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Abstract

Dijets are produced in abundance at the Large Hadron Collider as predicted by quantum
chromodynamics (QCD). However, several theories beyond the Standard Model of Particle
Physics predicts new phenomena, which also result in dijet final states. This thesis presents
searches for such new phenomena using different techniques. One approach is to look
for jets, that originate from top quarks. We know, that the top quark, being the heaviest
fundamental particle, has a large coupling to the Higgs field. Therefore, it is appealing to
think, that the top quark could play a special role in understanding the fine tuning problem
of the Higgs mass. One model of interest is the topcolor assisted technicolor, which predicts
a Z ′

TC2 boson, that would appear as a resonance in the invariant mass spectrum. Limits are
set on this theory by using the 139 fb−1 of data collected at

√
s = 13 TeV by ATLAS.

Another approach is to have a more inclusive selection and not only look at the invariant
mass spectrum, but also the angular distribution of the two jets. This makes it possible to
look for non­resonant signals like those coming from a contact interaction with a compos­
iteness scale, Λ, which is much higher than the center­of­mass energy at the Large Hadron
Collider. Limits are set on this theory by using 37 fb−1 of data. Studies, conducted to
improve this analysis, are also presented.

A prerequisite to perform these searches is to have well­calibrated jets. Different methods
are used to calibrate the jets at different transverse momentum, pT, ranges. In order to
calibrate high­pT jets, the calorimeter response to the single particles, that make up the jet,
is studied. In this way it is possible to estimate the uncertainty on the jet energy scale at
the highest pT, where there are very few events in data.
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Populærvidenskabeligt resumé

Partikelfysikere har igennem de sidste 100 år opnået en imponerende forståelse for de mest
fundamentale byggesten og de naturkræfter, der virker imellem dem. De fire naturkræfter er
elektromagnetisme, svag kernekraft, stærk kernekraft og gravitation. De tre første af disse
kræfter er sammen med de tolv stofpartikler, de fire kraftpartikler samt Higgs partiklen
beskrevet af Standardmodellen.

Den sidste brik i det store puslespil, som Standardmodellen er, blev lagt i 2012, da AT­
LAS og CMS eksperimenterne offentliggjorde, at de havde observeret en ny partikel, der
var i overenstemmelse med Standardmodellens Higgs partikel. Det har dog ikke fået par­
tikelfysikerne til at ligge på den lade side, da der stadig er mange ting, vi ikke forstår.

Standardmodellen kan for eksempel ikke forklare den store forskel, der er på massen af de
forskellige partikler. Den tungeste af de fundamentale partikler er en stofpartikel og hedder
top kvarken. Dens store masse gør den særdeles interessant at studere. Top kvarken (og
de andre kvarker) opstår i den store partikelaccelerator kaldet Large Hadron Collider, når
to protoner kolliderer med hinanden ved meget høj hastighed. Det er dog ikke muligt for
disse kvarker at eksistere alene. Derfor omdannes noget af deres bevægelsesenergi til kvark­
antikvark par. Denne proces fortsætter indtil energien er kommet under en vis grænse.
Resultatet er en kaskade af partikler, der bevæger sig i stort set den samme retning, kaldet en
jet, som samlet har den samme energi og andre egenskaber, der svarer til det, den oprindelige
kvark havde.

Denne afhandling beskriver flere analyser af det data, som ATLAS eksperimentet har sam­
let fra 2015 til 2018. Disse analyser undersøger, hvorvidt de jet­par, vi observerer, er i
overensstemmelse med Standardmodellen eller ej. Håbet er at finde visse afvigelser, da det
vil hjælpe os med at forstå, hvordan vi bedre kan beskrive universets mindste byggesten
og kræfterne imellem dem. Vi må dog konstatere, at det nuværende data passer fint med
Standardmodellen, så yderligere undersøgelser og mere data er nødvendigt.
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1
Introduction

The big hard questions, like “Why are we here?”, “Is the Universe infinite? ” and “What
is the smallest building blocks of matter?”, has always fascinated me and in that sense, it is
not a surprise, that I am now finishing a PhD in particle physics.

1.1 Particle physics

When I was in elementary school, the Large Hadron Collider (LHC) was under construc­
tion and even though I did not really understand, how the scientists would be able to un­
ravel some of the mysteries of our Universe by smashing particles together, it was a thrilling
thought. So I started reading about particle physics.

I discovered how back in the beginning of the 1930s, we thought, that the most funda­
mental building blocks were just protons, neutrons and electrons, but that in the following
decades several particles were found. The muon was discovered in 1937 [1], even though
it was first mistaken for the pion, which was not discovered until 1947 [2, 3]. Then we
entered the realm of particle accelerators and many new particles were found in the late
1960s, often referred to as the particle zoo. The existence of all these different particles
was quite confusing until it was understood, that they all consisted of more fundamental
particles, the quarks [4, 5].

Along with the impressive discoveries followed, of course, the theoretical developments,
which resulted in the Standard Model of Particle Physics. It predicted the existence of a
few more fundamental particles, which had not been discovered yet: the top quark, which
was later discovered in 1995 [6, 7], the tau neutrino in 2000 [8] and the Higgs boson,
which was still not discovered in 2006, when I was finishing elementary school. However,
the hope was that with the LHC, we would be able to find it and thereby complete the
Standard Model and so we did in 2012 [9, 10].
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The history of particle physics is also a history of ever­increasing energies. The W/Z bosons,
the top quark and the Higgs boson were all discovered as new particle accelerators made it
possible to achieve even higher energy collisions. Higher energy means the possibility of
producing more massive particles as stated by Einsteins famous equation E = mc2.

Then a few years later, during my time in high school, I stumbled upon a YouTube video
explaining the double slit experiment [11], which demonstrates the concept of particle­
wave duality. My first thought was that this could not be true. How could something both
be particles and waves? And why did it matter, whether we observed it or not? The topic
of quantum mechanics had astonished me for the first time.

Since a particle can also be viewed as a wave, this means, that if we accelerate a particle to
a higher energy, we can use it to resolve finer details of the object, we smash it into. This is
true, since higher energy means shorter wavelength, which means better resolution.

As a result, the high energy of the LHC, does not only allow us to produce more massive
particles than ever before, but it also allows us to look in even finer detail at the particles
we already know ­ or think we know.

1.2 Popular scientific description and question boxes

As you might have realized by now, I was a very curious child and this curious child still
lives inside me. I have therefore decided to give her some space in the thesis. My hope is
that she can help the reader, who is new to particle physics (like my friends and family)
to understand the basics of the research presented in this thesis. This popular scientific
description includes a low­level introduction to the Standard Model and explanations to
what is presented in each chapter of the thesis. It can be found in Appendix A.

Throughout the chapters you will also find question boxes like the one below.

Question 1.1: What are question boxes?

The question boxes give answers to different questions. It can be all from concepts
that are hard to understand to the most basic knowledge in particle physics.
The boxes can be read out of context for the reader, who just want an overview of
the topics covered in this thesis, but is also meant as an easy way to look up different
concepts. A list of the questions with references to the page is found in Appendix
B.
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1.3 Thesis outline

The thesis begins, not surprisingly, with a chapter laying out the theoretical foundation,
which the rest of the chapters are build upon (Chapter 2). It shortly summarizes the Stan­
dard Model of Particle Physics and the processes involved, when two particles collide. It
also outlines some of the observations, we have made, which are not in accordance with
the Standard Model and a few theories beyond the Standard Model, which might explain
some of these observations. Here emphasis is put on the models, which are later used as
benchmark models in the physics analyses.

Then two chapters follow, in which the machinery, used to obtain the presented results,
is described. First the LHC, which was mentioned above, is introduced (Chapter 3) and
then the ATLAS experiment, one of the four big experiments on the LHC ring, is outlined
(Chapter 4).

I then focus on one of the main physics objects, which is produced in abundance by the
LHC and detected by the ATLAS experiment, the jet (Chapter 5). I will define, what it is
and describe how it is calibrated and what it can be used for. When that is covered, I can
move on to discuss a system of two jets, called a dijet (Chapter 6). Dijets are of particular
interest in this thesis, since they form the basis for the analyses described in the two last
chapters.

However, a chapter is first dedicated to the work I have done as part of my qualification
task (Chapter 7). The qualification task is an assignment, which is for the common good
of the collaboration and it consists of at least half a year of full time work. My assignment
was to calibrate jets with high transverse momentum using a single particle method.

The first analysis, I will describe, is the all­hadronic tt resonance search (Chapter 8). I was
one of the main analyzers and I have taken part in all major steps of the analysis. I optimized
the event selection in order to improve the sensitivity and I validated the data quality. I
improved the signal morphing to minimize the difference to the Monte Carlo samples
and tested the background fitting functions on pseudo­experiments to find the best suited
function before unblinding the data. I have also estimated the systematic uncertainties
related to the background estimation and studied the mass resolution in order to optimize
the binning. Furthermore, I have been running the statistical framework and investigated
the impact of different systematic uncertainties in order to set limits on the chosen signal
model. The chapter goes into quite some detail on the part of these studies, I have deemed
interesting.

The second analysis is actually a compilation of several analyses, which I have worked on,
but they all have in common, that the final state is dijets (Chapter 9). I have been part
of the dijet analysis group, since the beginning of my PhD and I have performed various
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studies as well as participated in the weekly meetings. The first analysis introduced is the
dijet angular analysis on 37 fb−1 of data. I contributed to this analysis by calculating next­
to­leading order correction factors for the signal samples. The second analysis is the dijet
and di­ b­ jet resonance search. Here I contributed with a study of the mass resolution. The
last part of the chapter shows the various studies, I have performed for the dijet angular
search, which have not yet been published, since the analysis of the full Run 2 data set is
still ongoing.

1.3.1 Figures

All the figures presented in this thesis, which do not have a citation, are produced by me,
except for Figure 8.39, which is produced by Elham Khoda as clearly indicated.

1.4 Publications

Some of the work described in this thesis is also appearing in the following peer­reviewed
publications:

• ATLAS Collaboration. Search for tt resonances in fully hadronic final states in pp
collisions at

√
s = 13 TeV with the ATLAS detector, submitted to Journal of High

Energy Physics.

• ATLAS Collaboration. Search for new phenomena in dijet events using 37 fb−1 of
pp collision data collected at

√
s = 13 TeV with the ATLAS detector. Physical Review

D, 96(5), Sep 2017.

• ATLAS Collaboration. Search for new resonances in mass distributions of jet pairs
using 139 fb−1 of pp collisions at

√
s = 13 TeV with the ATLAS detector. Journal

of High Energy Physics, 2020(3), Mar 2020.

• ATLAS Collaboration. High­pT Jet Energy Scale Uncertainty from single hadron
response with the ATLAS detector. Proceeding of Science LHCP2016 (2016) 212.
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2
Standard Model and Beyond

Particle physics, also called high energy physics, is the field of physics that describes the
most fundamental forces and particles of our Universe. There are four fundamental forces
of nature: electromagnetism, the weak force, the strong force and gravity.

The four forces have very different range and strength. The strong force is the strongest as
the name indicates. Then comes electromagnetism with a strength of only 1

137 relative to
the strong force. The weak force is even weaker with a relative strength of 10−6, but gravity
is the absolutely weakest with a relative strength of only 10−39.

This however comes with a caveat. The strengths of the forces depends on the energy, at
which they are probed. This is partly due to the running of the coupling constants, which we
will come back to in Section 2.4.1, but for the weak force, more dominantly, due to the
mass of the force mediators. This implies, since the coupling constants do not evolve in the
same way, that at some energy the forces unite.

The range of each force is determined by the mass of the force mediator, MX. By using the
Heisenberg uncertainty principle (∆E∆t ≥ ℏ

2 ), it is seen that the range, r, is given by

r = c∆t ≤ ℏ
2MXc

(2.1)

where ℏ is the reduced Planck constant and c is the speed of light.

The weak force has massive mediators, which corresponds to a range of approximately
10−18 meter. The mediators for electromagnetism and gravity are massless, which gives
them infinite range. For the strong force things are a bit more complicated. The mediator,
called the gluon, is massless, so we would naively expect an infinite range, but this is not
the case, since the gluons are subject to confinement, which will be explained in Question
2.4. It leads to a range of approximately 10−15 meter for the strong force. This explains
why we do not experience the weak and strong forces in everyday life, but clearly see the
effect of electromagnetism and gravity.
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2.1 The Standard Model of Particle Physics

The knowledge we have about the fundamental constituents and the forces acting on them
is summarized in The Standard Model of Particle Physics or just the Standard Model for short
[12, 13, 14]. It only takes into account the three strongest forces and thereby leaves out
gravity. This is not a problem, since gravity has a very small effect on particle interactions.
However, the goal is to eventually make a theory, that describes all four forces in a Theory
of Everything.

In the Standard Model there are two types of particles, fermions and bosons. They are dis­
tinguished by their spin, which is the intrinsic angular momentum of the particle. Fermions
have half­integer spin, whereas bosons have integer spin. The matter around us is made of
fermions, while vector bosons are mediating the fundamental forces and are therefore also
called force carrier particles.

Question 2.1: What are the elementary particles?

The elementary fermions of the Standard Model consist of six quarks and six leptons
(plus their antiparticles). They are divided into three generations as seen in Figure
2.1. The quarks have fractional electric charge values (+2

3 for u, c and t and − 1
3 for

d, s and b) whereas the leptons have integer values (−1 for e−, μ− and τ− and 0
for the neutrinos). All the elementary fermions have a spin value of 1

2 .
The elementary bosons are the mediators of the fundamental forces. Electromag­
netism has the photon, the weak force has the Z­ and W­bosons and the strong
force has the gluon. These are called gauge or vector bosons and have spin 1. The
last elementary boson is the Higgs boson, which is a scalar boson with spin 0.

The elementary particles are sketched in Figure 2.1, while their masses and electric charges
are seen in Table 2.1. Here the the charge is given in units of the elementary charge, e, and
the mass in terms of electron volts, eV. An electron gains (or loses) 1 eV in energy, when
passing through an electric potential difference of 1 V. In particle physics the electron volt
is used as a unit for both energy, mass and momentum. This is possible, since natural units
are used, which means the speed of light c is set equal to one such that E2 = p2c2 + m2c4

simply becomes E2 = p2 + m2.

The Standard Model is a quantum field theory (QFT), which in short means that particles
are treated as excited states or quanta of their underlying fields. The fields are then seen as
the more fundamental parts of nature and they are defined at all points of spacetime. The
fields are the following: the fermion fields, ψ; the electroweak boson fields W1, W2, W3
and B; the gluon fields, Ga; and the Higgs field, ϕ.
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Figure 2.1: The standard model elementary fermions and bosons.

Table 2.1: Masses and electric charges of the elementary particles [15].

Particle Mass Electric charge Spin
Quarks up (u) 2.16+0.49

−0.26 MeV + 2
3 e 1

2
charm (c) 1.27 ± 0.02 GeV + 2

3 e 1
2

top (t) 172.9 ± 0.4 GeV + 2
3 e 1

2
down (d) 4.67+0.48

−0.17 MeV − 1
3 e 1

2
strange (s) 93+11

−5 MeV − 1
3 e 1

2
bottom (b) 4.18+0.03

−0.02 GeV − 1
3 e 1

2
Leptons electron (e) ∼ 0.511 MeV −1e 1

2
muon (μ) ∼ 105.6 MeV −1e 1

2
tau (τ ) ∼ 1.777 GeV −1e 1

2
neutrinos (νe, νμ, ντ ) < 2 eV 0 1

2
Bosons photon (γ) 0 0 1

Z boson (Z0) ∼ 91.2 GeV 0 1
W boson (W+,W−) ∼ 80.4 GeV ±1e 1
gluon (g) 0 0 1
Higgs boson (H) ∼ 125 GeV 0 0

The fields are of different types. W1, W2, W3, B and Ga are all vector fields (they transforms
like four­vectors under Lorentz transformations), whereas ϕ is a scalar field (it is invariant
under Lorentz transformations). This explains, why the corresponding bosons are called
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vector and scalar bosons. ψ does also transform under Lorentz transformations, but not
quite like a four­vector. It only turns by half of the normal angle under a rotation and is
therefore instead know as a spinor field (with spin 1

2 ).

The Standard Model consists of several parts describing the different forces. Quantum
chromodynamics (QCD) describes the strong force and is in itself a QFT with the sym­
metry group SU(3), which acts on Ga. The electromagnetic and weak forces are described
together by electroweak theory (EWT), which is also a QFT with the symmetry group
SU(2)× U(1), where SU(2) acts on W1, W2, W3 and ϕ and U(1) acts on B and ϕ. This
means that combined the symmetry group of the Standard Model is SU(3)×SU(2)×U(1).
However, this symmetry can be broken by so­called spontaneous symmetry breaking.

2.2 Spontaneous symmetry breaking

Spontaneous symmetry breaking results in separating the electromagnetic and weak forces
as well as giving the particles mass. The electroweak boson fields W1, W2, W3 and B mix
to give the observed massive weak bosons, W± and Z0 and the massless photon, A:

Z0 = cos θWW3 − sin θWB (2.2)
A = sin θWW3 + cos θWB (2.3)

W± =
1√
2
(W1 ∓ iW2) (2.4)

where θW is the Weinberg angle.

This is know as the Brout–Englert–Higgs mechanism [16, 17]. In rough terms, it can be
said that the weak bosons gain their mass by absorbing three out of four degrees of freedom
of the Higgs field, ϕ. The fourth degree of freedom results in the Higgs boson.

By introducing the Higgs field, not only the weak bosons acquire mass, but also the fermions.
This happens through the so­called Yukawa coupling. The size of the coupling to a given
fermion is measured experimentally and is so far not explained by theory.

Actually not all the fermions gain mass in the way explained above. This is not the case for
the neutrinos, which are assumed to be massless in the Standard Model. To understand
why that is, another property needs to be introduced, namely helicity.
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Question 2.2: What is helicity?

The helicity or handedness describes the direction of the spin of the particle relative
to the direction of motion. If a particle, moving in the direction of the purple arrow,
spins as indicated by the red arrow, it is left­handed, since the rotation goes in the
same direction as your fingers on the left hand, when your left thumb points in the
direction of the purple arrow.
In the same way, the particle is right­handed, if it spins in the opposite direction as
indicated by the green arrow, since it is now following the direction of the fingers
on your right hand.

Helicity is however not an intrinsic property unless the particle is massless. This can be
understood by imagining you are moving slower and faster than a massive particle, respec­
tively. If the helicity is right­handed in the reference frame where you move slower (the
particle moves forward relative to you), then it will be left­handed in the reference frame,
where you move faster (the particle moves backward relative to you), since that would flip
the direction of the purple arrow in the figure above, but not change the spin direction.
It is impossible to move faster than a massless particle and its helicity will therefore be the
same in all reference frames.

A property, that is in intrinsic to all particles, is the chirality, which is closely related to
the helicity. In fact it is the same for massless particles. The chirality will be the same,
no matter which reference frame you are in and left­chiral and right­chiral particles are
therefore fundamentally different.

This difference is of big importance in electroweak theory, since left­chiral and right­chiral
particles are not treated the same. Only left­chiral fermions (and right­chiral antifermions)
interact with the W± and Z0 bosons. However, the left­chiral fermions mix with the right­
chiral leptons through the Yukawa coupling and thereby gain their mass.

In the Standard Model there are only left­chiral neutrinos, which explains why they are
expected to be massless, since they do not have a right­chiral partner to mix with. This is
however not, what is observed. Neutrinos can oscillate between the different flavor states
(electron­, muon­ and tau­flavor) and this is only possible, if they have a mass. This is one
of the phenomenon, that tells us, that the Standard Model is not the final story about our
Universe.
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One possible extension to the Standard Model, which would be able to explain the small,
but non­zero, mass of the left­chiral neutrinos, is the introduction of heavy right­chiral
neutrinos. These neutrinos, which we have not been able to observe yet, would give mass
to the left­chiral Standard Model neutrinos through a so­called seesaw mechanism [18]. The
heavier the right­chiral neutrinos are, the lighter the Standard Model neutrinos will be.

We have now covered, how the particles get their masses and thereby also discussed elec­
troweak theory. It is therefore natural to move on to quantum chromodynamics, but before
doing so, it is useful to introduce a very helpful tool called Feynman diagrams.

2.3 Feynman diagrams

One of the greatest particle physicist of all time, Richard Feynman (May 11, 1918 – Febru­
ary 15, 1988), developed a commonly used graphical representation of particle interactions,
which later became known as Feynman diagrams. They are illustrating the mathematical
formulas for calculating the probability of different processes, but they are also just great
for visualizing the processes. We will focus on the latter here.

The diagrams consists of lines and vertices, where a line represents a particle and a vertex
represents an interaction between the particles. Time is going from left to right. Figure
2.2a shows the different lines used for the Standard Model particles. A straight line with
the arrow in the time direction represents a fermion, f, whereas a straight line with the
arrow against the time direction represents an antifermion, f . The wavy line is used for all
the electroweak bosons: γ, Z0 and W±. The gluon is represented by a curly line and the
Higgs boson by a dashed line.

Figure 2.2b shows two examples of allowed vertices: A photon (or Z boson) going into a
fermion and an antifermion and a gluon going into a quark and an antiquark. These ex­
amples show how charge has to be conserved. In the creation of a fermion, an antifermion,
with the opposite charge, has to be created as well. This charge conservation is one of many
rules, the Standard Model interactions have to obey. One of the strengths of the Feyn­
man diagrams is, that if a certain vertex is allowed, then any rotation or mirroring of it
is allowed as well. If the vertices in Figure 2.2b would be vertically mirrored, they would
instead represent two particles annihilating and thereby creating a boson.

The simplest Feynman diagrams includes only two vertices, but some have many more. An
example of one of the simplest diagrams is shown in Figure 2.3a. An up­ and an anti­up­
quark annihilates to a photon, which then goes into an electron and positron (antielectron).
If this diagram is rotated 90◦, it instead shows an electron scattering of an up­quark as is
seen in Figure 2.3b. The first one is called a space­like (s­channel) process and the second
one a time­like (t­channel) process.
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(a) (b)

Figure 2.2: Feynman diagrams are made from (a) lines and (b) vertices. The time is going from left to right.

(a) (b)

Figure 2.3: Example of simple Feynman diagrams, (a) uu → γ → e+e− and (b) ue− → γ → ue−.

Another thing that can be observed from Figure 2.3a is that a quark and an antiquark
can turn into a lepton and an antilepton (and vice versa). This is true for all quarks and
leptons as long as the initial particles are energetic enough to produce the mass of the final
particles. This is true, since the photon does not have any recollection of the flavor of the
initial particles. In other words, its flavor quantum number is zero.

In contrast to the photon that interacts with all the electrically charged fermions, the gluon
only interacts with the fermions, that have a color charge, namely the quarks. Which brings
us to the topic of quantum chromodynamics.
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2.4 Quantum chromodynamics

As mentioned earlier, the strong force is described by quantum chromodynamics (QCD).
The name chromo comes from the fact, that the important quantum number here is the
color charge.

Question 2.3: What is color charge?

Color is the charge of the strong interaction and is similar to the electric charge.
As the electric charge can be positive/negative, the color charge can be red/antired,
green/antigreen and blue/antiblue. These are just names of the charges and has
nothing to do with the everyday concept of color. The name is however used, be­
cause adding up the three colors (or anticolors) will give a colorless (white) state,
like in the RGB color model. A colorless result is also achieved by adding a color
and its anticolor.

The color charge of a quark can be either red (R), green (G) or blue (B). Whereas for
an antiquark it can be either antired (R), antigreen (G) or antiblue (B). A gluon can be
thought of as having a color and an anticolor. When a gluon interacts with a quark the
color of the quark changes. A red quark could for example emit a red­antiblue gluon, which
would make it blue and the gluon could then be absorbed by another blue quark, which
would make it red. This way the color charge is conserved.

The combination of a color and an anticolor would naively lead to nine different gluons.
That would in fact be the case, if the gauge symmetry of QCD was U(3) and not SU(3).
Having a SU(3) gauge symmetry means, there are no color singlet gluons and therefore
only eight independent color states (the color octet).

If the color singlet existed as a mediator of the strong force, it would also exist as a free
particle, like the photon. This would mean, that the strong force would have infinite range,
which is not, what we observe. The gluons from the color octet can, on the contrary, not
exist as free particles, which is explained by the concept of confinement.
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Question 2.4: What is confinement?

Confinement is the phenomenon, that color charged particles, like quarks and glu­
ons, cannot be isolated and therefore only colorless (color singlet) particles are ob­
served. The observed particles are called hadrons, which are split into two cate­
gories: baryons consisting of an odd number of quarks, usually three*, and mesons
consisting of an even number of quarks, usually a quark and an antiquark. The
three quarks of the baryon will have red, green and blue color charge, respectively,
whereas the meson is made from a color­anticolor combination, like a green quark
and an antigreen antiquark.

*When we say that the usual baryon consists of three quarks, it is actually not completely true, since
quantum fluctuations occur, where gluons split into quark­antiquark pairs, which then annihilate
back into gluons. We however distinguish between these quarks, which we call virtual or sea quarks,
and the remaining ones, which we call valance quarks. It is therefore more correct to say the baryon
consists of three valance quarks.

Confinement is closely related to the concept of asymptotic freedom, which is the property,
that the coupling between the quarks becomes weaker at smaller distances, but stronger as
the quarks move apart and in that way prevents the separation of individual quarks. This
behavior has been ascribed to the fact, that the gluons, which are exchanged between the
quarks inside the hadrons, are not neutral, but carry a combination of color and anticolor.

This is in contrast to the photons mediating the electromagnetic force. Photons, emitted
from say an electron, can create a virtual electron­positron pair, which can screen the charge
seen further from the electron. The effect is a smaller effective charge of the electron and
therefore a weaker field.

A similar screening is seen from virtual quark­antiquark pairs for the strong force, but
the virtual gluons with their color­anticolor combination has the opposite effect. They
enhance the color field, which in addition is smeared. Since the virtual quarks and gluons
have opposite effects, which one wins is determined by the beta function, which to lowest
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nontrivial order for QCD is given by

β0 (αs) = −α
2
s

4π

(
11 − 2

3
nf

)
(2.5)

where αs is the strong coupling constant and nf is the number of quark flavors. It can be
seen that since nf = 6 in the Standard Model, the function is negative, which means the
enhancement or antiscreening from the gluons wins. This antiscreening gets reduced, as we
move closer to the quark, so the effective charge gets smaller, as we get closer. Hence, the
coupling increases, as the distance grows.

2.4.1 Running of αs

What the beta function actually describes, is the dependence of the strong coupling con­
stant on the momentum transfer Q defined as β (αs) =

∂αs
∂ lnQ2 . If αs is small, it is possible

to integrate this function using only the leading term seen in Equation 2.5. This gives

1
αs(Q2)

=
1

αs(μ2
R)

+ b0 ln

(
Q2

μ2
R

)
(2.6)

where we have introduced the renormalization scale μR and b0 =
11− 2

3 nf
4π . This can be

rearranged to give

αs(Q2) =
αs(μ2

R)

1 + b0αs(μ2
R) ln

(
Q2/μ2

R
) (2.7)

which shows the running of αs. The agreement of the theory to the measured values of αs
as a function of Q can be seen in Figure 2.4. It is clear that αs → 0 as Q → ∞. The quarks
behave like free particles at large momentum transfer (short distances). In this regime it is
possible to make perturbative calculations.

2.4.2 Perturbative QCD

Perturbation theory is a methodology, where complicated calculations are split into pieces
of increasing precision and starts with the coarsest approximation called leading order (LO).
If a more precise result is needed, then next­to­leading order (NLO) calculations can be
done as well. Luckily NLO is enough in most cases, since increasing order means an addi­
tional factor of αs, which is small (≪ 1), so the importance of the additional terms rapidly
decrease. We actually already used this principle, when we were only including the first
term for the beta function in Equation 2.5.
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Figure 4: The ↵S(Q) results from this analysis in the range of 262 < Q < 1675 GeV, compared to the results of
previous ↵S determinations from jet data in other experiments at 5 < Q < 1508 GeV [4–14]. Also shown is the
prediction of the RGE for the ↵S(mZ ) result obtained from the R�� data in this analysis.

9 Summary

The multi-jet cross-section ratio R�� is measured at the LHC. The quantity R�� specifies the fraction of
the inclusive dijet events in which the azimuthal opening angle of the two jets with the highest transverse
momenta is less than a given value of the parameter ��max. The R�� results, measured in 20.2 fb�1 of
pp collisions at

p
s = 8 TeV with the ATLAS detector, are presented as a function of three variables:

the total transverse momentum HT, the dijet rapidity interval y⇤, and the parameter ��max. The HT
and y⇤ dependences of the data are well-described by theoretical predictions based on NLO pQCD (for
��max = 7⇡/8, 5⇡/6, and 3⇡/4), or LO pQCD (for ��max = 2⇡/3), with corrections for non-perturbative
e�ects. Based on the data points for ��max = 7⇡/8 with 0 < y⇤ < 0.5 and 0.5 < y⇤ < 1, nine ↵S
results are determined, at a scale of Q = HT/2, over the range of 262 < Q < 1675 GeV. The ↵S(Q)

results are consistent with the predictions of the RGE, and a combined analysis results in a value of
↵S(mZ ) = 0.1127+0.0063

�0.0027, where the uncertainty is dominated by the scale dependence of the NLO pQCD
predictions.
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Figure 2.4: The strong coupling constant, αs, as a function of the momentum transfer, Q [19].

In terms of Feynman diagrams, LO calculations correspond to the simplest, or tree­level,
diagrams, whereas NLO diagrams can include a loop (virtual correction) or emission of an
additional particle (real correction). Since the loop or emission can be placed in several
places, there are a lot more terms to calculate for NLO.

Thus, it is possible to predict the strong interactions between quarks and gluons using
perturbative calculations, as long asαs is small (Q > 1 GeV). However, we know, the quarks
do not exist as free particles, but are confined inside the hadrons. It is therefore important
to understand, how the quarks and gluons are distributed in hadrons, but before we explore
that topic, we will first summarize, what we now know about the Standard Model.

2.5 Summary of the Standard Model

The Standard Model particles and the interactions between them are summarized in Figure
2.5. The lines indicate, which particles can interact and it is seen, that the gluon, the Higgs
boson and the weak bosons all have lines to themselves. This is not the case for the photon,
since it does not have electric charge itself, in contrast to e.g. the gluon, which has color
charge and can therefore interact with itself. Similarly, the photon interacts with the W
boson, but not the Z boson, due to their electric charges of ±1 and 0, respectively.

Mathematically, the Standard Model can be described by a Lagrangian.
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Question 2.5: What is the Lagrangian of the Standard Model?

The Lagrangian or more correctly the Lagrangian density, L, of the Standard Model
describes the kinematics and dynamics of the system of fundamental quantum
fields. The full formulation takes up a few pages and will not be given here. How­
ever, a very shortened version is given by [20]

LSM = −1
4

FμνFμν

+ iψ /Dψ + h.c.
+ ψiyijψjϕ+ h.c.

+ |Dμϕ|2 − V(ϕ)

(2.8)

which can be understood qualitatively in the following way:

• The first term, −1
4FμνFμν , is the scalar product of the field strength tensor

Fμν containing the mathematical encoding of the gauge bosons, where μ and
ν are the Lorentz indices, we also know from four­vectors. The term describes
both the existence of the gauge bosons and how they interact with each other.

• The second term, iψ /Dψ, describes how the gauge bosons interact with the
fermions, ψ. /D is the covariant derivative, featuring the gauge bosons, but
now without the self­interactions. So it contains a description of both the
electromagnetic, weak and strong interaction.

• The third term, h.c., is the hermitian conjugate of the second term, which
could actually be omitted, since the second term is self­adjoint. In general
the hermitian conjugate is added to ensure that the theory is sound.

• The fourth term, ψiyijψjϕ, describes how the fermions couple to the Higgs
field, ψ, and thereby obtain mass. The entries of the Yukawa matrix, yij,
represent the coupling parameters to the Higgs field.

• The fifth term, h.c., is the hermitian conjugate of the fourth term and is
necessary, since the fourth term is not self­adjoint. The fifth term is equivalent
to the fourth term, but for anti­fermions instead of fermions.

• The sixth term, |Dμϕ|2, describes how the gauge bosons couple to the Higgs
field. This only applies to the weak gauge bosons.

• The seventh and last term, −V(ϕ), describes the potential of the Higgs field
and how the Higgs boson couples to itself.
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Figure 2.5: Sketch showing how the Standard Model particles interact with each other.

2.6 Parton distribution function

To describe the distribution of partons (quarks and gluons) inside the hadrons, we use
so­called parton distribution functions (PDFs). The PDFs are studied by scattering exper­
iments like deep inelastic scattering of electrons off protons. The most studied PDFs are
in fact those of the proton, which consists of two up valance quarks and one down valance
quark, as we saw in the figure in Question 2.4.

Figure 2.6 shows the Bjorken x times the PDF, xf(x,Q), as a function of the Bjorken x. The
Bjorken x is the longitudinal momentum fraction carried by the parton and Q is the energy
scale, which is (a) 2 GeV and (b) 1 TeV. The figures shows that if the parton carries more
than 20% of the longitudinal momentum (high Bjorken x), it is most likely an up quark,
but could also be a down quark or a gluon. It is much more unlikely to be an antiquark or
one of the heavier quarks.

At low Bjorken x the sea quarks dominate and the PDFs are more dependent on Q. For
Q = 2 GeV, up and down quarks as well as their antiquarks are as likely, whereas the heavier
quarks (strange and charm) are less likely. If we look at low Bjorken x for Q = 1 TeV, there
are more sea quarks of any flavor as well as more gluons, than at Q = 2 GeV.

If the PDFs are measured at a given Q, it is possible to predict them at another value of Q
using the Dokshitzer­Gribov­Lipatov­Altarelli­Parisi (DGLAP) equations. These equations
are only valid, where perturbative calculations can be used (αs ≪ 1). In fact, perturbative
calculations of the hard scattering of two partons and the PDFs are the two crucial com­
ponents in order to calculate the cross section for a hard scattering in a hadronic collision.
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Figure 2.6: Parton distribution function for the proton with (a) Q = 2 GeV and (b) Q = 1 TeV. The width of the functions shows
the 1σ band. The figures are generated with APFEL 2.7.1 Web [21, 22] using the NNPDF2.3 LO PDF set [23].

Question 2.6: What is a cross section?

The cross section tells you the probability, that a given process will happen in the
collision of two particles. The weird naming, which we usually use for a slice of an
object, came to be for historical reasons, since back in the days, physicists believed
particles to be small unbreakable balls. It is therefore easy to imagine, that the
probability, that two balls would hit each other, would depend on their size or cross
section. Today we know, that particles are actually wave packets and not solid balls
with a fixed cross­sectional area. However, the term cross section is still used.
We use the Greek letter σ to denote the cross section and barn, b for the unit, which
is a tiny area as 1b = 10−28 m2. In fact we often talk about processes with cross
sections as small as pico­barns (pb = 10−12 b)!

2.7 Factorization theorem

To calculate the cross section of a given process in the collision of two protons with momen­
tum P1 and P2, we can use the factorization theorem [24], which allows us to factorize the
cross section into the PDFs for the protons (fi and fj) and the hard­scattering partonic cross
section σ̂i,j. The indices i and j indicates the two interacting partons. In order to make this
factorization, we need to introduce a factorization scale, μF. Below this scale, the process
is described by the non­perturbative PDF and above, by the perturbative hard­scattering
cross section. Therefore, we must have 1 GeV2 ≤ μF < Q2 in order for the perturbative
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calculations to be valid. The factorization theorem now reads

σ(P1, P2) =
∑
i,j

∫
dx1fi(x1, μ2

F)

∫
dx2fj(x2, μ2

F)σ̂ij(x1, x2, μ2
R, μ

2
F) (2.9)

where x1 and x2 are the respective Bjorken x for the two participating partons. The theorem
can also be illustrated schematically. This is seen in Figure 2.7.

Figure 2.7: Schematic illustration of the factorization theorem.

We also notice, that the hard­scattering cross section σ̂i,j not only depends on μF, but also
μR, which was introduced, when we discussed the running of αs. These two scales are
actually introduced in order to cure the divergences in the calculations of σ̂i,j.

There are two types of divergences: ultraviolet (UV) and infrared (IR). The UV divergences
appear because of large momentum of virtual particles and are cured by introducing the
renormalization scale μR, which in turn results in the energy dependence of αs. The IR (or
collinear) divergences appear because of massless particles and are cured by introducing the
factorization scale μF. In this case, it results in the DGLAP equations for the PDFs.

