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Abstract  

The success of an evidence-based intervention depends on precise and accurate 
evaluation of available data and information. Here, the use of robust methods for 
evidence evaluation is important. Epidemiology, in its conventional form, relies on 
statistics and mathematics to draw inferences on disease dynamics in affected 
populations. Interestingly, most of the data used tend to have spatial aspects to them. 
However, most of these statistical and mathematical methods tend to either neglect 
these spatial aspects or consider them as artefacts, thereby biasing the resultant 
estimates. Thankfully, spatial methods allow for evidence evaluation and prediction in 
epidemiologic data while considering their inherent spatial characteristics. This, thus, 
promises more precise and accurate estimates. 

This thesis documents and illustrates the contribution spatial methods and spatial 
thinking makes to epidemiology through studies carried out in two countries with 
different heath-data quality realities, Uganda and Sweden. To be able to use spatial 
methods for epidemiology studies, proper spatial data need to be available, which is 
not the case in Uganda. Consequently, this study had two main aims: (1) It proposed 
and implemented a novel way of spatially-enabling patient registry systems in settings 
where the existing infrastructures do not allow for the collection of patient-level 
spatial details, prerequisites for fine-scale spatial analyses; (2) Where spatial data were 
available, spatial methods were used to study associative relationships between health 
outcomes and exposure factors. Spatial econometrics approaches, especially spatially 
autoregressive regression models were adopted. Also, consistent with location-specific 
epidemiologic intervention, the advantages of using spatial scan statistics, 
Geographically Weighted (Poisson) Regression and local entropy maps to distil model 
parameter estimates into their inherent spatial heterogeneities were illustrated.  

Our results illustrated that through the use of mobile and web technologies and 
leveraging on existing spatial data pools, systems that enable recording and storage of 
geospatially referenced patient records can be created. Also, spatial methods 
outperformed conventional statistical approaches, giving refined and more accurate 
parameter estimates. Finally, our study illustrates that the use of local spatial methods 
can inform policy and intervention better through the identification of areas with 
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elevated disease burden or those areas worth additional scrutiny as illustrated by our 
study of HIV-TB coinfection areas in Uganda, the areas with high CVD-air pollution 
associations in Sweden, and areas with consistently high joint mortality burden for 
CVD and cancer among the Swedish elderly.  

Overall, the incorporation of spatial approaches and spatial thinking in epidemiology 
cannot be overemphasized. First, by enabling the capture of fine-scale personal-level 
spatial data, our study promises more robust analyses and seamless data integration. 
Secondly, associative analyses using spatial methods showed improved results. 
Thirdly, identification of the areas with elevated disease burden makes identifying the 
primary drivers of the observed local patterns more informed and focused. Ultimately, 
our results inform healthcare policy and strategic intervention as the most affected 
areas can easily be zoned out. Therefore, by illustrating these benefits, this study 
contributes to epidemiology, through spatial methods, especially in the aspects of 
disease surveillance, informing policy and driving possible effective intervention. 
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Sammanfattning 

Framgången av en evidensbaserad intervention beror på precis och tillförlitlig 
utvärdering av tillgängliga data och information. Här är användningen av robusta 
metoder för bevisvärdering viktig. Epidemiologi, i dess konventionella form, förlitar 
sig på statistik och matematik för att dra slutsatser om sjukdomars dynamik i 
drabbade populationer. Intressant är att de flesta data som används ofta innefattar 
rumsliga aspekter. Dock är det så att de flesta statistiska och matematiska metoder 
tenderar att antingen försumma dessa rumsliga aspekter, eller betrakta dem som 
artefakter och därmed öka osäkerheten i de resulterande uppskattningarna. Tack och 
lov möjliggör rumsliga metoder utvärdering av analys och resultat innefattande 
rumsliga epidemiologiska data med beaktande av deras inneboende rumsliga 
egenskaper. Detta kan resultera i mer precisa och exakta uppskattningar. 

Denna avhandling dokumenterar och illustrerar bidraget rumsliga metoder och 
rumsligt tänkande gör till epidemiologi, genom studier genomförda i två länder med 
olika förutsättningar avseende datatillgänglighet, Uganda och Sverige. För att kunna 
använda rumsliga metoder för epidemiologistudier krävs korrekt rumslig information, 
vilket generellt inte är fallet i Uganda. Följaktligen hade denna studie två huvudmål: 
(1) Den föreslår och implementerar en ny modell för rumsliga 
patientregistreringssystem i miljöer där de befintliga infrastrukturerna inte möjliggör 
insamling av rumsliga detaljer på patientnivå, dvs. saknar förutsättningar för finskala 
rumsliga analyser; (2) Då rumsliga data finns tillgängliga, används rumsliga metoder 
för att studera associativa förhållanden mellan hälsoutfall och exponeringsfaktorer. 
Rumsliga ekonometriska tillvägagångssätt, särskilt rumsligt autoregressiva 
regressionsmodeller, har använts. I överensstämmelse med platsspecifik 
epidemiologisk intervention illustreras också fördelarna med att använda statistisk 
skanningsstatistik, geografiskt viktad (Poisson) regression och lokala entropikartor för 
att destillera parameter-uppskattningar avseende deras inneboende rumsliga 
heterogenitet. 

Våra resultat illustrerar att genom användning av mobil- och webbteknologier, samt 
utnyttjande av befintliga rumsliga datapooler, kan system som möjliggör registrering 
och lagring av geospatialt refererade patientjournaler skapas. Dessutom överträffade 
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rumsliga metoder konventionella statistiska tillvägagångssätt, vilket gav förfinade och 
mer exakta parameteruppskattningar. Slutligen illustrerar vår studie att användningen 
av lokala rumsliga metoder kan informera beslutsfattare (t.ex. avseende policy och 
intervention) bättre genom att identifiera områden med förhöjd sjukdomsbild, eller 
de områden som av annan anledning är värda ytterligare granskning. Detta illustreras 
i våra studier av HIV-TB-infektionsområden i Uganda, områden med höga CVD-
luftföroreningsföreningar i Sverige och områden med genomgående hög gemensam 
dödlighet för CVD och cancer bland äldre svensk befolkning. 

Sammantaget kan införlivandet av rumsliga tillvägagångssätt och rumsligt tänkande i 
epidemiologi inte överbetonas. Först, genom att möjliggöra insamling av rumsliga 
data på finskalig personlig nivå, indikerar vår studie mer robusta analyser och sömlös 
dataintegration. För det andra visade associativa analyser med användning av rumsliga 
metoder förbättrade resultat. För det tredje gör identifiering av områden med förhöjd 
sjukdomsbild det möjligt att identifiera de primära drivkrafterna för de observerade 
lokala mönstren mer tillförlitligt och fokuserat. I slutändan kan våra resultat användas 
inom vårdpolitik och strategisk intervention eftersom de mest drabbade områdena 
enkelt kan identifieras och därmed regleras. Genom möjligheten att illustrera dessa 
fördelar ger denna studie ett bidrag till epidemiologin, genom rumsliga metoder, 
särskilt när det gäller övervakning av sjukdomar, information till beslutsfattare och 
möjligheter att driva effektiv intervention. 
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1 Introduction  

1.1 Background  

Epidemiology entails the study of the distribution and determinants of health-related 
states or events in specified populations, and the application of this study to the 
control of health problems (CDC, 2012). The roots of epidemiology can be traced 
back to the days of the Greek physician Hippocrates of Cos (460 BC – 377 BC) who 
is considered the first epidemiologist (Morabia, 2004). For long, epidemiology was 
limited to infectious diseases through studying, documenting and analysing their 
spread within given populations to advise their prevention (Kuller, 1991). However, 
the scope of epidemiology has since expanded and currently refers to the study of any 
health condition that occurs in excess of normal expectancy (Gerstman, 2013). Even 
in this non-limiting sense, epidemiology still refers to the study of epidemics and their 
prevention (Kuller, 1991), and is to be differentiated from clinical medicine. The 
epidemiologist’s primary unit of concern is, “an aggregate of human beings”, as 
opposed to an “individual,” for a clinician (Greenwood, 1935, Souris, 2019). 

As a study, epidemiology is quantitative, data-driven, and relies on the systematic and 
unbiased collection, analysis, and interpretation of data (Dicker, 2008). 
Epidemiology’s main objective is to uncover the relationships between the observed 
disease dynamics and the risk factors and to confirm that the risk factors affect the 
disease through some understandable mechanisms – using mathematics, statistics, and 
modelling (Souris, 2019). Epidemiologic data are obtained from several sources, 
including vital statistics data, government surveillance data and reports, health 
surveys, and disease registries to study factors associated with certain diseases or 
conditions (Torrence, 2002). However, for most of the non-communicable diseases 
such as heart diseases, cancer, diabetes, chronic pulmonary, and mental diseases, it is 
the disease registries at primary health care units (hospitals, clinics, etc.) that are often 
used (Boutayeb and Boutayeb, 2005). These registries capture the patient attributes 
like age, sex, marital status, occupation, family history of the disease, date of 
admission or visitation, and more importantly for our study, the absolute location of 
their place of work/residence, for custody purposes and/or to facilitate clinical care.  
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The need to record patient location details is important as places and environments 
influence not only the lifestyle of their occupants but also influence the diseases that 
affect the inhabitants. This location and season dependence of diseases is not new. In 
his treatise “Airs, Waters, and Places”, Hippocrates (460 BC – 377 BC) expressed his 
conviction that man’s external environment had some direct influence on his physical 
constitution and health, and that by studying a location’s reference to the sun, the 
soil, the elevation, prevailing winds and the nature of the water supply, one was able 
to predict the character of the population and its diseases (Miller, 1962). This 
thinking still largely forms the basis for spatial epidemiology, a branch of 
epidemiology that focuses on the spatial distribution of risk factors, disease outcomes, 
and their spatial intersection. 

Spatial epidemiology, the study of the description and analysis of spatially-indexed 
health data to characterize spread and possible causes (Elliott et al., 2000), principally 
works from the basis of three observations. First, diseases tend to vary in geographical 
space; second, this spatial variation is driven by the variations in the biotic and abiotic 
conditions that support the pathogen and its vectors and reservoirs; and third, if these 
biotic and abiotic conditions can be delimited on the map, then both current risk and 
future changes in risk should be predictable (Pavlovsky, 1966, Ostfeld et al., 2005). 
As such, spatial epidemiology uses the geographical distribution of disease to better 
understand the aetiology of disease through associations with the demographic, 
environmental, genetic, behavioural, socioeconomic, and infectious risk factors 
(Elliott and Wartenberg, 2004). 

Although the importance of place in human health has long been recognised 
(Morabia, 2004), public health research has mostly focused on person and time, with 
little consideration of “the place” (Rezaeian et al., 2007). This is unfortunate as a 
comparison between places, times, and individuals, provides useful information for 
formulating and testing aetiological hypotheses (Jia, 2019). Some of the reasons for 
this apparent lack of interest in “the place” include lack of appropriate databases (or 
data not having spatial details), the complexity of spatial analysis tools, and lack of 
appropriate software (Hawkins, 2012, Souris, 2019). From a public health 
perspective, spatially-indexed epidemiologic analyses are very important in linking 
observed health outcomes with environmental exposures (Kirby et al., 2017). Such 
analyses are hence effective tools in informing healthcare policy, allocation of 
resources for monitoring, intervention, prevention and treatment of diseases. 

 



3 

1.2 Research gap 

There have been various studies in relation to spatial epidemiology, targeting clinical 
and policy interventions. In all these studies, the existence of spatially geo-referenced 
health data is the required starting point. As such, to enable eventual spatial analyses 
on the data captured in the healthcare registries, the explicit location of the place of 
residence, as a patient attribute, must be captured along with other personal details. 
Some countries have well-developed health and population registry systems that 
enable capturing of this spatial data, like the existence of a personal identification 
number (PIN) that is linked to one’s place of residence for Scandinavian countries 
(Brook et al., 2004). For some countries, like the USA and the United Kingdom, the 
PIN is not directly linked to location so registries rely on reported ZIP codes and 
Postcodes respectively (Elliott and Wartenberg, 2004). For most developing 
countries, especially in Africa, however, the lack of an addressing system means that 
no explicit spatial reference can be made to the location of the patients.  

Underlying the PINs, ZIP codes and Postcodes are some forms of national Spatial 
Data Infrastructure (SDIs) that enable geocoding, and these SDIs are currently 
lacking in many of the resource-constrained African countries. SDIs are broadly 
defined as the technology, policies, standards, and human resources necessary to 
acquire, process, store, distribute, and improve utilization of spatial data, services, and 
other digital resources (Hu and Li, 2017). This, therefore, means that the lack of 
SDIs leads to difficulties in capturing location data generally, and patient-specific 
location data for our case, that would be used in both spatial epidemiologic analyses 
and help in the delivery of e-health services. The implication of this inability to 
capture fine-level spatial details is that the only spatial analyses possible are those done 
at coarse-level geographical aggregations. Additionally, from an analysis standpoint, 
most of the epidemiologic studies tend to ignore the consideration of spatial effects 
inherent in the morbidity and mortality data used. Failure to account for spatial 
effects may bias the estimates as well as affecting precision (McDonald, 2013). 
Accordingly, accounting for spatial dependence may improve causal inference hence 
policy interventions in public health problems. 

