lemma 1 in appendix). Furthermore, by Lemma
2 (also in appendix) we have that only stabilizing controllers can be optimal.

Let X be the solution to the algebraic Riccati equation (9). Let Us be the
set of input sequences so that x P 0 as t P Ü. Then 8u B Us and subject
to the system dynamics,

lim
TPÜ

T 1ÿ

t=0
x[t]T Qx[t] + xT[N]X x[N] = lim

TPÜ

T 1ÿ

t=0
x[t]T Qx[t].

We know that u = K x minimizes the LHS, and thus also minimizes the
RHS, which is the infinite horizon problem. 2

R����� 3
Let �k =

qN 1
i=k �i. Then X̃ N can be written as

X̃ N =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

0 0 0 . . . 0 0 . . . 0 0
0 �N 1 �N 1 . . . �N 1 �N 1 . . . �N 1 �N 1
0 �N 1 �N 1 . . . �N 1 �N 1 . . . �N 1 �N 1
...

...
...

. . .
0 �N 1 �N 1 �k �k . . . �k �k
0 �N 1 �N 1 �k �k . . . �k �k
...

...
...

...
...

. . .
0 �N 1 �N 1 �k �k �1 �1
0 �N 1 �N 1 �k �k �1 �1

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

.

In this representation it is clear that X is highly structured. In fact, it only
has N  1 degrees of freedom. 2

3.1 Change of Variables
We also present the main points of the theorem in a new set of variables.
In these coordinates the cost to go is tridiagonal, and the calculation of
each input relies on only two states. Take z = Sx with S = SN defined
recursively,

Sk =

S

W

U

1 1 1T

0 1 1T

0 0 So

T

X

V
S 1

k =

S

W

U

1  1 0T

0 1  eT
1

0 0 S 1
k 1

T

X

V
, (14)
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starting at

S2 =

S

U

1 1 1
0 1 1
0 0 1

T

V , S 1
2 =

S

U

1  1 0
0 1  1
0 0 1

T

V .

Let [z2N 1, . . . , z1] = z = Sx. We can relate the new variables to the nodes
by noting that z2k =

qk
i=1 ài + xi = fk. Here we have defined fk, which is

the amount of goods downstream of node k + 1. In this representation the
cost to go matrix becomes tridiagonal,

xT X x = z(S 1)T X S 1z = zT(X§
N + et

1e1
1

1 ��N)z.

With X§
N defined by the recursion:

X§
k =

S

U

qk  qk 0
 qk qk +�k 1 0

0 0 X§
k 1

T

V , X§
2 =

S

U

q2  q2 0
 q2 q2 +�1 0

0 0 q1

T

V

The input u = K§z = K S 1z relies on only two elements per input,

uk =
qk+1

qk+1 +�k
z2k+2  z2k =

qk+1

qk+1 +�k
fk+1  fk

uN 1 =
qN

qN +�N 1
( fN 1 + àN) fN 1.

4. Two Important observations

We now highlight two important properties of the results in the previous
section. The feedback synthesis is scalable in one direction, and the imple-
mentation allows for a simple and e�cient communication scheme.

4.1 Scalable Synthesis
The proposed method for solving the Riccati equation does so exactly, and
its time-complexity is linear in the number of nodes.

Furthermore, the solution for a problem of size N, can be used to con-
struct the solution for a problem of size N+1. This follows from the recursive
nature of the calculation of �N and that the feedback law is unchanged in
the old nodes when a new node is added. The only calculations that are
required to implement the new feedback law is to calculate �N . This can be
done using �N 1 which was already calculated. Furthermore, the solution
for size N 1 can be recovered from the solution for N. If the node furthest
upstreams were to be removed, there would not be any e�ect on any of
the remaining links. Hence, it is very computationally e�cient to add and
remove nodes upstream.
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In general, when adding a node, only the nodes upstream of the new
node needs their � ’s to be recalculated, while the nodes downstream can
keep theirs.

4.2 Distributed Implementation
It is reasonable to assume that node k+1 decides the value of uk. Then àk+1
and rk+1 are local measurements. To implement the feedback, each node
need in addition to the local information access to the sum fk =

qk
i=1 ài+ xi,

which is the sum of goods downstream of node k + 1. fk can be calculated
by recursion through the graph:

• Receive fk 1.

• Calculate fk = fk 1 + àk + rk.

• Send fk upstream.

The main benefit of this scheme is that the number of communication
channels is proportional to the number of nodes. If each node were to
communicate with every other node, the number of communication channels
would instead be proportional to the square of the number of nodes.

One downside is that node k can not send its information until it re-
ceived information from node k 1. Thus, the latency of the communication
is proportional to the number of nodes. It is also vulnerable to faulty com-
munication channels as it becomes impossible to calculate the output for
every node upstreams of the faulty communication channel.

5. Application to Transportation

So far we have assumed that there is an underlying flow that allows for
the implementation of the feedback law. Now we give an example with the
dynamics considered and where there exists a natural net flow.

Consider inventory control for a set of stores. Then there is some trans-
portation between the stores to keep the inventory level at an optimal level.
We assume the topology of the stores and transportation takes the form of a
directed line graph. This does not require that the stores are geographically
distributed as a line.

