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Abstract

The interaction of extreme ultraviolet light with matter can lead to the emission of an elec-
tron in a process known as photoionization. The electron wavepacket (EWP) created in
the continuum propagates on the ionic potential, resulting in a delay compared to an EWP
propagating freely. The development of extreme ultraviolet attosecond light sources in re-
cent years has opened the possibility to probe photoionization on the attosecond time scale
(10−18 s).

In this thesis, atomic photoionization is investigated in both resonant and non-resonant con-
ditions via the attosecond photoelectron interferometric technique RABBIT (Reconstruc-
tion of Attosecond Beating By Interference of Two-photon transitions). Atoms are pho-
toionized by an attosecond pulse train (APT), creating an EWP in the continuum. The EWP
is then made to interfere with itself using a weak delayed infrared (IR) probe pulse. Record-
ing the photoelectron signal as a function of the delay between the IR and the APT allows
us to characterize the EWP in the spectral domain.

In this thesis we investigate experimentally and theoretically photoionization dynamics in
various atoms (He, Ne, Ar and Xe) as well as in the N2 molecule. These studies focus on
understanding how the presence of multiple ionization channels a�ects the ionization dy-
namics. On the one hand, we study the situation in which di�erent ionization channels
are excited incoherently resulting in overlapping photoelectron peaks in the spectrum. In
this case, we show that the RABBIT technique allows us to measure photoionization time
delays with a few tens of attosecond resolution while maintaining the high spectral resolution
needed to disentangle contributions from di�erent ionization channels. On the other hand,
we investigate the case where several ionization channels are excited coherently leading to in-
terference between di�erent quantum paths. Using the RABBIT technique, we study the
interference between direct photoionization and autoionization in the vicinity of Fano res-
onances. Measuring the amplitude and phase of photoelectrons emitted via these resonances,
we characterize the EWPs in time-frequency domain. By pushing the spectral resolution of
our measurements we are able to observe signatures of quantum decoherence and to quantify
it. In addition, using angle-resolved measurements, we investigate the e�ect of the coherent
superposition of �nal states with di�erent angular momenta. We show that it results in an-
gular interference which lead to an angle-dependence of the photoionization time delays and
to a modi�cation of the photoelectron angular distribution with pump-probe delay.
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Popular scienti�c summary

Quantum interference e�ects in attosecond photoionization dynamics... “Great! I don’t
even understand the title.” If that’s what you are thinking, this section is for you.

Shooting at atoms with light

All matter around us is made of the same thing: atoms. These atoms, whose size is of the
order of 0.1 nanometers, are themselves made of a tiny nucleus around which orbit electrons,
a bit like the planets orbit around the sun. Now, if you shoot at the atom with high energy
light, such as extreme ultraviolet light or X-rays, an electron might absorb the light and be
ejected from the atom. This is what is called photoelectric e�ect or photoionization. This
thesis aims at studying how electrons are ejected from atoms following the absorption of
light. The problem is that this process is extremely fast, millions of times faster than the fastest
electronics. The time scale of electronic motion is that of attoseconds, where one attosecond
is a billionth of a billionth of a second, or 10−18 seconds. In addition to this, contrary to
the planets orbiting the sun, the laws that describe how electrons move are not the laws of
classical physics that we all experience in our everyday life. The microcosm of electrons and
atoms is described by quantum mechanics.

There are two concepts of quantum mechanics that are essential to this thesis. The �rst one
is the superposition principle. This principle states that an electron does not have be here
or there, it can be here and there, at the same time. The second concept is that of wave-
particle duality. It means that particles like electrons can also behave like waves. Waves are
characterized by three quantities: amplitude, phase and frequency. The frequency describes
how fast the wave oscillates. The amplitude corresponds to the height of the wave. Finally,
the phase indicates the position of the crests of the wave [see Fig.1(a)]. As a result of the wave-
particle duality and the superposition principle, sometimes, when an electron is ejected from
the atom, it can be in a superposition of two or more waves. If two waves have the same
phase, they add up to form a wave with a bigger amplitude as shown in Fig.1(b). This is
called constructive interference. However, if the two waves are out of phase, they cancel each
other as shown in Fig.1(c), leading to what is called destructive interference. In general, the
interference of two or more waves with arbitrary amplitude and phase results in a new wave
with a di�erent amplitude and phase [Fig.1(d)]. By modifying the amplitude and phase of
the waves, quantum interference a�ect the electron emission.

With all these concepts, you can understand the title of the thesis. Basically it means that I
studied how the fact that the electrons are quantum objects, which can be in a superposition
of states and interfere, a�ects the way they are ejected from the atom. And because photoion-
ization is so fast, I had to investigate these processes with attosecond precision.
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Figure 1: (a) Two waves with the same amplitude and frequency but di�erent phases. (b) Two waves
(red and blue) oscillating in phase interfere constructively, resulting in a wave with a larger
amplitude and the same phase (yellow). (c) Two waves oscillating out of phase interfere
destructively, resulting in a cancellation of the two waves. (d) The interference of two waves
with arbitrary amplitude and phase gives rise to a third wave with an amplitude and phase
di�erent from the �rst two.

What is it good for?

All chemical reactions are based on the exchange of electrons between atoms or molecules.
In addition, many of the properties of molecules or materials depend on the way electrons
move and interact with each other. For example, it is known that, very often, charge migra-
tion, meaning electronic motion, plays an important role in radiation damage of biological
molecules. Understanding electronic dynamics in matter is hence of great importance for
physics, chemistry, material science and biology. However, our understanding of these pro-
cesses is still very limited such that we must investigate electronic dynamics in simple atomic
systems before we can study complex molecules.

A second interesting aspect has to do with the quantum nature of the photoionization pro-
cess. While we know that the microscopic world is governed by quantum mechanics and
that the macroscopic world obeys the laws of classical physics, the frontier between the two
is not clear. For example, recently, physicists demonstrated that large molecules such as anti-
biotics can behave as waves and interfere [1]. The most popular concept used to explain the
transition from quantum physics to classical physics is called decoherence. It predicts that
the interaction of a quantum system with its environment results in a loss of the "quantum
character", leading to a more classical system. The bigger the system is, the more it is likely
to be subject to decoherence, which is a big challenge for the development of technology
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based on quantum information and nano electronics. In our case, by studying how the in-
terference between electrons evolves on the attosecond time scale, we hope to gain a better
understanding on how fast the quantum to classical transition occurs.
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Résumé vulgarisé

E�ets des interférences quantiques dans la dynamique de photoionisation attoseconde... “Su-
per ! Je comprends même pas le titre.” Si c’est ce que vous pensez, cette section est pour vous.

Tirer sur des atomes avec de la lumière

Toute la matière qui nous entoure est faite de la même chose : des atomes. Ces atomes, dont
la taille est de l’ordre de 0,1 nanomètres, sont eux-mêmes constitués d’un petit noyau autour
duquel orbitent des électrons, un peu comme les planètes gravitent autour du soleil. Si main-
tenant vous tirez sur un atome avec de la lumière énergétique telle que des rayons ultraviolet
extrêmes ou des rayons X, un électron peut absorber la lumière et être éjecté de l’atome. C’est
ce qu’on appelle e�et photoélectrique ou photoionisation. Cette thèse vise à étudier com-
ment les électrons sont éjectés des atomes suite à l’absorption de lumière. Le problème est
que ce processus est extrêmement rapide, des millions de fois plus rapide que l’électronique
la plus rapide. L’échelle de temps sur laquelle les électrons bougent est l’échelle attoseconde,
où une attoseconde est un milliardième de milliardième de seconde, ou 10−18 secondes. De
plus, contrairement aux planètes en orbite autour du soleil, les lois qui décrivent le dépla-
cement des électrons ne sont pas les lois de la physique classique auxquelles nous sommes
soumis dans notre vie quotidienne. Le microcosme des électrons et des atomes est décrit par
la mécanique quantique.

Il y a deux concepts de la mécanique quantique qui sont essentiels à cette thèse. Le premier est
le principe de superposition. Ce principe stipule qu’un électron n’est pas forcement ici ou là, il
peut également être ici et là, en même temps. Le deuxième concept est celui de la dualité onde-
corpuscule. Cela signi�e que les particules telles que les électrons peuvent également se com-
porter comme des ondes. Les ondes sont caractérisées par trois quantités : amplitude, phase
et fréquence. La fréquence décrit la vitesse à laquelle l’onde oscille. L’amplitude correspond à
la hauteur de l’onde. En�n, la phase indique la position des crêtes de l’onde [voir Fig. 2(a)]. En
raison de la dualité onde-corpuscule et du principe de superposition, lorsqu’un électron est
éjecté de l’atome, il peut se trouver dans une superposition de deux ondes ou plus. Si les deux
ondes ont la même phase, elles s’ajoutent pour former une onde avec une plus grande ampli-
tude comme le montre la �gure 2(b). C’est ce que l’on appelle des interférences constructives.
Cependant, si les deux ondes sont en opposition de phase, elles s’annulent comme indiqué
sur la Fig. 2(c), conduisant à ce que l’on appelle des interférences destructives. En général, l’in-
terférence de deux ondes ou plus avec des phases arbitraires donne lieu à une nouvelle onde
avec une amplitude et une phase di�érente [Fig. 2(d)]. En modi�ant l’amplitude et la phase
des ondes, les interférences quantiques a�ectent l’émission de l’électron.

Avec tous ces concepts, vous pouvez comprendre le titre de la thèse. En gros, cela veut dire
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Figure 2: (a) Deux ondes de même amplitude et de même fréquence mais avec di�érentes phases
(b) Deux ondes (rouge et bleue) oscillant en phase interfèrent de manière constructive, ce
qui donne une onde de plus grande amplitude et de même phase (jaune). (c) Deux ondes
oscillant en opposition de phase interfèrent de manière destructrice, entraînant une annu-
lation des deux ondes. (d) L’interférence de deux ondes d’amplitude et de phase arbitraires
donne lieu à une troisième onde dont l’amplitude et la phase sont di�érentes des deux
premières.

que j’ai étudié comment le fait que les électrons sont des objets quantiques, qui peuvent être
dans une superposition d’états et interférer, a�ecte la façon dont ils sont éjectés de l’atome.
Et parce que la photoionization est si rapide, j’ai dû étudier ces processus avec une résolution
attoseconde.

À quoi ça sert?

Toutes les réactions chimiques sont basées sur l’échange d’électrons entre atomes ou molé-
cules. De plus, de nombreuses propriétés des molécules ou des matériaux dépendent de la
façon dont les électrons se déplacent et interagissent les uns avec les autres. Par exemple, il
est connu que, très souvent, la migration de charge, c’est à dire le mouvement des électrons,
joue un rôle important dans les dommages causés par les radiations dans les molécules bio-
logiques. La compréhension des dynamiques électroniques dans la matière est donc d’une
grande importance pour la physique, la chimie, la science des matériaux et la biologie. Ce-
pendant, notre compréhension de ces processus est encore très limitée, de sorte que l’on doit
étudier les dynamiques électroniques dans des systèmes atomiques simples avant de pouvoir
étudier des molécules complexes.
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Un deuxième aspect intéressant concerne la nature quantique du processus de photoionisa-
tion. Alors que l’on sait que le monde microscopique est régi par la mécanique quantique
et que le monde macroscopique obéit aux lois de la physique classique, la frontière entre
ces deux mondes n’est pas claire. Par exemple, récemment, des physiciens ont démontré que
de grosses molécules telles que des antibiotiques peuvent se comporter comme des ondes et
interférer [1]. Le concept le plus populaire permettant d’expliquer le passage de la physique
quantique à la physique classique s’appelle la décohérence. Il prédit que l’interaction d’un
système quantique avec son environnement entraîne une perte du "caractère quantique",
conduisant à un système plus classique. Plus le système est grand, plus il est susceptible d’être
soumis à la décohérence, ce qui constitue un des principaux dé�s pour le développement de
technologies basées sur l’information quantiques et la nanoélectronique. Dans notre cas, en
étudiant comment les interférences entre les électrons évoluent à l’échelle attoseconde, on
espère mieux comprendre à quelle vitesse se produit la transition quantique-classique.
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Resumen divulgativo

Efectos de interferencias cuánticas en la dinámica de fotoionización attosegundo ... “ ¡ Genial
! Ni siquiera entiendo el título.” Si eso es lo que estás pensando, esta sección es para ti.

Disparar a átomos con luz

Toda la materia que nos rodea está hecha de lo mismo: átomos. Estos átomos, cuyo tamaño
es del orden de 0,1 nanómetros están formados por un pequeño núcleo alrededor del cual
orbitan electrones, un poco como los planetas orbitan alrededor del sol. Si ahora, disparas a
un átomo con luz de alta energia, como rayos ultravioletas extremos o rayos X, un electrón
puede absorber la luz y ser expulsado del átomo. Esto es lo que se llama efecto fotoeléctrico o
fotoionización. Esta tesis tiene como objetivo estudiar cómo se expulsan los electrones de los
átomos tras haber absorbido luz. El problema es que este proceso es extremadamente rápido,
millones de veces más rápido que la electrónica más rápida. La escala de tiempo en la que se
mueven los electrones es la de attosegundos, donde un attosegundo es una billonésima parte
de una billonésima de segundo, o 10−18 segundos. Además, al contrario de los planetas que
orbitan alrededor del sol, las leyes que describen cómo se mueve el electrón no son las leyes
de la física clásica que todos experimentamos en nuestra vida cotidiana. El microcosmos de
los electrones y átomos esta descrito por la mecánica cuántica.

Hay dos conceptos de mecánica cuántica que son esenciales para esta tesis. El primero es el
principio de superposición. Este principio establece que un electrón no tiene por que estar
aquí o allí, sino que tambien puede estar aquí y allí, al mismo tiempo. El segundo concepto es
el de la dualidad onda-partícula. Signi�ca que partículas como los electrones también pueden
comportarse como ondas. Las ondas se caracterizan por tres cantidades: amplitud, fase y fre-
cuencia. La frecuencia describe la rapidez con la que oscila la onda. La amplitud corresponde
a la altura de la onda. Finalmente, la fase indica la posición de las crestas de la onda [Fig. 3(a)].
Como resultado de la dualidad onda-partícula y del principio de superposición, cuando un
electrón es expulsado del átomo, puede estar en una superposición de dos ondas o más. Si dos
ondas tienen la misma fase, se suman para formar una onda con una amplitud mayor como
se muestra en la �gura 3(b). Esto se llama interferencias constructivas. Sin embargo, si dos on-
das están en oposición de fase, se cancelarán entre sí como se muestra en la �gura 3(c), lo que
lleva a interferencias destructivas. En general, la interferencia de dos o más ondas con fases
arbitrarias da como resultado una nueva onda con amplitud y fase diferentes. Modi�cando
la amplitud y la fase de las ondas, las interferencias cuánticas afectan la emisión del electron.

Con estos concéptos, podéis entender el título de la tesis. Básicamente, lo que signi�ca es que
he estudiado cómo el hecho de que los electrones sean objetos cuánticos, que pueden estar en
una superposición de estados e interferir, afecta la forma en que son expulsados del átomo.
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Figura 3: (a) Dos ondas de misma amplitud y frecuencia pero con fases diferentes (b) Dos ondas
(roja y azul) que oscilan en fase inter�eren de manera constructiva, resultando una onda
de mayor amplitud y de misma fase (amarilla). (c) Dos ondas que oscilan en la oposición
de fase inter�eren de forma destructiva, dando lugar a la cancelación de ambas ondas. (d)
La interferencia de dos ondas de amplitud y fase arbitrarias da lugar a una tercera onda de
amplitud y fase diferentes de las dos primeras.

Y debido a que la fotoionización es tan rápida, he tenido que investigar estos procesos con
resolución attosegundo.

¿Para que sirve ?

Todas las reacciones químicas se basan en el intercambio de electrones entre átomos o molé-
culas. Además, muchas de las propiedades de las moléculas o de los materiales dependen de
la forma en la que los electrones se mueven e interaccionan entre sí. Por ejemplo, se sabe que,
muy a menudo, la migración de cargas, es decir el movimiento electrónico, juega un papel
importante en el daño por radiación de las moléculas biológicas. Por lo tanto, entender las di-
námicas electrónicas en la materia es de gran importancia para la física, la química, la ciencia
de los materiales y la biología. Sin embargo, nuestra comprensión de estos procesos todavía
es muy limitada, por lo que tenemos que investigar las dinámicas electrónicas en sistemas
atómicos simples antes de poder estudiar moléculas complejas.

Un segundo aspecto interesante tiene que ver con la naturaleza cuántica del proceso de foto-
ionización. Si bien sabemos que el mundo microscópico se rige por la mecánica cuántica y el
mundo macroscópico obedece las leyes de la física clásica, la frontera entre los dos mundos
no está clara. Por ejemplo, recientemente, unos físicos demostraron que grandes moléculas
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como antibióticos pueden comportarse como ondas e interferir [1]. El concepto más popular
que explica la transición de la física cuántica a la física clásica se llama decoherencia. Predice
que la interacción de un sistema cuántico con su entorno da lugar a una pérdida del çarácter
cuántico", lo que conduce a un sistema más clásico. Cuanto más grande sea el sistema, más
probable es que esté sujeto a la decoherencia, lo cual es uno de los principales desafíos para el
desarrollo de tecnologías basadas en la información cuántica y la nanoelectrónica. En nuestro
caso, estudiando cómo evoluciona la interferencia entre electrones en la escala de tiempo del
attosegundo, esperamos obtener una mejor comprensión de la rapidez con la un sistema pasa
de ser cuántico a ser clásico.
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Chapter 1

Introduction

1 Introduction to attosecond science

The observation of the photoelectric e�ect by Hertz [2] and its explanation by Einstein [3]
paved the way to the development of quantum mechanics. When high frequency light is
absorbed by an atom, a molecule or a solid, one or several electrons can be emitted in a process
known as photoionization or photoelectric e�ect. The frequency of the light, ν, must be high
enough for the photon energy hν to be larger than the electron binding energy Ip. Studying
the kinetic energy of the emitted electron, Ek = hν − Ip, provides detailed information
on the internal structure of matter. This is known as photoelectron spectroscopy and was
developed by Kai Siegbahn, for which he was awarded the Nobel Prize.

The development of femtosecond laser technology (1 fs = 10−15 s) in the 80’s led to a revolu-
tion in time-resolved spectroscopy, providing a way to study nuclear dynamics in molecules
on their natural time scale. Ahmed Zewail, the founding father of this new �eld of research
called femtochemistry, was awarded the Nobel prize in 1999. While it was then possible to
probe the motion of the nuclei in a molecule, electronic dynamics, which govern nuclear dy-
namics, were still out of reach since they occur on the attosecond time scale (1 as = 10−18 s).

The discovery of high-order harmonic generation (HHG) at the end of the 80’s [4, 5] and
the demonstration in 2001 and that the extreme ultraviolet (XUV) radiation emitted by this
process corresponds to a train of attsoecond pulses [6] revolutionized the study of electron
dynamics in matter. This �eld of research, called attosecond science, has quickly developped
in the last two decades and has led to numerous studies regarding electron dynamics in mat-
ter (see Refs. [7, 8] for a review of the �eld). A large number of attosecond measurement
techniques have been developped over the years, most of them using an XUV attosecond
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pulse or pulse train to trigger the dynamics and an infrared (IR) pulse acting as a probe. In
this thesis, we use the interferometric technique called reconstruction of attosecond beating
by interference of two-photon transitions (RABBIT)1 which uses the combination of XUV
attosecond pulse trains with femtosecond IR pulses [6]. This technique takes advantage of
the wave-particle duality of electrons. When an electron is emitted after absorption of an
XUV photon, it can be seen as a wave, or wavepacket, characterized by a spectral amplitude
and a spectral phase. The IR pulse is used to make the electron waves interfere in order to
measure their phase. In analogy with optical pulse characterization techniques, using the
measurements of the electron amplitude and phase in the spectral domain, we can access in-
formation on the temporal dynamics of photoionization. The RABBIT technique, initally
used to characterized the attosecond pulse trains, has since then been applied to investigate
photoionization dynamics in atoms [9–14] molecules [15–19] and solids [20, 21].

2 Scope of this work

In 2010 Schultze et al. showed that photoionization from the 2p shell in neon is delayed
compared to photoionization from the 2s shell [22]. This measurement was shortly followed
by the measurement of a relative delay between electrons photoemitted from the 3s and 3p
shells in argon [9]. These two results triggered a lot of interest from both experimentalists and
theorists as it was the �rst time that it was possible to access information on photoionization
dynamics on the time scale of a few tens of attoseconds.

When an electron is promoted to the continuum, the electron wavepacket (EWP) propagates
on an attractive ionic potential. As a result, the EWP is delayed compared to the same EWP
propagating in free space. The measurement of photoionization time delays is particularly
interesting because it is very sensitive to the interaction of the escaping electron with the re-
maining ion. As such, these measurements constitute important benchmarks for theoretical
calculations since electron correlations must be taken into account very accurately in order
to reproduce the experimental observations.

At the beginning of this thesis, most of the work done on attosecond photoionization dy-
namics had consisted in demonstrating the capability of the two major techniques, RABBIT
and attosecond streaking [23], to measure photoionization time delays. Here, this thesis fo-
cuses on applying the RABBIT technique to investigate the role of quantum interference in
photoionzation dynamics. We investigate photoionization dynamics in a variety of systems
(He, Ne, Ar, Xe, N2), where the presence of several ionization channels results in the emis-
sion of EWPs which are in a superposition of states. An important part of this thesis aims at

1Despite this technique being close to 20 years old, there is no concensus on how it should be abreviated. We
follow the tradition of the ultrafast optics community of naming ultrashort pulse characterization techniques
after animal names. The spellings RABBITT and RABITT can also be found in the literature.
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studying experimentally and theoretically the e�ect of the interplay of the di�erent ioniza-
tion channels on the ionization dynamics, with the aim of fully characterizing the quantum
state of the emitted EWPs.

3 Papers and outline

This thesis is based on 10 papers. In paper iv, we present an in-depth study of the RABBIT
technique. The other papers focus on the study of photoionization dynamics in di�erent
systems.

In papers i and ix, we study angle-integrated non-resonant photoionization. In paper i, we
investigate photoionization time delays between 2s and 2p electrons in Ne, solving a 7-year
old puzzle raised by the �rst measurements of photoionization time delays [22] and demon-
strating the accuracy of the RABBIT technique. In paper ixwe measure time delays between
electrons emitted from the 3s and 3p shells of Ar in the challenging energy region of the 3s
and 3p Cooper minima. In both papers we identify the presence of competing ionization
mechanisms (shake-up processes) which must be taken into account to obtain good agree-
ment with theory.

In papers ii and viii, we use the RABBIT technique to investigate angle-integrated pho-
toionization via Fano resonances, where the interference of direction ionization and autoion-
ization results in a modi�cation of the ionization dynamics. In paper ii, we measure the amp-
litude and phase of the EWPs emitted via the sp2+ and sp3+ autoionizing resonances in He
and characterize them in the time-frequency domain. This allows us to disentangle the ion-
ization dynamics associated to the direct and autoionizing channels and to follow in time the
formation of the quantum interference between the two ionization paths. In paper viii, we
study the EWPs emitted via the 3s−14p Fano resonance in Ar. In this case, the spin-orbit
splitting of the ion results in an incoherent superposition of EWPs which makes the ana-
lysis more di�cult. We present a method that allows the characterization of the individual
spin-orbit components.

In papers vii and x, we apply the RABBIT technique to study angle-integrated photoioniz-
ation in the vicinity of shape resonances. In paper vii, we probe vibrationally resolved pho-
toionization time delays in N2 in the vicinity of the 3σ−1

g resonance. These measurements
show that the transient trapping of the photoelectron by the shape resonance allows the mo-
lecule to vibrate during photoionization, indicating a break-down of the Franck-Condon
approximation. In paper x, we investigate the photoionization from the 4d shell in Xe, in
the low energy part of the giant dipole resonance, close to the 4d threshold. We measure a
large time delay di�erence close to threshold between electrons associated to the two spin-
orbit split states of Xe+. We attribute this observation to the interference of the giant dipole
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resonance with narrow resonances at threshold due to spin-orbit interaction.

Finally, in papers iii, v and vi, we extend our photoionization studies to investigate how the
ionization dynamics depend on the emission angle of the photoelectron. In paper iii, we use
the angle-resolved RABBIT technique to investigate the photoionization via the 3s−14p res-
onance in Ar. We show that the presence of two resonant channels with di�erent angular mo-
menta leads to a complex energy and angle dependence of the photoionization time delays. In
addition, we observe that even in non-resonant conditions, the photoionization time delays
are strongly angle-dependent and the photoelectron angular distribution are delay-dependent.
In papers v and vi, we investigate non-resonant angle-resolved photoionization. In paper v,
we study the strength of the di�erent angular channels and we show that Fano’s propensity
rule can be extended to laser-assisted photoionization. Applying it to the RABBIT scheme,
we demonstrate that it provides a fundamental explanation to both the angle-dependence
of the photoionization time delays and the delay-dependence of the photoelectron angular
distributions reported in paper iii. In paper vi, we investigate angle-resolved laser assisted
photoionization and discuss the cases where both one and two IR photons interact with the
EWP.