This study, therefore, began by utilizing coarse-scale HIV and TB admission data and 
investigated their spatial co-clustering in Uganda. Here, a case was made that such 
coarse-scale data make targeted epidemiologic intervention difficult at best and 
impossible at worst, as the identification of local target foci of transmission become 
masked at such coarse spatial scales. We, thus, proposed, developed and implemented 
a digital spatially-enabled health registry system that utilized existing spatial data 
pools in areas without working SDIs like Uganda. The system allows for the capture 
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of fine-level patient spatial details at hospital consultation and/or admission. For 
settings with fine-scale patient spatial data already, we used spatially-explicit methods 
to investigate the nature of the associations between cardiovascular diseases and 
ambient air pollution, as well as the spatial variation of these associations across 
Sweden. Finally, owing to the prominence of comorbidities and their accelerated 
negative effects to health outcomes, fine-level spatially varying relationships between 
CVD and cancer were investigated in the Swedish elderly, using spatially-shared local 
information between the two causes of death through joint entropy analysis.  

This dissertation is based on paper-compilation. As such, some repetitions especially 
in the general literature review, methodology and results here, and in the individual 
papers could not be avoided.  

1.3 The aim and objectives 

The aim of this study is two-folded. 1) to propose and test the possibility of using 
spatial data pools to create systems that enable spatial referencing of patient records, 
in areas where infrastructures are inexistent; (2) to use spatially-explicit methods, 
approaches and spatial thinking to enhance epidemiologic intervention.  

Specifically, the study explored the possibilities of spatially enabling health registries 
and the application of spatial approaches to improve disease surveillance and disease 
intervention and control strategies through spatially-explicit analyses. These objectives 
are listed below as: 

1. Adopt cluster detecting models to investigate the simultaneous spatial 

variation of co-infectious disease clusters from spatially aggregated data.  

2. Establish a spatially-enabled patient registry system through the use of 

available implicit spatial data pools. 

3. Adopt spatially-explicit regression models for environmental-disease 

surveillance. 

4. Adopt joint local entropy models to investigate the spatial variation of co-

morbidities and co-mortalities. 
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1.4 Thesis organisation 

The thesis is organized into five chapters. After this introductory chapter, chapter 2 
presents a review of the literature about epidemiology in general and spatial 
epidemiology in particular.  Chapter 3 gives a detailed description of the methods and 
data used in the study. Chapter 4 summarizes the four resulting papers from the 
study. The final chapter is chapter 5 that presents the conclusions and 
recommendations. The resulting four papers, from which the methods, results, 
discussions and recommendations of this thesis are based, have been attached as a 
main part of the thesis. 
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2 Literature Review 

2.1 Historical perspectives on epidemiology  

The first rational explanation of disease was by the Greek physician Hippocrates of 
Cos (460 BC – 377 BC) who is considered as the father of medicine and the first 
epidemiologist (Morabia, 2004). He recognised that some forms of sickness were 
always present in a population, but other forms were either not usually present or, if 
present, exhibited seasonality in the form of being common at certain periods of the 
year and in certain years. Through his book “On Airs, Waters and Places”, he 
distinguished between "endemic" diseases, that are always present in a population and 
"epidemic" diseases, which can become excessively frequent and then disappear 
(Merrill, 2012). He, thus, was concerned about the factors responsible for local 
endemicity as well as reasons for epidemic prevalence (Greenwood, 1935). In this, he 
considered diseases as both a mass phenomenon as well as an individual occurrence 
and built the theory of causation based on observation of the association between 
disease and factors such as geography, climate, diet, and living conditions. 

This association aspect of diseases and the environment was popularized by 
Hieronymus Fracastorius (1478 – 1553) who theorized that there exists a transference 
contagion, in which conveyance of a disease from an infected person to another 
person (hitherto uninfected) is accomplished (Duncan et al., 1988). Three types of 
contagion were distinguished as direct contact, germ contagion and “infection at a 
distance”, and these three still underlie most of the infectious disease epidemiology 
(Ostfeld et al., 2005). By using observation and mortality records, John Snow (1813 
– 1858) was arguably the most noted epidemiologist of the nineteenth century 
(Howe, 1964). He identified the common of source of cholera contamination, as a 
water source (borehole) on Broad Street, London by plotting Cholera mortality 
statistics that he derived from his detailed scenario records of cholera dynamics 
including modes of transmission, incubation times, cause-effect association, clinical 
observation, scientific observation of water from different sources, as well as 
differences between those who got the disease and those who did not (Vinten-
Johansen et al., 2003). And although John Snow was unable to identify the causing 
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agent of cholera, his use of statistical records enabled him to isolate contaminated 
water as the risk factor associated with cholera (Dicker, 2008).  

Given that epidemiology is concerned with what befalls a group of human beings as 
opposed to individuals (Lawson et al., 2016), keeping records of morbidity and 
mortality in a given population is vital (Gerstman, 2013). By publishing “bills of 
mortality” in London weekly, John Graunt (1620 – 1674) managed to identify 
variations in death according to gender, residence, season and age (Rothman, 1996). 
Graunt’s statistics were given more authority by William Farr (1807 – 1883) who 
organized and developed the vital statistics system as we know it and helped in the 
analysis of disease aetiological factors (Merrill, 2012). These aetiological factors tend 
to vary in both space and time.  

2.2 Spatial analysis and spatial epidemiology  

Epidemiology, being quantitative, begins with having recorded data. For spatial 
analysis to be possible, some spatial aspects of the phenomena of the population being 
studied must be captured. Normally, in disease-related data recording, one’s residence 
or workplace are tagged along with the personal level details. Consequently, ZIP 
codes, Postcodes and Personal Identification Numbers (PINs) are used. These codes 
and numbers are in most cases geocoded, enabling retrieval of precise geo-locations of 
individual residences or workplaces. In settings where there are no geo-referenced ZIP 
codes, Postcodes or PINs due to lack of enabling infrastructures, fine-scale spatial 
analysis later alone spatial epidemiology becomes impossible. In essence, the very 
starting point of any form of spatial analysis on the recorded data emanates from 
having spatial data captured through some form of spatially enabling infrastructures.  

Descriptive epidemiology focuses on the triad of person, place and time (Duncan et 
al., 1988). Historically, epidemiologic research focusing on “the place” has been given 
less attention (Kirby et al., 2017). Modern epidemiology, however, has increasingly 
incorporated spatial perspectives into its research design and models as the inclusion 
of “the place” helps in tying the observed health outcomes to the place-specific 
exposure factors, thus providing useful information for formulating and testing 
aetiological hypotheses (Jia, 2019).  

Spatial epidemiology concerns “research that incorporates the spatial perspective into 
the design and analysis of the distribution, determinants, and outcomes of all aspects 
of health and well-being…” (Kirby et al., 2017). It, thus, involves the use of 
epidemiologic study designs that make use of spatial data or spatially derived 
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information. Spatial datasets provide two types of information: (1) data describing the 
specific locations of objects in space (and their topological relationships), and (2) data 
describing non-spatial attributes of the objects recorded (thematic data). For example, 
the spatial data set might be describing mortality count of a given disease (thematic 
aspect) in a given municipality (spatial aspect).  

Using spatial data, we can reveal that everything is related to everything else but 
nearer things are more related than distant things, according to Tobler’s first law of 
geography (Tobler, 1970). This highlights the aspect that neighbourhoods influence 
what is observed. Said another way, the mortality observed in one municipality is 
influenced by the mortality in the neighbouring municipalities. Analysis of 
neighbourhood process results in spatial spill-overs and spatial dependence (Anselin, 
2003). More importantly, these spatial effects in the form of dependence and spatial 
heterogeneity result in the violation of the independent observation assumption, 
synonymous with conventional statistics (Yao and Stewart Fotheringham, 2016). 
Conventional statistics and epidemiology tend to treat these spatial effects as some 
form of distortion or bias.  

Spatial scientists and spatial epidemiologists, on the other hand, argue that these 
spatial effects do not constitute a bias; it is what they want to understand by 
evaluating its effect on the observed phenomena (Hawkins, 2012). The argument is 
that given the spatially structured distribution of diseases arising from aetiological 
processes operating in a spatially patterned environment, for example, any set of 
samples or representation of the disease burden (incidence, prevalence, etc.) must also 
contain this structure, if they are to be accurate. If spatial effects are part of the 
observed disease burden, and we are trying to understand the disease burden, it makes 
little sense to claim that spatial effects in the disease data represent some sort of bias 
or distortion. It, thus, follows that broad-scale epidemiologic data that do not contain 
spatial structure are missing key information that limits their value for understanding 
the disease spatial patterns being studied.  

Failure to account for these spatial effects may bias the estimates and may affect 
precision obtained from regression models. Resultantly, accounting for spatial effects 
improves causal inference hence epidemiologic surveillance and policy intervention. 
Accounting for spatial dependence, however, calls for specialised methods of spatial 
statistics and spatial econometrics (Anselin, 1989) or spatial regression methods 
(LeSage and Pace, 2009). Additionally, for these methods to be useful in 
epidemiologic surveillance and targeted intervention, they must be able to distil the 
observed health outcomes into their local spatial heterogeneities, as well as depicting 
the established association relationships between the health outcomes and their 
independent variables at local spatial scales. The methods that deal with this kind of 
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local spatial autocorrelation and spatial heterogeneity form the basis for a hypothesis 
test for local spatial randomness, with the null hypothesis being one of spatial 
randomness – locally, any organisation of values in the neighbourhood is equally 
likely (Anselin, 2019).  

Local spatial methods have gained prominence in geographical analysis in recent 
times. These methods are mainly concerned with local spatial heterogeneity (general 
considerations given in Fotheringham et al., 2002a and Lloyd, 2010) and local spatial 
autocorrelation generally considered under the Local Indicators of Spatial Association 
(LISA) framework (Anselin, 1995, Anselin and Rey, 2014). Both frameworks account 
for the neighbourhood through some form of spatial weights generated either through 
distance decay or spatial contiguity. The choice of whether to use distance decay or 
contiguity depends on the nature of the phenomena being studied, but tend to 
converge in results for most practical applications (Anselin et al., 2006).  

In all, the use of these spatial methods improves the accuracy and precision of the 
obtained estimates. They would, therefore, improve intervention by identifying, at a 
local scale, which (local) risk factors are responsible for the observed health outcomes. 
Unfortunately, these spatial methods have not been widely applied in epidemiologic 
studies. This study, thus, provides numerous ways for incorporating such advanced 
spatial methods and spatial thinking and illustrates how doing so could improve 
epidemiologic surveillance through targeted intervention. Moreover, the local nature 
of the spatial methods adopted makes identification of areas requiring more 
epidemiologic intervention more straightforward – when compared with global 
solutions or non-spatial solutions that are more common in conventional 
epidemiology. 



11 

3 Data and Methods  

The methods employed were primarily influenced by the nature of my study that 
involved working with datasets from two countries: Uganda and Sweden. The nature 
and spatial quality of these two groups of datasets required different approaches. For 
one (Uganda), the spatial scale of the available datasets was coarse while the datasets 
from Sweden were at fine spatial resolutions. The methods employed here also 
reflected this difference. Also, due to this limitation in the spatial scale of the 
Ugandan datasets, this inspired the proposition, design and implementation of a 
creative idea that included a system that allows for spatial enablement of health 
registry systems.  

Consequently, the first group consists of the application of the different spatial 
methods to generate what could be interpreted as disease surveillance maps. The 
underlying characteristic of these approaches is that they all distil the observed or 
predicted disease prevalence, incidence or associations into their local spatial 
heterogeneities. As such, methods like spatial scan statistics, Local Indicators of 
Spatial Association, Geographically Weighted (Poisson) Regression and Local entropy 
maps, all used in this study, fall under this grouping.  

Motivated by the fact that the inability to record patient spatial details limits spatial 
epidemiology analyses, the second group of methods is a unary category I have termed 
as the “development” component of the study. This is perhaps not a “method” in the 
strictest of the terms but a pragmatic approach used to propose, develop and 
implement a system that allows for spatially enabling health registry systems. It is 
specific to areas like Uganda where existing infrastructures do not allow for 
determination and recording of the precise location of the patient’s residence or 
workplace upon admission or consultation.  
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3.1 Spatial statistics  

3.1.1 Spatial scan statistics 

Geographical disease surveillance scans for the presence of non-natural clusters of 
diseases in space and proceeds from the assumption that the background risk surface 
is flat, against which a peak (cluster) is being tested (Elliott and Wartenberg, 2004). A 
cluster can be defined as an unusually high concentration of disease events in a region 
unlikely to have happened out of chance (Turnbull et al., 1989). Spatial scan statistics 
is one of the methods that use point pattern to detect non-random clustering in 
geographical space (Kulldorff, 1997). Disease spatial cluster analysis is thus important 
in disease surveillance as it helps to identify areas where intervention is critical. 

The earliest scan statistic was the Geographical Analytical Machine (GAM) advanced 
by Openshaw and colleagues (Openshaw et al., 1988). That notwithstanding, the 
most widely used spatial statistic is the Kulldorff spatial statistic (Sherman et al., 
2014), which is both deterministic and inferential therefore allowing for identification 
of local clusters but also allowing for hypothesis testing and significance evaluation 
through the SaTScan software, and detects both circular and elliptical clusters (Chen 
et al., 2008, Tango and Takahashi, 2005). 