It is important to understand that ideally σ̂i,j should not depend on the values of these
scales. This would indeed be true, if we could sum the entire perturbation series, which is
of course not possible. However, as we go to next­to­leading order (NLO) or next­to­next­
to­leading order (NNLO), the dependence decreases. Due to the remaining dependence,
it is essential to choose the right value for μR and μF and calculate the uncertainty on the
result arising from this choice.

We now have the tools to predict, what happens up until the collision of the partons inside
two protons. The next step is therefore to describe, what happens after the collision.
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2.8 Processes after the collision

After the hard­scattering collision, which by definition involves large momentum transfer,
the two outgoing partons are heavily accelerated. This leads to emission of gluons, which,
due to their color charge, can emit further radiation, leading to parton showers¹.

2.8.1 Parton showers

In principle, these showers are higher order corrections to the hard­scattering partonic cross
section. It is however not possible to calculate these precisely, so instead, only the dom­
inant contributions, which are associated with collinear parton splittings and soft gluon
emissions, are included.

The collinear parton splittings are described by fragmentation functions, which are similar
to the PDFs. Whereas, the soft gluon emissions can be handled by choosing an appropriate
evolution variable. A good choice is a variable related to the opening angle of the splitting,
θ, which would lead to an angular­ordered parton shower.

Another interesting approach to describe parton showers is dipole showering. In this ap­
proach each quark or antiquark are connected to a color partner, whereas a gluon is con­
nected to two color partners. Then each pair of color partners forms a dipole and the
emission of a gluon is equivalent to a dipole splitting into two. This gives a parton shower
order in transverse momentum, so the angular ordering comes for free.

The emission of gluons continues, until we reach the scale, where perturbation theory is
no longer valid, Q < 1 GeV. As we have seen, below this scale αs becomes large and the
quarks can no longer be considered free. They hadronize.

2.8.2 Hadronization

Hadronization is in the non­perturbative regime, which means we can not calculate it from
first principle, but need to come up with a model. The two models, that are mostly used, are
the Lund string model [25] and the cluster model [26]. Here we will focus on the former,
which is used by the PyTHIA event generator [27], which we will come back to later.

The Lund string model is quite similar to the dipole picture in the perturbative regime.
Imagine two quarks moving away from each other. The color field lines between the two
quarks will be attracted to each other due to the gluon self­coupling, resulting in a tube­like

¹It should be noted that on top of final­state radiation, initial­state radiation happening before the collision
exists as well.
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structure or a string. This is in contrast to the radial electric field lines, which are spread
out, since the photon does not interact with itself. This is seen in Figure 2.8.

(a) (b)

Figure 2.8: The difference between (a) electric and (b) color field lines.

When the two quarks are moving apart, the gluonic string is stretched between them and
the kinetic energy of the quarks is transformed into potential energy of the string. When
this energy exceeds the mass of a quark­antiquark pair, it becomes energetically favorable
for the string to break into two, resulting in two strings with a quark at one end and an
antiquark at the other.

The new strings then starts to stretch and break again. This process continues until all the
potential energy in the strings is converted into quarks and we are left with quark­antiquark
pairs with small strings between them, which can be regarded as hadrons. The hadron type
depends on the flavor of the quark­antiquark pairs, that are created in the breaking. The
same is true for the momentum distribution. Since the breaking can be thought of as
arising from vacuum fluctuations, the creation of low­mass quarks with small transverse
momentum with respect to the string axis is the most probable.

One of the most characteristic features of the Lund string model is the way gluons are
treated, leading to the string effect [25]. Gluons are seen as kinks on the strings. Higher
momentum gluons results in sharper kinks. If we consider a quark­antiquark­gluon system
in the center­of­mass frame, we would see more hadrons produced in the angular region
between the quark and the gluon and the gluon and the antiquark, but less in the region be­
tween the quark and the antiquark. This behavior is confirmed experimentally and should
be seen in contrast to a quark­antiquark­photon system, where no enhancement is seen in
the direction of the photon. It does not create a kink in the string.

At high energies, the result of the hadronization is a cone of particles moving in approxi­
mately the same direction. This is called a jet.

21



Question 2.7: What is a jet?

As colored objects, like quarks and gluons, cannot exist in free form due to con­
finement, the result of a fragmented hadron, which contains quarks and gluons,
is the creation of additional quarks and gluons in order to form colorless objects
(hadronization). The collection of these colorless objects is called a jet. More infor­
mation about jets will be given in Chapter 5.

On top of the hadrons described by the parton shower and hadronization, we observe some
additional hadrons, which come from the so­called underlying event.

2.8.3 Underlying event

We call the observed hadrons, which are not coming from the hard scattering, the under­
lying event. It is seen experimentally, that this additional activity is greater, than what is
seen in minimum­bias events.

Question 2.8: What is an event?

In particle physics, an event is the interaction or particle collision, which is observed
by a detector. These collisions can be either elastic or inelastic. The elastic collisions
are common, but since the protons do not dissociate and no new particles are cre­
ated, these are not counted as events in this work. In inelastic collisions, one or
both of the colliding protons are dissociated and new particles are created. These
are the collisions that will be detected and leading to an event being recorded.
So­called minimum­bias events are inelastic events, which are triggered in a way,
where as little bias as possible is introduced by missing or statistically enhancing
certain final states. The definition of minimum­bias is detector­dependent.

The underlying event is believed to come from the partons in the hadrons, that do not
directly participate in the hard scattering. This is also indicated for the proton remnants in
Figure 2.7.

It is possible, and actually highly probable, to have multiple parton interactions, which how­
ever has a relatively small momentum transfer. The probability of such additional interac­
tions depend on the impact parameter, which describes how big an overlap there is between
the protons in the collision. The smaller the impact parameter is, the more probable both
the hard­scattering interaction and multiple interactions are. Therefore it is not surpris­
ing that a higher level of underlying event activity is seen in presence of a hard­scattering
interaction.
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2.9 Monte Carlo event generators

In order to see if the experimental results are in agreement with the Standard Model or
not, we need to have some theory prediction to compare to. In some cases, it might be
possible to calculate a parametric function, which a certain distribution should follow, but
in general, as we have seen, the collision of hadrons is very complicated and involves many
different processes. Therefore, a very useful tool is Monte Carlo event generators.

There are three major event generators on the market: PyTHIA [27], HERwIg [28] and
SHERpA [29]. These three general­purpose event generators have much in common. They
all use pseudo­random numbers in order to get the fluctuations seen from event to event,
which are dictated by quantum processes. They model the hard­scattering interaction, the
parton shower and hadronization as well as the underlying event. However, they are using
different assumptions and models in order to do so, which of course leads to different
results.

HERwIg is using angular­ordered parton showers, whereas the newest version of PyTHIA
as well as SHERpA are based on dipole showering. Regarding hadronization, both HERwIg
and SHERpA are using the cluster model, whereas PyTHIA is using the Lund string model.

2.10 The top quark

Since the top quark is of particular interest in this thesis, an overview of the particle seems
appropriate. As we saw in Table 2.1, the top quark is the heaviest elementary particle
discovered so far [15]. At the LHC, the production of top quark pairs (tt) is happening
via the strong interaction and is primarily coming from gluon­gluon fusion, whereas quark
annihilation is less common. The corresponding Feynman diagrams are seen in Figure 2.9.

Single top quark production is less common, being produced through the weak interaction
and is primarily driven by t­channel exchange of a W boson. Other sizable contributions
come from the s­channel and tW production as seen in Figure 2.10.

Being the only quark, that is heavier than the W boson, it can decay into another quark by
emitting a real W boson. From that follows, that it has a very short lifetime (∼ 5 · 10−25 s)
and that it decays, before it can hadronize. The top quark is usually assumed to exclusively
decay to a W boson and a b quark (t → W+b). This can be tested by measuring the ratio
R given by

R = B(t → W+b)/B(t → W+q) (2.10)

where q = d, s, b. The CMS experiment finds R = 1.014 ± 0.003(stat.) ± 0.032(syst.),
which is consistent with a ∼ 100% branching ratio to a W boson and a b quark [30]. Since
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Figure 2.9: Top quark pairs are produced from gluon-gluon fusion and quark annihilation.

Figure 2.10: Single top quarks are coming from s-channel, t-channel and tW production.

the W boson can decay either hadronically (W+ → qq ′) or leptonically (W+ → l+νl), this
means there are three different final states for top quark pair production: the all­hadronic,
lepton+jets and dilepton channels. The branching ratios are 45.7%, 43.8% and 10.5%,
respectively.

The property of the top quark, which we have measured most precisely, is its mass. It has
been measured in all three decay channels, where the most precise measurement is coming
from the lepton+jets channel. This is due to a good signal to background ratio, which is
much worse for the all­hadronic channel and the presence of only a single neutrino in the
final state, in contrast to the dilepton channel.

The top quark is of special importance both when studying the Standard Model, e.g. due to
its large coupling to the Higgs field, but also when searching for new phenomena beyond
the Standard Model. The latter is the topic of the last section of this chapter.
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2.11 Physics beyond the Standard Model

Even though the Standard Model has done a great job describing particle physics phenom­
ena, it has a number of shortcomings. We have already discussed, that it does not include
the fourth fundamental force of nature, gravity. We have also seen that the Standard Model
predicts massless neutrinos, which is not what we observe experimentally. However, these
are not the only weaknesses.

A topic that puzzles many particle physicists is that of dark matter. Various astrophysical
observations suggest, that the normal matter, explained by the Standard Model, only makes
up approximately 15% of the total matter in the Universe; the rest is dark matter. It is called
dark, since it does not seem to interact electromagnetically. The only reason we know it
exists is through its gravitational interactions.

Another mystery is the abundance of matter over antimatter. It is believed that equal
amounts of matter and antimatter was created in the Big Bang, but today all the visible
Universe is made up of matter. The Standard Model actually allows for CP violation,
which means that charge conjugation parity symmetry is broken. The charge conjugate of
a particle is its antiparticle and switching the parity means inverting the spatial coordinates
or taking the mirror image. This means, the physics is not the same for a particle and the
mirror image of its antiparticle. CP violation is currently only observed in weak interactions
and is explained by the presence of a complex phase in the Cabibbo–Kobayashi–Maskawa
matrix, which describes the quark mixing. However, the violation is not happening to a
degree that can explain why we see so much more matter than anti­matter.

CP violation is also, in principle, allowed in strong interactions, but is so far not observed.
Actually very strict limits are set on it from measurements of the electric dipole moment of
the neutron. This leads to a so­called fine tuning problem called the strong CP problem.
It seems unnatural why the CP violating term in strong interactions should be so small.

Another fine tuning problem is why the Higgs mass is so low. It seems, the bare Higgs
mass must be extremely large in order to cancel out the quantum corrections, which are
of the order of 1018 GeV to give the observed Higgs mass of 125 GeV. The hope is, that
we will discover the underlying reason for this fine tuning someday, so it will no longer
seem unnatural. Studying the top quark in detail might be a rewarding path to follow,
since it, with its large mass, could play a special role in the theory of electroweak symmetry
breaking.
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2.11.1 Z ′ boson

Various theories beyond the Standard Model predict different kinds of new Z ′gauge bosons
[31]. One of these models is called topcolor assisted technicolor [32, 33, 34]. This model
predicts a Z ′ boson, which strongly and preferentially couples to the top quark. It is a model
of dynamical electroweak symmetry breaking, where the Higgs boson is a composite state
of a top and an antitop quark. This model aims to explain why the mass of the top is so
large, as well as solve the fine tuning problem for the Higgs mass. This leptophobic Z ′

boson is usually denoted as Z ′
TC2.

Other models, which introduce Z ′bosons are focusing on explaining dark matter [35, 36,
37]. In these models, the Z ′ boson is the dark matter mediator, which couples the Standard
Model particles to the dark matter particles. Such a Z ′ could be produced in the collision
of quarks and could then either decay into dark matter particles, which we would not be
able to directly detect or back into Standard Model particles, which we would be able to
detect. The Z ′ boson is a so­called resonance.

Question 2.9: What is a resonance?

A resonance is a extremely short lived particle, that decays before it can move very far.
A resonance is seen as a peak in the energy (or mass) distribution, since the cross
section is larger at the mass of the particle. Actually the peak is seen as evidence
for the presence of the resonance, which is just as real as other particles. The only
difference is the lifetime.
The lifetime, τ , can be found easily by measuring the width of the resonance, Γ,
and using the relation

τ =
ℏ
Γ

(2.11)

where ℏ is the reduced Planck constant.

Hence, the Z ′ boson would lead to a bump in an otherwise smooth invariant mass distri­
bution, since the decay products of it will all have the same invariant mass, mZ ′ , and that
the production of the Z ′ increases at that invariant mass of the incoming colliding partons.
We will come back to this in Chapter 6.

2.11.2 Contact Interaction

Looking back at the history, it is reasonable to think, that we will gain additional under­
standing of the fundamental structure of our Universe. It could be, that the particles, we
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call fundamental today, are in fact composite. We have just not reached the necessary
energy scale in order to resolve them yet.

An example of this is the Fermi theory of β decay. In order to explain β decay, Fermi
proposed a four­point interaction, where the neutron is directly coupled to a proton, an
electron and a neutrino, which later turned out to be an antineutrino. This is illustrated by
the Feynman diagram in Figure 2.11a, where the four­point interaction is labeled CI for
contact interaction. Of course now we know, that what happens is one of the down quarks
in the neutron is converted to an up quark by emitting a W− boson, which then decays
into an electron and an antineutrino. However, Fermi’s theory still works as a low­energy
effective field theory.

Question 2.10: What is an effective field theory?

An effective field theory (EFT) is an approximation used at long distances (or low
energy), where the energy is not high enough to resolve, what is happening at small
distances. In this kind of theory an energy scale Λ is introduced. This scale tells us
at which energy, we no longer can use the EFT, but what happens inside the circle,
the contact interaction, will be resolved.

This kind of theory is useful if we want to look for compositeness of quarks [38, 39]. Even
though we might not be able to resolve the constituents with energies below Λ, we could
still be able to see an effect on the kinematic distributions of the interaction. An example
of a qq contact interaction is seen in Figure 2.11b.

(a) (b)

Figure 2.11: Feynman diagrams illustrating (a) the beta decay and (b) an unresolved interaction leading to qq production.

The contact interaction can be described by the Lagrangian

LCI(Λ) =
g2
s

2Λ2 [ηLL
(
qLγ

μqL
) (

qLγμqL
)
+ ηRR

(
qRγ

μqR
) (

qRγμqR
)

+ 2ηRL
(
qRγ

μqR
) (

qLγμqL
)
]

(2.12)

where the quark fields qi have left and right chiral projections (i = L,R), gs is the strong
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coupling constant and ηij = 0,±1 represents the sign of the interference between the
contact interaction and the Standard Model two­quark initial and final states. Here, a bit
counter­intuitively, ηij = −1 gives a constructive interference, whereas ηij = +1 gives a
destructive interference.

This kind of model is particularly interesting when searching for new phenomena at the
LHC, since we have not seen any resonances (beyond the Standard Model) appear yet,
which could mean that even higher energy is needed to resolve them. In Section 6.2, we
will see how angular distributions can be useful to detect this kind of non­resonant signal.

2.11.3 Excited quarks

A natural consequence of the compositeness of quarks is the existence of excited quark
states [40, 41]. Similarly to excitation of atoms, it would be possible to excite a quark, if
it is composite, by transferring energy to it by the absorption of a gluon. The quark would
then go back to its ground state by emitting a gluon as seen from the Feynman diagram in
Figure 2.12. Like with atoms, only certain states would be allowed, which would result in
a resonance at the invariant mass of the decay products.

Figure 2.12: Feynman diagram illustrating the excited quark production and decay.
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3
Large Hadron Collider

The world’s most energetic accelerator is placed approximately 100 meters under the ground
at the French­Swiss border outside Geneva, Switzerland. It is called the Large Hadron
Collider (LHC) and it was constructed in order to investigate the smallest parts of our
Universe [42, 43]. It is placed in the tunnel, that was used for the Large Electron­Positron
(LEP) collider [44] giving it a circumference of 27 km.

The purpose of the LHC is to accelerate beams of protons (or heavy ions) to high energy and
then collide them at four interaction points. At each of these interaction points one of the
major experiments are placed. These are ATLAS [45], CMS [46], LHCb [47] and ALICE
[48]. Whereas ATLAS and CMS are general­purpose detectors, LHCb is specializing in
b­physics to study the matter­antimatter asymmetry and ALICE is build to study heavy ion
collisions.

3.1 CERN accelerator complex

In order to get the protons to the extreme energies, which are obtained in the LHC, several
acceleration steps are needed. The proton beam is produced by stripping the electrons from
a hydrogen gas. The beam is firstly accelerated in the linear accelerator Linac 2 (up to 50
MeV), which is however now being replace by Linac 4 in order to eventually increase the
luminosity of the LHC.
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Question 3.1: What is luminosity?

In accelerator physics, the luminosity, L, is a measure of the interaction probability
in the colliding beams and is therefore the main variable determining the perfor­
mance of the accelerator. It depends purely on the beam parameters and is given
by [49]

L =
N2

bnbfrevγr

4πϵnβ∗
F (3.1)

where Nb is the number of particles per bunch, nb the number of bunches per beam,
frev = 11.25kHz the revolution frequency, γr the relativistic gamma factor, ϵn the
normalized transverse beam emittance, β∗ the beta function at the collision point
and F the geometric luminosity reduction factor due to the crossing angle at the
interaction point. Both ATLAS and CMS originally aimed for a peak luminosity
of 1034cm−2s−1 as seen in Table 3.1, where also a number of the other observables
are given.
If the luminosity is multiplied by the cross section, σ, of a given process, we get the
rate, R, of that process.

From the linear accelerator, the protons enter the Proton Synchrotron Booster (up to 1.4
GeV), followed by the Proton Synchrotron (up to 25 GeV) and the Super Proton Syn­
chrotron (up to 450 GeV), before it finally enters the LHC as seen in Figure 3.1, which
shows the CERN accelerator complex.

The two beams in the LHC are accelerated in opposite directions, one going clockwise and
the other going counterclockwise, in each their vacuum tube, that only intersect at the four
collision points. The beams are not a continuous flow of protons, but consists of bunches
with certain spacing between them, which is usually measured in nanoseconds.

3.2 Run 1 and Run 2 of the LHC

LHC produced the first high­energy particle collisions with a center­of­mass energy of√
s = 7 TeV, corresponding to 3.5 TeV per beam, in 2010. This was a world record, which

was surpassed in 2012, where a beam energy of 4 TeV was achieved. The LHC was then
shut down in the beginning of 2013, marking the end of Run 1, to allow for a 2­year long
pause, Long Shutdown 1, where work on the accelerator was performed in order to achieve
even higher beam energies.
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Figure 3.1: Sketch of the CERN accelerator complex [50].

31



32

In 2015, Run 2 started with a beam energy of 6.5 TeV breaking the record once again. The
goal of achieving a high luminosity could be achieved in several ways as seen in Equation
3.1. If the number of bunches per beam should be kept low as in Run 1, equivalent to a
bunch spacing of 50 ns, this would need to be compensated by having more collisions per
bunch crossing. However, this would also lead to a higher number of inelastic collisions
per bunch crossing (called pile­up as explained below), which is undesirable. Therefore, the
LHC experiments had a strong preference for having a bunch spacing of 25 ns instead of
50 ns to minimize pile­up. In order to tune the accelerator to the new bunch spacing of
25 ns, 2015 became a learning year, allowing to prepare the accelerator to provide the full
luminosity for the rest of Run 2 (2016­2018). This can be seen in Figure 3.2, which shows
the peak luminosity during Run 1 and Run 2.

3.3 Beam and accelerator parameters

luminosity [49].
Figure 3.2: Peak luminosity as a function of time for the ATLAS and CMS experiments. The green dashed line shows the design

2018 in Run 2, compared to 2012 in Run 1 and the design values. It is seen that the beam
energy is still a bit below the design value of 7 TeV. However, the hope is to achieve this

Table 3.1 summarizes the main beam and accelerator parameters for the LHC for 2016­

during Run 3, which will start after the Long Shutdown 2, that is currently taking place from
November 2018 to May 2021¹. From the minimum bunch spacing of 25 ns, the maximal
number of bunches per beam is given, which is 2808. The transverse beam size is given
from the function β(z) and the emittance, ϵ, by [51]

σ(z) =
√
ϵβ(z) (3.2)

¹The starting date for Run 3 is subject to some uncertainty due to the COVID­19 pandemic.



Table 3.1: Beam and machine parameters for the LHC for different years compared to the design values [49].

Parameter Design 2012 2016 2017 2018
Beam energy [TeV] 7 4 6.5 6.5 6.5
Bunch spacing [ns] 25 50 25 25 25
β∗ CMS/ATLAS [cm] 55 60 40 40/30 30 − 25
Crossing angle [μrad] 285 290 370/280 300 − 240 320 − 260
Bunch population [1011 ppb] 1.15 1.65 1.1 1.15 1.15
Normalized emittance [μm] 3.75 2.5 2.2 2.2 2.0
Number of bunches per beam 2808 1374 2220 2556 2556
Peak luminosity [1034cm−2s−1] 1 0.75 1.4 2.05 2.01
Peak average event pile­up ∼ 20 ∼ 35 ∼ 50 ∼ 55 ∼ 60
Peak stored energy [MJ] 360 145 270 320 340

where z is the distance along the nominal beam direction. The value of the beta function
at an interaction point is called β∗ and is usually the minimal value of the function to
maximize the luminosity as seen in Equation 3.1. It is seen in Table 3.1 that a smaller value,
than the design β∗ was obtained in Run 2, which together with a normalized emittance,
ϵn = βγϵ, which was also smaller than the design value, lead to a peak luminosity, which
was twice as big as the design goal.

In order to avoid collisions outside of the collision points in the roughly 100 m long vac­
uum chambers, that is shared by both beams at each experimental site, a crossing angle is
introduced. This however comes with a price of a reduced luminosity given by the factor
F, which was approximately 0.6 in 2018.

The bunch population or intensity is given in units of 1011 protons per beam (ppb) and
was in 2016 a bit smaller than in 2017 and 2018, where the design value was used. With
so many protons squeezed so tight together, it is not surprising that more than one proton
interact in each bunch crossing, leading to so­called pile­up.

Question 3.2: What is pile­up?

Pile­up refers to the additional proton­proton interactions, which happens on top
of the interaction of interest. It can be divided in two categories: in­time pile­up
and out­of­time pile­up.
In­time pile­up is when multiple simultaneous proton­proton interactions happen
in the same bunch crossing and is usually given as the mean number of interactions
per bunch crossing, μ, which is seen for the different years in Run 2 in Figure 3.3.
Out­of­time pile­up is due to the interactions, that happen in the bunch crossings
just before and after the one of interest. Some detector parts are more sensitive
to out­of­time pile­up than others due to different response time constants, which
exceeds the bunch spacing of 25 ns.

33



0 10 20 30 40 50 60 70 80

Mean Number of Interactions per Crossing

0

100

200

300

400

500

600

/0
.1

]
-1

In
te

g
ra

te
d

 L
u

m
in

o
si

ty
 [

p
b

-1 = 13 TeV, 147 fbsATLAS

> = 13.4µ2015: <

> = 25.1µ2016: <

> = 37.8µ2017: <

> = 36.1µ2018: <

> = 33.7µTotal: <

Figure 1: Luminosity-weighted distribution of the mean number of interactions per bunch crossing, µ, for the full
Run 2 pp collision dataset at

p
s = 13 TeV. The µ corresponds to the mean of the Poisson distribution of the number

of interactions per crossing calculated for each proton bunch. It is calculated from the instantaneous per bunch
luminosity. All data recorded by ATLAS during stable beams are shown, including machine commissioning periods,
special runs for detector calibration, LHC fills with a low number of circulating bunches or bunch spacing greater
than 25 ns. The integrated luminosity and the mean µ value for each year are given also.

the preamplifiers of the pixel system are turned on, ATLAS is declared “ready for physics”. Each of the
datasets taken while ATLAS is continuously recording is referred to as an ATLAS run, with each individual
run being assigned a unique six-digit run number. Each run is further divided into luminosity blocks (LBs).
An LB is a period of time during which instantaneous luminosity, detector and trigger configuration and
data quality conditions are considered constant. In general one LB corresponds to a time period of 60 s,
although LB duration is flexible and actions that might alter the run configuration or detector conditions
trigger the start of a new LB before 60 s have elapsed. LB start and end timestamps are assigned in real
time during data-taking by the ATLAS Central Trigger Processor [15]. The LB serves as a standard unit of
granularity for data quality book-keeping. Despite this, rejection of inferior-quality data is possible at a
much finer granularity (either event-by-event or within O(ms) “time windows”) provided that the grounds
and associated parameters are identified in time to be taken into account during the data reconstruction, as
described further in Section 4.

Detector and trigger status, configuration, and other time-dependent information such as calibration
constants, called detector conditions [16], are stored in the ATLAS conditions database [17]. This is an
Oracle database hosting a COOL technology schema [18], which allows the storing of conditions data
according to an interval of validity (IOV). The IOV has a start and end timestamp (in ns), or run and
luminosity block identifier, between which the stored conditions are valid and applicable to the data. Given
that LB length is not fixed, the timestamps that mark the start and end of each LB are also stored in the

5

Figure 3.3: The integrated luminosity as a function of the mean number of interactions per bunch crossing, μ. The peak at low
μ corresponds to dedicated data-taking periods useful for e.g. high precision W boson measurements [52].

It is therefore unavoidable to have pile­up, when a high luminosity is wanted and we do
want that, since it increase the chance of discovering new phenomena by increasing the
number of events. If we have an interesting process with a cross section, σ, then the number
of events is given by

N = σ

∫
L dt (3.3)

where the integral is denoted the integrated luminosity, which is a measure of the amount
of data provided by the accelerator. The integrated luminosity as function of time is seen in
Figure 3.4. If we know the integrated luminosity and the number of events, we can therefore
estimate the cross section and compare it to theory. Here it is important to notice, that the
number of events produced by the accelerator are not necessarily the number of events, we
have left after performing an analysis, since the geometrical acceptance of the detector, A,
and the efficiency, ϵ, are both less than unity.

3.4 LHC operation

A typical LHC fill goes as follows [53]

Injection → Prepare Ramp → Ramp → Flattop → Squeeze
→ Adjust → Stable Beams → Beam Dump → Ramp Down

The fill starts with protons being injected into the accelerator and ends, when the beam
is dumped. Here stable beams is the mode of highest interest for the experiments. It is in
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Figure 2: Evolution of the yearly LHC integrated luminosity (ATLAS/CMS experiments) between 2011
and 2018, with 66 fb−1 delivered in 2018.

duce the β tron-function at IP1 and IP5 from 40 cm to 30 cm. This resulted on 2 November in a
new luminosity record of 2.06×1034cm−2s−1. The number of inelastic collisions per bunch cross-
ing (pile-up) in the experiments ATLAS and CMS was beyond the acceptable, consequently the
instantaneous luminosity was levelled to 1.5× 1034cm−2s−1, using levelling by beam separation.
The 2017 proton physics run that was hampered by the 16L2 issue nevertheless ended with a record
integrated luminosity of 50 fb−1.

3.4 Operation in 2018

To resolve the 16L2 issue sector 1-2 was warmed up to 90 K during the 2017-2018 winter
shutdown, allowing the evacuation of about 7 litres of gasses like oxygen and nitrogen, but not of
the water vapour which was estimated to be 0.1 gram per beam vacuum [7].

The first beam was injected on 30 April and first collisions with a few bunches were estab-
lished 3 weeks later. Subsequently, a period with interleaved commissioning and intensity ramp up
followed, with the maximum of 2556 bunches achieved early May, two weeks ahead of schedule.
During the intensity ramp-up, beam losses induced by 16L2, although much lower than in 2017,
where present and closely monitored. These beam losses are of two types: firstly a steady-state
or constant beam loss that depends on the total number of particles per beam. This beam loss is
mitigated by a special solenoid that was installed during the second half of 2017 [7]. Secondly,
erratic beam loss spikes that add to the steady-state losses, potentially surpassing the dump thresh-
old. These spikes were “conditioned away”, allowing running with the 2556-bunch BCMS beam
in 2018, despite some occasional beam dumps. The 2018 proton physics run ended on 24 October
and accumulated 66 fb−1 of integrated luminosity for ATLAS and CMS.

4

Figure 3.4: The integrated luminosity as a function of time for the different data-taking years [49].

this mode, the valuable collision data taking is happening. This mode can be sustained
for several hours, but the luminosity will gradually decrease, mainly due to losses during
collisions. It is however possible to slightly increase the luminosity by so­called anti­leveling
by reducing the crossing angle and β∗ value. This is an advantage, because it means that
the data will be more similar during a fill (e.g. the pile­up conditions) and so it will be
easier to analyze. The effect is seen in Figure 3.5, which shows the luminosity evolution of
a typical fill during 2018 data taking.

Figure 3.5 also shows the drastically smaller luminosity at LHCb compared to ATLAS and
CMS. As LHCb is optimized for precision physics with b quarks, they do not require the
same high luminosity, but instead want pile­up to be low. The luminosity is adjusted by
using a larger β∗ at the interaction point of LHCb. This kind of leveling of the luminosity
can also be done for ATLAS and CMS in case the luminosity is so high, that it is leading
to pile­up conditions, that cannot be handled by the experiments.

It is clear, that the achievements of the LHC are very impressive, but they would not be of
much use, if it was not for the four major experiments measuring the collisions in order to
investigate the universe, we live in. In the next chapter, we will therefore describe one of
these experiments, ATLAS, which was used to obtain the data used in this thesis.
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Figure 4: Example for the luminosity evolution of the ATLAS, CMS and LHCb experiments in a typical fill
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low luminosity experiments ALICE and LHCb since 2011 to maintain a stable low luminosity.
When the achieved peak luminosity also exceeded the pile-up limit of ATLAS and CMS in 2017,
levelling by beam separation was applied for those experiments.

As a result of luminosity burn-off during collisions the crossing angles and β -functions can
be reduced during the fill, increasing the instantaneous luminosity [14, 15]. This anti-levelling
scheme has been developed, tested and validated during dedicated machine development (MD)
sessions and deployed in steps. In the second half of 2017 the anti-levelling by reducing the half
crossing angle from 150 µrad in three steps to 120 µrad was deployed operationally. In 2018 the
steps were removed and a continuous crossing angle anti-levelling, based on the dynamic aperture
evolution is used. In addition β∗ anti-levelling was added to reduce the β∗* from 30 cm to 25 cm
in two steps, see Fig. 4. Both anti-levelling schemes increase the luminosity production with a few
percent, but the gain in operational experience is also very important for the the upcoming Run 3
and the LHC high luminosity upgrade (HL-LHC) [16].

6. Outlook

Following the upcoming long shutdown 2019-2020, the LHC will be prepared to operation at
7 TeV beam energy. This expected to require a two to three month long training quench campaign

Figure 3.5: Example of the luminosity evolution as a function of time in a typical fill [49].
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4
The ATLAS Experiment

The ATLAS (A Toroidal LHC ApparatuS) experiment [45] is the largest of the four LHC
experiments with a diameter of 25 m, a length of 44 m and a weight of 7000 tonnes. It
has a cylindrical shape, which is forward­backward symmetric, with the particles colliding
in the center of the detector and it consist of several subdetectors, which have each their
specific purpose. A sketch of the full detector with all its subdetectors is shown in Figure
4.1.

Figure 4.1: Sketch of the ATLAS detector [54].
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4.1 Requirements

ATLAS is a general­purpose detector, which means it is build to investigate a wide range
of different physics. From that follows, that it has to perform well on many different pa­
rameters. First of all, it has to have a large acceptance in pseudorapidity, η, with almost
full azimuthal angle, ϕ, coverage, in order to detect as many of the outgoing particles as
possible. This brings us to the ATLAS coordinate system.

Question 4.1: Which coordinate system does ATLAS use?

The ATLAS coordinate system is sketched below. It is right­handed and has its
origin at the nominal interaction point in the center of the detector and the z­axis
goes along the beam pipe. The x­axis points from the interaction point to the center
of the LHC ring, whereas the y­axis points upwards. Cylindrical coordinates (r, ϕ)
are used in the transverse plane, where ϕ is the azimuthal angle around the z­axis
and r is the radius. The pseudorapidity, η, is defined in terms of the polar angle θ
as η = − ln tan(θ/2). Finally, the angular distance can be measured in units of
∆R =

√
(∆η)2 + (∆ϕ)2.

Furthermore, a good charged­particle momentum resolution and reconstruction efficiency
in the inner detector is important to provide efficient vertex finding. The inner detector
should also be able to observe secondary vertices in order to identify e.g. b­jets. We will
come back to the topic of vertices in Section 4.3.

In order to identify electrons and photons, a very good electromagnetic (EM) calorimeter
is also needed. That has to be complemented by a hadronic calorimeter for precise jet and
missing transverse energy, Emiss

T , measurements.
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Question 4.2: What is missing transverse energy?

Missing transverse energy, Emiss
T , or MET is a measure of the energy, that is not de­

tected, but is expected due to energy and momentum conservation. In a proton­
proton collider the energy in a hard­scatter process is not known, since the partons
inside the protons are sharing, and constantly exchanging, the energy. However,
the transverse energy, the fraction of energy that is perpendicular to the beam axis,
is expected to be approximately zero. It is therefore possible to identify any energy
missing in the transverse direction.
A big missing transverse energy is implying the presence of a particle, that only
interacts weakly, like neutrinos, but it could also be a sign of more exotic particles
in theories beyond the Standard Model, e.g. Dark Matter candidates. It is however
a difficult quantity to measure, since it relies on very precise energy reconstruction
of all the detectable particles produced in the collision.

On top of this, because of the extreme environments created by the LHC, the detectors
are required to have fast, radiation­hard electronics and sensors. Due to the many parti­
cles created in the collisions as well as additional pile­up contributions, a high granularity,
especially in the inner detector, is crucial to distinguish the different particles.

The ability to detect and distinguish the different types of particles is helped by the onion
design of the ATLAS detector. The different detector types are placed radially outwards
from the interaction point, with the most fine­grained trackers closest to the middle and
the more coarse­grained calorimeters further out. A cross­sectional view of the detector
showing this is seen in Figure 4.2.

4.2 Particle identification

Figure 4.2 illustrates, how different kinds of particles interact in the various subdetectors,
making it possible to do particle identification. Whereas only charged particles will leave
a track in the inner detector parts, both photons and electrons will deposit their energy in
the electromagnetic calorimeter. Heavier particles, like protons and neutrons, will on the
other hand mostly deposit their energy in the hadronic calorimeter, whereas muons will
not interact much with the calorimeter volumes and can therefore proceed all the way to
the outermost part of the detector, the muon spectrometer. Neutrinos interact extremely
weakly and will therefore travel across the detector undetected. Their presence can however
be inferred through the missing transverse energy as explained in Question 4.2.

Being able to distinguish different particles from each other is of tremendous importance
for the discovery potential of a general­purpose experiment as ATLAS, since it allows us
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Figure 4.2: Sketch of the ATLAS subdetectors and their particle identification abilities (adapted from [55]).

to measure the cross section for different final states. It has therefore had a big impact in
the design process of the detector. We will now go through the various subdetectors in a
bit more detail with more emphasis on the parts, that are important for the measurements
presented in this thesis. For a more thorough review of the detector see [45] and for the
phase­II upgrade see [56].

4.3 The inner detector

The main purpose of the inner detector is to provide accurate tracking information of
charged particles with transverse momentum pT > 0.5 GeV in order to determine their
charge, momentum and origin, which is also called a vertex.
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Question 4.3: What is a vertex?

A vertex is the place, where two or more tracks intersects. The primary vertex is the
reconstructed location of the proton­proton collision. As described earlier, several
proton­proton interactions happen per bunch crossing (pile­up), which means a
given event will have more than one primary vertex, however in ATLAS the vertex
with the highest

∑
p2

T, where the sum is over the tracks associated to the vertex, is
getting labeled as the primary vertex.
A secondary vertex can occur when a particle travels a measurable distance, before it
decays. This is true for e.g. b­hadrons, which means the identification of secondary
vertices is crucial for b­tagging (see Section 5.3.3).

The inner detector originally consisted of the pixel detector, the SemiConductor Tracker
(SCT) and the Transition Radiation Tracker (TRT), but in the first long shutdown the In­
sertable B­Layer (IBL) was installed closest to the beam pipe [57]. A sketch of the different
layers in the inner detector can be seen in Figure 4.3.

Figure 4.3: Sketch of the ATLAS inner detector [58].