Let the amount of goods in node k be denoted à̂k. The transportation is
in the direction of the graph and has a delay of one time unit. Let the nodes
be numbered in increasing order as we go upstream. We denote the goods
in transit from node k as r̂k 1. Then the incoming goods to node k is r̂k. The
amount of goods sent downstream in the graph by node k is denoted ûk 1.
There are also external influences ŵk B N (w̄k, �k) for each node, which
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à̂N
ŵN r̂N 1 . . . à̂k

r̂k r̂k 1

ŵk

. . . à̂1
r̂1 ŵ1

Figure 2. Illustration of the inventory control problem. Each node k cor-
responds to a store with inventory level à̂k. Each store is a�ected by an
external net production ŵk. To balance the inventory level over the stores
there is transportation between the stores. r̂k is the goods in transit from
store k + 1 to store k.

corresponds to consumption and external transportation. See Figure 2 for
an illustration. The dynamics of edges and nodes are given by

à̂k[t + 1] = à̂k[t] + (r̂k[t] ûk 1[t]) + ŵk[t]
r̂k[t + 1] = ûk[t].

(15)

Each node k have a utility function describing how much it values having
an inventory level of à̂k goods,

Uk(à̂k) = qk à̂k(ak  à̂k). (16)

The parameters qk and ak should both be positive. These utility functions
have the property that the benefit of having access to more goods is de-
creasing with the amount of goods, that is Ä2U/Ä2(à̂) < 0. Furthermore,
when à̂k > ak/2 we have that ÄU/Ä(à̂) < 0. The intended working area is
0 < à̂ < ak/2.

We value higher inventory levels more the earlier we get them. Thus the
following pay o� function is chosen

minimize
u

E
Üÿ

t=0
�t

Nÿ

k=1
Uk(à̂[t])

Subject to dynamics in (15).

We assume that there is a underlying flow in the graph, which could
for example have been found using static optimization. However, due to the
variable external influences, we want to apply feedback around this static
flow. Then the transportation is happening independent of our choice of u,
and we can assume that it has already been paid for. Thus we do not put
any penalty on the input u.

Further, assume that the expected production and consumption are
equal. The problem can be transformed to a problem of the form of (8)
by controlling around the nominal flow. To do so, we must change variables
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à̂k

U(·)

àk

Figure 3. Plot of utilities in (16) and the relationship between à and à̂. à
can be interpreted as the negative demand for each node.
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à̂1

Figure 4. Simulation of store dynamics in (15). The goal is to keep optimal
inventory level in the three stores. Due to a discount factor and a net flow
through the graph, the levels are higher in the stores upstreams.

so that the pay-o� function is quadratic. We do this by letting à = à̂  ak/2.
The utility function and the change of variables are depicted in Figure 3.
The new variable à can be interpreted as the negative demand for each
node. Also, note that à is negative in the intended working area.

The input and flows will be controlled around the nominal flow ū = r̄, so
that û = ū + u, r̂ = r̄ + r. For the details, see Lemma 3 in Appendix. Note
that for û to be non-negative, we need u 3  ū.

For a simulation of the system, see Figure 4. A discount factor of � =
0.95 and utilities U(à̂i) = à̂i(1  à̂i) were used. The noise had variance
w̄ = 0.0.0025 for all i.
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6. Conclusions

We have presented a recursive solution to a class of optimal control prob-
lems. This solution is easily extended as the system grows. The structure
of the feedback law allows for an e�cient implementation using a local
communication scheme. We have showed that the optimal control problem
can be used to solve an inventory control problem.

It is expected that the results presented here will generalize to tree
graphs and periodic B matrices. This is subject to future work.

Appendix

Proof of Theorem 1: The theorem is trivially to show for N = 2. Now
assume that the theorem holds for N  1. Let Ao = AN 1, Bo = BN 1,
Qo = QN 1 and X̃o = X̃ N 1 denote the matrices for the system of size
N  1. Then the relation between the old and the new system matrices are
given by

A =

S

U

1 0 0T

0 0 0T

0 e1 Ao

T

V , B =

S

U

 1 0T

1 0T

0 Bo

T

V , Q =

S

U

qN 0 0T

0 0 0T

0 0 Qo

T

V ,

X̃ =

S

U

0 0 0T

0 �N 1 �N 11T

0 �N 11 �N 111T

T

V+

S

U

0 0 0T

0 0 0T

0 0 X̃o

T

V .

We start with the RHS of (9). Standard calculations and noting especially
that e1 = Aoe1 and e1 X̃o = 0 gives

(BT X B) 1 =
5

(qN +�N 1) 1 0T

0 (BT
o Xo Bo) 1

6

BT X A =
5

 qN �N 1 �N 11T

0 BT
o Xo Ae1 BT

o Xo Ao

6

Define Ko =  (BT
o Xo Bo) 1 BT

o Xo Ao. Corresponding definition for the sys-
tem of size N gives

 K = (BT X B) 1 BT X A =

S

U

 
qN

qN +�N 1

�N 1

qN +�N 1

�N 1

qN +�N 1
1T

0  Koe1  Ko

T

V .

Let, for the system of size N  1,

�o = AT
o Xo Bo(BT

o Xo Bo) 1 BT
o Xo Ao.
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Then, for the system of size N

� = AT X B(BT X B) 1 BT X A

=

S

W

W

W

W

W

W

W

W

U

q2
N

qN +�N 1
 

qN�N 1

qN +�N 1
 

qN�N 1

qN +�N 1
1T

 
qN�N 1

qN +�N 1

� 2
N 1

qN +�N 1
+ eT

1 �oe1
� 2

N 1
qN +�N 1

1T + eT
1 �o

 
qN�N 1

qN +�N 1
1 � 2

N 1
qN +�N 1

1 + �oe1
� 2

N 1
qN +�N 1

11T + �o

T

X

X

X

X

X

X

X

X

V

.

