
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Programming and its affordances for physics education: A social semiotic and
variation theory approach to learning physics

Svensson, Kim; Eriksson, Urban; Pendrill, Ann-Marie

Published in:
Physical Review Physics Education Research

DOI:
10.1103/PhysRevPhysEducRes.16.010127

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Svensson, K., Eriksson, U., & Pendrill, A.-M. (2020). Programming and its affordances for physics education: A
social semiotic and variation theory approach to learning physics. Physical Review Physics Education Research,
16(1), Article 010127 . https://doi.org/10.1103/PhysRevPhysEducRes.16.010127

Total number of authors:
3

Creative Commons License:
CC BY

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1103/PhysRevPhysEducRes.16.010127
https://portal.research.lu.se/en/publications/21fbed99-2522-4d37-a00b-5364976f4a1f
https://doi.org/10.1103/PhysRevPhysEducRes.16.010127


 

Programming and its affordances for physics education: A social semiotic
and variation theory approach to learning physics

Kim Svensson ,* Urban Eriksson , and Ann-Marie Pendrill
National Resource Centre for Physics Education, Department of Physics,

Lund University, SE 221 00 Lund, Sweden

(Received 28 September 2019; accepted 28 April 2020; published 13 May 2020)

A small group of interested upper secondary education students participated in a workshop where they
created a particle-based physics engine and used the engine to implement a hanging cloth simulation and a
two-dimensional heat diffusion model of their own creation. During the implementation of their models,
learning opportunities present themselves in the form of opening up and exploring different dimensions of
variation for the students. By varying aspects and discerning how these changes affect the program,
students can construct meaning about the system. The students were video and audio recorded during the
workshop and interviewed afterwards. Based on the transcripts, students use of programming was analyzed
using social semiotics and variation theory of learning with a focus on the three aspects: coding,
visualization, and interaction. The analysis identifies usages of programming such as a transductive link
between semiotic systems, the ease of varying and iterating aspects, and the ability to enter into a loop of
discovery and understanding.

DOI: 10.1103/PhysRevPhysEducRes.16.010127

I. INTRODUCTION

This paper aims to highlight why programming could be
a useful tool for meaning making in physics education
and focuses on the interplay between coding, visualization,
and interaction. By describing programming as a semiotic
system (described below) to be used in communication and
meaning making in physics education, a theoretical frame-
work is provided that allows us to study programming
through the lens of variation theory by focusing on how
programming’s affordances change (also described below).
A small group of upper secondary education students, who
knew each other well, participated in a study designed to
take them through the process of creating a physics
simulation using Python [1] in the Processing IDE [2].
Our study investigates to what extent the students were
capable of using programming to extract meaning from
simulations, how they modified the resulting representation
and how they interacted with the simulation.
By using logical operators and algorithmic thinking,

programs can be constructed that perform a wide range of
different tasks, such as simulating different physical phe-
nomena. In physics, a student may create a model of a

physical concept, run the simulation, and ask “What
happens in this specific scenario?” The student may then
analyze the output from the program to get an answer to the
question. Whatever answer produced by the simulation, the
student has an opportunity to learn something; if the answer
is an “error” the student has been informed where their code
may be wrong and can change the code and in the process
they explore and learn different aspects of the concept they
are implementing. If the simulation conforms to the
expected behavior, questions about the content of the
simulation can be asked. There is a “communication”
between the program and the student, where the student
tries to extract relevant information, through the visuali-
zation, from the program about different aspects of the
model they implemented.
In a simple simulation, where a planet orbits a star, the

student may ask “What happens if I change the mass of the
planet?” If the student has implemented a correct version of
Newton’s law of gravitation, F ¼ GmM=r2, there should
be no change in the behavior. However, if there is an error
in the implementation, the planet will behave differently
and the result will differ compared to real world experi-
ments and expectations. The student may then create a
plethora of different simulations to observe if any conforms
to experiments done in the real world. Programming allows
for an iterative and exploration-based approach to learning
physics and making models.
The paper begins with an overview of the theoretical

framework used to analyze programming in physics edu-
cation. A small study, with the aim to investigate the claims

*Kim.Svensson@fysik.lu.se

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by Bibsam.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 16, 010127 (2020)

2469-9896=20=16(1)=010127(15) 010127-1 Published by the American Physical Society

https://orcid.org/0000-0002-7985-8872
https://orcid.org/0000-0001-6638-1246
https://orcid.org/0000-0002-1405-6561
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.16.010127&domain=pdf&date_stamp=2020-05-13
https://doi.org/10.1103/PhysRevPhysEducRes.16.010127
https://doi.org/10.1103/PhysRevPhysEducRes.16.010127
https://doi.org/10.1103/PhysRevPhysEducRes.16.010127
https://doi.org/10.1103/PhysRevPhysEducRes.16.010127
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


of the theoretical framework, and its results are presented.
The discussion focuses on explaining the results using the
theoretical framework and concludes that the framework
offers a new and innovative way of describing the learning
experience provided by programming in physics education.

II. BACKGROUND

Programming is an important aspect of current physics
research and is not new to physics education. In the 1980s it
was used by Seymour Papert [3] with the Mindstorms
system, which was later adopted by LEGO in their
Mindstorms [4] production line. Programming was also
used with the MUPPET program [5,6] in physics education
as a way to explore different concepts found within the
physics discipline. With the introduction of higher level
programming languages, more research into the use of
programming in physics education has been performed, for
example, Refs. [7–10], which focused on fostering com-
putational thinking. Using programming, many different
animations and simulations have been created and their
usefulness for conceptual change and physics education
have been investigated [11–13]; with the findings that
animations and simulations help students understand con-
cepts better. This is true not only in physics education, but
in other science education settings as well [13–16]. Kuo-en
Chang et al. [11] found that allowing the students to
formulate their own hypothesis about a physical concept
and then test the hypothesis allowed for more conceptual
change than a step-by-step instruction when using a
simulation.
Several programs have been created with the sole

purpose of being used in education, in various disciplines,
such as MuPPET and NETLogo [5,17], and the American
Association of Physics Teachers [18] argues that program-
ming and the knowledge of creating and using simulations
to investigate and explore models of physical phenomena,
should be a crucial part of modern physics education.
However, programming and simulations must be imple-
mented into the courses and into the curricula into a
meaningful and useful manner [19–22]. The focus of the
implementations, performed or analyzed in Refs. [19–22],
have been to foster computational thinking in the student,
where programming can play an important role, but is not
required. Programming has been recognized to have the
potential as a great tool for physics education [6]. However,
the implementation, usage, and goals when using program-
ming differ from location to location and from teacher to
teacher.
The theoretical aim of this paper is to look at program-

ming as a phenomenon and its specific usefulness in
physics education through the lens of social semiotics
(see below). It is the combination of coding, visualization,
and interactive activities that gives programming the
versatility to be used in many different fields of physics
research such as cosmology, fluid dynamics, and atomic

physics. By studying not only the code, but the visualiza-
tion and how to interact with the program, it is believed that
a much richer understanding of the potential use of
programming can be gained. This larger view of program-
ming is also the view taken by The Swedish National
Agency for Education (Skolverket, Sec. 1. 3 [23]).

III. THEORETICAL FRAMEWORK

Below is a description of the theoretical frameworks used
in the analysis of programming. The analysis combines
social semiotics (Sec. III A) and the variation theory of
learning (Sec. III C) and finds their ideas useful for
describing programming as a means for meaning making
in the physics classroom.