The outline of the thesis is the following. In chapter 2, we discuss the generation of the at-
tosecond pulse trains and their spectral and temporal properties. In chapter 3, we introduce
laser-assisted photoionization and discuss the propensity rules in channel-resolved photoion-
ization. We then present in detail the RABBIT technique, its advantages and limitations. In
chapter 4, we introduce the concept of photoionization time delays and present our results
on non-resonant photoionization in neon and argon (papers i and ix). In chapter 5 we �rst
introduce Fano’s theory of autoionization resonances and present the results on the char-
acterization of EWPs emitted via resonances in He (paper ii) and Ar (paper viii). We also
discuss new results obtained in helium with high spectral resolution, which have not yet been
published. Finally, we discuss photoionization via shape resonances in both N2 and Xe. In
chapter 6, we introduce the angle-resolved RABBIT technique and present the results ob-
tained on angle-resolved photoionization time delays in the vicinity of an autoionizing reson-
ance in Ar (paper iii). We then discuss the theory of angle-resolved RABBIT measurements
and explain how Fano’s propensity rule explains the results reported in paper iii regarding
non-resonant photoionization. Finally chapter 7 gives a summary and an outlook.
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Chapter 2

Generation of attosecond pulse

trains

The photoionization dynamics studied in this thesis are triggered by the absorption of atto-
second pulse trains. These pulse trains are generated via the extremely non-linear interaction
of intense femtosecond laser pulses with noble gas atoms. The aim of this chapter is to ex-
plain how these extremely short light pulses are generated and controlled. We �rst introduce
the basic concepts behind the generation of intense femtosecond pulses before describing
the interaction of these pulses with an atomic gas and discussing in detail the spectral and
temporal properties of the emitted radiation, the attosecond pulse trains.

1 Introduction to ultrafast optics

1.1 Generation of femtosecond pulses

Light is an electromagnetic wave characterized by the frequency, ν, at which the electric and
magnetic �elds oscillate. If light is monochromatic, it is made of a single in�nitely long wave
oscillating at a speci�c frequency. In order to produce short light bursts, it is necessary to
have multiple frequencies interfering with each other as shown in Fig 2.1(a). The duration of
these light bursts, ∆τ , is inversely proportional to the number of di�erent frequencies in the
light, i.e. its spectral width ∆ν, as stipulated by the the time-bandwidth product,

∆τ∆ν ≥ γ, (2.1)

where γ = 0.44 for Gaussian pulses. In order to produce ultra-short pulses, it is hence im-
portant to �nd a process that can produce light with a broad bandwidth. In addition, all
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Figure 2.1: Working principle of intense femtosecond lasers. (a) The sum of multiple phase-locked
waves with di�erent frequencies results in a short light pulse (black curve). (b) Schematic
representation of chirped pulse ampli�cation.

the waves with di�erent frequencies must be emitted synchronously, meaning that all the
waves should have the same phase, as illustrated by the dashed line in Fig. 2.1(a). These two
principles are at the basis of ultrafast laser technology. The �rst requirement, regarding the
spectral width of the light, sets the type of crystals used as lasing medium. Titanium doped
sapphire (Ti:Sapphire) crystals are, so far, the most widespread type of crystal used in femto-
second lasers. The second requirement, regarding the synchronous emission of the di�erent
frequencies, is more complicated to achieve. Since spontaneous emission, which is the start-
ing point of the lasing process, is intrinsically stochastic, di�erent frequencies are in general
not synchronized. In order to generate short pulses, it is necessary to force the oscillator to
only amplify pulses for which all frequencies are synchronized. This can be achieve using vari-
ous modelocking techniques [24]. The duration of the laser pulses going out of the cavity
can be below 10 fs, however, the energy per pulse is extremely low, of the order of nJ/pulse.
Many applications require much higher pulse energies and hence it is necessary to further
amplify the laser pulses.

1.2 Chirped pulse ampli�cation

Laser pulses can be ampli�ed by sending them into multi-pass or regenerative ampli�ers.
However, if no precaution is taken, due to their short duration, the laser pulses quickly reach
a critical intensity beyond which ampli�cation crystals can be damaged. If one needs to amp-
lify further the laser pulses, a "trick" must be used. This "trick" is chirped pulse ampli�cation
(CPA) which was pioneered by Donna Strickland and Gérard Mourou [25], an achievement
for which they were awarded the 2018 physics Nobel prize. The key idea consists in stretch-
ing temporally the pulses using, for example, a pair of gratings, thereby reducing the peak
power while maintaining the pulse energy. For technical reasons, it is preferable to stretch the
pulses by delaying higher frequencies with respect to lower ones, which requires additional
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imaging optics [26]. After stretching the pulse, the di�erent frequencies are not synchron-
ized any more as shown in Fig. 2.1(b) and the pulses are said to be chirped. The pulses can
then be ampli�ed in several stages before being compressed temporally using a pair of grat-
ings spaced by a distance such that all the frequencies are synchronized again. This technique
hence allows generating short intense pulses without damaging the ampli�cation medium.
The principle of this ampli�cation technique is schematically presented in Fig. 2.1(b).

2 High-order harmonic generation and attosecond pulse trains

As described above, the shortest duration to which a light pulse can be compressed is in-
versely proportional to its spectral bandwidth. Therefore, the pulse duration is limited by
the bandwidth that the amplifying crystals can support. While the spectral bandwidth can
be additionally broadened via self-phase modulation in gas-�lled hollow-core �bres, it is, in
any case, impossible to reach pulse durations below the single cycle limit which is≈ 2.67 fs
at 800 nm. To reach the attosecond timescale, the central wavelength has to be shifted to the
extreme ultraviolet (XUV). This is impossible with traditional laser systems. However, it was
discovered in the late 80’s that by focusing an intense laser pulse in a gas, very high odd-order
harmonics of the fundamental laser frequency are generated [4, 5]. After a quick decrease
of intensity as a function of harmonic order, a plateau appears, followed by another sharp
decrease of intensity. The generation of such high order harmonics and the presence of a
plateau in the harmonic spectrum is impossible to explain within the work frame of perturb-
ative non-linear optics according to which the intensity of the di�erent harmonics should
decrease exponentially with increasing harmonic order. In this case, the electric �eld is so
strong that it can signi�cantly distort the atomic potential. Therefore, a non-perturbative
treatment of the light-matter interaction is necessary.

2.1 The 3-step model

The �rst model to explain HHG was developped by Kulander and coworkers [27] and Corkum
[28] using a semi-classical approach. This model can be decomposed in three steps presen-
ted in Fig. 2.2. A more advanced, fully quantum mechanical, model was developed a year
later [29]. Here we only discuss the semi-classical approach which can explain most of the
spectral and temporal features of HHG. In the �rst step, the laser electric �eld is strong
enough to bend the Coulomb potential of the atom, creating a potential barrier through
which a valence electron can tunnel out. In the second step, the electron is accelerated away
from the ion by the laser �eld. When the electric �eld changes sign, the electron is driven
back to the parent ion. Finally, in the last step, the electron can recombine with the ion, lead-
ing to the emission of an XUV photon whose energy is given by ~Ω = Ip + Ek, where Ip
is the ionization potential of the neutral atom, Ek is the kinetic energy accumulated by the
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1

23

Figure 2.2: Schematic representation of the 3-step model. 1) The atomic potential (dashed gray
curve) is distorted by the laser �eld, giving rise to a potential barrier (black curve) through
which the electron can tunnel. 2) The electron is accelerated away and then driven back
to the ion. 3) The electron recombines with the ion and emits an attosecond XUV pulse.

electron during its trajectory in the continuum and Ω is the angular frequency of the XUV
light.

When the electron tunnels through the barrier, it appears in the continuum at time ti and
position x(ti) = 0 with no kinetic energy. Neglecting the in�uence of the ionic potential,
the electron’s trajectory in a linearly polarized laser �eld, E(t) = E0 sin(ωt), calculated
classically using Newton’s equation of motion, is given by

x(ti, t) =
eE0

meω2
[sin(ωt)− sin(ωti)− ω(t− ti) cos(ωti)] , t ≤ ti (2.2)

withω the angular frequency of the IR �eld, e the electron charge andme its mass. Fig. 2.3(a)
shows the trajectories followed by the electron for di�erent ionization times. Depending on
the ionization time, some trajectories return to the parent ion (coloured trajectories) while
others do not (dashed grey trajectories), leading to the ionization of the atom. The kinetic en-
ergy of the returning electron as a function of the recombination time is shown in Fig. 2.3(b).
The maximal kinetic energy that can be achieved is given byEcutoff ≈ 3.17Up,Up being the
ponderomotive energy de�ned as:

Up =
E2

0e
2

4meω2
∝ λ2I, (2.3)

with I the laser intensity and λ the central wavelength. Since the maximal kinetic energy
is limited to 3.17Up, this explains the origin of the cuto� frequency observed in HHG at
Ip+3.17Up. As a result, the generation of high energy photons requires high intensities and
long wavelengths. Photon energies in the keV range have been demonstrated using mid-IR
lasers [30, 31]. Figure 2.3(b) also shows that there are two sets of the trajectories leading to
the same return kinetic energy. There are long trajectories that tunnel at an early time and
spend a long time in the continuum and short trajectories, which tunnel at a later time and
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Figure 2.3: (a) Classical electron trajectories in a laser �eld. The color of the curves indicates the
kinetic energy of the electron when it recombines with the ion. A few trajectories for
which the electron cannot recombine with the ion are plotted in dashed grey. (b) Return
kinetic energy of the electron as a function of the recombination time for long (green)
and short (blue) trajectories.

spend a shorter time in the continuum. While both trajectories lead to the same range of
kinetic energies, the properties of the light emitted by these two trajectories is di�erent and
is discussed in section 2.2.

Finally, as shown in Fig 2.3(a), the 3-step process occurs twice per cycle. As a result, the XUV
spectrum corresponds to a comb of odd harmonics1. The spectral and temporal properties
of the generated XUV �eld are discussed in sections 2.3 and 2.4

2.2 Phase matching

The model presented so far describes only the response of a single atom to the laser �eld.
However, in practice, the laser is focused in a gas and multiple atoms emit XUV radiation. If
the phase of the XUV emitted from di�erent atoms is random, the macroscopic XUV �ux
will be close to zero due to destructive interference. In order to improve the XUV �ux, it
is necessary to phase match the radiation from all the atoms as shown in Fig. 2.4. The total
wavevector mismatch, ∆k = qk − kq , has four contributions:

∆k = ∆ke + ∆kn + ∆kg + ∆kd, (2.4)
1It is possible to generate both even and odd harmonics by breaking the symmetry between two consecutive

sub-cycles using two-color �elds or asymmetric molecules.
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Figure 2.4: Illustration of phase matching. On the left, the radiation emitted from the di�erent
atoms is not phase matched, yielding a low XUV intensity. On the right, all the waves are
in phase and interfere constructively.

where ∆ke and ∆kn account respectively for the plasma and neutral gas dispersion, ∆kg
originates from the geometrical phase, called Gouy phase, due to the focusing of the laser and
∆kd is the dipole phase acquired by the electron during its propagation in the continuum
in the 3-step model. As a result, the dipole phase is di�erent for long and short trajectories.
Experimentally, the main parameters that we can tune are the laser intensity, the gas pressure
and the focus position. In the following, we review from an experimental perspective the
main e�ects of these parameters on phase matching. A formal discussion of phase matching
can be found in Ref. [32].

The intensity is probably the most complicated parameter to tune. It a�ects mostly ∆ke,
∆kn and ∆kd. The higher the intensity, the more free electrons are created and the less
neutral atoms are available. It is necessary to have a small amount of free electrons in the me-
dium, however a too high intensity can destroy the phase matching due to a too high plasma
dispersion. While high intensities are needed to reach high XUV photon energies, plasma
dispersion puts a limit on the intensity that can be used. In addition, the optimal intensity
depends on the gas used for generation. Low atomic number noble gases such as helium
and neon have a relatively low polarizability which allows us to use higher intensities and
hence reach higher photon energies. Nonetheless, this comes at the price of the conversion
e�ciency which is signi�cantly lower in these gases compared to heavier noble gases such as
argon or xenon. It is also worth mentioning that the generation of free electrons results in
a blue-shift of the fundamental frequency [33]. This e�ect can lead to a signi�cant energy
shift of the highest harmonic orders. For example a blue-shift of 0.05 eV of the IR central
frequency results in a shift of 2.55 eV of harmonic 51.

The intensity also a�ects the dipole phase [34–38]. Importantly, because the long trajectories
spend more time in the continuum than the short ones, their dipole phase varies faster as a
function of intensity. As a consequence, for a given intensity, the phase mismatch ∆kd, is dif-
ferent for long and short trajectories. This means that it is possible to optimize the generation
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conditions to preferentially phase match one class of trajectories or the other. In addition, the
strong intensity dependence of the long trajectories results in a larger divergence compared
to short trajectories. In practice, we always try to phase match the short trajectories.

The gas pressure a�ects the plasma and neutral dispersion linearly so that a small modi�ca-
tions of the pressure a�ects them similarly. Since the plasma and neutral contributions, ∆ke
and ∆kn have opposite signs, this small change of pressure does not have a signi�cant impact
on the phase matching conditions. However, it can lead to a modi�cations of the spectral en-
velope of the harmonics and a temporal walk-o� [39]. In addition, increasing the pressure
can increase the XUV �ux due to the larger number of emitters. However, a too high pressure
can lead to re-absorption of the generated XUV in the gas, decreasing the XUV generation
e�ciency [40].

Finally, the focus position mostly a�ects the Gouy phase and the dipole phase. By adjusting
the focus position it is possible to phase match either the long or short trajectories. Harmonic
generation from the short trajectories is usually optimized by focusing the laser slightly after
the gas cell. It has also been shown that the position of the focus has a signi�cant impact on
the divergence and temporal properties of the harmonics as a result of strong spatio-temporal
couplings [36, 38]. Focusing close to the gas cell helps minimizing these e�ects [38].

At this point, it is important to emphasize that these few paragraphs are more of a beginners
guide to generate reasonably good harmonics rather than a secret recipe for perfect harmon-
ics. In practice, generating harmonics is an iterative process where one changes one parameter
at the time and looks at the e�ect on the yield and shape of harmonics, trying to optimize the
harmonic spectrum in the region of interest. Indeed, because phase matching depends on the
harmonic order, it is often impossible to simultaneously optimize all the harmonic orders,
especially when generating in neon, where the HHG spectrum spans more than 100 eV.

2.3 Attosecond pulse trains

Very little time after the discovery of HHG, it was suggested that the broad bandwidth of
the harmonic comb could support pulses of attosecond duration [41,42]. However, as is also
the case for the generation of femtosecond IR pulses, it is necessary that all the harmonics
are synchronized. Here we discuss in more detail the spectral and temporal properties of
attosecond pulse trains. This discussion is restricted to the short trajectories.

As can be seen in Fig. 2.3, within one half cycle, the di�erent photon energies are emitted at
di�erent times, resulting in the emission of a chirped pulse. The phase of the XUV pulse
is given by the dipole phase. Based on the semi-classical 3-step model, an expression of the
dipole phase can be calculated by approximating the return kinetic energy of the electron to
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a linear function of the recombination time [37]

Φ(Ω) =
γ

I
(Ω− Ωp)

2, (2.5)

where Ωp = Ip/~ and γ = 1.03× 10−18s2Wcm−2 at 800 nm. The resulting group delay,
τXUV , is then simply given by the frequency derivative of the spectral phase:

τXUV =
∂Φ

∂Ω
=

2γ

I
(Ω− Ωp). (2.6)

This chirp, called attochirp, is typically of the order of 10−2 fs2 so that, while the XUV pulses
are not Fourier limited, their duration still lies in the attosecond range.

In addition to the attochirp, since the intensity of the IR �eld is time-dependent, the dipole
phase also depends on time. For long enough driving pulses, the variation of the temporal
envelope of the laser �eld during a half-cycle is negligible such that this e�ect does not a�ect
the phase of individual attosecond pulses in the train. However, the variation of the dipole
phase from one attosecond pulse to the other, often cannot be neglected. As a result, the
individual harmonics, which result from the interference of all the attosecond pulses in the
train, experiences a chirp called femtochirp. Assuming a Gaussian envelope of the generating
IR �eld I(t) = I0 exp(−at2/τ2), with a = 4 ln(2) and τ the pulse duration (full width at
half maximum), we show in paper iv that the time dependence of the dipole phase in Eq. 2.5
can be approximated by

Φ(Ω, t) ≈ γ(Ω− Ωp)
2

I0

(
1 +

at2

τ2

)
. (2.7)

The chirp rate of the qth harmonic, bq , is given by the second time derivative of the dipole
phase:

bq = −∂
2Φ

∂t2
≈ −2aγ(qω − Ωp)

2

τ2I0
. (2.8)

The absolute value of the chirp rate increases as the pulse duration of the IR decreases be-
cause the intensity varies faster for short pulses. In addition, as can be seen from Eq. 2.8, the
chirp rate always increases with harmonic order [see Fig 2.5(a)]. However, as will be discussed
in chapter 3, the RABBIT technique gives access to the spectral phase of the high-order har-
monic spectrum, not the temporal one. It is hence interesting to link the chirp rate to the
group delay dispersion (GDD),φ′′q , de�ned as the second derivative of the spectral phase with
respect to the frequency. The GDD is linked in a non trivial way to the chirp rate via [35]

φ
′′
q = −

bqτ
4
q /2

a2 + b2qτ
4
q

. (2.9)

Assuming that all the harmonics have the same duration τq ≈ τ/2 we show in Fig. 2.5(b)
the variation of the GDD with harmonic order. Unintuitively, the GDD has an opposite
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Figure 2.5: Harmonic chirp in the spectral and temporal domains. (a) Chirp rate and (b) GDD as a
function of harmonic order. Figure adapted from paper iv.

pulse duration dependence compared to the chirp rate. Figure 2.5(b) shows that high-order
harmonics have a small GDD and a rather small pulse duration dependence compared to
low-order harmonics. While both the chirp rate and the GDD can be used to characterize
the femtochirp, they do not measure the same thing. The chirp rate measures how the in-
stantaneous frequency varies as a function of time while the GDD measures how the group
delay varies across the spectrum.

These results can be physically understood as follows. Low-order harmonics are generated
during most of the IR pulse duration and are spectrally narrow. As a consequence, the chirp
rate of these harmonics is small, since the variation of the instantaneous frequency is stretched
over a long time, while their GDD is large due to the large variation of the group delay over
a narrow spectrum. On the contrary, the generation of the highest-order harmonics is con-
�ned to the maximum of the generating IR pulse. These harmonics are temporally short
and spectrally broad, which means that, compared to low-order harmonics, the chirp rate of
these harmonics will be bigger and the GDD will be smaller.

2.4 Time-frequency representation of attosecond pulse trains

As is clear from the previous discussion, one of the characteristics of HHG and attosecond
pulse trains is that there are two time and energy scales at play (eV↔as ; meV↔fs), which are
easy to confuse. Rather than switching from one domain to the other, it can be interesting
to �nd a unique representation in the time-frequency domain.

One of the most famous time-frequency representation is the Wigner distribution2 [43–45],
2It is sometimes also referred to as Wigner-Ville distribution in reference of the french physicist Jean Ville.
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Figure 2.6: Femtosecond pulses in the time and frequency domains. The top row (a,b,c) corres-
ponds to a Fourier limited pulse. The bottom row (d,e,f) corresponds to a chirped pulse.
(a,d) Spectral amplitude and phase. (b,e) Temporal amplitude and phase. (c,f) Time-
frequency representation of the pulses using the Wigner distribution.

which is de�ned as:

W (Ω, t) =

∫ +∞

−∞
E(Ω− ω

2
)E∗(Ω +

ω

2
)eiωtdω

=

∫ +∞

−∞
Ẽ(t− τ

2
)Ẽ∗(t+

τ

2
)e−iΩτdτ

(2.10)

where E(Ω) and Ẽ(t) are the complex amplitude of the light �eld in the spectral and tem-
poral domains respectively. The particularity of this distribution is that its projections (also
called marginals) on the time or frequency axes yield respectively the temporal or spectral
intensity.

Before discussing the time-frequency representation of attosecond pulses, let us discuss that
of isolated femtosecond pulses. First, we consider a Fourier limited Gaussian pulse whose
spectral amplitude and phase is given in Fig. 2.6(a). Taking its Fourier transform yields its
temporal amplitude and phase as shown in Fig. 2.6(b). Since the pulse is Fourier limited, both
spectral and temporal phases are �at3 and the pulse duration corresponds to that de�ned by
the time-bandwidth limit. Figure 2.6(c) shows the Wigner distribution of the femtosecond
pulse. It shows that all frequencies come at the same time, resulting in the shortest pulse
possible. We now investigate the case of a chirped pulse. We consider a pulse with the same
spectrum as in the �rst case but with a quadratic phase variation [see Fig. 2.6(d)]. Its Fourier
transform yields a longer pulse than in the �rst case as can be seen in Fig. 2.6(e). The Wigner
distribution of this pulse, displayed in Fig. 2.6(f), shows that, due to the quadratic spectral

3In principle, because the spectrum is not centered around 0, the temporal phase increases linearly with time
with a slope equal to the central frequency of the pulse. Here this linear phase has been subtracted.
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Figure 2.7: Time-frequency analysis of an attosecond pulse train. (a) Wigner distribution of an APT
generated by a 20 fs IR pulse and its marginals. The orange dashed line shows the at-
tochirp across a single attosecond pulse in the train. The magenta dashed line shows the
femtochirp across one of the harmonics. (b) Build-up of the XUV spectrum in a logar-
ithmic scale together with lineouts of the transient XUV spectrum for di�erent delays in
a linear scale. Both the Wigner distribution and the transient XUV spectrum are given
in arbitrary units.

phase, high frequencies arrive before low frequencies, resulting a tilted Wigner distribution.
This tilt in the time-frequency domain is characteristic of a chirp.

Let us now discuss the Wigner distribution of attosecond pulses. Figure 2.7(a) shows the
Wigner distribution of a simulated attosecond pulse train, generated by a 20 fs laser pulse,
and its projections in the time (orange) and frequency (magenta) domains. Compared to
the isolated femtosecond pulse, here the Wigner distribution is more complex. If we look
at a given harmonic on the projection, we can see that it corresponds to a long structure
in time. If instead we look at an individual attosecond pulse, we see that it corresponds to a
broad structure in frequency. However, in both cases these signals are modulated as a result of
interference characteristic of the Wigner distribution. This e�ect is, for example, at the origin
of the structure observed at the position of even harmonics. These interference terms can take
negative values such that, once integrated over time, the oscillations observed at the position
of the even harmonics disappear. One of the advantages of this representation is that the two
time and energy scales discussed previously are visible in a single representation. In particular
both atto- and femtochirps are visible as a slight tilt of the structures discussed above. The
attochirp, in dashed orange, spans the entire HHG spectrum but varies only very slightly
from one attosecond pulse to the other. The femtochirp, in dashed magenta, spans the whole
pulse train duration and is di�erent from one harmonic to the other. In particular, Fig. 2.7(a)
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shows that the femtochirp rate increases with harmonic order as discussed in section 2.3.

The Wigner distribution provides a representation of the "�nal" attosecond pulse train in the
time-frequency domain and reveals the di�erent time and energy scales at play. However, it
does not provide information on the build up of the spectrum during HHG. Information
on how the harmonic spectrum dynamically builds-up as a function of time can be obtained
using the cumulative Fourier transform de�ned as [13, 46]:

S(Ω, t) =

∫ ∞

−∞
Ẽ(τ)Θ(τ − t)e−iΩτdτ, (2.11)

where Θ(τ − t) is the Heaviside function. Figure 2.7(b) shows the build-up of the XUV
spectrum on a logarithmic scale as a function of time. The time zero corresponds to the
maximum of the generating IR pulse. This �gure shows that, every half cycle, an attosecond
pulse with a continuous broad spectrum is emitted. As time progresses, constructive inter-
ference at odd harmonic orders lead to a build-up of the XUV intensity while at even orders,
destructive interference from pulse to pulse result in an absence of build-up. We can also see
that, on the rising slope of the IR pulse (t < 0), the spectral bandwidth of the individual at-
tosecond pulses increases with time due to the increase ofUp as a function of time. After the
maximum of the IR �eld passes, Up decreases and so does the bandwidth of the individual
pulses. This also shows that the highest harmonics are emitted later and for a shorter time
than the lower harmonics. The line-outs on top of Fig.2.7(b) show that the spectral width
of the individual harmonics decreases as a function of time. The more attosecond pulses are
emitted and interfere, the sharper the harmonics get.