The pixel detector and SCT are precision tracking detectors and have a coverage of |η| <
2.5. They both have silicon as the active material and were designed to be operated at
a temperature of ­7◦C in order to minimize the impact of radiation damage by greatly
reducing the leakage current. The pixel detector consists of approximately 80.4 million
pixels, each corresponding to a readout channel, whereas the SCT consists of strips with
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approximately 6.3 million readout channels. The pixels are placed on 3 concentric cylinders
around the beam pipe in the barrel region and on 3 disks perpendicular to the beam in the
end­cap regions, while the strips of the SCT are placed on 4 cylinders and 9 disks for each
endcap. The intrinsic accuracy in r­ϕ is 10 μm for the pixel detector and 17 μm for the
SCT.

The IBL was installed between Run 1 and Run 2 of the LHC together with a new beam
pipe with a smaller radius. It consists of another 12 million pixels and is complementing
the inner layer of the pixel detector by improving the vertex resolution and maintaining
the performance at the high luminosity of Run 2 despite of the radiation damage.

The TRT has a lower resolution than the silicon detectors, with an intrinsic accuracy of
130 μm in r­ϕ and it only has a coverage of |η| < 2.0. However, approximately 36 hits are
expected per track, which significantly improves the momentum measurement especially
at high pT, since the lower precision per point, σ, is compensated by the large number of
points, N, and longer measured track length, L, as seen by the Glückstern formula for the
momentum resolution [59, 60]

σpT

pT
=

pTσ

0.3L2B

√
720

N + 4
(4.1)

where the magnetic field, B, is measured in Tesla, σ and L in meters and pT in GeV.

The TRT consists of nearly 300.000 4 mm thin­walled drift tubes and the spaces between
the tubes are filled with a radiator material, which create the transition radiation. It should
also be mentioned that the TRT is substantially cheaper than the silicon detectors, so it is
a desirable choice, when wanting to cover large volumes in order to get a longer lever arm
for the track measurements.

With the described layout of the inner detector, the ATLAS experiment is able to recon­
struct the tracks of approximately 1000 particles, that emerge within |η| < 2.5 from the
collision point for every bunch crossing. The way the tracks are reconstructed will be de­
scribed in Subsection 5.1.2.

4.4 The calorimeters

The primary goal of the calorimeters is to fully absorb and measure the energy of the par­
ticles created in the collision. This means, the calorimeter shower must be contained and
the punch­through into the outermost subdetector, the muon spectrometer, should be min­
imal. The ATLAS calorimeter system consist of several parts as seen in Figure 4.4, but can
roughly be divided in the electromagnetic (EM) and hadronic calorimeter. They are both
sampling calorimeters.
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Figure 4.4: Sketch of the ATLAS calorimeters [61].

Question 4.4: What is a sampling calorimeter?

A sampling calorimeter consists of a dense absorber, that gives rise to a large energy
loss and an active medium, which measures the energy through ionization or scin­
tillation.
The absorber is usually a material with a high atomic number, Z, since the cross
section of electromagnetic processes is proportional to Z2 and the cross section of
hadronic processes depend on the size of the nuclei. This means, that less high­Z
material is needed, in order to absorb the particle energy, than low­Z material.
The active medium on the other hand is made of a material, where the energy de­
posits can easily be measured.

4.4.1 EM calorimeter

The electromagnetic calorimeter is finely­grained in the |η| range of the inner detector
in order to make precise measurements of electrons and photons and covers the |η| < 3.2
region. It is using lead (Z = 82) as the absorber material and liquid argon (LAr) as the active
medium and is therefore often referred to as the LAr calorimeter. As the inner detector, it
consists of a barrel (EMB, |η| < 1.475) and two end­cap regions (EMEC, 1.375 < |η| <
3.2), which each contain two coaxial wheels. Since argon has a boiling point of 87 K, the
barrel and the two end­caps are placed in each their cryostat.
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The lead absorber plates are interleaved with readout electrodes and are accordion­shaped
as seen in Figure 4.5. Each module has three layers, where the first consists of strip cells,
which are finely­grained in η with a size of ∆ϕ× ∆η = 0.098× 0.0031, whereas the cells
in the second and third layer have a size of ∆ϕ× ∆η = 0.0245 × 0.025 and ∆ϕ× ∆η =
0.0245 × 0.05, respectively. This architecture of the first layer is chosen to get precise
measurements of the particle position in order to distinguish neutral mesons like π0 from
photons. The purpose of the second layer is to collects the main part of the electromagnetic
shower, such that only the highest energy electrons reach the third layer, which can therefore
be more coarsely segmented. The first and second layer are very valuable for identifying
photon vertices, since photons are not leaving any tracks in the inner detector.

The depth of the different layers of the calorimeter in Figure 4.5 are not only given in mm,
but also in terms of the radiation length, X0.

Question 4.5: What is the radiation length?

The radiation length, X0, of a material is the mean length to reduce the energy of an
electron by a factor 1/e, where e ≈ 2.71828 is the base of the natural logarithm.
The radiation length can be approximated by [62]

X0 =
716.4 · A

Z(Z + 1) ln 287√
Z

g · cm−2 (4.2)

where A is the atomic weight in g/mol and Z is the atomic number.
The radiation length is often given in g · cm−2, but can be converted to cm by
dividing with the density of the material.

The mean free path for pair­production by a high­energy photon, is related to the radiation
length by λγ = 9

7X0. So through bremsstrahlung and pair­production, an electromagnetic
shower will build up in the EM calorimeter and due to the depth of more than 22X0 it will
be (almost always) fully contained.

Due to the energy loss of the electrons and photons in the material before the EM calorime­
ter, a presampler detector is used to make up for this. The presampler is placed right before
the EM calorimeter in the |η| < 1.8 region and consist of a 1.1 cm (0.5 cm) active LAr
layer in the barrel (end­cap) region.

4.4.2 Hadronic calorimeter

The hadronic calorimeter in ATLAS consists of three parts: the scintillator tile calorimeter,
the LAr hadronic end­cap (HEC) and the LAr forward calorimeter (FCal).
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Figure 4.5: Sketch of a electromagnetic barrel (EMB) calorimeter module [45].

The tile calorimeter is placed right outside the EM calorimeter and consists of a barrel
covering |η| < 1.0 and an extended barrel for 0.8 < |η| < 1.7. This sampling calorime­
ter is using steel as the absorber and scintillating tiles as the active material. As the EM
calorimeter, it has three layers with a depth at η = 0 of 9.7λ, where λ is the absorption
length.

Question 4.6: What is the absorption length?

The absorption length, λ, of a material is the mean length required to reduce the
number of relativistic hadrons by a factor for 1/e, where e ≈ 2.71828 is the base of
the natural logarithm.
Where electrons lose their energy by interacting with the electrons of the atoms,
the hadrons lose their energy by interacting with the nucleus. These interactions
are e.g. spallation, neutron capture and fission.

Hadronic showers are much broader and longer than electromagnetic ones. Its overall
development is controlled by strong interactions. Firstly, a high energy hadron interacts
with the absorber material, which leads to the production of more hadrons, which then can
interact with further nuclei. This leads to nuclear breakup and spallation neutrons. This
process continues down to the pion production threshold of 2mπ = 0.28 GeV. The neutral
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pions decay into photon pairs, π0 → γγ, resulting in an electromagnetic component of
the hadronic shower.

The hadronic component of the shower includes undetectable or invisible energy from
breaking of nuclear bonds (binding energy and short­range nuclear fragments, that are
mostly absorbed before reaching the active medium), long­lived or stable particles that es­
cape (neutrons, long­lived neutral kaons and neutrinos) and muons from pion and kaon
decays, that almost do not interact in the calorimeters.

From this it is clear, that the response to electrons and hadrons is very different. Due to the
invisible component of the hadronic shower, the ratio of the energy deposits of an electron­
initiated shower and a hadron­initiated shower, where the electron and hadron has the same
initial energy, will be bigger than one ( e

h > 1). The ATLAS hadronic calorimeter are not
able to compensate for this difference and are therefore called non­compensating calorimeters.

Question 4.7: What is a compensating calorimeter?

A compensating calorimeter is able to make up for the invisible energy in the hadronic
shower and thereby get e

h ≃ 1. This is done by either reducing the response to the
electromagnetic component (e.g. using a high­Z absorber material) or increasing
the response to the hadronic component (e.g. using an active medium with a lot of
hydrogen).

One of the challenges with non­compensating calorimeters is that the response will de­
pend on the energy of the hadron (non­linearity). We will come back to how the non­
compensating nature of the hadronic calorimeter is treated in Chapter 5.

The hadronic end­cap calorimeter (HEC) consists of two wheels in each end­cap, which
are located right behind the EM end­caps and are sharing the same cryostats. It covers the
region 1.5 < |η| < 3.2. The absorber is made of copper (Z = 29) and the active medium
is as in the EM calorimeter LAr.

The last calorimeter is the forward calorimeter (FCal), which covers 3.1 < |η| < 4.9.
It consists of three modules in each end­cap, where the first, which is made of copper, is
optimized for electromagnetic showers, whereas the second and third, which are made of
tungsten (Z = 74), are measuring mainly the energy of the hadronic interactions.

The absorption length throughout the detector is seen in Figure 4.6. The figure gives a
good overview of the range, the different calorimeters cover and it is seen that they overlap,
such that the dead material in any η direction is minimal.
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5.4 energy measurements
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Figure 16: The |h| coverage and number of absorption lengths of the ATLAS
calorimeter system [38].

5.4 energy measurements

The strength of the signal from a cell is a measure of the energy
deposited in it. The conversion from ADC counts to signal current in
µA, or charge in pC, is known from calibration, where a known charge
is injected. The correspondence between signal current and energy is
known from electron beam tests. After shaping, the amplitude of the
pulse, which carries the energy information, is found through pulse
fitting filtering algorithms. This will also give the timing of the pulse,

73

Figure 4.6: The absorption length, λ, as a function of pseudorapidity, η [45].

4.4.3 Energy measurements

In LAr calorimeters, when a particle initiates an electromagnetic shower in the absorber,
it will lead to ionization of the liquid argon atoms in between the absorber plates. These
ions will induce a current, that is collected by the readout electrodes. This gives a triangular
pulse, that is then amplified and shaped by the front­end­board (FEB). The now bipolar
shaped signal is sampled at 40 MHz (corresponding to the 25 ns bunch spacing used in Run
2). This is seen in Figure 4.7, which also shows that the bipolar shaped signal consist of a
positive part, that is short and high, and a negative tail, that is long and shallow. The net
integral over the signal is zero and since the number of samples used is only four, the signal
and correspondingly energy can be negative. This is only the case for the LAr calorimeters,
where the drift time leads to the long pulses of many bunch spaces as seen in the figure.
In the Tile calorimeter a scintillating medium is used as the active material, which gives
a much shorter pulse length. Therefore, a unipolar shaping can be used, which is never
negative.

The bipolar signal shape helps to minimize the contribution from pile­up. Since out­of­
time pile­up mostly will contribute with negative signals, whereas in­time pile­up will con­
tribute with positive signals. However, the pile­up will vary from event to event and is
therefore leading to an uncertainty in the measured energy, worsening the energy resolu­
tion.
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Figure 4.7: Example of amplitude as a function of time for the triangular detector pulse and the bipolar shaped signal from the
front-end board in the EMB. The dots indicate samples of 25 ns spacing corresponding to the bunch spacing in LHC
in Run 2 [63].

Question 4.8: What is the energy resolution of the ATLAS calorimeter?

The relative energy resolution improves as a function of energy, measured in GeV,
and is given by

σE

E
=

a
E
⊕ b√

E
⊕ c (4.3)

where the first term is the noise term, the second is the sampling term and the third
is the constant term.
The noise term takes into account the effect of electronic noise as well as pile­up,
whereas the sampling term is dependent on the material choice and thickness. The
constant term, which dominates at high energy, depends on the detector geometry
and design, like the number of radiation/absorption lengths and the amount of dead
material. The energy resolution varies greatly for the different calorimeters as seen
in the table below [64]. The noise term, which depends on pile­up is not included.

Calorimeter Energy resolution σE
E

EMB 10%√
E
⊕ 0.7%

EMEC 10%√
E
⊕ 0.7%

HEC 50%√
E
⊕ 3%

FCal 100%√
E

⊕ 10%
Tile 50%√

E
⊕ 3%
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4.5 Muon spectrometer

The outermost layer of the detector is the muon spectrometer. It will almost exclusively
measure muons, since it is the only charged particle, that can make it so far out in the
detector. It covers the range |η| < 2.7 and has three layers of chambers in both the barrel
and the end­caps. It use four different technologies in order to detect the muons: thin
gap chambers (TGC), resistive plate chambers (RPC), monitored drift tubes (MDT) and
cathode strip champers (CSC).

The main purpose of the TGC in the end­caps and the RPC in the barrel region is to
deliver tracking information within a few tens of nanoseconds in order to be able to trigger
on muon events. We will come back to the concept of triggering in Subsection 4.8.1.

The purpose of the MDT, which are used over the whole η range, and the CSC in the end­
cap is to make precision­measurements of the track and thereby the muon momentum.

4.6 Forward detectors

A few more ATLAS subdetectors, which are not part of the main cylinder, but are placed
in the forward direction along the beam pibe, should be mentioned as well. They are called
LUCID, ALFA and ZDC.

The LUminosity measurement using Cherenkov Integrating Detector (LUCID) is placed
at ±17 m from the interaction point. It is the main online relative­luminosity monitor
for ATLAS and it measures the instantaneous luminosity by detecting the inelastic proton­
proton scattering in the forward direction. It was upgraded before Run 2 to the LUCID­2
detector [65], which consists of several small Cherenkov detectors. It uses thin quartz
windows as Cherenkov medium and small amounts of radioactive 207Bi sources placed on
to these windows to monitor the gain stability of the photomultipliers. This gives a fast
and precise luminosity measurement, which can be kept stable during many months of
data taking.

The Absolute Luminosity For ATLAS (ALFA) detector is located even further down the
beam pipe, ±240 m from the interaction point. It consists of four Roman pots with
scintillating­fiber trackers, that can be moved as close to the beam as 1 mm. It is designed
to measure the total proton­proton cross section as well as the luminosity. It does this by
measuring the proton scattering at very small angles and using the optical theorem, which
relates the total cross section to the forward elastic scattering amplitude. The operation of
ALFA requires special run conditions [66] with high β∗ and low emittance, which is also
used for calibration of LUCID.
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The last forward detector is the Zero Degree Calorimeter (ZDC), which consist of two
sampling calorimeter modules, that are placed at ±140 m from the interaction point. It
uses tungsten as the absorber and quartz rods as the active medium. It is measuring neutral
particles up to |η| ≤ 8.2 and plays a key role in determining the centrality in heavy ion
collisions. During low­luminosity proton­proton collisions it can also be used for triggering
of minimum­bias events.

4.7 Magnets

A last but very important part of the ATLAS detector is the magnet system. Without a
magnetic field it would not be possible to measure the momentum of the charged particles
with the inner detector and the muon spectrometer. The ATLAS magnet system consist
of four big superconducting magnets, a central solenoid, a barrel toroid and two end­cap
toroids, as seen in Figure 4.8.

Figure 4.8: Sketch of the ATLAS magnet system. In red the central solenoid and in blue the barrel toroid and the two end-cap
toroids.

The solenoid is placed right outside the TRT, but before the EM calorimeter. It is aligned
with the beam axis and provides a 2 T axial magnetic field for the inner detector. The layout
was optimized to keep the material thickness in front of the EM calorimeter minimal in
order to minimize the energy deposited before the calorimeter. Therefore, the calorimeter
and the solenoid windings also share a common vacuum vessel and thereby eliminating two
vacuum walls.

The three toroid magnets are providing a magnetic field of approximately 0.5 T and 1 T
for the muon detectors in the central and end­cap regions, respectively. They each consist
of eight coils.
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4.8 Data taking

Recording the information from the various subdetectors and transforming it into useful
data requires several steps. As discussed in Chapter 3, the LHC has gone through two
major data taking periods so far, Run 1 with a center­of­mass energy of

√
s = 7 and 8 TeV

and Run 2 with
√

s = 13 TeV.

In ATLAS, the LHC runs are divided into data taking periods, which are denoted by letters
(A,B,C,...). Each of these periods consist of a number of sub­periods, which again contain
several runs, where the conditions are very similar. The runs should not be confused with
the LHC runs, but are continuous periods of ATLAS data recording. They usually corre­
sponds to a single LHC fill and the run number is unique, such that a given event always can
be identified by its event and run number. Each run is divided in minute­long luminosity
blocks for which the luminosity is known.

These luminosity blocks makes it possible to generate a list of good­quality data and a whole
run does not need to be discarded, if a problem occurs in the detector for part of the run.
In this manner, the good run list (GRL) specifies the luminosity blocks, that are suitable for
data analysis. This can vary for different analyses and therefore several GRLs exist. This
also means that the integrated luminosity, that is available for data analysis, is less than the
integrated luminosity delivered by the LHC. In Run 2, LHC delivered 156 fb−1 of data
of which 147 fb−1 was recorded by ATLAS and only 139 fb−1 was suitable for physics
analysis as seen in Figure 4.9.
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4.8.1 Triggering

In the LHC, the proton bunches cross at a rate of 40 MHz. That is 40 million events per
second! Luckily most of these collisions are not interesting and do not need to be saved.
In order to make sure that the interesting events are saved, we use triggers.

Question 4.9: What is a trigger?

A trigger is a system, that quickly decides whether an event, should be saved or not,
by checking whether a number of criteria are met. This can e.g. be a requirement
on the minimum energy deposited in the calorimeter.

The event rate is brought down from 40 million per second to approximately 1000 per
second, which are saved, using the trigger and data acquisition (TDAQ) system. The AT­
LAS trigger system [68] was upgraded between Run 1 and Run 2 to be able to handle
the increased center­of­mass energy and pile­up. It consists of a hardware­based first­level
trigger (L1) and a software­based high­level trigger (HLT). The central trigger processor
(CTP) makes the L1 trigger decision based on inputs from several subsystems, like the
L1 calorimeter triggers and the ZDC. If an event is accepted by the L1 trigger system,
it is buffered in the read­out system (ROS) and processed by the HLT. The L1 trigger is
reducing the event rate to approximately 80.000 events per second.

In the HLT, tracks are reconstructed in the inner detector and the muon spectrometer,
whereas several physics objects are reconstructed in the calorimeter. This includes electron,
photon, tau and jet candidates as well as missing transverse energy, Emiss

T . It is therefore
possible to trigger on different physics objects making it possible to optimize the triggering
for specific analyses.

The trigger menu outlines the list of L1 and HLT triggers. The composition and trigger
thresholds are optimized for various luminosities such that the physics output is maximized
within the limits of the bandwidth of detector and the TDAQ system. In order to achieve
the optimal trigger menu within the rate constrains, prescale factors can be applied to the
L1 and HLT triggers.

Question 4.10: What is a prescaled trigger?

A prescaled trigger is a trigger, which is only used a fraction of the time, such that
e.g. only 50% of a certain kind of events are accepted. Prescales are use in order to
not overload the system and can be changed during the data­taking e.g. when the
luminosity gets below a certain threshold. A trigger, where no prescale is applied, is
called an unprescaled trigger and are usually used for physics analyses.
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Many triggers, like jet triggers, has a pT threshold, such that only jets above this threshold
is saved. However, due to resolution inefficiencies and differences between the trigger and
offline level, this threshold is not leading to a abrupt turn­on of the trigger at this value,
but a rather smooth transition, that can be described by an error function. This is called
a turn­on curve and some examples for L1 single­jet triggers are seen in Figure 4.10. In
analyses it is common to apply a cut on the offline pT, where the plateau is reached, such
that the turn­on region is not affecting the distributions.

Figure 4.10: Examples of turn-on curves for single-jet triggers with different requirements on the jet ET [69].

We have now covered, how the data is collected in ATLAS, but to be able to compare the
collected data to the Monte Carlo simulations, a good detector simulation is needed as well.

4.9 Detector simulation

We have previously discussed, how the proton­proton collisions are simulated with Monte
Carlo event generators (see Section 2.9), but the output from these will be on the truth
level. In order to compare the simulations to our data, we need it to be on the reconstructed
level, which takes into account any detector effects, like the coverage and acceptance of the
detector, but also the energy losses in dead material and smearing of the particle direction.
The effects are simulated with the GEANT4 detector simulation [70], where a full model of
ATLAS is build, including the geometry and the different detector materials.
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4.10 Data processing

Immense computing resources are needed in order to save, process and analysis the extensive
amount of data collected by ATLAS. For that purpose, the Worldwide LHC Computing
Grid (WLCG) is used. The grid links thousands of computers, which are located all over
the world.

The computer centers are divided into different tiers, where Tier 0 is located at CERN
and is responsible for storing and distributing the primary data files as well as the initial
processing. The Tier 1 facilities also store each their part of the primary data files as well as
process it to provide high­level data files, which are then further distributed to the Tier 2
centers. On these regional centers, the analysis scripts, which are submitted to the grid by
the users, are mostly run. For further information on computing in ATLAS see [71].
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5
Jets

A theorist, a phenomenologist and an experimentalist will all give you a different answer to
the question: What is a jet? The theorist will tell you, that it originates from the outgoing
partons in a Feynman diagram. We will call this a parton jet. The phenomenologist will be
more concerned with what happens after the hard scatter and would tell you, that a jet is
the spray of particles, that arise from the parton shower and hadronization processes. This
we name a particle jet. The experimentalist on the other hand, will be focusing on what
can be measured in the experiment. Namely, the tracks and energy deposits from which
we can form a jet with an algorithm. We call this a reconstructed jet. These different types
of jets are sketched in Figure 5.1.

Figure 5.1: Sketch showing the different definitions of jets.
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Any hard­scatter interaction, that have quarks or gluons in the final state, will result in jets
as explained in Chapter 2. Since the analyses presented in this thesis are indeed looking
for new phenomena, that have final states with quarks or gluons, it is of great importance
to understand the jets. When we are searching for a new resonance, that goes into either a
hadronically decaying top­quark pair, as in Chapter 8, or a b­quark pair, as in Section 9.2,
jet substructure comes in handy, as we will see in Section 5.3.

5.1 Reconstruction

Reconstructed jets can be created from any four­vector objects. In ATLAS, both energy de­
posits in the calorimeter, tracks from charged particles in the inner detector and combina­
tions of the two are used as input to the reconstruction algorithms. It should be mentioned,
that at the truth level, using Monte Carlo samples, it is also possible to use the four­vectors
of the individual particles directly instead of the reconstructed signal in the detector.

5.1.1 Topological clusters

The energy deposits in the calorimeters are clustered by taking advantage of the high gran­
ularity of the calorimeters. The cell signals are clustered based on the ratio of the measured
energy, Ecell, to the average expected noise in the cell, σnoise,cell, forming topological clusters,
or topo­clusters [72].

First cells with |Ecell| > 4σnoise,cell are selected by the algorithm. Each of these seed cells
forms a proto­cluster, which grows at the next stage of the algorithm. If the neighboring
cell (in all three dimensions) has |Ecell| > 2σnoise,cell, it is added to the proto­cluster and
the neighbors of this cell is checked as well. This step continues until no more cells fulfill
the requirement. If the neighboring cell is a seed cell the two proto­clusters are merged.
As a last step all neighbors with |Ecell| > 0σnoise,cell are added as well. This is illustrated in
Figure 5.2.

The result of this algorithm is a core of cells with highly significant signals surrounded by an
envelope of less significant signal cells. The “420 scheme” as described above was derived
from optimizations of the response and the relative energy resolution for charged pions in
test­beam experiments using ATLAS calorimeter prototypes. The algorithm is implicitly
noise suppressing, but large negative and positive signal fluctuations introduced by pile­up
can still remain, such that there will be a pile­up dependence.

Recently, an origin correction is applied to the topo­clusters on an event­by­event basis to
account for the position of the primary vertex [73]. Earlier, this correction was instead
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Figure 5.2: Illustration of the topo-cluster algorithm, where each square represents a cell and the red cell is the seed cell with
|Ecell| > 4σnoise,cell.

applied to the entire jet. Furthermore, only positive energy topo­clusters are used as input
for jets.

5.1.2 Tracks from charged particles

Jets can also be reconstructed from the tracks left by charged particles in the inner detec­
tor. Reconstructing these tracks is a complicated matter. The primary­track reconstruction
happens in the pixel and SCT detectors [74]. It starts by constructing clusters from the
raw measurements in pixels and strips with common edges or corners, which are above a
given threshold. Three­dimensional measurements called space­points are created from the
clusters. In the pixel detector each cluster corresponds to one space­point, while in the
SCT a cluster on both sides of a strip is needed to create a space­point.

Track seeds are created from sets of three space­points, which allows for a crude momentum
estimate, while still having a very high efficiency. A number of requirements are placed on
the track seeds to maximize the purity. Those include momentum and impact parameter
cuts and the criteria, that an additional space­point is compatible with the particle’s trajec­
tory estimated from the seed. If the seed requirements are fulfilled, a combinatorial Kalman
filter [75] is used to build track candidates. This results in a number of realistic combina­
tions of space­points. To have a large tracking efficiency, some track candidates will have
wrongly assigned space­points and sometimes share several space­points with other track
candidates. Therefore, an ambiguity­solving stage is necessary.
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The ambiguity solver is ranking the track candidates by calculating a track score. This score
is based on simple track quality requirements. For instance, a cluster assigned to the track
is increasing the score, whereas a missing cluster in a layer (a hole) reduces the score. The
χ2 of the track fit is also taken into account, as well as the logarithm of the track momen­
tum. After calculating the score, the next step is to deal with clusters assigned to multiple
track candidates. It is not unlikely, that a cluster can include energy deposits from several
particles, since the distance between the charged particles can be very small in the core of
highly energetic jets.

An artificial neural network is trained to identify such merged clusters. It uses informa­
tion of the measured charge, which is proportional to the deposited energy and the rela­
tive position of pixels in the cluster, as well as the particle’s predicted incident angle. The
identification efficiency for merged clusters with two (three) participating particles is 90%
(85%). Whereas only a few percent of single particle clusters are misidentified as originating
from two particles. The number of misidentified clusters coming from three particles is
negligible.

It is therefore not a problem for multiple track candidates to share a cluster as long as it
is identified as merged. The clusters, which are not identified as merged, but are used in
multiple track candidates, are called shared clusters. Such clusters are likely to be wrongly
assigned to one of the track candidates. Therefore, clusters can only be shared by two
tracks and a track can maximally have two shared clusters. As a consequence, a cluster can
be removed from a track, if the requirements are not met and the track score is recalculated.

The ambiguity solver rejects track candidates, if they do not fulfill the following quality
criteria:

• pT > 400 MeV

• |η| < 2.5

• ≥ 7 pixel and SCT clusters

• No more than either one shared pixel cluster or two shared SCT clusters on the same
layer

• ≤ 2 holes in total in the pixel and SCT detectors

• ≤ 1 hole in the pixel detector

• |dBL
0 | < 2.0 mm

• |zBL
0 sin θ| < 3.0 mm
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where dBL
0 is the transverse impact parameter calculated with respect to the measured beam­

line (BL) position, zBL
0 is the longitudinal difference along the beam line between the point

where dBL
0 is measured and the primary vertex and θ is the polar angle of the track.

The track candidates, that fulfill these requirements, are used as inputs for a high­resolution
fit, which takes into account all available information. In these fits, the position and un­
certainty of each cluster is determined by additional neural networks. Only after this step a
track extension is done to include the hits in the TRT [76] and thereby finalize the inside­out
track reconstruction.

Another outside­in track reconstruction is done on the hits, that have not already been
assigned to a track. This sequence start by a global pattern recognition in the TRT, in
order to find tracks that did not have sufficient, if any, hits in the silicon detectors. After
constructing a track segment in the TRT, the track is followed backwards into the silicon
detector. This allows for additional tracks to be created, which were missed by the inside­
out sequence.

5.1.3 Combination of topo­cluster and track information

The topo­clusters and tracks, described above, can be used directly as an input for the jet
algorithms, but it is also possible to combined the signals in so­called particle flow objects
[77]. This approach has several advantages. First of all the momentum resolution of the
inner detector is significantly better than the energy resolution of the calorimeter for low­
energy charged particles, whereas the opposite is true at high energy. Including the track
information is also improving the acceptance of soft particles, due to the low pT require­
ment of pT > 400 MeV. Such particles would typically not exceed the noise threshold
required to seed a topo­cluster. Furthermore, the angular resolution of the inner detector
is much better than that of the calorimeter. The great angular resolution also makes it pos­
sible to associate the track with a vertex and thereby reject signals originating from pile­up
vertices. Another advantage is the ability to cluster low­pT charged particles into the jet
by using the track’s azimuthal coordinate at the perigee, which would otherwise have been
swept out of the jet cone by the magnetic field before reaching the calorimeter.

However, the gain comes with a complication. It is not possible to directly combine the
topo­cluster and track information, since it would lead to a double­counting of the en­
ergy. Therefore, it is necessary to correctly identify the signal in the calorimeter left by a
particle, whose track is going to be used, such that this can be subtracted. The ability to
correctly remove all the energy left by a single particle, without removing any additional
energy deposited by other particles, serve as the main performance criterion upon which
the algorithm is optimized.
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A number of additional requirements are placed on the tracks compared to those outlined
in Section 5.1.2. This selection is referred to as the tight selection and include a criteria of
at least nine hits in the silicon detectors and no holes in the pixel detector. In addition, it
is required that pT > 500 MeV, which significantly reduces the computing time without
affecting the jet resolution, since such low­pT tracks has a small contribution to the total
jet pT. An upper limit of pT < 40 GeV is also implemented, since such energetic parti­
cles are often poorly isolated from nearby activity and thereby complicate the subtraction
of the energy in the calorimeter. Consequently, there is no advantage of using the track
information in such cases.

The particle flow algorithm provides a list of these well­measured tracks, a list of topo­
clusters before subtraction and a list of topo­clusters after subtraction. The algorithm first
tries to match each track to a single topo­cluster. Then the expected energy in the calorime­
ter, from the particle that also created the track, is calculated based on the topo­cluster
position and the track momentum. Since it is relatively common for a single particle to
deposit energy in multiple topo­clusters, the algorithm evaluates the probability that this
is the case for each track/topo­cluster system. If it is the case, additional topo­clusters are
added. Then the expected energy deposited in the calorimeter is subtracted cell by cell. If
the remaining energy in the topo­cluster is consistent with fluctuations of a single particle’s
signal, the whole topo­cluster is removed.

Another approach to combined the calorimeter and inner detector information is the so­
called track­caloclusters (TCC) [78]. Where the particle flow algorithm improves the jet
reconstruction performance at low energy, the TCC approach is optimized to improve the
performance at high energy, where the jets become so collimated, that the calorimeter has
too low angular resolution to be able to resolve the structure inside the jet. Therefore, the 4­
vector construction and energy sharing procedures are very different. The TCC algorithm
uses the spatial coordinates of the tracking detector and the energy scale of the calorimeter,
whereas the particle flow algorithm described above let the tracking information correct
the full 4­vector.

There is a number of additional differences due to the different energy regimes, for which
they are optimized, like the way the matching of tracks and topo­cluster is done. However,
the main goal of both is to improve the understanding of hadronic showers in the detector.

Having gone through the different possible input objects, it is now time to discuss, how
these are combined to give jets.

60



5.1.4 Jet algorithms

A variety of jet algorithms exists, but here we will focus on a class called sequential recombi­
nation algorithms. A given jet algorithm has to fulfill two major requirements; it has to be
both infrared and collinear safe.

Question 5.1: What is infrared and collinear safety?

A jet algorithm is infrared safe, if the emission of a soft (low energy) gluon is not
changing the outcome. In addition, it is collinear safe, if the splitting of a parton
into two collinear partons is also not changing the outcome.

This is true for the sequential recombination algorithms [79]. These algorithms are based
on the two distance parameters

dij = min
(
p2a
Ti, p

2a
Tj

) ∆R2
ij

R2 (5.1)

diB = p2a
Ti (5.2)

where pTi and pTj are the transverse momenta of object i and j, respectively, whereas B
indicates the beam. R is the distance parameter of the algorithm and ∆R2

ij = (∆ηij)
2 +

(∆ϕij)
2 is the distance between object i and j. The value of the exponent a ∈ {−1, 0, 1} is

determining which algorithm we have at hand. The algorithms work as follows:

1. dij and diB are computed for all objects i and j and ordered by increasing value.

2. If the smallest value is a dij, the four­vectors of object i and j are combined into a
proto­jet.

3. If the smallest value is a diB, object i is marked a jet and is not considered further¹.

4. The procedure is repeated until no more objects j fulfill dij < diB.

As mentioned above, the value of a is different for the different algorithms. We have that
a = 1 for the kT algorithm [80, 81], which means that pT enters as a numerator, whereas
a = −1 for the anti­kT algorithm [82], which means it enters as a denominator. For the
Cambridge­Aachen algorithm [83, 84] a = 0, so the pT of the objects do not enter at all.

¹This is true for the inclusive algorithm, whereas for the exclusive algorithm the object is instead considered
to be part of the beam jet. In this case the procedure is repeated until the smallest dij or diB is above some
threshold dcut.
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This means that for the kT algorithm, the lowest pT object will be the starting point for
the algorithm, whereas it will be the highest pT object for the anti­kT algorithm. For the
Cambridge­Aachen algorithm only the distance between the objects matter.

It should also be made clear, that the distance parameter, R, determines how far from the
jet axis, an object is considered for inclusion in the proto­jet. If ∆R2

ij > R then the ratio is
larger than unity and it is more likely that dij > diB and the object will be included.

Since the jet axis will move as new objects are added to the proto­jet, it is possible that the
reach of the jet algorithm will be bigger than R. Especially the kT algorithm can stretch
over large areas, since it adds up the soft objects first, but the direction of the jet axis is
dominated by the high pT objects. The jet axis is therefore not moving as much around for
the anti­kT algorithm, which starts with the highest pT object. The jet axis can also move
somewhat around, when using the Cambridge­Aachen algorithm.

A comparison of the three algorithms can be seen in Figure 5.3. It is clear that the anti­kT
algorithm results in rather circular high pT jets, which is expected since everything within
R from the highest pT object will be added to that proto­jet before the algorithm moves on
to the next­highest pT object.
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Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random
soft “ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas
of the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by
the specific set of ghosts used, and change when the ghosts are modified.

have more varied shapes. Finally with the anti-kt algorithm, the hard jets are all circular

with a radius R, and only the softer jets have more complex shapes. The pair of jets near

φ = 5 and y = 2 provides an interesting example in this respect. The left-hand one is much

softer than the right-hand one. SISCone (and Cam/Aachen) place the boundary between

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which

clips a lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various
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Figure 1: A sample parton-level event (generated with Herwig [8]), together with many random
soft “ghosts”, clustered with four different jets algorithms, illustrating the “active” catchment areas
of the resulting hard jets. For kt and Cam/Aachen the detailed shapes are in part determined by
the specific set of ghosts used, and change when the ghosts are modified.

have more varied shapes. Finally with the anti-kt algorithm, the hard jets are all circular

with a radius R, and only the softer jets have more complex shapes. The pair of jets near

φ = 5 and y = 2 provides an interesting example in this respect. The left-hand one is much

softer than the right-hand one. SISCone (and Cam/Aachen) place the boundary between

the jets roughly midway between them. Anti-kt instead generates a circular hard jet, which

clips a lens-shaped region out of the soft one, leaving behind a crescent.

The above properties of the anti-kt algorithm translate into concrete results for various

quantitative properties of jets, as we outline below.

2.2 Area-related properties

The most concrete context in which to quantitatively discuss the properties of jet bound-

aries for different algorithms is in the calculation of jet areas.

Two definitions were given for jet areas in [4]: the passive area (a) which measures

a jet’s susceptibility to point-like radiation, and the active area (A) which measures its

susceptibility to diffuse radiation. The simplest place to observe the impact of soft resilience

is in the passive area for a jet consisting of a hard particle p1 and a soft one p2, separated

(b)
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Figure 5.3: Example of how the jet algorithms work on a simulated event for the (a) kT, (b) anti-kT and (c) Cambridge-Aachen
algorithms [82].
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5.1.5 Jets in ATLAS

As we have seen, several different objects can be used as input for the jet algorithms. The
combination of different input objects, distance parameters R and jet algorithms lead to a
number of different jet definitions. Here we will only cover the ones, that are used in the
analyses presented in this thesis.

Common for them all is, that the jet clustering framework FASTJET [85] is used to find the
jets using the anti­kT algorithm. The jets can be on two different energy scales: electromag­
netic (EM) or local hadronic cell weighting (LCW).

