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Abstract—The problem of correctly recovering assembly in-
structions from a binary has received much attention and both
malware and license validation code often relies on various anti-
disassembly techniques in order to complicate analysis. One well-
known anti-disassembly technique is to use overlapping code such
that the disassembler starts decoding from an incorrect byte, but
still recovers valid code. The actual code which is supposed to
be executed is instead hidden inside a decoy instruction, and is
overlapped with the disassembled code.

We propose and investigate a new novel anti-disassembly
method that allows for exceptional flexibility in the hidden
instructions, while at the same time providing a disassembled
main path that is executable. This allows the approach to be
very efficient against static linear sweep disassembly, but also to
be more difficult to detect using dynamic analysis methods. The
idea is to utilize highly redundant instructions, e.g., multibyte
no-operation instructions, and embed the hidden code in the
configurable portions of those instructions. By carefully selecting
wrapping instructions, providing overlaps, the hidden execution
path can be crafted with great flexibility. We also provide a
detection-algorithm, together with testing results, for testing
software such that the hidden execution path can be identified.

I. INTRODUCTION

The application of analysis evasion techniques has both

benign and malicious purposes. License validation code can

be protected in order to make it more difficult to analyse the

validation procedure. This can delay the development of illegal

copies that bypass the license validation. At the other end,

there are malware authors that want to prevent analysis of

their malware. One way to accomplish this is to confuse the

software or the analyst into making wrong conclusions about

the code and its behaviour. New analysis evasion techniques

often also requires new, and sometimes ad hoc, ways of testing

software for the presence of evasion attempts, e.g., hidden

code. For an analyst there is much time to gain from automated

detection.

In this paper we focus on the problem of correct disas-

sembly, and in particular an anti-disassembly technique that

aims to trick the disassembler into recovering benign, valid and

executable code, which will host the hidden code. The idea is

based on using certain instructions in which several bytes can

be chosen arbitrarily. We identify several such instructions, but

focus on the no-operation (NOP) instruction. We show that a

large set of instructions can be embedded inside a linear stream

of NOP instructions. This technique allows a great flexibility

in the hidden code and almost any sequence of instructions

can be hidden inside the NOPs. Furthermore, we discuss how

our basic technique can be extended to avoid certain heuristic

detection techniques. Some well known disassemblers, both

simple and advanced, are used to test the proposed technique

and we show that it can be successfully hidden from all these

tools. Finally, we discuss a testing approach that is tailored

to detect the hidden execution path. We test it on a proof-of-

concept implementation and it successfully detects the hidden

instructions with good accuracy.

II. BACKGROUND

This section will provide the necessary background for the

rest of the paper and put the results into context by discussing

related techniques.

A. Disassembly

Disassembly is the process of taking machine code as input,

and outputting human-readable assembly code. There are two

main ways of approaching the problem of disassembly, namely

static and dynamic disassembly. Static disassembly consists

of analysing and examining the machine code in order to

construct the most probable sequence of assembly instructions.

This is done without actually executing the code, which is in

contrast to dynamic disassembly, where the instructions are

executed and identified upon execution. Both methods have

their advantages and drawbacks. Static disassembly must guess

which instructions are executed, but will on the other hand be

able to cover all code. Dynamic disassembly, on the other

hand, will know which instructions are executed, but it will

only identify those instructions that are actually executed using

the current input and environment.

Static disassembly can in turn be performed using a linear
sweep algorithm or recursive traversal. A linear sweep algo-

rithm starts with the first executable byte and then proceeds

through the machine code, disassembling instruction by in-

struction. One drawback of this method is that the disassembler

can not easily distinguish data from instructions in the code

section of the executable. This can lead to errors if data is

located in a stream of instructions. Another limitation is that

when one instruction ends, the disassembler assumes that the

next instruction follows it immediately. In recursive traversal,

the actual control flow of the program is followed. If it



encounters an unconditional jump instruction, the disassembly

proceeds at the target address. This will allow the algorithm

to avoid errors based on data that is embedded in the code

section. On the other hand, it may not always be easy, or even

possible, to compute the correct target of a jump instruction.

The techniques proposed in this paper will focus on linear

sweep and dynamic disassembly. We will also discuss variants

and extensions that aims at evading correct disassembly by

recursive traversal.

B. Anti-Disassembly

Anti-disassembly is the process of deliberately trying to

make it difficult to disassemble machine code. Several tech-

niques have been proposed in the literature [4], [5], [19] and

the most basic ideas are typically to take advantage of the lim-

itations in linear sweep algorithms and/or recursive traversal.

The fact that the linear sweep algorithm disassembles each

instruction in a sequence, regardless of the control flow, can

be exploited by adding junk bytes after an unconditional jump.

These junk bytes will never be executed, but the algorithm will

assume that they are part of the next instruction, resulting in a

misalignment between the executed code and the disassembly

listing. As long as the junk bytes constitute the beginning of an

instruction and the following instruction starts after the end of

the junk byte instruction, the disassembler will start producing

the wrong code.