3 The attosecond light source

The attosecond light source used during this thesis is driven with a femtosecond Ti:Sapphire
CPA laser system. We start with a Rainbow oscillator from Femtolasers, which delivers 7 fs
pulses with an energy of 2.5 nJ at a repetition rate of 76 MHz. The pulses are stretched using
a single grating as in [47] and sent through an acousto-optical programmable dipersive �l-
ter (AOPDF) [48], Dazzler from Fastlite, which is used to compensate for phase distortions
during the subsequent ampli�cation process, in order to obtain a Fourier limited pulse at
the end of the laser chain. In addition, it allows shaping the spectrum of the laser pusles. By
reducing the bandwidth of the stretched pulse sent in the following ampli�cation stages, the
Dazzler can be used to tune the central wavelength of output pulse between approximately
780 nm to 820 nm. After this shaping step, the pulses are sent to four ampli�cation stages:
a multi-pass ampli�er, a regenerative ampli�er, a 3-pass ampli�er and a �nal 3-pass ampli�er
cryogenically cooled with liquid helium. The Ti:Sapphire crystals in the ampli�cation stages
are pumped by frequency doubled Nd:YLF (Neodymium-doped yttrium lithium �uoride)
lasers, a Photonics DM30-527 for the �rst three stages and a Continuum Terra laser for the
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Figure 2.8: Schematic representation of the HHG setup. High-order harmonics are generated in a
gas cell, after which the IR is �ltered out with a metallic �lter. The XUV radiation is
focused in the multi-purpose chamber for atomic and molecular physics (CAMP) with a
toroidal mirror (TM). The XUV spectrum is measured after the CAMP using a �at �eld
grating which images the harmonics on a MCP plus phosphor screen (PS).

last stage. The regenerative ampli�er includes a second AOPDF, Mazzler from Fastlite, to
compensate for gain narrowing during the ampli�cation process. The pulses are �nally com-
pressed with a grating pair [49], resulting in 3.5 mJ pulses with a duration of 20 fs, when the
full bandwidth is used, at 1 kHz repetition rate. When needed, for wavelength tuning or for
reducing the width of the high-order harmonics, the bandwidth can be decreased to 70 nm
or 50 nm resulting in pulses with a duration up to 45 fs. In order to reduce �uctuations and
long-term drifts of the laser output, the pulses are characterized after the compressor with a
Wizzler from Fastlite, based on self-referenced spectral interferometry [50,51], and the result
is fed back to the Dazzler to correct the phase of the pulses. In general this feed-back is per-
formed manually when needed. However, for very long measurements, it is possible to do
this automatically.

After the compressor, the pulses are transported over several meters in air until our exper-
imental setup. Due to the large distance, the beam position is very sensitive to all sorts of
environment �uctuations. To reduce this e�ect we use a beam-pointing stabilization system
Aligna from TEM Messtechnik, which corrects the beam position at 100 Hz repetition rate.
In addition, if short pulses are used, the propagation in air can slightly chirp the pulses. This
can be pre-compensated by adding an additional negative dispersion with the Dazzler. The
beam is then focused with a 50 cm focal length spherical mirror on a gas cell of varying length
(usually 6 mm or 10 mm) �led with a noble gas (Ne, Ar, Xe) by a 1 kHz pulsed Attotech valve.
The position of the gas cell can be adjusted in three dimensions with translation stages. The
intensity of the laser in the cell is controlled using an iris before the focusing mirror. The
XUV APT is then sent through a metallic �lter in order to �lter out the remaining IR. Dif-
ferent metallic �lters have di�erent transmission curves in the XUV which allows us to shape
the spectrum and select which harmonic orders we want to use. Furthermore, the �lters
have negative dispersion in the XUV which partly compensates the attochirp. The HHG
spectrum is measured using a �at �eld grating which directs the �rst di�raction order on a
micro channel plate (MCP) detector behind which a phosphor screen is installed. Figure 2.8
shows a schematic representation of the HHG setup.
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Chapter 3

Attosecond photoelectron

interferometry

Light in the XUV spectral range is very strongly absorbed by matter. The development of
synchrotron radiation light sources in the 60’s allowed detailed studies of atoms and mo-
lecules using photoelectron spectroscopy. However, in traditional spectroscopy, only the
spectrum, i.e. the modulous square of the electron wavepacket, is measured. As a con-
sequence, phase information is lost. In this thesis, we use the interferometric technique,
RABBIT, to measure both amplitude and phase of the emitted electrons. Initially intro-
duced by Paul and coworkers [6] to measure the duration of the attosecond pulses produced
by HHG, attosecond photoelectron interferometry has been, since then, successfully applied
to investigate photoionization dynamics on the attosecond time scale. This chapter intro-
duces the theory of laser-assisted photoionization, which is at the core of photoelectron in-
terferometry, before introducing the RABBIT technique itself and how it is implemented
experimentally.

1 Laser-assisted photoionization

All pulse characterization techniques in the visible and IR are based on the non-linear in-
teraction of a short pulse with matter. In the case of XUV attosecond pulses, this is much
more challenging due to the low e�ciency of HHG and the low cross-section of XUV-XUV
non-linear interaction [52–56]. It is, however, much easier to observe two-photon processes
where one of the photons is in the XUV domain and the other photon is in the IR spectral
range. An atom or molecule can absorb an XUV photon, followed by further absorption or
emission ofn additional IR photons: A+γXUV ±nγIR → A+ + e−. This process, called
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laser-assisted photoionization, is a cornerstone of attosecond science.

1.1 Two-photon transitions

For moderate IR intensities, of the order of 1011 W/cm2, only one XUV and one IR photon
interact, resulting in a photoelectron spectrum (PES) composed of three peaks: a central peak
corresponding to one-photon transition induced by the XUV and two smaller peaks, refered
to as sidebands, corresponding to two-photon transitions where an XUV photon is absorbed
and an IR photon is either absorbed or emitted.

Single channel

When the electron is ionized it reaches the continuum. As a �rst step, we consider that there
is only one state accessible for a given energy in the continuum . In the following, we further
restrict our discussion to the case where the XUV photon has an energy above the ionization
threshold. In a two-photon transition, an XUV photon is absorbed, taking an electron from
the ground state |g〉 to an intermediate continuum state |ν〉, followed by further absorption
or emission of an IR photon1 taking the electron to a �nal continuum state |f 〉. If both
XUV and IR �elds are linearly polarized along the ẑ axis, the two-photon transition matrix
element, calculated using second-order perturbation theory, can be de�ned as:

M
(±)
f g (Ω) = lim

ε→0+

∑

ν

∫ 〈f |ẑ|ν〉 〈ν|ẑ|g〉
~Ω− Eν + Eg + iε

. (3.1)

In the following, the dependency of M (±)
f g on the XUV angular frequency Ω will not al-

ways be written explicitly in order to simply notations. The sum integral in Eq. 3.1 runs over
both continuum states and real discrete states. This means that there is an in�nite num-
ber of quantum paths leading to the �nal state |f 〉. Nonetheless, if there is no discrete state
(a resonance) in the vicinity of the intermediate states, only the state |ν〉 that conserves en-
ergy, Eν = Eg + ~Ω, contributes signi�cantly. The two-photon transition can be decom-
posed in two steps: �rst the transition from the ground state to the intermediate continuum
state and then the continuum-continuum (CC) transition between the intermediate and �-
nal states [9, 57, 58]. The (±) superscript in the matrix element indicates whether the IR
photon is absorbed (+) or emitted (−) in the second step.

1It is in principle possible that the IR interacts �rst, taking the electron to a virtual intermediate state, how-
ever, this process is in general very improbable and we do not consider it in the following.
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Figure 3.1: Example of channel-resolved two-photon transitions in He and Ar when the IR photon
is absorbed.

Multiple channels

In reality, one cannot consider that for a given energy there is only one state in the continuum.
Continuum states are scattering states and are characterized by the electron wave vector k

such that we write the �nal state as |f 〉 ≡ |k〉. Decomposing the scattering states into a sum
of partial waves, the two-photon transition matrix element can be expressed as

M
(±)
kg =

∑

λ,L

M
(±)
λLmYLm(θ, φ), (3.2)

where λ and L are the angular momenta of the intermediate and �nal states, m is the mag-
netic quantum number of the ground state |g〉 and YLm(θ, φ) are the spherical harmonics,
θ being the polar angle and φ the azimuthal angle. According to the selection rules for an
electric dipole transition, the angular momenta of the �nal, intermediate and ground states
are linked via L = λ ± 1, and λ = ` ± 1, ` being the angular momentum of the ground
state and `, λ, L ≥ 0. In addition, for linearly polarized light, only intermediate and �nal
states with the same magnetic quantum number as the ground state are accessible. Figure 3.1
shows examples of channel-resolved two-photon transitions in helium and argon where s, p,
d and f refer to the angular momenta ` = 0, 1, 2, 3 respectively.

Fano’s propensity rule

In 1985, Ugo Fano showed that for one-photon transitions, from the ground state to the con-
tinuum, the channel in which the angular momentum increases dominates over the chan-
nel in which angular momentum decreases [59]. For example, this means that in argon, for
m = 0, the transition |3p6〉 → |εd〉 dominates over the transition |3p6〉 → |εs〉. As with
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Figure 3.2: Propensity rules in laser-assisted photoionization in He 1s (×), Ne 2p (O), Ar 3p (©) and
Kr 3d (+). The color of the curves indicates the angular momentum of the intermediate
state in (a) and �nal state in (b), (c) [shades of grey s, shades of blue p, shades of green
d, shades of red f , orange g]. (a) Probability ratio between increasing (L = λ + 1) and
decreasing angular momentum (L = λ− 1) in the case of absorption of a photon from
the intermediate state. (b) Probability ratio between absorbing and emitting a photon
in the case of increasing angular momentum. (c) Probability ratio between emitting and
absorbing a photon in the case of decreasing angular momentum. The insets present
an energy and angular momentum diagram illustrating the propensity rule in each case.
Figure from paper v.

most simple rules, there are also some notable exceptions for which the propensity rule does
not work such as the 3p Cooper minimum in Ar [60]. However, in the case of CC trans-
itions, there was, until recently, no study investigating the validity of this propensity rule. In
addition, contrary to bound-continuum transitions, in CC transitions, the IR photon can
also be emitted, which, due to time reversal symmetry, should result in the channel decreasing
angular momentum dominating over the one increasing it.

In paperv, we investigate this problem theoretically. We calculate channel-resolved 2-photon
transition matrix elements by solving the Dirac-Fock equation for noble gas atoms, (He,
Ne, Ar outer shells and Kr 3d inner shell) and compare the moduli of the di�erent mat-
rix elements. First, we investigate the problem in the same way that Fano did, by comparing
whether it is more probable to increase or decrease angular momentum when a photon is
absorbed between two continuum states. We �nd that for CC transitions, Fano’s propensity
still holds true, since the ratio |M (+)

λ(λ+1)m|/|M
(+)
λ(λ−1)m| is larger than one [see Fig. 3.2(a)].

In addition, for a given energy, this ratio is universal, i.e. independent of the atomic species.
It only depends on the angular momentum of the intermediate state. As the energy of the
photoelectron increases, the ratio decreases, resulting in both channels having comparable
amplitudes. We then compare, for a given angular channel in the continuum |λm〉 → |Lm〉,
whether it is more likely to absorb or emit a photon in the case where we increase angular mo-
mentum (L = λ+1) or decrease angular momentum (L = λ−1). As shown in Figs. 3.2(b)
and (c), in the former case, absorption is dominant while in the latter case it is emission that
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Figure 3.3: (a) Channel resolved three-photon transition in He, where both IR photons are absorbed.
(b) Probability ratio between the transition amplitude to thep andf �nal states in the case
absorption (solid curve) or emission (dashed curve) of two IR photon in the continuum.

is stronger. Again, the curves are universal and only depend on the intermediate angular
momentum and energy.

The physical origin of this propensity rule is relatively simple. The local momentum of the
electron in the continuum is given by

~k(r) =
√

2me[E − V (r)] (3.3)

whereE is the photoelectron energy andV (r) = V0(r)+V`(r), withV0(r) an atom speci�c
potential and V`(r) the centrifugal potential de�ned as

V`(r) =
~2`(`+ 1)

2mer2
. (3.4)

The strength of the transition between the intermediate and �nal states is highest when the
di�erence in local momentum is the smallest. As a result, when the IR photon is absorbed,
resulting in a higher total energyE, increasing angular momentum is favoured as it increases
the centrifugal potential. In the case where the IR photon is emitted, the total energy de-
creases thus favouring the transition to a lower angular momentum state. It is worth men-
tioning that another contribution can a�ect these results. Indeed, one also needs to take into
account the angular part of the matrix elements. At low energy this contribution is small
relative to the radial matrix element. However, at high energy, when E � V (r), the radial
part becomes negligible and the angular part dominates. This results in the fact that in He,
above 20 eV, when an IR photon is absorbed, it is slightly more probable to decrease angu-
lar momentum than to increase it [see Fig. 3.2(a)]. This means that, in this energy range,
both absorption and emission processes favour decreasing angular momentum. However,
the probability of increasing angular momentum remains stronger for absorption than for
emission as shown in Fig. 3.2(b).

Finally, in paper vi we also investigate, in the high energy limit, three-photon transitions in
which two IR photons are absorbed or emitted in the continuum, leading to a more com-
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Figure 3.4: (a) Both XUV (blue) and IR (red) �elds have a Gaussian distribution of their spectral
amplitude. (b) A given �nal state with energy Ef can be reached via multiple combina-
tions of IR and XUV frequencies.

plex energy diagram as showed in Fig. 3.3(a) for helium. In particular, starting from the �rst
intermediate state in the p continuum, there are two interfering paths leading to the �nal
state with angular momentum L = 1 and only one path leading to the �nal state with an-
gular momentum L = 3. In this situation, it is not clear which �nal state will the electron
most likely reach. One the one hand, according the Fano’s propensity rule, individually, the
transitions p → d and d → f are the most likely in the case of photon absorption and the
least likely in the case of emission. On the other hand, two, individually weaker, paths lead
to the p �nal state. Figure 3.3(b) shows that these two paths interfere constructively such that
the electron is more than twice as likely to end in the p state than in the f state, and this
both in the absorption and emission cases. Nonetheless, we still observe that the p state is
more favoured in the case of emission than in the case of absorption, as expected from Fano’s
propensity rule.

1.2 E�ects of the spectral properties of the light �elds

So far we have restricted the discussion of laser-assisted photoionization to the intrinsic prop-
erties of the atoms. However, the photoelectron signal also depends on the spectrum of the
XUV and IR �elds.

In the case where both XUV and IR pulses are long, we can assume that their spectra are
monochromatic and the total transition probability amplitude to reach the �nal state is then
simply given by

A(±)
kg (τ) = − ie

2

~
EXUV(Ω)EIR(ω)e±iωτM (±)

kg , (3.5)
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where τ is the delay between the pump and the probe pulses. Here the phase of the IR �eld is
written explicitly in order to easily di�erentiate between absorption and emission processes.
In our experiments, the light pulses are short such that the monochromatic approximation
is not always good [61, 62]. Instead, as shown in Fig. 3.4(a), both XUV and IR pulses are
composed of a distribution of frequencies. As a result, several �nal states with di�erent en-
ergies are accessible. In addition, as shown in Fig. 3.4(b), each �nal energy can be reached
via multiple paths combining di�erent XUV and IR photon energies. The total transition
probability amplitude to reach the �nal state is hence given by the coherent addition of all
these paths [62]

A(±)
kg (Ωkg, τ) = − ie

2

~

∫ ∞

0
EIR(Ωkg − Ω)ei(Ωkg−Ω)τEXUV(Ω)M

(±)
kg (Ω) dΩ. (3.6)

Here the IR photon energy is de�ned with respect to the �nal energy and the XUV photon
energy in order to ensure conservation of energy. In order to calculate the energy resolved
two-photon transition amplitude to the sidebands, one has to calculate this integral for every
�nal energy

Let us now investigate the case where the intermediate and �nal continua are �at and the
XUV and IR pulses are Gaussian and Fourier limited. In this situation, the two-photon
transition amplitude has an analytic form [62]

A(±)
kg (τ) ∝ F(τ)e±iωτw

[
z(Ωkg, τ)

]
, (3.7)

where F is a form factor, z(Ωkg, τ) is a complex parameter and w(z) = e−z
2
erfc(−iz)

is the Faddeeva function with erfc(z) the complex error function. The exact form of the
two-photon transition amplitude and the de�nition of the aforementioned quantities are
given in Appendix 1 and the complete details on the derivation can be found in Ref. [62].
Unlike in Eq. 3.5, here the two-photon transition amplitude decays as a function of delay
via F(τ)w[z(Ωkg, τ)], re�ecting the fact that two-photon excitation is only possible when
both XUV and IR pulses are temporally overlapped. This model can be extended to chirped
pulses (or in general pulses with arbitrary amplitude and phase) by decomposing the pulses
in a sum of Fourier limited Gaussian pulses with di�erent carrier-to-envelope phases as we
show in paper iv.

2 Photoelectron interferometry: RABBIT

So far we have considered a monochromatic or Gaussian XUV spectrum, however, HHG
produces a harmonic comb. In that case, the PES will also have a comb structure. When
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Figure 3.5: Characterization of an attosecond pulse train. (a) Schematic representation of the RAB-
BIT technique. (b) Low energy part of a RABBIT scan in Ne from harmonics generated
in Ne. (c) Delay integrated photoelectron spectrum and phase measured at the sidebands.
(d) Reconstructed attosecond pulse train.

we add the IR �eld, we then get additional sidebands as discussed in the previous section.
However, in this case, because the two consecutive harmonics are spaced by the equivalent
of two IR photons, a given sideband can be reached via two quantum paths as shown in
Fig. 3.5(a): absorption of one harmonic plus absorption of one IR photon or absorption of
the following harmonic plus emission of one IR photon. As a result the signal of sideband q,
which corresponds to the absorption of a photon with an e�ective energy q~ω, is given by

Sq =
∣∣∣A(+)

q−1 +A(−)
q+1

∣∣∣
2

=
∣∣∣A(+)

q−1

∣∣∣
2

+
∣∣∣A(−)

q+1

∣∣∣
2

+ 2
∣∣∣A(+)

q−1

∣∣∣
∣∣∣A(−)

q+1

∣∣∣ cos (2ωτ −∆ϕ) ,

(3.8)

where A(±)
q∓1 is the two-photon transition amplitude corresponding to absorption of har-

monic q ∓ 1 and absorption (+) or emission (−) of an IR photon. As a result of the inter-
ference of the two quantum paths, the sideband intensity depends on the delay and oscillates
at the frequency 2ω. The phase of these oscillations, ∆ϕ, can be decomposed into two con-
tributions, ∆ϕ = ∆ϕXUV + ∆ϕA which are de�ned as:

∆ϕXUV = arg [EXUV(Ωq+1)]− arg [EXUV(Ωq−1)] ≈ 2ωτXUV,

∆ϕA = arg
[
M

(−)
kg (Ωq+1)

]
− arg

[
M

(+)
kg (Ωq−1)

]
,

(3.9)
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with Ωq±1 = (q± 1)ω. ∆ϕXUV is the XUV group delay introduced in Eq. 2.6 and ∆ϕA is
the phase di�erence between the two-photon transition matrix elements, and is called atomic
phase. By �tting the sideband oscillation with the equation above, we can extract the phase
o�set for the di�erent sidebands as shown in Fig. 3.5(b). The phase di�erence formally de-
pends on the emission angle k̂ via the matrix elements in ∆ϕA. This will be discussed in
detail in chapter 6, however, in the following we restrict the discussion to angle-integrated
measurements. In the case of ionization to a �at, featureless, continuum, the variation of the
total phase, ∆ϕ, with sideband order can be mostly attributed to the XUV group delay. For
example, the close-to-linear phase variation shown in Fig. 3.5(b) is due to the attochirp. Hav-
ing both amplitude and phase information it is then possible to reconstruct the attosecond
pulse train as shown in Fig. 3.5(c). This interferometric method was �rst suggested by Véniard
et al. [63], as a mean to measure the phase variation between consecutive harmonics and was
then implemented experimentally by Paul and coworkers [6] to demonstrate that the radi-
ation emitted by HHG corresponds to a train of attosecond pulses. The name RABBIT(T)
was suggested by Muller in 2002 [64]. Over the last two decades, the main application of
the RABBIT technique has shifted from measuring and characterizing the attosecond pulse
trains to studying attosecond photoionization dynamics in matter.

2.1 Rainbow RABBIT

As discussed in section 1.2, the sidebands have a certain spectral width. In the original im-
plementation of RABBIT, for each delay, the sideband signal was integrated over the width
of the photoelectron peak in order to increase the signal-to-noise ratio. However, in prin-
ciple, it is possible to measure the phase for every energy point in the sideband. Therefore,
equations 3.8 and 3.9 become energy dependent. This energy-resolved version of RABBIT,
dubbed Rainbow RABBIT, was developed recently by Gruson and coworkers [13]2.

The Rainbow RABBIT technique can be used to study fast phase variations across the side-
band resulting from resonances or overlapping photoelectron peaks which originate from
di�erent ionization channels and was used in papers i,ii,vii-x. However, this relies on the
fact that the variation of the XUV spectral phase across the sideband width is negligible. For
the Rainbow RABBIT technique, the di�erence in attochirp between the two adjacent har-
monics results in a general phase o�set and hence does not lead to a phase variation across the
sideband. However, the XUV femtochirp, which varies quickly across one harmonic, may
a�ect the energy-resolved phase measurments in the sideband. In paper iv, we study the e�ect
of the femotchirp φ′′q in detail. For low-order harmonics, the di�erence in femtochirp, ∆φ

′′
q ,

between consecutive harmonics is large enough so that a small quadratic variation of the side-
band phase can be observed the in our simulations. However, as can be seen in Fig. 3.6(a),

2We note that a spectrally resolved analysis of the sidebands had already been used by Guénot et al. in 2012
[57].
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Figure 3.6: (a) Calculated delay variation for di�erent values of ∆φ
′′

q . There is no blueshift. (b)
Calculated delay variation for di�erent blueshifts. The femtochirp of both harmonics
is the same (−50 fs2). Figure adapted from paper iv.

this is a small e�ect and can often be neglected. For higher-order sidebands, the femtochirp of
consecutive harmonics is approximately the same. Therefore, in this case the phase di�erence
measured in the sideband is constant. However, if during the generation, the fundamental
IR �eld generating the harmonics is blueshifted by the plasma, the two-photon transitions
amplitudes,A(+)

q−1 andA(−)
q+1, induced by the probe pulse, which is not blueshifted, may not

perfectly overlap. This results in a linear phase variation across the sideband as shown in
Fig. 3.6(b). This e�ect can be quite strong and must sometimes be accounted for in the data
analysis.

2.2 Conditions and limitations of RABBIT

As we will show in chapters 4 and 5, the RABBIT and Rainbow RABBIT techniques are very
powerful and versatile techniques to investigate photoionization dynamics. However, until
recently there was no comprehensive study of the technique itself. In paper iv, we performed
an in-depth study of the RABBIT technique, discussing how to optimize its performance
and some of its limitations.

The �rst limitation, is related to the harmonic chirps and was discussed above. In addition,
if the attosecond pulse train is generated by very short pulses, the chirp rate of di�erent har-
monics varies very strongly as a function of harmonic order [see Fig. 2.5(a)]. We show in paper
iv that this leads to strong distortion of the sidebands as their central energy shifts as func-
tion of the delay. As a result, for very short driving pulses, generating only few attosecond
pulses, the RABBIT technique does not work well [65].

The second limitation is linked to the fact that the PES results from the spatial integration
over the interaction region. This means that the conditions should be kept as constant as
possible across the interaction volume. As a result, it is important to match, to the extent
possible, the XUV and IR wave fronts in the interaction region [66]. In addition, it has been
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shown that HHG is subject to strong spatial-temporal couplings [36, 38] and great care has
to be taken when focusing the XUV light [67–69]. As a general rule, it is strongly bene�cial
to minimize the interaction volume by con�ning the gas in a small region. However, fur-
ther studies are needed to better understand the e�ects of spatial integration on RABBIT
measurements and, in general, on photoelectron-based characterization techniques used in
attosecond science.

The third limitation is linked to stability of the setup. Since XUV �ux is not a very high, we
only detect a few electrons per shot at 1 kHz. Therefore, in order to measure a PES with a
decent signal to noise ratio, for each delay, we must acquire for some time ranging from tens
of seconds to one hour. As a result, it is crucial that the intensity and pump-probe delay are
stable during the acquisition of the RABBIT scan. In general, this poses the problem of the
degree of coherence of the measured PES. RABBIT assumes full coherence and in some cases
this can lead to inaccurate results as shown by Bourassin-Bouchet and coworkers [70]. As a
response to this problem, a few di�erent techniques have been developed in order to measure
the degree of coherence of attosecond pulse trains [70, 71]. The role of decoherence in some
of our measurements will be addressed in more detail in chapter 5.

3 Experimental methods

Experimentally, measuring a RABBIT trace requires a stable optical interferometer and an
electron detector to record the PES. These are introduced in the following.

