
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Unraveling the immune response in sepsis and meningitis. Diagnostic and therapeutic
approaches.

Fisher, Jane

2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Fisher, J. (2020). Unraveling the immune response in sepsis and meningitis. Diagnostic and therapeutic
approaches. [Doctoral Thesis (compilation), Department of Clinical Sciences, Lund]. Lund University, Faculty of
Medicine.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d44f0c7b-5fc6-4f65-96b0-1875e87a4590


JA
N

E FISH
ER  


U

nraveling the im
m

une response in sepsis and m
eningitis	

 2020:86

Division of Infection Medicine 
Department of Clinical Sciences

Lund University, Faculty of Medicine 
Doctoral Dissertation Series 2020:86 

ISBN 978-91-7619-948-0
ISSN 1652-8220 9

7
8
9
1
7
6

1
9
9
4
8
0

Unraveling the immune response 
in sepsis and meningitis
Diagnostic and therapeutic approaches
JANE FISHER 

DEPARTMENT OF CLINICAL SCIENCES | LUND UNIVERSITY





1 

Unraveling the immune response in 
sepsis and meningitis 

Diagnostic and therapeutic approaches 

Jane Fisher 

DOCTORAL DISSERTATION 

by due permission of the Faculty of Medicine, Lund University, Sweden. 
To be defended at Belfragesalen, BMC D15, Lund, Friday 04 September 2020 at 

13:00. 

Faculty opponent 
Christian Østergaard Andersen 

Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre 



2 

Organization 
LUND UNIVERSITY 

Document name 
Doctoral disseration 

Department of Clinical Sciences Date of issue 
September 4, 2020 

Author(s) Jane Fisher Sponsoring organization 

Title and subtitle Unraveling the immune response in sepsis and meningitis 
Diagnostic and therapeutic approaches 
Abstract 
Severe infections continue to constitute a large burden, with high mortality and risk of sequelae. Sepsis 
is a dysregulated host response to an infection that causes life threatening organ damage. Meningitis is 
a severe infection of the brain that often leads to sepsis and death or lasting neurological damage. The 
host response is often responsible for more damage than the pathogen itself. This thesis focuses on 
two components of the host response. The first is the endothelial glycocalyx, a complex matrix of 
glycans and proteins that modulates blood vessel function. The second are neutrophil extracellular 
traps (NETs), which are large structures composed of DNA and granule proteins that are released from 
neutrophils in response to bacteria. The aim of this thesis was to explore diagnostic and therapeutic 
aspects of these components of the host immune response during sepsis and bacterial meningitis. 
Translational research methods were used to find solutions to this clinical problem. An observational 
cohort study revealed that plasma glypicans, a component of the glycocalyx, are elevated in sepsis 
before the onset of organ dysfunction. A small cohort study also revealed that cerebrospinal fluid (CSF) 
NETs are elevated in bacterial meningitis. CSF NETs were also present to a great extent in a cohort of 
patients neurosurgically treated with external ventricular drains, but were not significantly elevated in 
those who developed infections as a result of the procedure. NETs were also present in the CSF in a 
rat model of bacterial meningitis and their removal using DNase increased bacterial killing. Glymphatic 
fluid distribution in the brain was disrupted rats with bacterial meningitis and partially restored after 
treatment with DNase. A second rat model was used to test and validate a new scoring system to 
quantify neurologic outcomes in experimental meningitis.  
In this thesis work, glypicans were identified as a marker of endothelial damage in sepsis and CSF 
NETs were identified as a potential biomarker and therapeutic target in bacterial meningitis. Disruption 
of NETs by DNase should be explored further as a therapeutic in bacterial meningitis. A neurologic 
scoring system was established for testing of novel adjuvant therapies, such as DNase, in rat models of 
bacterial meningitis in the future. 

Key words: Sepsis; bacterial meningitis; NETs; DNase; glymphatic; neurological sequelae 

Classification system and/or index terms (if any) 

Supplementary bibliographical information Language English 

ISSN and key title: 1652-8220 
Lund University, Faculty of Medicine Doctoral Dissertation Series 2020:86 

ISBN 
978-91-7619-948-0

Recipient’s notes Number of pages: 70 Price 

Security classification 

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, 
hereby grant to all reference sources permission to publish and disseminate the abstract of the above-
mentioned dissertation. 

Signature Date 2019-07-30 



3 

Unraveling the immune response in 
sepsis and meningitis 

Diagnostic and therapeutic approaches 

Jane Fisher 



4 

Coverphoto: Unraveling neutrophils by Jane Fisher 

Copyright pp 1-70 Jane Fisher 

Faculty of Medicine  
Department of Clinical Sciences, Division of Infection Medicine 

ISBN  978-91-7619-948-0 
ISSN  1652-8220 

Printed in Sweden by Media-Tryck, Lund University 
Lund 2020  



5 



6 

Table of Contents



7 



8 



9 



10 

 