Question 5.2: What is EM and LCW scale?

Jets in ATLAS are either on the EM or LCW scale. This depends on, whether
the energy deposits in the cells are calibrated to match, what is expected from an
electromagnetic (EM) shower or a hadronic shower. The EM scale is the default. An
additional local hadronic cell weighting (LCW) calibration can be applied to bring
the cell energy to the correct scale for charged pions produced at the interaction
point.
This includes corrections for the non­compensating nature of the calorimeters. This
means, the signal from hadrons will be smaller than the one from electrons and
photons or in other words e

h > 1. The correction aims to get this ratio close to unity,
which improves the linearity of the response and the resolution for jets consisting
of a mixture of electromagnetic and hadronic signals.
It also corrects for the signal losses due to the noise threshold in the clustering
algorithm, which depends on the pile­up conditions. The last correction is for the
signal losses due to energy deposited outside the active calorimeter regions, in the
so­called dead material.
The corrections depend on the probability 0 ≤ PEM

clus ≤ 1 that a given topo­cluster
is generated by an electromagnetic shower such that the weight is given by [72]

wcal
cell = PEM

clus · wem­cal
cell + (1 − PEM

clus ) · whad­cal
cell (5.3)

where wem­cal
cell and whad­cal

cell are the factors applied to the cell signal by the electro­
magnetic and hadronic calibrations, respectively.

The value of the distance parameter R is depending on the kind of physics object, you want
to capture. For normal QCD jets a value of R = 0.4 is used, whereas for jets with an
expected substructure R = 1.0 is used. These are referred to as small­R and large­R jets,
respectively. It is also possible to have a variable R value in the algorithm. This is the case
for variable­radius jets [86], where the radius scales as 1/pT. In ATLAS, variable­radius
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track jets [87] fulfill the requirement

Reff(pT) =


Rmax, if ρ/pT > Rmax
ρ/pT, if Rmin < ρ/pT < Rmax
Rmin, if ρ/pT < Rmin

(5.4)

where ρ = 30 GeV, Rmax = 0.4 and Rmin = 0.02. The jets are required to have at least
two constituent tracks, pT > 10 GeV and |η| < 2.5.

In addition to the variable­radius track jets, we will in this thesis also use small­R topo­
cluster jets on the EM scale, as well as large­R topo­cluster jets on the LCW scale. As
mention earlier it is also possible to create jets from the stable particles in a Monte Carlo
sample using the same jet algorithm. These truth jets can be useful, when wanting to e.g.
calibrate jets, as we will see in the next section and in Chapter 7.

5.2 Calibration

Measurements of the energy scale and resolution of the jets are essential for both precision
measurements of the Standard Model and searches for new physics beyond it. The jet energy
scale (JES) calibration brings the jet energy to that of jets reconstructed at the particle level.
These calibrations varies for different jet definition. We will first look at the calibration of
small­R topo­cluster and particle flow jets on the EM scale.

5.2.1 Small­R jets

The calibration applied to EM topo­cluster jet and EM particle flow jets is quite similar.
The entire chain of corrections is sketched in Figure 5.4. Each step is correcting the four­
momentum by scaling the jet pT, energy and mass [73].

The first step is pile­up corrections to remove the excess energy not coming from the primary
interaction. First a correction based on the jet area, A, and median pT density ρ of the event
is applied. This correction is a subtraction of pT and does not affect the jet η and ϕ.

Then a residual correction, which is derived from a Monte Carlo simulation and parametrized
as a function of the mean number of interactions per bunch crossing, μ, and the number
of reconstructed primary vertices in the event, NPV. The residual pT dependence on NPV
(α) and μ (β) are seen to be fairly linear and independent of one another, such that the
fully corrected pT can be described by

pcorr
T = preco

T − ρ · A − α · (NPV − 1)− β · μ (5.5)
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dependence, as a 
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calorimeter-based inputs.

Corrects jet 4-momentum
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scale. Both the energy and

direction are calibrated.

Reduces flavour dependence
and energy leakage effects
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is applied only to data
to correct for data/MC

differences.

pT-density-based
pile-up correction

Residual pile-up
correction

Absolute MC-based
calibration

Global sequential
calibration

Residual in situ
calibration

Figure 5.4: The different stages of the jet energy scale calibration for small-R jets [73].

where preco
T is the reconstructed jet pT before any pile­up corrections.

The next step is the absolute jet energy scale and η calibrations, which aim to correct the
reconstructed jet four­momentum to the particle­level energy scale. This is done by ac­
counting for the non­compensating calorimeter response, out­of­cone effects, energy loss
in dead material and biases in the jet η reconstruction, by matching reconstructed jets to
truth jets with ∆R < 0.3. This is a purely Monte Carlo based correction.

After this step, there is still a dependence on e.g. the flavor and energy distribution of the
jet constituent particles for a given (pT, η) bin. To account for this, the global sequential
calibration (GSC) applies a series of multiplicative corrections to reduce the effect of these
fluctuations and improve the jet resolution, σR, without changing the average jet energy
response. The standard deviation of a Gaussian fit to the jet response distribution is giving
σR. The GSC is based on global jet observables such as the longitudinal structure of the
energy deposits within the calorimeters, the tracking information and information from the
muon chambers behind the jet. Also here the reconstructed jets are geometrically matched
to truth jets, making it a Monte Carlo based calibration.

The last step of the chain is to take into account the difference between data and Monte
Carlo simulations in a so­called in situ calibration. The differences are a result of imperfect
simulation of both the detector materials and response, as well as the physics processes
involved, such as the hard scatter and underlying event, the jet formation, pile­up and the
particle interactions with the detector. The calibration takes the ratio of the response in
data to the response in Monte Carlo and apply it as an additional correction in data.

The response is calculated by balancing the pT of a jet against the pT of a well­calibrated
reference object. This can either be a Z boson or photon or at high pT a system of well­
calibrated low pT jets. The in situ calibration has three stages, where the first is the η
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intercalibration, which corrects the energy scale of the forward jets (0.8 ≤ |η| < 4.5) to
match that of central jets (|η| < 0.8). This is obtained by using the pT balance in dijet
events. The second step is the balancing against well­calibrated Z bosons or photons. Only
after this, high­pT jets can be calibrated against the now well­calibrated low­pT jets in the
third step.

Finally, the measurements are combined using second­order polynomial splines to provide
a single smooth calibration applicable across the full pT range as seen in Figure 5.5. A
χ2 minimization is performed in each bin, such that the measurements with the smallest
statistical and systematic uncertainties dominate the estimate of the response ratio in that
bin. It is seen in Figure 5.5a, that Z+jet events dominates at low pT and γ+jet events
dominate at medium pT, whereas only multijet events are available at high pT. Figure 5.5b
shows a comparison of the combination result for particle flow and EM topo­cluster jets.
It is clear the uncertainty is significantly smaller for particle flow jets at low and medium
pT.
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Figure 5.5: Combination of in situ measurements leading to a smooth correction factor (a) for particle flow jets and (b) com-
parison of particle flow and EM topo-cluster jets [73].

The jet energy scale calibration clearly comes with an uncertainty attached to it. This un­
certainty varies as a function of jet pT and η as seen in Figure 5.6 for particle flow and
topo­cluster jets, respectively. It is seen, that the uncertainty is slightly bigger for the par­
ticle flow jets at low pT, due to a bigger pile­up uncertainty, which is caused by the impact
of the underlying event.

The kinks around |η| = 2.5 is caused by the difficulty in modeling the response in the
region due to change of detector type. Whereas, the big rise in the uncertainty at high pT
is caused by a change in method, since the in situ measurements are running out of statistics
at such high pT. This new method will be discussed in Chapter 7.
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Figure 5.6: Fractional jet energy scale uncertainty for particle flow jets as a function of (a) jet pT and (b) η and for EM topo-cluster
jets as a function of (c) jet pT and (d) η [73].

The jet energy resolution (JER),σpT
pT

, is expected to be dependent on pT in accordance with
Equation 4.3 for the calorimeter resolution, so we have

σpT

pT
=

a
pT

⊕ b
√pT

⊕ c (5.6)

where a is the noise term, b is the sampling term and c is the constant term as explained in
Question 4.8.

The JER is measured using a dijet balance method, which relies on the scalar balance between
the pT of the two leading jets. The exact details of the method can be found in [73], which
also describes how the contribution to the resolution from the noise term, a, due to pile­up
and electronics, is found. The result is seen in Figure 5.7, which shows a comparison of the
JER for particle flow and EM topo­cluster jets.
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Fig. 1 Overview of the large-R jet reconstruction and calibration procedure described in this paper. The calorimeter energy clusters from which
jets are reconstructed have already been adjusted to point at the event’s primary hard-scatter vertex

Fig. 2 Schematic
representation of the events used
to measure the JES and JER: a a
dijet event, b a Z+jet or γ +jet
event and c a multijet event with
several jets recoiling against the
leading (large-R) jet. The labels
Ji refer to the i th leading
large-R jet, while ji refers to the
i th leading small-R jet that
fulfils "R(J1, j) > 1.4. "φ is
the difference between the
azimuthal angle of the jet and
the reference object, while "α
is the difference between the
azimuthal angle of the jet and
the vectorial sum of the recoil
system momenta

Figure 5.8: The different stages of the reconstruction and calibration of large-R jets [88].

5.2.2 Large­R jets

The calibration of large­R topo­cluster jets [88] is to a large extend equal to that of the
small­R jets, so only the main differences will be discussed here. The full reconstruction
and calibration chain is seen in Figure 5.8.

First of all the large­R jets are on the LCW scale, which means, as discussed earlier, that cor­
rections have been applied to the topo­clusters to take into account the non­compensating
nature of the calorimeter, as well as the signal loss due to the noise threshold of the clus­
tering and energy deposited in the dead material. Therefore such corrections should not be
applied again to the jet.
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After the jets have been reconstructed using the anti­kt algorithm with R = 1.0, they are
groomed in order to reduce the impact from pile­up, soft emission and the underlying
event. The grooming algorithm reclusters the jet constituents of each jet using the kt algo­
rithm and Rsub = 0.2, producing a number of subjets for each large­R jet. The subjets with
pi

T/p
jet
T < fcut = 0.05 are removed and the large­R jet four­momentum is recalculated.

This improves the energy and mass resolution as well as the ability to see the substructure
of the jet, as we will see in Section 5.3.1.

As for the small­R jets, the reconstructed jets are matched to truth jets, which are created
with the same algorithm and groomed as the reconstructed jets. Corrections are applied
to the reconstructed jets to bring them to the particle­level energy scale and η. This corre­
sponds to the absolute MC­based calibration for the small­R jets, but for the large­R jets
an additional correction is applied to the jet invariant mass. This is important for analyses
using the jet mass, since the mass is more sensitive than the pT to e.g. soft, wide­angle
contributions and to cluster merging and splitting.

Similar to the small­R jet calibration, the last step is an in situ calibration, where the first step
is the η intercalibration, followed by a correction to the pT response from the balancing
of jets with well­calibrated objects. For large­R jets an in situ measurement of the mass
response is also performed. It consists of two different methods: the Rtrk method and
forward folding.

The Rtrk method is taking advantage of the fact, that the ATLAS detector provides two
independent measurements of the properties of the same jet from the calorimeter and the
inner detector. Where the jets formed from tracks only take into account the hits from
their charge­particle constituents, the calibrated topo­cluster jets measure the properties
from the full shower. The double ratio of Rtrk = ⟨pcalo

T /ptrack
T ⟩ in simulation and data

should be equal to unity for well­modeled observables, so any deviation is taken as a scale
uncertainty in the measurement.

Forward folding is using a high­purity signal sample of large­R jets with high­pT, hadroni­
cally decaying W bosons and top quarks. It is measuring the response for jets in signal­like
topologies, which contain jets consisting of multiple regions of high energy density. It
determines the jet mass response by fitting the W boson and top­quark mass peaks in the
large­R jet invariant mass distribution of the hadronically decaying top­quark candidate.
This is used to give the relative energy and mass scales and resolutions between data and
simulation.

Also here the in situ measurements needs to be combined, which is done with first­ or
second­order spline as seen in Figure 5.9 for the large­R jet pT and mass response, respec­
tively. Also the jet energy scale uncertainty has been derived for the large­R jets as function
of pT as seen in Figure 5.10.
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the uncertainty increases, reaching over 2% at 2.4 TeV.
A breakdown of the total JES uncertainty is presented

graphically in Figs. 28 and 29. This includes uncertainties in
γ +jet, Z+jet, and multijet balance methods associated with
the simulation modelling, reference system construction and
calibration, and the event selection. Furthermore, as the large-
R multijet balance method uses small-R jets as a reference
system, all nuisance parameters from the small-R jet cali-
bration enter as uncertainties in the combination presented
here.

The combination of the jet mass response includes results
from two methods. Forward folding provides four measure-
ments in the pT range below 1 TeV. The Rtrk method takes
advantage of a large data sample and can be finely binned in
mass and pT, extending to over 2 TeV. The combined result
is shown in Fig. 30 for two jet mass intervals: the plot in the
upper panel corresponds to the W boson mass window with
50 GeV < m < 120 GeV, and the lower panel corresponds to
the top quark mass window with 120 GeV < m < 300 GeV.

The in situ jet mass calibration factor is defined from
the combined mass response shown in Figure 30 as cm =
Rm

MC/R
m
data. It is applied as a scale factor to the jet mass but

does not affect the jet momentum vector. The full calibration
applied to large-R jets in data impacts the reconstructed jet
energy, mass, pseudorapidity, and pT according to

Ereco = cs
√
E2

0 + cJMS m0
(
c2
m − 1

)
,

mreco = cs cJMS cm m0,

ηreco = η0 + #η,

preco
T = cs

√(
E2

0 − c2
JMS m

2
0

)
cosh (η + #η),

where cs = cJES cabs crel is the product of several calibration
factors. The factor cJES corresponds to the simulation-based
JES calibration, crel to the relative in situ correction obtained
from the η-intercalibration, and cabs to the absolute in situ
correction from the balance methods. All c-factors and the
factor #η are smooth functions of the large-R jet kinematics.
The terms E0, m0, η0 and "p0 refer to the jet properties prior
to any calibration, as returned by the trimming algorithm.

The measured JMS correction is consistent with unity
within the precision of the combined measurements. This
suggests that the application of an in situ JES correction is
sufficient to correct the JMS of these trimmed large-R jets in
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Fig. 30 Data-to-simulation ratio of the average jet mass response as a
function of the large-R jet pT. Corrections using a combination of two
in situ methods, the Rtrk and forward-folding approaches, are applied.
The fit is performed for large-R jet mass in the W mass range 50–
120 GeV (upper), and the top mass range 120–300 GeV (lower). The
error bars represent the statistical and systematic uncertainties added
in quadrature. The results apply to anti-kt jets with R = 1.0 calibrated
with the LC+JES+JMS scheme. The lines shown are smoothed using a
sliding Gaussian kernel

the mass and pT ranges considered here. The level of preci-
sion with which the JMS is measured depends on the kine-
matic region in question. For large-R jets in the high-mass
bin with pT between 400 GeV and 1 TeV, the uncertainties
are 2–5%. In other kinematic regions the uncertainty is larger,
approaching 10% at high pT in both mass bins.

The contributions of several sources to the uncertainty in
the combined jet mass scale are presented in Figs. 31 and 32.
In both the Rtrk and forward-folding techniques, the leading
systematic uncertainties are associated with uncertainties in
the event generators across most of the pT range and for the
two mass intervals considered.

123

(b)

Figure 5.9: Combination of in situ measurements leading to a smooth correction factor for large-R jet (a) pT [89] and (b) mass
response [88].
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Figure 5.10: The large-R fractional JES uncertainty as a function of pT [89].

The now well­calibrated large­R jets are very important objects, when searching for final
states including W bosons and top quarks, since we can exploit the substructure of such jets,
which is the topic of the next section.

5.3 Jet substructure and tagging

Jet substructure is generally useful for disentangling jets originating from different particles.
It is used for separating quark and gluon­initiated jets and isolating boosted W, Z and Higgs
boson jets as well as boosted top­quark jets [90]. The focus here will be on jets originating
from top quarks, since these are the main interest of this thesis, but similar substructure
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variables are used for e.g. W boson tagging. But before we immerse into the specifics of the
substructure variables and tagging algorithms used in ATLAS, we will start by introducing
the main terms.

Question 5.3: What is jet substructure?

The aim of jet substructure is to study the internal kinematic properties of high­pT
jets to determine, whether it has certain structures, that are consistent with origi­
nating from a specific particle. When for example a top quark decays hadronically
(t → W+b → qq ′b) it will result in three small­R jets, however if the top quark is
boosted (has high pT) these three jets will merge together into one large­R jet, which
has three prongs as seen in the sketch below. The ability to extract this substructure
information of the jet is the key to distinguish e.g. top­quark jets from light­quark
jets.

Question 5.4: What is jet tagging?

With jet tagging we are able to say, with a certain probability, that a jet originates
from a specific particle. Therefore, when a jet is e.g. top tagged it is not necessarily
coming from a top quark, since it could be mistagged. This also means, that not all
jets, that do originate from a top quark, will be tagged as such.
Jet tagging can be divided in several groups: q/g tagging (light quarks and gluons),
flavor tagging (tau and b quark) and heavy resonance tagging (W, Z, Higgs and top
quark). For the first two usually jets with small R are used, whereas for the latter
jets with larger R are preferred.

To be able to evaluate the performance of a jet tagger, it is necessary to know the true origin
of a jet, which is done by labeling it. This can only be done with Monte Carlo simulation.
For signal jets, like top jets, this labeling is based on the partonic decay products of the top
in a three­step procedure [91].
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First, reconstructed jets jreco are matched to truth jets jtrue with a criterion of ∆R(jreco, jtrue) <
0.75. Then the truth jets are matched to top quarks, t, again with a criterion of ∆R(jtrue, t) <
0.75. Finally, the partonic decay products of the parent top quark (two quarks from the
hadronically decaying W boson and an additional b quark) are matched to the reconstructed
jet. The reconstructed jet is labeled as a top­quark jet, if the top and all its direct decay
products are contained within a region in (η, ϕ) with ∆R < 0.75 · Rjet, where Rjet is the
jet distance parameter. The value of 0.75 · Rjet was chosen as a compromise between the
resulting labeling efficiency and the resolution of the top­quark jet mass peak.

Whether all the decay products are contained is seen to depend heavily on the pT of the
top quark as expected. Even at a pT = 1000 GeV the top­quark jet labeling efficiency is
less than 90% as seen in Figure 5.11.
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Figure 5.11: Top quark jet labeling efficiency as a function of the truth top quark pT [91].

In order to recognize whether a given jet is likely to originate from a top quark, a number
of substructure variables are useful. These can be combined in simple cut­based taggers or
used as inputs to more complex machine learning algorithms. We will start by describing
the variables and afterwards cover the top taggers making use of them. Finally, the b tagging
algorithm used in this thesis is outlined.

5.3.1 Substructure variables

As mentioned above, many different substructure variables exists, which are useful when
wanting to uncover jets originating from top quarks. The variables are, in ATLAS, cal­
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culated from large­R jets, which are groomed, as it was explained in the previous section.
The grooming algorithm, called trimming, is of particular importance, when it comes to
jet substructure, since the substructure variables are calculated from the remaining set of
constituents. The constituents can be either topo­clusters, tracks or truth particles. As an
example, it can be easier to see the three­prong structure of the top quark jet after trimming
is applied as seen on the sketch in Figure 5.12.

Figure 5.12: The different steps of the default grooming procedure in ATLAS called trimming.

The first group of variables is the kinematics of the calibrated large­R jet. This include the jet
pT and not surprisingly the jet mass. The mass can be calculated either from the calorimeter
information, mcalo, assisted by the tracks in the inner detector, mTA or a combination of
the two, mcomb [92].

The calorimeter­based jet mass is given by

mcalo =

√√√√√
∑

i∈J

Ei

2

−

∑
i∈J

p i

2

(5.7)

where J is the jet with topo­cluster constituents i, which have energy Ei and momentum
p i, where |p i| = Ei. The track­assisted mass, on the other hand, is given by

mTA =
pcalo

T
ptrack

T
× mtrack (5.8)

where pcalo
T is the transverse momentum of a large­R calorimeter jet, ptrack

T is the transverse
momentum of the four­vector sum of tracks associated to the large­R calorimeter jet, and
mtrack is the invariant mass of this four­vector sum (the track mass is set to mπ). The
ratio of pcalo

T to ptrack
T corrects for charged­to­neutral fluctuations, which gives mTA a better

resolution, than what is provided by the track­only mass, mtrack.
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The combined mass, mcomb, is calculated as a weighted average of mcalo and mTA, where
the weights are given by the inverse of the mass resolutions. This leads to a good resolution
over the whole range, since mcalo has a great resolution at low pT and mTA is performing
better at high pT as seen in Figure 5.13.
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statistical and total uncertainty ellipses. The
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= 0.2). Adapted from Ref. [112].

experimental uncertainties on the inputs to the jet recon-
struction to the jet mass. The dominating uncertainties
are due to the theoretical modeling of jet fragmentation

As the forward-folding method is currently restricted to
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top quarks, respectively, the results are combined with the
method which constrains the mass scale by
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from track jets and extends up to pT = 3000GeV [114].
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mass is defined as:

m
TA =

p
calo
T

p
track
T

⇥ m
track

, (4)

where p
calo
T is the transverse momentum of the calorime-

ter jet, p
track
T is the transverse momentum of the four-

vector sum of tracks associated to the calorimeter jet, and
m

track is the invariant mass of this four-vector sum, where
the track mass is set to the pion mass m⇡. The track-
assisted mass exploits the excellent angular resolution of
the tracking detector and the ratio p

calo
T to p

track
T corrects

for charged-to-neutral fluctuations. The Combined Mass
is defined as:

m
comb =

✓
�

�2
calo

�
�2
calo + �

�2
TA

◆
m

calo +

✓
�

�2
TA

�
�2
TA + �

�2
calo

◆
m

TA
,

(5)

where �calo and �TA are the calorimeter-based jet mass
resolution and the track-assisted mass resolution, respec-
tively. The jet mass resolution for the calorimeter mass,
track-assisted mass and combined mass are shown in fig-
ure 11 for W/Z boson jets as a function of jet pT. Similar
techniques that take advantage of the excellent angular
resolution of the tracking detector at high pT have been
developed to correct topoclusters to improve the resolution
of jet substructure variables [56].

It is important to point out that in ATLAS unlike in
CMS, the jet energy scale directly impacts the jet mass
scale. As opposed to the description of the JES calibration

Figure 5.13: The fractional jet mass resolution as a function of the truth jet pT for the different mass variables [93].

The second group of variables is the energy correlation ratios. A number of generalized
energy correlation functions are introduced [94, 95] in order to identify N­prong jet sub­
structure without requiring a subjet finding procedure. These variables only use informa­
tion about the energies and pair­wise angles of the jet constituents, i, within the jets, J, and
are given by

ECF1 =
∑
i∈J

pTi, (5.9)

ECF2(β) =
∑
i<j∈J

pTipTj(Rij)
β, (5.10)

ECF3(β) =
∑

i<j<k∈J

pTipTjpTk(RijRikRjk)
β, (5.11)

where β is used to give weight to the angular separation of the jet constituents and Rij is
the distance between constituent i and j. We can now define the ratios

e(β)2 =
ECF2(β)

E2
CF1

, (5.12)

e(β)3 =
ECF3(β)

E3
CF1

, (5.13)
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which can further be used to form the variables

C(β)
2 =

e(β)3

(e(β)2 )2
, (5.14)

D(β)
2 =

e(β)3

(e(β)2 )3
, (5.15)

which have been shown to be particularly useful in identifying two­body structures within
jets. However, both e(β=1)

3 , C(β=1)
2 and D(β=1)

2 are seen to have some discriminating power
for both W boson and top tagging [91]. Figure 5.14 shows the (e(β)2 , e(β)3 ) phase space,
which is divided into 1­ and 2­prong regions, with the boundary between them corre­
sponding to e(β)3 = (e(β)2 )3. It also shows contours of constant C(β)

2 and D(β)
2 .
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Figure 5.14: Phase space defined by e(β)
2 and e(β)

3 with contours of constant (a) C(β)
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2 [95].

The next group of variables is similar in nature, but rely on the subjet information and is
called N­subjettiness [96, 97]. The variable τN quantifies how well a jet can be described
by having N or fewer subjets. The axes within the jet are define by the N subjets found by
an exclusive kt algorithm on the constituents of the trimmed large­R jet. The variable is
defined as

τN =
1
d0

∑
i∈J

pTi · ∆Rmin
i with d0 =

∑
i∈J

pTi · R, (5.16)

where pTi is the transverse momentum of constituent i, ∆Rmin
i is the distance between con­

stituent i and the axis of the closest subjet and R = 1 is the large­R jet distance parameter.
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τ1, τ2 and τ3 are in themselves useful, but the ratios τ21 = τ2/τ1 and τ32 = τ3/τ2 are
better. Especially τ32 is effective for top tagging, since it quantifies, how likely it is for the
large­R jet to have three prongs and not two. This is seen in Figure 5.15, which also shows
the (τ2, τ3) plane for top jets and QCD jets.

Another related group is the splitting scales
√

d12 and
√

d23 [98]. By taking the square root
of Equation 5.1 and setting R = 1 and a = 1 equivalent to the kT algorithm for large­R
jets, we get √

dij = min
(
pTi, pTj

)
∆Rij, (5.17)

where
√

d12 is the splitting scale of the last merging step and
√

d23 corresponds to the
second­to­last merging. For hadronic top­quark decays, which are fully contained in a
large­R jet, the expected value of

√
d12 is approximately half the top quark mass, mt/2,

whereas
√

d23 targets the hadronic decay of the W boson and therefore has an expected
value of mW/2. This is contrary to QCD radiation from light­quark or gluon jets, which
will lead to smaller values of the splitting scales as is seen in Figure 5.16.

In a similar way, the last substructure variable used for top tagging in ATLAS is taking
advantage of the fact that a boosted top has an on­shell W boson inside the jet [99]. By
calculating the minimum pair­wise invariant mass of the last three constituents, Qw, it is
possible to see, if it adds up to the mass of the W boson. This will typically be the case for
top quark jets, whereas for QCD jets the distribution will peak at lower values.

We have now covered the various substructure variables, that are useful for top tagging,
which brings us to how this information is combined in the different taggers.

5.3.2 Top tagging

The simplest top tagger is based on selection cuts on just two variables. Studies have showed,
that one­sided cuts on mcomb and τ32 are effective separating top and QCD jets [91]. The
most optimal cut value is found by looking at all combinations of cuts on the two variables,
that give the wanted signal efficiency and then choose the combination, that gives the largest
background rejection. This is done as a function of pT and the wanted signal efficiency for
top tagging is chosen to be 80%. This high value is chosen since the background events
to the interesting process, which includes top quarks, often also include real top quarks.
This is e.g. the case for the all­hadronic tt resonance analysis in Chapter 8. For W boson
tagging on the other hand, the main background is light­quark jets and a better background
rejection is therefore needed, which means a lower signal efficiency, which is typically 50%.

Not surprisingly, it is possible to get better discriminating power, if more of the substruc­
ture variables, described above, are included in the top tagger. The performance of both a
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and (c) τ3 for boosted top and QCD jets. For these plots,
we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
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criteria are the same as in Fig. 5. We see that τ3/τ2 is a good discriminating variable between
top jets and QCD jets. In this paper, we do not explore τ2/τ1 for top jets, though it does contain
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top identification is possible with a multivariate method.
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Figure 6: Distributions of (a) 2/ 1 and (b) 3/ 2 for boosted top and QCD jets. The selection
criteria are the same as in Fig. 5. We see that τ3/τ2 is a good discriminating variable between
top jets and QCD jets. In this paper, we do not explore τ2/τ1 for top jets, though it does contain
additional information.
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Figure 7: Density plots in the (a) τ1–τ2 plane and (b) τ2–τ3 plane for boosted top and QCD jets.
The selection criteria are the same as in Fig. 5. These plots suggest further improvement in boosted
top identification is possible with a multivariate method.
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Figure 5.15: Discriminating power of (a) τ32 = τ3/τ2 and (b) the (τ2, τ3) plane for top jets versus QCD jets [96].
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Figure 5.16: Discriminating power of (a)
√

d12 and (b)
√

d23 for Z ′ → tt versus dijet events measured at
√

s = 7 TeV [100].

boosted decision tree (BDT) and a deep neural network (DNN), which provide a single top
tagging discriminant, has been investigated [91]. For the DNN, the background rejection
is calculated for nine different groups of substructure variables, which are seen in Table 5.1
together with the chosen variables for the DNN and BDT. For the BDT, the variables are
added one at a time, with the most discriminating ones added first.

77



Table 5.1: Variables used in the DNN test groups and the final selection of variables for the BDT and DNN (adapted from [91]).

DNN test group Chosen inputs
Observable 1 2 3 4 5 6 7 8 9 BDT DNN
mcomb ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
pT ◦ ◦ ◦ ◦ ◦ ◦ ◦
e3 ◦ ◦ ◦ ◦ ◦
C2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
D2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
τ1 ◦ ◦ ◦ ◦
τ2 ◦ ◦ ◦ ◦ ◦
τ3 ◦ ◦ ◦ ◦
τ21 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
τ32 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦√

d12 ◦ ◦ ◦ ◦ ◦ ◦ ◦√
d23 ◦ ◦ ◦ ◦ ◦ ◦ ◦

Qw ◦ ◦ ◦ ◦ ◦ ◦ ◦

The relative background rejection is the inverse of the relative background efficiency 1/ϵrelbkg,
which is given by

ϵrelbkg =
N tagged

bkg, mcomb>40 GeV

N tagged
bkg, mcomb>40 GeV + N untagged

bkg, mcomb>40 GeV

(5.18)

where N tagged
bkg is the number of tagged background events, whereas N untagged

bkg is the number
of untagged events and it is indicated, that the jet mass is required to be mcomb > 40 GeV.
An additional requirement on the number of constituents Nconst ≥ 3 is applied, to en­
sure that all jet substructure features are well­defined. The relative signal efficiency, ϵrelsig, is
defined in a similar manner.

Figure 5.17 shows the relative background rejection for both the DNN and BDT, which
makes it clear, that no significant gain is seen from adding C2, τ1 and τ3 to the BDT.
Hence, they are not included in the final BDT. For the DNN, group 9, with all the variables
included, perform the best and is therefore used.

In Figure 5.18, it is seen, that the DNN and BDT top tagger perform equally well, but
significantly better than the two­variable tagger. The DNN and BDT is giving an improve­
ment on the background rejection of roughly a factor of two over the full pT range. It is
also seen, that the background rejection gets worse at higher pT. This is due to the subjets
getting closer and closer together, making the substructure variables less well­defined.

Another way to compare the performance of different taggers is by looking at the ROC
curves.
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Figure 5.17: Background rejection of (a) the BDT and (b) the DNN as a function of the included variables [91].
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Question 5.5: What is a ROC curve?

A Receiver Operating Characteristic (ROC) curve is usually showing the background
efficiency ϵbkg as a function of the signal efficiency ϵsig (left), but sometimes the
background rejection, 1/ϵbkg, is showed instead (right). It is used to compare the
performance of different taggers or classifiers.
The optimal tagger will have an infinitesimal background efficiency, corresponding
to a very high background rejection, for any value of the signal efficiency. However,
in practice the background efficiency (rejection) will steeply rise (fall) at high signal
efficiency. It is not possible to accept all signal events without also accepting all
background events.

The ROC curves for the DNN and BDT tagger, as well as a number of other taggers, are
seen in Figure 5.19. Among the other taggers are the shower deconstruction [101] and
the HEPTopTagger [102, 103], which will not be discussed further here, since they do not
perform nearly as good as the DNN and BDT tagger.

However, the topocluster­based DNN tagger (TopoDNN) [104] is performing slightly
better than the multivariate taggers at high pT, so it deserves some attention. This DNN
takes topo­cluster information as input instead of the substructure variables. The idea is that
this low­level information might include some additional features, which are not captured
by the current substructure variables. It is optimized for high­pT top quarks with pT >
450 GeV, but even though some gain is seen, it should be noted, that it is not that significant
at a signal efficiency of 80%. In ATLAS the multivariate DNN is the recommended top
tagger and is the one used in this thesis.

The last step is to validate the tagger on data. The modeling of the top tagging is studied by
using a sample of data enriched in tt events, where one top quark decays hadronically and
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Figure 5.19: ROC curves for the different top taggers for (a) ptrueT = [500, 1000] GeV and (b) ptrueT = [1500, 2000] GeV [91].

the other leptonically. A set of requirements are placed on the samples² in order to increase
the purity, including ∆R(large­R jet, b­jet) < 1.0. A comparison of data and Monte Carlo
is done for the key observables and the signal efficiency is measured for the 80% working
point.

Figure 5.20 shows a comparison of data and Monte Carlo for the mass of the leading large­
R jet, τ32 and the DNN discriminant for top tagging. The distributions agree within the
uncertainty and the disagreement between the mass peak positions in data and Monte Carlo
is attributed to a mismodeling of the jet mass scale [88]. Furthermore, it is seen that there
is a high purity of fully­contained top­quark jets at high values of the DNN discriminant.

It is possible to measure the signal efficiency in data, due to the relatively high purity of
top­quark jets in the selected sample. It is measured by requiring mcomb > 40 GeV and
a selection on the DNN discriminant, tuned to give a fixed 80% signal efficiency as a
function of pT for fully­contained top­quark jets. The number of signal­like events in
data that pass and fail these requirements are obtained from a chi­square template fit of
“signal” and “background” distributions predicted by Monte Carlo simulations to the data
to correct for mismodeling of the cross­section of the various processes contributing to
the phase space of interest. Here the “signal” is the fully­contained top­quark jets and the
rest is regarded as background. The fit is performed using distributions of the mass of
the leading anti­kT trimmed jet and the distribution of the events, that pass and fail, are
fitted simultaneously. The normalization of the signal distribution in each of the passed

²For the other requirements see Section 6.1.1 of [91].
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Figure 5.20: Comparison of data and Monte Carlo distributions for the leading large-R jet (a) mass, mcomb, (b) τ32 and (c) the
DNN discriminant for top tagging. The simulated distribution is normalized to data [91].

and fail category, N tagged
fitted signal and N untagged

fitted signal, are extracted from the fit, such that the signal
efficiency in data is

ϵdata =
N tagged

fitted signal

N tagged
fitted signal + N untagged

fitted signal

. (5.19)
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This can then be compared to the signal efficiency in Monte Carlo, which is given by

ϵMC =
N tagged

signal

N tagged
signal + N untagged

signal

(5.20)

where N tagged
signal and N untagged

signal is the numbers of predicted signal events that pass and fail the
tagging requirement, respectively.

Figure 5.21 shows the comparison of the signal efficiency in data and Monte Carlo as a
function of the leading large­R jet pT and the average number of interactions per bunch
crossing, μ. They agree within the uncertainties and it is seen, that the signal efficiency is
quite robust as a function of μ.
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Figure 5.21: Comparison of data and Monte Carlo distributions for the signal efficiency as a function of (a) leading large-R jet
pT, and (b) the average number of interactions per bunch crossing, μ [91].

This comparison between data and Monte Carlo can be used to estimate the systematic
uncertainty of the DNN top tagger, when it is applied in an independent analysis, like the
all­hadronic tt resonance search in Chapter 8. It can also be used to provide an in situ
correction in the form of jet­by­jet efficiency scale factors.

In a similar way, the background rejection in data is tested as well by using two different
samples: a γ+jet sample enriched in light­quark jets and the multijet sample, which probes
a mixture of light­quark and gluon jets. The background rejection comparison of data and
Monte Carlo is seen in Figure 5.22 for the two different samples.

Since the top quark decays into a W boson and a b quark, it is possible to further increase
the separation between top jets and light­quark jets by requiring the top­tagged large­R jet
to be matched to a b­tagged jet.
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Figure 5.22: Comparison of data and Monte Carlo distributions for the background rejection as a function of leading large-R
jet pT for (a) the γ + jet sample and (b) the multijet sample [91].

5.3.3 b tagging

In ATLAS, b tagging is done in two steps [105]. Firstly, low­level algorithms reconstruct
the characteristic features of the b jets using different approaches. The IP2D and IP3D
algorithms [106] are exploiting the large impact parameters of the tracks originating from
the b­hadron decay. Here the transverse impact parameter, d0, is defined as the distance
of closest approach in the r­ϕ plane of the track to the primary vertex (PV) and the lon­
gitudinal impact parameter, z0 sin θ, is defined as the distance of the track to the PV in
the longitudinal plane at the point of closest approach in r­ϕ. The IP2D algorithm uses
the transverse impact parameter significance, d0/σd0 , as a discriminating variable, whereas
IP3D uses both the transverse and longitudinal impact parameter significance in a two­
dimensional template to account for their correlation.