3.1 Attosecond optical interferometer

As shown in the previous section, in the RABBIT scheme, the intensity of the sidebands
oscillates as a function of the delay with a frequency 2ω which, in our case, corresponds to
a period of approximately 1.33 fs. As a result, it is important that the delay between the
XUV APT and the IR pulse can controlled and stabilized with attosecond precision. This
is achieved by using a Mach-Zender type interferometer that is schematically represented in
Fig. 3.7. A beam-splitter re�ects 70% of the incoming pulse which is used for generating the
harmonics as described in chapter 2. In the other arm, 30% of the IR is transmitted through
the beam-splitter and is delayed with respect to the "pump" pulse generating harmonics, �rst
with a manual rough delay stage and then with a mirror on a piezo-electric mount that allows
us to tune de delay with attosecond precision. The generated attosecond pulse train and the
delayed IR pulse are then recombined using a drilled mirror in which the IR is re�ected while
the XUV goes through the central hole. Finally both pulses are focused in the interaction
chamber using a gold-coated toroidal mirror in grazing incidence. In order for the XUV and
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Figure 3.7: Figure of the optical setup. The following abbreviations are used in the �gure: AP, aper-
ture; BPS, beam-point stabilisation; BS, beam-splitter; DM, drilled mirror; FM, focusing
mirror; FW, �lter-wheel; GC, gas cell; PTS, piezoelectric translation stage; RTS, rough
translation stage; TM, toroidal mirror. The path in yellow corresponds to the interfero-
meter used to monitor the delay. Figure modi�ed from [72]

the IR to be focused at the same position in the interaction chamber, the probe pulse is also
focused in the vacuum chamber by a spherical mirror with 50 cm focal length. In both arms
of the interferometer an iris is used to control the intensity. However, modifying the iris
size in the probe arm is not the best way of changing the intensity since it also modi�es the
radius of the IR in the interaction region. For this reason, for papers ii,viii, which required
very high spectral resolution, an additional λ/4 wave-plate and a polarizer were introduced
in order to modify the intensity without a�ecting the size of the IR focus. In some cases,
when several ionization channels are available, resulting in congested PES, it is convenient to
periodically measure a PES with only the XUV. For this purpose, we use a chopper which
can block every other IR probe pulse. This chopper was used in papers vii and ix.

In order to read and control the delay, a fraction of the IR from the pump and probe arms
of the interferometer are recombined with a small angle on a CCD camera producing an
interference fringe pattern whose phase is related to the delay between the two pulses. This
second interferometer is represented by the yellow optical path in Fig. 3.7. While it is not
possible to determine the zero delay accurately, it is however possible to monitor the variation
of the relative delay. A feedback loop acting on the piezo-electric stage in the probe arm allows
stabilizing the delay between the two arms. However, the interferometer stabilized in this
process is not exactly the one used for the RABBIT measurements. The small optical path
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di�erence between the two interferometers can lead to long-term drifts. Our beam-pointing
stabilization system strongly helps reducing this e�ect. Nonetheless, when the laser is �rst
sent in the interferometer, we observe drifts of about 3 fs between the two interferometers
over the �rst 45 min due to the thermal expansion of the optical components in the beam
path. The fact that most of our interferometer is in air has the advantage that the optical
components reach thermal equilibrium relatively quickly, while it would take several hours
if the interferometer was fully in vacuum. After this thermalization time, the delay in the
RABBIT interferometer is measured to be stable to about 40 as root-mean-square error by
an out-of-loop measurement over one hour. We note that this value corresponds to the phase
measured at 100 Hz by the camera, and therefore each data point is averaged over 10 shots.
At the time of writing this thesis, we plan on changing the interferometer design to further
increase the stability. The new interferometer design will be strongly inspired from the one
suggested by David Kroon in [72]. This design has the same parity of mirrors in both arms
reducing the e�ect of spatial drifts. In addition, in Kroon’s design, possible vibrations of the
recombination mirror could be measured and compensated for. This design could also be
adapted to include novel delay stabilization schemes such as the one implemented in Ref. [73]
which uses a Michelson interferometer together with balanced homodyne detection with fast
photodiodes to stabilize the interferometer at 300 Hz. Another possibility would be to use a
line Camera which can operate in the kHz regime.

3.2 Electron detectors

There are di�erent ways to detect photoelectrons, each technique having di�erent advantages
and drawbacks. In this thesis, photoelectrons were measured with two di�erent spectromet-
ers: a MBES and a VMIS. The �rst one bene�ts from a high spectral resolution while the
second one o�ers angular resolution.

Magnetic bottle electron spectrometer

The magnetic bottle electron spectrometer (MBES) is a time-of-�ight (TOF) spectrometer
and was used in papers i,ii,vii-x. Assuming that the electron detector, a MCP, is at a distance
L from the focus of the XUV, the kinetic energy of a photoelectron can be deduced from the
time t it takes to reach the detector:

Ek =
mL2

2t2
. (3.10)

The signal from the MCP is then digitalized by an acquisition card and the data is compressed
and saved on a computer. Since the acquisition card has a �nite sampling frequency f , the
resolution of the TOF spectrum is limited to δt = 1/f and that of the kinetic energy spec-
trum is limited to δE ∝ L2t−3δt. As a result, in order to have the best spectral resolution
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one needs an acquition card with a high sampling frequency and a long �ight distance,L. In
addition, the spectral resolution decreases as a function of the electron kinetic energy since
the time the electrons take to reach the detector decreases. If we want to study high kinetic
energy photoelectrons with high spectral resolution, it is possible to slow them down by ap-
plying a negative voltage at the entrance of the �ight tube which then needs to be taken into
account when converting from TOF to kinetic energy.

When an atom or a molecule is photoionized, photoelectrons can be emitted in almost all
directions. If nothing is done to try to collect the photoelectrons, only very few will be ef-
fectively transmitted through the �ight tube and hit the MCP, leading to a low detection
e�ciency. The principle of the MBES is to use magnetic �elds to collect and guide the pho-
toelectrons from the XUV focus to the MCP detector in order to increase the detection ef-
�ciency [74–76]. The MBES used in this thesis is based on the design of [76] which has a
2 m long �ight tube and a 4π solid angle collection e�ciency. Figure 3.8(a) shows the work-
ing principle of the MBES. A strong diverging magnetic �eld is generated by a permanent
NdFeB magnet placed millimetres away from the interaction region, with a maximum �eld
strength of ∼ 1T at its surface. It yields �eld strengths between 100 mT to 1T at the in-
teraction region, depending on the exact distance. The strong diverging magnetic �eld acts
as a magnetic mirror re�ecting the electrons emitted in the direction opposite to the �ight
tube. In the �ight tube, a weak linear magnetic �eld (∼ 100 µT) is created, using a solenoid,
to guide the electrons to the MCP. The �ight tube is inside a µ-metal tube to prevent the
Earth’s magnetic �eld to distort the magnetic �eld created by the solenoid. The resolution
of the spectrometer is usually given byE/δE, which characterizes how fast the spectral res-
olution decreases with kinetic energy. In our case, we estimate it to be aroundE/δE = 80,
based on the fact that we can observe the spin-orbit splitting in argon (180 meV) up to ap-
proximately 10 eV kinetic energy. Nonetheless, at very low kinetic energy, our spectral res-
olution is limited by the integration over the interaction volume. We estimate that the best
spectral resolution that we can achieve at low energy is around 70 meV. The spectral resol-
ution can be further improved by applying a deconvolution algorithm. For this reason, we
have implemented a blind iterative deconvolution algorithm based on the Lucy-Richardson
method [77, 78].

Velocity map imaging spectrometer

While the MBES o�ers high spectral resolution, the PES is integrated over all emission angles.
In papers iii andv, we use a velocity map imaging spectrometer (VMIS), designed by Rading
and coworkers [79], in order to study photoionization dynamics as a function of the emission
angle of the photoelectrons with respect to the laser polarization. The VMIS uses a set of
electrodes (a repeller and an extractor) to direct the photoelectrons on an MCP behind which
is placed a phosphor screen [80]. The voltages on the repeller and extractor are set such that
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Figure 3.8: Photoelectron detectors. (a) Schematic representation of the MBES. The blue doted lines
correspond to the magnetic �eld. (b) Schematic representation of the VMI. The blue
lines represent two possible trajectories for an electron with a given kinetic energy Ek
arriving at the MCP on a disk of radius r.

the 3-dimensional (3D) momentum distribution of the photoelectrons is projected on the
2-dimensional (2D) phosphor screen. As a result, photoelectrons with a kinetic energy Ek
form a disk of radius

r =

√
L2Ek
eV

(3.11)

whereL is the length of the �ight tube which is here 350 mm and V is the voltage di�erence
between the electrodes.

In general, photoionization is most probable along the polarization, giving rise to photoelec-
trons with an initial momentum parallel to the MCP. As a result, most of the electrons of a
given kinetic energy arrive on a ring of radius r, rather than a homogeneous disk. Therefore,
for a given radius, the angular dependence of the signal re�ects the photoelectron angular dis-
tribution (PAD). Nonetheless, in order to recover the full 3D PAD, it is necessary to invert
the projected distribution. If the polarization of the light �elds is linear and parallel to the
detection plane and if the PAD has a cylindrical symmetry around the polarization axis, it is
possible to mathematically invert the 2D projection using the inverse Abel transform. There
are multiple methods to perform this inversion: onion peeling [81], iterative algorithm [82],
pBASEX [83]. For the results presented in this thesis pBASEX was used to perform the inver-
sion. The pBASEX method relies on the fact that any angular distribution with cylindrical
symmetry can be described as

dσ

dΩ
=
σ0

4π

[
1 +

∞∑

n=1

βiPi(cos θ)

]
, (3.12)

whereσ is the fully di�erential cross-section, σ0 is the total cross-section, Ω is the solid angle,
θ is the polar angle, Pn is the nth Legendre polynomial and βn are the asymmetry paramet-
ers. The algorithm generates a 3D distribution, projects it in a 2D plane and tries to �t the
measured 2D projection by adjusting the asymmetry parameters βn.
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Chapter 4

Non-resonant photoionization

In this chapter we investigate the photoionization dynamics when an electron is sent to a �at
continuum following the absorption of an XUV photon. It is important to clarify that, be-
cause time is not an observable in quantum mechanics, it is not possible to associate a time
to the transition from the ground state to the continuum [84, 85]. Instead, once the electron
is ionized, it propagates in the ionic potential as it moves away from the core. This leads to
the electron being delayed by a few tens to hundreds of attoseconds compared to the same
electron propagating freely in vacuum. This means that photoionization time delays probe
the potential in which the electron propagates and thus are very sensitive to electron correla-
tion e�ects [85–88]. These delays were measured for the �rst time for atomic targets in 2010
by Schultze and co-worker [22], shortly followed by Klünder et al. [9]. These measurements
triggered a lot of theoretical and experimental attention since they opened the possibility
to study photoionization in the time domain. In the following, we introduce photoioniza-
tion time delays and discuss how they can be measured with the RABBIT technique before
presenting our results in neon and argon.

1 Theory of photoionization time delays

The concept of time delay was �rst introduced from a purely theoretical perspective within
the framework of scattering theory by Eisenbud and Wigner [89]. A wavepacket propagat-
ing in a short range potential V (r) acquires a phase shift φ = 2η compared to a wave-
packet propagating in free space. This phase shift originates from the fact that, as the elec-
tron propagates in the potential, its local momentum, and hence phase, varies spatially (see
Eq. 3.3). As a consequence, due to scattering, the outgoing wavepacket acquires an e�ective
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group delay τS de�ned similarly to that of an optical wavepacket

τS = ~
∂φ

∂E
= 2~

∂η

∂E
. (4.1)

In the case of photoionization, the situation is similar. When an electron is photoionized,
it propagates away from the ion core, accumulating a phase. This can be viewed as a half-
scattering process, since the EWP only propagates on half of the potential (r > 0). However,
in this case, the range of the Coulomb interaction is in�nite. Unlike short range potentials, it
is not possible to determine a radius after which the phase shift has converged to a stationnary
value. Nonetheless, for a given angular mometumL, it is possible to evaluate the asymptotic
radial wavefunctionRL of the EWP which is given by [58, 90]

lim
r→∞

RL(k, r) =

√
2

πk

1

r
sin

[
kr +

Z ln(2kr)

k
+ ηL(k)− πL/2

]
, (4.2)

whereZ is the charge of the ion. Here, ηL is the scattering phase, which can be decomposed
into two contributions ηL = σL + δL, where σL is the universal Coulomb phase shift and
δL is an atom-speci�c phase shift originating from modi�cations of the short range potential
due to electron correlations. In addition, the long-range Coulomb potential gives rise to an
r-dependent phase, Z ln(2kr)/k. As a result, the delay of the wavepacket relative to a free
electron is given by1

τEWP =~
∂

∂E

(
Z ln(2kr)

k
+ ηL(k)− πL/2

)

=~
∂

∂E

(
Z ln(2kr)

k

)
+ ~

∂ηL
∂E

=∆τCoul(k, r) + τW (k, L),

(4.3)

where τW (k, L) is called the Wigner time delay and is a �nite quantity which can be inter-
preted in the same way as the time delay introduced by Wigner for a short range potential
(Eq. 4.1). The term ∆τCoul(k, r) is a universal position-dependent delay which accounts for
the outgoing electron progressively slowing down while moving away from the nucleus due
to the attractive Coulomb potential [85]. Because the Coulomb potential reaches in�nitely
far, it is not meaningful to compare the delay of the outgoing EWP to a free EWP, since it is
not possible to de�ne a radius after which the phase shift is stationary. Nonetheless, one can
compare the delay between two EWPs originating from two di�erent photoionization pro-
cesses such that we can eliminate ∆τCoul(k, r) and study the di�erence between the Wigner
time delays τW (k, L).

1Note that τS in Eq. 4.1 is the time delay for a complete scattering process while here τEWP is the time delay
acquired by the EWP after photoionization. This also explains the that factor 2 in Eq.4.1 is not present here.
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Finally, it is worth mentioning that, in the case of photoionization of negative ions, one
would recover the simple situation discussed initially by Wigner. In this case, the atom would
be left in its neutral form hence resulting only in a short range potential. This has been invest-
igated theoretically in recent years [91, 92]. However, so far, there has been no experimental
study due to the di�culty of combining a negative ion source with an attosecond photoelec-
tron spectroscopy setup.

2 Measuring photoionization time delays with RABBIT

In chapter 3 we have shown that the RABBIT technique can be used to measure the phase of
APTs, and in particular the attochirp, assuming that the atomic phase was negligible. Now
we want to investigate whether it is also possible to measure photoionization time delays
using the RABBIT technique. For this, we need to relate the phase of the two-photon trans-
ition matrix element to the phase shifts discussed in the previous section and understand the
e�ect of the additional IR �eld on the phase acquired by the electron.

2.1 RABBIT measurements with a single channel

For a given channel, the asymptotic phase of the two-photon transition matrix element is
given by [58]

arg
(
M

(±)
Lλm

)
= ηλ(κ(±)) + φcc(κ

(±), k)− λπ
2
, (4.4)

where κ(±) and k are the wave vectors of the electron in the intermediate and �nal states re-
spectively, and φcc(κ(±), k) is the phase induced by the IR-driven continuum-continuum
transition in the long Coulomb tail [58]2. The asymptotic approximation works best at high
kinetic energy but its validity extends down to kinetic energies of the order of ∼20 eV. At
lower kinetic energy, the continuum-continuum phase depends on the intermediate and �-
nal angular momenta [58]. This has been recently measured by Fuchs et al. in helium [93].
Interestingly, τcc is largely independent of angular momentum as demonstrated in [58] be-
cause the angular momentum dependence ofφcc cancels when taking the di�erence between
absorption and emission.

Using the result in Eq. 4.4, and considering a single angular momentum channel, we get an
expression for the atomic phase ∆ϕA (Eq. 3.9):

∆ϕA(λ) = ∆ηλ + ∆φcc, (4.5)
2Note that, sinceκ(±) is the momentum of the intermediate case and (±) designates whether the IR photon

is absorbed or emitted, κ(+) < κ(−).
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Figure 4.1: Photoionization time delays. (a) Finite di�erence approximation of the Wigner time
delays for hydrogen for L = 0 (dark blue), L = 1 (light blue) and L = 2 (green).
(b) Finite di�erence approximation of the continuum-continuum delay calculated using
the analytical formula in [58].

which we can insert in the RABBIT equation, yielding

Sq ∝ cos (2ω[τ − τXUV − τWλ
− τcc]) , (4.6)

where τcc and τWλ
are given by τcc ≈ ∆φcc/(2ω) and τWλ

≈ ∆ηλ/(2ω), which corres-
pond to the �nite di�erence approximation of the scattering time delays. The phase measured
with the RABBIT technique is hence sensitive to the Wigner time delay, although it is also
in�uenced by the attochirp and the measurement induced τcc.

Figure 4.1(a) shows the Wigner time delay for di�erent angular momenta of the electron in
hydrogen. In the case of hydrogen there is no short range correction to the Coulomb po-
tential so that the Wigner time delay is given by the energy derivative of the Coulomb phase
σL, which has an analytical expression [90]. Although here the Wigner delay is calculated
for hydrogen, this contribution is present in all other atoms on top of which corrections due
to electron correlations have to be taken into account. At low energy, as we get closer to the
threshold, the Coulomb time delay increases very fast. For this reason, in paper x, where we
are intrerested in measuring photoionization time delays induced by electron correlations
close to the threshold, we subtract this contribution in order to make more visible the con-
tribution of the short range potential to the total time delay. At higher kinetic energy, this
delay quickly becomes negligible. In Fig. 4.1(b) we present the continuum-continuum delay
τcc calculated using the analytical formula in [58]. Unlike the Wigner delay, this is a univer-
sal contribution which is the same for all atoms. This can be understood from the fact that
for high enough electron momentum, where the asymptotic φcc approximation is valid, the
continuum-continuum transition occurs at a large distance from the nucleus such that it is
not sensitive to the atom-speci�c short range potential, including the centrifugal potential.
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2.2 RABBIT measurements with multiple channels

So far, we have only considered a single angular momentum channel. If there is more than
one channel, the situation becomes more complicated. For now we will restrict the discus-
sion to angle-integrated measurements. The e�ect of multiple channels on angle-resolved
measurements will be discussed in chapter 6.

For angle-integrated measurements, contributions from di�erent �nal scattering states have
to be summed incoherently. As a result, the total RABBIT scan corresponds to the incoher-
ent sum of di�erent RABBIT scans SLm for the di�erent �nal scattering states:

Sq =
∑

L,m

SLm, (4.7)

with

SLm =

∣∣∣∣∣
∑

λ

(
A(+)
Lλm +A(−)

Lλm

)∣∣∣∣∣

2

. (4.8)

whereA(±)
Lλm are the channel-resolved two-photon transition amplitudes de�ned as in Eq. 3.6

except that the transition matrix elementM (±)
kg is replaced by the channel speci�c transition

matrix elementM (±)
Lλm.

As an example, we can compare helium and argon for which we have presented the di�erent
angular channels in Fig. 3.1. In helium, there are two �nal scattering states but only one in-
termediate one. Therefore, the RABBIT scans associated with the two �nal states will have
the same atomic phase, ∆ϕ = ∆η1 + ∆φcc, such that it is possible to accurately extract the
one-photon Wigner time delay.

In the case of argon, the situation is di�erent, as initially discussed by Guénot et al. [57, 94].
Indeed, form = 0, the �nal p state can be reached via the intermediate s and d states with re-
spective scattering phases η0 and η2. These two paths interfere, resulting in an e�ective phase
which corresponds to neither of the two scattering phases. This means that the RABBIT
signals associated to the two �nal states, S10 and S30, do not oscillate with the same phase.
This leads to a total sideband signal oscillating at the same frequency, 2ω, but with a di�erent
phase and a reduced contrast. For this reason, the phase of the total sideband signal cannot
be related to the Wigner time delays of either of the intermediate states. Nonetheless, from
Fano’s propensity rule, we know that some transitions are more probable than others.

In Ne and Ar, the one-photon p → d channel tends to dominate over the p → s channel,
particularly at low kinetic energy. In addition, the p→ d channel is available for all magnetic
quantum numbers of the electron in the ground state while the p → s channel is only pos-
sible form = 0. As a result, it is often (but not always) possible to neglect the channel with
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lowest angular momentum so that we can extract an approximate Wigner time delay of the
intermediate state with highest angular momentum from the measurement.

3 Experimental measurements

Experimentally, it is impossible to directly access the Wigner time delay from a single meas-
urement, even in the ideal case of a single channel. The �rst reason is that one would have
to disentangle the contribution of τW from that of τXUV and τcc. While the continuum-
continuum delay, τcc, can be calculated theoretically and subtracted from the data, the at-
tochirp is very di�cult to estimate theoretically since it is highly dependent on the generation
conditions which, in general, cannot be estimated accurately enough. The second reason is
that it would require knowing with a very high degree of accuracy the exact delay τ between
the APT and the IR pulse, which is not possible experimentally.

In order to avoid this problem, one can measure two di�erent photoionization processes in
identical conditions such that the di�erence is independent of τXUV and τ . This can be done
by ionizing di�erent subshells of the atom or molecule (for example 3s and 3p shells of Ar)
or by comparing di�erent �nal states of the ion (for example 3p5(2P1/2) and 3p5(2P3/2) in
Ar+). Both methods result in photoelectrons with di�erent kinetic energies which can be
disentangled if the energy shift is large enough. This "double RABBIT" method was used in
papers i, vii, viii, x. It is also possible, if the experimental setup is very stable, to perform two
consecutive RABBIT measurements on di�erent gases and look at the di�erence between the
two measured phases [94]. This was done in paper x.

3.1 Photoionization time delays in neon

Neon is the �rst atom from which photoionization time delays were measured by Schutlze
and co-workers in 2010 [22]. Instead of using the RABBIT technique the authors used the
attosecond steaking technique [95]. Like RABBIT, the streaking technique can be used to
measure both amplitude and phase of the photoelectron wavepackets. There are however
a number of di�erences as extensively discussed in Ref. [96]. First, while RABBIT uses a
train of attosecond pulses, the streaking technique uses an isolated attosecond pulse to gen-
erate an EWP at a well de�ned moment in time. Contrary to the the spectrum of attosecond
pulse trains, the spectrum of isolated attosecond pulses is continuous and a few eV broad.
The second di�erence is that the streaking technique uses an intense close-to-single-cycle IR
pulse while, in the RABBIT method, weaker and longer IR pulses are used. In streaking,
the strong vector potential of the IR �eld streaks the electron wavepacket generated by the
attosecond pulse, resulting in a delay-dependent energy shift of the EWP. By ionizing and
streaking simultaneously electrons from the 2s and 2p shells of neon, Schultze et al. could
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Figure 4.2: (a) Schematic representation of the double RABBIT measurement for photoelectrons
from the 2s and 2p shells of neon. (b) Atomic time delay di�erence between 2s and 2p
measured with di�erent XUV spectra using AlZr (orange) or Zr (blue) �lters. The green
point is the measurement by Schultze et al. [22]. The solid black curve is the theoretical
prediction. (c) Energy scheme and 2ω amplitude showing the partial overlap of shake-up
harmonics with 3s sidebands. The black curve shows the phase measured with Rainbow
RABBIT. Figure adapted from paper i.

retrieve a di�erence in atomic delay τ2s − τ2p = −21 ± 5 as [22]3. This delay was larger
than that predicted by theory, thereby triggering an important theoretical activity in order
to understand this measurement. Seven years later, there was still no explanation for this
discrepancy.

In paper i, we investigate the di�erence in photoionization time delays in Ne between the
2s (Ip = 48.5 eV) and 2p (Ip = 21.6 eV) shells. A �rst set of experiments is performed
using a combination of Al and Zr �lters to select only three harmonics with photon energies
between 65 and 70 eV. The photon energy is high enough to ionize electrons from both 2s
and 2p sub-shells [Fig. 4.2(a)]. Comparing the phase of corresponding sideband orders, we
extract a di�erence in atomic delay τ2s − τ2p ≈ −30 as, which is in good agreement with
the calculations based on many-body perturbation theory as can be seen in Fig. 4.2(b). Since
these points are at lower photon energy than the measurements by Schultze et al., we perform
additional measurements at higher photon energy using a double zirconium �lter [transmis-
sion curve in Fig. 4.2(b), blue curve]. At these photon energies, a large number of shake-up
ionization channels open [97, 98]. Shake-up is a process in which after absorption of the
XUV photon, the photoelectron transfers part of its energy to a second electron, promoting
it to a higher bound state. As a result, the ion is left in an excited state and the photoelectron
has a lower kinetic energy compared to direct photoionization. Most shake-up channels have
a low cross section and hence can be neglected, however, the shake-up to the 2p4(1D)3p(2P )
state (Ip = 55.8 eV), has a cross section of the order of one sixth of the 2s photoionization

3In streaking, the IR also adds an additional delay, called Coulomb-laser coupling τCLC . It has been shown
that although obtained di�erently, τCLC and τcc are identical.
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cross section. Since the di�erence in ionization potential between the two processes is close,
around 4.7~ω, the one-photon ionization peaks (which we refer to as harmonic peaks) from
the shake-up partially overlap with the sideband peaks from the 2s shell [Fig. 4.2(c)]. As can
be seen in Fig. 4.2(c), the phase measured across the sideband varies strongly with energy.
Using only the phase on the low energy part of the sidebands, where the amplitude of the
shake-up harmonic peak falls to zero, we can reliably extract the phase of the 2s sideband
and calculate the photoionization time delay between the 2s and 2p shells. Our measure-
ments are in excellent agreement with the theoretical predictions. The result from Schultze
et al. can probably be explained by the fact that the large bandwidth of the attosecond pulses
prevented them from resolving the shake-up peaks which perturbed their measurement.