11 



12 



13 



14 

Figure 1. Killing mechanisms of neutrophils include phagocytosis, degranulation and NETosis.  
Bacteria (green circles) can be killed by antibacterial granule proteins (pink triangles) when they are 
released to the extracellular environment (degranulation) or when bacteria are taken up by 
phagocytosis and exposed to the granules fuse with the phagosome. Some granule proteins can kill 
bacteria directly by disrupting the bacterial membrane, while others can kill bacteria indirectly by 
carrying out an oxidative burst reaction that creates reactive oxygen species (ROS), or by 
enzymatically degrading other proteins and thus creating new antimicrobial peptides (AMP). Lastly 
DNA (blue) can be coated with antimicrobial proteins and expelled in a process called NETosis. 
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Figure 2. Some functions of the glycocalyx and consequences of its disruption during sepsis. 
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Figure 3. Schematic depiction of the possible mechanisms of syndecan, glypican, and GAG 
chain shedding from the glycocalyx. 
Red dashed lines indicate possible cleavage sites. The responsible enzyme or agent for each site is 
indicated in red text.  
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Figure 4. A schematic depiction of the brain and the meninges. 
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Figure 5. The glymphatic flux of fluid in and out of the brain. 
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Figure 6. A depiction of possible diagnostic outcomes in a population of culture- or PCR- 
negative and positive patients. 
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Figure 7. Schematic depiction of the timeline, sample collection, and analyses in rat model I, 
used in studies II and III. 
Rats were infected at 0h and treated with either intravenously or intrathecally with DNase or saline 
control solution at the indicated time points. In study III, some rats were also treated with intravenous 
antibiotics at the 6 hour time point (not shown). Samples were collected for further analysis 24 hours 
after the infection. In study III, rats also received an intracisternal injection of a fluorescent tracer at 24 
hours, which was allowed to distribute for 0.5 hours. Samples were collected 24 hours after the 
infection and analyzed by various methods. 
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Figure 8. Subdural and intracisternal infection routes used in rat model I and II respectively 
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Figure 9.Schematic depiction of the timeline, sample collection, and analyses in rat model II, 
used in study V. 
Rats were infected at 0h and then evaluated 24 hours after the infection by the functional observational 
battery (FOB) and by analysis of CSF bacterial counts. Standard treatment of antibiotics and 
corticosteroids given intraperitoneally (IP) was initiated after this evaluation and continued until the end 
of the experiment. Rats were also evaluated on day 2 and 6 after the infection. Additionally on day 6, 
when rats were terminated, brains were collected for immunofluorescence analysis. 
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Table 1. Symptoms evaluated in the modified functional observational battery. 

Clinical signs Gait and posture Involuntary motor 
movements 

Focal 
neurological signs Neuromotor tests 

Breathing difficulty Ataxia Tremors Lacrimation Righting reaction 

Movement 
Hindlimb 

movement/ 
positioning 

Jerks and 
spasms Salivation Negative geotaxis 

response 

Grooming 
Forelimb 

movement/ 
positioning 

Tonic 
movements 

Eyelid drooping 
or closure  

Vocalizing Body positioning Stereotypy Whisker whisking  

Porphyrin 
accumulation Spine curvature Bizarre 

behaviours Pupil reaction  

Cloudy eyes   Blink reflex  

Bulging eyes   Pinna (ear) reflex  

   Hearing loss  
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Figure 10. Summary of the main results of Study I. 
Plasma was collected from patients with infection who either had organ failure at the time of sampling, 
or did not. Some patients who did not have organ failure later developed it. Glypicans 1, 3 and 4 were 
elevated in patients who had organ failure at the time of sampling and in those who later developed it, 
compared to those who never developed organ failure. 
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Figure 11. Summary of the main results of Study II. 
A) NETs were found in the CSF of patients with acute bacterial meningitis and in a rat model of 
pneumococcal meningitis. B) Treatment of infected rats with DNase, an enzyme that dissolves the DNA 
backbone of NETs, resulted in reduced numbers of bacteria in the brain, blood, lungs, and spleen 
indicating that removal of NETs improves bacterial killing. C) To determine the mechanisms by which 
NETs increase bacterial killing, we exposed isolated human neutrophils to bacteria and treated them 
with DNase. We found that DNase-treated samples had more myeloperoxidase activity in the 
supernatant. Additionally when NETs were chemically induced and the supernatant applied to live 
bacteria, the supernatant of NETs treated with DNase killed more bacteria then that of untreated NETs, 
indicating that DNase treatment increased extracellular killing by neutrophils. D) Neutrophils exposed to 
bacteria and treated with DNase were found to have more intracellular bacteria than neutrophils not 
treated with DNase, indicating that DNase treatment increased intracellular uptake of bacteria. 
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Figure 12. Summary of the main results of Study III. 
Rats were infected with pneumococci or saline control, and after 24 hours a fluorescent tracer was 
injected and brains collected for analysis. In infected rats, microglia activation was increased, identified 
the presence of ionized calcium-binding adapter molecule 1 (Iba1+; yellow), by cell body hypertrophy, 
and by the presence of short, thick processes (arrows). Astrocyte activation was also increased, 
identified by increased expression of glial fibrillary acidic protein (GFAP; red), astrocytic hypertrophy 
and overlapping of the astrocytic domains (arrows). AQP-4 polarization around large vessels was 
reduced, with more AQP-4 found away from the endfeet of astrocytes. Tracer influx into the brain and 
effux into the lymph nodes was severly reduced in infected rats. Administration of DNase restored the 
quantified influx of tracer (area tracer %) in some rats, while adminstration of antibiotics did not. 
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Figure 13. Summary of the main results of Study IV. 
A) Schematic showing an EVD, and CSF sampling. B) Representative images and C) quanitification of 
CSF NETs from a patient with a suspected VRI over time relative to meningitis treatment start. D) NET 
percentage and total NETs in CSF of patients with an without a suspected infection.  
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Table 2. Incidence of any neurological symptoms with score ≥2 at day 6. 

 Infected (n=12) Control (n=11) P-value 

Hearing loss; n (%) 9 (75%) 0 (0%) 0.0003 

Focal neurological signs excluding hearing 
loss; n (%) 6 (50%) 0 (0%) 0.0137 

Gait and posture abnormality; n (%) 8 (67%) 0 (0%) 0.0013 

Involuntary motor movements; n (%) 9 (75%) 0 (0%) 0.0003 

Neuromotor impairment; n (%) 2 (17%) 0 (0%) 0.4783 
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