Before describing the other two low­level algorithms, we need to introduce the concept of
probability density functions and likelihood functions.
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Question 5.6: What is probability density and likelihood functions?

A probability density function (PDF) is a function of the data point x and tells you
how likely it is, certain data points appear. By integrating the PDF over a certain
range you will get the probability, that the variable will fall in that range.
A likelihood function or just likelihood, on the other hand, takes the data set as a
given and represent the likeliness of different parameter values given the data. It
is then possible to test whether a given parameter value fits the data better than
another by comparing their likelihoods.

The SV1 algorithm [107] is attempting to reconstruct a single displaced secondary vertex
(SV), which it then uses to discriminate between light­quark and b jets using a likelihood
ratio test (see more in Section 6.5.2). The corresponding probability density functions are
constructed using four variables: the total invariant mass of all tracks associated to the SV,
the ratio of the sum of the energies of the tracks associated to the SV to the energy of all
tracks in the jet, the number of two­track vertices and the ∆R distance between the SV­PV
direction and the jet direction.

The JETFITTER algorithm [108] is aiming to reconstruct the full b­ and c­hadron decay
chain. It uses a likelihood ratio test, similar to the one for SV1, to discriminate between
light­quark, b and c jets.

Secondly, the results from these algorithms are combined using one of two different mul­
tivariate classifiers: the MV2, which is using a BDT, or the DL1, which is using a DNN
[106]. In addition to the inputs from the low­level algorithms, the jet kinematics, namely
pT and |η|, are also included to take advantage of the correlations with the other variables.
The DL1 algorithm takes c­tagging variables from the JETFITTER, which is not true for the
MV2 algorithm. This explains, why the DL1 performs slightly better than the MV2 as seen
in Figure 5.23, which shows the light­quark jet and c­jet rejection as a function of the b­jet
tagging efficiency (ROC curves). It is also seen, that the rejection gets significantly better
by combining the results from the low­level algorithms with either the MV2 or DL1. In
this thesis, the DL1 algorithm will be used.
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Table 4 Selection and c-jet, τ -jet and light-flavour jet rejections corresponding to the different b-jet tagging efficiency single-cut operating points
for the MV2 and the DL1 b-tagging algorithms, evaluated on the baseline t t̄ events

εb MV2 DL1

Selection Rejection Selection Rejection

c-jet τ -jet Light-flavour jet c-jet τ -jet Light-flavour jet

60% > 0.94 23 140 1200 > 2.74 27 220 1300

70% > 0.83 8.9 36 300 > 2.02 9.4 43 390

77% > 0.64 4.9 15 110 > 1.45 4.9 14 130

85% > 0.11 2.7 6.1 25 > 0.46 2.6 3.9 29

(a) (b)

Fig. 2 The (a) light-flavour jet and (b) c-jet rejections versus the b-jet tagging efficiency for the IP3D, SV1, JetFitter, MV2 and DL1 b-tagging
algorithms evaluated on the baseline t t̄ events

by the trivial 100% and 0% selections. The value of the
pdf in each bin is called the b-jet tagging probability and
labelled Pb in the following. The b-jet tagging efficiency
of the εb = X% single-cut OP can then be defined as
the sum of the b-jet tagging probabilities in the range
[X%,0%].

The light-flavour jet and c-jet rejections as a function of
the b-jet tagging efficiency are shown in Fig. 2 for the vari-
ous low- and high-level b-tagging algorithms. This demon-
strates the advantage of combining the information provided
by the low-level taggers, where improvements in the light-
flavour jet and c-jet rejections by factors of around 10 and
2.5, respectively, are observed at the εb = 70% single-cut
OP of the high-level algorithms compared to low-level algo-
rithms. This figure also illustrates the different b-jet tagging
efficiency range accessible with each low-level algorithm and

thereby their complementarity in the multivariate combina-
tions, with the performance of the DL1 and MV2 discrim-
inants found to be similar. The two algorithms tag a highly
correlated sample of b-jets, where the relative fraction of
jet exclusively tagged by each algorithm is around 3% at
the εb = 70% single-cut OP. The relative fractions of light-
flavour jets exclusively mis-tagged by the MV2 or the DL1
algorithms at the εb = 70% single-cut OP reach 0.2% and
0.1%, respectively.

However, the additional JetFitter c-tagging variables
used by DL1 bring around 30% and 10% improvements in
the light-flavour jet and c-jet rejections, respectively, at the
εb = 70% single-cut OP compared to MV2.
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Figure 5.23: ROC curves for the different b taggers for (a) light-quark jet rejection and (b) c-jet rejection [105].
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6
Dijets

The analyses, presented in this thesis, are considering systems of two jets, also called dijets.
We start by considering the 2 → 2 parton scattering process sketched in Figure 6.1, where
p1 and p2 are the four­momenta of the incoming partons and p3 and p4 are the four­
momenta of the outgoing partons. From these the Mandelstam variables can be defined
as

ŝ = (p1 + p2)
2 (6.1)

t̂ = (p1 − p3)
2 (6.2)

û = (p1 − p4)
2 (6.3)

where ŝ is the square of the center­of­mass energy, which is related to the proton­proton
collision center­of­mass energy,

√
s, and the Bjorken x of the incoming partons by ŝ =

x1x2s. Whereas, t̂ is also know as the square of the four­momentum transfer.

Figure 6.1: Feynman diagram for 2 → 2 process.

6.1 Dijet invariant mass distribution

We notice, that the dijet is formed by the two outgoing partons, so by adding the four­
momenta p3 and p4, we get the four­momentum of the dijet, pjj. Furthermore, we have,
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that the four­momentum squared equals the invariant mass squared, p2
i = m2

i , as well as
four­momentum conservation, p1 + p2 = p3 + p4, which leads to

ŝ = (p3 + p4)
2 = p2

jj = m2
jj (6.4)

where mjj is the dijet invariant mass.

Question 6.1: What is the invariant mass?

When a variable is invariant, it means, it remains unchanged under some transfor­
mation. When we talk about the invariant mass, m, we refer to the part of the total
mass, that does not change under any Lorentz transformation. It is a characteristic
of a system’s total energy, E, and momentum, p ,

m2 = E2 − p2 (6.5)

The dijet invariant mass is an extremely interesting observable, when searching for new
resonances. As described in Chapter 2, a new resonance, like the Z ′ boson, would lead to
an increase in the cross section at the mass of the particle. This would lead to a bump in the
otherwise smoothly falling invariant mass distribution coming from QCD interactions.

Question 6.2: What is bump hunting?

When we are searching for new resonances, it is sometimes referred to as bump
hunting. This is due to the fact, that a new resonance, which is decaying quickly,
will lead to a bump in the invariant mass spectrum of the decay products.
As an example, the Higgs boson was found by looking at the invariant mass of two
photons. The discovery was announced the 4th of July 2012, but now with the data
collected in the full Run 2, the bump is even more evident as seen below [109].
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However, not all Beyond Standard Model (BSM) theories result in resonances. This is for
example true for the contact interaction described in Chapter 2. For such non­resonant
signals, it is useful to instead look at the angular distribution of the dijet system.

6.2 Dijet angular distribution

If we assume massless partons, we can rewrite the Mandelstam t̂ and û to be expressed in
terms of ŝ :

t̂ = −1
2

ŝ(1 − cos θ̂) (6.6)

û = −1
2

ŝ(1 + cos θ̂) (6.7)

where θ̂ is the scattering angle in the center­of­mass frame of the colliding partons.

The QCD 2 → 2 cross section is dominated by the t­channel exchange of a gluon, so we
have

dσ̂
d t̂

∝ α2
s

t̂2
(6.8)

where σ̂ is the partonic cross section. We see, that this corresponds to the angular behavior
of Rutherford scattering, since

dσ̂
d cos θ̂

=
dσ̂
d t̂

d t̂
d cos θ̂

∝ α2
s

t̂2
ŝ
2
=

2α2
s

ŝ(1 − cos θ̂)2
=

α2
s

2 ŝ sin4(θ̂/2)
(6.9)

where we have used the half­angle identity 1 − cos θ̂ = 2 sin2(θ̂/2). So for a fixed ŝ , the
cross section clearly peaks at small angles, θ̂ (forward).

We now turn to what we can measure in the experiment. Here the two outgoing partons
will manifest themselves as jets, but they will be surrounded by other activity, like more jets.
We therefore define the dijet as the leading and subleading jet in the event, which means
the jets with the highest and next­to­highest pT.

As discussed earlier, the two colliding partons do not necessarily have equal and opposite
momenta, which means the lab frame and the center­of­mass frame may differ. Here the
kinematic variable called rapidity is convenient.
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Question 6.3: What is rapidity?

Rapidity is defined from the energy, E, and the longitudinal momentum compo­
nent, pz, as

y ≡ 1
2
ln

E + pz

E − pz
(6.10)

which has the nice feature, that it changes additively under Lorentz boosts along
the z­axis, so rapidity differences are Lorentz invariant.

We denote the rapidity of the leading and subleading jet with y1 and y2, respectively and
introduce

yB =
y1 + y2

2
(6.11)

y∗ =
y1 − y2

2
(6.12)

where a longitudinal boost, yB, will bring the lab frame to the center­of­mass frame, giving
the jets equal, but opposite, rapidities, ±y∗, as seen in Figure 6.2.

Figure 6.2: Sketch showing a longitudinal boost, yB, to the lab framewith jet rapidities y1 and y2, bringing it to the center-of-mass
frame, where the jets have rapidities ±y∗.

Then we can also define the rapidity difference measure,

χ = e|y1−y2| = e2|y
∗| (6.13)

where we note, that since y∗ is Lorentz invariant, so is χ and that by construction χ ≥ 1.
Since y∗ can be related to the scattering angle by cos θ̂ = tanh y∗, we get

χ =
1 + | cos θ̂|
1 − | cos θ̂|

∝ 1
1 − | cos θ̂|

= − ŝ
2 t̂

(6.14)
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where we in the last step have used the expression for t̂ in Equation 6.6. We can then
rewrite the cross section in Equation 6.8 as

dσ̂
dχ

=
dσ̂
d t̂

d t̂
dχ

∝ α2
s

t̂2
t̂2

ŝ
=
α2

s
ŝ

(6.15)

which is very illuminating. It tells us that from leading order QCD, where t­channel ex­
change is dominant, we expect the differential production cross section, dσ̂/dχ, to be
approximately flat as a function of χ for a fixed ŝ = m2

jj.

This is contrary to what would be expected for a new phenomena, which is produced via
s­channel and is therefore more isotropic. This means, it is independent of θ̂ or equivalently
that dσ̂/d cos θ̂ will be constant. From this follows

dσ̂
d t̂

∝ 1
ŝ

(6.16)

and therefore
dσ̂
dχ

=
dσ̂
d t̂

d t̂
dχ

∝ 1
ŝ

t̂2

ŝ
=

t̂2

ŝ2
∝ 1
χ2 (6.17)

so the distribution will peak at low χ.

This means, that when we are searching for a BSM signal, it is very useful to look at the χ
distribution in bins of mjj. To this matter, it is also useful to know the relationship between
mjj, pT and χ, which to leading order is

mjj = pT

(
√
χ+

1
√
χ

)
(6.18)

so we see, that for a given mjj, high pT values correspond to low χ values and vice versa.

The cross section, we have considered so far, dσ̂/dχ, is on the partonic level. However,
what we will be measuring with the detector is on the hadronic level. We therefore have
to multiply the partonic cross section with the parton distribution function (PDF) and
integrate over the momentum fractions as described in Section 2.7. We then get

dσ
dχ

=

∫
dx1fi(x1,Q2)

∫
dx2fj(x2,Q2)

dσ̂
dχ

(6.19)

so at leading order, the hadronic cross section is determined by the Bjorken x1 and x2 as
well as χ. We can rewrite dx1dx2 as dτdyB, where τ = x1x2 = ŝ/s and yB = 1/2 ln(x1/x2).
So the hadronic cross section can equally well be described by ŝ = mjj, yB and χ. Then
for a fixed ŝ in a given bin of χ only yB can vary and since the partonic cross section does
not depend on yB, it means the difference in the hadronic cross section is coming from the
PDFs. However, what we really want to investigate is the partonic cross section over the
whole range of χ and therefore it is desirable to keep the yB range small by applying a cut.
Such a cut is applied in the angular dijet analysis presented in Section 9.1.
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6.3 QCD dijets as background

Dijets are produced in abundance through QCD processes. These are seen as backgrounds
when searching for BSM phenomena. It is therefore very important to be able to estimate
these and this can be done in many different ways, which will be outlined below.

6.3.1 Monte Carlo simulations

A common method to estimate Standard Model processes is Monte Carlo simulations as
already introduced in Chapter 2. These, however, have some drawbacks. First of all, it
requires huge computational resources to produce and store the Monte Carlo samples. Es­
pecially when it comes to final states like dijets, which are produced in magnificent numbers
especially at low invariant mass.

Another problem is that the data and Monte Carlo agreement is not always great due to
inadequate theoretical knowledge, like missing higher order corrections. Therefore, Monte
Carlo simulation is sometimes corrected with a factor derived from data. Either way the
Monte Carlo samples often come with large systematic uncertainties.

6.3.2 ABCD method

It is instead possible to fully derive the background in a data­driven way. A useful way to
estimate the background in the signal region from the control regions is to used the ABCD
method.

Question 6.4: What are signal and control regions?

In physics analyses, it is common to divide the data into signal and control regions
using the selection criteria. The signal regions are the parts of phase space, where
the signal is expected to be present and the signal to background ratio is optimized.
Then by inverting some cut(s), control regions, which are close in phase space to the
signal region, but where little signal is expected, are obtained. The control regions
can be used to estimate (or control) the background in the signal regions.
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Question 6.5: What is the ABCD method?

The ABCD method is used to estimate the background in the signal region A from
the control regions B, C and D. The signal region is (partly) defined by two se­
lections, which can be inverted to define the control regions, which should have
minimal signal contamination. The selections can either be binary (like a veto on
electrons) or a cut on a continuous variable (like transverse momentum or invariant
mass).
The important assumption, that needs to be true for the ABCD method to work, is
that the two selection observables are reasonable uncorrelated for the background
events. In this case the following will be true

Nbkg
C

Nbkg
D

=
Nbkg

A

Nbkg
B

(6.20)

where Nbkg
i is the number of background events in region i. If we then further

assume that the signal contamination in the control regions is negligible such that
the total number of events in control region j is Nj = Nbkg

j , we get

Nbkg
A =

NC

ND
NB (6.21)

and it is possible to calculate the expected number of background events in the
signal region A from the data in the three control regions.
In the case of non­negligible signal contributions in the control regions, it is still
possible to use the ABCD method by using a likelihood­based approach to estimate
the relative rates in the four regions.
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6.3.3 Global fit

Another background estimation method, which has shown to be useful, when looking at
dijet invariant mass distributions, is to perform a global fit on the distribution. This is
possible, because the distribution is expected to be smoothly falling without any structures.
A functional form, that has proven to describe dijet invariant mass distribution well, is

f(x) = p0(1 − x)p1xp2+p3 ln x+p4(ln x)2+··· (6.22)

where pi are free parameters and x = mjj/
√

s. It is used in e.g. the tt all­hadronic analysis
(see Chapter 8), the dijet plus initial state radiation analysis [110] and many more.

6.3.4 Sliding Window Fit

The global fit described above is however not always sufficient, especially with the large
integrated luminosity available in Run 2, since the smaller statistical uncertainties reveals
structures, that were not visible before. Therefore, a new method is needed. The sliding
window fit (SWiFt) was developed for the dijet resonance analysis [111], but has been used
by several analysis since. It is e.g. used in the full Run 2 dijet and di­b­jet resonance analysis,
which is presented in Chapter 9.

Question 6.6: What is SWiFt?

The sliding window fit (SWiFt) is applying the fit function in small windows rather
than on the whole distribution. In this way each bin content is estimated by fitting
the distribution around it. So the algorithm slides over the distribution, estimating
one bin at the time.
The size of the fitting windows has to be optimized. While smaller windows makes
it easier to describe the distribution well with the fit, too small windows could give
too much flexibility. The size is optimized by performing multiple fits with different
window sizes and choosing the window size with the best χ2 p­value.

6.4 Dijet searches

As we have seen earlier in this chapter, depending on the signal we are searching for, two
different variables, mjj and χ, are extremely useful.

For resonance searches looking at the mjj distribution, new BSM signal will manifest itself
as a bump on the otherwise smoothly falling QCD background, which can be estimated
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in a data­driven way by fitting the distribution with a functional fit as described above. In
these searches, tagging of the dijets can be advantageous, if the signal has a larger coupling
to e.g. top quarks. This is indeed the strategy used in the search presented in Chapter 8.

For non­resonance searches on the other hand, the χ distribution is of interest. Here we
expect from LO QCD, that the distribution will be approximately flat, when divided in
narrow mjj bins. However, at higher orders and when including non­perturbative effects, it
will no longer be completely flat, so a comparison to Monte Carlo simulation is needed. A
BSM signal is expected to be seen at low χ values as discussed above and the angular search
is therefore done as a comparison of the shape in data and simulation. The angular search
is presented in Chapter 9.

In order to perform these analyses, we need some statistical tools, which will be the last
topic of this chapter.

6.5 Statistical tools

The statistical analysis can roughly be divided in two categories. First the distribution(s)
are examined for any significant deviations from the background model. This can be done
both in a model­dependent and independent way. If no significant deviation is found, the
next step is to compute limits on the benchmark signal(s).

6.5.1 Model­independent resonance search

There is a large number of statistical tests, which check whether the data is consistent with
a given hypothesis. We will focus on the Pearson’s χ2 test and BuMpHuNTER [112], which
are used in the all­hadronic tt search presented in Chapter 8. These kind of tests are called
hypothesis tests or goodness of fit tests. It is possible to check, whether the data follow any
kind of hypothesis, but it is common to choose the hypothesis to be the null or background
hypothesis, H0. In this way, a discovery can be claimed from just saying, that the data is
not in agreement with the standard theory without having to show, which theory is the
correct one. The big advantage of that is, that it makes the search model­independent. The
first step in a hypothesis test is to define the test statistic.

Question 6.7: What is a test statistic?

The test statistic is a single number, that quantifies the difference between data, D,
and the background hypothesis, H0. It is always defined such that a larger difference
between D and H0 will lead to a larger test statistic. It is often denoted by t.
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The second step is to construct the test statistic distribution for H0 by generating pseudo­
experiments. The hypothesis test is then made by reading the p­value from that distribution,
for the test statistic measured in the data.

Question 6.8: What is a pseudo­experiment?

In reality, we often only get one outcome of an experiment, but we know, that
the outcome is subject to some uncertainty. We can therefore generate pseudo­
experiments, which represent other likely outcomes to the experiment. For a count­
ing experiment, this can be done by varying the number of measured events within
the Poisson uncertainty.
Pseudo­experiments are also sometimes called toys or pseudo­data.

Question 6.9: What is a p­value?

The p­value or probability value is the probability to obtain a test statistic, t, that
is equal to or greater than the observed test statistic, to, assuming the background
hypothesis, H0, is correct. Or mathematically

p­value ≡ P(t ≥ to|H0) (6.23)

which is also shown graphically in the sketch below.
The p­value is a false­discovery probability. If e.g. the hypothesis test returns a
p­value = 10−2, we can say that the most reliable decision, which would rule out
H0, based on this hypothesis test, would have a probability of 1% of being wrong.

It is important to realize, that different statistical tests can be sensitive to different features
and therefore give very different p­values. It can therefore be very useful to apply more than
one. However, it is clearly easier to find one statistical test, that will reject the background
hypothesis, if you perform a lot of tests. It is therefore important to take into account this
trials factor, which is also called the look­elsewhere effect.
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Question 6.10: What is the look­elsewhere effect?

The look­elsewhere effect or trials factor is the phenomenon, that it is possible to get
a result. that is looking significant, but is merely caused by the huge size of the
parameter space and happens by chance. This effect should be acknowledged and
taken into consideration, when performing the statistical analysis.

It is possible to take into account the look­elsewhere effect by performing a hypertest, which
in itself is also a hypothesis test. It is a union of many hypothesis tests, since it uses their
p­values as the test statistic. More specifically, the test statistic is

t = − ln(min
i

p­valuei) (6.24)

or in words: the negative logarithm of the smallest p­value in the set. The negative loga­
rithm is used to make sure t is monotonically increasing, but it could of course be replaced
by any other monotonically increasing function.

The p­value of the hypertest quantifies, how often such a small or smaller p­value would be
returned by at least one of the N hypothesis tests included in the set, given H0 is correct.
BuMpHuNTER is such a hypertest, but before we start discussing that, we will first have a
look at a much simpler hypothesis test, Pearson’s χ2 test.

Pearson’s χ2 test

The most commonly used hypothesis test is probably Pearson’s χ2 test. It uses the test
statistic

t =
∑

i

(
di − bi√

bi

)2

(6.25)

where di is the observed events and bi is the background events expected by H0 in bin i. The
distribution of the test statistic from the pseudo­experiments will follow a χ2 distribution
and the observed test statistic can therefore directly be used to calculate the p­value from
the χ2 distribution.

BUMPHUNTER

A hypothesis test, that has shown to be very useful when searching for resonances in an
invariant mass distribution, is BuMpHuNTER. It is designed to find the most significant
excess in data compared to the background hypothesis, H0. It scans the data using windows
of varying width and keeps the window with the largest excess.
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It is a hypertest, that combines the several hypothesis tests, which focus on bumps of various
widths at different positions of the spectrum, taking the look­elsewhere effect into account.

This is done by calculating a local p­value for each of the windows, which is given by

p­value =

{
1 if d ≤ b
Γ(d, b) otherwise

(6.26)

where Γ(d, b) is the normalized lower incomplete Gamma function, d is the observed data
events and b is the background events expected from H0. The global p­value, which takes
into account the look­elsewhere effect, is then calculated by using the test statistic given in
Equation 6.24 and create pseudo­experiments as explained above.

A thing that should be noticed is, that when the background hypothesis depends on the
data, as is the case when using a global fit or SWiFt, the fit needs to be performed for each
of the pseudo­experiments in order to find the corresponding background distribution.

6.5.2 Model­dependent search

If we instead are interested in testing the compatibility of data with a specific signal model,
we can do a model­dependent search. In this case, we have a signal plus background (s+b)
hypothesis, so the expected number of events in bin i is given by

νi = μsi(θ) + bi(θ) (6.27)

where μ is the signal strength, which is our parameter of interest (POI), si(θ) and bi(θ) are
the expected number of signal and background events given the nuisance parameters, θ.

Question 6.11: What is a nuisance parameter?

A nuisance parameter is any parameter, which is not the main parameter of interest,
but needs to be accounted for in the analysis. Usually the parameter of interest is
the mean value of an observable, whereas the variance of the observable is merely a
nuisance. In a statistical analysis, uncertainties are taking into account by applying
nuisance parameters for each of them.

The probability of observing ni events in bin i, when νi is expected, is given by the Poisson
probability, so the likelihood for a distribution with N bins will be the product of N Poisson
terms

L(μ,θ) =
N∏

i=1

Ppois(ni|νi(θ)) =

N∏
i=1

(μsi(θ) + bi(θ))
ni

ni!
e−(μsi(θ)+bi(θ)). (6.28)
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It is possible to add an external constraint in the likelihood for the nuisance parameters, θ,
which are not constrained by the data by definition. This constraint term C(θ) is given by
the product of, usually, Gaussian terms and is multiplied with the likelihood in Equation
6.28 to give the final likelihood.

Now it is possible to test a hypothesized value of μ by considering the profile likelihood
ratio [113]

λ(μ) =
L(μ, ˆ̂θ)
L( μ̂ , θ̂)

(6.29)

where ˆ̂
θ is the value of θ, that maximizes the likelihood for the specified μ. In other words,

it is the conditional maximum­likelihood estimator of θ and is therefore a function of μ.
L( μ̂ , θ̂) in the denominator is on the other hand maximized in an unconstrained way and
μ̂ and θ̂ are the true maximum­likelihood estimators. The profile likelihood ratio, λ(μ),
can take values between 0 and 1, where values close to 1 means, the hypothesized value of
μ is in good agreement with data.

We can now define a test statistic from the profile likelihood ratio

tμ = −2 lnλ(μ) (6.30)

where the logarithm is chosen for computational reasons and the minus is in order to again
make sure the test statistic is monotonically increasing as the disagreement between data
and the hypothesis gets larger.

Furthermore, we can define the test statistic for discovery of a positive signal. We notice,
that the rejection of μ = 0, or the background­only (b­only) hypothesis, effectively is the
same as a discovery of a new signal. The special test statistic for this case is

q0 =

{
−2 lnλ(0) if μ̂ ≥ 0
0 if μ̂ < 0

(6.31)

which can be used to calculated a local p0­value, defined as the probability to observe an
excess at least as large as the one observed in data, under the background­only hypothesis.
A global p0­value can also be calculated by taking into account the look­elsewhere effect.

Question 6.12: When can we claim a discovery?

In particle physics, a discovery can be claimed, when the global p0­value is less
than 3 · 10−7, which means the probability of observing such an excess (or larger),
given the background­only hypothesis is true, is roughly 1 in 3.5 million. This
corresponds to a 5σ deviation, where σ is the standard deviation of the Gaussian
probability distribution seen in Question 6.9.

99



6.5.3 Limit setting

In a similar way, we can define a test statistic for setting an upper limit on the signal strength
μ. It is

qμ =

{
−2 lnλ(μ) if μ̂ ≤ μ
0 if μ̂ > μ

(6.32)

where it is important to notice that q0 is not a special case of qμ. More specifically, q0 is
zero, if the data fluctuates downward ( μ̂ < 0), whereas qμ is zero, if the data fluctuates
upward ( μ̂ > μ). The reason for setting qμ = 0, when the data fluctuates upward, is that,
when setting an upper limit, the upward fluctuation should not be seen as less compatible
with μ than the data obtained.

For an observed test statistic, qμ,obs, the p­value is

pμ =

∫ ∞

qμ,obs

f(qμ|μ, θ̂μ)dqμ (6.33)

where f(qμ|μ, θ̂μ) is the probability density function of qμ assuming the hypothesized μ
and the nuisance parameter values, that maximized the likelihood, θ̂μ, for that μ. Then
the upper limit on μ is the largest μ with pμ < α, where α is the specified threshold, e.g.
α = 0.05 for a 95% confidence level (CL).

Calculating the limit in this way, however, has the unfortunate property, that if too few
events are observed to account for the expected background, then any signal, and even the
background itself, may be excluded at a high confidence level.

It is therefore instead common to use the CLs method [114] for the limit setting, where we
define the variable

CLs =
pμ

1 − p0
=

∫∞
qμ,obs

f(qμ|μ, θ̂μ)dqμ∫ qμ,obs
−∞ f(qμ|0, θ̂0)dqμ

(6.34)

from which the confidence level can be calculated as CL = 1 − CLs. The integrals of the
equation are shown graphically in Figure 6.3.

The probability density function f can be described by an analytic asymptotic formula re­
ferred to as the asymptotic approximation. This heavily decrease the time it takes to calculate
the limit and is therefore often used. It is, however, good practice to check, that the ap­
proximation is valid by sampling the distribution from pseudo­experiments and compare
the results, if the number of events is small.
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Figure 6.3: Calculation of the CLs variable shown graphically.

In this approximation [115], it is easy to calculate the significance, Zμ, from the test statistic
by

Zμ =
√qμ (6.35)

where Zμ often is given in terms of the standard deviation σ.

6.5.4 Wilks’ test

The BuMpHuNTER and χ2 p­values, introduced above, are also used to assess whether the
fit describes the background well, when investigating, how many parameters are needed in
the functional form in Equation 6.22. If several of the fits have acceptable BuMpHuNTER
and χ2 p­values, Wilks’ test can be used to decide on the preferred number of parameters.
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Question 6.13: What is Wilks’ test?

Wilks’ test checks, whether adding another parameter to a fit makes it significantly
better at describing the distribution. The test statistic is given as

t = −2 · ln
(

LFP

LMP

)
(6.36)

where LFP (LMP) is the likelihood of the fewest (most) parameters model. The test
statistics will follow a χ2 distribution with NMP − NFP degrees of freedom, where
NFP (NMP) is the number of degrees of freedom in the model with fewest (most)
parameters. The p­value can then be calculated as the complementary cumulative
distribution function (CCDF) of the χ2 distribution evaluated at the observed test
statistic.
If the p­value is more than the threshold α, the fit with the fewest parameters is
favored, since the additional parameter is not giving a significantly better description
of the distribution.
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7
Single Particle Jet Energy Scale Uncertainty

The jet energy scale (JES) uncertainty is estimated using different methods at different pT
ranges, as we saw in Chapter 5. In­situ techniques exploiting the pT balance between a jet
and a reference object (Z, γ or multijet) are used at lower pT, but at very high pT (> 2 TeV)
there is not enough statistics for such in­situ techniques.

Therefore, another approach is taken at the highest pT. The JES uncertainty is estimated
from the calorimeter response to single hadrons. In this approach, the jet is seen as a
superposition of energy depositions coming from single particles. An uncertainty is applied
to each energy deposition belonging to the particles within the jet and propagated to the
final JES uncertainty.

This approach is also working at low pT, but results in a bigger JES uncertainty than the
in­situ techniques, so it is only used for the highest pT jets. However, the calibrations,
obtained with the two methods, should be in agreement, so this is checked. The results
presented here are for Run 2 data. Similar results were seen in Run 1 [116].

7.1 Data sets and object selection

The jet energy response and uncertainty is derived by examining simulated dijet events
using PyTHIA8 [27] with the NNPDF23LO parton distribution function set [23] and the
A14 tune [117].

In these events, the reconstructed jets are formed from topological clusters of energy using
the anti­kt algorithm with distance parameter R = 0.4. The reconstructed jets are matched
to the closest particle jets in η−ϕ space. The particle jets are formed with the same anti­kt
algorithm as the reconstructed jets but from particles instead of clusters. In this way, the
energy depositions in the cells are assigned to individual particles. The energy can then be
smeared according to the specifics of the particle.
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7.2 Jet energy response and uncertainty

The composition of particles will vary from jet to jet due to hadronization effects. Therefore,
the calorimeter response will also vary. Figure 7.1 shows the average spectra of particles
inside a jet. The jet is dominated by charged pions and photons, where the spectrum of
photons is softer than the spectrum of pions, since the photons are predominantly coming
from decay of neutral pions, which have a similar spectrum to the charged pions.

The high energy particles contribute to a substantial part of the total jet energy, even though
the jet clearly contains a lot more low energy particles. It is therefore interesting to look
at the average energy fraction different types of particles contribute to the total jet energy.
This is seen in Figure 7.2. As expected, the energy spectra are not as steep as the particle
spectra and it becomes flatter for more energetic jets.

However, the jet energy response and uncertainty is not directly dependent on the energy
of the particles, but the amount of energy the particles deposit in the calorimeter. It is
therefore more interesting to look at the average energy fraction deposited in the calorimeter
by different particles. This is seen in Figure 7.3.
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Figure 7.1: Average particle fraction as a function of the particle energy for different types of particles for jets with (a) 90 <
pT[ GeV] < 100 and (b) 400 < pT[ GeV] < 500.

7.2.1 Jet energy scale uncertainty

The uncertainties, applied to the deposited energy in the calorimeter, can be divided into
five different categories: E/p, Combined Test Beam, Out of Range, Electromagnetic Scale
and Neutral. They are all treated as independent Gaussian­distributed uncertainties. They
can potentially have an offset, which describe the average relative difference in the scale
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Figure 7.2: Average energy fraction as a function of the particle energy for different types of particles for jets with (a) 90 <
pT[ GeV] < 100 and (b) 400 < pT[ GeV] < 500.
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Figure 7.3: Average calorimeter energy fraction as a funcion of the particle energy for different types of particles for jets with
(a) 90 < pT[ GeV] < 100 and (b) 400 < pT[ GeV] < 500.

between data and simulation. In the following, only the main contributors are described,
but the full list of the different terms is given in Appendix C.

E/p: The energy response given by E/p is calculated by taking the ratio of the energy
deposited in the calorimeter by a hadron to the momentum measured by the inner detector
from its track. These measurements are available in the range 0.5 < p[GeV] < 30 and
|η| < 2.3. One of the major uncertainties assigned to the particles in this range is to
account for the discrepancy in the energy response in data and Monte Carlo (In situ E/p).
Another uncertainty accounts for the discrepancy in the fraction of tracks matched to zero
or negative energy clusters in data and Monte Carlo (E/p Zero Fraction).

An uncertainty in the momentum measurement is coming from the misalignment of the
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inner detector [118, 119] (E/p Misalignment) and yet another to account for the potential
mismodeling of threshold effects in topological clustering (E/p Threshold ).

Combined Test Beam (CTB): Measurements of the barrel calorimeter response to hadrons
were done with the combined test beam [120]. They are available in the range 20 <
p[GeV] < 400 and |η| < 0.8. If a particle is in the overlap region of the E/p and CTB
regions, the CTB uncertainties are applied. Here the major uncertainty also comes from
the discrepancy in the energy response in data and Monte Carlo (CTB).

Out of Range: When a particle is outside both the E/p and CTB region, it is said to be
“out of range”. In this case no measurements are available and we have to apply a conser­
vative uncertainty to make sure, we account for the effects of saturation, punch through,
and non linearity at high energy [121]. This is done by applying a 10% uncertainty to all
particles in this region (Out of Range).

Neutral: Additional uncertainties are needed for neutral particles, since the calorimeter
response in Monte Carlo depends on the physics model used [122]. An uncertainty of
either 5 or 10% is applied to all neutral particles depending on whether the momentum is
above or below 3 GeV (Neutral). For long­lived neutral kaons a bigger uncertainty of 20%
is applied (KL). This uncertainty is a bit conservative, because of the limited measurements,
that were available at the time.

The jet energy scale response and uncertainty is seen in Figure 7.4. The upper panel shows
the mean relative response with the total uncertainty as a gray band. The lower panel shows
a breakdown of the most dominant contributions. At low |η| (Figure 7.4a), the uncertainty
is less than 2% for jets with pT < 1 TeV, where the KL uncertainty is dominant. Above
this point the “Out of Range”­uncertainty becomes dominant. At higher |η| (Figure 7.4b)
the ‘Out of Range”­uncertainty becomes dominant already at pT = 80 GeV. Below this
point the “E/p Threshold”­uncertainty is the largest contributor.

The fact that two of the most dominant uncertainties are the “Out of Range” and KL un­
certainty, which both are rather conservative, calls for further investigations, such that the
overall uncertainty can be reduced. However, that goes beyond the scope of these studies.

The correlations in uncertainty of jets with different pT and |η| is shown in Figure 7.5. As
expected the uncertainty of jets, which are close in pT and |η| are almost fully correlated.
The same is true for high pT jets with different |η| due to the “Out of Range”­uncertainty
being the dominant uncertainty for all high pT jets.

In Figure 7.6, a comparison between the relative response derived with this method (single
hadron response) and the normal in­situ pT balance techniques is shown. It is seen, that
the methods are consistent, but this method gives an uncertainty, which is about twice as
big as the normal method. However, the pT balance method is not available for jets with
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pT > 2 TeV, so here the single hadron response needs to be used. We saw the effect of this
change in method in Figure 5.6.
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Figure 7.4: Mean relative response and JES uncertainty for jets with (a) |η| < 0.8 and (b) 0.8 < |η| < 1.1.
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8
All­hadronic tt Resonance Analysis

Many observed phenomena cannot be explained by the Standard Model, like the ones high­
lighted in Section 2.11. One of the main interests of particle physicists today is therefore
to find any hints on how to explain physics beyond the Standard Model (BSM). Here the
top quark, being the heaviest elementary particle, could be of particular interest, because of
its large coupling to the Higgs boson. It could therefore play a special role in the theory of
electroweak symmetry breaking and help solving the hierarchy problem of the Higgs mass.

In this analysis, the final state, we are looking for, is two top quarks decaying in the all­
hadronic channel. These could be decay products of the topcolor­assisted­technicolor Z ′

TC2
boson, which was introduced in 2.11.1. However, they could also origin from any other res­
onance that can decay into top quarks. The analysis therefore includes a model­independent
search step on top of the model­dependent search for the Z ′

TC2 benchmark signal. A Feyn­
man diagram, showing one possible outcome of a Z ′ boson decaying to two top quarks,
which then decay hadronically, is seen in Figure 8.1.