The following example will insert a junk byte with a value

0x9A in order to confuse a linear sweep disassembler.

JMP foo EB 03
DB 0x9A 9A #This is the junk byte
foo:
XOR EAX,EAX 31 C0
XOR EBX,EBX 31 C3
INC EAX 40
INC EBX 43
INT 0x80 CD 80

This piece of code would be disassembled in the following

way.

JMP foo+1 EB 03
foo:
CALL DWORD 0x4340:0xC331C031 9A 31 C0 31 C3 40 43
INT 0x80 CD 80

One limitation of using junk bytes as an anti-disassembly

technique, is that the disassembly will resynchronize with the

real code after a small number of steps since the x86 assembly

instructions does not have fixed size instructions. This can be

seen in the above example where the instruction INT 0x80
is found in both disassembly listings.

Code overlapping can be seen as an extension of the

junk-byte insertion approach, where code overlapping creates

instructions that have bytes in two or more instructions. If

the disassembler starts decoding at the wrong offset, it will

either resynchronize within a few instructions, or it will mark

an instruction as invalid if no possible instruction can be

decoded from the starting byte. However, it is possible to

craft instructions such that two different offsets will produce

valid code, but only one will be executed at run time. By

making sure that the instructions always overlap, the two

execution paths will not resynchronize until it does so by

design. Unfortunately, it is very difficult to find two valid

execution paths with this behaviour since the start of one

instruction always must be the end of another instruction.

One common technique to fool recursive disassemblers

is to use opaque predicates. By having a conditional jump

instruction where the condition is the same every time a

program is executed, the conditional jump works effectively

like an unconditional jump if the jump is taken, or a NOP
instruction if the jump is not taken. Recursive disassemblers

will often be fooled to follow the incorrect execution flow

while disassembling. Below is an example of an opaque

predicate.

MOV EAX, 0x1
TEST EAX, EAX
JZ foo+1
foo:
CALL something

Register EAX will always contain the value 1, and the

conditional jump instruction will never be taken, but a recur-

sive traversal disassembler will first evaluate the target of the

branch instruction, starting with the second byte of the CALL
instruction, and when evaluating the fallthrough instruction it

will notice that the bytes are already disassembled and will

not include this in its output.

To fool a dynamic disassembler the jump instruction must

be able to evaluate to both true and false, depending on

the circumstances. For instance if the executable finds itself

running within a virtual machine, it may decide to jump

to a piece of code with benign functionality, otherwise the

malicious content will be executed. There are some interesting

techniques for defeating dynamic disassemblers in this way,

in which the instructions are generated during run-time and

are based on the system environment [4], [5].

C. No-operation Instructions

No-operation (NOP) instructions can have many uses, de-

spite the fact that the only effect it has on the CPU state is

the update of the program counter. The most common use

of the NOP instruction is for memory alignment of machine

code, for the purpose of more efficient instruction handling

by the CPU. Modern x86 instructions, for instance, fetches

instructions at DWORD boundaries. If the target instruction of

a branch would be in the middle of a DWORD, then the CPU

would fetch the preceding WORD as well in addition to the

target instruction. Another use is to prevent hazards in the CPU

pipeline. There are illegitimate uses of the NOP instruction as

well. They can be used to create a NOP sled, which eases

exploitation of some buffer overflow vulnerabilities. NOPs has

also been shown to be able to fool AV software by injecting

them into the malicious code to change the signature of that

malware [8].

The most commonly used NOP instruction for the x86

architecture is encoded within a single byte, 0x90, and it

is an alias for the instruction XCHG EAX,EAX, which simply

switches the values between the registers in the two operands.

Compiled binaries often have multiple single-byte NOPs

after each other to achieve memory alignment. If these NOPs



are executed, they will take one clock cycle each to execute.

An alternative solution would be to replace multiple single-

byte NOPs with one multi-byte NOP instruction.

NOP instructions on the x86 architecture should, according

to Intels x86 manual [11], vary between one and nine bytes.

In reality though, we can construct valid NOP instructions up

to the maximum instruction size, 15 bytes, by using multiple

instruction prefixes, but since these extra bytes are all static,

it does not add any value to us. Below the recommended

encodings of each multi-byte NOP instruction can be seen.

Instruction Encoding
NOP 66 90
NOP DWORD PTR [EAX] 0F 1F 00
NOP DWORD PTR [EAX+00] 0F 1F 40 00
NOP DWORD PTR [EAX+EAX + 00] 0F 1F 44 00 00
NOP WORD PTR [EAX+EAX + 00] 66 0F 1F 44 00 00
NOP DWORD PTR [EAX+00000000] 0F 1F 80 00 00 00 00
NOP DWORD PTR [EAX+EAX + 00000000] 0F 1F 84 00 00 00 00 00
NOP WORD PTR [EAX+EAX + 00000000] 66 0F 1F 84 00 00 00 00 00

For the nine-byte NOP, the first byte (66) is an instruction

prefix for overriding the operand-size. The following two bytes

(0F 1F) is the opcode. The fourth byte (84) is the so called

Mod R/M byte, which essentially describes the format of the

operand. The last five bytes (00 00 00 00 00) describe

the memory operand. Note that even though the NOP has

a memory operand, when executed it does not access that

memory in any way. This is simply how the NOP is represented

in assembly code.