A. Social semiotics and programming

Social semiotics [24–27] is a theoretical framework built
around understanding and investigating group meaning
making and the resources that are used to create meaning
through communication. The resources are called semiotic
resources and encompass “representations, tools, and
activities used to create or derive meaning in specialized
groups” [25]. Using this definition, we may look at
programming as a means for communication between
student and program. A student may ask questions of a
program to get an answer, or as a means to construct new
representations or tools. However, programming is not a
semiotic resource; instead it should be seen as a semiotic
system [28] because programming can be used to describe
many different scenarios and be used to extract many
different answers to many different questions. A specific
semiotic resource is used in a specific scenario to convey a
specific meaning, such as a time-velocity graph or a
specific circuit diagram. A semiotic system is a system
of communication that is qualitatively different from other
means of communication. The communication system
“image” is a semiotic system that is qualitatively different
from “text” which is another semiotic system. However,
text can be used to convey different meanings in different
situations: When a semiotic system is applied in a specific
scenario, a semiotic resource is created or extracted from it.
An author uses text to write a book, the book is the semiotic
resource and the text is the semiotic system used to produce
the semiotic resource. Many different semiotic systems
may be used in tandem to create a single semiotic resource
such as this paper which uses the semiotic systems text and
image to convey meaning in a disciplinary relevant manner.
Programming can be described as a semiotic system used

to create or investigate other semiotic resources. By using
programming it is possible to move between different
semiotic resources and between different semiotic systems,
such as taking a long list of data points as the input and
produce an animation as the output. The programmer has
transformed a semiotic resource (a specific list of data

SVENSSON, ERIKSSON, and PENDRILL PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-2



points) in a semiotic system (list of numbers or data) to
another semiotic resource (a specific animation) in another
semiotic system (animations). This kind of transformation
is called transduction within the multimodality framework
[29], or a “re-representation.” Transductions are important
in physics education [30–32] because they force students to
discern the relevant aspects represented in different ways.
Transductions can be complicated or hard to grasp and
students should be given the time to explore and understand
them [33]. Programming is well suited for student-
controlled transductions because they perform the trans-
duction at every step of the implementation, from the initial
mathematical model to the visualization on the screen. The
importance of using multiple representations for enhancing
learning has been explored by, e.g., Refs. [34,35], who
found that when and how students use multiple represen-
tations plays an important role in student learning. Often,
but not always, the use of multiple representations has been
found to be beneficial for student learning. This is also
confirmed by the social semiotic framework, where
Refs. [25,28] model this in terms of “critical constellations”
of semiotic resources.

B. Affordances and programming

Affordances is a term used to describe what different
objects offer a student that interacts with the object [36]. If a
student interacts with a bottle, they may get the urge to
“drink” or to “pour” or, if the bottle is empty, to “throw
away” or “recycle” or to “fill” the bottle. These are all
examples of affordances of the bottle. However, if another
student interacts with the bottle, they may extract other
meaning or urges from the bottle. What the bottle affords
the second student differs when compared to what it
affords the first student. This difference can be explained
by how the two students discern different affordances.
Which affordances they will discern depend on their prior
knowledge, profession and many other factors such as their
mood and the setting they are in. The bottle has a multitude
of different affordances, but which affordances are dis-
cerned depends on the student interacting with it. For
example, a professor in particle physics will discern some
disciplinary relevant meaning from the formula

APV ¼ −meE
GF
ffiffiffi

2
p

πα

16sin2Θcm

ð3þ cos2ΘcmÞ2
�

1

4
− sin2θW

�

:

The professor’s discerned meaning probably differs from
what a novice in the physics field may discern from the
same formula.1

Programming offers the student the opportunity to
modify the code with the intent to increase the discernibility
of different aspects. What a student discerns is based on

their ability to extract meaningful information from the
resulting representation; by modifying the representation,
students may discern relevant aspects more easily.
Programming also requires that each part of the imple-
mentation is made explicit, and therefore requires discern-
ment of its different parts, and opens up the possibility for
learning [38]. The theory of affordances has been put to use
in physics education by Refs. [25,39,40] and has morphed
into disciplinary [41] and pedagogical affordances [42]
which describe how well a semiotic resource can be used,
or is used, in the discipline or as a pedagogical resource.
This paper does not use the term affordance that Norman

[43] introduced, which states that affordances are only
related to the physical interaction between the actor and the
object. This paper uses the term affordance as describing
anything that an object allows an agent to discern from it.
Thus, it is possible to add and remove affordances as well
as change the existing affordances by modifying an object.
This use of affordances is much closer to how the social
semiotics and the multimodality [29,44] communities use
the term and can be read as the “meaning potential” of an
object.

1. Semiotic resources and affordances

Semiotic resources used in teaching and learning offer
certain meaning for the student to discern, or intended
meaning. We may look at what a semiotic resource offers
and what a student can discern from that semiotic resource to
ascertain howwell they understand a specific concept [40]. If
a semiotic resource does not offer a specificmeaning-making
affordance, no student may discern that meaning from it.
However, if the semiotic resourcewasmodified, it could gain
the specific affordance needed to convey the intended
meaning and be used in communicating and understanding
the intended meaning. Amodification of a semiotic resource
could be as simple as a person saying “This pen is a
spaceship,” which allows a student to discern spaceship-
relevant aspects from the pen. A change in the semiotic
resource is accompanied by a change in its affordances. See
Fig. 1 for a visual demonstration of how a change in the
semiotic resource also changes how well specific meaning
can be extracted from the semiotic resource. In Fig. 1, no new
information was added in the transformation, only how the
information was represented. The affordances are separate
but related to the information andmeaning containedwithin a
semiotic resource. However, changing the affordances of a
semiotic resource is no precise art and is mostly guided by
conjecture and educated guesses.

2. Modifying the semiotic resources

Whenever a semiotic resource is modified, by adding
color, gestures, description, or any other modification, the
affordances of the semiotic resource are modified or
adjusted. The change may increase, decrease, or remove
the discernibility of an affordance. Programming allows the

1The formula describes the probability of two electrons
scattering off each other through Möller scattering [37].

PROGRAMMING AND ITS AFFORDANCES FOR … PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-3



student to modify the semiotic resource they create in any
way they see fit (given the appropriate knowledge and
ability) and, as a secondary effect, modify the affordances
in any way they desire. This allows the student to create
semiotic resources that allow the student to discern the
specific affordances they aspire to discern. If a semiotic
resource is not clear enough in its meaning, the student may
modify it to create a new semiotic resource so the
discernibility of a specific meaning-making affordance is
increased, thus making it discernible to the student.
Within the multimodality framework [29,44], it is

possible to change a representation by modifying it, or
by re-representing it. If the change occurs within the same
mode, such as rewriting a text, it is called a transformation
[29]. If the change takes the representation from one mode
to another, such as moving between formula and graph, it is
called a transduction [29,32]. Social semiotics have
adopted these terms and are using them to refer to different
types of changes to semiotic resources. The importance of
these changes or modifications can be understood from the
variation theory of learning discussed below.

C. Variation theory of learning and programming

The variation theory of learning [38,45] states that to
learn something, that something must first be discerned as
its own aspect and to discern it, the student must experience
variation about said aspect with respect to a static back-
ground. Marton [45] presented a good example about
learning colors that highlights this. It is through the
variation, compared to the static background, that the
specific color stands out and can be discerned. Only by
comparing to what it is not, can the color be identified as
something it is. By varying the aspect a student should
learn, that aspect becomes discernible and becomes pos-
sible to learn.
Programming allows for quick and easy variation among

different variables and structures. By changing the mass of
particles in a simulation, a direct effect can be discerned in the
simulation. Perhaps the particle sinks, perhaps it floats, the
change in mass will be discerned, experienced, and,

potentially, understood. New questions may arise when old
ones have been answered. Not just the variables can be
changed, but also how the learner interacts with the simu-
lation and how the simulation is represented. Programming
provides ample opportunity, and quantifiable ways, to open
up new dimensions of variation for the student and it also
allows for the exploration of said dimensions of variation.

D. Programming as a tool for meaning making

Programming may be used as a tool for meaning-making
in physics education in the same spirit as mathematics is
used as a tool to investigate and understand physics.
Through the act of implementation, the ideas and models
of the students are made explicit and necessarily dissected
into smaller understandable pieces that can later be joined
together to form the whole model or idea. The pieces can
also be modified, both internally and externally. Internal
modification changes how a piece functions, for example,
changing the interaction between particles. External modi-
fication means how the different pieces fit together, in what
order they are placed and called.
The statement “Energy of the system is conserved” is an

external piece, it gives information about how the system
interacts with the outside world, but it does not give any
information about the nature of the energy within it. The
internal piece would describe the energy in the system
itself, its potential, kinetic, thermal, or chemical energy and
how they transform into each other. Programming provides
the student with ways to explore both the external and
internal parts of the concept they are implementing. They
can explore which phenomena emerges and which inter-
actions need to be explicitly inserted.

1. Example: The update() function

Within the particle class, created during session 2 of the
workshop, is a function that updates the particles position
and velocity based on the acceleration of the particle during
each timestep.
In Fig. 2, the connection between position, velocity, and

acceleration is made explicit by reading the code: The new
velocity is equal to the old velocity plus a change in the
velocity (acceleration) during the timestep. And the new
position is equal to the old position plus a change in the
position (velocity) during the timestep. The relationship
between the concepts of position, velocity, and acceleration
is made explicit and understandable through the use of
programming. See Appendix B for an overview of the
particle engine and the particle class used in the study.