Our results show the potential of combining APTs with the RABBIT technique to meas-
ure photoionization time delays with a few tens of attosecond precision while maintaining
sub-eV resolution. While, at �rst sight, this might seem to violate Heisenberg’s uncertainty
principle, it is not not case. Heisenberg’s principle concerns the standard deviation of the
probability distributions. The more precisely we determine the energy of the electron, the
broader the probability distribution gets in the time domain. For example, as already dis-
cussed in chapter 2, the duration of a given harmonic is several femtoseconds long. The pho-
toionization time delays that we measure correspond to group delay di�erence between two
EWPs which can be arbitrarily long. In our measurements, the energy resolution is limited by
the spectral resolution of the detector while the accuracy with which we can determine time
delay di�erences mostly depends on the stability of the interferometer, not on the duration
of the light pulses.

3.2 Photoionization time delays in argon

As mentioned earlier, photoionization time delays are a sensitive probe of electron correla-
tions. Photoionization from the 3s (Ip = 29.24 eV) and 3p (Ip = 15.76 eV) shells of
argon is known to exhibit signatures from intra-orbital [99] and inter-orbital correlations
[86,88]. One prominent example is the photoionization time delays associated to the 3s and
3p Cooper minima (CM). The 3p Cooper minimum results from the fact that the radial
wave function changes sign, thereby crossing zero and leading to a cancellation of the pho-
toionization cross section for the p→ d channel [60], and to a large delay variation [86]. In
this case, the p → s channel is dominant, resulting a break down of Fano’s propensity rule
for a bound to continuum transitions. Due to the competition between the two channels,
in which only the p→ d has a CM, in angle-integrated measurements, the delay variation in
the vicinity of the 3pCM is rather small.

The 3s CM, originates from electronic correlations coupling the 3s and 3p shells. In this
case, since there is only one channel (s → p), the angle-integrated time delay is expected to
strongly vary with energy although the sign, magnitude and position of the delay variation
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shells of argon in the region of the 3s Cooper minimum (a) and 3p Cooper minimum
(b). Both Lund (blue) and Saclay (red) measurements are shown. Figure adapted from
paper ix.

depends on the degree to which electron correlations are accounted for in the calculations
[86].

Photoionization time delays in Ar have been investigated experimentally in several articles in
the energy region between 30 and 40 eV [9, 57, 94], where di�erent measurements and the-
ories are in good agreement. These measurements end at the edge of the 3s CM. In paper
viii, we investigate the photoionization time delays in Ar over a broad energy range spanning
from 35 to 70 eV and covering both 3s and 3pCooper minima. As in the case of neon, sev-
eral shake-up channels open at energies above 37 eV, in particular the 3s23p4(1D)3d(2S)
(Ip = 38.6 eV) and the 3s23p4(1D)4p(2P ) (Ip = 37.1 eV), refered to as 3p−23d and
3p−24p shake-ups respectively. Compared to the measurements in neon, there is a number
of additional challenges. First, in the region of the CM, the photoionization cross section
is very small. Second, because the 3s and 3p shells are closer in energy, the low energy part
of the 3p PES and the high energy part of the 3s PES lie in the same energy region. The
di�erence in ionization potential, ∆Ip = 9~ω − 0.47 eV, is such that harmonics from 3p
and the sidebands from 3s partially overlap. This makes it particularly di�cult to measure
the phase in the 3s sidebands in the region of the 3sCM where the sidebands are very weak
and strongly contaminated by the large 3p harmonics. Finally, the photoelectrons originat-
ing from the two shake-ups also overlap with the 3s sidebands. While we could not directly
observe these shake-up peaks, it is known from previous measurements and calculations that,
in the energy region of the 3s CM, the cross section of 3p−23d and 3p−24p shake-up pro-
cesses is higher than that of the 3s [100]. Figure 4.3 shows our measurements of the di�erence
in atomic delay τ3s − τ3p together with two-photon random phase approximation with ex-
change (RPAE) calculations in the region of the 3s CM [4.3(a)] and 3p CM [4.3(b)]. We
observe good agreement between theory and experiment in the region of the 3pCM. These
results also agree with results obtained in recombination spectroscopy [101]. However, in the
region of the 3s CM, where theory predicts a large positive time delay, we measure a neg-
ative time delay of the order of −100 as. Our colleagues from the CEA Saclay in France,
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independently performed the same measurements with a completely di�erent setup. Inter-
estingly, the results from the two experiments agree very well with each other. We attribute
the deviation of the experimental data from theoretical calculations to the complex interplay
between the 3s and the shake-up ionization channels which result in harmonics and side-
bands from di�erent ionization processes overlapping and oscillating with di�erent phases.
In particular, we show in paper viii that taking into account the incoherent superposition
of the 3s sidebands peaks with the 3p−24p harmonic peaks, we can reproduce the delays
obtained experimentally at low energy (E < 40 eV). These measurements demonstrate the
need for continuously improving the spectral resolution of the RABBIT technique in order
to investigate photoionization dynamics in more complex systems, where multiple channels
lead to complex PES.
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Chapter 5

Resonant photoionization

In the previous chapter, we have discussed the case where the atom is ionized and the electron
can imediately move away from the ion. This is not always the case. In some energy regions,
the electron can be temporarily trapped, resulting in longer photoionization dynamics. We
can distinguish two di�erent cases: trapping of the electron in a quasi-bound state of the
atom or trapping of the electron in the vicinity of the ion due to a potential barrier. In the
former case, the electron is promoted to an unstable excited state of the atom, whose energy
is above the ionization threshold. This state interacts with the continuum and relaxes by
autoionization, i.e. by emitting an electron in the continuum. This is called a Fano resonance
(or autoionizing resonance) [102], and is schematically represented in Fig. 5.1(a). The sp2+

doubly excited state in helium is an example of Fano resonance. In the second case, the atom
or molecule is immediately ionized but the electron is temporarily trapped by a potential
barrier originating from the shape of the ionic potential. The electron eventually tunnels
through the barrier and escapes the ion1. This is called a shape resonance and is schematically
represented in Fig. 5.1(b). An example of a shape resonance is the giant dipole resonance in
xenon [103, 104].

In this chapter, we investigate photoionization dynamics in the vicinity of Fano resonances
and shape resonances. In the �rst case, it is not meaningful to talk about photoionization
time delays because the fast spectral variation of the phase characteristic of Fano resonances
induces a reshaping of the EWP during its propagation, hindering the possibility to de�ne
a one-photon Wigner delay [105, 106]. In papers ii and ix, we focus instead on fully char-
acterizing the autoionized EWP, similarly to what is done in ultrafast optics to characterize
optical pulses. In the case of shape resonances, because these structures are usually broader
than the width of a single harmonic, one can still de�ne a Wigner time delay. In this case, due

1Note that the photoionization time delays which will be discussed are not tunneling time delays. The latter
are not directly accessible from RABBIT measurements.
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Figure 5.1: Resonances in the continuum. (a) Schematic representation of a Fano resonance, arising
for the interaction of a bound state with the continuum. (b) Schematic representation
of a shape resonance arising from the presence of the potential barrier through which the
electron has to tunnel through to escape from the ion.

to the transient trapping of the electron close to the ion, interesting phenomena can occur.
We study the photoionization via shape resonances in papers vii and x.

1 Fano resonances

Fano resonances are a general phenomenon in physics that occur whenever two oscillators,
classical or quantum, are coupled via some interaction. In the context of photoionization,
Fano resonances occur whenever a quasi-bound state is embedded in a continuum as shown
in Fig. 5.1(a). These discrete states can be doubly excited states such as the 2snp states in he-
lium, which are above the ionization potential (Ip = 24.6 eV), or inner-shell singly-excited
states, such as the 3s13p6np1 series in argon with an excitation energy higher than the ion-
ization potential for the 3p shell (Ip = 15.8 eV). Electron correlations for these high-lying
states are very important. As a result, the atomic state is not well described by independ-
ent con�gurations of electronic states. Instead, the di�erent electron con�gurations, bound
state or continuum state, mix so that the discrete state becomes unstable and quickly decays.
The doubly excited states in He can be separated in two branches according to Cooper’s clas-
si�cation [107]. The |spn+〉 states can be easily accessed via optical transitions and mostly
decay in the continuum, resulting in the autoionization of the atom. The |spn−〉 cannot be
accessed by optical transitions, which are quasi-forbidden, and decay via �uorescence [108].
The 3s13p6np1 states in argon, or in short 3s−1np, also decay via autoionization. Table 5.1
summarizes the autoionizing resonances studied in this thesis and their characteristics.
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Table 5.1: Energy Eα, Fano parameter q, spectral width Γ and lifetime τ of the autoionizing states
studied in this thesis. Spectroscopic data from [109, 110].

Resonance Eα (eV) q Γ (meV) τ (fs)
He sp2+ 60.15 −2.77 36 17

He sp3+ 63.66 −2.58 8 82

Ar 3s−14p 26.61 −0.25 76 9

1.1 Fano’s formalism

The name Fano resonance comes from the Italian physicist, Ugo Fano, who developed the
formalism explaining this phenomenon [102]. In this section, we introduce Fano’s form-
alism. We consider a discrete state |α〉 and a continuum of non degenerate states |βE〉,
E denoting their energy. Both discrete and continuum states are eigenstates of the unper-
turbed Hamiltonian Ĥ0. Due to con�guration interaction, the state |α〉 is coupled to the
continuum via an interaction term V̂ . As a result, the total Hamiltonian Ĥ = Ĥ0 + V̂ is
such that

〈α|Ĥ|α〉 = Eα,

〈βE |Ĥ|α〉 = VE ,

〈βE |Ĥ|βE′〉 = Eδ(E − E′),
(5.1)

with δ(E) the Dirac delta function. We then diagonalize the Hamiltonian in order to obtain
its eigenstates. The eigenstates take the form of the superposition of bound and continuum
states:

|ψE〉 = a |α〉+

∫
b′E |β′E〉dE′, (5.2)

where the coe�cientsa and b′E are given in Fano’s article [102]. We can then calculate the one-
photon transition matrix element from the ground state |g〉 to the �nal resonant continuum
|ψE〉:

〈ψE |ẑ|g〉 = 〈βE |ẑ|g〉
q + ε

ε+ i
, (5.3)

where ε = 2(E − Eα)/Γ is the reduced energy, with Γ = 2π|VE |2 the width of the reson-
ance. The q parameter is a real number measuring the relative strength between the transition
from the ground state to the discrete state and the direct ionization to the continuum:

q =
〈α|ẑ|g〉

πV ∗E 〈βE |ẑ|g〉
. (5.4)

Equation 5.3, shows that the transition matrix element from the ground state |g〉 to the mod-
i�ed continuum |ψE〉 is the transition matrix element from the ground state to the unper-
turbed continuum 〈βE |ẑ|g〉multiplied a resonance factor

R(ε) =
q + ε

ε+ i
. (5.5)
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Figure 5.2: Square modulus (a) and phase (b) of the resonant factor R as a function of the reduced
energy ε for di�erent values of the q parameter. The legend in (a) is common to (a) and
(b).

The modulus square of Eq. 5.3 gives the famous Fano pro�le

σ(E) = σ0
(q + ε)2

ε2 + 1
, (5.6)

where σ0 is the o�-resonance photoionization cross-section.

Figure 5.2(a), shows the Fano pro�le for di�erent values of q. The resonance pro�le is in
general asymmetric, characterized by an enhancement of the photoionization cross-section
followed by a minimum. This can be explained from the fact that two ionization paths lead to
the continuum and interfere: direct ionization and photoexcitation of the quasi-bound state
followed by autoionization to the continuum (see Fig. 5.1). This results in constructive and
destructive interference yielding an asymmetric line-shape. The exact shape of the resonance
pro�le depends on the q parameter. In the limit q → ±∞, corresponding to the transition
to the bound state being in�nitely larger than the transition to the continuum, we recover a
symmetric Lorentzian pro�le, typical of transitions between bound states. In the limit q →
0, corresponding to the case where the transition to the continuum is in�nitely stronger than
that to the bound state, we obtain a window resonance. The destructive interference leads
to a decrease of the photoionization cross section at resonance.

Traditional photoionization experiments only provide information on the cross section. How-
ever, in order to fully characterize these resonances, it is also necessary to measure their phase.
The phase of the resonant factor is given by

arg[R(ε)] = arctan ε− πΘ(ε+ q) +
π

2
, (5.7)

where Θ(ε) is the Heaviside function. The phase variation as function of the reduced energy
is shown in Fig. 5.2(b). The phase increases smoothly from 0 and jumps by−π at ε = −q
before increasing again smoothly towards 0. The phase jump originates from the fact that
the complex amplitude in Eq. 5.3 crosses zero.

48



In his original derivation, Fano also considers the case where a discrete state can interact with
multiple continua. This is the case for the Fano resonances in argon, where the 3s−1np
discrete states decay in the s andd continua. In general, for any two non-degenerate continua
|βξE〉 and |βξ′E〉, the total Hamiltonian in Eq. 5.1 is modi�ed such that

〈α|Ĥ|α〉 = Eα,

〈βξE |Ĥ|α〉 = VξE ,

〈βξ′E |Ĥ|α〉 = Vξ′E ,

〈βξE |Ĥ|βξE′〉 = Eδ(E − E′),
〈βξE |Ĥ|βξ′E′〉 = 0.

(5.8)

In this case, it is more convenient to transform the two interacting continua into an interact-
ing continuum |β(1)

E 〉 and a non-interacting continuum |β(2)
E 〉 de�ned as [11, 102]

|β(1)
E 〉 =

VξE
VE
|βξE〉+

Vξ′E
VE
|βξ′E〉 , (5.9)

|β(2)
E 〉 =

V ∗ξ′E
VE
|βξE〉 −

V ∗ξE
VE
|βξ′E〉 , (5.10)

with |VE |2 = |Vξ′E |2 + |VξE |2. Both states can be radiatively coupled to the ground state
but only |β(1)

E 〉 interacts with the bound state |α〉. In analogy to the single continuum case
(Eq. 5.3), the transition matrix elements to the �nal interacting |ψ(1)

E 〉 and non-interacting
|ψ(2)
E 〉 continua are given by:

〈ψ(1)
E |ẑ|g〉 = 〈β(1)

E |ẑ|g〉
q + ε

ε+ i
; 〈ψ(2)

E |ẑ|g〉 = 〈β(2)
E |ẑ|g〉 . (5.11)

The total photoionization cross section is given by the incoherent sum of the two channels:

σ(E) = σ(1) (q + ε)2

ε2 + 1
+ σ(2). (5.12)

It is not possible to give an expression for the total phase since the two channels add incoher-
ently. However, the phase of the interacting channel takes the same form as Eq. 5.7, while
that of the non interacting channel is �at on the energy scale of the resonance.

1.2 Two-photon �nite pulse model for resonant photoionization

So far, we have limited our discussion to the case where a single XUV photon excites a res-
onances. Here, we extend the two-photon non-resonant �nite pulse model for laser assisted-
photoionization presented in chapter 3 to the case where the XUV pulse is resonant with an
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autoionizing state. This is based on the work by Jiménez-Galán and co-workers [61, 62]. We
further restrict the discussion to the case where there is only a single continuum and a single
resonance in the intermediate state.

Let us �rst consider the two-photon transition matrix element. Jiménez-Galán and co-workers
show that, for a given ionization channel going from the ground state |g〉 to a �nal non-
resonant continuum |βE〉, through an intermediate resonant continuum |ψε〉 the two-photon
transition matrix element takes a form similar to that of one-photon case (Eq. 5.3):

M
(±)
βEg
∝
εεα + q

(±)
eff

εεα + i
, (5.13)

where q(±)
eff is de�ned as:

q
(±)
eff = q ∓ 2(q − i)κω/Γ. (5.14)

Since now two continuum energies, corresponding to the intermediate and �nal states, have
to be considered, εεα indicates that this is the reduced energy di�erence between the bound
state at energy Eα and the intermediate energy ε = ~Ω. The parameter κ describes the
strength of the coupling between the intermediate bound state and the �nal continuum. If
κ = 0, qeff = q and we recover the same resonance factor as in equation 5.3. However,
if κ 6= 0, qeff becomes complex and depends on whether the IR photon is absorbed or
emitted (±). As a result, the phase variation is no longer given by Eq. 5.7. If κ < 0, in the
case of emission, the phase variation becomes smoother than in the one-photon case and the
amplitude of the phase jump is reduced. On the contrary, in the case of absorption, the total
phase variation of the transition matrix element is 2π [11].

Figure 5.3 shows the modulus square and phase of the absorption and emission two-photon
transition matrix elements for di�erent values of the coupling parameter κ. For very small
values of κ, |M (±)

βEg
|2 is almost identical for absorption and emission while the phases are

very di�erent. This is the case for example in helium where, for the sp2+ doubly excited
state κ = −0.0003 [62], as in the �gure. For larger values of κ, we can observe a di�erence
in both the amplitude and phase of the matrix element.

Let us now consider the time-dependent two-photon transition amplitudes given by equa-
tion 3.6. As a reminder, this assumes that both XUV and IR pulses are Fourier limited. Con-
sidering that the IR photon energy is much larger than the resonance width, the transition
amplitude can be written as:

A(±)
βEg

(τ) ≈ F(τ)e±iωτ
{
w[z(E, τ)] + (κ− ε−1

Eα)(q − i)w[z(Eα, τ)]
}
, (5.15)

where, as in Eq. 3.6, F(τ) and z(E, τ) are respectively, a form factor and a complex para-
meter de�ned in appendix 1 andw(z) is the Faddeeva function. Note the di�erent notation
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Figure 5.3: Resonant two-photon transition matrix elements in the case of emission (a,c) and absorp-
tion (b,d) of an IR photon. (a) and (b) show the modulus square of the matrix element
for di�erent values of the κ parameter. (c) and (d) show the phase of the matrix element.
The legend in (a) is common for all the �gures. The resonance parameters used are those
for the sp2+ state (see table 5.1).

for the reduced energy between Eqs. 5.13 and 5.13. Here εEα is the reduced energy di�erence
between the bound state |α〉 and the final continuum |βE〉 with energy E = ~Ω ± ~ω,
while in Eq. 5.13 εεα is the reduced energy di�erence between the bound state |α〉 and the
intermediate continuum with energy ε. Figure 5.4(a) shows the modulus square of the two-
photon transition amplitude associated to the emission of an IR photon. The energy axis
corresponds to the e�ective photon energy needed to reach the �nal state |βE〉 in He. The
spectrum shows a clear modulation as a function of the e�ective photon energy due to the
Fano resonance in the intermediate state. Because in this case the IR is emitted, the signature
of the Fano resonance is observed around the energy Eα − ~ω ≈ 58.6 eV. The di�erence
with Fig. 5.3(a), is that the transition amplitude depends both on the two-photon transition
matrix elements and the spectral bandwidth of the XUV and IR �elds. For this reason, far
from ~Ω− ~ω, the spectral intensity falls to zero. The resonance is much narrower than the
XUV bandwidth (180 meV), such that it modi�es the intermediate continuum on an energy
range smaller than the XUV bandwidth. This explains the presence of two peaks in the spec-
trum. The �rst large peak at low energy and the minimum atEf ≈ 58.65 eV, originate from
the constructive and destructive interference characteristic of the Fano pro�le. The second,
peak around 58.8 eV, originates from the excitation of a smooth continuum far enough from
the resonance. Figure 5.4(a) shows that the exact shape of the spectrum depends on the band-
width of the IR pulse. For narrow pulses (σIR = 10 nm), the constructive interference is
very strong, resulting in a large narrow maximum, and the destructive interference leads to
a complete cancellation of the photoionization probability. As the bandwidth of the IR in-
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Figure 5.4: Resonant two-photon transition amplitudes for di�erent pulse durations (FWHM). (a)
Modulus square of the two-photon transition amplitudes corresponding to emission of
an IR photon. (b,c) Phase of the two-photon transition amplitudes for emission (b)
and absorption (c) of an IR photon. The legend in (a) is common for all the �gures.
The resonance parameters used are those for the sp2+ state in He(see table 5.1) and
κ = −0.0003. The pulse parameters used are ~ω = 1.55 eV, ~Ω = Eα + 0.14,
σXUV = 180 meV. The delay between XUV and IR is set to 0.

creases, the minimum becomes shallower and the low energy peak gets smaller and broader.
This can be understood as a the result of frequency mixing due to the �nite pulse e�ects (see
section 1.2), which have an e�ect analogue to a convolution.

In Fig. 5.4(b) we show the corresponding phase of the two-photon transition amplitude
A(−)
βEg

. Compared to the phase shown in Fig.5.3(c), here the amplitude of the phase jump
is smaller. As the spectral bandwidth of the IR pulse increases, the phase variation gets
smoother and the total phase excursion decreases. In Fig. 5.4(c), we show the phase ofA(+)

βEg
.

Interestingly, while Fig. 5.3(d) shows that the phase of the two-photon matrix element exhib-
its a 2π phase variation, here there is almost no di�erence between the phase of the absorption
and emission transition amplitudes. Calculations show that the broadening and smoothing
resulting from the �nite pulse e�ects tend to hide the e�ect observed in Fig. 5.3(d). Because
κ is very small for the sp2+ resonance, to see a di�erence between absorption and emission
would require using close to monochromatic IR pulses. In this case, the frequency mixing
induced by an IR pulse with a 10 nm bandwidth is already large enough to wash out this
e�ect. However, for resonances with a larger coupling parameter, such as the 3s−14p reson-
ance in Ar (κ = 0.05), our calculations show that we should be able to measure a 2π phase
variation in the emission sideband using an IR pulse with 10 nm bandwidth. For larger IR
bandwidths, the transition amplitude recovers the typical smoothed Fano phase variation
although we can still observe clear di�erences between absorption and emission transition
amplitudes as we demonstrate experimentally in paper viii.
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1.3 Characterization of autoionized electron wavepackets

Experimentally, Fano resonances have been investigated for several decades. Since the �rst
observations of Fano pro�les in the photoionization cross section of rare gases by Madden
and Codling [111], several high-resolution studies of the photoionization cross sections in the
vicinity of autoionizing states have been performed using synchrotron radiation [109, 110,
112–116]. More recently, with the advent of attosecond science and technology, it has been
possible to follow in time the exponential decay of autoionizing states [117,118], to control the
Fano pro�le [119], or to investigate the time evolution of two autoionizing states coherently
excited [120].

Fano resonances in helium

One of the aims of this thesis is to fully characterize the electron wavepackets emitted via
autoionizing states in both spectral and temporal domains. In paper ii, we use the Rainbow
RABBIT technique to measure the amplitude and phase of photoelectrons emitted via the
sp2+ and sp3+ Fano resonances in He. This study follows the work of Gruson et al. who
used the Rainbow RABBIT technique to measure the amplitude and phase of thesp2+ Fano
resonance and reconstruct the build up of the electron wavepacket in the continuum [13].
Our experiments aim at pushing forward the analysis of autoionization dynamics performed
by Gruson and coworkers in order to obtain a complete picture of the ionization dynamics
in the time-frequency domain. Importantly, the experimental conditions for the two exper-
iments are very di�erent, as summarized in table 5.2. In addition, to further increase the
spectral resolution, we use a blind deconvolution algorithm based on the Lucy-Richardson
method [77, 78].

Table 5.2: Comparison of the experimental parameters between this work and [13]: central
wavelength, bandwidth and pulse duration of the IR, bandwidth of the harmonics, and
spectrometer resolution (from left to right).

λIR(nm) σIR(meV) ∆tIR (fs) σXUV(meV) σMBES(meV)
This work 800 125 30 180 89

[13] 1295 26 70 400 190

Figure 5.5 shows the principle of the experiment. By tuning the central frequency of the gen-
erating IR �eld, we can selectively excite the sp2+ resonance with harmonic H39 or the sp3+

resonance with harmonic H41. Neglecting for now the femtochirp of the harmonics, the
phase of the non-resonant transition amplitude can be assumed to be �at, thereby providing
a reference for the phase measurement of the resonant two-photon transition amplitude. We
remind that the phase measured in the sidebands is de�ned as the phase di�erence between
the emission and the absorption paths, ∆ϕ = arg[A(−)] − arg[A(+)]. The sidebands
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Figure 5.5: RABBIT scan when harmonic 39 is resonant with the sp2+ state. The arrows on top
indicate the XUV and IR transitions and the position of the two resonance is indicated
with a black solid line. The phase of the Fano resonance is imprinted on the neighbouring
sidebands as shown by the white lines. Figure adapted from paper ii.

adjacent to the resonant harmonic, refered to as resonant sidebands, exhibit a phase vari-
ation characteristic of the Fano resonance (see white lines in Fig. 5.5). In the lower resonant
sideband, the resonant transition amplitude corresponds to the emission path, while for the
upper resonant sideband, the resonant transition amplitude corresponds to the absorption
path. As a consequence, the sign of the phase measured in these two sidebands is opposite,
the lower sideband providing the phase of the resonant transition amplitude with the right
sign. If we now take into account the femtochirp, the phase of the non-resonant transition
amplitude cannot be assumed to be �at. However, for high enough harmonic orders, the
femtochirp of consecutive harmonics can be considered to be the same, thereby cancelling in
the sideband2.