For the LHS of (9) we have, AT11T A = 11T ,

AT(X̃ + Q)A =
S

W

U

0 0 0T

0 �N 1 �N 11T

0 �N 11 �N 111T

T

X

V
+

S

W

U

qN 0 0T

0 eT
1 AT

o (X̃o + Qo)Aoe1 eT
1 AT

o (X̃o + Qo)Ao

0 AT
o (X̃o + Qo)Aoe1 AT

o (X̃o + Qo)Ao

T

X

V

The induction base can be rewritten as

 �N 111T + � AT
o (X̃o + Qo)Ao  X̃o = ��o.

While the Riccati equation itself can be rewritten as

 �N11T + � AT(X̃ + Q)A X̃ = ��.

For element (2,2), (2,3), (3,2), and (3,3) of the Riccati equation, we would
like to show that

 �N11T +� AT
o (X̃o+Qo)Ao X̃o+(� 1)�N 111T = �

3

� 2
N 1

qN +�N 1
+ �o

4

.

Applying the induction base gives

�N  �N 1 + (�  1)�N 1 = � � 2
N 1

qN +�N 1

Which is easy to show being true. For element (1,1) we need to show that,

 �N + �qN  � q2
N

qN +�N 1
,

equals zero. It can be rewritten as

 �N +�N + � q2
N

qN +�N 1
 � q2

N
qN +�N 1

= 0.
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Finally, for the remaining elements of the Riccati equation, we have that

 �N =  � qN�N 1

qN +�N 1
=  �N.

We have that X > 0 since 11T > 0, Q 3 0 and X̃ N 3 0. The last
inequality follows from that X̃ N =

q
k BT

k Bk, with

B = [0, . . . , 0,~�k, . . . ,~�k]. 2

L���� 1
Given A = AN , B = BN in (6), K = K N in (11), and an arbitrary constant
p, pA + BK has one eigenvalue with value p and 2N  2 eigenvalues with
value zero. 2

Proof Let �k = qk+1
qk+1+�k

. Then pAk + Bk Kk can be written recursively, given
Ao, Bo, Ko of the system of size k 1, as

pAk + Bk Kk =

S

U

p �k 1 1 �k 1 (1 �k 1)1T

�k 1 �k 1  1 (�k 1  1)1T

0 pAo + Bo Koe1 pAo + Bo Ko

T

V ,

with

pA2 + B2 K2 =

S

U

p + �1 1 �1 1 �1
�1 �1  1 �1  1
0 1 1

T

V .

Using the change of variables defined in (14), with So = Sk 1, and that
1T(pA + BK) = p1T , we have that

S(pA + BK)S 1 =
S

W

W

W

U

p 0 0
�k 1 0 0

0 So(pAo + Bo Ko)e1
So(pAo + Bo Ko)e1( eT

1 )+
So(pAo + Bo Ko)S 1

o

T

X

X

X

V

.

Note that S 1
o e1 = e1. The lower right element of S(pA + BK)S 1 can

the be written as
So(pA + BK)S 1

o ( e1eT
1 + I).

Assume that So(pA + BK)S 1
o is lower diagonal, and that the only non

zero diagonal element is element (1,1). Then So(pA + BK)S 1
o ( e1eT

1 + I)
is strictly lower diagonal. Then (pA + BK) has one eigenvalue of value p
and the other eigenvalues have value 0. Note also that S(pA + BK)S 1
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satisfies the assumption of being lower diagonal with element (1,1) being
the only non zero diagonal element.

It is easily checked that S2(pA2 + B2 K2)S 1
2 satisfies the assumption of

being lower diagonal with (1,1) being the only diagonal element. Thus the
lemma holds for all N 3 2 by induction. 2

L���� 2
Given A = AN and B = BN in (6) and Q = QN in (7). Let x[t+1] = Ax+Bu.
Then

lim
TPÜ

Tÿ

t=0
x[t]T Qx[t] (17)

is bounded, only if x[T]P 0, T PÜ. 2

Proof We prove the lemma by proving that

Nÿ

t=0
x[t]T Qx[t] = 0

only if x[0] = 0. Assume that there exists a x[0] ,= 0 s.t (17) holds. Then
at least one rk[0] = c ,= 0. Then uk 1[0] = c, which gives that rk 1[1] = c.
This will eventually lead to r1[� ] = c, with � < N. This will however give
that à1[� + 1] = c, which gives a non zero cost. 2

L���� 3
Assume that

qN
i=1 w̄i = 0 and

qN
i=k w̄i = ek > 0 for k 3 2. Then there exists

ūk = r̄k = ek > 0 such that, for all k and any à̂k

à̂k[t + 1] = à̂k[t] + (r̄k[t] ūk 1[t]) + ŵk[t] = à̂k[t] + w (18)

with wk = ŵk  w̄k B N (0, �k). Also, let uk = ûk  ūk, rk = r̂k  r̄k,
àk = à̂k  ak/2. Take x = [àN, rN 1, . . . r1, à1], u = [uN, . . . , u1]. Then the
solution to

maximize
ŝ

Üÿ

t=0
�t

Nÿ

k=1
Uk(à̂k)

subject to dynamics in (15),

(19)

can be found as û = ū + u, where s is the solution to (8) with A, B, Q as in
(6) and (7). 2

Proof The change of variables from à̂k to àk does not change the dynamics
of the system, so

àk[t + 1] = àk[t] + (r̂k 1[t] ûk[t]) + ŵk[t].
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Working around the nominal flow with uk and rk gives, by using (18),
I

àk[t + 1] = àk[t] + (rk[t] uk 1[t]) + wk[t]
rk[t + 1] = uk[t].

These dynamics are described by x[t + 1] = Ax[t] + Bu[t] + w with A and
B as in (6). For the optimization criterion, note that

max
à̂k

qk à̂k(ak  à̂k) = max
àk
 qkà2

k  0.25a2
k

and
arg max

àk

 qkà2
k  0.25a2

k = arg min
àk

qkà2
k.