E. Kolb’s learning cycle

Programming’s introduction of an iterative approach to
physics modeling and understanding is well matched by
Kolb’s learning cycle [46]. Kolb describes the act of
learning as a process where the student moves between

FIG. 1. A simple simulation of hanging cloth is visualized in
three different ways. The left visualization shows the structure of
the simulation, how the particles and springs are connected. The
middle visualization shows the overall structure of the cloth and
highlights larger deformations using the shading. The right
visualization shows the magnitude of the forces each particle
experiences.

SVENSSON, ERIKSSON, and PENDRILL PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-4



different phases of the cycle. The different phases, in order,
are as follows:
• Concrete experience and observation: Performing an
experiment or having a realization.

• Reflection: Reflecting on the concept or observation
and its connection to theory.

• Abstraction: Formation of abstract concepts and gen-
eralizations.

• Hypothesis: Testing implications of concepts in new
situations.

The cycle moves from concrete experience to reflection to
abstraction to hypothesis and back to concrete experience.
As a student learns, they may enter this cycle at any point
and move through the different phases as they learn about
different concepts. Programming fits well into this cycle
because the implementation of simulations often takes on
this cycle, or iterative, approach. The act of observing the
simulation provides opportunity for reflection: “Does it do
as I want?”, which in turn leads to abstraction: “If I change
the constant to a linear term that depends on the dis-
tance…”, which can then be tested using the program. The
cycle can describe very large concepts that takes months or
years to learn, or very small aspects such as learning the
meaning of a for loop.
However, Kolb’s learning cycle also provides a checklist

of learning opportunities that should be provided to the
students in order to facilitate learning. If the students do not
have a moment to reflect on their observation, they will not
progress to abstraction or hypothesis. Programming, in its
very structure of implementation and testing, provides the
opportunity for the student to move through Kolb’s learning
cycle at their own pace.

F. Summary of theoretical frameworks

Multimodality and social semiotics provide a language
for talking about semiotic resources and how to modify

them through different transformations or transductions. As
code is implemented and simulations are visualized, the
student moves between many different modes and performs
many transformations and transductions with an obvious
one being the transduction from formula into code and code
into visualization. As the students construct their own
simulations they create their own visualizations, or repre-
sentations of the phenomena. The student-created repre-
sentations then form a basis for explorations of the
simulation through discernment and by interacting with
using the mouse or keyboard. The interactivity and the
discernment process provide the student with an environ-
ment where new questions may be asked and modifications
to the code can be done to explore these new questions.
Kolb’s learning cycle describes this process well and it is
through the use of variation (in the code, visualization, or
by interaction) that new scenarios emerge that afford the
student new meaning to understand and discover.

IV. RESEARCH QUESTIONS

The theoretical framework, described in Sec. II, and
programming’s potential synergy with said theoretical
frameworks, provided us with some aspects that we have
looked for in this study:
(1) How does programming help students to make

predictions about their model or system?
(2) In what ways do the students create variation in the

visualization to increase the discernibility of differ-
ent aspects?

(3) How much programming knowledge do the students
think is needed to use programming to explore and
implement different physical concepts?

It is these learning predictions that make programming a
potential tool for meaning making for physics education.
However, the predictions are based on a proficiency in
programming because a certain knowledge is required to
perform the modifications. The study also aims to see how
much programming knowledge is needed to extract mean-
ing (about physics) from the simulation and to make
changes to the simulation.

V. METHOD AND ANALYSIS

The study focused on qualitative observation of six upper
secondary education students’ actions and interactions with
a workshop designed around creating physics simulations
using the programming language Python [1] and using
the Processing IDE [2]. The participants volunteered for the
workshop after a quick visit to their class where the
research and the workshop were described. The participants
all came from the same physics-focused class and were
familiar with each other. Students S1, S3, and S5 all
had prior knowledge of basic programming for the work-
shops. S2, S4, and S6 knew about programming but had
no practical experience. All the participants were between

FIG. 2. The update() function of the particle class uses the
Euler-Cromer method for integration. The connection between
position, velocity, and acceleration becomes explicit when
implemented into code. Velocity is used as the “changer of
position during a timestep” and acceleration is used as the
“changer of velocity during a timestep.” The acceleration is
calculated in a separate function, applyForce(), which extracts the
acceleration from all the forces a particle experiences. The
acceleration is reset between each timestep to avoid an “impetus-
like” force.

PROGRAMMING AND ITS AFFORDANCES FOR … PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-5



17 and 18 years of age, half of them were female and half of
them were male.

A. The workshop

The workshop consisted of five different sessions, each
session was two hours long with a short break in the middle
and the four first sessions were designed to introduce a
specific part which was needed to implement a physics
simulation and the last session was reserved for interviews
and discussions. The code and details for the workshop are
provided in the Zenodo database [47]. The structure of the
workshop and descriptions of each session can be seen in
Table I.

B. Data acquisition method

To obtain useful data from the students, several different
activation methods [48] were used, such as peer discus-
sions, code along, projects, and interviews. Each of these
activation methods were designed either as a way to
provide a new take on programming in physics, or as a
way to extract information from the students by making
them explain or discuss their ideas, problems, or thoughts.
The whole workshop was video and audio recorded using
high definition GoPro Hero 6 cameras and several Olympus
WS-852 digital voice recorder devices. The students were

also interviewed during the last session. The interviews
were divided into single and group interviews and focused
on open-ended questions. The questions can be found in
Appendices A 1 and A 2 and are designed to provide the
participants an opportunity to speak freely about program-
ming, physics education, and the workshop as a whole. The
group interview also included a problem, related to pro-
gramming and physics, for them to discuss.

1. Peer discussions

The students were asked to come up with a model that
would mimic the behavior of a simulation shown on the
projector, see Fig. 3. The simulation was a model of a piece
of cloth, hanging at the top of the display window and pulled
down by a simulated gravitational force. The students could
interact with the simulation using the mouse by pressing
either the left mouse button or the right mouse button and
dragging the mouse across the cloth, see Fig. 3. The students
were divided into groups of three and asked to come up with
a model, based on the particle simulation created in session
2, with the aim to model the behavior of the simulation. They
had thirty minutes to come up with a model that would
reproduce the phenomena discerned in the finished simu-
lation. The students had papers and a whiteboard to discuss
their ideas and the discussions were aimed to activate and
increase their learning, but also to make them explain their
thoughts to each other. The peer discussion exposed their
problem solving process which was documented and ana-
lyzed. The discussions were audio and video recorded using
one stationary camera per group and a mobile camera that
could capture unexpected events not contained within the
field of view of the stationary cameras.

2. Code along

The workshop used the new concept called code along
commonly used in online lectures, see, for example,
Ref. [49], where a small piece of code was coded live,

TABLE I. A list of the five different sessions of the workshop
with the content of each session. During each session a different
aspect is investigated or explored with the students. Each session
builds on what was learned in the previous session.

Session 1 Introduce the notion of animation by incremental
changes between frames and how to display
different shapes on different locations in the
window. Updating attributes between frames to
introduce velocity and acceleration and ending the
session with a ball bouncing in the window.

Session 2 Create a particle-class that is based on the code
written in Session 1. The particle can show(),
applyForce(), interact() and update(). The session
ends with hundreds of balls bouncing in the
window.

Session 3 Start with a group problem-solving session. The
problem was: “Create a model that replicates the
simulation shown in here” (Fig. 3). A model of the
hanging cloth problem was then implemented
which was based on the student’s ideas.

Session 4 The students were asked to come up with a model for
two-dimensional heat-diffusion and to implement
it by themselves. The lecturer’s task was to guide
the students around potential pitfalls and help
them with specific programming questions.

Session 5 Solo interviews as well as group interviews with the
participating students. Questions for the
interviews can be found in Appendices A 1
and A 2.

FIG. 3. A piece of cloth is simulated using particles that interact
with the nearest neighbor with a force based on Hooke’s law. The
color shading represents how much a spring is elongated with
light color representing small elongation and dark color repre-
senting long elongation. (a) A piece of cloth is hanging, only
influenced by gravity. (b) The piece of cloth is cut using the left
mouse button, the cloth reacts in real time. (c) The torn cloth is
pushed around by the mouse using the right mouse button.