As Chen et al. (2008) discussed, the SaTScan detects potential clusters by calculating 
the likelihood ratio (LR) given by equation (1). 

𝐿𝑅ሺ௨ሻ = ൬ ௖ாሾ೎ሿ൰௖ ൬ ஼ି௖஼ିாሾ೎ሿ൰஼ି௖ 𝐼 ൬ ௖ாሾ೎ሿ > ஼ି௖஼ିாሾ೎ሿ൰ (1)

where 𝐶 is the total number of observed cases in the study area; 𝑐 is the observed 
number of cases within a circle; 𝐸ሾ௖ሿ is the adjusted expected number within the 
window under the null hypothesis; 𝐶 − 𝐸ሾ௖ሿ is the expected number of cases outside 

the window, and 𝐼 ൬ ௖ாሾ೎ሿ > ஼ି௖஼ିாሾ೎ሿ൰ is the binary indicator of high-risk clusters (1) or 

low-risk clusters (0) or both (11). Based on the magnitude of the values of the 
likelihood ratio test, the set of potential clusters is then ranked and ordered. The 
circle with the maximum likelihood ratio among all radius sizes at all possible 
centroid locations is considered as the most likely cluster. The statistical significance 
of the clusters is determined through Monte Carlo simulations. Secondary clusters – 
those that have significantly large likelihood ratio but are not primary clusters can also 
be identified (Sherman et al., 2014). 



13 

3.1.2 Global Moran’s I 

The global Moran’s index is used as a measure of the influence of neighbourhood 
values on the observed values. This neighbourhood influence is known as spatial 
autocorrelation and provides information about how the phenomenon under study 
tends to cluster in space (Cliff and Ord, 1970, Chien et al., 2015). Global Moran’s I 
was used to estimate the degree of clustering of disease incidence rates according to 
equation (2). 

𝐼 = ௡ௌబ ∑ ∑ ୵౟ౠሺ୶౟ି୶തሻ൫୶ౠି୶ത൯౤ౠసభ౤౟సభ ∑ ሺ୶౟ି୶തሻమ౤౟సభ  (2)  

where 𝑛 is the number of polygonal areas; 𝑆଴ is the sum of all weights 𝑤௜௝, 𝑆଴ =∑ ∑ 𝑤௜௝௡௝ୀଵ௡௜ୀଵ ; 𝑤௜௝ is the weight between observations 𝑖 and 𝑗, and represents 
proximity between area a polygonal pair 𝑖 and 𝑗; 𝑥௜ is the incidence rate of a disease in 
the 𝑖th area; 𝑥௝ is the incidence rate of a disease in the 𝑗th area; and 𝑥̅ is the mean 
incidence rate of the disease under study for all the spatial polygons in the study area. 

3.1.3 Local Moran’s I 

Whereas the global Moran’s index in equation (2) shows the degree of clustering in 
the whole study area, it does not show variability in the clustering tendency of the 
phenomenon under study, across the study area. The local Moran’s index, a Local 
Indicator of Spatial Association (LISA), was proposed by Anselin (1995) and allows 
for the global spatial autocorrelation to be distilled into its constituent clusters – cold 
spots and hotspots. The LISA of 𝑖th polygon can be calculated according to equation 
(3).  

𝐼௜ = ሺ௫೔ି௫̅ሻ∑ ௪೔ೕ൫௫ౠି௫̅൯ೕௌమ  (3) 

where 𝑥௜ is the incidence rate of a disease in the 𝑖th area; 𝑥௝ is the incidence rate of a 
disease in the 𝑗th area; and 𝑥̅ is the mean incidence rate of the disease under study for 
all the spatial polygons in the study area; 𝑤௜௝ is a weight parameter for a pair of 
polygons 𝑖 and 𝑗 and indicates proximity; 𝑆 is the standard deviation of the disease 
incidence rate in the entire study area.  
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3.1.4 Bivariate LISA (Bi-LISA) 

The bivariate local Moran’s index (Bi-LISA) is an extension of the univariate local 
Moran’s I outlined in the previous section. The Bi-LISA models the correlation 
between one disease prevalence rate (a) at a given location and another disease 
prevalence rate (b) at the neighbourhood location using equation (4).  

𝐼௜ = ሺ௫ೌ೔ି௫ೌതതതതሻ∑ ௪೔ೕ൫௫ౘౠି௫್തതതത൯ೕௌమ  (4) 

This approach was especially applicable for studying co-infections co-morbidities, and 
co-mortalities. The global and local Moran’s I involved the computation of 
neighbourhood information captured by the spatial weight matrix. In both 
applications, the contiguity option of weight matrix generation was adopted.  

3.2 Geographically Weighted Regression (GWR) 

Due to non-stationarity of most disease variations, globally fitted spatial models (such 
as Ordinary Least Squares, spatial lag and spatial error models) assume stationary 
spatial effects, resulting in unrealistic universal relationships across the study space. 
Fotheringham et al. (2002b) contended that undertaking a global spatial analysis can 
be misleading. They thus proposed a local form of spatial modelling and analysis, 
termed as Geographically Weighted Regression (GWR). GWR, as shown in Figure 1, 
is a local form of weighted regression where the weights ൫𝑊௜௝൯ are calculated as an 
inverse function of the spatial distance ൫𝑑௜௝൯ between the predicted point and the 
data points (Fotheringham et al., 2002b). As such, near data points are given heavier 
weights compared to faraway points, with respect to the first law of geography: 
“everything is related to everything else, but near things are more related than distant 
things” (Tobler, 1970). 
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Figure 1: Schematic representation of the geographically weighted regression 

For our study, we extended the Poisson variant of GWR, known as Geographically 
Weighted Poisson Regression (GWPR), to analyse the association between air multi-
pollutants and cardiovascular disease (CVD) and the spatial variations of these 
associations across Sweden. The Poisson framework was used because of the count 
nature of the CVD records. The GWPR model can be expressed as equation (5). All 
analysis was done at SAMS (Small Area for Market Statistics) level, which is a census 
regional division, defined by Statistics Sweden (http://www.scb.se), based on 
homogenous types of buildings so that they approximately contain 1000 residents. 𝑂௜~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ൣ𝑁௜𝑒𝑥𝑝൫∑ 𝛽௞௞ ሺ𝒖௜ሻ𝑥௞,௜൯൧ (5) 

where 𝑂௜ denotes the SAMS observed CVD admission count; 𝑁௜ denotes the SAMS 
specific underlying population; 𝒖௜ = (𝑢௫௜ ,𝑢௬௜) denotes a vector containing the two-
dimensional coordinates describing the location of the particular SAMS (centroid 
coordinates); 𝑥௞,௜ denotes the pollution variables. The regression coefficients, 𝛽s, are 
calculated for every SAMS (𝑖), making them spatially varying. This makes GWPR a 
local spatial regression model allowing for geographically varying parameters. 
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3.3 Local Entropy Maps (LEM) 

The concept of entropy has its roots in information theory and has been used in 
many application including measuring uncertainty in information theory (Gray, 
2011), complexity in physics (Shannon, 1948), and diversity in ecology (Ricotta and 
Anand, 2006) just to mention a few. It has also, through the use of joint entropy, 
been used to study spatially varying multivariate relationships across space (Guo, 
2010). It is this application in the spatial variability of multivariate relations that is 
more applicable to our study.  

LEM is a non-parametric approach that proceeds from the computation of joint 
entropy using power-weighted minimum spanning trees (MST) as a proxy for the 
joint distribution of the variables (Jin and Lu, 2017). The advantage with LEM is 
that it does not assume a prior relationship form between the dependent and the 
independent variables; it also does not require specification of the underlying 
distribution of the data. This, therefore, makes it less restrictive in studying the nature 
of spatially-local relationships existing between variables (Guo, 2010).  

Given that some form of assumption must be made for the data and the relationship 
in both LISA and spatial heterogeneity models like GW(P)R, we used a local entropy 
model to analyse associations without necessarily imposing assumptions on the 
relationship between the variables used. This promised to improve the definition of 
the association, especially in areas where the association is complex and not simply 
linear. 

LEM analysis generally involves four main steps:  

(1) estimation of Renyi entropy (𝐻ఒ) using the power-weighted MST length 
determined from the bivariate plot of the two variables, according to equation (6). 𝐻ఒ = ଵଵିఒ ቀlog ቀ𝑀ఈ (௫భ,௫మ ,…,௫೙)௡ഊ ቁ − 𝑐ቁ (6) 

where 𝑥 is a 𝑑-dimensional vector;  𝜆 ≥ 0 is the order of the Renyi entropy; 𝑀ఈ(𝑥ଵ, 𝑥ଶ , … , 𝑥௡) is the minimum spanning tree length;  𝑛 is the number of 
independent observations; 𝑐 is a strictly positive constant that depends on the edge 
power, 𝛼 and the dimensionality, 𝑑. 

(2) evaluation for statistical significance of the obtained Renyi entropy values – 
converting each 𝐻ఒ to p-values. 

(3) processing all the p-values for the null hypothesis using several statistical tests, 
while controlling for the multiple testing problem. 
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(4) mapping and visualizing the p-values to examine for spatially varying local 
relationships between variables.  

This particular approach was used to study spatially varying relationships between 
two non-communicable diseases – Cancer and CVD, among the Swedish elderly. The 
estimation of entropy values here also requires the definition of neighbourhood. The 
contiguity approach to neighbourhood specification was used.  

3.4 Development – spatially enabled registry 

This development is not a method if “method” is to be used in its precise terms. 
However, it is a pragmatic approach that was adopted to solve an existing problem. In 
essence, it is a combination of steps and procedures used to create a spatially enabled 
health registry system using existing spatial data pools.  

The overall architecture is shown in Figure 2. 

 

Figure 2: Schematic representation of the overall proposed spatially-enabled health registry system 
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The system is made up of the following components. 

(a) Mobile-based health registry UI (user interface) and web-based health registry
UI are used by medical personnel of healthcare centres, to register patients’
admission details and patients’ residential location. The geo-coordinates of
patients’ residence are either retrieved from the NWSC database through
REST services or pined on the map using the health registry UI components.

(b) Health registry server provides the ability to save and retrieve health registry
data from a (Geo)database through a REST Service.

(c) NWSC server provides the ability to access the water meter numbers and
their respective geo-coordinates from the NWSC database through a REST
service.

(d) Health Web GIS enables the healthcare personnel to analyse the admission
data collected by the system as well as the data from other organisations that
are published as REST Services

(e) These analyses can be used to answer specific spatial epidemiologic research
questions.

(f) Other organizations can participate in this system by publishing their data
through REST Services. Such data can then be used by the Health Web GIS
component for contextual epidemiologic analysis.

The mobile-based health registry UI was developed as an android app using Java 
programming language. JavaScript programming languages, Cascading Style Sheets 
(CSS), and HyperText Markup Language (HTML) were used to develop the web-
based health registry UI as well as the Health registry Web GIS. To provide mapping 
functionalities in the web applications, the Leaflet library (https://leafletjs.com/) was 
exploited.  

To develop the web services, two frameworks, Service Oriented Architecture Protocol 
(SOAP) and REpresentational State Transfer (REST), are commonly used. However, 
SOAP has a heavyweight message payload thus not very favourable for resource-
constrained mobile devices (Wagh and Thool, 2012). Subsequently, the REST web 
service framework was used in our study as its messages have a lightweight payload, 
hence more suitable for wireless and cellular connectivity networks synonymous with 
mobile devices (Wagh and Thool, 2012). The REST services were developed in Java 
programming language using oracle JAX-RS.  
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4 Results and Discussion 

4.1 Introduction  

In this chapter, the results obtained by applying the methods outlined in chapter 3, 
on the different case studies, are presented. The case studies were carried out in 
Uganda and Sweden, two countries with different spatial data quality realities. The 
study findings are majorly on (1) the proposition of an innovative way of using 
existing spatial data pools to create systems that enable spatial referencing of patient 
records in settings where existing infrastructures do not directly allow for geo-
referencing of patient records – using Uganda’s healthcare registry as a case study, and 
(2) adoption of spatially-explicit methods and approaches to enhance epidemiologic 
surveillance and intervention. In this regard, infectious diseases (HIV and 
Tuberculosis) and non-communicable diseases (Cancer and Cardiovascular disease) in 
Uganda and Sweden respectively were used as examples. The four accruing sub-
studies, in the form of papers, are summarized next. 

4.2 Summary of Paper-I 

Title: Spatial analysis of HIV-TB co-clustering in Uganda 

This study aimed to examine the extent to which Human Immunodeficiency Virus 
(HIV) and Tuberculosis (TB) spatially clustered together, in Uganda. This was 
motivated by the evidence available at the population level that these two diseases 
tend to co-exist in HIV patients, simultaneously progressing each other in co-infected 
patients, to the detriment of the patient’s health. The World Health Organization 
(WHO) has since advocated for joint management of the two diseases through 
synchronised care and medication at a patient level. Given that epidemiologic 
intervention is seldom to individual patients but rather to affected communities and 
populations, this study geared towards establishing areas with common high (and 
low) prevalence rates, and more importantly spell out the likely driving factors for the 
observed spatial patterns.  
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Data from the District Health Information Software 2 system that is housed and 
maintained by the Ministry of Health – Uganda, was used. These were records of 
HIV and TB cases for the years 2015, 2016, and 2017 aggregated to the district level. 
The spatial methods of global and local Moran’s indices, spatial scan statistics and 
Bivariate Local Indicators of Spatial Association were used to investigate the clustering 
patterns of both diseases, with the Bivariate-LISA capable of showing districts with 
similarly high prevalence rates in both diseases. Those were areas potentially requiring 
immediate coordinated attention. Highlighted too were areas that had similarly low 
prevalence rates, where intervention, relative to the high prevalence areas can afford to 
wait.  