We then have that minimizing xT Qx gives the maximum utility. 2
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Paper II

Price Based Linear Quadratic Control
Under Transportation Delay

Martin Heyden Richard Pates Anders Rantzer

Abstract

We study a simple transportation problem on a string graph where the
objective is to control the node levels of some decaying quantity. The
problem is considered from two perspectives. The first is to find the
social optimum where the flows minimize the total cost. The second is
to find prices for the nodes so that the users transportation decisions
align with the social optimum. We give an implementation of the opti-
mal feedback law that only requires local states and prices, where the
optimizing prices have a distributed update rule. The prices also align
the social and user optimum in a budget neutral way and give all nodes
better cost than if they were on their own.
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Germany. Reprinted with permission.
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1. Introduction

In this work we study optimal transportation of a decaying quantity. This
could be a transportation network, as illustrated in Section 2. The objective
is to control the node levels by regulating the transportation between the
nodes to optimize performance. The challenge is to do this in a manner that
scales well with network size, whilst accounting for dynamical e�ects such
as transportation delays.

To capture the essence of the problem, we consider a string network
with N nodes in discrete time. We let the transportation delay be one time
unit on every link and define the dynamics to be

x2i 1[t + 1] = �(x2i 1[t] + x2i[t]) ui 1[t]
x2i[t + 1] = ui[t],

(1)

for 1 2 i 2 N. The variable x2i 1 is the level in node i and x2i is the amount
in transportation towards node i. The control input ui 1 is the amount
leaving node i. At the boundaries we have u0 = 0, uN = 0, and x2N = 0.
See Figure 1 for an illustration when N = 3. The constant 0 < � 2 1 is the
decay rate.

The nodes are numbered as in Figure 1, where the most downstream
node has index one, the second most downstream has index two, and so on.
Furthermore, we index the links according to the node which they enter.

We assume that each node i values its level x2i 1 according to the
quadratic function, Ui(x2i 1) = bi x2i 1 1/2qi x2i 1[t]2, where qi > 0, bi > 0,
and bi+1 = �bi. The last assumption will be motivated in the next section.
We study the problem from two perspectives. First we consider the social
optimum problem where the objective is to maximize a global utility function
which is the sum of local utility functions,

maximize
x,u

J(x) =
Nÿ

i=1

Tÿ

t=1

3

bi x2i 1[t] 
1
2qi x2i 1[t]2

4

subject to Dynamics in (1)
xi[0] given.

(2)

In the above, x[t] B R2N 1 defined for 1 2 t 2 T and u[t] B RN 1 defined
for 0 2 t 2 T  1. This problem is a variation of the standard Linear
Quadratic control problem, with the di�erence that it contains a linear cost
term and no input penalty. The infinite horizon version of this problem was
solved in [Heyden et al., 2018] for bi = 0 by finding the solution to the
algebraic Riccati equation.

As a system grows large, it is infeasible for every node to have global
information. To overcome this issue we aim to solve the problem in a dis-
tributed way. This will be achieved using prices that only require local
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1 Introduction

x5 x3 x1

Node 3 Node 2 Node 1

u2, x4 u1, x2

Link 2 Link 1

Figure 1. A graphical illustration of the studied problem. There are three
nodes whose levels are to be controlled. Each link has a corresponding input
u that is the flow entering the link and a state that is the goods currently
in transit on the link. We have also indicated the indexing conventions for
the nodes and links.

communication to implement the feedback law. These prices will also be
used as a synchronization mechanism so that each individual node have
optimal level when considering its own utility. These objectives are well
aligned with the theme of solving optimization problems using Lagrange
multipliers.

Early work on distributed control includes team game problems, where
a set of agents works for the same goal, but with di�erent information, see
for example [Radner, 1962].

In this paper the structure follows from the plant, as in [Bamieh et
al., 2002] where the optimal control is shown to be localized in space for
spatially invariant systems. Other recent work includes [Shah and Parrilo,
2013], where the optimal poset-causal controller is found, which is similar to
the controller structure obtained in this paper. In [Lamperski and Lessard,
2015] problems where the plant and controller satisfy the same delay and
sparsity constraints are considered, and it is shown how to find the optimal
LQ state feedback.

Lagrange multipliers used for coordination is well studied, for example
as shadow prices in network congestion control [Kelly et al., 1998], [Low
et al., 2002] and in distributed MPC [Giselsson et al., 2013]. They have also
been suggested in control of power grids [Jafarian et al., 2016], [JokiÊ et
al., 2009]. Normally these problems are either static, or of high complexity.
Requiring either solving for all the prices and states at the same time, or
solving a Riccati equation. In our specific problem, the prices are not the
Lagrange multipliers, but rather a simple linear combination that is much
simpler to compute than the Lagrange multipliers are. For pioneering work
in using prices for coordination see [Cohen, 1978] which was later used to
control water supply networks in [Carpentier and Cohen, 1993].