In other words, the aim of this analysis is to localize any deviation from the smoothly falling
background in the invariant mass spectrum of the two top quark candidates, mtt . This is
done by firstly optimizing the event selection using a Monte Carlo sample of Z ′

TC2 → tt .
Then applying top and b tagging in order to improve the signal to background ratio and
thereby the sensitivity to a new resonance. The signal is modeled by fitting the Monte
Carlo sample with an appropriate function and perform a signal morphing, which makes
it possible to predict the signal shape at any mass. The background is also modeled by
performing a functional fit. This is tested on Monte Carlo samples first, but is eventually
done on data. Finally the statistical analysis is performed in order to either claim a discovery
or set limits on current models.

This analysis strategy is significantly different from the one used in the previous all­hadronic
tt analysis [123], which used 36.1 fb−1 of

√
s = 13 TeV data. The new strategy is more

sensitive to the benchmark signal, as we will see in Section 8.7.3. A search in the lepton+jets
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Figure 8.1: Example of the decay of a Z ′ boson in the all-hadronic tt channel.

channel on the same data set has also been performed in ATLAS [124], whereas CMS has
made a combination of all three final states including the dilepton channel [125]. The all­
hadronic analysis, presented here, is the first tt result to become public with the full Run 2
data.

A visualization of one of the highest mtt events is seen in Figure 8.2. The two blue cones
represent the large­R jets, where the leading jet has pT = 1.96 TeV, η = 0.64, ϕ = 0.41
and m = 152 GeV and the subleading jet has pT = 1.92 TeV, η = −0.72, ϕ = −2.71
and m = 173 GeV. They are both top tagged and the invariant mass of them is mtt =
4.83 TeV. The green and yellow boxes represent the energy deposits in the electromag­
netic and hadronic calorimeters, respectively. Each of the large­R jets have three associated
variable­radius track­jets of which one is b tagged. In the top left corner the same event
is displayed, but with a higher energy thresholds to remove low­pT particle contributions.
The three­prong substructure expected for the hadronic decay of top quarks is clearly visible
in the electromagnetic calorimeter.

8.1 Data and simulation

Even though this analysis is data­driven, which means, the background is estimated from
data instead of relying on Monte Carlo simulations, a number of Monte Carlo samples are
used in addition to the data. A list of the samples and data containers are given in Appendix
D.
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Figure 8.2: Visualization of tt event (Run=359310, Event=3066561649) [126].

8.1.1 Monte Carlo samples

Monte Carlo simulations are used to model both signal and background processes, but the
background samples are only used to validate the analysis strategy, since the background is
eventually estimated directly from data.

The signal samples for the Z ′
TC2, which were introduced in Section 2.11.1, are generated us­

ing PyTHIA v8.186 [27] with the leading order (LO) NNPDF2.3 parton distribution func­
tion (PDF) set [23] and the A14 set of tuned parameters for parton shower and hadroniza­
tion [117]. To bring the production cross section to next­to­leading order (NLO), it is
multiplied by 1.3 [127]. The Z ′

TC2couples only to first­ and third­generation quarks and is
primarily produced by quark annihilation. The model parameters are chosen, such that the
Z ′

TC2 → tt branching fraction is maximized, which means it reaches 33%. The samples are
generated at different masses, which have different cross sections as summarized in Table
8.1. Furthermore, the width of the resonances are set to 1% of the mass, which is smaller
than the detector resolution, as we will see in Section 8.3.4.

The background samples consist of both Standard Model ttand multijet samples. These are
used to validate the analysis strategy, as mentioned above, but are also used to optimize the
selection criteria and for top and b tagging studies.

111



Table 8.1: Masses and leading order (LO) cross sections, σLO, for the generated Z ′
TC2 samples.

Z ′
TC2mass [TeV] 1.75 2 2.25 2.5 2.75 3 4 5 6

σLO [pb] 0.334 0.172 0.0924 0.0511 0.0289 0.0167 2.13 · 10−3 3.31 · 10−4 7.17 · 10−5

Table 8.2: Single high-pT large-R jet triggers used in all-hadronic tt analysis.

Year Name Jet pT threshold Jet trimming
2015 HLT_j360_a10_lcw_sub_L1J100 > 360 GeV Untrimmed
2016 HLT_j420_a10_lcw_L1J100 > 420 GeV Untrimmed
2017­18 HLT_j460_a10t_lcw_jes_L1J100 > 460 GeV Trimmed

The Standard Model tt events are generated using the NLO Monte Carlo generator POwHEg­
BOx v2 [128] with the NLO NNPDF3.0 PDF set [129]. The cross section is scaled to
next­to­next­to­leading­order (NNLO) in QCD including resummation of next­to­next­
to­leading logarithmic soft gluon terms with Top++2.0 [130]. Furthermore, the parton
showering, hadronization and underlying event are modeled using PyTHIA v8.230 [27]
with the LO NNPDF2.3 PDF set and the A14 set of tuned parameters. A few more tech­
nical details on these samples are found in Appendix D.

The multijet events are like the Z ′
TC2 events generated using PyTHIA v8.186 with the LO

NNPDF2.3 PDF set and the A14 tune.

8.1.2 Data samples

The data samples used in this analysis is recorded by ATLAS from pp collisions at
√

s =
13 TeV in 2015­2018 (Run 2). Only data, collected during stable beam conditions and with
the relevant detector components operational, is used, resulting in a integrated luminosity
of 139 fb−1.

In order to record the events, a number of triggers are used as described in Chapter 4. In
this analysis a set of unprescaled single high­pT large­R jet triggers are used. They vary for
the different data­taking years and are summarized in Table 8.2. The unprescaled trigger
with the lowest jet pT threshold in each data­taking period is chosen, which is why it varies
for the different years. Similarly, the trimmed jet triggers¹ are preferred over the untrimmed
triggers, since they have better turn­on curves. However, these were not available in 2015
and 2016, so the untrimmed triggers were used.

To ensure almost 100% efficient triggers, the leading large­R jet (the one with the highest
pT) is required to have pT > 500 GeV.

¹For triggers, the trimming is using fcut = 0.04 instead of 0.05, which is used in the offline algorithm as
described in Section 5.2.2. The lower value is used to avoid inefficiencies.
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8.2 Event selection

Before the selection criteria are investigated, a few pre­selections are applied to the samples.
First of all, each event is required to have at least one vertex associated with two or more
tracks with pT > 500 MeV. As mentioned in Question 4.3, the vertex with the largest∑

p2
T of associated tracks is chosen as the primary vertex. Furthermore, events are removed,

if they contain electrons or muons, in order to avoid any overlap with the tt lepton+jets and
dilepton analyses. The object definitions used for the electrons, muons and other physics
objects are given in Appendix E.

8.2.1 Kinematic selection

Since we are searching for events, where a resonance decays into two top­quarks, the main
requirement is that the leading and subleading large­R jets are top tagged (see Section 8.2.2
about top tagging). In addition to this requirement, the two leading large­R jets, which we
will now refer to as top jets, need to have pT > 350 GeV. This requirement is necessary to
enhance the presence of jets, that fully contain the top­quark decay products and to be able
to use the provided tagger calibrations. Furthermore, the leading large­R jet is required to
have pT > 500 GeV, to ensure it is on the plateau of the trigger turn­on curve as mentioned
above.

A number of variables have been investigated for finding the optimal selection cuts. This
was done by applying a mass window of 20% below and above the signal peak value in both
the background and signal samples and then calculating the significance given by s√

b
as a

function of the variable cut. Here s is the number of signal events and b is the number of
background events. For the background, the multijet and inclusive all­hadronic tt samples
are used here. The mass window of 20% captures the main part of the signal especially at
low masses. It goes from 98% at 1750 GeV to 77% at 4000 TeV, but only 60% at 5000
GeV, because of the low mass tail.

Figure 8.3 shows the azimuthal angle separation between the two top jets, ∆ϕjj, for a num­
ber of different Z ′

TC2 masses. It is seen that in all cases, the two top jets are reasonable
back­to­back. Therefore, it is required, that the two top jets have an azimuthal angle sepa­
ration larger than 1.6. It is seen from Figure 8.4, that this cut does not lower the significance
for any Z ′

TC2 mass as expected. However, it does also not improve the significance either,
but it can act as a quality check of the data.

Figure 8.5 shows the rapidity difference between the two top jets, ∆yjj, for a number of
different Z ′

TC2 masses. It is seen that for high mass, the signal jets have a smaller separation
in rapidity than the background jets. In Figure 8.6 it is seen that for high Z ′

TC2 masses, the
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Figure 8.3: Distribution of the azimuthal angle separation, ∆ϕjj, for Z ′
TC2 mass of (a) 2000 GeV, (b) 3000 GeV, (c) 4000 GeV and

(d) 5000 GeV.
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Figure 8.4: Significance as a function of the minimum cut value of the azimuthal angle separation, ∆ϕjj, for Z ′
TC2 signal for (a)

low masses and (b) high masses.
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Figure 8.5: Distribution of the rapidity difference, ∆yjj, for Z ′
TC2 mass of (a) 2000GeV, (b) 3000GeV, (c) 4000GeV and (d) 5000GeV.
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Figure 8.6: Significance as a function of the maximum cut value of the rapidity difference, ∆yjj, for Z ′
TC2 for (a) low masses and

(b) high masses.
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significance is highest with a cut of ∆yjj < 1.8. Therefore, the two top jets are required to
have a rapidity difference smaller than 1.8 to better reject the Standard Model background
produced in t­channel processes.

Other variables such as the transverse momentum of the two top jets (Figure 8.7), the pT
balance, A =

pT1−pT2
pT1+pT2

(Figure 8.8a) and the rapidity boost, yB =
y1+y2

2 (Figure 8.8b) were
also investigated, but it was decided to not apply cuts on any of them.
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Figure 8.7: Significance as a function of the minimum cut value of (a) transverse momentum of the leading top jet, pT1, and (b)
transverse momentum of the subleading top jet, pT2.
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Figure 8.8: Significance as a function of the maximum cut value of (a) the pT balance, A, and (b) the rapidity boost, yB.

8.2.2 Top tagging

The deep neural network (DNN) top tagger, that was introduced in Section 5.3, has been
optimized for this analysis. It was retrained in the newest software release (R21) and the
fixed signal efficiency working points were derived for the fully­contained configuration.
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Signal significance based working points were studied, but the fixed 80% efficiency working
point was found to provide similar sensitivity across the full mass range and was therefore
used. The 80% efficiency working point corresponds to a rejection of light­quark and gluon
jets of approximately 30 at a large­R jet pT = 500 GeV and 12 at pT = 3000 GeV.

8.2.3 b tagging

For the b tagging, the DL1 algorithm, which was also introduced in Section 5.3, is used with
the 77% efficiency working point on variable­radius (VR) track jets, which were defined
in Section 5.1.5. This requirement has corresponding rejection factors of approximately 5
and 128 for jets containing c­hadrons and light­quark jets, respectively.

The b tagging requirement is used to define two signal regions. In the 1b signal region, either
the leading or the subleading top jet is matched to a b­tagged VR track jet within a cone of
radius ∆R < 1.0. Whereas in the 2b signal region, both top jets are matched to a b­tagged
jet.

8.2.4 Summary

Table 8.3 gives a summary of the selection criteria, which were presented above. As also
mentioned above, the analysis has two signal regions: the 1b signal region and the 2b signal
region. The 2b signal region is expected to provide a better sensitivity, but as we will see
later, the contribution to the sensitivity from the 1b signal region is not negligible.

Table 8.3: Event selection criteria for the all-hadronic tt analysis.

Observable Requirement
Leading large­R jet transverse momentum pT,1 > 500 GeV

Subleading large­R jet transverse momentum pT,2 > 350 GeV
Azimuthal angle separation ∆ϕjj > 1.6

Rapidity difference ∆yjj < 1.8
Top tagging

Both leading large­R jets should fulfill the DNN 80% working point
b tagging

Either one (1b) or both (2b) leading large­R jets should be matched
to a VR track jet that fulfill the DL1 77% working point

The acceptance of Z ′
TC2 signal events is calculated at the truth (or generator) level. The four

kinematic cuts given in Table 8.3 are for this study applied to the truth variables instead of
the reconstructed variables. The acceptance is defined as the fraction of Z ′

TC2 signal events,
that fulfill the kinematic requirements, have the top decay products contained inside the
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leading large­R truth jets (fully­contained requirement) and do not include any electrons
or muons with pT > 25 GeV and η < 2.5.

The acceptance times efficiency is the fraction of events that fulfill the full analysis selection
on the reconstructed variables including the top­ and b­tagging requirements. This means
the events that pass the acceptance times efficiency requirements are not necessarily a subset
of the events that pass the acceptance requirements, since some fake contribution can occur.

The acceptance and the acceptance times efficiency is seen for the two signal regions as a
function of the invariant mass of the top­quark pair at the generator level, mgen

tt , in Figure
8.9. It is seen, that the acceptance increase at higher invariant mass values, which is mostly
due to the fact, that the top quarks get more boosted and the fully­contained requirement
gets fulfilled easier. It is also seen, that the acceptance times efficiency is approximately 5%.
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Figure 8.9: The acceptance (black) and the acceptance times efficiency (red) as a function of the invariant mass mgen
tt for (a) the

1b signal region and (b) the 2b signal region [131].

8.3 Background modeling

The background modeling is done by making a global fit to the invariant mass, mtt , distri­
bution. In order to test the background modeling procedure and estimate the uncertainties
on it, a sample, which is similar to what is expected in data, is needed. This is the case,
because the data in the signal regions is blinded.
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Question 8.1: What is a blind analysis?

To do a blind analysis means you are setting up and testing your analysis from start
to finish without looking at the data in the region, where you expect a signal. This
is done to make sure you are not being biased by what you see. It also means, that
you are not allowed to make any changes to the event selection, tagger or fitting
procedure after the unblinding of the data.

The sample used for testing the analysis can either be a Monte Carlo sample or a data­driven
sample. In our case, we are using a combination of both. The background Monte Carlo
samples have been introduced above, so we will now discuss the data­driven sample.

8.3.1 ABCD method

The data­driven sample used to estimate the multijet background in the signal region is
derived with an ABCD method. The ABCD method used for this analysis is a bit more
complicated, than what was introduced in Chapter 6, since it includes two selection vari­
ables for two leading large­R jets, such that the result is a 4× 4 matrix and not just a 2× 2
matrix.

The selections are the top tagging requirement of the large­R jets and the matching of the
large­R jet to a b­tagged VR track jet. Furthermore, the calculations are done bin­by­bin
and are not just a single number. The details on the ABCD method used for this analysis
is described in the paper [131]

8.3.2 Effective entries

It is important, that the sample, that is used for the testing of the background modeling, has
at least as good statistics as what is expected in data. Otherwise the statistical fluctuations
and uncertainties would be larger and make the test unreliable. To check whether the
sample has sufficient statistics, it is useful to calculate the effective entries, which are defined
as

Neffective =

(
bin content
bin error

)2

. (8.1)

It should be noted, that if Neffective was calculated for data, it would be equal to the bin
content, since the bin error is the square root of the bin content. The statistics is sufficient,
if the number of effective entries is larger than the sample scaled to the expected luminosity
in data.
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Figure 8.10: The effective entries (red) compared to the Monte Carlo tt distribution scaled to the expected luminosity in data
(black) for the (a) 1b signal region and (b) 2b signal region.
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Figure 8.11: The effective entries (red) compared to the Monte Carlo multijet distribution scaled to the expected luminosity in
data (black) for the (a) 1b signal region and (b) 2b signal region.

Figure 8.10 shows the effective entries compared to the scaled sample for the Monte Carlo tt
background. It is seen, that there is sufficient statistics over the whole range. Unfortunately,
that is not the case for the Monte Carlo multijets sample, which is seen in Figure 8.11.
Below approximately 2.1 TeV the effective entries is less than the scaled multijet sample in
both the 1b and 2b signal region.

Looking at the effective entries compared to the scaled sample for the data­driven multijets
in Figure 8.12, it is seen that for this distribution the statistics is much better at low mass.
However, the statistics is instead insufficient above 3.3 TeV in the 1b signal region and
above 4.3 TeV in the 2b signal region.

Since neither the Monte Carlo or data­driven multijet sample have enough statistics over
the full range, they have been combined.

120



1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

tt
m

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s

1b signal region

 -1Scaled entries, 138.96fb

Effective entries

1b signal region

(a)

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

tt
m

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s

2b signal region

 -1Scaled entries, 138.96fb

Effective entries

2b signal region

(b)

Figure 8.12: The effective entries (red) compared to the data-driven multijet distribution scaled to the expected luminosity in
data (black) for the (a) 1b signal region and (b) 2b signal region.
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Figure 8.13: Ratio of the mass spectrum from the data-driven and Monte Carlo samples for the (a) 1b signal region and (b) 2b
signal region fitted with a first order (red) and second order (green) polynomial.

8.3.3 Combined multijet sample

The data­driven sample can be used at low mass, but at higher mass, the Monte Carlo sam­
ple has much better statistics. However, the data­driven sample has a shape that resembles
the expected data better than the Monte Carlo. Therefore, the Monte Carlo needs to be
corrected with a factor derived from the ratio of the data­driven sample and the Monte
Carlo sample. This correction factor is found by fitting the ratio with a polynomial as seen
in Figure 8.13. Both a first and second order polynomial was tried.

Figure 8.14 shows a comparison of the corrected mass spectra with first and second order
polynomial corrections to the original Monte Carlo and data­driven spectra. It is clear that
the correction is needed to be able to stitch the data­driven and Monte Carlo samples.
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Figure 8.14: Comparison of corrected Monte Carlo samples to the original Monte Carlo and data-driven samples for the (a) 1b
signal region and (b) 2b signal region.
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Figure 8.15: Comparison of the effective entries of the Monte Carlo and data-driven samples for the (a) 1b signal region and
(b) 2b signal region.

To decide at which mass the switch, from the data­driven to the corrected Monte Carlo
sample, should happen, the effective entries of the samples are compared. This is seen
in Figure 8.15. It is seen, that the statistics is better for the Monte Carlo sample above
2410 GeV and 2730 GeV for the 1b and 2b signal regions, respectively. These values are
therefore used for the stitch points. So for the combined samples, the data­driven sample
is used below the stitch point and the corrected Monte Carlo is used above.

A comparison of the combined multijet samples (with Poisson errors) and the data­driven
sample is seen in Figure 8.16. Within the uncertainty there is no difference between the
first and second order polynomial correction, so the first order polynomial is used.

Figure 8.17 shows the effective entries of the combined multijet sample and Monte Carlo
tt combined. It is evident, that the statistics is sufficient and this spectrum is therefore
well­suited to test the background estimation procedure.
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Figure 8.16: Comparison of the combined multijet samples and the data-driven sample for the (a) 1b signal region and (b) 2b
signal region.
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Figure 8.17: The effective entries (red) compared to the combinedmultijet andMonte Carlo tt distribution scaled to the expected
luminosity in data (black) for the (a) 1b signal region and (b) 2b signal region.

Figure 8.18 shows the the combined multijet sample (red) and Monte Carlo tt sample
(purple) in a stacked histogram. It is seen, that in the 2b signal region, the two components
are equally important, whereas in the 1b signal region, the multijets are dominant.

8.3.4 Fitting range and binning

Before the fitting procedure can be tested on the sample, the fitting range and the mtt
binning has to be determined. It was decided to start the fitting at 1400 GeV, since the
mtt distribution is affected by the leading large­R jet pT cut of 500 GeV below this point,
which makes it harder to fit the distribution.

The end point of the fitting is set to 6910 GeV, but it will only fit up until the last non­
empty bin, so since there are no events above 5820 GeV in the 2b signal region, the fitting
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Figure 8.18: The background sample with the combined multijet (red) and Monte Carlo tt (purple) for the (a) 1b signal region
and (b) 2b signal region. The samples are scaled to 139 fb−1.

range will be 1400 GeV to 5820 GeV in this region for the testing of the fitting procedure.
However, if there would have been events in the data above this point, they would also have
been included in the fit.

Regarding the mtt binning, we want to maximize the number of bins in order to be able to
detect as narrow resonances as possible. However, we want the binning to be coarser than
the detector resolution in order to limit the effects of bin­to­bin migration. Therefore, a
study has been performed to find the detector resolution, so the bin size can be determined
accordingly.

To find the detector resolution, the ratio mreco
jj /mtruth

jj is plotted for several mtruth
jj ranges.

Here mreco
jj is the reconstructed invariant mass of the two leading large­R jets and mtruth

jj is
the invariant mass of the truth large­R jets matched to the reconstructed jets. The ratios
are fitted with a Gaussian distribution as seen in the example in Figure 8.19a. The detector
resolution is given by the width divided by the mean of the Gaussian, σ/μ.

In Figure 8.19b, the measured detector resolution is plotted as a function of mtruth
jj . The x­

value for each mtruth
jj range is set to the mean value of mtruth

jj in that range and the uncertainty
on the y­axis is propagated from the Gaussian fits. The points are fitted with a function of
the form a

mtruth
jj

+ b√
mtruth

jj

+ c.

The bins are derived from this function with the requirements, that the bins should be
larger than the detector resolution, the bin width should be a multiple of 10 GeV and start
from 1400 GeV. It is seen in Figure 8.20a, that the bin resolution, given by the bin center
divided by the bin width, is approximately larger than or equal to the detector resolution
as wanted. In fact the bin resolution is between 99­114% of the detector resolution as seen
in Figure 8.20b.
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Figure 8.20: The bin resolution (black) is approximately larger than or equal to the fit representing the detector resolution (blue).
Here (a) shows a comparison as a function of the mtruth

jj and (b) shows the ratio.

8.3.5 Global fit requirements

The functional form, that was introduced in Equation 6.22, is tested for this analysis in the
3­, 4­ and 5­parameter form:

f3(x) = p0(1 − x)p1xp2 , (8.2)

f4(x) = p0(1 − x)p1xp2+p3 ln x, (8.3)

f5(x) = p0(1 − x)p1xp2+p3 ln x+p4(ln x)2 . (8.4)
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Table 8.4: Requirements on the various p-values for the fit.

P­value Requirement
χ2 > 0.05

BuMpHuNTER > 0.01
Wilks’ > 0.10

The number of parameters needed, usually depends on the number of events. In the dijet
analysis, it has been seen, that as the integrated luminosity grows, more parameters are
needed in order to give a good description of the distribution.

The quality of the fit can be evaluated by looking at the χ2 and BuMpHuNTER p­values,
which were introduced in Chapter 6. Furthermore, Wilks’ test can be used to decide on
the number of parameters, if several of the functions fulfill the χ2 and BuMpHuNTER p­
value requirements. The requirements on the p­values for this analysis have been inspired
by those used in similar analyses and are summarized in Table 8.4.

8.3.6 Pseudo­experiments

It is possible to check the fitting procedure directly on the combined multijet and Monte
Carlo tt sample, which was presented in Section 8.3.3, however the data will fluctuated
around these values, so in order to assess the robustness of the method, it is tested on
pseudo­experiments thrown from the original distribution.

A pseudo­experiment is produced by fluctuating each bin content by assigning a random
value from a Poisson distribution with a mean of the original bin content. The error is set
as the square root of the new bin content. A set of 1000 pseudo­experiments is created.

The set of pseudo­experiments is used to determine the amount of fit parameters, that is
expected to be needed to describe the data well. It is also used to estimate the background
modeling systematic uncertainties, which will be described in Section 8.5.

8.3.7 Choice of fit function

The Wilks’ p­value is calculated for each of the pseudo­experiments for the 3­parameter fit
compared to the 4­parameter fit and for the 4­parameter fit compared to the 5­parameter
fit, where the fits fulfill the χ2 and BuMpHuNTER p­value requirements given in Table 8.4.
The distribution of the Wilks’ p­values is seen in Figure 8.21 and 8.22.

As mentioned above, if the p­value is less than 0.1, the fit with more parameters is preferred.
It is seen that for the 1b signal region, 3 parameters are almost never enough, since 4
parameters are preferred over 3 in 92% of the cases. Whereas 4 parameters are the preferred
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Figure 8.21: Wilks’ p-value for the pseudo-experiments comparing good fits with (a) 3 and 4 parameters and (b) 4 and 5
parameters in the 1b signal region. The gray histogram indicates the pseudo-experiments, where the higher number
of parameters are favored.
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Figure 8.22: Wilks’ p-value for the pseudo-experiments comparing good fits with (a) 3 and 4 parameters and (b) 4 and 5
parameters in the 2b signal region. The gray histogram indicates the pseudo-experiments, where the higher number
of parameters are favored.

number over 5 parameters in 90% of the cases. In the 2b signal region, the result is not as
clear. In 53% of the cases the 4­parameter fit is favored over the 3­parameter fit. But in
a significant fraction, 25%, of the pseudo­experiments the 5­parameter fit is also favored
over the 4­parameter fit. It is therefore quite hard to predict, how many parameters are
needed in the data, especially in the 2b signal region. However, it was decided based on
this study combined with the spurious signal study, which will be described below, that
the 4­parameter fit will be used in data in both signal regions. In addition, it was checked
that the background estimation procedure is able to detect an injected signal in a so­called
signal injection test. The test showed a good agreement between the injected and subtracted
signal, but with a slight overestimation, that however was below 10% at all masses.
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8.4 Signal modeling

As explained in Section 8.1.1, the signal is generated for a number of Z ′
TC2 masses listed in

Table 8.1. We would however like to do the statistical analysis for masses in between those
points as well. Therefore, a functional form is used to model the signal mtt distribution
and create interpolated signal templates for masses where Monte Carlo samples are not
available.

The modeling was first done with the sum of a reversed Landau and a Gaussian function.
The Landau function is given by

l
(
x; μL, c

)
=

1
πc

∫ ∞

0
e−t cos

[
t
(

x − μL
c

)
+

2t
π
ln
( t

c

)]
dt (8.5)

and has two free parameters, a location parameter, μL, which corresponds approximately
to the most probable value and a scale parameter, c. The Gaussian function is given by

g (x; μ, σ) =
1√

2πσ2
e−

(x−μ)2

2σ2 (8.6)

and it also has two free parameters, the mean value μ and the standard deviation σ. The
resulting fit function is then

fRL+G
(
x; k, μ, σ, μL, c

)
= k · g (x; μ, σ) + (1 − k) l

(
−x; μL, c

)
(8.7)

where 0 < k < 1 is a fractional coefficient and we see the Landau function is reversed by
substituting x → −x. The reversed Landau describes the signal peak and the low mass tail,
whereas the Gaussian helps describe the high mass tail.

However, it turned out that the sum of a Crystal Ball function [132, 133] and a Gaussian
function describes the distribution even better. The Crystal Ball function is essentially a
Gaussian distribution at the core connected with a power­law distribution describing the
lower tail. It is given by

h
(
x;αCB, nCB, μCB, σCB

)
= N ·

exp(− (x−μCB)
2

2σ2
CB

), for x−μCB
σCB

> −αCB

A · (B − x−μCB
σCB

)−nCB , for x−μCB
σCB

⩽ −αCB
(8.8)
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where

A =

(
nCB

|αCB|

)nCB

· exp

(
−|αCB|2

2

)
(8.9)

B =
nCB

|αCB|
− |αCB| (8.10)

N =
1

σCB(C + D)
(8.11)

C =
nCB

|αCB|
· 1

nCB − 1
· exp

(
−|αCB|2

2

)
(8.12)

D =

√
π
2

(
1 + erf

(
|αCB|√

2

))
(8.13)

where erf is the error function. It is seen, that the function has four free parameters, αCB,
nCB, μCB and σCB. The fit function then instead takes the form

fs
(
x; k, μ, σ, αCB, nCB, μCB, σCB

)
= k · g (x; μ, σ) + (1 − k) h

(
x;αCB, nCB, μCB, σCB

)
.

(8.14)

So in total, the fit function has seven shape parameters and an additional normalization
parameter. A restriction is put on the Gaussian μ to always be larger than μCB. This is done
to ensure, that the Gaussian does not move to low mtt values to fit the low­mass tail for the
high Z ′

TC2 masses.

The fits to the Monte Carlo samples are seen in Figure 8.23 and 8.24 for the 1b and 2b
signal region, respectively. It is seen, that the low­mass tail is not well described for the 5
and 6 TeV signal (Figure 8.23h, 8.23i, 8.24h and 8.24i), but this is not expected to have
a large effect on the limit due to the steeply falling background. This is confirmed by the
following studies.

The eight free parameters are either linear interpolated between or fitted with a polynomial
function to estimate the value of the parameters at masses not available in the Monte Carlo
samples. The distribution of the variables are seen in Figure 8.25 and 8.26 for the 1b and
2b signal region, respectively.

Both the Gaussian μ and μCB are fitted with a first order polynomial, whereas the Gaussian
σ is fitted with a second order polynomial and the normalization is fitted with a third order
polynomial. The rest of the parameters are linear interpolated. For nCB, the logarithm
of the value is taken before doing the interpolation, since it makes the distribution more
linear.
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(g) (h) (i)

Figure 8.23: Crystal Ball plus Gaussian function fit to the mass distribution of Z ′
TC2 samples in the 1b signal region. The low

mass tail is not well described for the 5 and 6 TeV signal, but this does not have a large effect on the limit due to
the steeply falling background (see discussion in text).
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Figure 8.24: Crystal Ball plus Gaussian function fit to the mass distribution of Z ′
TC2 samples in the 2b signal region. The low

mass tail is not well described for the 5 and 6 TeV signal, but this does not have a large effect on the limit due to
the steeply falling background (see discussion in text).
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Figure 8.25: Linear interpolation of and polynomial fits to the parameters of the Crystal Ball plus Gaussian function for the 1b
signal region.
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Figure 8.26: Linear interpolation of and polynomial fits to the parameters of the Crystal Ball plus Gaussian function for the 2b
signal region.
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8.4.1 Closure test

A closure test is performed to make sure, the interpolated samples are a good representation
of what we would have gotten with Monte Carlo simulation. This is done by using the same
procedure as described above, but now removing the points for each of the Monte Carlo
samples one at a time to estimate the interpolated value at that point. An example for the
signal mass of 4 TeV in the 2b signal region is seen in Figure 8.27.

The interpolated signal is shown together with the fit to the Monte Carlo in Figure 8.28
and 8.29. It is only possible to do the closure test from 2 to 5 TeV since the end points
needs to be used for the interpolation.

The closure test result is seen in Figure 8.30. It is found by calculating the limit with the
Monte Carlo samples and the interpolated samples respectively and taking the ratio of the
results. It is seen, that the difference is at maximum 5%, which is acceptable, but to take
this into account, a systematic uncertainty of 5% is added to the mass points, where the
interpolated signal is used.

8.5 Systematic uncertainties

The systematic uncertainties are divided in signal and background uncertainties. Since
the background is estimated by a functional fit as described above, the only systematic
uncertainties on the background distributions are related to the fit. They are the uncertainty
on the fit parameters and the spurious signal caused by the choice of the functional form.

8.5.1 Fit parameter uncertainty

Due to the statistical fluctuations in each pseudo­experiment (or data sample), the fit pa­
rameters vary and result in slightly different fits. This variation of the fits is seen in Figure
8.31, which shows the fits to the 1000 pseudo­experiments in red and the fit to the nominal
background template (combined multijet sample and Monte Carlo tt sample) in black. It
is clear, that there is a larger variation in the fits at high mtt in the 2b signal region due to
lower statistics.

The variation in the fits is transformed into an uncertainty by taking the root mean square
(RMS) of the fit values divided by the mean value in each of the bins. The result is seen in
Figure 8.32.
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Figure 8.27: Linear interpolation of and polynomial fits to the parameters of the Crystal Ball plus Gaussian function for the 2b
signal region with the 4 TeV sample removed for the closure test.
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Figure 8.28: Comparison of the fitted and interpolated signal samples in the 1b signal region.
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Figure 8.29: Comparison of the fitted and interpolated signal samples in the 2b signal region.
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(a) (b)

Figure 8.30: Closure test with the (a) expected and (b) observed limits.
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Figure 8.31: Fits to set of 1000 pseudo-experiments in the (a) 1b signal region and (b) 2b signal region. The black line is the fit
to the nominal background template.
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Figure 8.32: Fit parameter uncertainty in the (a) 1b signal region and (b) 2b signal region.
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8.5.2 Spurious signal

To evaluate the bias on the extracted signal yield caused by the choice of background mod­
eling function, a spurious signal is evaluated by fitting the background­only (b­only) mtt
distribution with a signal plus background (s+b) model for a number of signal masses.

The s+b function is given by

fs+b(x) = f4(x) + μsp · fs(x) (8.15)

where μsp is the spurious signal strength, f4(x) is the 4­parameter background function
given in Equation 8.3 and fs(x) is the signal function given in Equation 8.14. The parame­
ters of the signal functions are kept fixed during this process, such that only the parameters
of the background function and μsp can vary.

For the background­only sample the pseudo­experiments from the combination of com­
bined multijet and Monte Carlo tt is used. To make sure the point, where the two samples
are stitch, referred to as the stitching point, will not affect the spurious signal result, it
was decided to take the average of calculating the spurious signal from pseudo­experiments
from samples with 6 different stitching points. The stitching points are 2260, 2410, 2570,
2730, 2890 and 3060 GeV in both signal regions. It is seen from Figure 8.11 and 8.12,
that for these stitching points both the data­driven and Monte Carlo multijet have better
statistics, than what is expected in data. The averaged results are seen in the following.

In addition to the spurious signal strength, it can be interesting to look at the spurious signal
pull, Nsp/σbkg, which compare the spurious signal events in a window of 20% around the
signal peak, Nsp, to the background uncertainty calculated as the square­root of the number
of background events in the same window of 20% around the signal peak, σbkg. The mass
window is selected to capture the main part of the signal. The spurious signal strength and
pull is seen in Figure 8.33 and 8.34, respectively.

For both variables the value and error is taken as the mean and width of a Gaussian fit to
the pseudo­experiments. An example of this (for the spurious signal pull in the 1b signal
region for the 4­parameter fit with a stitching point at 2570 GeV) is seen in Figure 8.35.
Similar Gaussian fits are done for the spurious signal strength in both signal regions and
for all stitching points.

To get the average result, which are shown here, the mean value is simply the average of the
6 results (with different stitching point) and the error is

√
Σσ2

x/
√

6, where σx is the error
on the variable taken from the Gaussian fit described in the previous paragraph.

The pull is relatively large, compared to what is seen in other analyses, like the dijet analysis.
This can be explained by the different method used here. If instead the pseudo­experiments
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Figure 8.33: Spurious signal strength, μsp, as function of Z ′
TC2 mass using the 4-parameter dijet functions for background mod-

eling in the (a) 1b signal region and (b) 2b signal region.
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Figure 8.34: Spurious signal pull, Nsp/σbkg, as function of Z ′
TC2 mass using the 4-parameter dijet functions for background

modeling in the (a) 1b signal region and (b) 2b signal region.

were created from an initial fit to the combination of combined dijet and Monte Carlo tt
a much smaller spurious signal is seen.

It is also catching the eye, that the spurious signal gets very large especially at high mass in
the 2b region. This difference between the two signal regions is partly due to the 2b signal
region having less events, but is mainly due to the mtt distribution in the 2b signal region
falling of more steeply than in the 1b region.

It is seen, that the spurious signal is fluctuating quite a lot, which is likely due to the
statistical fluctuations in the background sample, so in order to get a more smooth result, it
was decided to fit the spurious signal strength, μsp, with a suitable function to describe the
trend. Before this was done the signal strength was first symmetrized by taking the absolute
values to get |μsp|. The chosen fit is

f(x) = p0 · exp (p1 + exp (p2 + p3 · x)) (8.16)
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Figure 8.35: Gaussian fits to spurious signal pull in 1b signal region for 4-parameter fit for the different signal masses.

141



(a) (b)

Figure 8.36: Absolute value of spurious signal strength, |μsp|, as function of Z ′
TC2 mass fitted to make a smooth spurious signal

estimate in the (a) 1b signal region and (b) 2b signal region.

and the result is seen in Figure 8.36. The blue fits are used for the spurious signal uncertainty
in the statistical analysis, which is calculated in the following way.

The signal templates, which were described in Section 8.4, are multiplied with the estimated
μsp to get the scaled signal template, ϵsp, which therefore varies as a function of mtt . Since
the spurious signal uncertainty is treated as a background uncertainty, the+1σ (−1σ) vari­
ation is created by adding (subtracting) ϵsp to the nominal background template obtained
from the background­only fit. It should be noted, that this uncertainty is calculated for
each of the signal masses considered in the statistical analysis.