Since no memory is accessed, we can edit the last five

bytes however we want and this would have no effect on

how the instruction is executed compared to its recommended

configuration.

III. A NEW TECHNIQUE FOR OVERLAPPING

INSTRUCTIONS

In this section we give the requirements and the main ideas

for our proposed way of overlapping instructions.

A. Requirements

In order to successfully overlap instructions to trick the

disassembler into reconstructing the wrong execution path, as

described in Section II-B, two requirements must be met.

1) The instructions must overlap each other and must never

be aligned such that two instructions end at the same

byte.

2) Both execution paths must consist of valid instructions.

Fulfilling both of these requirements is very difficult since an

instruction in one path always puts heavy restrictions on the

overlapped instruction in the other path. The proposed anti-

disassembly technique will meet these two requirements by

choosing instructions with certain properties that make it much

more manageable to overlap and embed instructions. It will

even allow us to choose the instructions in one execution path

with much freedom.

In a situation where the program, depending on external or

run-time properties, will execute one of the paths, it is crucial

that both paths not only produce valid code but that the code

is also executable. This will add a third requirement.

3) Both execution paths must consist of executable instruc-

tions.

By executable we mean instructions that will, to some extent,

guarantee not to crash the program.

B. Overview of the Main Idea

The goal is to assemble a stream of bytes such that when

decoding from two different offsets, two different sets of

instructions would be found, i.e., two different execution

paths. The two paths will be denoted Main Execution Path

(MEP) and Hidden Execution Path (HEP) respectively. A static

disassembler should only recover the MEP up until the point

where the two paths converge. A dynamic disassembler, which

will decode the actual executed instructions, will in the case

when the MEP is executed recover the MEP. Clearly, in the

situation when the HEP is executed, for example when the

presence of a virtual machine is not detected, the HEP will

be executed and recovered. As malware is often analysed in

a VM, this adds an additional layer of obfuscation for the

analyst.

The HEP is the most important execution path, since it

should be able to hide arbitrary instructions. Therefore we

will put as few restrictions as possible on it and allow it to be

as flexible as possible. At the same time, the exact effects

the MEP has are not important since its primary function

is to hide the HEP. To be able to do this efficiently we

identify instructions that have as many bytes that can be

arbitrarily chosen as possible. The MEP will consist only of

these instructions and they will be coded as XX YY ZZ.

XX represents instruction prefixes, the opcode and other

static bytes part of the instruction that cannot be changed.

YY includes the dynamic bytes, often describing a memory

operand or an immediate value of the instruction. The bytes

in YY should be large enough to be able to embed a large set

of instructions. The YY bytes will form the most important

part of the HEP. ZZ should, just as YY, be possible to have

any value assigned to it with the only difference that the

combination of ZZ followed by XX must encode to a valid

and executable instruction. ZZ should preferably consist only

of one byte, leaving as many free bytes for YY as possible.

The combination of ZZ and XX is denoted the wrapping
instruction. The wrapping instruction will be executed as

part of the HEP and should have little influence over the

hidden code. The wrapping instruction is used to glue together

the HEP instructions and to separate the MEP and HEP by

overlapping two consecutive MEP instructions. Finally, the last

HEP instruction should end with ZZ, creating a convergence

point for the different execution paths.

The MEP will be decoded and executed as

Instruction 1: XX YY ZZ
Instruction 2: XX YY ZZ
Instruction 3: XX YY ZZ

while the HEP will be executed as

Hidden instruction sequence 1: YY



Wrapping instruction 1: ZZ XX
Hidden instruction sequence 2: YY
Wrapping instruction 2: ZZ XX
Hidden instruction sequence 3: YY ZZ

By starting execution in the first bytes of XX, MEP will be

executed, while starting execution at YY will execute the HEP.

The next section will describe some instructions that could

be used to achieve this.

IV. SUITABLE MEP INSTRUCTIONS

The largest instruction that has the most bytes that can
be arbitrarily chosen and still assemble to a valid instruction
is a MOV instruction where the source operand is a 32-bit
immediate value and the destination operand is a memory
address specified by a register and a 32-bit immediate value
as offset.

Encoding: C7 80 10 20 30 40 50 60 70 80
Instruction: MOV DWORD PTR [EAX + 0x40302010], 0x80706050

This instruction allows the last eight bytes to be chosen

arbitrarily and was used in [15] to embed a hidden instruction.

While this is a valid instruction it is rarely executable since it

will typically point to a memory location that is unavailable

to the process, resulting in a program crash. Thus, it does not

fulfil the third requirement in Section III-A, meaning that it

is easily found using dynamic analysis. If VM detection is

used by the malware, avoiding HEP execution inside VMs, an

analyst using a VM would detect the crash, simplifying the

analysis. Allowing executable instructions that do not risk the

program to crash will put more restrictions on the possible

instructions. We give four other instructions that can be used

to this end.