SVENSSON, ERIKSSON, and PENDRILL PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-6



with the students, explained and explored. The code-along
structure was designed to keep the students active and
ensure an “I can do this myself” atmosphere by making the
students write the code themselves, and by making sure that
they got help when they made errors. During the code-
along sessions, moments were devoted to explore the code,
both in a guided scenario and by allowing the students to
freely modify the code. In the instructed situation, the
students were asked to vary a specific aspect and asked to
observe how that variable affects the simulation. In the free
situation, the students could change whatever they wanted,
with the aim that the students would investigate some
interesting aspects of the simulation. The students were
video and audio recorded during the lectures, as was the
lecture itself.

3. Project

During the fourth session the students were asked to
come up with a model for heat diffusion, implement the
model, and study the results. The students were encouraged
to work in small groups, the same groups as in the peer
discussion, to ensure verbal discussions and explanations.
The project aimed to see how well the students could adapt
the other parts of the workshop. The whole project session
was video and audio recorded using two stationary cameras
and one mobile camera, and several microphones.

C. Analysis

The analysis of the study was based on the recordings,
visual and auditory, from the workshop, but also from field
notes taken by the lecturer or researcher during the work-
shop. The aim of the analysis was to identify and analyze the
student’s problem solving processes around the code, how
they interacted with it, what they discussed, and how they
approached problems related to the code and to the physics.
Special care was taken when observing how they repre-
sented their models and their simulations and what changes
they made to the code to create new representations.
The analysis uses a qualitative research approach,

inspired by grounded theory and the constant comparative
approach [50,51], that are currently being drawn on for
educational interpretive studies (e.g., Refs. [52–54]), and
aims to discover a theoretical structure related to the
learning process of using programming in physics educa-
tion. We use a cyclic approach by relating larger observed
structures to smaller details and vice versa, which ensures a
coherence of the underlying theoretical ideas that emerge.
The videos were cut into smaller clips with the intent to
extract interesting interactions or events that pertain to
programming and/or physics learning or exploration. The
clips were transcribed multimodally [44,55] and relevant
learning structures were identified. This is an interpretive
grounded theory approach, as discussed in Ref. [51], were
the observed structures are interpreted using existing
theories, such as social semiotics and variation theory.

The extracted data was discussed and interpreted with
experts within the physics education research field at Lund
University. By iterating this process of identification and
description, we eventually obtained a saturated description
where all the interesting phenomena have been categorized,
described, and organized by using a grounded theory
framework in combination with social semiotics and
variation theory; see Secs. III A and III C.

1. Representations

By studying how the students represented their simu-
lations and how they choose to interact with them, it is
possible to get a glimpse of what the student may or may
not discern from the program. If a student changed how to
visualize a simulation, it was because of some reason. That
reason could be that the students wanted to highlight a
specific aspect of the simulation, or that the first repre-
sentation contained too much information and it was hard
to discern anything because of all the clutter. It should be
noted that the default representation in the physics engine
displays a colored circle for each particle. This is often
adequate in most situations, but if used to construct a
gridlike structure, like in Fig. 5, it would quickly become
cluttered and a new representation is better suited, such as
using a wire-frame structure or filled parallelograms as seen
in Fig. 3. Because of the instant feedback nature of
programming, students may enter into an instant feedback
loop, were they study their representation, change some-
thing they wish to highlight, study the new representation,
change it again based on the new information, and so on.
By observing this feedback loop, the students’ focus could
be determined and how this focus changed during the loop,
indicating that the students have learned something that
made them shift focus.

2. Affordances

Affordances describe what a student discerns from a
specific semiotic resource, or in this case, representation.
By studying what a student discerns from a representation it
is possible to obtain knowledge about their knowledge
about the object from a certain discipline’s perspective.
However, affordances will be used in a different manner for
the analysis in this paper. The qualitative affordance
analysis will look at what a student aims to discern and
what changes the student performs to a representation to be
able to discern that affordance. That is,

How does the student modify the semiotic resource so
that the discernibility of specific affordances are
changed?

By looking at how students manipulate representations, a
connection between what they perceive to be important,
their relevance structure [38], and what the representation
affords can be seen.

PROGRAMMING AND ITS AFFORDANCES FOR … PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-7



3. Extracting relevant student interactions

From the transcripts and from observing the videos,
interesting discussions and interactions were identified and
extracted from the mass of data by the first author,
following the analysis method described above. Through
discussions among the authors, interesting passages were
chosen in such a way as to reflect the students’ actions that
pertain to both programming and physics. The chosen
excerpts show different learning sequences by the student
interactions among each other and with the code, such as
figuring out a solution, asking investigative questions,
discussions, the problem solving process of implementing
the code, or creating a model. Data that are unrelated to
these aspects were weeded out in the process, for example,
when the students discuss what they plan on doing in their
spare time. From the theoretical frameworks of social
semiotics we know the importance of the interactions
and discussions, but also how very small modifications
may play a significant role in the learning process. We
aimed to extract data that capture both situations.
It was also important to gauge the students’ overall ideas

about the workshop, programming, and physics, because
their expectation, prior knowledge, and perception of the
environment where the workshop and data collection took
place will inform how they react to the content of the
workshop. To extract this information we asked what they
thought about the workshop and what programming pro-
ficiency would be required to participate in the workshop.
This was done in the interview during session 5 using the
questions found in Appendix A.

VI. RESULTS

The results presented here are seen through the lens of
social semiotics and the parts that make up social semiotics,
such as transductions, affordances, and semiotic resources.
During the workshop, the participants performed a series of
different activities and experienced different methods of
activation. It is through these different activation methods
and the qualitative analysis of the recordings and notes that
the results have been constructed. The qualitative analysis
identified the following aspect represented by the actions of
the participants: transduction, variation, unpacking formu-
las, predicting, and iterating.
From the interview with the students, we found that the

students were happy with the pace of the workshop and
they thought the level of the programming and physics was
good. Some commented on the need for basic program-
ming knowledge to fully make use of the workshop, but
that it was easy to follow the instructions. See Sec. VI E for
more thoughts on the programming proficiency of the
students. It thus appear that the setting, pace, and content of
the workshop itself did not pose a hindrance to the student’s
ability to program or express themselves. Student com-
ments are discussed in more detail in Sec. VI E.

A. Hooke’s law

The students moved between different semiotic resour-
ces with relative ease when guided by a teacher. When
writing the applyForce() the students implemented F̄ ¼ mā
and extracted the acceleration from an external force,
ā ¼ F̄=m. During the implementation, they unpacked the
formula and realized some information hidden in the
notations and its structure; its two-dimensional nature
and that the mass cannot be zero. The students followed
along with the transduction from a formula to the imple-
mentation of said formula. In the third session of the
workshop, the students implemented Hooke’s law into
code: F̄ ¼ −kx̄, where F̄ is the force resulting from the
displacement x̄. The students had no discernible problems
following the transduction presented in Fig. 4.
The transduction also highlights that there are two parts

to F̄, a magnitude and a direction. dx and dy from the code
provides the direction and F=-k* (le*—rest_le) is
the magnitude of the force.

B. Forces and F̄=mā

In the applyForce() method the applied force is converted
into an acceleration and added to the current acceleration.
The transduction highlights how to move from a force to a
resulting acceleration. S1 commented the following on
implementing forces on a simulation of a Frisbee, translated
from Swedish to English:

S1: For example, I just did a project with a Frisbee…
and there I could go in and check… to see if what I
had written by hand and implemented was correct. I
had to think extra on the forces when I added them to
the Frisbee.

This implied that having to implement the formula into
code, or performing the transduction, provided the student
with a learning opportunity that had not been apparent
before. Thus, the transduction of the force required the
student to unpack the formula and identify its different parts
to be able to implement it correctly.

FIG. 4. Programming simulations requires transductions be-
tween different types of semiotic systems that each provide
different meaning potential. To move between different semiotic
systems requires the student to define the transduction explicitly
and highlights each aspect of the system to the student.