8.5.3 Large­R jet uncertainties

The systematic uncertainties related to the large­R jets are derived with the Rtrk method,
which was introduced in Section 5.2.2. The uncertainties are divided in jet energy scale
(JES) and jet mass scale (JMS) uncertainties and consist of four components. The baseline
component, which is based on the difference between data and PyTHIA8 simulations and
the modeling component, which covers the differences between different event generators
(PyTHIA, HERwIg and SHERpA). The tracking component, where tracks are being used as
reference and the statistical component, which comes from the statistical limitations of the
method.

Furthermore, a jet energy response (JER) and jet mass response (JMR) uncertainty is ap­
plied. The JER uncertainty is found by applying a 2% uncertainty to the large­R jet pT
and propagate it to the mtt distribution. Whereas, the JMR uncertainty, which is derived
specifically in the context of top­quark jets, is obtained by applying a 20% uncertainty to
the jet mass.
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8.5.4 Top and b tagging uncertainties

The uncertainties related to top and b tagging are handled in a similar way. The tagging
efficiencies are calculated both in data and Monte Carlo and the ratio between them is
applied to the Monte Carlo samples as a scale factor as explain in Section 5.3.2. It is then
possible to propagate the various uncertainties through these scale factors.

For the top tagging, the efficiency for hadronically decaying top quarks is measured using
samples, which are enriched in tt events with the lepton+jets final state. The uncertainty
in the correction factor is estimated to be 10− 15% per jet depending on the pT of the jet.

An additional uncertainty is considered at high pT, where the scale factor is not measured
due to low statistics in data. Instead, the Monte Carlo samples are varied by applying dif­
ferent conditions to the GEANT4 calorimeter shower model and the detector material. The
uncertainty is added in quadrature to the scale factor uncertainty at the highest available pT
bin to obtain the uncertainty above that point. The components of the large­R jet and top
tagging uncertainties, that are associated with the same sources of systematic uncertainties,
are varied together in the statistical analysis.

For the b tagging, the efficiency for b­quark­induced jets is measured in samples with tt
events in the dilepton final state. The uncertainties are divided in the effects from b, c and
light­quark jets. Again an additional uncertainty is applied at high pT using an extrapola­
tion technique.

8.5.5 Other uncertainties

The uncertainties described above are the most dominant. However, an uncertainty on
the integrated luminosity of 1.7% [134] is applied as well. Uncertainties related to the
pile­up modeling and the lepton reconstruction and identification are also applied, even
though they are negligible compared to the others. Furthermore, the uncertainty on the
interpolated signal templates of 5%, which were calculated in Section 8.4.1 are applied at
the masses, where the interpolated signal is used.

8.6 Statistical analysis

The statistical analysis consist of three steps. First a model­independent search is done with
BuMpHuNTER and then a hypothesis test based on the benchmark signal (model­dependent
search) is performed using the profile likelihood ratio method described in Section 6.5.2. If
neither of the two tests show any significant deviation, the CLs method is used to compute
the observed and expected upper limits for the benchmark signal production cross section.
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8.6.1 BUMPHUNTER

BuMpHuNTER is able to identify any resonant signal, with an acceptable width, regardless
of the source, as explain in 6.5.1. In this search, the minimum search window is set to two
bins and the maximum to half of the number of bins in the full spectrum.

8.6.2 Likelihood

The likelihood used in the profile likelihood ratio is given, similarly to Equation 6.28, by

L(μ,θ) =
N∏

i=1

Ppois(ni|νi(θ, θsp))× C(θ) (8.17)

where νi(θ, θsp) = μsi(θ) + bi(θ) + mi(θsp) is the number of expected events in bin i
including the mi(θsp) events, which are coming from the spurious signal uncertainty, θsp.
C(θ) is a series of Gaussian distributions for the nuisance parameters, θ, which represent
the systematic uncertainties presented in Section 8.5. The signal systematic uncertainties
are treated as fully correlated between the two signal regions, whereas the background sys­
tematic uncertainties are treated as uncorrelated, since they are estimated from statistically
independent samples.

8.6.3 Limit setting

The 95% confidence level (CL) upper limit on the signal strength, μ, is found by scanning
over values of μ until a CLs value of 0.05 is found. This is then converted into an upper
limit on the cross section times branching fraction, σ × B, by using the relation

σ × B × A × ϵ =
μ × Ns

L
(8.18)

where A is the acceptance, ϵ is the efficiency, Ns is the total signal yield estimated from the
signal templates and L is the integrated luminosity.

The asymptotic approximation mentioned in Section 6.5.3 is used in this analysis, but a
check with the test statistic sampled using pseudo­experiments is performed in the high­
mass region from 3 TeV and up. It is found that the σ × B limit from the asymptotic
approximation is stronger than those from the pseudo­experiments by at most 20% at
masses above 4 TeV. Furthermore, the impact on the mass limit from this approximation
is estimated to be below 100 GeV.
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8.7 Results

The results are divided in three parts following the steps of the statistical analysis. However,
it is interesting to first compare the data to the nominal background template, we derive
in Section 8.3.3, since the derived background template is the foundation for the choice of
fitting function and background systematic uncertainties. It is clear from the comparison
in Figure 8.37, that the agreement is really good.
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Figure 8.37: The mtt distribution for the data compared to the background template from the combined multijet and Monte
Carlo tt sample in the (a) 1b signal region and (b) 2b signal region.

8.7.1 Model­independent search

The data is fitted with the 4­parameter function described in Equation 8.3 and BuM­
pHuNTER is used to perform the model­independent search. As seen in Figure 8.38, the
data is described well by the fit with BuMpHuNTER (BH) p­values of 0.45 and 0.56 for the
1b and 2b signal region, respectively.

The figure also shows, what a Z ′
TC2 signal with five times the nominal signal strength would

look like, if it had a mass of 2 TeV or 4 TeV. From comparing these bumps in the two signal
regions, it is easy to see, that the 2b signal region is more sensitive to the signal, but that
the sensitivity in the 1b signal region is not negligible.

Furthermore, the fit parameter uncertainty is shown as a band around the fit to show the
variation, that is expected especially at high mass. This uncertainty, or any of the other
systematic uncertainties for that matter, are however not included, when the BuMpHuNTER
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Figure 8.38: The mtt distribution for data including the 4-parameter fit in the (a) 1b signal region and (b) 2b signal region [131].

p­values are calculated. Therefore it is also not surprising, that the most significant deviation
interval is seen at high mass in both signal regions. The interval is marked by vertical lines
and are 5440−5690 GeV and 5440−5820 GeV in the 1b and 2b signal region, respectively.

To conclude, BuMpHuNTER did unfortunately not find any significant deviation from the
expected smoothly falling background, but on the positive side the 4­parameter fit has
proven to describe the data distribution well.

8.7.2 Model­dependent search

We now continue by performing the model­dependent search taking into account the tem­
plates for the Z ′

TC2 signal and all the systematic uncertainties. The investigated mass points
are

• 1750, 1875, 2000, 2125, 2250, 2375, 2500, 2625, 2750, 2875, 3000, 3250, 3500,
3750, 4000, 4250, 4500, 4750 and 5000 GeV

where the masses in bold are the Monte Carlo samples and the others are the interpolated
samples, which were introduced in Section 8.4. The first mass is 1750 GeV to make sure
the full peak is included in the mass spectrum, that starts at 1400 GeV.

The local p0­value for the background­only hypothesis is calculated in order to see, whether
we can reject the background­only hypothesis and thereby effectively claim a discovery. This
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is done by using the test statistic, q0, stated in Equation 6.31 with the likelihood given in
Equation 8.17. The result is seen in Figure 8.39, which also shows the corresponding local
significance given by

Z0 =
√

q0. (8.19)

The largest deviation is at 1875 GeV and has p0 = 0.06, which corresponds to a significance
of 1.6σ. So the model­dependent search did also not find any significant deviation as
expected from the result of the model­independent search.

Before we move on to the limit setting, it is interesting to look at the effects of the nuisance
parameters in the profile likelihood fit for the signal plus background (s+b) hypothesis.
Figure 8.40 shows the post­fit nuisance parameter pulls at Z ′

TC2 masses of 2 TeV and 4 TeV.
It is seen, that the fit parameter uncertainty is constrained more than 50% in both signal
regions and where it is pulled a bit downwards in the 1b signal region, it is pulled a bit
upwards in the 2b signal region. The largest uncertainty on the signal, the JES Rtrk modeling
uncertainty, is also constrained at both 2 TeV and 4 TeV, as well as pulled at 4 TeV.

That the JES Rtrk modeling uncertainty is the most dominant signal uncertainty is seen in
Figure 8.41, which shows the ranking of the twenty most dominant systematic uncertainties
at Z ′

TC2 masses of 2 TeV and 4 TeV. At 2 TeV, the fit parameter uncertainty in the 2b signal
region has the largest post­fit impact, followed by the spurious signal uncertainty in the 2b
signal region and the JES Rtrk modeling uncertainty. At 4 TeV the situation is a bit different.
Here the spurious signal uncertainty in the 2b signal region has the largest post­fit impact,
followed by the JES Rtrk modeling uncertainty and then the fit parameter uncertainty in
the 2b signal region.
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Figure 8.39: The observed p0-value as a function of the Z ′
TC2 mass (created by Elham Khoda).
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Figure 8.40: Post-fit nuisance parameter pull plot for a Z ′
TC2 mass of (a) 2 TeV and (b) 4 TeV.
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Figure 8.41: Systematic uncertainty ranking plot for a Z ′
TC2 mass of (a) 2 TeV and (b) 4 TeV.

148



To understand these systematic uncertainties a bit better, we can look at the variation plots
for these uncertainties. In Figure 8.42, the ±1σ variation of the JES Rtrk modeling uncer­
tainty is seen for a Z ′

TC2 mass of 4 TeV. It is clear, that this uncertainty is huge and affects
both the normalization and shape of the signal. It can also been seen, that the +1σ and
−1σ variations are very asymmetrical, since it is not possible to have downwards variations
of less than 0 events, corresponding to −100%, but upwards fluctuations of more than
1000% is fully possible. Figure 8.43 shows variations of the spurious signal uncertainty
at 4 TeV and the fit parameter uncertainty in the 2b signal regions. These are much more
symmetrical for the +1σ and −1σ variations.
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Figure 8.42: The mtt distribution of the Z ′
TC2 signal with a mass of 4 TeV with the JES Rtrk modeling uncertainty applied in the

(a) 1b signal region and (b) 2b signal region.
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Figure 8.43: The mtt background distribution in the 2b signal region with (a) the spurious signal uncertainty at 4 TeV and (b) the
fit parameter uncertainty applied.
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Table 8.5: Summary of the expected and observed mass exclusion limits of Z ′
TC2 signals with Γ = 1.2%, 1%, 3%. The Z ′

TC2
masses are excluded at 95% confidence level (CL).

Signal Mass exclusion limit
Width Expected [GeV] Observed [GeV]
Γ/m = 1.2% 4027 4141

Z ′
TC2 Γ/m = 1% 3801 3903

Γ/m = 3% 4724 4726

8.7.3 Limits

Since no significant deviations are seen either in the model­independent or model­dependent
search, upper limits on the cross section times branching fraction, σ × B, are set on the
benchmark Z ′

TC2 signal. The result for the observed and expected upper limits is seen in
Figure 8.44, which also shows the theory lines at next­to­leading order (NLO) for the Z ′

TC2
with Γ/m = 1% and 3%. Furthermore, the theory line at NLO, obtained by multiplying
the leading order (LO) theory cross­section times branching fraction by a factor 1.3, with
Γ/m = 1.2% is shown. The mass exclusion limit are summarized in Table 8.5.
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Figure 8.44: The observed and expected upper limit on the cross section times branching fraction [131].

The limits can also be done separately for the two signal regions to see, how they each
contribute, which is shown in Figure 8.45. It was not possible to get the limit for the 1b
signal region to converge at 4 TeV and up with all the systematic uncertainties included,
but a study showed, that if two of the b­tagging uncertainties (E0 and extrapolation) where
excluded, the limit converged. These uncertainties are however not dominant, so the limits
at lower masses are almost identical with and without them included as seen in the figure.
It is furthermore seen, that the main sensitivity is coming from the 2b signal region, but a
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none negligible improvement is seen from combining the two signal regions, especially at
high mass, where we are running out of events in the 2b signal region.
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Figure 8.45: The expected upper limit on the cross section times branching fraction separate for the signal regions as well as
combined.

8.7.4 Comparison to previous analysis

It is very interesting to see, how the limit compares to the one, that was found in the
previous analysis [123], which was using a very different analysis strategy. It was divided
in a resolved (low mass) and a boosted (high mass) part. We will focus on the boosted part
here, since it gives a clearer comparison to the current analysis. The previous analysis was
using the simple two­variable top tagger, which use one­sided cuts on mcomb and τ32. We
saw in Section 5.3.2, that the DNN top tagger, used in the current analysis, has more than
a factor of two better background rejection.

The previous analysis also used a less effective b tagger. It used an old version [135] of the
MV2 algorithm, which was performing worse than the one presented in Section 5.3.3.

The last major difference between the two analyses is the background estimation technique.
Instead of the fitting technique, the previous analysis was using Monte Carlo samples for the
tt background and a data­driven sample, found using an ABCD method, for the multijet
background.

In order to do a fair comparison of the two analyses, by taking the increase in integrated
luminosity out of the equation, the current analysis is performed on the same data set
with 36.1 fb−1. It is seen in Figure 8.46, that about half of the improvement in the mass
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exclusion limit is coming from the upgraded analysis strategy and the other half is coming
from the increase in integrated luminosity.
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Figure 8.46: The expected upper limit on the cross section times branching fraction compared to the result from the previous
analysis [131].

8.8 Discussion

As seen above, the analysis strategy has improved significantly compared to the previous
analysis. However, there are still a few things, which can be improved in the future.

The largest systematic uncertainty on the signal is the JES Rtrk modeling uncertainty. This
uncertainty could be reduced by, instead of calibrating the large­R jets using the Rtrk method,
using the newer in situ combination technique, which was presented in Section 5.2.2. This
was not done in this analysis, since the Rtrk method was used for the top tagging uncer­
tainty, so to be consistent and to be able to vary the uncertainties together, the Rtrk method
was used for both. In the future, the top tagging uncertainty should be found using the in
situ combination technique, such that a smaller uncertainty can be applied for the JES.

Furthermore, it could be interesting to investigate other signal models and repeat the kine­
matic selection studies to see, if other choices would be optimal for different signals and
thereby make the analysis more sensitive. It is however possible to simply used the current
analysis strategy and set limits on similar signal models, like a dark matter mediator Z ′.

152



8.8.1 Dark matter summary plot

It is possible to reweight the benchmark Z ′
TC2 signal to a dark matter leptophopic axial­

vector Z ′
A signal by applying event­by­event weights. The obtained upper limit on this

signal is compared to the limits provided by other analyses as seen in Figure 8.47, which
shows the upper limit on the coupling to quarks, gq, as a function of the resonance mass,
mZ ′

A
. The limit is comparable to the ones obtained in the dijet angular and resonance

searches, which will be presented in Chapter 9.
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9
Dijet Analysis

In this chapter, several dijet studies will be discussed, including the published angular anal­
ysis on 37 fb−1 of data [111] and the resonance analysis on 139 fb−1 of data [137]. Fur­
thermore, initial studies for an angular analysis on 139 fb−1 of data, will be highlighted.

As described in Chapter 6, the resonance analysis is investigating the mjj distribution, where
the angular analysis is looking at the χ = e|y1−y2| = e2|y∗| distribution in different mjj
ranges.

The resonance and angular analyses are complementary. Where the resonance analysis is,
not surprisingly, more sensitive to (narrow) resonances, the angular analysis is more sensi­
tive to non­resonant phenomena and broad resonances. It therefore makes great sense to
investigate both. In case of a discovery of a new beyond the Standard Model (BSM) signal
in the resonance analysis, the angular analysis can also be used to give more information
about the discovered particle.

9.1 Angular analysis on 37 fb−1

The dijet analysis using the data collected at
√

s = 13 TeV in 2015 and 2016, corresponding
to 37 fb−1, included both a resonance and angular analysis [111]. Only the angular analysis
will be presented here. CMS has also performed a similar search [138].

The angular analysis is optimal, when searching for contact interactions (CI), which were
introduced in Section 2.11.2. Contact interactions with a nonzero left­chiral color­singlet
coupling (ηLL = ±1, ηRL = ηRR = 0) are chosen as the benchmark signal. These couplings
are preferred, since they give rise to angular distributions similar to those of other BSM
models (e.g. Z ′). It is worth noting that the angular analysis is purely a shape analysis,
which means, the background prediction is normalized to the data.
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9.1.1 Simulation

This analysis uses the same PyTHIA multijet sample, that is used in the tt analysis and pre­
sented in Section 8.1.1. However, in this analysis it is not only used for tests and systematic
uncertainty estimation, but as the background template. Therefore, it is important to apply
corrections, called k­factors, to bring the distribution to next­to­leading order (NLO), such
that the agreement between data and Monte Carlo gets better. The NLO calculations are
done with NLOJET++ [139, 140, 141] and will be described in greater detail in Section
9.5.

The contact interactions are simulated at leading order (LO) using PyTHIA 8.816. Inter­
ference of the signal model with the Standard Model process qq → qq is included, such
that events are simulated for both constructive (ηLL = −1) and destructive (ηLL = +1)
interference with Λ = 7 TeV.

Angular distributions for other Λ values are produced from this sample, by taken advan­
tage of the fact that the interference term is proportional to 1/Λ2 and the pure contact­
interaction cross section (called CI term in the following) is proportional to 1/Λ4 [39].

It is possible to isolate the two terms by adding or subtracting the two interference modes.
When they are added, the interference terms cancel and we are left with 2(σQCD + σCI),
where the QCD term is known from the multijet sample and can be subtracted. In a similar
way, we can isolate the interference term, σint, by subtracting the two interference modes.
The samples derived this way, were compared to a simulated sample at Λ = 10 TeV and
they agreed withing 4%, with the largest deviation in the high­χ region, where the signal
contribution is negligible [142].

To bring the samples to NLO, k­factors are applied as will be described next.

9.1.2 NLO corrections for signal

The NLO k­factors for the CI signal are derived using CIJET [143]. The program can
calculate both the LO and NLO cross sections as a function of mjj and χ. As for the
leading order calculations above, the CI and interference terms can be separated. However,
in this case there is no QCD term, that needs to be subtracted. The k­factors, for each of
the terms, are found as k = σNLO/σLO and the results for two different mjj ranges are seen
in Figure 9.1.

It is seen, that a larger χ dependence is present in the higher mjj range and for the interfer­
ence term. Furthermore, the distributions are very smooth as a function of χ, but also Λ.
The k­factors are applied bin­by­bin to bring the signal distributions to NLO.
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Figure 9.1: NLO k-factors as a function of χ for the CI term in the mass range (a) 3.4 TeV < mjj < 3.7 TeV and (b) 8 TeV < mjj <
13 TeV and for the interference term in the mass range (c) 3.4 TeV < mjj < 3.7 TeV and (d) 8 TeV < mjj < 13 TeV.

9.1.3 Event selection

This analysis is using small­ R (R = 0.4) topo­ cluster jets on the EM scale. The leading and
sub­leading jets are required to have pT > 440 GeV and pT > 60 GeV, respectively. This
ensures a trigger efficiency of at least 99.5%. As discussed in Section 6.2, a limited range
of yB = (y1 + y2)/2 is preferable, in order to limit the dependence of the cross section on
the parton distribution functions (PDFs). The chosen value is |yB| < 1.1. Furthermore, a
cut of |y∗| < 1.7, which is equivalent to χ < 30 is applied.

Using Equation 6.18, we see that, we will lose events at the highest χ for mjj < 2.5 TeV
due to the leading pT cut, so therefore only events with mjj > 2.5 TeV is allowed. The
event selection is summarized in Table 9.1.
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Table 9.1: Selections for the angular search with 37 fb−1 of data.

Category Angular
Leading jet pT > 440 GeV
Subleading jet pT > 60 GeV
|y∗| < 1.7
|yB| < 1.1
mjj > 2500 GeV

9.1.4 Systematic uncertainties

The systematic uncertainties can be divided in theoretical and experimental uncertainties.
The theoretical uncertainties include PDF, scale and tune uncertainties, where the domi­
nant experimental uncertainty is the jet energy scale (JES) uncertainty.

The PDF uncertainty is found by using NLOJET++ with three different parton distribution
function (PDF) sets (CT10 [144], MSTW2008 [145] and NNPDF2.3 [23]) and finding
the variation. Since the choice of PDF set mainly affects the total cross section, rather than
the shape of the χ distribution, the uncertainty is small (< 1%) for this analysis.

The scale uncertainty is also found by using NLOJET++. Here the renormalization and
factorization scales are varied independently up and down by a factor of 2. The uncertainty
is taken as the variation in the normalized χ distributions and is highest at low χ and high
mjj with values of 12% and 8% for the renormalization and factorization scales, respectively.

The tune uncertainty takes into account the uncertainties in the tuned parameters for par­
ton shower and hadronization in the A14 tune set used for the multijet simulations. On
the normalized χ distribution, the uncertainty is at most 6% [142].

The JES uncertainty is represented by three orthogonal nuisance parameters [146], which
together lead to the most dominant systematic uncertainty, which is up to 15% at high mjj.

9.1.5 Statistical analysis

The statistical analysis is performed as a combined profile likelihood fit to the χ distribu­
tions in seven coarse mjj regions starting at 3.4 TeV. The 2.5 TeV < mjj < 3.4 TeV region
is not included, since it does not provide any sensitivity to the benchmark signal in ranges,
which have not yet been excluded.

As mentioned above, the Monte Carlo simulation is normalized to the data separately in
each mjj bin, which makes the analysis a shape comparison.
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The likelihood function includes nuisance parameters corresponding to the systematic un­
certainties, which were described in the previous section. The systematic uncertainties are
treated as fully correlated in mjj. This assumption was cross checked with other correlation
models for e.g. the tune uncertainties, but proved to not make any significant difference.

A p­value, with the background­only hypothesis, is calculated in order to check for any
deviations from the Standard Model. If no significant deviations are found, the limit is set
using the CLs method described in 6.5.3.

9.1.6 Results

Figure 9.2 shows the χ distributions for the seven mjj regions before and after the profile
likelihood fit to data. In this visualization, both the Monte Carlo and data distributions
are normalized to unity, but in the limit setting, the Monte Carlo is normalized to data.
There is a clear discrepancy between data and Monte Carlo before the profile likelihood fit
as seen in Figure 9.2b.

The uncertainty bands are split between the theoretical uncertainties and the total uncer­
tainty (green/blue) and examples of the CI signal is shown both for the constructive (red)
and destructive (orange) interference model at 22 and 15 TeV, respectively. It should be
noted that for the destructive interference signal, the expected distribution is smaller than
the Standard Model at low χ and mjj.
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Figure 9.2: Angular distribution with 37 fb−1 of data with Standard Model prediction and systematic uncertainties (a) before
[147] and (b) after the fit to data [111].
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The fit to data is strongly constrained by the lowest mjj regions, which have very good
statistical precision and negligible contributions from the benchmark signal. It therefore
provides constraints of 20 − 40% on the uncertainties at the higher mjj regions as seen in
Figure 9.2b. The background­only p­value is found to be 0.06.

The 95% confidence level (CL) observed and expected limits as a function of Λ are shown
in Figure 9.3. Due to some excesses at low χ, the observed limit for the CI signal with
constructive interference (ηLL = −1) is weaker than the expected. However, for the CI
signal with destructive interference (ηLL = +1), the limit is weaker at low Λ values and
gets stronger at higher values. This is due to the fact that the signal can result in less events
at low χ, but this depends on the value of Λ and mjj. The 95% CL exclusion limits for Λ
is seen in Table 9.2.
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Figure 9.3: Ratio σ/σth of the observed and expected 95% CL upper limits on the cross-section in the contact interaction model
to the predicted cross-section as a function of the compositeness scale Λ for (a) constructive (ηLL = −1) and (b)
destructive (ηLL = +1) interference with QCD processes. The Λ regions where the 95% CL line is below one are
excluded [111].
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Table 9.2: 95% CL exclusion limits for Λ with 37 fb−1 of data [111].

Signal Model Observed Expected
CI (ηLL = −1) 21.8 TeV 28.3 TeV
CI (ηLL = +1) 13.1 TeV and 17.4 − 29.5 TeV 15.0 TeV

9.2 Dijet and di­b­jet resonance search

An analysis similar to the one presented in Chapter 8, has been performed on inclusive
dijet and b­tagged final states on the complete Run 2 data set corresponding to 139 fb−1.
This result is an extension to the previous inclusive dijet [111] and b­tagged dijet searches
[148], which were performed on the 2015 and 2016 data only.

An abundance of signal models has been investigated for several event categories, but in
this section, we will focus on the inclusive and 2b category and the limits set on exited
quarks q∗ and Z ′ Dark Matter mediators. Information on the remaining event categories
(W∗ and 1b) and signal models can be found in the paper [137]. CMS has also performed
an inclusive dijet search on the complete Run 2 data set [149], whereas the most recent
b­tagged dijet search is on Run 1 data [150].

A visualization of the dijet event with the highest mjj (in the W∗ category) is seen in Figure
9.4. It has mjj = 9.5 TeV and the two leading jets have pT = 3.0 and 2.9 TeV, one is at
η = −1.2 and the other at η = 0.9. The two yellow cones represent the reconstructed jets.

Figure 9.4: Visualization of a dijet event (Run=329716, Event=8575822452) [151].
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9.2.1 Simulation

In order to estimate the expected QCD background, the PyTHIA multijet samples, pre­
sented in Section 8.1.1, are again used and they are corrected with NLO k­factors as in the
angular analysis [139, 140, 141]. The Monte Carlo simulation is found to be in agreement
with the data, with a difference up to approximately 20% in the tail regions. These samples,
do however not have sufficient statistical precision especially at low mjj, so they are not used
as the final background estimation, where instead the SWiFt algorithm is used, as will be
described in Section 9.2.3.

The excited quark q∗ signal is generated with PyTHIA 8.186, assuming spin­ 1
2 excited quarks

with the same coupling constants as Standard Model quarks. Only decays into gluons and
up or down quarks are included, since this is the dominant process in the dijet final state
with a branching ratio of 85%.

The DM Z ′ decaying into qq is generated with MADGRApH5_aMC@NLO 2.4.3 with the
DM mass fixed to mχ = 10 TeV and the DM coupling set to gχ = 1.5 and the coupling to
Standard Model quarks gq varying from 0.1 to 0.5. The coupling of gq = 0.5 corresponds
to a width of the resonance of 12%. Dedicated samples of Z ′ → bb is created with the
same generator setup with a branching fraction of 18.9%.

9.2.2 Event selection

Like the angular analysis presented above, this analysis uses small­R EM topo­cluster jets
and data is collected using the lowest­pT non­prescaled single­jet trigger, which requires at
least one jet with pT > 420 GeV. The two leading jets are only required to have at least
pT > 150 GeV, but to ensure fully efficient triggers, a cut on mjj is included, depending
on the y∗ cut. Furthermore, the azimuthal angle between the two leading jets has to fulfill
|∆ϕjj| > 1.0.

The y∗ cut depends on the category, since it is optimized for different signals. In the in­
clusive category |y∗| < 0.6, whereas in the 2b category, where the two leading jets are
required to have |η| < 2.0, a less strict cut of |y∗| < 0.6 is used. This cut helps reject the
Standard Model background produced mostly in t­channel processes, like it was the case
in the all­hadronic tt analysis in Chapter 8.

As for the angular analysis, the mjj cut is determined using the relation in Equation 6.18
with the maximum allowed value of |y∗|. The values are seen in Table 9.3, which summa­
rizes the selections for the inclusive and 2b categories.

The b­tagging algorithm used for the 2b category is called DL1r, which is similar to the
DL1 algorithm used for the tt analysis in Chapter 8, but includes inputs from a recurrent
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Table 9.3: Selections for the inclusive and 2b category in the resonance search. The requirements only apply to the two leading
jets.

Category Inclusive 2b
Jet pT > 150 GeV
Jet ϕ |∆ϕjj| > 1.0
Jet |η| ­ < 2.0
|y∗| < 0.6 < 0.8
mjj > 1100 GeV > 1133 GeV
b tagging No requirement 2 b­tagged jets

neural network [152]. A b­tagging working point of 77% is used to maximize the signal
sensitivity across the different signal models.

9.2.3 Background modeling

As mentioned above, the sliding window fit (SWiFt) algorithm, which was introduced in
Section 6.3.4, is used to estimate the background. The four­parameter version of Equation
6.22 is used as the nominal function for both the inclusive and 2b category.

Several data­driven mjj distributions are used to validated the background fitting strategy.
For the inclusive category, the fit obtained in the resonance analysis on 37 fb−1 [111] is
used to make a background template by scaling it to 139 fb−1 and Poisson fluctuated each
bin. Whereas for the 2b category, the template is created from control regions using an
ABCD method.

Like in the tt analysis, signal injection and spurious signal tests are performed to validate
the method. The signal injection test shows good agreement between the injected and
subtracted signal within the statistical uncertainty.

The spurious signal test shows no bias for the signals in the inclusive category and no dedi­
cated uncertainty is therefore needed. However, for the 2b category the observed spurious
signal yield is between 10% and 20% of the statistical uncertainty of the estimated back­
ground fit and a corresponding systematic uncertainty is therefore included in the limit
setting.

9.2.4 Resolution study

As in the tt analysis, the mjj binning is based on the resolution. Therefore, a resolution
study, similar to the one presented in 8.3.4, is performed. The resolution as a function of
mtruth

jj is fitted with a function of the form a
mtruth

jj
+ b√

mtruth
jj

+ c as seen in Figure 9.5.
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Comparing this to the resolution for the large­R jets in Figure 8.19b, it is seen that the
resolution for the small­R jet in this analysis is a bit better at low mass, but gets worse at
higher mass. This is explained by several factors. First of all the simulated small­R jets are
corrected to match the jet energy resolution (JER) found in data and the large­R jets are
not. However, a smaller need to do this is seen for the large­R jets, since the data and Monte
Carlo agree within the uncertainty. A better JER modeling is also expected for large­R jets at
high pT, since it contains the entire jet energy profile, whereas small­R jets has a truncated
energy distribution. However at small pT, where the noise term of Equation 4.3 has a
larger impact, the large­R jets will have a worse resolution, since they are more susceptible
to noise, due to their larger size. Furthermore, the topo­clusters are on the LCW scale for
the large­R jets, whereas they are on the EM scale for the small­R jets, which also yields a
better mass resolution at high pT for the large­R jets.

9.2.5 Systematic uncertainties

The systematic uncertainties are divided in background and signal uncertainties as for the tt
analysis in Chapter 8. The fit parameter uncertainty is derived in a similar way, to what was
explained in Section 8.5.1, however with 10000 pseudo­experiments and of course using
the SWiFt algorithm. The uncertainty increase from approximately 0.1% at mjj = 2 TeV
to 30 − 40% at the highest mjj.

A spurious signal uncertainty is only applied in the b­tagged region as explained above.
However, an additional background uncertainty is applied for all categories in this anal­
ysis, which covers the uncertainty from the choice of background parameterization. It is
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Table 9.4: 95% CL mass exclusion limits with 139 fb−1 of data [137].

Category Signal Model Observed Expected
Inclusive q∗ 6.7 TeV 6.4 TeV

DM mediator Z ′ gq = 0.20 3.8 TeV 3.8 TeV
DM mediator Z ′ gq = 0.50 4.6 TeV 4.9 TeV

2b DM mediator Z ′ gq = 0.20 2.8 TeV 2.8 TeV
DM mediator Z ′ gq = 0.25 2.9 TeV 3.0 TeV

estimated by the difference to another parametric function, which also fulfill the fit quality
criteria, but gives the largest difference to the nominal function. It is approximately 10%
at the highest mjj.

The main signal uncertainties are the jet energy scale (JES), jet energy resolution (JER) and
b­tagging uncertainties. The JES uncertainty is around 4% at the highest mass and the JER
uncertainty varies from 3 − 6%. In the 2b category, the b­tagging uncertainty is the most
dominant with approximately 20% for a jet with pT = 3 TeV.

Smaller uncertainties come from the luminosity measurement, PDF and scale choices.

9.2.6 Statistical analysis

The statistical analysis is very similar to what was presented in Section 8.6 with a model­
independent search using BuMpHuNTER and limit setting using the CLs method with the
asymptotic approximation used at low mass and pseudo­experiments used at high mass.

9.2.7 Results

The mjj distributions for the inclusive and 2b category are seen in Figure 9.6 including
the fit from the SWiFt algorithm and examples of q∗ and DM mediator Z ′ signals. The
most significant regions found by BuMpHuNTER is marked with vertical lines. The data
is consistent with the Standard Model with p­values of 0.89 and 0.83, respectively for the
two categories.

Since no significant deviations are found, limits are set on the benchmark signals. The 95%
CL upper limits for the q∗ in the inclusive category and the DM mediator Z ′ → bb in
the 2b signal region are seen in Figure 9.7. The corresponding mass limits are summarized
in Table 9.4, which also includes the limit on the DM mediator Z ′ from the inclusive
category.

165



1−10

1

10

210

310

410

510

610

710

810

910

E
ve

nt
s

1 2 3 4 5 6 7 8

 [TeV]jjm

2−
0

2

S
ig

ni
fic

an
ce

 

ATLAS
-1=13 TeV, 139 fbs

Inclusive

Data
Background fit
BumpHunter interval

 = 4 TeV
*q

*, mq
 = 6 TeV

*q
*, mq

-value = 0.89p
 10× σ*,  q

(a)

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s

1.5 2 2.5 3 3.5 4 4.5

 [TeV]jjm

2−
0

2

S
ig

ni
fic

an
ce

 

ATLAS
-1=13 TeV, 139 fbs

2 b-tag

Data
Background fit
BumpHunter interval

 = 2 TeV
Z'

DM Z', m
 = 3 TeV

Z'
DM Z', m

-value = 0.83p

10×σ=0.25, 
q

DM Z' g

(b)

Figure 9.6: The mjj distribution for (a) the inclusive dijet selection and (b) the 2b category [137].
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9.3 Initial studies for angular analysis on 139 fb−1

The rest of this chapter is dedicated to different studies meant to be used for the angular
analysis on 139 fb−1 of data collected in Run 2. They include small studies like the cal­
culation of the angular resolution, but also more complex studies like the development of
more smooth NLO k­factors and the investigation of a ratio method, which removes the
discrepancy between data and Monte Carlo.

9.4 Angular resolution study

The angular resolution can be calculated in a similar way to the mjj resolution by fitting
χreco/χtruth in bins of χ and mjj. As seen in Figure 9.8, the resolution varies up and down
as a function of χ, especially at high mjj, but is less than 0.73% in all bins. The difference
between the mjj regions is somewhat expected due to the relation between χ, mjj and pT
seen in Equation 6.18.

According to this study, the χ binning can be made finer, than it was in the previous
analysis presented in 9.1, without any problem, but the statistical precision of the Monte
Carlo simulations will be a limiting factor.
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Figure 9.8: The angular resolution is found from a Gaussian fit to χreco/χtruth. Here (a) show an example of the fit for events
with 1.0 < χ ≤ 1.35 and 2.5 TeV < mreco

jj ≤ 2.8 TeV and (b) shows the resolution as a function of χ for the
different mjj bins.
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9.5 QCD NLO corrections

As mentioned above, the next­to­leading order (NLO) calculations of the dijet cross section
are done with NLOJET++ [139, 140, 141]. In order to correct the leading order (LO)
PyTHIA simulations, k­factors are applied.

9.5.1 NLO k­factors

When wanting to bring the LO PyTHIA simulations to NLO by applying k­factors, it is not
enough to just apply the difference between NLO and LO hard scatter cross sections, as
one would think, since PyTHIA is a complete event generator. This means that some of the
missing higher order processes are partially made up for in the parton shower already.

We therefore need to take this into account, when applying the k­factors. This is done by
producing a special PyTHIA simulation with only the hard process and the parton shower
included, but no hadronization. The NLO contribution in the nominal PyTHIA simulation
is given by Kpart = (LOshow/LO)PyTHIA, where LOPyTHIA is the hard scatter cross section and
LOPyTHIA

show also includes the parton shower. The correctly NLO corrected PyTHIA prediction
is then given by

PyTHIAcorr =
(NLO/LO)NLOJET++

(LOshow/LO)PyTHIA · PyTHIAreco (9.1)

=
NLONLOJET++

LOPyTHIA
show

· PyTHIAreco (9.2)

= k · PyTHIAreco (9.3)

where we have assumed that LONLOJET++ = LOPyTHIA, which has been shown to be a fair
assumption [142].