Preview of Results
To give incentive for the individual nodes to follow the social optimum we
will introduce prices and study the problem from a node perspective. Each
node i will be presented with a price vector pi[t] that will a�ect the nodes
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utility proportional to their levels,

Ci(x2i 1, pi) = pi[0]x2i 1[0]+
Tÿ

t=1

1

bi x2i 1[t] 
1
2qi x2

2i 1[t] pi[t]x2i 1[t]
2

. (3)

Typically increasing x2i 1[t] will lead to a trade o� between the increased
utility from the bi x2i 1[t] 1/2qi x2

2i 1[t] term, and the decreased utility from
the cost pi[t]x2i 1[t]. The utility function in (3) will be further discussed in
Section 2. Each node will naturally consider the following problem

maximize
x2i 1

Ci(x2i 1, pi)

subject to pi given.
(4)

We find the solution to social optimum problem by studying the La-
grangian of the problem. The main contribution lies in deriving a set of
prices from the Lagrange multipliers that allows for a distributed imple-
mentation of the optimal feedback law and aligns social and user optimum.
The prices are given by a simple, temporally decoupled, expression

pi[t + 1] =
I

bi  �i
q2i

j=1 xj[t] 0 2 t 2 T  i
0 t > T  i,

(5)

where � is defined by the following iteration

�1 = q1, �i =
�2�i 1qi

�2�i 1 + qi
, i 3 2. (6)

With p as in (5), the optimal inputs are given by

ui 1[t] = �(x2i 1[t] + x2i[t]) 
1
qi

!

pi[t + 1] bi
"

. (7)

The combined structure of (5) and (7) allows for a simple implementation
of the optimal u using only local communication. The expression for the
optimal prices in (5) indicates that the price should increase the more a
node values its level from the term bi, and decrease when more goods is
available.

2. Motivation for the problem

How can the dynamics in (1) arise? We will consider a simple model of
a generic transportation network for a decaying quantity. This could for
example be a district heating network, or an inventory control system for
decaying goods.
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2 Motivation for the problem

Each node i in the network has a constant production (or consumption)
wi. Furthermore, the quantity can be transported along the links of the
system. The transportation must be positive, which essentially implies that
the demand is bigger downstream than upstream. This will be the case if
there is a producer at the top of the network. Finally, we make the simpli-
fying assumption that the decay has a homogeneous rate 1 � throughout
the system. We can write the dynamic for the level �i in each node as

�i[t + 1] = �
!

�i[t] + vi[t 1]
"

+ wi  vi 1[t].

In the above vi 1 is the quantity leaving the node and vi is the quantity
arriving to the node. The quantity leaving the node goes immediately into
transportation and will take one time unit to arrive.

Let the flows v[t] = v̄ be constant. Then as t grows large, each node will
have an equilibrium level �̄i where the inflow equals the outflow,

�̄i =
1

1 � (wi + �v̄i  v̄i 1).

We assume that each node values its level according to a quadratic
function Ui(�i) and the optimal equilibrium is the solution to

maximize
v̄

ÿ

i
Ui(�̄i)

subject to �̄i =
1

1 � (wi + �v̄i  v̄i 1).
(8)

Now we study the system around this equilibrium. We introduce a new
state vector x B R2N 1 where odd indices correspond to node levels and
even indices to quantity in transit. Furthermore we define the new input
vector u B RN 1. These variables are defined around the equilibrium levels,

ui[t] = vi[t] v̄i,
x2i 1[t] = �i[t] �̄i

x2i[t + 1] = ui[t]

Then the dynamics for x are given by (1).
The utility relative to the optimum can be written as

Ui(�̄i + x2i 1) Ui(�̄i) =
Tÿ

t=1

3

bi x2i 1  
1
2qi x2

2i 1[t]
4

,

where qi < 0.
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R����� 1
Since �̄i solves (8) we must have that

bi+1 = �bi. (9)

Otherwise the utility could be improved by making a small perturbation � to
v̄i which would increase �̄i by �/(1 �)� and decrease �̄i+1 by 1/(1 �)�.2

Now, assume that operating conditions changes and the optimal equilib-
rium changes. Finding the optimal transition to this new equilibrium would
correspond to solving (2). The lack of penalty on the flows can be motivated
by that the cost of changing the transportation is small. For example, if the
transportation is done via trucks, then there is typically no additional cost
if a truck transport more goods. However, there is still a loss in transporting
the quantity in that the quantity being transported is not utilized.

How can the user problem in (3) be motivated? We note that close to
the equilibrium pi[t] > 0 , t 3 1. We shall later see that that is the case
for t = 0 as well. Its natural that the users in the transportation network
pay for their levels. Now if the new equilibrium level is lower for a node,
then that node would expect to be paid if it is to actively send away some
of its quantity. Likewise, if a node gets a higher level, that node would be
expected to pay for it. This is captured by the term pi[0]x2i 1[0].

Since the new equilibrium can not be reached immediately the nodes
should also pay if they continue having a higher level, or get compensated
if it is to low. This is captured by the terms pi[t]x2i 1[t].

3. Results

We start by giving the solution to (2) in Theorem 1. This result shows that
the i-th entry of the optimal control input can computed based only on local
measurements of the quantity x, and a local price pi. Next we show in
Proposition 1 how these prices can be used to align the user problem in
(4) to the social optimum. The prices have additional appealing properties.
Firstly, the node utilities are higher than if they had zero flows and no
payments, and secondly, the sum of all payments equal zero. The proofs of
the results presented here will be given in Section 5.

T������ 1
Define �i as in (6), and p[t] by

pi[t + 1] =
I

bi  �i
q2i

j=1 xj[t], 0 2 t 2 T  i
0 t > T  i.

(10)
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3 Results

Then the optimal u for (2) is given by

u[t] = �

S

W

W

W

U

0 0 1 1 0
. . . . . .
0 1 1 0

0 1

T

X

X

X

V

x[t] 

S

W

W

W

W

U

0 1
q2

0
. . .