All have several bytes that can be set arbitrarily and have

the additional advantage of being executable without failing.

These instructions all have four bytes available for the HEP,

plus an extra byte for the wrapping instruction.

LEA. Load Effective Address will calculate the memory

address in the second operand and store that value in the

first operand. Since we can specify a memory operand here

without actually doing any memory accesses, it can be used

to insert any byte values in the last five bytes.

#Example, load address into AX

LEA AX,[EAX+EAX+0x80] 66 66 8D 84 00 80 00 00 00

CMOVcc. This instruction performs a MOV operation

if a condition is met. For this instruction to be applicable

for this technique, the condition must be chosen such that

it always fails. Otherwise it may try to access memory that

does not exist and result in a segmentation violation.

#Example, perform MOV if overflow flag is set

CMOVO AX,[EAX+EAX+0x80] 66 0F 40 84 00 80 00 00 00

SETcc. Similar to CMOV in that it will set a byte to

the value 1 if a condition is met. It has the same problem

as CMOV as any illegal memory accesses will result in a

segmentation violation when the MEP is executed. Caution

must be taken to assure the correct conditional is used.

#Example, perform SET if overflow flag is set

SETO BYTE [EAX+EAX+0x80] 66 0F 90 84 00 80 00 00 00

NOP. A No-Operation instructions can consist of several

bytes since it can additionally include e.g., a memory

operand. Since no memory is accessed when the instruction is

executed, the bytes specifying this operand can be arbitrarily

chosen.

#Example, 9-byte NOP instruction

NOP WORD PTR [EAX+EAX + 00000000] 66 0F 1F 84 00 00 00 00 00

Which instruction to use in the MEP can be situation

dependent as they have different properties. Since the HEP

instructions will influence the behaviour and effects of the

MEP instructions, it is most convenient if the MEP has as little

side effects as possible. In the remainder of the paper, we will

use the 9-byte NOP instruction since it provides features that

are not present in the other instructions.

• NOP only increments the program counter. The other

instructions can affect the CPU state beyond the program

counter.

• For CMOVcc and SETcc, an illegal memory access is

likely to arise if the condition is not set to false.

• LEA will always update the value of its destination

register.

Other instructions that can be used are PUSH DWORD, MOV
EAX,DWORD and so on, but these limits the number of bytes

for hidden instructions (length of YY) in the HEP to three and

will thus not be described any further.

V. ASSEMBLING THE HIDDEN EXECUTION PATH

By choosing multi-byte NOP instructions in the MEP, we

have one valid and executable path. In this section, we show

how to properly choose hidden and wrapping instructions such

that the HEP is executable and easily manageable.

A. Hiding code in a linear stream of NOPs

Since the number of bytes at our disposal in a single 9-byte

NOP instruction is quite limited, we must use multiple NOPs to

be able to hide any meaningful piece of code. A wrapping in-

struction between two consecutive NOP instructions is needed

to assure the correct execution flow of the HEP. The wrapping

instruction will in most cases not be of any use for the HEP

and should be chosen to influence the CPU state as little as

possible.

To find all possible wrapping instructions, we generated a

list of all instructions of the form (ZZ 66 0F 1F 84).

instruction := ZZ 66 0F 1F 84
for each possible value of ZZ

disassemble(instruction)

In order to have a NOP for a wrapping instruction, ZZ would

have to take up four bytes, leaving only one byte instructions



Category Instruction ZZ
I

CMP EAX, 0x841F0F66 3D
TEST EAX, 0x841F0F66 A9

II

PUSH 0x841F0F66 68
MOV EAX, 0x841F0F66 B8
MOV ECX, 0x841F0F66 B9
MOV EDX, 0x841F0F66 BA
MOV EBX, 0x841F0F66 BB
MOV ESP, 0x841F0F66 BC
MOV EBP, 0x841F0F66 BD
MOV ESI, 0x841F0F66 BE
MOV EDI, 0x841F0F66 BF

III

ADD EAX,0x841F0F66 05
OR EAX, 0x841F0F66 0D
ADC EAX, 0x841F0F66 15
SBB EAX, 0x841F0F66 1D
AND EAX, 0x841F0F66 25
SUB EAX, 0x841F0F66 2D
XOR EAX, 0x841F0F66 35

IV

MOV AL, BYTE PTR [0x841F0F66] A0
MOV EAX, DWORD PTR [0x841F0F66 A1
MOV BYTE PTR [0x841F0F66], AL A2
MOV DWORD PTR [0x841F0F66], EAX A3
CALL 0x841F0F66 E8
JMP 0x841F0F66 E9

TABLE I: Possible wrapping instructions.

to fit in the HEP. Since we value the flexibility of larger hidden

instructions, we will look for alternative wrapping instructions.