SVENSSON, ERIKSSON, and PENDRILL PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-8



C. Modifying the visualization

During the fourth programming session, S3 had man-
aged to create a correct implementation of a heat diffusion
simulation. However, S3 was not happy with the visual
representation of the simulation and aimed to change it. See
Fig. 5 for screenshots of how the visualization was
modified. Programming provided S3 with the ability and
the opportunity to modify a representation, something that
books and static images do not provide.
Another student commentated on the ability to connect

the visualization to attributes of the particles:
S4: I made the temperature depend on… no, the color
depends on the temperature. I placed self.t [the
temperature of the particle] as the red color.

As the student explained the idea behind the modification,
they had to reflect on their implementation and understand
how it works. The reflection is triggered by the student’s
requirement to match their explanation to their imple-
mented model.

D. Internal modeling and predictions

Several of the students were able to make predictions of
their yet-to-be implemented models and compare their
predictions with the real world and/or other simulations.
This shows an understanding and an ability to internally
model the computer program in their heads, run it and
compare the expected result with a reference as seen in
sections VI. D. 1 and VI. D. 2.
The students’ internal modeling and their ability to

compare it with their models allow the student to iterate
on their model. This was seen in the students’ approach to
implementing their models. By discerning how changes
affected their model, an iterative process began, which
allowed the student to get feedback from the model and
adapt accordingly. The feedback loop also allowed the
students to adjust their expectations or to understand parts
of their model.

1. Heat diffusion

During the last programming session, the students were
asked to implement a 2D heat diffusion simulation using
the programming structure that had been produced during
the previous sessions. As a student managed to implement a
working model of the heat diffusion they exclaimed
(translated to Swedish from English):

S5: Yes! [S5 puts their hands in the air] It does what I
want! [S5 stands up to celebrate.]

The other students joined in with the celebration and
could see that S5’s implementation was correct. The reali-
zation that the simulation was correct came from a visual
inspection of the representationS4had coded. From thevisual
representation, S5 and the other students could discern that
the implementation was correct, or at least reasonable. They
did not need to see the code or how it was implemented, but
only the visual representation of the program itself. The
students were able to distinguish between an incorrect
implementation and a correct implementation through the
visualization itself and they could predict what a correct
visualization would look like based on the expected behavior
of their model.
The students then continued by examining the simula-

tion closer:
S5: It does what I want. So, theoretically, it will spread out.
S3: Ok, I’m coming to check… what have you done?
S4: Does it bounce against the wall?

By observing the working simulation, new questions sprung
up in their minds as they saw the thermal energy spread out
among the particle: Would the thermal energy diffusion
bounce at the wall? Questions that they, nor the lecturer,
had not thought about before emerged and programming
provided a way to answer them. The students entered into the
positive feedback loop as soon as one step of the implemen-
tation was completed and began to investigate new aspects of
the simulation.

2. Hanging cloth

During the group discussions in session 3, where the
students were tasked with coming up with a model for a
hanging-cloth simulation, see Fig. 3, the students discussed
the forces in the cloth (translated from Swedish to English):

Gesture [S5 makes a gesture where two particles come
together and pushes them apart]

S3: No, it should not be a force outwards there.
S5: Yes, because they don’t want to be together.
S3: It’s not a slime, it is cloth. I can do this.
Gesture [S3 takes part of their shirt and pushes it together
into a ball shape.]

S3: There is no force outward now.
Gesture [S5 does the same with their shirt.]
S5: Yes, if I release…
Gesture [S5 releases the shirt and the cloth spreads out.]
Gesture [S3 releases the shirt and the cloth spreads out.]
S3: Oh, it does spread.

FIG. 5. S3 student started with the left visualization and
modified it, in several steps, to end up with the right visualization.
This is a recreation of the student’s code and may differ in the
precise final result, but the transition is the same—going from a
black and white representation using circles to a colorful
representation using squares.

PROGRAMMING AND ITS AFFORDANCES FOR … PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-9



The students S3 and S5 were exploring the nature of the
forces in a piece of cloth and how they would model it
when the question became “Does it have a force pushing
out or is it only pulling in? The question was resolved when
S5 took a piece of their shirt, pressed it together into a small
clump, released it, and saw that the shirt expanded.
Through their arguments they identified a question in their
model and used experiments in the real world to get an
answer. The group had come up with a prediction of their
model and tested it using the real world.
Another group did the same procedure, but instead of

asking the real world for answers, they asked a simulation.
From their own model, they made a prediction and tested
the prediction using the simulation. In this case, the
prediction was that the hanging cloth could not be pulled
below its lowest point, since that would imply a springy-
ness in the forces describing the cloth, something the group
did not have in their model at this time.

S4: Can you throw the curtain above?
S1: What?
S4: … is it possible to throw the curtain up completely?
S1: But it can go down, then it [the simulation] does not
work if we can pull it down.

S4: Can you pull it down?
S1: It can be pulled down more than it is.
Gesture [S1 uses the mouse to drag the curtain

downwards.]
S1: It can move down.
S4: That is a bit strange, maybe.
S2: Yes, but that would work here too if all [the
particles] move.

S1: But, then it does not work…
S2: It can still work, they still move freely so that means
that if they are on the sides from the start, they can
move downwards.

S1: Eeh.
The conversation continued about the model, but the

main point is that the students interacted with the simu-
lation, compared it to their yet-to-be implemented model
and found that they differed in their function. It was also
through the interaction with the simulation that they
observed a phenomenon, the cloth being pulled and
elongated downwards, that clashed with their own model.
In this scenario, S2 realized that their model would be able
to accommodate the new phenomenon, but S1 was not
so sure.
Both groups made predictions about their models, found

ways of testing their predictions, and updated their models
based on the observation. The only difference was that one
group used the real world and one group used a simulation
to answer their questions. The students used both the virtual
model and a real life model to make experiments from
which they extracted information and drew conclusions.
As one group began discussing their ideas for imple-

menting the cloth simulation, S2 dismissed the idea to use

springs at first because it was not something they had
experienced in the workshop. This mindset, to not use ideas
or material from “outside,” is seen in many educational
settings and this workshop was no exception.

S2: Like, if we define these particles to have two times
the radius…

S4: Yes.
S1: What was it we did with the spring constant?
S2: I don’t think it’s relevant, I think we should use what
we have worked with [in the workshop].

However, S2 soon realized that using a springlike force
between the particles may allow them to model the
cloth and changed their perspective to include information
from outside the workshop, such as their prior physics
knowledge.

S2: Can we not have a lot of balls sticking together.
S4: Yes, that is what I thought, we did something where
we had a force that pulled two balls together. [S4 is
referring to a gravitational simulation as a test of the
interact() method, implemented during session 2.]

S2: Yes, and using the spring constant.
S4: Yes, maybe.

E. Answers to interview questions

Here follows some selected answers to the questions
about programming and physics and how they can or want
to use it in their physics education. The questions can be
found in Appendix A.
Question: What does programming give you, that you

could not do in any other way?
S2: …something else I thought about… that program-
ming gives another angle on the physics. Often, you
have exercises you have to solve, and that is the case
in programming as well, if we would simulate a
pendulum, but its much more… vague. There are
different ways to do it. Instead of just solving some-
thing, you create.

S1: It has given me, that I can take a phenomenon or
problem or … anything … from physics. Implement it
and visualize it and … figure out answers and see if
I’ve done it correctly.

This student, S1, has seen that the physics engine created in
the workshop can be used to simulate many different
physical systems and scenarios. The ease of using the
system and the feedback it provides, ensures that the
student can discern and interpret the representation
accurately.

S4: … usually you just sit and calculate, there are no
moving pictures and you can’t interact with your
calculations. But in this workshop you got to write
your calculations in the form of code but you could
also see how it worked in real-time so to say.

S4: It is as I said in the beginning. You get a chance to
experience physics… I mean, you get the theoretical
part but get to perform it… you get to see it in motion.

SVENSSON, ERIKSSON, and PENDRILL PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-10



The ability to see the equation in motion through an
animation provided an extra layer of potential meaning-
making compared to their normal physics education.

S1: What I thought was good was, within physics, is…
when we have worked, with forces, you have to think a
little extra when implementing them into code… what
directions. The good thing is that you get instant
feedback if you’ve… if you’ve done it correctly or not.

The instant feedback that programming provides, and the
explicit nature of the code itself, gives the student a
platform where misunderstandings and errors are easily
discerned and corrected.
Question: What knowledge do you think is required to

fully use the workshop—More programming?
S2: I feel that for physics, you only need to understand
physics, but here you need programming… at least the
basics of programming.