Our results showed that HIV and TB have relatively different spatial clustering 
patterns even when they seem globally highly correlated. They also showed that areas 
around the lakes, especially around Lake Victoria had persistently high joint 
prevalence rates, similar to some districts in Northern Uganda. The areas with 
persistently low joint prevalence rates were those around the Eastern districts, and 
around Kasese district in western Uganda. The possible reasons for these joint spatial 
patterns could be varied ranging from lifestyle-related factors in the lake regions, to 
probable influence of war in the north, to cultural practices like circumcision in the 
eastern and western districts with low joint prevalence rates.  

Such results, depicting the spatial heterogeneity in the joint disease burden, are 
important as they provide actionable evidence for policy adjustment and plausible 
grounds for targeted intervention as the local areas affected are identified. Thus, this 
study through the use of spatial approaches made a significant contribution to 
addressing the knowledge-gaps in implementing the WHO recommendation for 
coordinated management of HIV and TB in the face of HIV-TB coinfection in 
Uganda by providing starting points for informed targeted epidemiologic 
intervention.   

4.3 Summary of Paper-II 

Title: Establishing spatially enabled health registry systems using implicit spatial data 
pools: case study – Uganda 

This study aimed to provide a means that enables the capture of spatially high-
resolution patient data upon hospital admission or consultation. The motivation was 
that currently, data that are captured at points of healthcare are inherently spatially 
aggregated to villages, parishes, counties or even districts (as was the case in Paper 1). 
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This inherent aggregation not only makes an intervention in case of an emergency 
impossible as the patient cannot be uniquely and independently identified for rescue 
but also makes the utility of the collected data for spatial analyses – as applied in 
spatial epidemiology, problematic.  

This study, therefore, uses a pragmatic approach that utilizes already collected and 
available spatial data (called spatial data pools) from a National Water provider 
(NWSC) to a system that then enables the health registries to record spatially-
referenced patient data upon admission or consultation. The system proposed, 
designed and implemented leverages on existing technology and uses interoperable 
web services to capture fine-level patient spatial data that is then linked with patient 
non-spatial information. The resultant data captured can be used in both emergency 
intervention as well as in fine-scale spatial analyses for epidemiologic surveillance and 
intervention.  

This creative cost-effective solution utilizes what is already available, and is feasible for 
collection of spatially-indexed health records in countries with (unfortunate) data 
infrastructure realities similar to those of Uganda. These records can then be used in 
analyses for identifying spatial disease hotspots and clusters in disease 
incidence/prevalence rates. Additionally, the inherent integrating characteristics of 
spatial data can be utilized to link health outcomes with environmental exposures, 
improving epidemiologic provisioning, policy, and planning.   

4.4 Summary of Paper III 

Title: Spatial analysis of ambient air pollution and Cardiovascular disease (CVD) 
hospitalization across Sweden 

This study aimed to analyse the association between the different breathable emission 
particles and the occurrence of CVD hospitalization in Sweden. Previous studies have 
indicated that particles in breathable air have an impact on one developing CVD or 
his/her CVD condition progressing. These associative studies, however, tend to do so 
at larger spatial scales, often using global statistics. Whereas these global summative 
statistics are informative, they assume homogeneity (all areas in the study region are 
affected the same). To aid place-specific intervention measures, local spatial analyses 
are required. Moreover, such kinds of studies were non-existent in Sweden.  

The study uses data from the Swedish National Board of Health and Welfare (for 
CVD admissions), the Swedish Population Register (approximate residence of 
patients) and the Swedish Environmental Emissions Data (for emission data) for the 
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years 2005—2010. Spatial methods including global Poisson and spatially 
autoregressive Poisson regression models were used to analyse for global associative 
relationships between CVD and emission variables (Black Carbon, Carbon 
monoxide, Particulate matter, and Sulphur oxides) while controlling for the 
underlying neighbourhood deprivation through a neighbourhood deprivation index 
(NDI). To analyse for the more required local heterogeneities in the associations, 
Geographically Weighted Poisson Regression (GWPR) model was used. GWPR, 
being a local regression model, fits a regression at every spatial polygon (SAMS) 
resulting in coefficients equal in number to the number of regions in the study area. 
Mapping of these coefficients showed the relative variability of the association 
strength across Sweden. 

The results from the global analyses showed that the considered air pollution variables 
were positively associated with CVD hospitalization across Sweden, although this was 
sometimes weak and unstable, mainly because CVD is multi-factorial but also 
possibly because of unmitigated multicollinearity existing within pollution variables. 
The distilled local associative heterogeneities showed more pronounced variability in 
the south and central parts of Sweden when compared with the northern parts. This 
could be driven by more anthropogenic activities being done in the south and central 
regions than in the northern regions of Sweden.  

This study, by showing which pollutants were significantly related to CVD and where 
such associations were consistently persistent, contributes to the growing knowledge 
about CVD and its risk factors. This, therefore, provides clues on which activities 
could be targeted, especially those that lead to increased pollutant atmospheric 
loading, to reduce their influence on CVD hospitalization. Furthermore, by 
identifying areas of persistent high associations between air pollution and CVD 
identified, more focused studies could be done to learn more about the local factors 
responsible, for better informed future public healthcare policy and intervention. 

4.5 Summary of Paper IV 

Title: Analysis of spatial co-occurrence between cancer and cardiovascular disease 
mortality and its spatial variation among the Swedish elderly (2010-2015) 

This study aimed at analysing the joint spatial distribution of cancer and CVD 
mortality among the Swedish elderly. This was motivated by CVD and cancer being 
the world’s two leading causes of death, accounting for about 49% of the global 
deaths in 2017 (Mahase, 2019). The two diseases have also been shown to progress 
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each other, with most post-cancer patients dying of CVD instead. Whereas there is a 
seeming coincidence in morbidity, few studies have analysed for the same coincidence 
in mortality. This study, therefore, investigated their possible joint spatial clustering 
of both causes of death in the Swedish elderly with the hope that by identifying areas 
with consistent double burden, this result could provide much-required information 
for coordinated public health action aimed at addressing the double threat. 

CVD and cancer mortality data for the elderly (65+) for 2010—2015 were obtained 
from the Swedish Healthcare Registry. Correlation analysis, global Moran’s index as 
well as global bivariate Moran’s index were used to investigate the clustering 
tendencies of CVD and cancer mortality at a national scale. Then spatial statistics, 
spatial overlay and local entropy maps were used to analyse for local joint spatial 
clustering of the two causes of death, resulting in variable local associations across the 
country. 

Results from these analyses show that at the age of 65 years, males generally had 
higher mortality for both CVD and cancer. Beyond 87 years, however, our results 
show that the females overtook the males in terms of mortality. Correlation results 
showed that male and female mortalities were averagely positively correlated. Most 
importantly still, the two causes of death showed differences in spatial clustering 
scales. CVD clusters were almost always smaller than cancer clusters, with CVD 
clusters enclaving within the bigger cancer clusters. Results from local joint entropy 
analysis indicated that CVD and cancer were not always related across Sweden. 
However, whenever they were related, the relationship was mainly linear and positive.  

This study contributes significantly to cancer and CVD fighting efforts in Sweden by 
highlighting areas where both causes of death can be considered complementary 
(reinforcing each other) and areas where the two should be considered as 
independent. This helps to tailor epidemiologic intervention and policy towards 
specific places, given their unique characteristics concerning the two leading causes of 
death. Finally, this study provides starting points for more focused studies, especially 
those concerned with identifying the key driving factors behind the observed 
associative patterns.  

4.6 Synthesis of the Results 

The results obtained illustrate that spatially-enable registry systems can be created 
using existing available spatial data pools – databases containing spatial data, but 
currently being used to serve other purposes. This was illustrated by designing and 
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implementing a health registry system that used customer spatial details captured by 
the National Water and Sewerage Corporation (NWSC), and retrieving these spatial 
details, upon admission, into the healthcare database through queries to the NWSC 
database. A further extension of the designed system utilized existing digital maps 
(Google Maps) for spatial detail retrieval, especially where one was not yet connected 
to the NWSC network. The patient data captured through such a system would 
include fine resolution location data to be used in epidemiologic interventions as well 
as spatial analyses.  

Also, by the adopted spatial methods outperforming the conventional statistical 
methods, our results illustrate that spatial methods have the potential of enhancing 
epidemiologic interventions by providing more robust estimates than those obtained 
conventionally. This was illustrated, for example, by the better performance of the 
spatially-lagged Poisson model and the Geographically Weighed Poisson Regression 
model compared with the conventional Poisson model, in the Cardiovascular disease 
and air pollution study. Consequently, such spatial methods enhance epidemiology 
by providing more reliable estimates, in addition to pinpointing the areas most 
affected (thus desiring intervention).   

Finally, by distilling the obtained associations and effects into their local spatial 
heterogeneities, our results illustrate how epidemiologic interventions can be more 
targeted, as the areas most affected are identifiable compared to when estimates are 
global (i.e. considering the study area as one unit). An example of this final finding 
was that in Uganda, whereas Tuberculosis and HIV disease rates were positively 
related most of the times, this correlation was not uniform across Uganda, but with 
some areas more pronounced than others. The same can be said for the results from 
the Cardiovascular disease and Cancer spatial clusters in the Swedish elderly study. 
Here too, the CVD-cancer obtained clusters show heterogeneities that were place-
specific. Moreover, differences in cluster scaling were observed with many of the 
cancer clusters, where they existed, being enclaved (enclosed/enveloped) in the bigger 
CVD clusters. Such localized identification of most affected areas aids healthcare 
resource planning, appropriation and reduces epidemiologic intervention costs by 
providing a basis for ranking and inclusion/exclusion. 
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5 Conclusions and Recommendations 

5.1 Conclusions  

Policymakers in healthcare provisioning rely on information obtained from recorded 
data to make their decisions. They also rely on such data to make epidemiologic 
predictions of what the future holds in terms of specific disease dynamics, resource 
planning and intervention. It is, therefore, imperative to obtain accurate and precise 
estimates from the data. Given that most data about people and what affects them is 
spatial in nature, this study considered the application of spatial thinking and spatial 
methodologies to epidemiology with a particular concern for disease surveillance and 
epidemiologic intervention. This is based on the fact that spatial methods when 
compared with traditional statistical methods, give more robust estimates in the face 
of data with spatial characteristics – as is common with data used in epidemiology.  

From the application of these spatial approaches to a number of case studies as 
outlined and consistent with the set-out objectives, the following conclusions can be 
drawn from this thesis: 

(1) HIV-TB co-infection is not spatially homogeneous across Uganda. Some 
areas (districts) carry more of this double-burden compared to other districts. 
Given that the WHO recommended coordinated management of both 
diseases, this study pinpoints the districts where such joint intervention 
would be more beneficial as we race towards a TB and HIV free community. 
 

(2) Spatially-enabled communities are achievable even in communities without 
conventional spatial data infrastructures. Through the use of available spatial 
data pools, data registry systems (patient registry system in our case) can be 
enabled to capture spatial details at finer spatial levels, especially when 
available technologies are taken advantage of. 
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(3) The relationship between CVD health outcomes and ambient air pollution 
emissions is not spatially uniform across Sweden. Whereas this is expected, it 
is more important to know where the relationship is more pronounced hence 
requiring either additional studies or immediate intervention. In our CVD-
air pollution study, these areas were highlighted providing plausible evidence 
for healthcare policy planners in Sweden as well as providing actionable clues 
for possible targeted intervention.  
 

(4) In the Swedish elderly, CVD and cancer mortalities are not always related in 
space. However, wherever they were related, among the numerous modes of 
relationships possible, this relationship was most of the times linear in nature. 
By showing where these relationships were always prominent and where they 
were not, our fourth study informs the healthcare authorities, especially those 
concerned with both causes of death, on areas where the two mortalities 
should be treated as independent entities and where they should be 
considered a double threat. We are convinced this information is important 
as the WHO, just like with HIV-TB, recommends coordinated and 
simultaneous management of CVD and cancer.   

5.2 Recommendations  

Generally, this study advocates for the utilization of spatial characteristics as a means 
of data integration and as a means to link the observed disease outcomes to the 
environmental exposure variables. It also recommends that the associative 
relationships established through epidemiologic studies should be broken down into 
their respective spatial heterogeneous constituents for only then can the intervention 
be focused.  