There are no suitable instructions which have no influence on

the state of the machine, when having ZZ consist of one byte.

However, there are several other instructions that still can be

used. Table I lists the possible wrapping instructions divided

into four categories.
Category I includes instructions that change the EFLAGS

register. These instructions are suitable when the HEP does not
use any jumps or other instructions that relies on evaluation
of information in the EFLAGS register. Only two instructions
belong to this category, namely TEST and CMP.

TEST EAX, 0x841F0F66 A9 66 0F 1F 84
CMP EAX, 0x841F0F66 B1 66 0F 1F 84

CMP will use subtract to test the operands, while TEST
will perform a logical AND operation. It can be noted that

the TEST instruction is faster since the logical AND operation

is executed faster than subtraction. If efficiency is important

this should be taken into consideration. To form the TEST
instruction properly for our needs we will have to assign the

last byte of the first NOP instruction with the value 0xA9.

This byte paired with the first four bytes of the following

NOP instruction (66 0F 1F 84) will form the instruction

TEST EAX,0x841F0F66. There are four bytes left within

each NOP instruction that can include instructions from the

HEP. See below for a stream of NOPs and its embedded HEP

representation.

MEP:
NOP WORD PTR [ESI-0x56FFFE45] 66 0F 1F 84 66 BB 01 00 A9
NOP WORD PTR [ECX+ESI-0x7F32BF40] 66 0F 1F 84 31 C0 40 CD 80

The HEP displayed below will be executed if we start

executing at the fourth byte of the first NOP. In the example,

it is simply a call to the exit system call for any Linux OS

with a return value of 1.

HEP:

MOV BX,0x0001 66 BB 01 00
TEST EAX,0x841F0F66 A9 66 0F 1F 84
XOR EAX,EAX 31 C0
INC EAX 40
INT 0x80 CD 80

Category II includes instructions that change the values of

general purpose registers or valid memory, like the stack, with-

out updating the EFLAGS register. Using the PUSH instruction

or any of the MOV instructions with the source operand being

an immediate value does not alter the EFLAGS register. Thus,

the wrapping instruction can be placed between a comparison

instruction and the instruction evaluating the EFLAGS register,

without changing the semantics of that evaluation. Instead,

when using these instructions, we must take care to limit

the use of the affected register in the rest of the HEP.

As an example, MOV EBP,0x841F0F66 can be used as a

wrapping instruction. This will limit the use of register EBP in

the rest of the HEP. As HEP will mostly be custom assembly

code, EBP might not be used as much here as in compiled

code, which makes this instruction particularly interesting.

Category III includes instructions that both change the

EFLAGS register and updates registers or memory. These in-

structions have no apparent advantages over those in categories

I and II since they have the limitations of all instructions in

those categories. Some of them could be used though, e.g.,

by using the XOR instruction. Then every other time it is

used, EAX will be restored to its original value. ADD and SUB
can also be used together to restore the value of EAX if used

together.

Category IV includes instructions that cannot be guaranteed

to be executable, due to the possibility of illegal memory

access.

We have also generated wrapping instructions for the 8-

byte and 10-15 byte NOP, but found that the 9-byte NOP
gives the best wrapping instructions in terms of maintaining a

controllable CPU state.

The main limitation of the (non-wrapping) HEP instructions

is the maximum instruction length of four bytes. Except for the

last instruction, all instructions are required to be four bytes

or less. Still, this requirement can be significantly relaxed as

many instructions larger than four bytes can be broken down

to multiple instructions of size four or smaller. Below is an

example of a MOV instruction that is too large to fit within the

HEP.

MOV EAX,0x12345678 B8 78 56 34 12 #5 bytes long

The five byte MOV instruction can be translated into two

4-byte instructions and one 3-byte instruction.

MOV AX,0x5678 66 B8 78 56 #4 bytes long
SHL EAX,0x10 C1 E7 10 #3 bytes long
MOV AX,0x1234 66 B8 34 12 #4 bytes long

This reduction in size of instructions significantly increases

the flexibility in the choice of HEP instructions, providing e.g.,

malware authors additional power and possibilities.

VI. ADDITIONAL PRACTICAL CONSIDERATIONS

As a complement to the approach discussed above, it is

possible to take additional measures in order to evade analysis.



This section will discuss how the proposed code overlapping

technique can be extended in various ways, increasing diffi-

culty of detecting the presence of the HEP.

A. Hiding code in scattered NOPs

As demonstrated in Section V-A, a large piece of code

can be put into the HEP, while at the same time allowing

the main execution path to be not only valid assembly code,

but also represent code that is executable without crashing

the program. Thus, in initial analysis attempts using a linear

sweep disassembler, it is not straight forward to identify the

use of a HEP. Still, the potentially long linear NOP stream

that is present in the disassembly will probably stand out and

be suspicious. We can improve the stealth of the HEP by

scattering NOPs throughout the program. Correct execution

flow can be maintained by allocating the last two bytes of

each NOP with an unconditional jump instruction to the next

hidden instruction embedded within another NOP.