S1: … If you haven’t programmed before it’ll take some
time to get into the programming before you can get
going with the physics.

The sentiment, that an introductory course in program-
ming was recommended in order to code and modify the
simulations and use them for exploring physics, was
mirrored by the other students in the group discussion.
The answers to the question “Can you explain the

“Particle” -class?” was mixed but tied to the participants
prior knowledge of programming. The students that had done
some programming before could explain what the different
functions did with greater confidence than the students that
had no prior knowledge of programming. However, even
students with prior knowledge could not fully recall exactly
what the functions did. This lack of knowledge is attributed to
the short time the students interacted with the program.

VII. DISCUSSION

The theory of social semiotics combined with the data
gathered from the workshop have shown that the theory
predicts what affordances programming exhibits and that
the students were able to discern and use them to explore
the physics phenomena at hand. From the analysis of the
programming experiences by the students, indications of a
richer use of programming for learning physics can be seen,
especially if the students themselves are allowed to create
and implement their own models.
• students were capable of creating, implementing, and
extracting meaning from physics simulations.

• students with no prior knowledge of programming
could implement their own models when guided by a
teacher.

• students with some prior knowledge of programming
could implement their own models without guidance
from a teacher.

• students recognized their own ability to program and
suggested that an introductory course in programming,
which half of them had taken, is all that would be

needed to make use of the programming in the
workshop.

• some students highlighted that programming provided
another approach to physics education compared to
their traditional educational setting.

Students entered into a feedback loop as they tried out
different variants of their code or model, discerned the
result, and modified their code or model. In every step of
the implementation of the model, the students have asked
questions of the real world, completed simulations, not-yet-
implemented code, and half-implemented code. The
answers they received made them change the implementa-
tion or model. Either it was an error in the code, a typo, or a
thinking error, a “thinko,” that made them reconsider and
change. Programming forces the student to reconsider their
models until a functional model is produced.
Students could and did ask questions about their pro-

gram, model, or implementation, interpreted the answers,
and adapted their model. This process is the learning
process as described by Kolb in his Learning Cycle
[46]. Students changed the resulting semiotic resources
to increase the discernibility of specific meaning-making
affordances. The students interacted with the hanging cloth
simulation to see if they could increase the discernibility of
a certain affordance: “springy-ness.” During their inves-
tigation they discerned a phenomenon they did not expect:
The cloth could be elongated by dragging it, and they had
to adapt their model.
Another student changed how the heat diffusion was

displayed by changing the shapes of the visualization of the
particles from circles to squares to reduce the clutter and
thus increase the discernibility of relevant affordances such
as the temperature distribution and the temperature gradient.

A. Modifying the affordances

The students interacted or modified the resulting semi-
otic resources to highlight different aspects, or, to make
certain affordances more discernible. When the students
interacted with the hanging-cloth simulation, they were
unable to discern a specific affordance that would answer
their question until they had changed the simulation by
pulling on the cloth. The resulting animation then offered
the students another set of affordances or made a specific
affordance discernible. Specifically, the students used the
mouse to interact with the simulation to see if they could
pull it downwards, this specific aspect could not be
discerned unless they interacted with the simulation. The
interaction provided a new scenario where the students
could discern that the cloth could be dragged down, but that
it could also be pushed up above the attachment points. The
new scenario answered one question but created a new one.
This use of variation is well described by the variation
theory of learning [45].
It is through changes and investigations that answers

to questions can be obtained. As the students create new

PROGRAMMING AND ITS AFFORDANCES FOR … PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-11



simulations, new questions will arise that they wish to
answer. To answer these questions, they will modify the
semiotic resource they are interacting with, creating a new
semiotic resource that provides the ability to discern the
needed information to answer the new question. Social
semiotics [24,25,27] and its semiotic resources are a great
way of explaining the ways in which programming can be
used to modify and create new semiotic resources that
enhance the learning of physics.

B. Programming as a means for meaning making

Thanks to programming’s ability to easily and quickly
modify different aspects of a simulation, students can open
up many different dimensions of variation to explore. The
quick and easy exploration that programming provides
allows the student to investigate and eventually understand
how different aspects relate to each other and how they
affect different parts of the simulation.

1. Forces and programming

Forces are an important but hard [56] concept to grasp
for a learner. Forces can have many different sources but
they all sum up to a net force which will describe the
acceleration of an object. A force has two components, a
magnitude and a direction, and this may be hard to grasp
because both aspects are usually baked into the vector
notation used to describe them. In programming, we can
choose to make the two components explicit, as can be seen
in Fig. 4 and in the answers given in Sec. VI E.
Programming is well suited to take advantage of the

variation in the variation theory of learning thanks to its
digital and repeatable nature. By changing a single variable
in the code and observing the changes, the student is made
aware, in an interactive manner, of critical aspects and can
modify these to observe changes in the simulation.
Programming offers a wide range of possible trans-

ductions. One is transductions that take one semiotic
resource from a semiotic system to another, such as going
from a formula into an animation. The transductions
performed when programming are explicit transductions
where each relevant aspect has been considered and taken
into account. The explicit transduction is done by the
student, and each aspect is laid bare for the student to
explore and investigate at their leisure. One explicit trans-
duction can be seen in Fig. 2, where the transduction from
mathematical integration is written in code, requiring the
student to explicitly write the relationships between posi-
tion, velocity, and acceleration.
Programming allows for quick and easy changes that

affect the affordances of the semiotic resource produced by
the code, either by changing the code or by interacting with
the semiotic resource itself. New scenarios can easily be
created and new aspects can be discerned from the new
scenarios. Each student can create semiotic resources that
are tailored to their individual questions and ability to

discern. Programming thus allows for a wide dynamic
range of affordances, some that will greatly enhance the
possibility for meaning making and some that may detract
from the meaning-making experience of the student.
By using a guide (teacher) when programming, relevant

affordances can be made more discernible and students can
get a powerful tool to use when investigating and construct-
ing different models of many different physical phenomena.

VIII. CONCLUSIONS

We found that the theory of social semiotics in combi-
nation with variation theory can be used as a new way to
describe and understand the usefulness of programming as
a tool for meaning making in the physics classroom. The
students in this study were able to successfully use pro-
gramming to create simulations and use the process of
creating and implementing models as a means for meaning
making about different physics concepts.
As students developed their ownmodels, theywere able to

test it at every step of the implementation. To test their pro-
grams, they needed to perform mental modeling to compare
with the visualizations; programming helped them test their
predictions and modify the system accordingly (RQ1).
To better highlight disciplinary relevant aspects, students

modified the shape, color, and location of their visualiza-
tions. (See, for example, Fig. 5.) We found that the students
could modify the visualizations in ways that enhanced their
learning experiences by taking ownership of the visuali-
zation process (RQ2).
The students expressed that some prior knowledge of

programming was needed to take full advantage of the
programming sessions. However, the students without prior
knowledge said that they could follow along without
difficulty, but they could not as easily implement their
own ideas (RQ3).
The theoretical framework illustrates the possible inter-

play between the semiotic systems: coding, interaction with
the simulation, and visualizations. In this study we found
that the iterative nature offered by programming facilitates
productive transductions between these semiotic systems.
This work gives a few examples of how programming can

be used to enhancemeaningmaking in physics education. In
a next step, we are offering professional development for
teachers to learn the programming method. Their experi-
ences and reflections on opportunities in classroom imple-
mentations, as well as difficulties encountered or expected,
are captured through follow-up interviews.

ACKNOWLEDGMENTS

The authors thank the participants for their openness and
their interest in the workshop and in the project itself. We
also wish to express our gratitude to Vattenhallen Science
Center at Lund University for providing the locales and
computers for each session of the workshop.

SVENSSON, ERIKSSON, and PENDRILL PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-12



APPENDIX A: INTERVIEW QUESTIONS

During the interview session the studentswere interviewed
one by one with the questions in Sec. A 1, but their
discussions where also studied during group interviews.
The questions used in the group interview can be found in
Sec. A 2.

1. Solo interviews

After the workshop, the students participated in solo
interviews with the questions, translated from Swedish to
English:

1. What do you think about the workshop as a way of
learning physics?

2. What do you think you learned during the
workshop?
• What was good, bad, easy, or hard?
• What knowledge do you think is required to fully
use the workshop?
— More physics?
— More programming?
— More tasks?
— More demonstrations?