Specifically, coordinated management of coinfections and comorbidities need to 
consider how the diseases of concern jointly cluster together in space (and time). 
Spatial methods provide mechanisms through which such simultaneous clustering can 
be investigated and evaluated, and are thus recommended for such diseases as HIV-
TB, CVD-cancer, and many other diseases that seem to have complementary 
tendencies.  
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This study also recommends the use of available spatial data pools – spatial data often 
collected for other uses, to recreate some form of spatial references “frameworks” that 
can be utilized to capture and record spatially-referenced records. The advantages of 
spatially enabled communities are numerous. Leveraging on existing datasets and 
technologies, these benefits would be delivered to communities without the resources 
to implement conventional spatial data infrastructures.  

Finally, the study of associations between health outcomes and environmental 
exposure should consider the spatial nature of the data – and not consider such effects 
as bias or artefacts. By embracing these spatial characteristics as part of the process 
being investigated, the resultant estimates would not only be more accurate, they 
would be more precise as well as indicating areas where intervention is most required; 
as opposed to assuming uniformity of the associations across the studied regions.  

At an application level, this study mainly used deterministic models. Whereas these 
models were applicable in the face of the spatial nature of the data, epidemiology and 
specifically spatial epidemiology would benefit from future studies using probabilistic 
models like Bayesian ones. These models allow for more knowledge incorporation 
and might promise more realistic estimates. Moreover, these probabilistic models 
would be more practical if they account for spatial effects of spatial autocorrelation 
and spatial heterogeneity.  
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Abstract

Background: Tuberculosis (TB) is the leading cause of death for individuals infected with Human
immunodeficiency virus (HIV). Conversely, HIV is the most important risk factor in the progression of TB from the
latent to the active status. In order to manage this double epidemic situation, an integrated approach that includes
HIV management in TB patients was proposed by the World Health Organization and was implemented in Uganda
(one of the countries endemic with both diseases). To enable targeted intervention using the integrated approach,
areas with high disease prevalence rates for TB and HIV need to be identified first. However, there is no such study
in Uganda, addressing the joint spatial patterns of these two diseases.

Methods: This study uses global Moran’s index, spatial scan statistics and bivariate global and local Moran’s indices
to investigate the geographical clustering patterns of both diseases, as individuals and as combined. The data used
are TB and HIV case data for 2015, 2016 and 2017 obtained from the District Health Information Software 2 system,
housed and maintained by the Ministry of Health, Uganda.

Results: Results from this analysis show that while TB and HIV diseases are highly correlated (55–76%), they exhibit
relatively different spatial clustering patterns across Uganda. The joint TB/HIV prevalence shows consistent hotspot
clusters around districts surrounding Lake Victoria as well as northern Uganda. These two clusters could be linked
to the presence of high HIV prevalence among the fishing communities of Lake Victoria and the presence of
refugees and internally displaced people camps, respectively. The consistent cold spot observed in eastern Uganda
and around Kasese could be explained by low HIV prevalence in communities with circumcision tradition.

Conclusions: This study makes a significant contribution to TB/HIV public health bodies around Uganda by
identifying areas with high joint disease burden, in the light of TB/HIV co-infection. It, thus, provides a valuable
starting point for an informed and targeted intervention, as a positive step towards a TB and HIV-AIDS free
community.

Keywords: HIV, TB, TB/HIV co-infection, Spatial co-clustering, Spatial scan statistics, Moran’s I, Bivariate Moran’s I,
Uganda

Introduction
Tuberculosis (TB) is an airborne bacterial disease caused
by Mycobacterium tuberculosis that most often affects
the lungs. The World Health Organization (WHO) has
estimated that about 10.4 million people fell ill with TB,
and 1.7 million died from the disease in 2017 [1]. Hu-
man immunodeficiency virus (HIV) is one of the most

important risk factors responsible for the progression of
latent TB to active TB [2]. People living with HIV have a
20-fold higher risk of developing TB than those without
HIV, and the risk continues to increase as the vital im-
munity cells (CD4) count progressively decreases [3].
HIV/TB co-infection is thus known as a ‘double trouble’
[4] and a public health threat especially for regions
where both diseases are endemic.
Sub-Saharan Africa carries the biggest burden of both

diseases, with 95% of global TB deaths and more than
70% of the global HIV burden [5]. Uganda, like the rest
of Sub-Saharan countries, is plagued by the dual TB and
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HIV epidemics and is the seventh in the 22 countries
with the highest TB prevalence [1]. Whereas Uganda’s
HIV prevalence has reduced to 6.0% in 2016 (from 7.3%
in 2011, among 15–49 years old), it was still estimated
that 1.3 million individuals were infected with HIV [6].
With TB/HIV co-infection at 41.5%, TB is the leading
preventable cause of death among people with HIV, re-
sponsible for over 30% of HIV deaths [7].
To decrease the combined TB/HIV prevalence, the

WHO formulated a framework in 2005 (modified in
2012), that aims at collaborating TB/HIV activities to
manage TB in HIV patients [8]. This position is re-
echoed by the WHO in its strategy to end TB in the
post-2015 era of the Sustainable Development Goals
(SDG) [9, 10]. The motivation for simultaneous manage-
ment of TB/HIV was largely informed by the proven in-
teractions between TB medication and HIV medication,
leading to the ineffectiveness of the TB medication [3].
Additionally, both diseases complement each other with
HIV quickening the progression of TB, and vice versa,
for co-infected patients [11].
Due to the importance of TB and HIV co-infection, a

number of scholars have endeavored to study the correl-
ation between the two diseases. For example, while
studying HIV and TB prevalence in New York, Wallace
et al. [12] observed that whenever HIV infection was
high in the population, there were also high numbers of
patients with tuberculosis. Additionally, Corbett et al.
[13], having used global TB and HIV prevalence data,
concluded that both diseases exhibited similar patterns
in both space and time. From a geographical perspective,
Wei et al. [14] observed similar spatial clustering pat-
terns between TB and TB/HIV co-infection in Xinjiang
province, China. Similarly, Ross et al. [15] used bivariate
choropleth mapping and showed that both TB and HIV
were correlated and that the joint distribution for both
diseases was spatially heterogeneous across Brazil. Their
outputs provided an information basis for targeted inter-
vention by the public healthcare bodies responsible for
TB and HIV.
However, due to the historical lack of geographically

referenced disease records, as well as lack of reliable sta-
tistics on morbidity and mortality in most African coun-
tries with high TB/HIV disease burden [6, 16], few
studies have considered the simultaneous spatial pat-
terns of these comorbidities in Africa. Luckily, with the
introduction of District Health Information Software 2
(DHIS2), an open source software platform developed by
Health Information System Program (HISP) to African
countries, healthcare admission data for most diseases
can now be recorded, hierarchically, from local to na-
tional levels [17]. For example, Gwitira et al. [5] used
DHIS2 data from Zimbabwe to investigate the spatial
overlaps in the distribution of HIV/AIDS and malaria.

They identified 5 out of the 71 districts as clusters hav-
ing high records for both HIV and malaria. These would
be areas where efforts targeting minimizing both dis-
eases would pay special attention.
In line with the WHO recommendation for collabora-

tive management of TB and HIV, we argue that it is lo-
gical to establish the spatial joint distribution of these
two co-infections in order to inform local and national
intervention strategies. Whereas some studies have ex-
amined the individual spatial clustering of TB and HIV
both elsewhere [18–21] and in Uganda [22], an interven-
tion based on only one of the two complementary dis-
eases would be ineffective.
Given that the spatial perspectives of HIV/TB co-

infection are yet to be studied in Uganda, our main aim of
this study, therefore, is to examine the spatial clustering of
TB and HIV prevalence rates in Uganda for a three-year
period (2015 to 2017) – with particular emphasis on
spatial co-clustering. To the best of our knowledge, this is
the first spatial study to consider co-clustering of both dis-
eases at a national scale in Uganda. We use spatial-
clustering detection and analysis techniques to identify
significantly persistent clusters for TB and HIV, providing
an informed basis to the Ministry of Health and partners,
on the location of such co-clusters thereby potentially aid-
ing effective joint TB/HIV intervention.

Methods
Study area
The study is carried out in Uganda, a country located
within East Africa, and about 800 km from the Indian
Ocean. Uganda is landlocked bordered by Kenya in the
East, South Sudan in the North, Democratic Republic of
Congo in the West, Tanzania in the South, and Rwanda
in South West. It has a total area of 241,551 km2, of
which the land area covers 200,523 km2. Administra-
tively, the country is divided into one city and 122 dis-
tricts (as of 2018) that are further subdivided into
counties, sub-counties, parishes, and villages. Uganda’s
climate is equatorial with the mean temperature range
of 16 °C to 30 °C, even when the Northern and Eastern
regions sometimes experience relatively high tempera-
tures exceeding 30 °C and the South Western region
sometimes has temperatures below 16 °C. The relief of
the study area ranges from 614m (above mean sea level)
to 5,111 m at the highest point. The 2014 national cen-
sus estimated the population of Uganda to be about 35
million people.

Data
TB and HIV admission records were obtained from the
DHIS2 system that is housed by the Ministry of Health
of Uganda. The DHIS2 system is a community-based ag-
gregation health information system that scales from the
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lowest level to the national level [23]. The annual TB
and HIV were recorded at the geocoded government
healthcare facilities distributed throughout the country
and aggregated to the district level. The recorded TB
and HIV were all diagnosed cases, for patients that
tested at centers located within a specific district. Re-
cords from 2015 to 2018 were obtained. However, at the
time of acquisition (June 2018), only half of 2018 were
recorded and therefore the 2018 records were excluded
from the analysis.
Whereas HIV-TB coinfection records were retriev-

able from the DHIS2 system, they were deemed unre-
liable (by the staff ) mainly because many health units
that report to the DHIS2 do not have the capability
of diagnosing both HIV and TB simultaneously. They
thus report HIV and TB separately. In total, TB and
HIV records were obtained for 122 districts in
Uganda (based on 2018 administrative boundaries).
District level population data and the district mapping
shapefiles were obtained from Uganda Bureau of Sta-
tistics (https://www.ubos.org/).

TB and HIV admission counts were spatially joined to
their respective district polygons for 2015, 2016 and
2017. The TB and HIV disease prevalence was calculated
by dividing the total number of each disease cases in
each district by the total human population in the dis-
trict to obtain the population-adjusted district level
prevalence rates. For all the years, the population used
was that from the 2014 Uganda national census, and the
resultant trends are visualized through Fig. 1. As can be
observed, the prevalence rates for both TB and HIV, for
any given year, are not uniform across Uganda.

Statistical analysis
To understand the characteristics of the TB and HIV
data, global pattern analysis was conducted. This in-
volved computing for Spearman’s correlation – an
overall measure of the linear relationship between TB
and HIV district-recorded prevalence rates. The influ-
ence of neighborhood prevalence rates on the district-
observed prevalence rates was also investigated. This
spatial tendency is known as spatial autocorrelation

Fig. 1 TB and HIV prevalence rates per 10,000 people in Uganda from 2015 to 2017 (a, b and c for TB; d, e and f for HIV)
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and was globally investigated by using global Moran’s
Index and bivariate global Moran’s Index that identi-
fied whether the data were spatially autocorrelated or
not. Then, spatial scan statistics (SaTScan) was used
to extract the local spatial clusters and mark the areas
of high risk to inform prevention intervention.
The global analyses were concerned with summarizing

the trends within the data, when viewed at a Uganda na-
tional level, for the years 2015, 2016 and 2017. SaTScan
was concerned with identifying the location and the
shape of significant local clusters (hotspots and cold
spots) in the study area.
Given that reliable records for HIV-TB coinfection

were not available (as discussed in section 2.2), bivari-
ate local Moran’s Index was used to investigate the
simultaneous occurrence and hence co-clustering in
both TB and HIV. It reports areas with hotspots
(High-High), cold spots (Low-Low) and discordant
(High-Low or Low-High) clusters. To ensure the ro-
bustness of the obtained clusters, 9,999 randomiza-
tions were allowed for this analysis.

Global pattern analysis
Spearman’s correlation analysis was used as a statistical
measure for the strength of the linear relationship be-
tween TB and HIV district-paired data. The global Mor-
an’s I was used to examine the spatial auto-correlation
in the TB and HIV prevalence rates. Generally, spatial
autocorrelation can be understood as the measure of the
influence that the neighborhood values have on the ob-
served values [24–26]. It stems from Tobler’s first law of
Geography: “everything is related to everything else, but
near things are more related than distant things” [27].
This required computation of contiguity information
through the generation of the spatial weight matrix.
Rooks contiguity was used in this study [28]. Moran’s I
relates the average TB or HIV prevalence rate within
each neighborhood (spatial lag) and the standardized TB
or HIV prevalence rate. The global Moran’s I and bivari-
ate global Moran’s I were performed using GeoDa soft-
ware [29].

Spatial scan statistics
District-specific TB and HIV clusters were detected by
applying Kulldorff ’s spatial scan statistics [30]. The same
technique has been widely used in many applications
[14, 18–20, 22, 31]. Spatial scan statistics have reason-
able sensitivity and specificity [32]. This enhances their
efficiency and accuracy when compared with other clus-
ter detection methods, such as Bayesian disease mapping
[5]. The Spatial clusters were detected based on the
Poisson probability model, with the underlying assump-
tion that the observed TB and HIV cases in each district,

when adjusted for the population at risk, result from a
random process [32].
The basic idea behind SaTScan is to impose circular win-

dows of various sizes across the study area, and at each lo-
cation, defined by the district centroid location in this
study; a comparison is made between the disease rate
within the window and that outside of it. Under the discrete
Poisson assumption, SaTScan [33] detects potential clusters
by calculating the likelihood ratio (LR) given by eq. (1).