0 1
qN

T

X

X

X

X

V

(p[t + 1] b). (11)

With p[t] = [p1[t], . . . , pN[t]]T and b = [b1, . . . , bN]T . 2

If we write out the expressions for each input we get (7). From the
theorem we see that there exists a simple method for calculating the optimal
feedback law, using only local states and local prices. Furthermore, pi[t+1]
can be calculated recursively through the graph,

pi[t + 1] = �i

3

 x2i 1[t] x2i[t] +
1

�i 1
pi 1[t + 1]

4

+ (1 1
��i 1

)bi,

requiring only local communication.
Eq. (7) has a very natural interpretation from the user optimal perspec-

tive, as it is the solution to

minimize
ui 1[t 1]

bi x2i 1[t] 
1
2qi x2

2i 1[t] pi[t]x2i 1[t]

subject to x2i 1[t] = �(x2i 1[t 1] + x2i[t 1]) ui 1[t],

which corresponds to the node optimizing its utility for the next time point.
R����� 2
At first sight it may seem like (11) is non causal as the input at time t
depends on prices at time t+1. However, from (10) we can see that prices at
time t + 1 depends on state at time t, and the expression is indeed causal.
As the prices are associated with the states when the input has taken a�ect,
it is natural that the prices are one time-index ahead of the inputs. 2

R����� 3
It might be surprising that some of the prices are zero and thus the corre-
sponding nodes will have optimal levels, xi =  b2/q2, as t gets closer to T.
This is due to the boundary e�ects of the system, where the level of a node
can be increased without decreasing the value of others. This is done buy
putting the deficit in the transportation states. 2

P���������� 1
In addition to the definitions in Theorem 1, let m = min(T  i, N), and

pi[0] =
T (i 1)ÿ

t=1
�t (t0+�)bi  �

A mÿ

j=i
� j

2 jÿ

k=1
xk[t] +

Tÿ

j=N+1
�N�2( j N)

2N 1ÿ

k=1
xk[t]

B
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Then the following holds

(i) The optimal x for (2) and (4) are equal.

(ii) The node utility satisfies

Ci(x2i 1, pi) 3
Tÿ

t=1

1

bi�t x2i 1[0] qi(�t x2i 1[0])2
2

.

(iii) The sum of payments are equal to zero,
Nÿ

i=1

A

pi[0]x2i 1[0] 
Tÿ

t=1
pi[t]x2i 1[t]

B

= 0.
2

The proposition shows not only that is possible to align the user and
social optimum. We also have that each node is never worse o� than if they
had no in- or outflow. This is what would happen if the node was not part
of the transportation network. This is an important property as otherwise
the nodes would be reluctant to be part of the network.

Furthermore the payment scheme is budget neutral, i.e. the payments
sum to zero. This is significant as if the scheme had a budget deficit, it would
be very hard to find someone to supply additional money to the system with
nothing in return.

4. Analysis of the Lagrangian

In this section we perform the necessary analysis of the Lagrangian for
(2) needed to prove Theorem 1 and Proposition 1. An important part is to
construct an alternative user utility based on the Lagrange multipliers, and
showing that it is equal to the original one in (4).

Lagrangian
By making the constraint x2i[t + 1] = ui[t] explicit we can write the La-
grangian of (2) as

L(x, u, �) = J(x) +
T 1ÿ

t=0

5

�1[t + 1]
Ó

�
!

x1[t] + u1[t 1]
"

 x1[t + 1]
Ô

+
N 1ÿ

i=1
�i[t + 1]

Ó

!

�(x2i 1[t] + ui[t 1]) ui 1[t]
"

 x2i 1[t + 1]
Ô

+ �N[t + 1]
Ó

!

�x2N 1[t] uN 1[t]
"

 x2N 1[t + 1]
Ô

6

. (12)
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4 Analysis of the Lagrangian

The Lagrange dual variable has dimensions �[t] B RN for 1 2 t 2 T. The
dual variables �i[t] have natural economic interpretation as the marginal
change in social utility when x2i 1[t] changes.

Alternative user optimal problem
Based on the Lagrangian we define an alternative user utility function, and
show that it is equal to the original in (3). In this formulation the node
utility will include a cost based on the level change,

Ĉi(x2i 1, �i) =
Tÿ

t=1
bi x2i 1[t] 

1
2qi x2

2i 1[t] �i[t] (x2i 1[t] �x2i 1[t 1])
¸ ˚˙ ˝

change in level

.

(13)
Note that all the terms in Ĉ are in the Lagrangian L. By letting

pi[t] =

Y
_]

_[

��i[1] t = 0
�i[t] ��i[t + 1] 1 2 t 2 T  1
�i[T] t = T,

(14)

the node utility can be rewritten as

Ĉi(x2i 1, �i) =
T 1ÿ

t=1
bi x2i 1[t] 

1
2qi x2

2i 1[t] (�i[t] ��i[t + 1])x2i 1[t]

+ ��i[1]x2i 1[0] �i[T]x2i 1[T]

=
Tÿ

t=1

1

bi x2i 1[t] 
1
2qi x2

2i 1[t] pi[t]x2i 1[t]
2

+ pi[0]x2i 1[0]

= Ci(x2i 1, pi).

Thus the two di�erent user optimal problems are equal, and we can analyze
either one of them. We will use the Lagrangian version for analysis, while
the p version will be used for implementation.

Optimality Conditions
The optimization problem in (2) is concave as it is the maximization of a
concave cost function under a�ne constraints. Thus necessary and su�-
cient optimality conditions are given by the KKT conditions (see [Boyd and
Vandenberghe, 2004])

L� L = 0, Lu L = 0, Lx L = 0.

L� L = 0 is equal to the dynamics constraint being satisfied.
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For a standard LQ problem with a penalty on the input, Lu L = 0 gives
u as a function of �. See [Cannon et al., 2008] for a slightly more general
MPC case. Here we instead get the following

ÄL
Äui[t]

=  �i+1[t + 1] + ��i[t + 2] = 0, 0 2 t 2 T  1 (15a)

ÄL
Äui[T  1] =  �i+1[T] = 0. (15b)

Note that it is due to the lack of penalty on u that Lu L is independent of
u.