3. Can you explain the “Particle”-class?
• Explain what the different functions do:
— __init__()
— show()
— update()
— interact()

• What can they be used for?
4. What is it that programming gives You, that You

could (perhaps) not do in any other way?

2. Group interviews

After the solo interviews, all students that were present for
the final session participated in a group interview about the
workshop. The interview aimed to start discussions among
them to see if they could draw upon their programming
experience to identify solutions and/or problems. The group
interview questions, translated from Swedish to English:

1. What do You think are the pros and cons with
programming compared to normal lectures in a
classroom?

2. What do You think are the pros and cons with
programming?

3. How do You want to or can use programming in
physics?
• What role does programming play in physics
research?

4. (For Researcher): How do they use their computa-
tional thinking when analyzing the physics problem:
• If You were to create a simulation of two colliding
galaxies, what would you do?

APPENDIX B: THE PARTICLE ENGINE

The physics engine constructed by the participants
during the workshop was based on the grid-free method
of a particle based physics simulation. The particles are
described by their own class with the following methods:
• __init__(x, y, mass, radius)

— Initializes the particle with some attributes and
values. This method is required by Python to
initialize any object. This method is used to set
initial conditions or default values for attributes
of the particle. The particle always have position,
velocity, acceleration, mass, and radius to make
the other methods work. Other attributes are
added by the programmer.

• show()
— Displays the particle in a window. The default

visualization is just a circle with a static color.
The user can change how the particle is visual-
ized by modifying this method.

• update(dt)
— Updates the attributes of the particle using an

Euler Cromer [57] integrator. The implementa-
tion can be seen in Fig. 6. The update method
calculates a change in velocity using the accel-
eration, which in turn is also calculated by each
timestep. The velocity is then used to calculate a
change in position. The method is designed to
explicitly show how the attributes are updated in
each timestep and avoids some simplifications
that can be made.

• interact(other)
— Handles the interaction between particles. It then

applies the resulting force on the particle using
the applyForce() method. This is the main
method that deals with different physical models
such as gravitational interaction, Hooke’s law or
any other interaction between different particles.

FIG. 6. The implementation of update(dt) avoids the use of
vectors or syntax that could make it simpler. The aim of the
function is to explicitly show how the attributes are updated
during each timestep. During each timestep, new forces are
calculated and a net acceleration is obtained, the old acceleration
must be removed, to avoid an impetuslike effect.

PROGRAMMING AND ITS AFFORDANCES FOR … PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-13



• applyForce(fx, fy)
— Add all the forces together and calculates a net acce-
leration using F ¼ ma rewritten as a ¼ F=m. The
method is called from the interact(other) method and
is the primary way the user interacts with the particles.

The particle class and its methods are used in the draw
loop, built into the processing IDE, to update and show the
particles. See Fig. 7 for an example of the simulation loop.
During each iteration, each particle interacts with all other
particles, it then feels a force downwards (gravity), updates
its position, and displays itself in the window.
The loop and the methods and the names of the methods

are chosen in such a way that they are easily understood and
each part has a well-defined purpose. Using this setup and
the methods, it is easy to identify the different parts needed
to implement the simulation and what parts are required to
have a functioning simulation.

[1] G. van Rossum, Python tutorial, Tech. Rep. CS-R9526
(Centrum voor Wiskunde en Informatica, Amsterdam,
1995).

[2] B. Fry, C. Reas, and D. Shiffman, The Processing
Foundation (2019), https://processingfoundation.org/. Ac-
cessed April 3.

[3] S. Papert,Mindstorms: Children, Computers and Powerful
Ideas, Vol. 1 (Basic Books Inc., New York, NY, 1980),
p. 230.

[4] G. Garber, Instant LEGO MINDSTORMS EV3 (Packt
Publishing, Birmingham, UK, 2013).

[5] J. M. Wilson and E. F. Redish, Using Computers in
teaching physics, Phys. Today 42, No. 1, 34 (1986).

[6] E. F. Redish and J. M. Wilson, Student programming in the
introductory physics course MUPPET, Am. J. Phys. 61,
222 (1993).

[7] M. Caballero, M. Kohlmyer, and M. Schatz, Fostering
computational thinking in introductory mechanics, Pro-
ceedings of the Physics Education Research Conference
2011, Omaha, Nebraska (2011), https://www.compadre
.org/per/items/detail.cfm?ID=11799.

[8] A. Gerestrand, Programmering som ett verktyg för lärande,
Master’s thesis, Gothenburg University, Gothenburg,
2017.

[9] H. A. Dwyer, B. Boe, C. Hill, D. Franklin, and D. Harlow,
Computational thinking for physics: Programming models
of physics phenomenon in elementary school, in Proceed-
ings of the 2013 Physics Education Research Conference,
Portland, OR, edited by P. V. Engelhardt, A. D. Churukian,
and D. L. Jones (AIP, New York, 2014), p. 133.

[10] O. P. Sand, T. O. B. Odden, C. Lindstrøm, and M. D.
Caballero, How computation can facilitate sensemaking
about physics: A case study, in Proceedings of the 2018
Physics Education Research Conference, Washington, DC,

edited by A. Traxler, Y. Cao, and S. Wolf (AIP, New York,
2018).

[11] K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung,
Effects of learning support in simulation-based physics
learning, Comput. Educ. 51, 1486 (2008).

[12] K. C. Trundle and R. L. Bell, The use of a computer
simulation to promote conceptual change: A quasi-
experimental study, Comput. Educ. 54, 1078 (2010).

[13] R. L. Bell and K. C. Trundle, The use of a computer
simulation to promote scientific conceptions of moon
phases, J. Res. Sci. Teach. 45, 346 (2008).

[14] S. Bayraktar, A meta-analysis of the effectiveness of
computer-assisted instruction in science education,
J. Res. Tech. Educ. 34, 173 (2001).

[15] J. P. Akpan and T. Andre, Using a computer simulation
before dissection to help students learn anatomy, J.
Comput. Math. Sci. Teach. 19, 297 (2000).

[16] J. Huppert, S. M. Lomask, and R. Lazarowitz, Computer
simulations in the high school: Students’ cognitive stages,
science process skills and academic achievement in micro-
biology, Int. J. Sci. Educ. 24, 803 (2002).

[17] U. Wilensky, Netlogo, Center for Connected Learning and
Computer-Based Modeling (Northwestern University,
Evanston, IL, 1999).

[18] AAPT Undergraduate Curriculum Task Force, AAPT
Recommendations for Computational Physics in the
Undergraduate Physics Curriculum (American Associa-
tion of Physics Teachers, College Park, MD, 2016).

[19] M. D. Caballero, J. B. Burk, J. M. Aiken, B. D. Thoms,
S. S. Douglas, E. M. Scanlon, and M. F. Schatz, Integrating
numerical computation into the modeling instruction cur-
riculum, Phys. Teach. 52, 38 (2014).

[20] J. M. Aiken, M. D. Caballero, S. S. Douglas, J. B.
Burk, E. M. Scanlon, B. D. Thoms, and M. F. Schatz,

FIG. 7. The loop that is iterated over each timestep of the
simulation. The particles all interact with each other and then they
update their position and show themselves in the window. draw()
is called as fast as possible, or as fast as the display allows, which
is usually around 60 times per second.

SVENSSON, ERIKSSON, and PENDRILL PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-14

https://processingfoundation.org/
https://processingfoundation.org/
https://doi.org/10.1063/1.881202
https://doi.org/10.1119/1.17295
https://doi.org/10.1119/1.17295
https://www.compadre.org/per/items/detail.cfm?ID=11799
https://www.compadre.org/per/items/detail.cfm?ID=11799
https://www.compadre.org/per/items/detail.cfm?ID=11799
https://www.compadre.org/per/items/detail.cfm?ID=11799
https://doi.org/10.1016/j.compedu.2008.01.007
https://doi.org/10.1016/j.compedu.2009.10.012
https://doi.org/10.1002/tea.20227
https://doi.org/10.1080/15391523.2001.10782344
https://doi.org/10.1080/09500690110049150
https://doi.org/10.1119/1.4849153


Understanding student computational thinking with com-
putational modeling, AIP Conf. Proc. 1513, 46 (2013).

[21] M. D. Caballero, Computation across the curriculum: What
skills are needed?, in Proceedings of the 2015 Physics
Education Research Conference, College Park, MD, edited
by A. D. Churukian, D. L. Jones, and L. Ding (AIP,
New York, 2015), p. 79.