LR uð Þ ¼ c
E c½ �

� �c C−c
C−E c½ �

� �C−c

I
c
E c½ �

>
C−c
C−E c½ �

� �
ð1Þ

where C is the total number of TB or HIV cases in the
study area; c is the observed number of TB or HIV cases
within a circle; E[c] is the adjusted expected number
within the window under the null hypothesis; C − E[c] is
the expected number of TB or HIV cases outside the
window, and Ið c

E½c�
> C−c

C−E½c�
Þ is the binary indicator of

high-risk clusters (1) or low-risk clusters (0) or both
(11). Based on the magnitude of the values of the likeli-
hood ratio test, the set of potential clusters are then
ranked and ordered. The circle with the maximum likeli-
hood ratio among all radius sizes at all possible centroid
locations is considered as the most likely cluster. The
statistical significance of the clusters is determined
through Monte Carlo simulations (999 simulations).
Within the SaTScan software, the “spatial” option to

2015, 2016, and 2017 TB and HIV case data, both High
and Low rates (Hotspots and Coldspots) were analyzed.
The user-defined maximum radius of the circular spatial
window was varied, starting at 5% and incremented by
5% until it reached 50%. The obtained results were not
affected by the choice of the radius selected. The default
value of 50% of the population at risk, as advised by
Kulldorff [30] was thus maintained.

Bivariate local Moran’s I
The bivariate local Moran’s I, also called BiLISA, is an
extension of the univariate local Moran’s I to model the
correlation between one variable (e.g. TB) at a location,
and a different variable (e.g. HIV) at the neighboring lo-
cations. The bivariate Moran’s I (for TB) of the i th dis-
trict can be calculated as eq. (2).

Ii ¼
xTB−xHIVð Þ

X
j

wij xTB−xHIVð Þ

S2
ð2Þ

where xi = the TB prevalence rate for the i th district; x
= the mean HIV prevalence rate for all districts in the
study area; xj = the TB prevalence rate for the j th dis-
trict; wij = a weight parameter for the pair of districts i
and j that represent proximity; S = the standard deviation
of the TB prevalence rates in the entire study area. The
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same was done for HIV, with TB and HIV switching
positions.

Results
Global pattern analysis
Table 1 represents these global summary statistics for
the study period.
It can be observed that for both diseases, the Moran’s I

is significantly positive (at 95% confidence interval) – dis-
qualifying the null hypothesis that observations are
spatially independent (Moran’s I of zero). The positive
Moran’s I values in Table 1 show that neighboring districts
tend to have similar prevalence rates for both TB and
HIV. Also, for the whole study period, HIV was consist-
ently more spatially correlated than TB. The significantly
positive bivariate Moran’s I showed that overall, the ob-
served TB rates were positively influenced by the HIV
rates in the neighborhood and vice versa. The computed
Spearman’s correlation showed that the two diseases were
highly correlated through the correlation varied with time.
The correlation was highest for 2015 (76%), lowest for
2016 (55%) and moderately high (60%) for 2017.

Clustering analysis
To distill out areas with probable clusters of TB and HIV,
spatial scan statistics (discrete Poisson) were employed
and the result is shown in Fig. 2.
It can be observed in Fig. 2 that TB high clusters were

largely around Lake Victoria and in the central north
and one consistent high cluster in the northeast. There
is a noticeable reduction in the number of big high clus-
ters from 2015 (six), to 2016 (four), and 2017 (three).
The TB low clusters were concentrated in the West and
the East (with the central axis dominated with high clus-
ters). On the other hand, HIV high clusters were consist-
ently concentrated in the south, around Lake Victoria
and the central parts of Uganda, throughout the study
period. The low clusters were generally concentrated in
the east, northeast, northwest, and southwest.

Co-clustering analysis
To this end, the concentration has been on the spatial glo-
bal trends or local clustering patterns in the individual dis-
ease prevalence rates. To investigate the simultaneous
variation of TB and HIV prevalence in Uganda, the study
area was segmented into 9 regions (“bins”) based on the
study area coordinates, and the linear relationships between
the prevalence rates regenerated. Given that relatively simi-
lar clustering trends were observed throughout the study
period, it was considered that any single year would be rep-
resentative of the study period. Figure 3 shows the resultant
relationships after regionalization, for 2015.
Figure 3 shows the spatial variation of TB-HIV rela-

tionship across Uganda for 2015 (the pattern is observed
for 2016 and 2017). It illustrates that across Uganda, TB
generally had a positive association with HIV and this
relationship varies significantly across the geographical
space. For example, across the diagonal (plots g, e, and
c), the gradient is consistently around 0.2 and significant
(at 95% confidence interval) for plots g and e, and not
significant for plot c. The region with the highest spatial
relationship between the two diseases is the middle
upper-most region (b). The lowest right region (plot i)
has a negative relationship between TB and HIV, though
it is not statistically significant.
To model the simultaneous occurrence and hence co-

clustering of both diseases in space, the bivariate local
Moran’s I was used to show areas where similar disease
rates were clustered; characterizing the resultant clusters
into High-High, Low-Low, Low-High and High-Low
clusters as shown by Fig. 4.
Figure 4 illustrates that generally, there are two High-

High TB/HIV occurrence and co-clusters: one around
Lake Victoria consisting districts of Kalangala, Mpigi,
Kyotera, Kalungu, Masaka, and Mukono, and the other
in the north-central districts of Pader and Omoro, in
2015. There is a Low-Low TB/HIV occurrence and co-
cluster in the east consisting districts of Butebo, Kaliro,
Pallisa, Kumi, Bukwo, and Kibuku, and another central-
west co-cluster in Kyegegwa district. Six districts appear
as discordant clusters with Lwengo, Wakiso, and Kotido
appearing as Low-High, while Rukungiri, Kabale, and
Mbale appear as High-Low, for 2015.
For 2016 and 2017, the trends in TB/HIV occurrence

and co-clusters are more or less the same as for 2015 with
generally a High-High TB/HIV occurrence and co-cluster
around the Lake Victoria region and north-central, and a
Low-Low occurrence and co-cluster in the east that pro-
gressively increase in size with time. For 2016, Koboko in
the northwest appears as a cold cluster, though it again be-
came insignificant in 2017. Apart from Mbale and Kotido
discordant clusters that are consistent throughout the study
period, other discordant clusters (Rukungiri, Kabale,
Lamwo, Omoro) are temporally unstable. Also, the districts

Table 1 Moran’s I and Correlation for TB and HIV (2015–2017)

2015 2016 2017

Moran’s I

TB 0.118 0.069 0.129

HIV 1.239 0.327 0.377

Bivariate Global Moran’s I

TB/HIV 0.112 0.074 0.110

Spearman’s Correlation

TB/HIV 0.759 0.548 0.602
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of Kalangala, Masaka, and Kyotera, consisting of the lower
south High-High co-cluster, are unstable throughout the
study period.

Discussion
Epidemiological intervention based on the homogeneity
of disease patterns often results in non-optimised
utilization of the available resources where resources are
dedicated to areas that do not require them, at the ex-
pense of the areas that require them more [34]. Through
the use of spatial methods, health outcomes data can be
distilled into their spatial heterogeneity, providing a basis
for the explanation of the observed heterogeneity on the
basis of existing local risk factors [35].
Our analysis shows that TB and HIV prevalence is

geographically heterogeneous. This spatial variability is
consistent with the results from the 2016 Uganda Popu-
lation HIV Impact Assessment (UPHIA) which indicated
that the magnitude of HIV prevalence varied consider-
ably across Uganda from a low of 2.8% in West-Nile to
7.7% in the southwestern region [7]. Similarly, our re-
sults were consistent with those from the first nation-
wide community-based TB prevalence survey in 2014/

15. Here, it was established that TB was about 1.3 times
more prevalent among the urban population than rural
residents; approximately three times more prevalent
among men than women; nearly three times more
prevalent among HIV-negative than HIV-positive indi-
viduals; and that TB hotspots exist in both urban and
rural areas [36].
These two national surveys for HIV and TB confirm

that both epidemics significantly vary across the Ugandan
geographic space. However, they do not explicitly identify
where the disease clusters are located, making targeted
intervention difficult if not impossible. In our study, we
identified the clusters exhibited by each disease, as well as
the combined occurrence and clustering of both diseases.
We also found that the two diseases were highly corre-
lated, hence qualifying the need to manage both diseases
simultaneously [9, 37]. Our analysis found a 76, 55, and
60% correlation between TB and HIV for 2015, 2016 and
2017, respectively. This was consistent with results by Dye
[16] who observed up to 50% correlation between the two
diseases in South Africa, Zambia, and Zimbabwe.
Even with such high correlation, TB and HIV show

relatively different spatial clustering patterns across

Fig. 2 TB and HIV High (RED) and Low (BLUE) clusters across Uganda (2015–2017)
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Uganda, as observed in the location of clusters in Fig. 2.
For example, there were consistent TB hotspots in the
greater northern and north-eastern parts of Uganda.
This trend was not the same for HIV whose clusters
were persistently concentrated around central and
southern parts of Uganda, especially around districts in
or surrounding Lake Victoria. Also, persistent cold spot
clusters for both HIV and TB were observed in the east-
ern, north-western, and the very south-western (around
Kabale) districts of Uganda. These low prevalence rates,
especially for HIV, were consistent with projections by
the United Nations Programme on HIV/AIDS [38].
Given that in Uganda HIV is more studied than TB, and

considering the contribution of HIV in TB progression
within TB/HIV co-infected persons [11], the observed TB/
HIV geographical clustering trends can easily be explained
from an HIV than from a TB standpoint. In Uganda, HIV
was first discovered in a rural fishing community of Rakai
district, in 1982 and some of the patients surveyed then
had TB [39]. Since then, HIV has spread to almost all
parts of the country, with some areas more affected than
others, so that a more recent study by Bbosa et al. [40]
found that these fishing communities are no longer
sources but sinks of HIV infection. Even still, this geo-
graphical variability in HIV, which is the main risk factor
for the progression of latent TB to active TB [4, 9, 14], can
be explained by the variability in the underlying socio-
economic, behavioral, and cultural factors [41]. Apart

from HIV, other population-level risk factors for TB in-
clude poor living and working conditions, malnutrition,
smoking, diabetes, alcohol abuse, poverty, contact with
persons with active TB (health workers, family members),
overcrowding and indoor air pollution [42–44].
The most pronounced TB/HIV hotspot co-cluster

observed in this study consisted of districts around
Lake Victoria; it is thus worth discussing the most
likely risk factors around the lake regions. Uganda’s
fishing communities have been listed among the
most-at-risk population with the highest prevalence
rate of 15–40% compared to 7% in the general popu-
lation [36]. In an exclusive study about HIV infections
in the fishing communities of Lake Victoria, Opio et
al. [45] found the HIV prevalence to be 22%. They
also found that these communities were underserved
with HIV prevention, care, and support services when
compared with other communities. Also, previous
studies have shown that fishing communities have fa-
talistic attitudes, with some viewing HIV infection as
less risky than drowning while fishing [46]. Moreover,
Ondondo et al. [41], while studying the fishing com-
munities on the Kenyan side of Lake Victoria con-
cluded that the high HIV prevalence (23.3%) could be
explained by high-risk unsafe sex practiced within
fishing communities. We thus think that the TB/HIV
hotspot around Lake Victoria is driven by the high
HIV prevalence rates among the fishing communities,

Fig. 3 Spatial variation of TB condition on HIV across Uganda, 2015. Letters a-i represent the regions from which the variations are derived as
shown by the map on the right
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explained by confounding overlap of lack of TB/HIV
support, behavioral and high-risk sex life.
This study observed another TB/HIV hotspot co-

cluster in northern Uganda (Pader and Omoro). Its pres-
ence could be attributed to the presence of refugees,
mainly from South Sudan, and to people that were ini-
tially internally displaced into camps, during the Lord’s
Resistance Army (LRA) war that happened in northern
Uganda until 2008. Refugee camps and congested places
have been shown to increase TB prevalence [6] and the
HIV/AIDS is also known to progress in such settings
[47] even when this complex relationship is not well
documented [48]. What is not contested, however, is
that living in such camps reduces the communities’ re-
silience to such epidemics [48].
The contribution of HIV to the observed TB/HIV co-

clustering notwithstanding, one cannot rule out the
contribution of other known TB risk factors. These fac-
tors were discussed by Narasimhan et al. [49] and were
characterized into personal factors, including age, gen-
der, proximity to active TB, malnutrition, diabetes, and
environmental factors, including overcrowding, smok-
ing, occupational risk, dangerous alcohol consumption,
indoor air pollution.
Finally, this study observed consistent TB/HIV cold

spots, especially in eastern Uganda. These were areas,
around Mbale district (discordant cluster), that had low
prevalence rates for both TB and HIV – consistent with
district estimates by UNAIDS [38], especially for HIV.
This eastern cold spot could be linked to the traditional
practice of male circumcision among the people in those
communities – Bagisu and Sebei [50]. Also, from the

HIV clusters observed in Fig. 2, Kasese district (inhab-
ited mainly by Bakonjo) has a consistent cold cluster.
Male circumcision has for long been associated with re-
duced risk in acquiring HIV infection. The World
Health Organization, based on male circumcision studies
from Kisumu in Kenya [51], Rakai district in Uganda
[52], and an earlier study from South Africa [53] that
had realised 53, 51, and 60% reduction in HIV acquisi-
tion risk, respectively, recommended safe male circumci-
sion as an additional measure to reduce HIV acquisition
in men [54]. Relatedly, Opio et al. [45] observed higher
prevalence rates in uncircumcised men (27%) compared
to their circumcised counterparts (11%). We thus submit
that the observed TB/HIV cold spot clusters could be at-
tributed mainly to low HIV prevalence rates, which are
in turn mediated through culturally practiced male cir-
cumcision practices.
Whereas this study achieved its set objective of analyz-

ing the areas in Uganda with elevated prevalence rates
for HIV and TB, there were some limitations, especially
regarding data availability. Data were available at the dis-
trict level – which is a larger aggregate level. These re-
sults could be more informative had the analysis been
done on a finer geographical level (like parish or village
level). Also, data about other risk factors for both TB
and HIV was not available – this data would have been
used to do a more informative spatial regression analysis.
These aspects shall be considered in future studies.