Thus, we can have several short streams of linear NOP
instructions, possibly only one at a time, where the last of

the instructions contains one instruction with a maximum size

of three bytes, followed by the unconditional jump. In this

instruction there will only be three bytes available to assign

a hidden instruction, limiting the number of instructions that

can be used even more than before. It should be noted though

that it is still possible to break down some larger instructions

to fit this technique. Below is the ADD example from earlier

which can be further reduced in size to two and three-byte

instructions.

#MOV EAX,0x12345678
MOV AL,0x78 B0 78 #2 bytes long
SHL EAX,0x8 C1 E7 08 #3 bytes long
MOV AL,0x56 B0 56 #2 bytes long
SHL EAX,0x8 C1 E7 08 #3 bytes long
MOV AL,0x34 B0 34 #2 bytes long
SHL EAX,0x8 C1 E7 08 #3 bytes long
MOV AL,0x12 B0 12 #2 bytes long

By dividing instructions like this, it is possible to use only

single NOPs scattered throughout the program. The two-byte

JMP instruction can jump forward 127 bytes or backwards

128 bytes in the code, which means that two consecutive NOP
instructions, from the HEPs perspective, have a limit on how

far away from each other they can be.

This approach has the additional advantage of the possibility

to embed hidden instructions in NOPs already existing in

compiled binaries. It is not only limited to occurrences of

single 9-byte NOP instructions, but it can also be used when

there are clusters of single-byte NOP instructions, as these

could be converted to multi-byte NOP instructions without

changing the semantics of the program. Below is an example

of the scattered NOP technique.

NOP WORD PTR [ECX+ESI*4+0x4EEB01] 66 0F 1F 84 B1 01 EB 4E 00
...

NOP WORD PTR [ECX+ESI+0x21EB40C0] 66 0F 1F 84 31 C0 40 EB 21
...

NOP WORD PTR [EBP+ECX+0x80] 66 0F 1F 84 CD 80 00 00 00

.nop1:
MOV BL,0x01 B1 01
JMP .nop2 EB 4E
...

.nop2:
XOR EAX,EAX 31 C0
INC EAX 40
JMP .nop3 EB 21
...

.nop3:
INT 0x80 CD 80

Note that all bytes in the first NOP are not filled, but since

the last byte is preceded by an unconditional JMP, this byte

will never be reached and will not cause a problem.

Using scattered NOPs requires a more detailed analysis than

when using a linear stream of NOPs.

B. Normalization of MEP instructions

So far both a linear NOP stream and the scattered NOPs

works very well to hide an alternate path of execution. An

analyst will only see the NOPs in a disassembly listing at first.

An experienced analyst may however find it odd to see NOP
instructions not conforming to Intel’s recommendations and

might start disassembling from within a NOP instruction and

discover the hidden code.

We want some way to make the NOPs look legitimate and

there is only one legitimate representation of the 9-byte NOP
instruction. To achieve this normalization we will have to use

self-modifying code to generate the correct bytes during run-

time. The idea is that during static analysis, an analyst will

only see the multi-byte NOP instructions in their legitimate

representation and when it is time for the hidden instructions

to be executed, a decoding routine will be called to generate

the HEP and finally jump to it and continue execution.

To be able to decode the HEP correctly we need to store a

key for it somewhere. If we store it as it is, it is more likely

it will be discovered as they disassemble to valid instructions.

XOR, ADD, MOV, OR and similar operations thus cannot be

used by the decoder without revealing the instruction bytes in

the data section. Instead we propose to use the SUB operation

because we can store a value of 0x100 - 0xXX for each

key byte where 0xXX is one byte of the hidden instruction

sequence.

The addition of self-modifying code allows the NOP in-

structions to look legitimate and only if the HEP is about to

be executed, the HEP will be embedded in the NOP stream.

Otherwise the NOPs will look like normal.

To re-create the HEP, we need a key and a decoding routine.
For our proof-of-concept application [13] the decoding

routine which is included in the application looks like this:

CALL foo
foo:
POP EAX #Retrieve EIP
ADD EAX,offset_to_nop #Point to first byte of NOP stream
MOV ECX,nop_stream_size #Number of bytes in NOP stream
LEA ESI,DWORD PTR [EBP+key] #Address to key in memory
bar:
MOV EDX,BYTE PTR [ESI+ECX] #Get key-byte
SUB BYTE PTR [EAX + ECX],EDX #Subtract key-byte from code-byte
DEC ECX
CMP ECX,0xFFFFFFFF
JNZ bar
ADD EAX,4 #Adjust jump target to hit HEP
JMP EAX #Jump to HEP

To hide the decoding routine, we could embedd it within

NOPs as well. If the HEP is larger than the decoder routine



we would have less NOPs that look suspicious.

VII. DETECTION

In this section we will present how well the technique holds

up against binary analysis tools. We will test it against some

different disassemblers and also a binary analysis framework

called BAP, which turns the instructions into an intermediate

language representation. We will also suggest solutions for

how this technique could be detected.