[22] M. D. Caballero and S. J. Pollock, A model for incorpo-
rating computation without changing the course: An
example from middle-division classical mechanics, Am.
J. Phys. 82, 231 (2014).

[23] Skolverket, Redovisning av uppdraget om att föreslå
nationella it- strategier för skolväsendet—förändringar i
läroplaner, kursplaner, ämnesplaner och examensmål
[English: Swedish National Agency for Education:
Presentation of the assignment to propose national IT
strategies for the school system—changes in curricula,
syllabuses, subject plans and degree objectives (2016)].

[24] M. A. K. Halliday, Language as social semiotic: Towards a
general sociolinguistic theory, Lang. Soc. 10, 169 (1975).

[25] J. Airey and C. Linder, Multiple Representations in Physics
Education (Springer, New York, 2017), Vol. 10, pp. 95–122.

[26] U. Eriksson, Social semiotics in physics and astronomy
education research—A spiral approach to teaching and
learning, in Proceedings of the CERN PER-Seminar Series
(CERN, Geneva, 2018).

[27] T. Fredlund,Uppsala: Acta Universitatis Upsaliensis (Acta
Universitatis Upsaliensis, Uppsala, 2015).

[28] J. Airey and C. Linder, A disciplinary discourse perspective
on university science learning: Achieving fluency in a critical
constellation of modes, J. Res. Sci. Teach. 46, 27 (2009).

[29] C. Jewitt, J. Bezemer, and K. O’Halloran, Introducing
Multimodality (Routledge, New York, 2016), Chap. 4,
p. 232.

[30] V. Prain and R. Tytler, Representing and learning in
science, in Constructing Representations to Learn in
Science, edited by R. Tytler, V. Prain, P. Hubber, and B.
Waldrip (SensePublishers, Rotterdam, 2013).

[31] K. S. Tang, The interplay of representations and patterns of
classroom discourse in science teaching sequences, Int. J.
Sci. Educ. 38, 2069 (2016).

[32] T. S. Volkwyn, J. Airey, B. Gregorcic, and F. Heijkenskjöld,
Transduction and science learning: Multimodality in the
physics laboratory, Designs for Learning 11, 16 (2019).

[33] T. S. Volkwyn, J. Airey, B. Gregorcic, and F. Heijkenskjöld,
Multimodal Transduction in Secondary School Physics,
ISEC 2018 (NIE, Singapore (2018).

[34] S. Ainsworth, The educational value of multiple-
representations when learning complex scientific concepts,
in Visualization: Theory and Practice in Science Educa-
tion, edited by J. K. Gilbert, M. Reiner, and M. Nakhleh
(Springer Netherlands, Dordrecht, 2008), pp. 191–208.

[35] M. A. Rau, Conditions for the effectiveness of multiple
visual representations in enhancing stem learning, Educ.
Psychol. Rev. 29, 717 (2017).

[36] J. J. Gibson, The Ecological Approach to Visual Percep-
tion (Houghton Mifflin, Boston, 1979).

[37] H. Kragh, Relativistic collisions: The work of Christian
Møller in the early 1930s, Arch. Hist. Exact Sci. 43, 299
(1992).

[38] F. Marton and S. Booth, Learning and Awareness,
Educational Psychology Series (L. Erlbaum Associates,
Hillsdale, NJ, 1997).

[39] T. Fredlund, C. Linder, J. Airey, and A. Linder, Unpacking
physics representations: Towards an appreciation of dis-
ciplinary affordance, Phys. Rev. ST Phys. Educ. Res. 10,
020129 (2014).

[40] U. Eriksson, C. Linder, J. Airey, and A. Redfors, Introducing
the anatomy of disciplinary discernment–An example for
astronomy, Eur. J. Sci. Math. Educ. 2, 167 (2014).

[41] J. Airey, U. Eriksson, T. Fredlund, and C. Linder, The
concept of disciplinary affordance, in Proceedings of
the 5th International 360 Conference: Encompassing
the Multimodality of Knowledge (Aarhus University,
Denmark, 2014), pp. 20.

[42] J. Airey, L. Cedric, and C. Linder, Social semiotics in
university physics education: Leveraging critical constella-
tions of disciplinary representations, in Proceedings of the
11th Conference of the European Science Education Re-
search Association, Helsinki, Finland, edited by J. Lavonen,
K. Juuti, J. Lampiselkä, A. Uitto, and K. Hahl (2015).

[43] D. A. Norman, Affordance, conventions, and design,
Interactions 6, 38 (1999).

[44] J. Bezemer and G. Kress, Writing in multimodal texts,
Written Commun. 25, 166 (2008).

[45] F. Marton, Necessary Conditions of Learning (Taylor &
Francis, London, 2015).

[46] D. A. Kolb, Experiential Learning: Experience as the
Source of Learning and Development (Prentice Hall,
Englewood Cliffs, NJ, 1984), p. 20.

[47] K. Svensson, 2D Physics Simulations using Processing
IDE for Physics Education Research—Workshop 2018
(2020), https://doi.org/10.5281/zenodo.3607528.

[48] M. Elmgren and A.-S. Henriksson, Academic Teaching
(Studentlitteratur AB, Lund, 2015).

[49] D. Shiffman, The Coding Train (2019), https://
thecodingtrain.com/. Accessed April 1.

[50] B. Glaser and A. Strauss, The Discovery of Grounded
Theory: Strategies for Qualitative Research, Observations
(Chicago, Ill.) (Aldine, Chicago, Illinois, 1967).

[51] I. Walsh, J. A. Holton, L. Bailyn, W. Fernandez, N. Levina,
and B. Glaser, What grounded theory is…A critically
reflective conversation among scholars, Organ. Res. Meth-
ods 18, 581 (2015).

[52] J. M. Case, D. Marshall, and C. J. Linder, Being a student
again: a narrative study of a teacher’s experience, Teach.
Higher Educ. 15, 423 (2010).

[53] J. A. Nielsen, Science in discussions: An analysis of the
use of science content in socioscientific discussions, Sci.
Educ. 96, 428 (2012).

[54] U. Eriksson, C. Linder, J. Airey, and A. Redfors, Who needs
3d when the universe is flat?, Sci. Educ. 98, 412 (2014).

[55] G. Kress, Multimodal discourse analysis, in The Routledge
Handbook of Discourse Analysis, Routledge Handbooks in
Applied Linguistics, edited by J. Gee and M. Handford
(Taylor & Francis, London, 2013).

[56] D. Hestenes, M. Wells, and G. Swackhamer, Force Con-
cept Inventory, Phys. Teach. 30, 141 (1992).

[57] A. Cromer, Stable solutions using the euler approximation,
Am. J. Phys. 49, 455 (1981).

PROGRAMMING AND ITS AFFORDANCES FOR … PHYS. REV. PHYS. EDUC. RES. 16, 010127 (2020)

010127-15

https://doi.org/10.1063/1.4789648
https://doi.org/10.1119/1.4837437
https://doi.org/10.1119/1.4837437
https://doi.org/10.1002/tea.20265
https://doi.org/10.1007/978-94-6209-203-7_1
https://doi.org/10.1007/978-94-6209-203-7_1
https://doi.org/10.1080/09500693.2016.1218568
https://doi.org/10.1080/09500693.2016.1218568
https://doi.org/10.16993/dfl.118
https://doi.org/10.1007/s10648-016-9365-3
https://doi.org/10.1007/s10648-016-9365-3
https://doi.org/10.1007/BF00374762
https://doi.org/10.1007/BF00374762
https://doi.org/10.1103/PhysRevSTPER.10.020129
https://doi.org/10.1103/PhysRevSTPER.10.020129
https://doi.org/10.1145/301153.301168
https://doi.org/10.1177/0741088307313177
https://doi.org/10.5281/zenodo.3607528
https://thecodingtrain.com/
https://thecodingtrain.com/
https://thecodingtrain.com/
https://doi.org/10.1177/1094428114565028
https://doi.org/10.1177/1094428114565028
https://doi.org/10.1080/13562510903560028
https://doi.org/10.1080/13562510903560028
https://doi.org/10.1002/sce.21001
https://doi.org/10.1002/sce.21001
https://doi.org/10.1002/sce.21109
https://doi.org/10.1119/1.2343497
https://doi.org/10.1119/1.12478