Next we study Lx L. Normally this allows us to solve for � given x, going
backwards in time. Calculating the gradients gives

ÄL
Äx2i 1[t]

= bi  qi x2i 1[t] + ��i[t + 1] �i[t], 1 2 t 2 T  1 (16a)

ÄL
Äx2i 1[T]

= bi  qi x2i 1[T] �i[T]. (16b)

Combining the two optimality conditions, we get the following lemma.

L���� 1
The optimal inventory level x satisfies

x2i 1[t] =
�qi 1

qi
x2(i 1) 1[t + 1] (17)

for i 3 2 and t 2 T  1. 2

Proof Using (16a) and (15a) gives for t 2 T  2

x2i 1[t] =
��i[t + 1] �i[t] + bi

qi

=
�qi 1

qi

��i 1[t + 2] �i 1[t + 1] + bi 1

qi 1
+

bi  �bi 1

qi

=
�qi 1

qi
x2(i 1) 1[t + 1]

where we have used that �bi 1 = bi. The case for t = T  1 follows simi-
larly. 2

5. Proof of Theorem 1 and Proposition 1

We are now ready to prove Theorem 1 and Proposition 1.
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5 Proof of Theorem 1 and Proposition 1

Proof of Theorem 1 For every input (recall that x2N = 0), we have from
the dynamics that

x2(i+1) 1[t + 1] = �(x2(i+1) 1[t] + x2(i+1)[t]) ui[t][
ui[t] = �(x2(i+1) 1[t] + x2(i+1)[t]) x2(i+1) 1[t + 1].

Using (16a-b) we get for t 2 T  2, that the optimal u must satisfy

ui 1[t] = �(x2i 1[t] + x2i[t]) +
��i[t + 2] �i[t + 1] + bi

qi

and for t = T  1,

ui 1[T  1] = x2i+1[T  1] + x2i[T  1] +  �i[T] + bi

qi
.

Thus with the relation between p and � as defined in (14) we have that
the optimal u is given by (11). The expressions for p in (10) follows from
Proposition 2 (see the appendix). 2

Proof of Proposition 1 As the nodes choices of levels has no e�ect on the
prices, the optimal level from the nodes perspective must satisfy

0 =
ÄĈi

Äx2i 1[t]
=

ÄL
Äx2i 1[t]

.

This must also hold for the social optimum, thus proving (i).
Furthermore we see that choosing the social optimum inventory levels

are better than choosing x2i 1[t] = �t x2i 1[0], as it is not a minimizer of C.
Thus proving (ii).

The sum of all the payments are

 
Nÿ

i=1

Tÿ

t=1
�i[t]

1

x2i 1[t] �x2i 1[t 1]
2

. (18)

Using that

x2i 1[t] �x2i 1[t 1] =  ui 1[t 1] + �ui[t 2],

The sum in (18) can be rewritten as
N 1ÿ

i=1

AT 2ÿ

t=0

1

 �i+1[t + 1] + ��i[t + 2]
2

ui[t] �i+1[T]ui[T  1]
B

.

This is equal to zero, since �i+1[t + 1] = ��i[t + 2] and �i[T] = 0 for i 3 2.
Thus proving (iii). 2

59



Paper II. Price Based LQ Control Under Transportation Delay

6. Conclusions & Future work

We have considered the social and user optimum for a simple transportation
problem on a string graph. By solving the social problem using a Lagrange
multiplier approach we gave an implementation of the feedback law in terms
of local prices and local states that allows for a distributed implementation.
Furthermore, these prices aligned the two problem in a budget neutral way
so that the nodes are never worse o� than if they had been on their own.

Some of the assumptions in this paper could be relaxed. For example, the
transportation delays could be changed to be a multiple of the sample time,
allowing for non homogeneous delays. The results can also be extended to
poly-trees, and we intend to do so in an upcoming publication.

Appendix

In the appendix we will derive the optimal Lagrange multipliers �[t0 + � ]
in terms of x[t0 1]. We will show that each � can be found as a sum of the
the corresponding node levels in Lemma 2. These node levels can in turn
be found by studying a time shifted aggregate level as shown in Lemma
3. This shifted aggregate can then be written in terms of a non shifted
aggregate at t0  1 in Lemma 4.

L���� 2
The optimal Lagrange multipliers are given by

�i[t0] =
Tÿ

t=t0

�t t0
!

bi  qi x2i 1[t]
"

.
2

Proof We have from (16) that �i[T] = bi  qi xi[T] and �i[t] = bi  qi xi[t] +
��i[t + 1]. From that the lemma follows trivially. 2

Next we show how each node level can be written in terms of a time
shifted level vector.
L���� 3
The optimal inventory levels satisfy

x2i 1[t0 + k] =

Y
_____]

_____[

�i+k

�kqi

i+kÿ

j=1

x2 j 1[t0 + k + (i j)]
�k+i j i + k 2 N

�N

�N iqi

Nÿ

j=1

x2 j 1[t0 + k + (i j)]
�N j i + k > N.

(19)
2
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Appendix

Proof We start by showing the lemma for k = 0. Using (17) gives

x3[t] =
�q1

q2
x1[t + 1][

(1 +
�2q1

q2
)x3[t] =

�2q1

q2

3

x1[t + 1]
� + x3[t]

4

[

x3[t] =
�2�1

q2 + �2�1

3

x1[t + 1]
� + x3[t]

4

.