The proof-of-concept application used as an example for

testing is a backdoor [6] hidden within a simple ”hello world”

program. The executable and details on how the backdoor is

hidden can be found at [13].

A. Anti-analysis

The following three analysis tools have been used in the

testing.

Objdump [2] is a utility, part of GNU binutils, and its

disassembler employs a very basic linear sweep disassembly

algorithm and is a natural starting point for testing how appro-

priate this technique is against these types of disassemblers.

IDA pro [3] is probably the most widely used and advanced

disassembler, and for the technique described in this paper to

be a viable option for hiding code, it should hold up against

an adversary with IDA pro.

BAP [1] is short for Binary Analysis Platform, and one

feature of this tool is that it creates an intermediate language

representation of the assembly code in the target binary.

The disassembly listings consist of five NOP instructions

from the example program’s MEP.
1) Objdump: When testing on the objdump utility, the

results are very straightforward. Since it uses a linear sweep

disassembly algorithm, no branch instruction will be followed

and the end result is that the MEP will be shown and the HEP

will be hidden.

58a: 66 0f 1f 84 6a 01 66 nop WORD PTR [edx+ebp*2-0x566f99ff]
591: 90 a9
593: 66 0f 1f 84 6a 02 66 nop WORD PTR [edx+ebp*2-0x566f99fe]
59a: 90 a9
59c: 66 0f 1f 84 89 e1 66 nop WORD PTR [ecx+ecx*4-0x566f991f]
5a3: 90 a9
5a5: 66 0f 1f 84 cd 80 66 nop WORD PTR [ebp+ecx*8-0x566f9980]
5ac: 90 a9
5ae: 66 0f 1f 84 89 c2 66 nop WORD PTR [ecx+ecx*4-0x566f993e]
5b5: 90 a9

2) IDA pro: With IDA, the adversary has more options to

deal with a binary showing a suspicious disassembly output.

The following is what is output by default.

.text:080485F6 66 0F 1F 84 6A 01 66 90 A9
nop word ptr [edx+ebp*2-566F99FFh]

.text:080485FF 66 0F 1F 84 52 0F 1F 00 A9
nop word ptr [edx+edx*2-56FFE0F1h]

.text:08048608 66 0F 1F 84 89 E1 66 90 A9
nop word ptr [ecx+ecx*4-566F991Fh]

.text:08048611 66 0F 1F 84 CD 80 66 90 A9
nop word ptr [ebp+ecx*8-566F9980h]

.text:0804861A 66 0F 1F 84 31 C0 66 90 A9
nop word ptr [ecx+esi-566F9940h]

The MEP is shown, just as we wanted. The reason the MEP

is shown is because we used an opaque predicate to execute

HEP. With IDA we can however define some bytes as data

and start disassembly from the first byte of the HEP. When

doing so the following disassembly output is listed.

.text:080485FA 6A 01 push 1

.text:080485FC db 66h

.text:080485FC 66 90 nop

.text:080485FE A9 66 0F 1F 84 test eax, 841F0F66h

.text:08048603 52 push edx

.text:08048604 0F 1F 00 nop dword ptr [eax]

.text:08048607 A9 66 0F 1F 84 test eax, 841F0F66h

.text:0804860C 89 E1 mov ecx, esp

.text:0804860E db 66h

.text:0804860E 66 90 nop

.text:08048610 A9 66 0F 1F 84 test eax, 841F0F66h

.text:08048615 CD 80 int 80h

.text:08048617 db 66h

.text:08048617 66 90 nop

.text:08048619 A9 66 0F 1F 84 test eax, 841F0F66h

.text:0804861E 31 C0 xor eax, eax

.text:08048620 db 66h

.text:08048620 66 90 nop

If the analyst knows what he is looking for, the HEP will be

exposed. To combat this one or more of the techniques listed

in Section VI can be used to further confuse the analyst. For

instance, by using the scattered NOPs technique the NOPs will

not stand out as much as if they are clustered. If the NOPs

are normalized, they will not look as suspicious either, even

if gathered in a large cluster.

3) BAP: With BAP the interesting thing is how our MEP

and HEP are represented in its intermediate language repre-

sentation. The following output is from BAP

addr 0x8048377 @asm ‘‘nop’’
label pc_0x8048377
addr 0x8048378 @asm ‘‘nop’’
label pc_0x8048378
addr 0x8048379 @asm ‘‘nop’’
label pc_0x8048379
addr 0x804837a @asm ‘‘nop’’
label pc_0x804837a
addr 0x804837b @asm ‘‘nop’’
label pc_0x804837b

Note that each NOP is listed as being one byte. BAP uses

the MEP in its intermediate language representation and the

HEP is completely removed. Any further analysis in BAP will

not reveal anything about the HEP.