Conclusions
Given that for most HIV patients, TB is responsible for
more than half the mortalities, and given that HIV

Fig. 4 Spatial Co-clustering of TB and HIV across Uganda (2015–2017)
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increases the chances of developing active TB by up to
20-folds, scientific evaluation of places where these two
diseases are persistently prevalent is not only important
but essential for effective management of both diseases.
Our study analyzed for joint spatial clustering of TB and
HIV. To the best of our knowledge, this is the first
spatial study to consider both diseases at a national scale
in Uganda, using DHIS2 data. By identifying areas where
both diseases co-cluster for the period 2015 to 2017, this
study provides valuable information to healthcare policy
concerned with these two complementary and endemic
diseases in Uganda.
Our analysis identifies the middle-south regions around

Lake Victoria (Kalangala, Masaka, Rakai, Mukono,
Wakiso, and Mpigi) and some districts in northern
Uganda (Pader and Omoro) to be of special interest, as
they constitute hotspots. The districts of Kabale and
Mbale constitute discordant districts (areas of relatively
high prevalence rates in the neighborhood of low preva-
lence rates, and vice versa) while other eastern districts
are significantly cold spots. By aligning healthcare policy
and intervention efforts with this obtained spatial hetero-
geneity in both disease prevalence rates, our study pro-
vides an informed starting point towards simultaneous
management of TB and HIV.
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Abstract

Background: Spatial epidemiological analyses primarily depend on spatially-indexed medical records. Some
countries have devised ways of capturing patient-specific spatial details using ZIP codes, postcodes or personal numbers,
which are geocoded. However, for most resource-constrained African countries, the absence of a means to capture
patient resident location as well as inexistence of spatial data infrastructures makes capturing of patient-level spatial data
unattainable.

Methods: This paper proposes and demonstrates a creative low-cost solution to address the issue. The solution is based
on using interoperable web services to capture fine-scale locational information from existing “spatial data pools” and
link them to the patients’ information.

Results: Based on a case study in Uganda, the paper presents the idea and develops a prototype for a spatially-enabled
health registry system that allows for fine-level spatial epidemiological analyses.

Conclusion: It has been shown and discussed that the proposed solution is feasible for implementation and
the collected spatially-indexed data can be used in spatial epidemiological analyses to identify hotspot areas
with elevated disease incidence rates, link health outcomes to environmental exposures, and generally improve healthcare
planning and provisioning.

Keywords: Spatially-enabled health registry, SDI, RESTful web services, Spatial epidemiology, Mobile-GIS, Uganda

Background
The central paradigm of epidemiology is that disease
patterns in populations can be systematically analyzed to
understand causes and possible control of diseases. This
involves comparisons of differences and similarities in
disease patterns over time and between places, to gain
new insights about the disease [1]. Given that epidemi-
ology is concerned with disease patterns in human
populations as opposed to individuals [2], and that these
populations tend to inhabit space in non-homogeneous
ways, the resulting disease patterns are often non-
homogeneous and spatially-dependent [3].
Spatial heterogeneity in both disease risk and disease

incidence at fine-spatial scales is well documented and is

driven by genetic, social and environmental factors that
subsequently affect exposure and response to infection
[4]. As such, most health-related issues such as out-
breaks and other epidemiological threats are better
understood from a spatial-temporal perspective [5]. This
then necessitates the recording of fine-scale spatial
details of patients along with other personal data upon
hospital admission.
Different countries have devised different mechanisms

to enable the capture of fine-scale spatial details of per-
sons. These include the use of postcodes for the UK, ZIP
codes for the USA, and personal numbers for Scandi-
navian countries [4], to mention but a few. These codes
and numbers are geocoded and therefore enable the
capture of spatial positions of patients at a high spatial
resolution level, upon hospital admission. Subsequently,
these spatial positions are used in epidemiological
analyses to identify where disease incidents are common
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and identify possible local risk factors involved to help
in intervention, prevention, and control.
For most developing and resource-constrained coun-

tries, mainly in Africa, however, there are no such
systems for home and personal addressing [6–8]. The
lack of such ways to enable capture of high resolution
personal spatial details forces the healthcare personnel
to inevitably aggregate patient data, upon admission, to
coarser level administrative units. The implication of this
coarse-level aggregation is that fine-scale heterogeneity
and the role of local contextual factors may be masked.
The masking of such heterogeneity derails intervention
and control programmes, especially for infectious dis-
eases, as identification of target foci of transmission and
local risk factors are obscured at larger scales [9].
Collection of spatial data is an expensive and time-

consuming venture. For sustainability, there is a need for
approaches that allow for reusability and sharing of
already collected spatial data. Reusability and sharing of
spatial data are at the core of spatial data infrastructures
(SDI). However, given that traditional establishment of
SDIs requires a top-down approach with financing ori-
ginating from national governments [10], their establish-
ment in resource-constrained countries, such as Uganda,
have so far not been very feasible. However, SDIs offer
advantages that cannot be ignored.
This study pragmatically addresses this challenge by

making use of existing ‘spatial data pools’. Spatial data
pools in this study are defined as spatial data that have
already been collected by different organizations and for
other purposes but can be reused for another purpose –
for spatial location of patients in our case. By linking this
data to patient information, the patient information is
georeferenced. In this paper, we address this idea
through developing a prototype system using lightweight
web services technologies and mobile-based Geograph-
ical Information System (GIS) to create a patient registry
system that enables recording of such fine-scale patient
spatial data, upon hospital/healthcare centre admissions.
The advantage of our system is that it can be inte-

grated with existing health registry (information) systems
such as those present in Uganda to make them spatially
enabled. It also addresses the challenge of access to
desktop computers at healthcare registries by enabling
health workers to use their mobile devices to register
patient records that can then be visualized and analyzed
on the web, reducing the use of paper-based databases –
a situation too common in developing countries, like
Uganda.
We thus contend that with the proper use of existing

spatial data resources, African societies can be spatially
enabled by incorporating spatial data in different na-
tional information systems in health, tax, police, etcetera
that are developing fast.

Related studies
A variety of approaches have been used, in different
studies, to collect disease/health-related data with fine
spatial resolution. However, these approaches (as reviewed
in this session) do not provide a solution for sustainable
and continued data collection, on extensive scales like at
countrywide levels.
Karas [6] proposed the use of Global Positioning Sys-

tem (GPS) technology to capture a patient’s homestead
location in areas where the patient’s address may be
indicated as: “after crossing the river, climb the third hill
on the left”. He thus advocated for a latitude and longi-
tude file system, especially for rural African hospital, in
tracking infection outbreaks and enabling spatial-
epidemiological analyses. Using the GPS/GIS approach,
Tanser and Wilkinson [11] quantified the improvement
in access to Tuberculosis care in Hlabisa, South Africa,
when the hospital, clinic, community health workers
(CHW), and patient locations are known. They found
that by using key locations, the mean distance from
patient homestead to point of care (hospital, clinic or
CHW) reduced from 29.6 km to just 1.9 km. Similarly,
Dwolatzky et al. [12] while studying patient adherence to
TB medication in Johannesburg, South Africa, used
handheld computing devices (personal digital assistants
– PDA) with GPS capabilities to trace the location of
patients. By comparing the time taken while using the
device, and while not, they found that using PDA/GPS
devices reduced the locating time by up to 50%.
Whereas these studies showed considerable success in

the use of GPS and PDAs, it must be appreciated that
they were used in small towns, where the mapping of in-
dividual patients is possible. Scaling up of this approach
to a regional or national level would be too expensive to
sustain. Consequently, the conference of the African
Federation of Emergency Medicine recommended for
the use of existing mobile technology to optimally solve
patient location problems in Africa [7].
The use of mobile technology in the provision of med-

ical care is not new. Working from the knowledge that
Dementia patients are at a higher risk of wandering and
getting lost due to a decline in cognitive functioning
[13], Huang et al. [14] implemented a pilot program that
sends the GPS coordinates of the patient, using a passer-
by phone, to service centre personnel, using near-field
communication tags embedded in the patient’s wristband.
In a similar approach, Mendoza et al. [15] proposed track-
ing and locating of patients with Alzheimer’s disease in a
nursing home by the use of a wearable tracking device.
The device continuously transmits the patient location
and sends notification messages to a monitoring database
whenever the patient wanders beyond the designated
limits. Whereas these are good approaches, they are very
case-specific and work best for small special groups of
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patients. Also, the need for programmable devices makes
costs unbearable and makes the approach impractical
especially when large numbers of patients, in a resource-
constrained setting, spread all over a large area are
involved.
Fornace et al. [8] used android tablet-based applica-

tions to geo-locate malaria patients in rural Philippines
and Indonesia. Their study provided a way of obtaining
high-resolution spatial data in resource-constrained soci-
eties with poor internet connectivity, even though their
approach is affected by the same scalability issues identi-
fied earlier. Additionally, their approach has an inherent
requirement for retrospective collection of patient spatial
data after patients had been discharged, making it labori-
ous and prone to missing some people. Finally, in the
face of another disease, there would be a need for
another fieldwork to collect patient location data hence
no reusability of the already recorded spatial data.
The challenges in these previous studies can be sum-

marised as (1) retrospective collection of patient location
after hospital discharge is both laborious and may miss
out some patients; (2) it is challenging to scale up retro-
spective collection of patient location details when a
large area and a large number of patients is concerned;
and (3) the patient registry system at the healthcare
units is not improved. These three challenges to health
informatics, i.e. completeness of records, scalability, and
improvement of the existing registry system, are ad-
dressed in this study.

Methods
Currently, there are three main health registry systems
implemented by the Ministry of Health (MoH) in
Uganda.

� OpenMRS – globally adopted open source
electronic health registry, used mainly for HIV/AIDS
reporting in Uganda [16].

� mTrac – an SMS-based health system originally
used to report real-time stocks status of malaria
drugs and vaccine at health facilities, but was
modified to handle reporting of disease admissions
too [17].

� eHMIS-DHIS2 – a community-based aggregation
system that scales from the lowest level to the
national level [18].

eHMIS-DHIS2 (hereinafter called DHIS2) is currently
the official health reporting system in Uganda. The
system provides monthly summaries of health status at
the district level based on the data from both mTrac and
OpenMRS platforms. These monthly aggregates are then
transmitted to the national level for archiving, summaris-
ing and maintenance. The inherent aggregate architecture

in both mTrac and DHIS2 does not allow them to capture
personal-level spatial details. Also, whereas OpenMRS re-
cords personal details, it does not capture the patient’s
residential location along with other patient details, upon
hospital admission or consultation.
While there is no addressing system in Uganda to

collect or geo-reference patient residential locations, the
National Water and Sewerage Corporation (NWSC), a
central body responsible for water distribution in
Uganda, has a database including the geo-coordinates of
water meters which are identified through unique water
meter numbers. This database is updated regularly with
the development of the water network in Uganda. Also,
all connected households have access to their water
meter numbers, which is written on their monthly water
invoices.
The suggested idea by this study is that by asking the

patients to report their household NWSC meter num-
bers along with other personal details upon hospital
admission, the spatial locations of their residences could
be uniquely identified. Subsequently, they can be used
not only in e-health services delivery but also in
epidemiological analyses, intervention, and control. This
way, the georeferenced meter numbers act as our spatial
data pool. Enablement of this capability requires a link-
age between the NWSC database and the health registry
database in an interoperable way. Also, tools/systems are
needed for the digital collection and registry of patients’
information.

The overall architecture of the system
Figure 1 shows the overall architecture of a system for a
spatially-enabled health registry and how it enables
eventual spatial epidemiological analyses. The system is
made up of the following components.

(a).Mobile-based health registry UI (user interface) and
web-based health registry UI are used by medical
personnel of healthcare centres, to register patients’
admission details and patients’ residential location.
The geo-coordinates of patients’ residence are either
retrieved from the NWSC database through REST
services or pined on the map using the health regis-
try UI components.

(b).Health registry server provides the ability to save in
and retrieve health registry data from a (Geo)
database through a REST Service.