Now assume that (19) holds for i 1 and k = 0. Then using (17) again gives

x2i 1[t] =
�qi 1

qi
x2(i 1) 1[t + 1]

=
�qi 1

qi

�i 2

qi 1 +�i 2

Q

a
i 1ÿ

j=1

x2 j 1[t + ((i 1) j)]
�(i 1) j

R

b

Which gives that

3

1 +
�2�i 1

qi

4

x2i 1 =
�2�i 1

qi

Q

a
iÿ

j=1

x2 j 1[t + (i j)]
�i j

R

b

From which it follows that the lemma holds for k = 0. Now assume that
the lemma holds for k 1. Then if i + k 2 N

x2i 1[t0 + k] = qi+1

�qi
x2(i+1)[t0 + k 1]

=
qi+1

�qi

�(i+1)+(k 1)

�k 1qi+1

i+1+k 1ÿ

j=1

x2 j 1[t0 + (k 1) + ((i + 1) j)]
�(k 1)+(i+1) j

=
�i+k

�kqi

i+kÿ

j=1

x2 j 1[t0 + k + (i j)]
�k+i j

For i + k > N define k̂ and t̂0 so that

i + k̂ = N
t̂0 + k̂ = t0 + k.

(20)

Then using that x2i 1[t0 + k] = x2i 1[t̂0 + k̂] gives the second part. 2

Finally, we will show that the time shifted level vector can be written in
terms of x[t0  1].
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L���� 4
The optimal x for (2) satisfies for i + k 2 N:

i+kÿ

j=1

x2 j 1[t0 + k + (i j)]
�k+i j = �

i+kÿ

j=1

!

x2 j 1[t0  1] + x2 j[t0  1]
"

and for i + k > N:
Nÿ

j=1

x2 j 1[t0 + k + (i j)]
�N j = �k+i N+1

Nÿ

j=1

1

x2 j 1[t0  1] + x2 j[t0  1]
2

2

Proof We start with the first equality. Using that

x2 j 1[t + n] = �n+1(x2 j 1[t 1] + x2 j[t 1])

 
n 1ÿ

�=0
�(n 1) � uj 1[t + � ] +

n 2ÿ

�=0
�n 1 � uj[t + � ],

we have for i + k 2 N:
iÿ

j=1

x2 j 1[t0 + k + (i j)]
�k+i j = �

nÿ

j=1

1

x2i 1[t0  1] + x2i[t0  1]
2

+ � 1 �
1

iÿ

j=1

k+(i j) 2ÿ

�=0
uj[t0 + � ] 

iÿ

j=1

k+(i j) 1ÿ

�=0
uj 1[t0 + � ]

2

Now using that u0 = 0 the last row can be rewritten

i 2ÿ

j=1

k+(i j) 2ÿ

�=0
uj[t + � ] 

i 1ÿ

j=2

k+(i j) 1ÿ

�=0
uj 1[t + � ] = 0

For the second equality we use (20) again,
Nÿ

j=1

x2 j 1[t0 + k + (i j)]
�N j =

Nÿ

j=1

x2 j 1[t̂0 + k̂ + (i j)]
� k̂+i j

= �
Nÿ

j=1

1

x2 j 1[t̂0  1] + x2 j[t̂0  1]
2

= �k (N i)+1
Nÿ

j=1

1

x2 j 1[t0  1] + x2 j[t0  1]
2

Where we have used that t̂0  t0 = k k̂. 2
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Appendix

We also need the following lemma, which shows that there exist a bound-
ary e�ect in the optimal controller that makes some of the states locally
optimal.

L���� 5
The optimal inventory levels satisfy

x2i 1[t] =
bi

qi
8t 3 T  (i 2), i 3 2.

2

Proof We start by showing the lemma for i = 2. As u1[T  1] only a�ects
x3[T], the optimal value corresponds to maximizing the local utility, so that
x3[T] = b2/q2. Thus

u1[T  1] =  b2

q2
+ �(x3[T  1] + x4[T  1])

and x3[T] = b2/q2, independent of all other ui[t].
Now assume that the lemma holds for all i 2 n. Then ui[t] only needs

to consider x2i+1 for all t 3 T  i. Thus the optimal un[t] satisfies

un[t] =  
bn+1

qn+1
+ �(x2(n+1) 1[t] + x2(n+1)[t])

8t 3 T  n and
xn+1[t] =

bi+1

qi+1
8t 3 T  (n 1).

Thus the Lemma holds for all n. 2

We are now ready to state the following proposition, which gives expres-
sions for the optimal �.

P���������� 2
Let m = min(T  t0  (i 1), N) and

�(t0,�) = �1 �

A mÿ

j=i+�
� j

2 jÿ

k=1
xk[t0 1]+

T t0+1ÿ

j=N+1
�N�2( j N)

2N 1ÿ

k=1
xk[t0 1]

B

Then the optimal �’s are given by

�i[t0 + � ] =
T (i 1)ÿ

t=t0+�
�t (t0+�)bi  �(t0,�)

2
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Proof From Lemma 2 and 5 we have that

�i[t0 + � ] = � �
T t0 (i 1)ÿ

k=�
�k

1

bi  qi x2i 1[t0 + k]
2

Combining Lemma 3 and 4 gives that

�kqi x2i 1[t0 + k] =
I

��i+k
qi+k

j=1 x2 j 1[t0  1] + x2 j[t0  1] i + k 2 N
��N�2(k+i N) qN

j=1 x2 j 1[t0  1] + x2 j[t0  1] i + k > N

Which gives that

� �
T t0 (i 1)ÿ

k=�
�kqi[t0 + k] =

�1 �

Q

a
mÿ

j=i+�
� j

2 jÿ

k=1
xk[t0  1] +

T t0+1ÿ

j=N+1
�N�2( j N)

2 jÿ

k=1
xk[t0  1]

R

b

From Lemma 5 it follows that �i[t] = 0, t 3 T  (i 1). 2
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