B. Detection Algorithm

A general method to find hidden code is to look for

long sequences of instructions, all of which are unaligned

from instructions in the main execution path. The following

algorithm can be used to do this.

find_HEP(threshold)
foreach instruction in text-segment

for i := 1; i < instruction.size; i++
count := 0
hidden := disassemble(instruction+i)
while not in_MEP(hidden) and valid(hidden)

count++
hidden := disassemble_next(hidden)

if count > threshold
add_to_HEP(instruction+i)

This algorithm will try to assemble a stream of bytes

into a valid instruction from every possible offset within all

instructions of the MEP in the code section of an executable.

It will continue to assemble instructions until it has assembled

an instruction that is in the MEP or is an invalid instruction.

It will look for a certain number of instructions, the threshold,

before it considers the instruction stream as a HEP. Choosing

this threshold value is tricky since legitimate code can still

include a great number of hidden instructions in a row before

the disassembly resynchronizes to the MEP. [16] shows that

the greatest number of instructions found, which weren’t part



of the MEP, is 27 instructions out of 360,000. This was found

in the compiler gcc.

The larger the HEP is, the easier it is to find, as we can set

the threshold to a higher number, thus increasing our chances

of avoiding false positives. Setting the threshold too high could

make the HEP go undetected as well. The best way to avoid

false negatives is to start with a high value and then decrease

the threshold by one until something is found. It is when the

HEP is small that it becomes difficult to detect, since the

smaller the HEP is, more false positives will arise and it is up

the analyst to manually go through all instructions and filter

out the false positives.

This algorithm works for all kinds of MEP instructions, not

just NOPs, as it considers all possible offsets in all instructions

as a possible starting point for hidden instructions. It even

works for a combination of several different MEP instructions.

The scattered NOPs variation of our technique poses a

problem for the algorithm, as only two instructions, the hidden

instruction and the jmp exists linearly. To detect this we need

to alter the algorithm so that it follows all unconditional jumps.

It should also take into consideration that the NOPs may not

be in order of the execution flow of the MEP. The last NOP
instruction in the MEP could for instance be the entry point of

the HEP. The jump instruction could also be a conditional in

which case the algorithm would have to be modified to follow

both paths.

The algorithm was implemented as an IDA pro script and

tested against our example application. The script can be found

at [13].

We started with an initial threshold of 100 and the backdoor

was found and was reportedly 154 instructions long. The

largest false positive that was reported was 12 instructions

long.

If we apply the algorithm on the code when applying the

self-modifying code technique to normalize the NOPs, it does

not detect the HEP anymore. If we were to hide the decoding

routine in NOPs the threshold would need to be set to a

significantly lower value than 100 to be detected. This means

that the use of this additional obfuscation could delay detection

further, given that the decoding routine has a smaller number

of instructions compared to the HEP.

VIII. RELATED WORK

There have been much work involving anti-disassembly

techniques. Some of the more innovative ideas involves gener-

ating instructions during run-time based on system information

so that different instructions are generated depending on the

system it is executed on. These instructions are generated

with cryptographic hash functions in [5] and pseudo-random

number generators in [4]. The idea of embedding hidden

instructions within a larger instruction is described in [15]. The

first mention of overlapping instructions as a means to com-

plicate disassembly was first described in [9]. Special cases of

overlapping instructions has been used as a way to increase

tamper-resistance of binaries [12]. It was also mentioned in a

dissertation [14] as a problem when developing binary-analysis

techniques and tools. Overlapping instructions also have a use

in return-oriented [18] and jump-oriented [7] programming

scenarios, where a greater amount of gadgets (small snippets

of instructions) can be found using the technique. Especially in

jump-oriented programming is overlapping instructions bene-

ficial, because the necessary types of instructions needed are

scarce, but the op-code byte for it is rich.

The use of NOP instructions for unconventional purposes

has been shown to have many applications as well. The

most famous example may be the NOP sled used to ease the

exploitation of buffer overflow vulnerabilities [17]. Another

example is when the insertion of NOP instructions in strategic

places in a malicious program’s executable code could prevent

AV-software from detecting it [8].

Improvement of disassembly methods, like the differentia-

tion of data or junk-bytes from executable code, has also been

considered in [20].

We have shown the use of self-modifying code as an addi-

tional layer of obfuscation to our technique. There have been

research on techniques for reverse-engineering self-modifying

code in [10].

IX. CONCLUSIONS

We have presented a new technique for anti-disassembly.

By using and extending ideas from code embedding and

code overlapping we have shown how to overlap two ex-

ecution paths that are both executable. This does not only

complicate analysis using static disassembly with a linear

sweep algorithm, but will also make it more difficult to

use dynamic analysis since both paths can be executed.

Combining this technique with e.g., opaque predicates, self-

modifying code and VM detection mechanisms has potential

to significantly delay correct disassembly and analysis of e.g.,

malware, hidden decryption routines and license validation

code. Furthermore, we give an algorithm for discovering the

hidden execution path by attempting disassembly of code that

is offset a number of bytes from the main execution path.

This algorithm can successfully and automatically discover

malware that uses our proposed technique, potentially saving

both time and resources for an analyst.
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