Figure 5.6 shows the phases measured in sidebands SB38, SB40 and SB42 when H39 is reson-
ant with the sp2+ resonance (top row) and when H41 is resonant with the sp3+ resonance
(bottom row). For the sp2+ resonance, we observe a total phase variation of about 1 rad
in SB38 and SB40. The phase of SB42 is �at since both paths leading to this sideband are
non-resonant. Despite very di�erent experimental conditions, our results are very similar to
those reported by Gruson and co-workers. In their work, the amplitude of the phase jump
was limited by the spectral resolution of the MBES while in our work it is reduced due to
the large bandwidth of the probe pulse (see table 5.2). The sp3+ resonance is not accessible
using standard Ti:Sapphire systems at 800 nm as shown in Fig. 5.6. However, thanks to the

2In reality, in the data analysis we do take into account that the combined e�ect of the femtochirp and a
blueshift of the harmonics can result in a linear phase variation across the sideband as discussed in chapter 3 and
in papers ii and iv.
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Figure 5.6: Phases measured (blue) in SB38, SB40 and SB42 in the cases where H39 is resonant with
the sp2+ state (�rst row) and where H41 is resonant with the sp3+ state (second row). The
shaded areas correspond to standard deviation around the measured value. The black
solid line shows the result of the theoretical calculations using the �nite pulse model.
Figure from paper ii.

tunability of our laser we are able to tune harmonic 41 on resonance in order to measure the
phase variation induced by the sp3+ resonance on the two neighbouring sidebands (SB40
and SB42). In this case, SB38 has a �at phase since we are detuned from the sp2+ resonance.
Because the sp3+ resonance is much narrower than the sp2+ one, the amplitude of the phase
jump is greatly reduced due to the �nite pulse e�ects.

In order to characterize the EWPs, we also need to measure their amplitude. For this, we need
to extract the resonant 2-photon amplitude from the total sideband intensity. Assuming that
the non resonant two-photon transitions are the same for all sidebands, we can extract the
amplitude of the EWP emitted via the resonance, |A(±)

R |, as follows [13]

∣∣∣A(±)
R

∣∣∣ =
Ĩ

(±)
R (2ω)√
2ĨNR(2ω)

(5.16)

where Ĩ(±)
R (2ω) is the amplitude of the 2ω peak in the Fourier transform of the resonant side-
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band (for example SB38 or SB40 for the sp2+ case) and ĨNR(2ω) is that of a non-resonant
sideband (SB42 for the sp2+ case).

Figure 5.7(a) shows the measured amplitude and phase of A(−)
R for the sp2+ resonance.

Similarly to what we do in chapter 2 to characterize the attosecond pulse trains in the time-
frequency domain, in paper ii, we use di�erent time-frequency representations of the EWP
in order to fully characterize the ionization dynamics. In Fig. 5.7(c), we show the Wigner
distribution of the EWP. In order to interpret the result, we calculate analytically the Wigner
distribution associated to the resonance factor R(E). In the time domain, the resonance
factor R̃(t) can be written as the sum of a direct excitation to the continuum (direct pho-
toionization) and an exponential decay to the continuum (autoionization) [121]:

R̃(t) = δ(t)− i Γ

2~
(q − i) exp

[(
−iEα

~
+

Γ

2~

)
t

]
. (5.17)

The Wigner distribution of the coherent sum of these two terms results in three terms,
W (E, t) = WD(E, t) + WA(E, t) + 2Re[WAD(E, t)], each of them having a distinct
time-frequency representation. The �rst term corresponds to the time-frequency repres-
entation of the direct ionization path, the second term corresponds to the time-frequency
representation of the autoionization path and �nally the last term corresponds to the time-
frequency representation of the interference of these two paths. The exact analytical expres-
sion of these three terms and their derivation are given in appendix 2.

The spectrally broad and temporally short feature centred at t = 0 in �gure 5.7(c) can be
understood as the Wigner distribution of the direct ionization. Its Gaussian shape re�ects
that of the harmonic. The spectrally narrow feature centred atEα−~ω = 58.6 eV, which is
almost 10 fs long, corresponds to the decay of the autoionizing state. Finally the negative fea-
ture in the center and the positive lobe around 58.9 eV correspond to the interference term.
The Wigner distribution hence allows us to disentangle the ionization dynamics of the two
ionization paths involved in a Fano resonance. However, we can notice that the decay of the
autoionizing state is much shorter than that predicted based on the resonance width (17 fs).
In addition as is clear in Fig. 5.7(a), the lack of spectral resolution of the measurements leads
to incomplete destructive interference in the Fano pro�le and a rather small phase variation.

Rainbow RABBIT measurements can be improved by reducing the bandwidth of the probe
pulse. In order to obtain measurements with a better spectral resolution, we perform new
experiments (unpublished) using a 10 nm bandpass �lter in the probe arm of the interfero-
meter, reducing the �nite pulse e�ects. In Fig. 5.7(b) we show the measured amplitude and
phase of the EWP measured in sideband 38 after deconvolution of the spectra3. Compared
to the result from Gruson et al. and the results reported in paper ii, these measurements

3The e�ect of the deconvolution algorithm in the case of large IR bandwidth is very small. For narrow band-
widths, the spectrometer resolution is the main limiting factor such that the deconvolution improves a lot the
amplitude of the phase jump and the minimum of the destructive interference.
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Figure 5.7: Characterization of autoionized wavepackets. (a) Amplitude (red) and phase (blue) of
the 2-photon EWP measured with an IR bandwidth of 65 nm. (b) Same as (a) measured
with an IR bandwidth of 10 nm. In both cases the dashed black curves show the the-
oretical calculations. (c) Wigner distribution of the EWP presented in (a). (d) Wigner
distribution of the EWP presented in (b). Blue features correspond to a negative value,
red/yellow features correspond to positive value and black corresponds to zero.

show almost complete destructive interference in the spectral amplitude and a phase jump
close to π rad, demonstrating a large increase in spectral resolution. In Fig. 5.7(d) we show
the Wigner distribution corresponding to this wavepacket. As previously, we can recognize
the time-frequency distribution of the direct and autoionization paths. In this case, thanks
to the much longer duration of the IR probe pulse, we can follow the decay up to approx-
imately 40 fs. However, the largest di�erence between the two series of experiments is in
the interference term of the Wigner distribution. First, it shows an extremely negative peak
around t = 5 fs andE = 58.7 eV, second we can see hyperbolic interference fringes between
the direct and autoionization paths. These fringes, which we had predicted theoretically in
paper ii, cannot be seen in Fig. 5.7(c) since they are very sensitive to the spectral resolution.
This demonstrates the signi�cant improvement in spectral resolution of our experiment and
sets a new standard in terms of spectral and temporal resolution achievable in attosecond
interferometry experiments.

The reconstruction of the Wigner distribution is based on the assumption that the EWPs are
fully coherent. If they are not, the wavepackets cannot be described by a wavefunction and
instead require a description in terms of a density matrix ρ. It has been shown that the lack of
spectral resolution can result in a large decrease of the degree of coherence of the EWP [122].
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Figure 5.8: Snapshots of evolution the density matrix reconstructed from the experiment at t =
−7 fs (a), t = −10 fs (b), t = 206 fs (c).

Here, the good agreement between our model, which assumes full coherence, and our experi-
mental results justi�es our method. In a system with time-reversal symmetry, the q parameter
of a Fano resonance is real. However, if time-reversal symmetry is broken, for example due to
decoherence, the q parameter becomes complex [123]. To quantify the degree of coherence,
we modify our model to allow for a complex q parameter and a broader e�ective resonance
width due to decoherence via a pure dephasing mechanism [123]. Based on this model, pre-
liminary results show that the strength of the dephasing channel, i.e. the strength of the in-
teraction with the environment, with respect to the electronic coupling between the bound
and continuum states is around 1%. This indicates that to a good degree of approximation,
we can consider that the helium atoms are a closed system and, most importantly, that we do
not introduce an experimental source of decoherence. In the following, we assume that our
state is fully coherent and additionally calculate the density matrix of the pure state EWP and
its temporal evolution. For this, we need the time-dependent wavefunction

|Ψ〉 (t) =

∫ ∞

0
cE(t) |ψE〉dE. (5.18)

The complex amplitude that we measure experimentally A(E) simply corresponds to the
asymptotic value of the coe�cients cE(t) [124]: A(E) ∝ limt→∞ cE(t). It was rigorously
demonstrated by Desrier and coworkers that, as long as the interaction between the bound
state and the continuum, VE , is independent of energy, the time-dependent coe�cients can
be accessed using the cumulative Fourier transform introduced in chapter 2 [124]:

cE(t) =
1

2π

∫ ∞

−∞
Ã(τ)Θ(t− τ)dτ, (5.19)

where Ã(τ) is the Fourier transform of the measured complex amplitude. We can then con-
struct the time-dependent density matrix, ρ(t) = |Ψ(t)〉 〈Ψ(t)|, based on our experimental
results.
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Figure 5.8 shows the result of the reconstruction of the density matrix based on our experi-
mental results. The signal on the diagonal (from bottom left to top right) corresponds to the
populations in the continuum, i.e. the probability to �nd an electron in a continuum state
with given energy. The o�-diagonal signal corresponds to the coherences, i.e. the degree of
coherence between di�erent states in the continuum. At early times, for which ionization is
dominated by the direct path, the density matrix has a Gaussian shape re�ecting the Gaus-
sian spectrum of the XUV and IR pulses [Fig. 5.8(a)]. At later times, as the quasi-bound
state decays in the continuum, the two paths interfere resulting in a decrease of the popula-
tion around 58.7 eV. Fig. 5.8(b) shows that, at t = 10 fs, the populations in the resonant
and non-resonant parts of the continuum have similar populations and have equally strong
coherences. This strongly resembles to a Schrödinger cat’s state |Ψ〉 = (|ϕ1〉 + |ϕ2〉)/

√
2,

where the total wavefunction corresponds to the superposition of the two states with the
same probability. At very long times, the populations converge towards the spectrum meas-
ured experimentally and the main features of the density matrix become sharper. The co-
herences between the resonant and non resonant parts of the EWP are at the origin of the
interference pattern observed in the reconstructed Wigner distribution.

Finally we note that, while in this case the assumption of a pure state is justi�ed, it might not
always be the case. It is therefore of general interest to develop techniques that allow for a
complete characterization of the density matrix of the EWP. Such techniques have already
been proposed and demonstrated experimentally [70, 71], but so far, they have not been ap-
plied to gain new insight on photoionization dynamics.

Fano resonance in argon

In paper viii, we study the photoionization via the 3s−14p resonance in Ar. In this case,
the situation is much more complicated than for helium. Unlike the sp2+ state, which can
only decay in a p continuum, the 3s−14p state can decay in both s and d continua. In ad-
dition, in argon, the ion (3p5) is left with angular momentum `i = 1 which couples to the
�nal electron angular momentum L = 1; 3, leading to a total angular momentum given
by Λ = `i + L = 0; 2. As a result, three incoherent ionization channels are available:
(Λ = 0, L = 1), (Λ = 2, L = 1) and (Λ = 2, L = 3). Nonetheless, as discussed
in paper viii, calculations show that the two dominating channels, (Λ = 0, L = 1) and
(Λ = 2, L = 3), have very similar Fano pro�les and phases such that, in the following,
we can, to a good degree of approximation, that there is only one e�ect channel with a well
de�ned amplitude and phase.

A second complication arises from the fact that in argon, the spin angular momentum s of
the Ar+ ion and its orbital angular momentum `i couple to each other giving rise to two ionic
states with total angular momentum J = `i+ s = 1/2; 3/2. The ionization energy needed
to reach the 2P3/2 state, Ip(2P3/2) = 15.76 eV, is lower than the energy needed to reach the
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Figure 5.9: (a) Schematic representation of the energy levels and transitions involved in this work.
The blue (red) arrows represent absorption of an XUV (IR) photon. The orange dashed
arrows represent the con�guration interaction between the quasi-bound state 3s−14p
and the continua. (b) Retrieved (red line) and measured (black dashed line) XUV-only
photoelectron spectra. The two S-O components J = 1/2 and J = 3/2 are shown in
green and blue respectively. The blue and green lines show the position of the minimum
in the PES due to the Fano resonance. Figure adapted from paper viii.

2P1/2 state, Ip(2P1/2) = 15.93 eV. The di�erence in energy between the opening of these
channels corresponds to the spin-orbit (S-O) splitting energyESO = 180 meV. The relevant
energy levels and transitions considered in the following are presented in Fig.5.9(a). As a result
of the S-O splitting, the total photoelectron spectrum can be written as the incoherent sum
of two spectra corresponding to the two �nal states of the ion, S1/2 and S3/2:

Stot(E) = S1/2(E) + S3/2(E). (5.20)

Figure 5.9(b) shows the XUV-only PES in argon where harmonic 17 is resonant with the
3s−14p state while harmonic 19 is not resonant. The PES of H19 presents a double structure
due to the overlap of Gaussian spectra spaced by the S-O splitting. The small value of ESO
in argon combined with the relatively broad bandwidth of the harmonics prevents us from
fully resolving the two peaks. The triple structure observed on the PES of H17 can be attrib-
uted to the overlap of two complex spectra modi�ed by the Fano resonance. When the IR
is overlapped with the XUV, the total sideband signal also results from the overlap of side-
bands associated to the 2P3/2 and 2P1/2 states of the ion. In order to measure the spectral
amplitude and phase of the emitted EWPs it is necessary to disentangle to contribution from
the two S-O split states.

In paperviiiwe show that this can be done assuming that the PES associated to the two ionic
states are identical, only shifted in energy byESO and scaled by a degeneracy factor. We can
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from paper viii.

then write the total spectrum in terms of a single function S(E):

Stot(E) = S(E) + 2S(E − ESO), (5.21)

where the factor 2 in the second term originates from the degeneracy ratio between the 2P3/2

and 2P1/2 states. Given this approximation, it is possible to numerically disentangle the con-
tributions of the two ionic states by Fourier transform [125] as shown in Fig. 5.9(b). Perform-
ing this at every delay of the RABBIT scan, we obtain two RABBIT scans, one for each
ionic state. Figure. 5.10 shows the amplitude and phase measured from the total RABBIT
scan and those measured individually from the two S-O separated scans. This method there-
fore allows us to isolate the complex spectral amplitude of the 2-photon EWPs emitted via
the 3s−14p resonance for a given S-O channel. These measurements are in good agreement
with simple theoretical calculations in particular for SB18. The agreement is worse for SB16,
possibly due to the presence of the broad 3s−14s resonance (Γ = 170 meV) in the vicinity
of SB16 which is not included in the calculations and can be reached via two-photon trans-
itions. Nonetheless, both experiment and theory show that, unlike helium, the amplitude
and phase measured in the two sidebands are di�erent. As discussed previously in section 1.2,
this results from the coupling of the bound state with the �nal continuum, which is an order
of magnitude stronger than for He.

2 Shape resonances

As mentioned at the beginning of the chapter, shape resonances in photoionization arise
from the transient trapping of an outgoing electron due to the shape of the ionic poten-
tial. This means that, in contrast to Fano resonances, the ionic state does not change when
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the electron is released in the continuum after tunneling through the barrier. In addition,
in principle, shape resonances can arise even in the absence of electron correlations. How-
ever, because the position and width of the barrier strongly depend on the exact shape of
the potential, an accurate description of these resonances requires accounting for correlation
e�ects.

In this thesis, we study the photoionization via shape resonances in two systems. In paper
vii, we investigate the photoionization via the 3σ−1

g shape resonance in the N2 molecule. In
paper x, we measure photoionization time delays from the 4d shell in xenon in the vicinity
of the giant dipole resonance.

2.1 Molecular shape resonance in nitrogen

Most of this thesis focuses on the study of photoionization dynamics in atoms, however, in
paper vii we use the RABBIT technique to investigate the photoionization of N2. Unlike
atoms, molecules have more degrees of freedom which can play a role in photoionization. In
particular, molecules can rotate and vibrate. Compared to the time scale of electronic dy-
namics, rotation of molecules is extremely slow and hence we can consider that the molecule
does not rotate during photoionization. Molecular vibration is faster, in the picosecond to
femotsecond time scale. However, it is still slow enough compared to electronic motion so
that we can often consider that during an electronic transition, the nuclei stand still. In other
words, we can consider that the transition dipole operator is independent of the internuclear
distance. This approximation is known as the Franck-Condon approximation4.

In papervii, high-order harmonics are generated in argon to photoionizeN2 in the region of
the 3σg shape resonance between 20 and 40 eV photon energy. With these photon energies,
we ionize N2 from both the 3σg and 1πu subshells, leading to N+

2 ions in the X 2Σ+
g and

A 2Π+
u electronic states, referred to as X and A states respectively. Their potential energy

curves are shown in Fig. 5.11(a). Each of these electronic states support several vibrational
levels which can be excited during photoionization. Fig. 5.11(c) shows a photoelectron spec-
trum for XUV only in which we can distinguish photoelectron peaks with distinct shapes
when the ion is left in the X or A state. For each of these broad peaks we can observe ad-
ditional sub-peaks which originate from di�erent vibrational states of the ion. Because the
di�erence in energy between the X and A states is close to that of an IR photon, when the
IR �eld is overlapped with the XUV, the sidebands from one electronic state overlap with the
harmonics from the other state, similarly to the situations encountered in the non-resonant
photoionization of Ne and Ar (see chapter 4). As a result, it is very di�cult to identify the
sidebands, as shown by the small di�erence between XUV-only and XUV+IR spectra in

4It should not be confused with the Born-Oppenheimer approximation which considers that, because the
time scale for the evolution of the electronic and nuclear wavefunctions are very di�erent, it is possible to decouple
them.
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Figure 5.11: (a) Potential energy surfaces of the ground state of N2 and of the two lowest states of
the ion. (b) Di�erence between XUV+IR and XUV-only PES as a function of delay.
(c) Delay averaged XUV-only and XUV+IR PES. Theoretical XUV+IR PES associated
to the A state (red) and X state (blue). The dashed lines indicate the position of the
sideband v′ = 0 and v′ = 1 for theX andA states. Figure adapted from paper vii.

Fig. 5.11(c). For this reason, we use a chopper in the probe arm which allows us to record every
other shot an XUV only spectrum. Subtracting the XUV only PES from the XUV+IR PES,
we obtain the RABBIT scan shown in Fig. 5.11(b), where a positive (red) signal indicates the
presence of a sideband, while a negative (blue) signal is due to depletion of the harmonics.
Theoretical calculations shown in Fig. 5.11(d), show that we can indeed attribute the positive
peaks to the sidebands.

Figures 5.12(a)-(c) show the main experimental results where we present the measured time
delay di�erence between the two electronic states and between di�erent vibrational levels
within the same electronic state. These results are compared to theoretical calculations which
are in good agreement with the measurements, besides a constant energy shift5. The shape
resonance is only observed in theX channel. Therefore, comparing the time delay between
the X and A states, provides a measure of the molecular time delay associated to the shape
resonance. Figure 5.12(a) shows that electrons from theX state are delayed up to 60 as com-
pared to those from theA state as a result of the resonance. In Figs. 5.12(b) and (c), we show
the time delay di�erence between vibrational levels v′ = 1 and v′ = 0 for theX andA states
respectively. While for the X state we observe a large variation of the molecular time delay
di�erence, for the A state the di�erence is constant and close to zero. These observations
are an indication that, in the vicinity of the shape resonance, the Franck-Condon principle
breaks down, as initially suggested by Dehmer et al. [126]. Indeed, theoretical calculations

5This energy shift originates from an incomplete description of electron correlations.
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escaping from theN+

2 ion with internuclear distanceR(v′ = 1) = 10.92 pm (red) and
R(v′ = 0) = 11.16 pm (black). Figure adapted from paper vii.

show that the dipole transition matrix element for the X state depends on the internuclear
distance, in contradiction with Franck-Condon’s principle. As a result, the distributions of
internuclear distances are slightly di�erent for the two vibrational states. This di�erence, of
only 2 pm between the maxima of the distributions, changes the width of the potential well,
leading to a small shift of the resonance energy. As a result, the potential barrier seen by the
electron is wider for v′ = 0 than v′ = 1, leading to a measurable time delay between the two
electrons as seen in Fig. 5.12(b). These measurements constitute the �rst observation, in the
time domain, of the e�ect of nuclear motion on the potential seen by the photoelectron.

2.2 Photoionization in the vicinity of the giant dipole resonance in xenon

In paper x, we study the photoionization of the 4d inner-shell of xenon with photon ener-
gies spanning 70-100 eV. This energy region is particularly interesting as photoionization is
strongly a�ected by electron correlations in the vicinity of the giant dipole resonance, whose
maximum is at 100 eV and spans several tens of eV [127]. This giant dipole resonance is
characterized by a collective oscillation of all electrons from the 4d shell, leading to a large
enhancement of the photoionization cross section. This collective e�ect originates from the
presence of a shape resonance in the 4d→ εf channel [128]. In addition, xenon being a heavy
atom, it is subject to strong relativistic e�ects, in particular close to the ionization threshold,
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Figure 5.13: (a) Schematic representation of Auger decay. Absorption of an XUV photon leads to
the emission of a photoelectron from the 4d shell (purple). The 4d−1 hole can then be
�lled by a valence shell electron, leading to the emission of a second electron (green). (b)
Energy levels of the neutral, singly ionized and doubly ionized xenon atoms. Figure from
paper x.

where the branching ratio between the two spin-orbit split ionic states (2D5/2 and 2D3/2)
varies as a function of kinetic energy [129]. Finally, following the photoionization from the
4d shell, electrons from the 5s and 5p shells can recombine with the 4d−1 hole and transfer
the energy di�erence to another electron from one of these shells which is then ionized. This
process is known as Auger decay and is schematically represented in Fig 5.13(a).

The combination of the spin-orbit splitting of the hole (ESO = 2 eV) and the presence of
various Auger decay channels [Fig. 5.13(b)], gives rise to a very complex photoelectron spec-
trum that makes the RABBIT analysis very di�cult. In paper x, we use coincidence spectro-
scopy in order to reduce the spectral congestion. The principle of this technique is to detect
both the photoelectron and the Auger electron, and associate them as coming from the same
ionization event. This means that we need to keep track of all the electrons emitted at each
laser shot. In standard conditions, the XUV �ux and gas pressure are such that each APT
leads to the ionization of several atoms. In these conditions, if two electrons are detected, it is
impossible to know if they originate from the double ionization of a single atom or from the
single ionization of two di�erent atoms. Coincidence spectroscopy requires that the number
of ionization events per shot is much smaller than one. For most of the laser shots we detect
no electrons. When we detect two electrons they most probably come from the same event.
In the following, the two electrons, which in general have di�erent kinetic energies, are re-
ferred to as the fast electron, which we detect �rst, and the slow electron, which is detected
later.
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Figure 5.14: Coincidence map for XUV-only (a) and XUV+IR (b). The projections of the coin-
cidence maps on the fast electron energy axis are show in (c) for XUV-only and (d) for
XUV+IR. The projection on the slow energy axis shows the Auger peaks correspond-
ing to di�erent decay channels of the 4d−1 hole, with (red) and without (blue) IR �eld.
Figure adapted from paper x.

Figure 5.14(a) shows an XUV-only coincidence map as a function of the kinetic energy of
the slow and fast electrons. Because this map is symmetric with respect to the axis de�ned
by Efast = Eslow, the map is folded along this axis. The energy of electrons from Auger
transitions is �xed by the energy di�erence between the respective energy levels of the electron
and hole, and is therefore independent of the absorbed photon energy. On the contrary, the
energy of the photoelectron depends on the energy of the XUV photon absorbed and the
state of the intermediate Xe+ ion. In addition, in the region of interest, the Auger electrons
tend to be slower than the photoelectrons. As a result, the horizontal lines for a �xed slow
electron energy that we see in Fig. 5.14(a), correspond to the energy of the photoelectron
measured in coincidence with an electron coming a speci�c Auger transition. The projection
of the map on the fast electron energy axis hence gives the spectrum of the photoelectrons as
shown in Fig. 5.14(c). For example, the peaks labelled H57 correspond to the measurement in
coincidence of the a photoelectron generated by absorption of harmonic 57 followed by the
Auger decay 4d−1(2D3/2)→ 5s−2(1S0) or 4d−1(2D5/2)→ 5s−2(1S0). This technique
allows us to disentangle contributions from the 2D5/2 and 2D3/2 spin-orbit split states of
the Xe+, since the Auger lines appear at di�erent energies depending on the state of the 4d−1

hole[see Fig. 5.14(e)]. When the probe pulse is sent in the interaction volume and overlapped
with the XUV, we observe sidebands between the XUV-only photoelectron peaks as shown
in Figs. 5.14(b,d).

In �gures 5.15 (a) and (b) we show the photoionization time delays associated to the 4d−1
3/2

and 4d−1
5/2 holes, using Ne 2p as a reference6. At energies above 80 eV, both �gures show a

6As we show in paper i, neon is a good reference since 2p shell has a time delay close to zero in this energy
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Figure 5.15: (a)−(c) Photoionization time delay di�erences τA[Xe(4d3/2)] − τA[Ne(2p)] (a),
τA[Xe(4d5/2)] − τA[Ne(2p)] (b) and τA[Xe(4d3/2)] − τA[Xe(4d5/2)] (c). Exper-
imental points are in black and theory is in red. (d)−(f) Wigner distribution of the
4d5/2 → εf5/2 (d), 4d5/2 → εf7/2 (e) and 4d3/2 → εf5/2 (f) channels. Figure
adapted from paper x.

similar time delay decreasing from 40 as to 20 as for increasing photon energy. At low energy,
E < 80 eV, the measured time delays depend on the state of Xe+. In �gure 5.15 (c), we show
the time delay di�erence between the photoelectrons associated to the two spin-orbit split
states of the 4d−1 hole. The di�erence is close to zero for almost all photon energies except at
the lowest energy where we measure a delay di�erence of about 100 as. Our measurements
are in very good agreement with theoretical calculations at high photon energy based on the
relativistic random phase approximation (RRPA). At lower energy, the agreement between
experiment and theory is only qualitative. It is very interesting to note that, around the giant
dipole resonance, we do not measure a large delay variation. This can be explained from the
fact that the resonance is very broad and the phase variation very slow. The variation of the
time delay at low energy points towards interesting relativistic e�ects at threshold.