So besides the special PyTHIA simulation, we need to calculated the NLO hard scatter cross
section with NLOJET++.

9.5.2 NLOJET++

The NLOJET++ program is based on the Catani­Seymour dipole subtraction method [141],
which is a general version of the subtraction algorithm. It introduces a set of universal counter
terms, that can be used for any NLO QCD calculation.
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Question 9.1: What is the subtraction method?

When discussing NLO calculations, the subtraction method is a way to calculate the
NLO cross section by introducing a local counter term, dσA, for the real contribution
dσR such that the NLO cross is given by

σNLO =

∫
m+1

dσR +

∫
m

dσV =

∫
m+1

[
dσR − dσA]+ ∫

m+1
dσA +

∫
m

dσV

(9.4)

where m is the number of final­state partons and dσV is the virtual contribution.
The idea is now that since dσA has the same pointwise singular behavior as dσR, the
integral over the subtraction of the two terms can be performed safely in the diver­
gent limit ϵ → 0. If it, furthermore, is possible to analytically integrate dσA over
the one­parton subspace, which is leading to the divergences, it can be combined
with the divergences in dσV and thereby cancel them. The final NLO cross section
is then

σNLO =

∫
m+1

[
(dσR)ϵ=0 − (dσA)ϵ=0

]
+

∫
m

[
dσV +

∫
+1

dσA
]
ϵ=0

(9.5)

This formula can easily be implemented in a Monte Carlo program, which generates
appropriately weighted partonic events with m + 1 and m final­state partons.

In the Catani­Seymour dipole subtraction method, the counter term dσA is developed
from the knowledge of how the m + 1­parton matrix elements behave in the soft and
collinear limits, that produce the divergences. It contains several dipole terms, which each
corresponds to a different kinematic configuration of m + 1 partons matching the ones
leading to divergences in dσR.

The calculations are however not perfect. Unfortunately, it sometimes happens that a large
positive weight for dσR goes into another bin, than the large negative weight for the sub­
traction term dσA. This leads to fluctuations, especially at high χ as seen in Figure 9.9,
which shows the nominal NLO calculations with NLOJET++.

9.5.3 Improvement of NLO calculation

The weights, which are supposed to cancel, can end up in different bins, because soft radi­
ation with a large angle is not always being captured by the jet algorithm, which therefore
leads to a change in the kinematics.
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Figure 9.9: Nominal NLO calculations done with NLOJet++. A constant k is added to the distributions in the figure in order to
better see the features.

A new method was invented, together with Johan Rathsman, to minimize this effect. If the
weights are treated like Gaussian distributions taking up a range of values of the kinematic
variable(s) under consideration, it is possible to get significantly smoother distributions.
For a kinematic variable x, the partial weight is given by

wnk(x) = wnk
1√
2πσ2

x
exp

[
(x − xnk)

2

2σ2
x

]
(9.6)

where wnk is the kth partial weight for the nth fill calculated by NLOJET++ and xnk and σx
are the Gaussian mean and width, respectively. The contribution to a given bin i, which is
defined by the interval x ∈ [xi−1, xi] is then given by

fnki =

∫ xi
xi−1

wnk(x′)dx′∫∞
−∞ wnk(x′)dx′

. (9.7)

If we now consider a width of the Gaussian, which is much smaller than the bin size,
σx ≪ xi − xi−1, we will only expect non­negligible contributions in two neighboring bins.
In the case of just two bins, which are separated at x1, the contributions in bin 1 and 2 will
be

fnk1 =

∫ x1
−∞ wnk(x′)dx′∫∞
−∞ wnk(x′)dx′

=
1
2

(
1 + erf

[
x1 − xnk√

2σx

])
(9.8)

fnk2 = 1 − fnk1 (9.9)
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In our implementation, we use this formula for each bin edge throughout, leading to what
we call “error function” bins. This means, that each partial weight can contribute to at most
three bins in one kinematic variable.

The method is sketched in Figure 9.10. A large positive partial weight wnk with the kine­
matic value xnk is falling into bin 1, whereas the corresponding negative partial weight wnk′

with kinematic value xnk′ falls into bin 2. This would with the old method lead to large
fluctuations in the two bins, but by introducing the Gaussian­distributed partial weight,
the two weights will be divided in fractions fnk1, fnk′1, fnk2 and fnk′2 for the two bins and
the cancellation will still happen to some extent.

(a)

(b)

Figure 9.10: The new method for NLO calculations in NLOJet++ introduces (a) Gaussian-distributed partial weights, which lead
to (b) “error function” bins.
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In our application of this method, we use the “error function” bins for both the mjj and χ
distributions. For the mjj bins we use

f m
nki =

1
2

(
erf
[

mi − mnk√
2σmi

]
− erf

[
mi−1 − mnk√

2σmi−1

])
(9.10)

with σmi = 0.0002/
√

2mi, whereas for the χ bins

f χnki =
1
2

(
erf

[
χi − χnk√

2σχi

]
− erf

[
χi−1 − χnk√

2σχi−1

])
(9.11)

with σχi = 0.0005χ2
i is used.

A direct comparison of the NLO χ distributions in two different mjj regions calculated
using normal bins and “error function” bins is seen in Figure 9.11. It is clear, that the
“error function” bins do not change the overall trend of the distribution, but makes it a lot
smoother.
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Figure 9.11: Comparison of NLO calculations done with NLOJet++ with normal bins and “error function” bins for (a) 2500 <
mjj < 2800 GeV and (b) 5900 < mjj < 6500 GeV.

It is important to note that for the normal binning, there is a point, where an increase in
the number of generated events, will not lead to an improvement of the distribution, since
generating an extra event, could introduce a new fluctuation from non­canceling weights,
so it is not just a question of generating enough events.

9.5.4 Final k­factors

The improved NLO calculations using the “error function” bins are seen in Figure 9.12
together with the LO calculations including parton showering, but no hadronization done
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with PyTHIA. As described above the bin­by­bin k­factor is given by the ratio of the two
distributions

k =
NLONLOJET++

LOPyTHIA
show

(9.12)

and is displayed in Figure 9.13. It is seen that even though the distributions from both
NLOJET++ and PyTHIA look smooth, the k­factors do have some fluctuations. These can be
smoothed using the ROOT method TH1::Smooth() before applying them to the nominal
PyTHIA simulations as was done in [142].
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Figure 9.12: The inputs for NLO k-factor calculations are (a) NLO calculations from NLOJet++ with “error function” bins and (b)
LO calculations including parton showering from Pythia. A constant k is added to the distributions in the figure in
order to better see the features.

9.6 Systematic uncertainties

As seen in Section 9.1.4, several systematic uncertainties are included in the angular anal­
ysis. The derivation of them is covered below.
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Figure 9.13: NLO QCD k-factors as function of χ for various mjj regions.

9.6.1 Scale uncertainty

The uncertainties related to the choice of renormalization and factorization scales are de­
rived using NLOJET++. The scales are usually set to the momentum transfer, Q, however
this can not be exactly experimentally measured, so instead the average of the leading and
subleading jet pT is used as a proxy, μR = μF =

plead
T +psublead

T
2 . The uncertainty on this

choice is found by varying μR and μF up and down by a factor of two. The envelope of the
variations is taken as the uncertainty. The result is seen in Figure 9.14.
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Figure 9.14: Relative uncertainty related to the (a) renormalization scale, μR, and (b) factorization scale, μF. The solid and dashed
lines are the +1σ and −1σ variations.
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9.6.2 PDF uncertainty

The uncertainty related to the choice of parton distribution function (PDF) is also de­
rived using NLOJET++. Three different parton distribution function (PDF) sets (CT10,
MSTW2008 and NNPDF2.3) are investigated and the variation is found. The result is
seen in Figure 9.15.
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Figure 9.15: Relative uncertainty related to the parton distribution function (PDF). The solid and dashed lines are the +1σ and
−1σ variations.

9.6.3 JES uncertainty

The jet energy scale (JES) uncertainty is derived as a function of pT, as we saw in Figure
5.6c. As mentioned above, the uncertainty is represented by three orthogonal nuisance
parameters NP1, NP2 and NP3. We recall, that the uncertainty increases rapidly above
2.5 TeV, which is caused by the change of method used to derive the uncertainty. Below
2.5 TeV, the in situ balancing method is used, which gives a very small uncertainty, but
above 2.5 TeV, the single particle method described in Chapter 7 is used, which introduce
much larger uncertainties. This high­pT uncertainty is included in NP3.

The uncertainty as a function of pT is migrated to an uncertainty as a function of χ in
the different mjj regions as seen in Figure 9.16. This results in the ±1σ variations of NP3
crossing each other, such that the +1σ variation is sometimes above the −1σ variation
and sometimes below. This is caused by the high pT jets with large uncertainties being
present at different χ in different mjj regions combined with bin migrations. As expected,
the uncertainty is larger in the high mjj regions, where more high­pT jets are present.
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Figure 9.16: Relative JES uncertainty for (a) 3.7 < mjj < 4.0 TeV, (b) 4.0 < mjj < 4.3 TeV, (c) 4.3 < mjj < 4.6 TeV, (d)
4.6 < mjj < 4.9 TeV, (e) 4.9 < mjj < 5.4 TeV and (f) 5.4 < mjj < 10.0 TeV.
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9.7 Ratio method

We saw in the angular analysis on 37 fb−1 in Section 9.1, that there is a large discrepancy
between data and Monte Carlo even after applying NLO k­factors (Figure 9.2a). Figure
9.17a shows the angular distribution for the same data, but with the improved k­factors
from Section 9.5.4 applied to the Monte Carlo. Note, that only the JES uncertainty is
shown and not any of the other systematic uncertainties. The Monte Carlo distributions
are smoother, due to the improved k­factors, but we still see a poor agreement with data,
especially in the two lowest mjj regions.

(a) (b)

Figure 9.17: Angular distributions with improved k-factors only including JES uncertainty for the (a) nominal method and (b)
ratio method.

Since the discrepancy looks similar in the neighboring mjj regions, taking the ratio of them,
seems like a good way of removing the discrepancy. The result of taking the ratio of the
distribution in each mjj region, with the distribution in the mjj region below is seen in
Figure 9.17. Looking at the ratio of the distributions with 3.7 < mjj < 4.0 TeV and
3.4 < mjj < 3.7 TeV, we can see that the clear discrepancy between data and Monte Carlo
is gone.

Furthermore, we can see that in some bins, the JES uncertainty has decreased, while in
others it has increased. This is not a surprise, since we are taking the ratio of e.g. the +1σ
variations of NP3 in Figure 9.16. Since the +1σ variation is crossing unity at different χ
in the neighboring mjj regions, the ratio method will result in larger uncertainties at a few
χ values.

177



However, the other dominant uncertainty, the scale uncertainty, will to a large degree can­
cel, since it is very similar in neighboring mjj regions as seen in Figure 9.14. The same is
true for the PDF uncertainty in Figure 9.15.

9.7.1 Limit setting

The original idea was to set upper limits on the benchmark signals directly from these ratio
distributions, which have better agreement between data and Monte Carlo and in many
bins smaller uncertainties than the nominal distributions. However, this is not trivial, since
the normal tool for setting limits, HISTFAcTORy [153], expects bins with number of events
following Poisson statistics. It might however be possible to include the ratio information
in the form of a so­called ShapeFactor. This needs to be further investigated.

9.8 Discussion

It is clear that there is still room for improvement of the angular analysis. The discrepancy
between data and Monte Carlo in the low mjj regions should be further investigated. One
idea is to compare the current background prediction to NLO POwHEg+PyTHIA simula­
tions.

Furthermore, the correlations between the systematic uncertainties in each mjj region should
be investigated further. As a starting point, it would be interesting to see the effect of apply­
ing separate nuisance parameters for each set of neighboring mjj regions for each systematic
uncertainty instead of just having one fully­correlated nuisance parameter for all mjj regions
for each uncertainty.

It could also be interesting to look at optimizing the analysis for different signal models,
like very broad resonances, which would not be detected by the current resonance search
due to the background estimation technique. The angular analysis has indeed been used to
set limits on dark matter leptophopic axial­vector Z ′

A signal as was seen in Figure 8.47 in
the previous chapter.

Another search strategy, that has not been tried before, is to do a top­ or b­tagged dijet
angular search. Here the sensitivity to e.g. broad resonances, that primarily couple to
heavy quarks, could be improved.
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10
Conclusions and Outlook

When protons collide in the LHC, we expect to see an abundance of dijet events, as pre­
dicted by QCD. However, such events could also be a sign of physics beyond the Standard
Model. In this thesis, analyses searching for such new phenomena are presented.

Using the data collected by the ATLAS experiment during 2015­2018 at a center­of­mass
energy of

√
s = 13 TeV, the invariant mass of the two jets with the highest pT has been

studied. In the all­hadronic tt analysis, large­R jets, which have been identified as coming
from top quarks, are used to search for a Z ′

TC2 boson predicted by the topcolor assisted
technicolor model. However, the data was in good agreement with the Standard Model
prediction found by fitting the distribution with a smoothly falling function, so limits were
set on the model.

In the dijet and di­b­jet resonance analysis, inclusive and b­tagged small­R jets, where used
to search for various phenomena beyond the Standard Model, including dark matter medi­
ators, Z ′, and excited quarks, q∗. Again no significant deviation from the expected smooth
distribution was seen, so limits were set.

An angular analysis of the dijets were also presented, which however only include the data
collected in 2015 and 2016. This analysis is complementary to the resonance search in the
way, that it is sensitive to non­resonant signals, like contact interactions. Further studies,
done as a preparation for the analysis of the full Run 2 data set, are also shown. These
include the development of more smooth next­to­leading order calculations and a ratio
method, which removes the discrepancy between data and Monte Carlo.

An idea for the future could be to combined the experience gathered from the all­hadronic
tt resonance analysis and the dijet angular analysis in a top­tagged dijet angular search for
e.g. broad resonances, which has never been performed before.
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A
Popular Scientific Description

In this appendix, you will find a popular scientific introduction to each of the chapters.
This is meant for friends and family as well as other people, whom are not too familiar with
particle physics, as a help to understand, what the thesis is about. I hope, it will be useful.

Standard Model and Beyond

The ultimate goal of the research described in this thesis is to find something new and
interesting, we have not seen before. The hope is that this new thing can help us describe
some of the weird phenomena, we have observed, but cannot explain at the moment. In
this sense, we are on a treasure hunt with the treasure being a better understanding of the
Universe.

It might very well be, that we will not find anything new, but then we can at least scratch
out the part of the map, where we have already looked, such that the next adventurer does
not need to look in the same place. In addition, we do also learn something from not
finding anything, since it tells us, that the searched areas of the map then cannot solve the
unexplained mysteries of the Universe.

Before we can start looking for something new, we need to understand what other adven­
turers have found on previous treasure hunts. Otherwise, how would we know, that what
we have found, is indeed something new and not just something new to us.

Therefore, in Chapter 2, we start by covering the knowledge, we have on particle physics
today. We will learn about the different particles and the forces acting on them. We will also
see what happens, when two particles are smashed together in a collision. This is interesting,
since these collisions are our most valuable tool in our quest of finding something new.

In order to have an idea of what we are looking for on this quest, we will also cover some of
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the phenomena, that we see, but do not yet understand. A few theories, which will be able
to explain some of these phenomena, if they turn out to be true, are also introduced. These
theories will be our guidelines, when we later have to decide, in which way we should do
our treasure hunt.

Below you find a small introduction to the Standard Model of Particle Physics, which
hopefully, will help you understand the foundation, this thesis build upon.

The fundamental forces of nature

To our current knowledge, there are four fundamental forces of nature: Electromagnetism,
the weak force, the strong force and gravity.

• Electromagnetism is a well­known phenomena in everyday life. It describes the sun
light hitting your window in the morning, the electricity that makes it possible to
charge your phone over night and the magnetism that keeps the pictures of your
loved ones stuck to your refrigerator with a small magnet.

• The weak force is much less obvious in everyday life. It is however accountable for
the radioactive β decay, which transforms a neutron into a proton, an electron and
a particle called the neutrino.

• The strong force is keeping together the atomic nuclei (protons and neutrons) in the
nucleus of the atoms. It also keeps together the constituents of the nuclei called
quarks.

• Gravity is also easy to observe in the world around us. Just try to jump and you will
feel the gravitational field of the whole earth work against you. No wonder jumping
squats are so tiring!

Particle physicists have managed to combine the first three of these in what is called the
Standard Model of Particle Physics. This model also includes all the fundamental particles,
we know exists.

The fundamental particles

There are two kind of particles, matter particles called fermions and force carrier particles
called bosons. The fermions are further divided into quarks and leptons as seen in Figure
A.1a and A.1b. All the matter around us are made of only up and down quarks and electrons
as sketched in Figure A.1c. The up and down quarks make up protons and neutrons, which
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are at the core of the atoms with the electrons circling around. The other quarks (charm,
strange, top and bottom) are essentially just heavier versions of the up and down quarks.
Similarly, the muon and tau are heavier versions of the electron. The neutrinos are almost
massless and sometimes called ghost particles. They are very interesting in themselves, but
I will leave that for another time.

(a) (b)

(c)

Figure A.1: The fundamental fermions are (a) quarks and (b) leptons and (c) a few of them (up quark, down quark and electron)
make up all the ordinary matter around us.

The force carrier particles or bosons are seen in Figure A.2. Electromagnetism is carried
by the photon, the weak force by the Z and W bosons and the strong force by the gluon.
The last boson, the Higgs boson, is a bit different. It does not carry any force, but it is
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responsible for giving the particles mass. The heavier a particle is, the more it couples to the
Higgs boson. This boson was the last fundamental particle to be found. It was discovered
by the ATLAS and CMS experiments by using the Large Hadron Collider, which is the
topic of the next chapter.

Figure A.2: The fundamental bosons.

Large Hadron Collider

The Large Hadron Collider is an enormous machine place underground at CERN outside
Geneva, Switzerland. The reason, it is useful, is closely related to Einstein’s famous equation
E = mc2. It says, that energy can be changed into massive particles and vice versa. This
means, that if we smash together very fast moving particles, which have big kinetic energy,
we can create massive particles out of that energy. That is exactly, the purpose of the Large
Hadron Collider, to accelerate protons to velocities very close to the speed of light and
smash them together to create a plethora of different particles. Chapter 3 explains, how
the Large Hadron Collider works and is operated to provide collisions for the four major
experiments: ATLAS, CMS, ALICE and LHCb.

The ATLAS Experiment

It is not enough to create a lot of particles, we also need to detect them. One of the ma­
chines, that are build to do this, is the ATLAS experiment, which is the topic of Chapter
4. You can think of it as a huge digital camera. However, the output is not just a sim­
ple picture, but consist of millions of signals, which together provide a three­dimensional
snapshot of the proton collisions.

It consists of several layers, which are optimized to detect different types of particles. The
innermost part is a tracking detector, which means it can detect the path of electrically
charged particles, as they move out from the collision point. Surrounding the tracking
detector is the calorimeters. Their purpose is to measure the energy of the particles by stop­
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ping them with chunks of dense material. The outermost part is the muon spectrometer,
which helps determine the tracks of the muons, which are not absorbed in the calorimeter.

Jets

One of the things, that are mentioned a lot in this thesis, is jets. A jet is a spray of particles
moving in approximately the same direction. All the particles in a jet origin from one
single gluon or quark and measuring the jets precisely is therefore very important in order
to determine, which kind of particles were created in the collision.

Chapter 5 is dedicated to explain, how the jets are reconstructed and calibrated in ATLAS.
It also covers the topic of jet substructure. It is possible for a large jet to consist of several
small jets. We say, that the jets have prongs. It is e.g. possible to recognize a jet, which is
originating from a top quark, since it will have three prongs. The three prongs belongs to
each of the three quarks, the top quark can decay into as seen in Figure A.3.

Figure A.3: Example of the decay of a top quark.

Dijets

Another word, that is used a lot in the thesis, is dijets. A dijet is simply a pair of jets. It
is very common for a collision in the Large Hadron Collider to result in a dijet and that
is expected from the Standard Model, but they could also be the decay products of a new
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particle. Therefore, we want to study the collisions, that result in dijets very carefully. The
tools to do so are presented in Chapter 6.

We can study the dijets by either looking at their mass or the angle between them. When
we look at the mass of the dijets, mjj, we expect a smoothly falling distribution. However, if
we see a bump, it is a sign of something new. For some theories though, we do not expect
a bump, but would instead be able to see a change in the angular distribution, χ. The
difference between the expected distributions, given by the Standard Model and some new
phenomena, is sketched in Figure A.4.

Figure A.4: Difference between the Standard Model and a theory including a new phenomenon in the mass, mjj, and angular,
χ, distributions.

Single Particle Jet Energy Scale Uncertainty

As mentioned above, a jet is made up of a lot of particles. These particles do not behave
in the same way in the detector. Where some are easy to detector, others are harder. In
Chapter 7, the detector’s ability, to measure the energy of the different types of particles, is
investigated. The end result is an uncertainty on the energy of the jet.

All­hadronic tt Resonance Analysis

In Chapter 8, the first major result of the thesis is presented. Here we are looking for a new
particle called Z ′. It is predicted by a theory called topcolor assisted technicolor, that the Z ′

would, among others, decay to a top and an anti­top quark. We are therefore looking for
a dijet system, where both jets are identified as coming from top quarks.

186



We are then looking at the mass distribution of the dijets, where we would expect a bump
at the mass of the Z ′, if it exists. But how do we know, that if we see a bump, that it actually
is coming from a Z ′? The short answer is, we do not. It is a bit like, if you were hiding
under a blanket. I would be able to see the bump, but I could not be sure, that it was you
or someone else or just a stack of pillows. However, if I get closer, I can investigate more.
I can try to poke you and see, if you will make a sound. I can also measure the size of the
bump and see, if it is in agreement with your size. Nevertheless, the first task is to even
find the bump, which is also the case, when we are looking for a new particle, and then any
further investigations will come later.

Spoiler alert: Unfortunately, no such bump was found and the result is instead a limit plot,
which can be understood as a map, where we scratch out the places, we already have looked.

Dijet Analysis

The last chapter, Chapter 9, includes several studies, which all have in common, that they
are done on dijets. One study is very similar to the one presented in the previous chapter,
but here more narrow jets are used and the jets are not required to be identified as coming
from top quarks. Instead no requirement is given, which is called an inclusive search, or
the jets are required to be identified as coming from bottom quarks. Again we are looking
at the mass distribution, but do unfortunately not see any sign of a new particle.

Another part of the studies in Chapter 9 is focused on the angular distribution of the dijets,
which is complementary to the mass search, since it would be able to detect different kinds
of new phenomena. However, we do not see any large deviation from what we expect here
either and we have to settle for just scratching out more parts of the map by setting limits
on specific models.
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C
Single Particle Uncertainties

The uncertainties applied to the deposited energy in the calorimeter (Figure 7.3) are describe
below.

E/p

The E/p measurements are available for particles with 0.5 < p[ GeV] < 30 and |η| < 2.3
(E/p region). For particles in this region:

• An uncertainty binned in p and |η| is applied to all energy depositions in the calorime­
ter system to account for the discrepancy in the energy response in data and Monte
Carlo (In situ E/p).

• An uncertainty binned in p and |η| is applied to all energy depositions in the calorime­
ter system to account for the discrepancy in the fraction of tracks matched to zero
or negative energy clusters in data and Monte Carlo (E/p Zero Fraction).

• A flat 0.5% uncertainty is applied to all energy depositions in the calorimeter system
to account for possible pile­up effects.

• A flat 2% uncertainty is applied to energy depositions in the tile and electromagnetic
end cap calorimeters if the particle has p < 10 GeV to account for the potential mis­
modelling of threshold effects in topological clustering.

• A flat 3% uncertainty is applied to all energy depositions in the calorimeter system
if the particle has p < 2 GeV to account for the uncertainty in ⟨E/p⟩COR at the
electromagnetic scale introduced by the background subtraction scheme.

• A flat 1% uncertainty is applied to all energy depositions in the calorimeter system
if the particle has p > 2 GeV to account for the uncertainty in ⟨E/p⟩COR at the
electromagnetic scale introduced by the background subtraction scheme.
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• A flat 0.15% uncertainty is applied to all energy depositions in the calorimeter system
if the particle has pT > 5 GeV to account for the uncertainty in the p measurement
introduced by the misalignment of the inner detector [118, 119] (E/p Misalignment).

• A parametrized uncertainty is applied to energy depositions in the LAr calorimeter
(barrel, presampler and electromagnetic end cap) if the particle has |η| < 0.8 to
account for the potential mismodeling of threshold effects in topological clustering
(E/p Threshold ).

• Another parametrized uncertainty is applied to energy depositions in the LAr calorime­
ter (barrel, presampler and electromagnetic end cap) if the particle has |η| > 0.8 to
account for the potential mismodeling of threshold effects in topological clustering
(E/p Threshold ).

Combined Test Beam

The combined test beam measurements of the barrel calorimeter response to hadrons [120]
are available for particles with 20 < p[ GeV] < 400 and |η| < 0.8 (CTB region). If a
particle is in the overlap region of the E/p and CTB regions, the CTB uncertainties are
applied. So for particles in the CTB region:

• An uncertainty binned in p and |η| is applied to all energy depositions in the calorime­
ter system to account for the discrepancy in the energy response in data and Monte
Carlo (CTB).

• A flat 0.7% uncertainty is applied to energy depositions in the LAr calorimeter (bar­
rel, presampler and electromagnetic end cap) to account for the uncertainty in the
electromagnetic energy scale.

• A flat 0.5% uncertainty is applied to energy depositions in the tile calorimeter to
account for the uncertainty in the electromagnetic energy scale.

• A flat 0.4% uncertainty is applied to energy depositions in the LAr calorimeter (bar­
rel, presampler and electromagnetic end cap) to account for the difference in non­
uniformity of the energy response in data and Monte Carlo.

• A flat 1.5% uncertainty is applied to energy depositions in the tile calorimeter to
account for the difference in non­uniformity of the energy response in data and
Monte Carlo.

• A flat 1% uncertainty is applied to all energy depositions in the calorimeter system
to account for the difference in the measured test beam energy and the nominal test
beam energy due to the inner detector material (CTB).
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Out Of Range

When a particle is outside both the E/p and CTB region, it is said to be “out of range”.
In this case no measurements are available and we have to apply a conservative uncertainty
to make sure we account for the effects of saturation, punch­through, and non­linearity at
high energy. For particles in this region:

• A flat 10% uncertainty is applied to all energy depositions in the calorimeter system
(Out of Range).

Electromagnetic scale

The uncertainties on the electromagnetic energy scale have been directly measured. For
the LAr calorimeter Z → e+e− decays were used [154], whereas energy loss of minimum
ionising muons were used in the tile calorimeter [155]. The uncertainties in this category
are the only ones applied to e+/−, γ and π0 since they lose their energy electromagnetically.
They are applied to all other particles as well unless they are in the E/p region since the E/p
measurements already covers these uncertainties. For the above mentioned particles:

• A flat 3% uncertainty is applied to energy depositions in the tile calorimeter.

• A flat 1.5% uncertainty is applied to energy depositions in the LAr barrel.

• A flat 5% uncertainty is applied to energy depositions in the LAr presampler.

• A flat 2% uncertainty is applied to energy depositions in the LAr electromagnetic
end cap calorimeter.

• A flat 3% uncertainty is applied to energy depositions in the LAr hadronic end cap
calorimeter.

Neutral

Additonal uncertainties are applied to neutral particles since the calorimeter response varies
as function of the physics model. This was shown in GEANT4 studies [122]. So for neutral
particles:

• A flat 10% uncertainty is applied to all energy depositions in the calorimeter system
if the hadron has p < 3 GeV (Neutral).

• A flat 5% uncertainty is applied to all energy depositions in the calorimeter system
if the hadron has p > 3 GeV (Neutral).

• A flat 20% uncertainty is applied to all energy depositions in the calorimeter system
if the particle is a long­lived neutral kaon (KL).
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D
Samples for All­hadronic tt Resonance
Analysis

The sample used for the all­hadronic tt resonance analysis described in Chapter 8 are sum­
marized below. Table D.1 lists the names of the Monte Carlo (MC) samples and Table D.2
the data period containers.

For the Standard Model tt samples, a hdamp parameter equal to the top quark mass is used
[156] and the top­quark kinematics were corrected to account for electroweak higher­order
effects [157]. This correction was applied to the generated events as a function of the flavor
and center­of­mass energy of the initial partons, and of the decay angle of the top quarks
in the center­of­mass frame of the initial partons.
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Table D.1: List of MC samples, where □ = Pythia8EvtGen_A14NNPDF23LO and ♢ = PhPy8EG_A14_ttbar_hdamp258p75.

Process Name
Z ′

TC2 mc16_13TeV.301328.□_zprime1750_tt.deriv.DAOD_EXOT7.e4061_s3126
mc16_13TeV.301329.□_zprime2000_tt.deriv.DAOD_EXOT7.e4061_s3126
mc16_13TeV.301330.□_zprime2250_tt.deriv.DAOD_EXOT7.e4061_s3126
mc16_13TeV.301331.□_zprime2500_tt.deriv.DAOD_EXOT7.e4061_s3126
mc16_13TeV.301332.□_zprime2750_tt.deriv.DAOD_EXOT7.e4061_s3126
mc16_13TeV.301333.□_zprime3000_tt.deriv.DAOD_EXOT7.e3723_s3126
mc16_13TeV.301334.□_zprime4000_tt.deriv.DAOD_EXOT7.e3723_s3126
mc16_13TeV.301335.□_zprime5000_tt.deriv.DAOD_EXOT7.e3723_s3126

SM tt mc16_13TeV.410471.♢_allhad.deriv.DAOD_EXOT7.e6337_e5984_s3126
mc16_13TeV.410284.♢_allhad_mtt_1100_1300.deriv.DAOD_EXOT7.e6603_s3126
mc16_13TeV.410285.♢_allhad_mtt_1300_1500.deriv.DAOD_EXOT7.e6686_s3126
mc16_13TeV.410286.♢_allhad_mtt_1500_1700.deriv.DAOD_EXOT7.e6686_s3126
mc16_13TeV.410287.♢_allhad_mtt_1700_2000.deriv.DAOD_EXOT7.e6686_s3126
mc16_13TeV.410288.♢_allhad_mtt_2000_14000.deriv.DAOD_EXOT7.e6686_s3126
mc16_13TeV.410470.♢_nonallhad.deriv.DAOD_TOPQ1.e6337_s3126
mc16_13TeV.410633.♢_nonallhad_1100_1300.deriv.DAOD_EXOT7.e6602_s3126
mc16_13TeV.410634.♢_nonallhad_1300_1500.deriv.DAOD_EXOT7.e6602_s3126
mc16_13TeV.410635.♢_nonallhad_1500_1700.deriv.DAOD_EXOT7.e6685_s3126
mc16_13TeV.410636.♢_nonallhad_1700_2000.deriv.DAOD_EXOT7.e6685_s3126
mc16_13TeV.410637.♢_nonallhad_2000_14000.deriv.DAOD_EXOT7.e6685_s3126

Multijet mc16_13TeV.361020.□_jetjet_JZ0W.deriv.DAOD_EXOT7.e3569_s3126
mc16_13TeV.361021.□_jetjet_JZ1W.deriv.DAOD_EXOT7.e3569_s3126
mc16_13TeV.361022.□_jetjet_JZ2W.deriv.DAOD_EXOT7.e3668_s3126
mc16_13TeV.361023.□_jetjet_JZ3W.deriv.DAOD_EXOT7.e3668_s3126
mc16_13TeV.361024.□_jetjet_JZ4W.deriv.DAOD_EXOT7.e3668_s3126
mc16_13TeV.361025.□_jetjet_JZ5W.deriv.DAOD_EXOT7.e3668_s3126
mc16_13TeV.361026.□_jetjet_JZ6W.deriv.DAOD_EXOT7.e3569_s3126
mc16_13TeV.361027.□_jetjet_JZ7W.deriv.DAOD_EXOT7.e3668_s3126
mc16_13TeV.361028.□_jetjet_JZ8W.deriv.DAOD_EXOT7.e3569_s3126
mc16_13TeV.361029.□_jetjet_JZ9W.deriv.DAOD_EXOT7.e3569_s3126
mc16_13TeV.361030.□_jetjet_JZ10W.deriv.DAOD_EXOT7.e3569_s3126
mc16_13TeV.361031.□_jetjet_JZ11W.deriv.DAOD_EXOT7.e3569_s3126
mc16_13TeV.361032.□_jetjet_JZ12W.deriv.DAOD_EXOT7.e3668_s3126

198



Table D.2: List of data period containers.

Year Name
2015 data15_13TeV.periodD.physics_Main.PhysCont.DAOD_EXOT7.grp15_v01_p3841

data15_13TeV.periodE.physics_Main.PhysCont.DAOD_EXOT7.grp15_v01_p3841
data15_13TeV.periodF.physics_Main.PhysCont.DAOD_EXOT7.grp15_v01_p3841
data15_13TeV.periodG.physics_Main.PhysCont.DAOD_EXOT7.grp15_v01_p3841
data15_13TeV.periodH.physics_Main.PhysCont.DAOD_EXOT7.grp15_v01_p3841
data15_13TeV.periodJ.physics_Main.PhysCont.DAOD_EXOT7.grp15_v01_p3841

2016 data16_13TeV.periodA.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodB.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodC.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodD.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodE.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodF.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodG.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodI.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodK.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841
data16_13TeV.periodL.physics_Main.PhysCont.DAOD_EXOT7.grp16_v01_p3841

2017 data17_13TeV.periodB.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841
data17_13TeV.periodC.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841
data17_13TeV.periodD.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841
data17_13TeV.periodE.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841
data17_13TeV.periodF.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841
data17_13TeV.periodH.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841
data17_13TeV.periodI.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841
data17_13TeV.periodK.physics_Main.PhysCont.DAOD_EXOT7.grp17_v01_p3841

2018 data18_13TeV.periodB.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodC.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodD.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodF.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodI.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodK.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodL.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodM.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodO.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
data18_13TeV.periodQ.physics_Main.PhysCont.DAOD_EXOT7.grp18_v01_p3841
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E
Object Definitions for All­hadronic tt
Resonance Analysis

The most relevant physics objects in the tt all­hadronic analysis is large­R jets for top tag­
ging, variable­radius track jets for b tagging and electrons and muons for vetoing in order
to be orthogonal to the tt lepton+jets analysis. The object selections are summarized in the
tables below.

Table E.1: Large-R jet selections

Jet reconstruction parameters
Parameter Value

Jet algorithm Anti­kT

R­parameter 1.0
Input constituent LCTopo

Grooming algorithm Trimming
fcut 0.05

Rtrim 0.2
AnalysisTop release number 21.2.87

CalibArea tag 00­04­82
Calibration configuration JES_MC16recommendation_FatJet_Trimmed_JMS_comb_17Oct2018.config

Calibration sequence (Data) EtaJES_JMS_Insitu
Calibration sequence (MC) EtaJES_JMS

Selection requirements
Observable Requirement

pT > 350 GeV
|η| < 2.0
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Table E.2: Variable-radius track jet selections

Jet reconstruction parameters
Parameter Value

Jet algorithm Anti­kT

R­parameter Reff(pT) in Equation 5.4
Input constituent Track

AnalysisTop release number 21.2.87
CalibArea tag 00­04­81

Calibration configuration JES_data2017_2016_2015_Recommendation_Feb2018_rel21.config
Calibration sequence (Data) JetArea_Residual_EtaJES_GSC_Insitu
Calibration sequence (MC) JetArea_Residual_EtaJES_GSC

Selection requirements
Observable Requirement

pT > 10 GeV
|η| < 2.5

Table E.3: Electron selections

Electron selection
Parameter Value

Identification Tight
Isolation Not applied

Energy calibration “es2018_R21_v0” (ESModel)
Object quality Not from a bad calorimeter cluster (BADCLUSELECTRON)

Remove clusters from regions with EMEC bad HV (2016 data only)
Impact parameter cuts |dBL

0 significance| < 5
|∆zBL

0 sin θ| < 0.5 mm
Selection requirements

Observable Requirement
pT > 25 GeV
|η| < 2.47, excluding 1.37 < |η| < 1.52

Table E.4: Muon selections

Muon selection
Parameter Value
Selection Medium
Isolation Tight

Momentum calibration Sagitta correction used
Impact parameter cuts |dBL

0 significance| < 5
|∆zBL

0 sin θ| < 0.5 mm
Selection requirements

Observable Requirement
pT > 25 GeV
|η| < 2.5
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