Photoionization from the 4d shell in the energy range studied here is dominated by 4d→ εf
which is composed of three channels: 4d3/2 → εf5/2, 4d5/2 → εf7/2 and 4d5/2 → εf5/2.
The latter one, which involves a spin �ip, is negligible at high photon energy, in the region
of the giant dipole resonance, but contributes signi�cantly close to threshold. In paper x,
we show using RRPA calculations that the time delays associated to the three channels co-
incide above 80 eV, with a time delay around 40 as. This is in good agreement with the time
delays measured experimentally at high energy. At low energy, the calculations show import-
ant channel-dependent oscillations of the time delays, indicating the presence of quantum
interference between the di�erent channels due to the spin-orbit interaction. This results in
the large time delay measured experimentally at low energy.

region and can be accurately predicted by theory.
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As in the case of Fano resonances, we use the Wigner representation to reveal the dynamics
at the origin of this interference e�ect. Figures 5.15 (d)−(f) present the Wigner distribution
of the one-photon transition matrix elements of the three ionization channels. This repres-
entation shows that there are at least two resonances in this energy region, a very broad and
short lived one which corresponds to the giant dipole resonance and a narrow and long lived
one around 75 eV. In the 4d3/2 → εf5/2 and 4d5/2 → εf7/2, the broad high energy reson-
ance is dominant. However, for the 4d5/2 → εf5/2 channel, both resonances have similar
contributions, resulting in strong oscillations of the cross-term in the Wigner distribution.
The observation of these two resonances is supported by calculations based on RRPA and
analysed using multichannel quantum defect theory by Cheng and Johnson [129]. This ana-
lysis allows retrieving the eigenchannels, which are completely decoupled from each other,
and which they label using the closest LS-coupled channels (d9f) 1P , 3P and 3D. The 1P
gives rise to the giant dipole resonance while the 3P and 3D result in two narrow resonances
close to threshold. The latter resonances exist due to singlet to triplet mixing enabled by the
spin-orbit interaction and are at the origin of the low energy long-lived feature observed in
the Wigner representation.

The theoretical analysis allows us to conclude that the large time delay measured at low energy
is a signature of the quantum interference between the dipole allowed 1S →1P transition
and the spin-orbit induced 1S →3P,3D transitions, which have similar amplitudes in that
energy region.
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Chapter 6

Angle-resolved photoionization

Most studies of attosecond photoionization dynamics performed until now, including the
results presented in chapters 4 and 5, have dealt with angle-integrated measurements. How-
ever, as discussed in chapter 4 angular integration results in the incoherent addition of con-
tributions from ionization channels leading to di�erent �nal angular momenta. As a result,
in the analysis and interpretation of the results is it often necessary to neglect some of the
channels. While in some cases these approximations are justi�ed, in general, it is important
to account for the di�erent angular channels. This is one of the main limitations of angle-
integrated measurements which only provide partial information on the ionization dynam-
ics. Disentangling the contributions of the di�erent angular channels requires a new method.

Angle-resolved RABBIT, �rst introduced in 2003 to characterize APTs [130], can, in prin-
ciple, provide much more information on the interplay between di�erent angular momentum
channels in photoionization. In 2016, Heuser and coworkers used this technique to investig-
ate angle-resolved photoionization time delays in He [12] and showed that despite the ground
state of He being spherically symmetric, the photoionization time delays strongly vary as a
function of the emission angle. Since then, the number of theoretical [131–133] and experi-
mental [17, 19, 93, 134] angle-resolved studies has strongly increased.

In this chapter we present studies of angle-resolved photoionization dynamics performed
during this thesis. We �rst introduce the angle-resolved RABBIT technique before present-
ing the results obtained in paper iii, where two-photon angle-resolved photoionization time
delays are measured in the vicinity of the 3s−14p resonance in Ar 1. Finally, we discuss the
results of paper v in which, by studying theoretically angle-resolved photoionzation, we set
a work-frame to analyse and interpret angle-resolved RABBIT measurements, providing an

1While it is not possible to de�ne a Wigner time delays for Fano resonances, it is possible to de�ne a two-
photon time delay in the vicinity of such resonances [106].
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Figure 6.1: (a) Inverted VMI image for XUV+IR at a given delay. Harmonics (HHs) and sidebands
(SBs) are indicated by yellow and white arrows respectively. Integrating the signal between
0 and 20 degrees (area de�ned by the blue dotted lines) and between 40 and 60 degrees
(area de�ned by the green dotted lines,) with respect to the polarization axis ẑ, we obtain
RABBIT scans presented in (b) and (c) respectively.

explanation to some experimental observations reported in paper iii.

1 Angle-resolved RABBIT

In angle-resolved RABBIT, instead of measuring the total electron yield as a function of
delay, we measure the photoelectron angular distribution (PAD) as a function delay. In �g-
ure 6.1(a) we present a typical momentum map at a given delay. As can be seen from the �gure,
harmonics and sidebands have di�erent angular distributions. This can be understood from
the fact that the angular distribution is determined by the spherical harmonics associated
to the di�erent �nal states. Since the angular momenta accessible by one- and two-photon
transitions are di�erent, the PADs of harmonics and sidebands are di�erent.

In this thesis, the XUV and IR pulses used are linearly polarized, with parallel polarization
axis. As a consequence, the PAD always has an azimuthal symmetry. In these conditions, as
discussed in chapter 3, it is possible to parametrize the PAD according to equation

S(θ) =
σ0

4π

[
1 +

∞∑

n

βnPn(cos θ)

]
(6.1)

where βn are asymmetry parameters, Pn are Legendre polynomials, θ the angle with respect
to the polarization axis ẑ and σ0 the angle-integrated photoionization cross-section. In the
case where the parity of the �nal states is the same, the PAD is up-down symmetric such that
odd asymmetry parameters are equal to zero in equation 6.1. Finally, it can be shown that for
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an unpolarized target, regardless of the initial angular momentum of the electron, the highest
order of the Legendre polynomials in the expansion 6.1, is given by nmax = 2N , whereN is
the number of photons exchanged [135]. As a result, the angular distributions for XUV-only
and XUV±IR are respectively given by

S(1)(θ) =
σ

(1)
0

4π

[
1 + β

(1)
2 P2(cos θ)

]
,

S(2)(θ) =
σ

(2)
0

4π

[
1 + β

(2)
2 P2(cos θ) + β

(2)
4 P4(cos θ)

]
,

(6.2)

where S(1) and S(2) are the PADs for the XUV-only and XUV±IR cases respectively, and
σ

(1)
0 , σ(2)

0 their cross-sections. It is hence possible to fully describe the PADs of harmonics
and sidebands with the β2 and β4 parameters.

When the delay between the XUV and IR is varied, the intensity of the sidebands oscillates.
Looking at the harmonic and sideband signal as a function of delay at a given emission angle,
we can reconstruct the RABBIT scan for electrons emitted in that direction. In practice,
in order to have a reasonable signal to noise ratio, we need to integrate the signal over some
angular interval. In Figs. 6.1(b) and (c) we present the RABBIT scans obtained after integra-
tion of the signal from 0 to 20 degrees (b) and from 40 to 60 degrees (c). It is then possible
to extract the angle-dependent amplitude and phase of the emitted EWP.

The RABBIT equation for angle-resolved measurements can be written as:

S(θ, τ) = A(θ) +B(θ) cos [2ωτ −∆ϕXUV −∆ϕA(θ)] , (6.3)

whereA(θ) andB(θ) are two coe�cients whose exact form will be discussed in section 3. It
is interesting to note that the XUV group delay is independent of the emission angle so that,
for a given sideband order, the angle-dependence of the sideband phase corresponds directly
to the angle-dependence of the atomic phase di�erence ∆ϕA(θ). As discussed in chapter 3,
the signal measured in a speci�c direction k̂ corresponds to the interference of several partial
waves. For this reason, it is not meaningful to write the atomic phase as the sum of a scattering
phase and a continuum-continuum phase since these quantities are channel speci�c.

2 Angle-resolved study of a Fano resonance

In paper iii, we use the angle-resolved RABBIT technique to investigate the photoionization
via the 3s−14p resonance in Ar. This work is made in collaboration with the group of Ur-
sula Keller at ETH, Zürich. Since the Lund and ETH results were obtained independently,
in the following only the results from Lund are presented. Upon absorption of an XUV
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Figure 6.2: Asymmetry parameters. (a) XUV-only asymmetry parameters measured for harmonics 13
to 25 (red dots). Harmonic 17 is resonant with the 3s−14p resonance indicated by the gray
dashed line. The measurements are compared to synchrotron radiation measurements
from [136] (black dots). (b) Delay-integrated asymmetry parameters β2 (blue) and β4
(orange) for sidebands 14 to 24. (c) Asymmetry parameter β2 as a function of the delay
between the XUV and IR pulses. Figure adapted from paper iii.

photon, an electron from the 3p shell of argon can be excited either to the εs or εd con-
tinua. Following Fano’s propensity rule for one photon ionization, the channel 3p → εd
is usually stronger than that leading to εs. However, in the vicinity of a Fano resonance the
transition amplitudes to the di�erent �nal states change strongly, resulting in a modi�cation
of the PAD [115, 136]. Figure 6.2(a) shows the β2 parameters measured for the di�erent har-
monics when harmonic 17 is resonant with the 3s−14p resonance (Eα = 26.61 eV). The
e�ect of the resonance is visible on H17 as a decrease of the β2 parameters, re�ecting the fact
that, on resonance, ionization via the εs is dominant [137]. This is in qualitative agreement
with experimental data from synchrotron measurements [115, 136]. Figure 6.2(b) shows the
β2 and β4 parameters of the sidebands when the XUV and IR �elds are overlapped. The
e�ect of the resonance is very visible on sideband 16 (≈ 25 eV) as a large drop of the β2 para-
meter. However, we do not see a clear signature of the resonance on β4. The value the β2

parameter in SB16 may also be a�ected by the presence of the 3s−14s resonance in its vicin-
ity. When we change the delay between the XUV and IR pulses, we observe that the PADs
of the harmonics and sidebands change periodically, resulting in an oscillation of the asym-
metry parameters [see Fig. 6.2(c)]. The oscillations are not sinusoidal and their amplitude
decreases with increasing sideband order. The fact that sidebands 16 and 18 have resonant
contributions does not seem to a�ect these oscillations besides the fact that the values of the
β2 parameter for SB16 are in general lower than those of the other sidebands, in agreement
with the observation from Fig. 6.2(b). As pointed out in paper iii, such a delay dependence
of the PAD must originate from an asymmetry between absorption and emission processes
although, in paper iii, no clear explanation for this e�ect is given.

In �gure 6.3(a), we present the atomic delay for sideband 14, which has no resonant contri-
bution. The measured delay has a strong dependence on the emission angle, dropping to
almost−300 attoseconds at 75◦. This result is similar to that observed in helium by Heuser
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Figure 6.3: Angle-resolved atomic delays. (a) measured (orange) and theoretical atomic delays of
SB14 as a function of the emission angle. (b) Measured phase of sideband 16 as func-
tion of the H17 central photon energy for three di�erent emission angles. (c) Simulated
delay variation across the the Fano resonance as a function of the XUV photon energy
and for three di�erent angles. The inset shows the spherical harmonics of the two �nal
states considered in this simple model. Figure adapted from paper iii.

and co-workers [12]. The main di�erence between He and Ar is that in argon the delay seems
to decrease faster as a function of emission angle for similar electron kinetic energies. This res-
ult is in excellent agreement with theoretical calculations based on many-body perturbation
theory.

In this study, we do not use the Rainbow RABBIT technique since it would require a very
high number of counts in order to reliably extract the oscillation phase of sidebands at every
energy and angle. Even integrating over 20 degrees, the signal is approximately 18 times lower
than that of an angle-integrated measurement. In addition, the spectral resolution of the or-
der of 200 meV in the energy range of the resonant sidebands limits the interest of this tech-
nique. To study the phase variation accross the resonance, we instead take advantage of the
tunability of the laser to scan the central energy of the resonant harmonic across the reson-
ance. For each wavelength, a RABBIT scan is acquired and the sideband phase is extracted,
similarly to the work of Kotur and co-workers [11].

Figure 6.3(b) shows the time delays extracted from sideband 16 as a function of the central
photon energy of H17 for three di�erent emission angles. Each energy point corresponds
to the phase extracted from one RABBIT scan. At the lowest energy point, where H17 is
not resonant, we measure a delay variation similar to that measured in SB14. In the �gure,
this delay variation is removed by setting to zero the delay of the �rst energy point at each
emission angle, in order to outline the delay anisotropy induced by the resonance. We can
see a clear dependence of the delay on both emission angle and photon energy in the vicinity
of the resonance. In the non-resonant case, we show in paper iii that the angular dependence
of the delay is independent of the photon energy (over the small energy region investigated).
It is also interesting to note that around E = 27.78 eV, the curves for the di�erent angles
cross.
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In order to qualitatively understand the origin of the complex angle and energy dependence
of the delay, we use an extremely simple model. The model only aims at providing an intuitive
picture of what is happening. First, we only considerm = 0 such that we only have two �nal
states with angular dependence given by the spherical harmonicsY30(θ) andY10(θ)2, which
are represented as an inset in Fig. 6.3(c). Denoting the complex amplitude of the one-photon
resonant channels asAs andAd, in paper iii we approximate the angle dependent emission
(−) amplitude to sideband 16 as 3

A(−)(θ) = AdY30(θ) + (As +Ad)Y10(θ), (6.4)

The �nal two-photon εp state has contributions from both intermediate resonant continua,
while the εf continuum can only be accessed via εd. If taken individually, the �nal states have
a well de�ned phase which is angle independent. In our measurements, the two �nal states
mix with an angle dependent weight given by their respective spherical harmonics Y10 and
Y30. However, if we �nd an angle at which one channel cancels, it is possible to extract the
delay of only one of the �nal states, which is impossible in angle-integrated measurements.
For example, at θ = 55◦, Y30 has a node so that we can access the delay of the εp continuum.
Unfortunately, the εp �nals state can be accessed via both the εs and εd intermediate reson-
ant continua. Consequently, it is not possible to separate the time delays associated to the
two resonant channels. The delay variation calculated using the model in Eq. 6.4 is shown in
Fig. 6.3(c) for three di�erent emission angles. The simulations show that, like in our measure-
ments, time delays depend both on the energy and emission angle. Furthermore, the angular
dependence of the delays disappears at one photon energy, here equal to 26.6 eV. This can be
understood by the fact that, at this energy,Ad ≈ 0 [137], so that the same phase is measured
regardless of the emission angle. We observe this point experimentally close to 26.8 eV. We
emphasize that the simulations presented here and in paper iii are the result of an extremely
simple toy model which aims at discussing qualitatively the physics behind the energy and
angle dependence of the measured time delays.

Finally, it is worth mentioning that, while we are able to qualitatively understand the meas-
ured delays, additional experiments and theoretical calculations should be carried out to get
a better understanding of angle-resolved autoionization dynamics. Experimentally, although
very challenging, it should be possible to perform angle-resolved Rainbow RABBIT meas-
urements. In fact, we have performed promising experiments recently which we will mention
in chapter 7. Theoretically, it requires a more complete model and a better understanding of
angle-resolved RABBIT measurement in general. We discuss this in the following section.

2Here and in the following, YLm(θ) denotes the θ-dependent part of the spherical harmonics YLm(θ, φ).
These two quantities di�er by the factor eimφ, which is integrated away in VMI measurements.

3This expression is slightly di�erent from that in paper iii due to a di�erent de�nition of the channel resolved
matrix elements in the partial wave expansion. In this thesis the phase iLe−iηL is included in our de�nition of
channel-resolved matrix elements (Eq. 3.2). In paper iii, this phase is not included in matrix elements and hence
must be written explicitly. Both expressions are correct.
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3 Theory of non-resonant angle-resolved RABBIT

Following the results obtained in paper iii, we investigate more thoroughly the theory be-
hind angle-resolved RABBIT measurements in the case of non-resonant photoionization.
In particular we use the channel-resolved two-photon transition matrix elements discussed
in the section on Fano’s propensity rule in chapter 3.

For each accessible �nal state, in the monochromatic limit, the transition amplitude is given
by

A(±)
Lm(θ, φ, τ) = − ie

2

~
EXUV (Ω)EIR(ω)e±iωτ

∑

λ

M
(±)
λLmYLm(θ, φ), (6.5)

where we add coherently the transition amplitudes of di�erent angular channels leading to
the same �nal state, such asp→ s→ p andp→ d→ p in the case of argon or neon form =
0. As mentioned previously, each of these transition amplitudes has a well de�ned phase
which is independent on the emission angle θ. Ideally, one would like to be able to access
these quantities experimentally. In angle-integrated RABBIT, since the spherical harmonics
form an orthogonal basis, the transition amplitudes to di�erent �nal angular momenta add
incoherently, giving rise to equation 4.7 in chapter 4. In angle-resolved RABBIT, for a given
state of the ion, i.e. for a given magnetic quantum number m, all the accessible �nal states
add coherently, while states with di�erent m add incoherently. As a result, the angle- and
delay-dependent sideband signal is given by

S(θ, τ) =

∫ 2π

0
dφ
∑

m

∣∣∣∣∣
∑

L

A(+)
Lm(θ, φ, τ) +A(−)

Lm(θ, φ, τ)

∣∣∣∣∣

2

. (6.6)

This equation is completely general. We �rst restrict the discussion to the case of helium
where λ = 1 andm = 0. In this case, the angle-resolved RABBIT signal takes the form

S(θ, τ) ∝
∣∣∣

D
(+)
0 (θ)︷ ︸︸ ︷[

M
(+)
100 Y00(θ) +M

(+)
120 Y20(θ)

]
eiωτ

+
[
M

(−)
100 Y00(θ) +M

(−)
120 Y20(θ)

]

︸ ︷︷ ︸
D

(−)
0 (θ)

e−iωτ
∣∣∣
2
,

(6.7)

where the term in the �rst row, D(+)
0 (θ), corresponds to the angle-resolved transition amp-

litude of the absorption path and the term in the second row, D(−)
0 (θ) corresponds to the

emission path. The subscript ofD(±)
0 (θ) indicates the magnetic quantum numberm = 0.

Equation 6.7 shows that, in general, it is not possible write S(θ, τ) as the product of a tem-
poral and an angular factor. This implies that the PAD is delay-dependent and that the delay
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Figure 6.4: Populations |PL(τ)|2of the s (blue) and d (orange) states. (b) Asymmetry parameters
β2 (black) and β4 (magenta) as a function of delay. The insets on top show the 3D PAD
at di�erent delays. (c) Sideband intensity as a function of delay and angle. A logarithmic
color map is used. Figure adapted from paper v.

is angle-dependent, as observed experimentally in paper iii. Equation 6.7 can be rewritten as
follows

S(θ, τ) ∝
∣∣∣

P00(τ)︷ ︸︸ ︷[
M

(+)
100 e

iωτ +M
(−)
100 e

−iωτ
]
Y00(θ)

+
[
M

(+)
120 e

iωτ +M
(−)
120 e

−iωτ
]

︸ ︷︷ ︸
P20(τ)

Y20(θ)
∣∣∣
2
,

(6.8)

where here the term in the �rst row, P00(τ) corresponds to the “RABBIT amplitude” as-
sociated to the s �nal state while the term in the second row, P20(τ) corresponds to the
“RABBIT amplitude” associated to the d �nal state. The second subscript corresponds to
m. Equations 6.7 and 6.8 are identical but 6.7 outlines the e�ect of angular interference in
D

(±)
0 (θ) while 6.8 shows the e�ect of temporal interference in the “RABBIT amplitudes”

PL0(τ) of the �nal angular momentum states.

Let us �rst investigate the evolution of the populations of thes andd states, |P00|2 and |P20|2
respectively, as a function of delay. Figure 6.4(a) shows the sinusoidal oscillation of the pop-
ulations over one sideband period in a logarithmic scale. Interestingly, we see that around the
maximum of the oscillations both populations are similar, while at the minimum the popu-
lation of the s state drops signi�cantly compared to that of the d state. In other words, the
contrast of the oscillations for the s state is higher than for the d state. As we show in paper
v, this can be understood based on Fano’s propensity rule. Indeed, the absorption and emis-
sion paths to a given �nal angular momentum do not have the same strength. In this case, the
CC transition εp → εd is stronger for absorption than emission while it is the opposite of
the transition εp→ εs. This implies that the contrast of the RABBIT oscillations is smaller
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Figure 6.5: (a) Square modulus (solid line) and “time delay” (dashed line) of D(+)
0 (θ). (b) Square

modulus (solid line) and “time delay” (dashed line) of D(+)
0 (θ). (c) Angle-resolved

atomic time delay di�erence between emission and absorption.

than one. In addition, Fano’s propensity rule tells us that the asymmetry between absorp-
tion and emission increases with the �nal angular momentum (see Fig. 3.2). As a result, the
contrast of the oscillations for the s state is larger than for the d state.

The di�erence in oscillation contrast for the population of the s and d states implies that
the contribution of the s and d waves to the total PAD varies as a function of time. In
�gure 6.4(b) we show the oscillations of the β parameters associated to the PAD together
with the 3-dimensional representation of the angular distributions at some speci�c delays. In
Fig. 6.4(c) we present the angle- and delay-resolved sideband intensity in a logarithmic scale.
Both �gures show a large modi�cation of the angular distribution around the minimum of
the sideband oscillation, where the ratio of the populations of the s and d states changes dra-
matically. The asymmetry between absorption and emission predicted by Fano’s propensity
rule explains the modi�cations of the PAD as a function of delay observed in paper iii4.

We now investigate the angular dependence of the absorption and emission transition amp-
litudesD(±)

0 (θ) (Eq. 6.7). Using the asymptotic phase of the matrix elements given in equa-
tion 4.4, and neglecting the angular momentum dependence ofφcc,D(±)

0 (θ) can be approx-
imated here as5

D
(±)
0 (θ) ≈ ei(η

(±)
1 +φ

(±)
cc )

[
|M (±)

100 |Y00(θ) + |M (±)
120 |Y20(θ)

]
, (6.9)

The phase of the �rst term is simply η(±)
1 + φ

(±)
cc . Since the factor on the right is real, its

phase is either equal to 0 or π, depending on its sign. Y00 is constant and does not depend
on the emission angle, while Y20 takes both positive and negative values depending on the
emission angle. As a result, depending on the weight |M (±)

1L0| of the two scattering waves,
destructive interference may be observed at speci�c angles. Figures 6.5(a) and (b) show the

4The modi�cation of the PAD with delay always originates from an asymmetry between absorption and
emission. However, in resonant photoionization, the relative strength of the di�erent paths is not well described
by Fano’s propensity rule.

5The minus sign in paper v is a typo.
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square modulus ofD(+)
0 andD(−)

0 . We note that, in the simulations, we use the exact expres-
sion of D(±)

0 given in Eq. 6.7, in which φ(±)
cc depends slightly on the angular momentum.

In the absorption path we observe very strong destructive interference while in the emission
path |D(−)

0 |2 varies smoothly as function of the angle. This can be understood from the fact
that, in the absorption path, the dwave dominates andY20 changes sign between 0◦ and 90◦.
As a result, around 75◦, |M (+)

100 |Y00(θ) + |M (+)
120 |Y20(θ) crosses zero, leading to destructive

interference. In the emission path, it is the s wave that dominates. Here the second term of
Eq. 6.9 never changes sign, leading to a smooth variation of |D(−)

0 |2.

We also show in Figs. 6.5(a,b) the “time delay” of the absorption/emission paths de�ned as
τ

(±)
0 = arg[D

(±)
0 ]/2ω. The “time delay” in the absorption path jumps by almost 600 as

(π rad is equivalent to 667 as at 800 nm) around the angle at which we observe the destructive
interference due to the change of sign. On the contrary, for the emission path, the “time
delay” is almost angle independent. As a result, the angle-dependent atomic delay τA =

τ
(−)
0 − τ (+)

0 , exhibits a large delay variation as a function of the angle due to the destructive
interference in the absorption path as shown in Fig. 6.5(c). We can conclude that the angle-
dependence of the atomic time delays is a second consequence of Fano’s propensity rule.

Here we have discussed the case of helium because, the fact that it only has one intermediate
state and one magnetic quantum number, signi�cantly simpli�es the discussion. However a
similar analysis can be done with more complex atoms. In that case, as we show in papervi, it
is important to consider channels with di�erentm individually. Indeed, in the total PAD, the
incoherent sum of the angular distributions associated to di�erent ionic states can sometimes
hide the asymmetry between absorption and emission, in particular in the case of neon (see
paper vi). It can also lead to a complex delay-dependence of the asymmetry parameters and
angle-dependence of the time delays. To illustrate the complexity of the problem we consider
the non-resonant photoionization of argon.

Figure 6.6 presents an analysis, similar to that performed in helium, of them-resolved chan-
nels in argon. The top row corresponds to m = 0 and the bottom row to m = ±1. As
already discussed several times, form = 0, two paths lead to the �nal p continuum state. As
a result, we can see in Fig. 6.6(a) that, unlike in He, the oscillations of the populations for the
p and f states are not perfectly in phase. We do, however, still observe that the contrast of
the oscillations is higher for the p state than for the f state as expected from the propensity
rule. The small phase shift explains, for example, the asymmetric shape of the β2 oscillations
predicted by our calculations in paper v.

In �gure 6.6(b), we show the angular distribution for the absorption and emission paths. In
the absorption path (blue), we observe two local minima at around 50◦ and 130◦. However,
in argon, we aslo see some features in the angular distribution associated to the emission path
(orange) around 70◦ and 110◦. The large minimum at 90◦ observed in both absorption and
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Figure 6.6: Channel-resolved analysis of angle-resolved RABBIT in argon form = 0 (a) and (b) and
m = ±1 (c) and (d). (a) and (c) show the populations of the p (gray) and f (magenta)
states. (b) and (d) show the absorption (blue) and emission (orange) angular distributions
|D±|2 and the corresponding atomic time delay τA (black).

emission does not correspond to destructive interference but simply to a common node of
the spherical harmonicsY10 andY30. As a result of the interference features observed in both
absorption and emission paths, the atomic delay has a more complex angle-dependence. A
similar time delay variation had already been predicted by Ivanov and Kheifets form = 0 in
neon [131].

In �gure 6.6(c), we show the population of the p and f states for m = ±1. In this case,
because there is only one intermediate channel, both oscillations are in phase. Again, as pre-
dicted by Fano’s propensity rule, at the minimum, the highest angular momentum domin-
ates strongly. Finally, Fig. 6.6(d) shows the angular distribution of the absorption and emis-
sion paths and the atomic delay form = ±1. In this case, the situation is very similar to that
in helium, with strong destructive interference only in the absorption path and a large delay
jump as we cross the these interference regions.

In order to reproduce the PADs and angle-resolved time delays measured experimentally in
Ar in paper iii and v, we have to add incoherently them = 0 andm = ±1 channels which
makes it much more complicated to fully interpret the experimental results without a theor-
etical back-up. As an example, using the results in �gure 6.6, we can understand the shape
of the β2 oscillations reported in paper v as mentioned earlier. In addition the fact that the
angle-resolved time delays in Ar, shown in Fig. 6.3(a) start decreasing already at relatively low
angles is due to the contribution of the m = 0 channel, while the sharp drop of the time
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delay at around 75◦ is due to the m = ±1 channels. Our theoretical results and meth-
ods therefore provide a general framework to analyse and interpret angle-resolved RABBIT
measurements.

Finally, as the asymmetry between absorption and emission decreases with electron kinetic
energy, both the delay-dependence of the PAD and the angle-dependence of the time delays
are reduced. For su�ciently high kinetic energy, where approximations such as the soft-
photon approximation [138] or the strong-�eld approximation [29] are valid, these e�ects
disappear.
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Chapter 7

Summary and outlook

1 Summary

In this thesis we have investigated photoionization from a large variety of systems (He, Ne,
Ar, Xe and N2) and via di�erent ionization mechanisms represented schematically in Fig. 7.1.
While traditional photoelectron spectroscopy only provides information on the amplitude
of the emitted EWPs, our studies, performed with the interferometric technique RABBIT,
allow us to measure both the spectral amplitude and phase of the EWPs, which we then use
to characterize the EWP in the time-frequency domain and gain detailed information on the
attosecond to femtosecond ionization dynamics.

In general, several ionization channels are available. When the channels lead to the same
ionic state, they interfere, resulting in fast variations of the spectral amplitude and phase of
the EWPs. This is the case for Fano resonances, where direct photoionization and autoion-
ization interfere (papers ii, iii, viii), or in the case of angle-resolved measurements, where
the coherent superposition of �nal states with di�erent angular momenta gives rise to in-
terference between the di�erent partial waves (papers iii, v, vi). When the channels lead to
di�erent ionic states, for example due competing shake-up processes (papers i and ix), spin-
orbit splitting of the ion (papers viii, x) or di�erent Auger decay channels (paper x), the
contribution of the di�erent channels add incoherently. In both cases, in order to under-
stand the results, it is necessary to disentangle and analyse the contribution of the di�erent
channels. In this work, we have developed and implemented di�erent tools to investigate
photoionization dynamics when multiple competing ionization channels are available.

During this thesis, we have continuously worked to increase the spectral resolution of our
measurements, showing that it is possible to do attosecond physics while maintaining high
spectral resolution. Using attosecond pulse trains in combination with a high-resolution
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Figure 7.1: Schematic representation of di�erent ionization mechanisms studied in the thesis. (a)
Photoionization from a valence shell. (b) Photoionization with shake-up. (c) Photoion-
ization from an inner shell (left) and subsequent Auger decay (right). (d) Angular mo-
mentum resolved photoionization to two di�erent partial waves. (e) Photoionization via
an autoionizing state interacting with a single continuum. (f) Photoionization via an
autoionizing state interacting with several continua. (g) EWP in a shape resonance.

electron spectrometer, long IR probe pulses, the Rainbow RABBIT technique and a decon-
volution algorithm can provide a spectral resolution of the order of tens of meV, allowing
for an accurate characterization of the emitted EWPs. Advanced detection schemes such as
electron-electron coincidence used in paper x are also very powerful tools to separate com-
peting processes, though at the expense of long acquisition times and a higher complexity for
the data analysis. The possibility to study photoionization dynamics with high spectral resol-
ution will be increasingly important as the size of the systems under study increases, resulting
in more complex photoelectron spectra as was the case in Xe (paper x) and N2 (paper vii).
Finally, angle-resolved measurements can provide complementary information in particular
regarding the interplay of di�erent angular channels, which can not be spectrally separated.
Angular resolution is a requirement if we want to be able to completely characterize the elec-
tron dynamics, not only in the time-frequency domain but also in the position-momentum
phase space.
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2 Towards attosecond quantum state tomography of photo-

electron wavepackets

In chapter 5, we reconstruct the Wigner distribution and density matrix of the EWPs as-
suming that they are fully coherent. While in this case it is a fair approximation, in general,
decoherence can occur, either due to �uctuating experimental conditions [70,122], or due to
relaxation dynamics of the system via channels that are not measured. Both situations result
in a loss of information which gives rise to decoherence. To fully understand the ioniza-
tion dynamics it is hence important to characterize the quantum state of the system without
assuming that it is a pure state. This characterization is called quantum state tomography
(QST). QST protocols for discrete variables have already been proposed and demonstrated
in the �eld of attosecond science [70, 71, 122]. However, in order to characterize the EWPs
we need a QST protocol for continuous variables, which, to our knowledge, does not exist
yet for photoelectrons. Towards the end of this thesis, we have explored theoretically two
di�erent continuous variable QST protocols which could be implemented experimentally.

The �rst idea investigated is inspired from the methods used in quantum optics [139, 140]. It
relies on mixing an unknown quantum object, here the EWP, with a known classical �eld,
referred as local oscillator in quantum optics which in our case corresponds to the IR probe
pulse. Our approach consists in taking advantage of the frequency mixing induced by the
�nite pulse e�ects. As shown in �gure 3.4, the IR-induced CC transitions makes interfere
di�erent parts of the one-photon wavepacket. This results in a modi�cation of the amp-
litude and phase of the EWP, which depends on the degree of coherence between the di�er-
ent parts of the EWP. In other words, it gives access to the coherences of the density matrix.
By recording the spectrum for a large number of delays, we obtain a large enough set of meas-
urements to reconstruct the quantum state of the EWP. It should then be possible to recon-
struct the Wigner distribution of the EWP from the measured RABBIT spectrogram using a
mixed-state generalized projection algorithm [70]. In collaboration with Charles Bourassin-
Bouchet from the Université Paris-Sud and with Pascal Salières’ group from the CEA Saclay,
the �rst numerical tests seem to indicate that it is indeed possible to tomographically recon-
struct the quantum state of the EWP with this method.

The second idea investigated is inspired from two-dimensional spectroscopy in which three
pulses are used to trigger and probe the dynamics [141]. In the traditional RABBIT scheme,
the beating between two consecutive harmonics, spaced by 2~ω, gives rise to fast oscillations
at angular frequency 2ω. If now we use two probe pulses at slightly di�erent frequencies ω
and ωδω, we generate two 2-photon EWPs which are slightly o�set in energy with respect
to each other. Delaying one probe pulse with respect to the other, results in a beating of the
coherent superposition of the two EWPs at angular frequency δω. One can easily show that
the amplitude of the δω oscillations corresponds to 〈ε|ρ|ε+ ~δω〉. Therefore, for a given
detuning δω, the variation of the spectral amplitude and phase of the δω oscillations with
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the energy of the sideband, ε, gives us a diagonal of the density matrix. Varying δω, we can
then map the entire density matrix. Using this method on numerical simulations, we have
been able to reconstruct the density matrix of a partially coherent EWP and to measure its
purity with good accuracy. In an ongoing collaboration with Daniel Finkelstein Shapiro and
Tönu Pullerits from Lund University, we are investigating the possibility to generalize this
scheme by implemented the phase cycling method, which used in two-dimensional spectro-
scopy [142].

The main advantage of this protocol is that it does not rely on a retrieval algorithm to extract
the density matrix. However, it would require measuring multiple RABBIT scans, one for
each δω. We are now investigating the experimental feasibility of this technique.

Both methods seem very promising and should be investigated in more detail. The goal being,
of course, to test them experimentally �rst on simple systems and then on more complex
systems where we can expect decoherence.

3 Towards a complete characterization of EWPs in phase space

One of the goals of attosecond physics is to make a “movie” of electronic motion in various
processes. The concept of making a movie, tracking the position of an electron as a function
of time is a classical concept. The equivalent of such movie in a quantum mechanical world
would be to visualize to the evolution of the Wigner quasi-probability distribution in the
position-momentum phase space on the attosecond time scale. This would requires knowing
the temporal evolution of the complex amplitude in momentum spaceA(k, t). In chapter 5,
we have characterized autoionized EWPs in the time-frequency domain using the Rainbow
RABBIT technique. In particular, we have discussed the possibility of reconstructing the
temporal evolution the spectral amplitude A(E, t) from that measured experimentally at
t → ∞. In chapter 6, we have investigated photoionization dynamics as a function of the
electron kinetic energy and emission direction, i.e. as a function momentum. In principle,
if we can use the Rainbow RABBIT technique with the angular resolution, we should be
able to make a complete measurement of the EWP and recontruct the movie of the electron
leaving the atom in phase-space.

Recently, we performed experiments in which we study resonant two-photon ionization in
helium. In our experiment, we excite the 3p Rydberg state with harmonic 15. The Rydberg
state is then ionized upon absorption of an IR photon, resulting in photoelectrons corres-
ponding to SB16 at very low kinetic energy. The aim is to completely characterize the emit-
ted EWP using angle-resolved Rainbow RABBIT measurements with the VMI. In order to
bene�t from the best resolution we generate harmonics in Xe so that we have only two har-
monics above threshold. This allows us to magnify the image on phosphor screen, hence
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(a) (b) (c) (d)

Figure 7.2: Raw VMI images of the electron distribution as the harmonic 15 is tuned towards the 3p
state. The feature observed at the center of each VMI image corresponds to SB16.

increasing the spectral resolution of the measurements. In addition, the strong ionization
enhancement by the intermediate of the 3p state together with the high XUV �ux obtained
when generating in Xe provides us with a very strong signal. The combination of strong elec-
tron signal and high spectral resolution allows us to use the angle-resolved Rainbow RABBIT
technique. We note that this method has already been demonstrated for molecules [17].

In �gure 7.2, we show the images obtained on the phosphor screen as we scan the energy of
H15 from o�-resonance [Fig. 7.2(a)] to on-resonance [Fig. 7.2(d)]. The electrons emitted via
the 3p state and corresponding to SB16 give rise to the signal observed at the center of the
image. It is interesting to observe how the angular distribution of SB16 changes as we scan
the central wavelength. O�-resonance the distribution looks likeporbital while on resonance
the distribution looks more like a d orbital. While data is still under analysis, we hope that
these measurements will allow us to fully characterize the EWPs in phase-space.

4 Upgrade of the experimental setup

As we move towards increasingly complex experiments requiring numerous RABBIT scans,
coincidence measurements and/or angular resolution, the time needed to perform these ex-
periments becomes increasingly large. This sets constraints on the long term stability of the
interferometer. For this reason the experimental setup is undergoing a major upgrade. We
very recently upgraded the repetition rate of the laser from 1 to 3 kHz, which will decrease
the acquisition time for RABBIT scans by a factor 3. In addition, we are planning on re-
building the attosecond interferometer in order to increase its long and short term stability
and replace some of the equipment which has served its time since the �rst attosecond exper-
iments performed in Lund in 2003. The upgrade of the laser and setup should allow us to
perform complex experiments which were out of reach until now and to push further our
understanding of attosecond electron dynamics.
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Appendix

1 Two-photon �nite pulse model

In chapters 3 and 5 we have introduced the two-photon transition amplitudes for both reson-
ant and non resonant transitions without fully introducing all the relevant parameters. Here
we provide the complete description of all parameters and functions used to calculate the
two-photon transition amplitudes. This is entirely based on reference [62]. The aim of this
appendix is to provide all the necessary information in order to be able to reproduce some of
the main theoretical results obtained in this thesis.

Let us consider a Gaussian, linearly polarized, pulse with a vector potential given by

Ã(t) = A0 exp

[
σ2

2
(t− t0)2

]
cos [ω0(t− t0) + ϕ] , (1)

whereA0 is the amplitude,ω0 is the central frequency, t0 is the central time, σ is the spectral
width andϕ is the carrier-to-envelope phase of the pulse. The Fourier transform of this pulse
has components with positive and negative frequencies,A(ω) = A+(ω) + A−(ω), which
correspond respectively to the absorption and emission components and are de�ned as

A±(ω) =
A0

2σ
exp[i(ωt0 ∓ ϕ)] exp

[
−(ω ∓ ω0)2

2σ2

]
. (2)

As explained in chapter 3, the two-photon transition amplitude is given by

A(±)
f g (Ωf g, τ) =

∫ ∞

0
EIR(Ωf g − Ω)e±i(Ωf g−Ω)τEXUV(Ω)M

(±)
f g (Ω) dΩ. (3)

In the non-resonant case, Eq. 3 yields [62]

A(±)
f g (Ωf g, τ) = iF(τ)eiωτw[z(Ωf g, τ)], (4)
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withF(τ) a form factor de�ned as

F(τ) = −π AXUVAIR
4σXUV σIR

e−i(ϕXUV +ϕIR) exp

[
−1

2

(
δ2

σ2
+
τ2

σ2
t

+ 2i
σIR
σXUV

δ

σ

τ

σt

)]
,

(5)
where σ =

√
σ2
XUV + σ2

IR, σt =
√
σ−2
XUV + σ−2

IR and δ = Ω + ω − Ωf g . The function
w(z) is the Faddeeva function de�ned as

w(z) =
i

π

∫ +∞

−∞

e−t
2

z − tdt, Im[z] > 0, (6)

and the complex parameter z(Ωf g, τ) is given by

z(Ωf g, τ) =
σt√

2

[(
ω − σ2

IR

σ2
δ − i τ

σ2
t

)
− Ωf g

]
. (7)

For the resonant case the two-photon transition amplitude is given by

Af g(τ) ≈ F(τ)e±iωτ
{
w[z(Ef , τ)] + (κ− ε−1

Efα
)(q − i)w[z(Eα, τ)]

}
, (8)

whereF(τ),w(z) and z(E, τ) are de�ned in the same way as for the non resonant case.
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2 Wigner distribution for a Fano resonance

In this appendix we calculate analytically the Wigner distribution of the one-photon Fano
resonance pro�le, which is given by

R(ε) =
q + ε

ε+ i
(9)

where ε is the reduced energy de�ned as ε = 2(E − Eα)/Γ, with Eα the resonance en-
ergy and Γ the resonance width. The transition amplitude can be Fourier transformed and
expressed in the time domain as [121]

R̃(t) = δ(t)− i Γ

2~
(q − i)e−(iEα~ + Γ

2~ )tΘ(t) (10)

The Wigner distribution can be de�ned in both the spectral and temporal domain:

W (E, t) =

∫ +∞

−∞
dτ R̃

(
t+

τ

2

)
R̃∗
(
t− τ

2

)
eiEτ/~

=
1

2π

∫ +∞

−∞
dε R

(
E +

ε

2

)
R∗
(
E − ε

2

)
e−iεt/~

(11)

Starting from the expression of the transition amplitude in the time domain (eq. 10), we can
write the Wigner distribution as the sum of four terms:

W (E, t) = WD +WI +WID +WDI (12)

whereWD,WI ,WDI andWID are de�ned as:

WD(E, t) =

∫
δ(t+

τ

2
)δ(t− τ

2
) eiEτ/~ dτ (13)

WI(E, t) =
Γ2

4~2

∫
(q − i)e−(iEα/~+Γ/2~)(t+ τ

2 )Θ
(
t+

τ

2

)

× (q + i)e(iEα/~−Γ/2~)(t− τ2 )Θ
(
t− τ

2

)
eiEτ/~ dτ

(14)

WID(E, t) =− i
∫

dτ δ(t− τ

2
)

Γ

2~
(q − i)

× exp

[(
− iEα

~
− Γ

2~

)(
t+

τ

2

)]
Θ
(
t+

τ

2

)
eiEτ/~

(15)

WDI(E, t) =i

∫
dτ δ(t+

τ

2
)

Γ

2~
(q + i)

× exp

[(
iEα
~
− Γ

2~

)(
t− τ

2

)]
Θ
(
t− τ

2

)
eiEτ/~

(16)
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The result forWD is straightforward: WD(E, t) = δ(t).

Let us now calculateWI :

WI(E, t) =
Γ2

4~2
(q2 + 1)e−

Γt
~

∫
dτ exp

[
−(i

Eα
~

+
Γ

2~
)
τ

2

]

× exp

[
(−iEα

~
+

Γ

2~
)
τ

2

]
ei
Eτ
~ Θ(t+

τ

2
)Θ(t− τ

2
).

(17)

The integral is non zero only if the product Θ(t+ τ
2 )Θ(t− τ

2 ) is non zero. This condition
is ful�lled when τ ∈ [−2t; 2t] with t ≥ 0. Hence we get:

WI(E, t) =
Γ2

4~2
(q2 + 1)e−

Γt
~ Θ(t)

∫ 2t

−2t
dτ exp

(
i
E − Eα

~
τ

)
(18)

WI(E, t) =
Γ2

2~
(q2 + 1)e−

Γt
~ Θ(t)

sin
(
2E−Eα~ t

)

E − Eα
(19)

Now we calculateWID.

WID = −i Γ

2~
(q − i) exp

[
−
(
i
Eα
~

+
Γ

2~

)
t

]

×
∫

dτ exp

(
−iEατ

2~
− Γτ

4~
+ i

Eτ

~

)
Θ
(
t+

τ

2

)
δ
(
t− τ

2

)
eiEτ/~

(20)

δ
(
t− τ

2

)
is non zero only when τ = 2t and Θ

(
t+ τ

2

)
is non zero for τ ≥ −2t. We then

get:

WID(E, t) = −i Γ

2~
(q − i)e2iE−Eα~ te−

Γ
~ tΘ(t) (21)

Similarly we get forWDI :

WDI(E, t) = i
Γ

2~
(q + i)e−2iE−Eα~ te−

Γ
~ tΘ(t) (22)

We can then write the sum ofWID andWDI as:

WID +WDI = −Γ

~
e−

Γ
~ t

[
−q sin

(
2
E − Eα

~
t

)
+ cos

(
2
E − Eα

~
t

)]
Θ(t) (23)

Note thatWID +WDI = 2Re(WID), as written in chapter 5 and in paper ii.
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Author contributions

Paper i: Photoionization in the time and frequency domain

In this paper, we measure the di�erence in photoionization time delays from the 2s and 2p
shells of neon in the 70 − 100 eV range. The combination of high spectral and temporal
resolution allows us to disentangle direct photoionization from photoionization with shake-
up, thereby obtaining excellent agreement with theoretical calculations.

I took part in the experiments and discussions of the results. I participated to the manuscript
with comments and feedback.

Paper ii: Time-frequency representation of autoionization dynamics in he-

lium

In this paper, we measure the amplitude and phase of EWPs emitted via the sp2+ and sp3+

resonances in helium. For the EWP emitted via the sp2+ resonance, we characterize it in the
time-frequency domain allowing us to disentangle the ionization dynamics of the direct and
autoionization paths.

I took part in the experiments, did most of the analysis and interpretation of the results. I
wrote the code for the �nite pulse calculations and performed most of the simulations. I
wrote most of the article with input from all the other authors.

Paper iii: Anisotropic photoemission time delays close to a Fano resonance

In this paper, we investigate the photoionization time delays in the vicinity of the 3s−14p
resonance in argon with angular resolution. We show that the presence of the resonance
leads to a complex energy and angle dependence of the photoionzation time delays.

I had a leading role in the operation of the HHG source and attosecond interferometer and
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in the analysis and interpretation of the results obtained in Lund. I also made the calculations
using the simpli�ed model. I contributed to the manuscript with some of the �gures together
with comments and feedback.

Paper iv: Accuracy and precision of the RABBIT technique

In this paper, we investigate in detail the performance of the RABBIT technique with simu-
lations. We analyse the e�ects of the temporal and spatial properties of the light �elds and of
the experimental procedure.

I extended the �nite pulse model to non Fourier-limited calculations. I did all the simulations
regarding the e�ect of the spatial and temporal properties of the light-�elds, except for the
calculations based on the strong �eld approximation. I wrote parts of the manuscript in
particular regarding my simulations.

Paper v: Fano’s propensity rule in angle-resolved attosecond pump-probe

photoionization

In this paper, we extend the validity of Fano’s propensity rule to laser assisted photoioniza-
tion. We show that the asymmetry between absorption and emission of an IR photon in the
continuum explains the delay-dependence of the PADs and angle-dependence of the pho-
toionization time delays reported in the literature and in particular in paper iii. We verify the
theoretical results with experimental measurements in argon.

Theoretically, I analysed the theoretical data (matrix elements) calculated by Jimmy Vinbladh
from Stockholm University, interpreted the results and made the angle-resolved RABBIT
simulations. Experimentally, I had a leading role in the operation of the HHG source and
attosecond interferometer and in the data analysis. I wrote the manuscript with input from
all the other authors.

Paper vi: Propensity rules and interference e�ects in laser-assisted photoion-

ization of helium and neon

In this paper, we investigate the photoelectron angular distributions from laser-assisted pho-
toionization of helium and neon. We study the cases where the IR induces one or two trans-
itions between continuum states. We investigate the validity of Fano’s propensity rule in
the case of multiple continuum-continuum transitions and discuss the e�ect of interference
between multiple paths to the �nal states.
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I participated to the analysis and interpretation of the results. I contributed to the manuscript
with comments and feedback.

Paper vii: Attosecond timing of electron emission from a molecular shape

resonance

In this paper, we investigate photoionization time delays in the vicinity of the 3σ−1
g shape res-

onance in N2. We measure a delay di�erence between two vibrational states due to a modi-
�cation of the internuclear distance of approximately 2 pm during photoionization. This
observation indicates a break-down of the Franck-Condon principle.

I participated to the experiments and discussions of the results. I contributed to the manu-
script with comments and feedback.

Paper viii: Spin-orbit resolved spectral phase measurements around a Fano

resonance

In this paper, we measure the amplitude and phase of EWPs emitted via 3s−14p resonance
in argon. In particular we separate the spectral components associated to the two spin-orbit
split states of the ion and reconstruct the ionization dynamics of the spin-orbit separated
EWPs.

I participated to the experiments, the data analysis and interpretation of the results. I con-
tributed to the manuscript with comments and feedback.

Paper ix: Attosecond photoionization dynamics in the vicinity of the Cooper

minima in argon

In this paper, we measure photoionization time delays in argon in the vicinity of the 3s and
3pCooper minima. We obtain good agreement with theory for the 3pCooper minimum but
not for the 3s Cooper minimum. We explain this disagreement by the presence of multiple
of shake-up channels which dominate at the 3sCooper minimum.

I had a leading role in conducting the experiments in Lund, and in the data analysis and the
interpretation of the results. I contributed to the manuscript with comments and feedback.
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Paper x: Attosecond electron–spin dynamics in Xe 4d photoionization

In this paper, we measure photoionization time delays from the 4d shell in xenon close to
threshold and in the vicinity of the giant dipole resonance. We show that the dynamics
is a�ected by the interplay of the giant dipole resonance with narrow shape resonances at
threshold due to the spin-orbit interaction.

I participated to the experiments and the interpretation of the results. I did the calculations of
the Wigner distributions and contributed to the manuscript with comments and feedback.
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