(c).NWSC server provides the ability to access the
water meter numbers and their respective
geo-coordinates from the NWSC database through
a REST service.

(d).Health Web GIS enables the healthcare personnel
to analyse the admission data collected by the
system as well as the data from other organisations
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that are published as REST Services (e). These
analyses can be used to answer specific spatial
epidemiological research questions.

(e). Other organizations can participate in this system
by publishing their data through REST Services.
Such data can then be used by the Health Web GIS
component for contextual epidemiological analysis.

At any hospital or healthcare centre within the coun-
try, a mobile application providing the mobile-based
health registry UI (a) is installed on handheld devices of
medical personnel responsible for patient data recording.
Alternatively, web-based health registry UI (a) on their
computers can be used. The medical staffs, including
nurses and doctors, use these UIs for registering pa-
tient’s information including disease diagnoses and their
residential locations.
To record patient residential locations, patients are

asked to specify their water meter numbers (provided
and maintained by NWSC). The UI components also
have a background map, with satellite imagery, by which
the approximate location of the patients’ houses can be
navigated and marked for those without water meter
numbers (possibly not yet connected to the water
network) or are unable to access them for some other
reason. The registered information is sent to and stored
in the health registry (geo)database. In the health registry

(geo) database (b), a patient’s information is geo-coded
by using geo-coordinates received from the NWSC data-
base (c) (with meter number as the unique identity).
A Health Web GIS system (d), with spatial analysis

functions including those needed for spatial epidemi-
ology, has access to the health registry database (b) and
other databases (e) (e.g. environmental data from related
organisations). So, spatial epidemiology analysis is possible
to detect disease hotspots, outbreaks, monitor the pro-
gress of diseases in space and time, prepare prevention
plans, etc.

Development and implementation
The mobile-based health registry UI was developed as an
android app by Java programming language. JavaScript
programming languages, Cascading Style Sheets (CSS),
and HyperText Markup Language (HTML) were used to
develop the web-based health registry UI as well as the
Health registry Web GIS. In order to provide mapping
functionalities in the web applications, the Leaflet library
(https://leafletjs.com/) was exploited. To develop the
web services, two frameworks: Service Oriented Archi-
tecture Protocol (SOAP) and REpresentational State
Transfer (REST) are commonly used. However, SOAP
has a heavyweight message payload thus not very
favourable for resource-constrained mobile devices [19].
Subsequently, the REST web service framework was

Fig. 1 Schematic representation of the proposed spatially-enabled health registry system
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used in our study as its messages have a lightweight
payload hence more suitable for wireless and cellular
connectivity networks synonymous with mobile devices
[19]. The REST services were developed in Java pro-
gramming language using oracle JAX-RS.
The system was implemented as a prototype and pre-

sented to the Ministry of Health officials. The idea was
welcomed as a prospective candidate to complement
patient registry systems in Uganda since it covers the
gap in existing systems which do not record the absolute
spatial location of patients’ homes. Discussions about
the adoption of this system are ongoing and decisions
will have to be made at higher levels of the Ministry of
Health.

Results
Below we describe a scenario where a patient visits a
healthcare unit and how the system is used to capture
the patient details, including the patient’s home location.
When a patient visits a healthcare centre, the health-

care provider (doctor, nurse, etc.) collects and registers
the patient’s personal information and the disease diag-
nosis through the mobile-based or web-based health
registry UIs. To avoid duplication of patient records, the
National Identity Number (NIN) is required for every
patient. As mentioned before, the water meter number
of the patient is also asked to geocode a patient’s
residence location. Figure 2 shows the interface of the
mobile app, with its corresponding geo-coordinates as
synched from the NWSC database.
If a patient has no meter number, a background map

with satellite imagery is launched (Fig. 3) with navigation
capabilities to navigate to the patient’s home. The same
high resolution background map would be used in in-
stances where the patient forgets his meter number or is

unable to provide it for some other reason. Upon identi-
fying the home, a single click on the home retrieves its
coordinates, prompting the user to save the coordinates
against the patient’s record. All the information gets
stored in the health registry database upon saving.
The coordinates are therefore either retrieved from the

geocoded meter numbers or from the background satel-
lite imagery map. All the information gets stored in the
health registry database.
Through the Health Web GIS interface, the location of

patients and diseases can be retrieved and used for ana-
lysis. Using this interface, one may find the spread of a
particular disease by viewing and analysing the recorded
data or may integrate the patient and disease data to
other data to perform more specialized spatial analyses.
Below we illustrate the possible uses of the system using
an example.
Figure 4 illustrates a snippet of what can be done with

the recorded patient information. In Fig. 4 (a), the inci-
dence data are plotted to show where the incidences are
spatially located. By applying cluster analysis, one can
study where the incidences could be high and where
they are low. In (B), we use point density to highlight
areas with more admissions. This results in the visualisa-
tion of potential clusters on the map. To investigate
which of these potential clusters constitute a hotspot or
cold spot, hotspot analysis may be applied. Fig. 4 (c)
shows the outputs of hotspot analysis. It shows that
among the identified density clusters, only a few are
statistically significant (arising not by chance). There is a
very pronounced significant hotspot as shown by the
GiZscore, on the far right of Fig. 4 (c) and some notice-
able ones to the left of this far right hotspot.
This fine detail spatial analysis could not be possible

with the current health registry systems. In terms of

Fig. 2 Mobile App UI for a patient with a METER NUMBER and their geo-coordinates from the NWSC database
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directing intervention, the healthcare professionals and
policymakers are better informed with this kind of tool,
not only in disease surveillance but also in associative
analyses to evaluate the environmental factors at play in
specific disease scenarios.

Discussion
Williamson et al. [20] described a spatially enabled society
as an emerging cultural and governance revolution offered
by spatial information technology and spatially equipped

citizenry that change the way economies, people and en-
vironment are organised and managed for the better.
Thus, spatial enablement, itself is a consequence of the
realisation of SDI promises through developing spatial
information products, smarter delivery of services, im-
proved risk management and better macroeconomic
decision making.
The establishment of SDIs is still largely dependent on

national governments’ initiatives [21] especially through
the establishment of complete national land cadastre

Fig. 3 Patient without a meter number and geo-coordinates collected using a background high resolution map

Fig. 4 Some of the possible analyses with geocoded patient records: Incidence (a), Density Clustering (b), and Hotspot Analysis (c). (Map
generated from sample collected data and produced by the authors. The background map is from ArcGIS-Online)
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systems [20, 22], even when synergistic two-sided
involvement of public institutions and entrepreneurs in
SDIs is currently being encouraged [23]. The overarch-
ing benefit of such SDI establishments lies in the better
national management of both spatial information and
information organised according to location. However,
due to the lack of a means to capture spatial data as well
as the inexistence of SDIs in most of the resource-
constrained African countries, SDIs and hence spatial
enablement of society have not been achievable in most
parts of Africa. For example, a country like Uganda does
not even have a street addressing system and has an
incomplete cadastre.
Our study shows that by using creative approaches,

operational systems can be developed to achieve a
spatially enabled society in many aspects, as we have
done in this study using the case of healthcare registry.
Wallace [24] illustrated that spatial enablement has two
stages: the first stage involves utilising of imagery to
answer the basic question of “where am I?” while the
second stage involves linking all data with a geocoded
reference to allow for spatial analysis and spatial decision
making.
In this study, we utilized spatially referenced water

utility data and RESTful web services to implement a
prototype of a spatially enabled health registry system in
Uganda. Our system achieves the enablement stages out-
lined by Wallace [24] by (1) using publically available
google maps satellite imagery services to identify patient
residencies in instances where the patients do not have
the meter numbers, and (2) using geo-referenced water
utility meter numbers from NWSC to enable geocoding
of patient-level records upon hospital admission, using
RESTful web services. We used RESTful web services for
they have a lightweight message load and is more
adapted for mobile network connectivity [19, 25]. This
kind of system can be generalised to other (East African)
countries that have such spatially referenced utility data
like Kenya [26], Tanzania and Rwanda whose utility
sector is relatively similar to the Ugandan sector.
Our system, to the best of our knowledge, is the first

spatially enabled health registry system in Uganda. Be-
ing a digital system, our system like other existing
health information registry systems (OpenMRS, mTrac,
DHIS2) helps to get rid of paper databases that are still
common in Uganda. Additionally, our system is easy to
integrate with existing systems, especially the
OpenMRS [16] that inherently records individual
patient-level details, as opposed to aggregate systems
like mTrac [17] or DHIS2 [18]. Finally and more im-
portantly, our system allows for the collection of
spatially referenced medical records that can be used in
spatial epidemiological analyses and health planning as
we illustrate in Fig. 4. The proposed solution for

spatial-enablement of health registry is not expensive to
implement, especially in comparison with a real imple-
mentation of an SDI.
In terms of enabling the capturing of geographical

coordinates of patient homes, our study compares to
systems by Tanser and Wilkinson [11], Dwolatzky et al.
[12] and Fornace et al. [8]. However, unlike these previ-
ous studies, our study achieves this but also has capabil-
ities of enabling existing registry systems at the
healthcare units. It, subsequently, eliminates the need to
capture the patient home location retrospectively after
being discharged from the hospital.
The advantages of such a system that enables the

recording of the spatial location of patients’ homes are
that it makes tracking of infectious diseases, identification
of health trends, identification of disease clusters and
linking of environmental exposure to health outcomes,
possible. It also improves service delivery as medication
can be delivered on doorsteps, especially necessary for dis-
eases (mainly terminal illnesses) that are better managed
from home.
Whereas our study achieves what it set out to achieve,

we acknowledge some challenges that were either en-
countered in the study or challenges that could influence
the adoption of such a system. For example, there were
some difficulties in convincing NWSC to share their
meter number data, as the solution was to help the
healthcare industry, not the water industry. We solved
this issue by convincing NWSC on how their help can
contribute to increasing the health and the quality of life
in Uganda. The system also requires some preliminary
training of medical personnel to use the system espe-
cially map reading and navigation when the patient does
not have a meter number (possibly not yet connected to
the national water network). The time required to navi-
gate to patients’ homes might slow down the registration
process and decrease efficiency, especially for novice
users. However, from a cost-benefit perspective, the
benefits of collecting positional information of patients
are more than the cost/time spent. Additionally, we are
convinced that this system is extendable to most de-
veloping countries whose spatial data infrastructure
situation is similar to Uganda’s (incomplete digital ca-
dastre, no geocoded street names and no postcodes).
However, the lack of any geocoded data could be a
limitation to applying the suggested idea in those
countries. Finally, the patients in such a system co-
operatively give their home location details, when
there are enforcing laws, like laws in many European
countries. Privacy and confidentiality laws are needed
in Uganda to hinder the distribution of individual pa-
tient’s records (for example only aggregated data may
be analysed and distributed [4]) and also to satisfy
ethical constraints.

Aturinde et al. BMC Medical Informatics and Decision Making          (2019) 19:215 Page 7 of 9



Conclusions
Recording of patient residential locations normally re-
quires the use of established country-specific spatial data
infrastructures that are inexistent in most developing
countries. By using geo-coded data already collected for
utility services provision, RESTful web services and mo-
bile technology, our study provides a valuable possible
improvement to existing electronic health registry sys-
tems that enable them to be spatially-enabled hence
increasing their return on investment. The return on
investment is in the form of extra capabilities that
spatially-enabled health registry systems have over cur-
rently existing ones such as identification of areas with
elevated disease incidence rates, identification disease
trends across space and time, aiding targeted interven-
tion as well as linking environmental exposures to health
outcomes. Finally, by explicitly capturing patients’ resi-
dential locations, such services as location-aware emer-
gency and prescription delivery can be enabled thereby
improving general healthcare planning and provisioning.
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Key Points: 

There are significant place-specific associations between air pollutants and CVD
admissions across Sweden.

The southern parts of Sweden show more spatial variability of these place-specific
associations than other parts.

More epidemiologic emphasis should be placed on local impacts of air pollution on CVD
outcomes in Sweden.
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Abstract 

The associations of multiple pollutants and Cardiovascular disease (CVD) morbidity, and the 
spatial variations of these associations have not been nationally studied in Sweden. The main aim 
of this study was, thus, to spatially analyse the associations between ambient air pollution (Black 
Carbon, Carbon monoxide, Particulate matter (both <10μm and <2.5μm in diameter) and Sulphur 
oxides considered) and CVD admissions while controlling for neighbourhood deprivation across 
Sweden from 2005 to 2010. Annual emission estimates across Sweden along with admission 
records for coronary heart disease, Ischemic stroke, atherosclerotic and aortic disease were 
obtained and aggregated at Small Areas for Market Statistics level. Global associations were 
analysed using global Poisson regression and spatially autoregressive Poisson regression models. 
Spatial non-stationarity of the associations was analysed using Geographically Weighted Poisson 
Regression. Generally, weak but significant associations were observed between most of the air 
pollutants and CVD admissions. These associations were non-homogeneous, with more variability 
in the southern parts of Sweden. Our study demonstrates significant spatially varying associations 
between ambient air pollution and CVD admissions across Sweden and provides an empirical basis 
for developing healthcare policies and intervention strategies with more emphasis on local impacts 
of ambient air pollution on CVD outcomes in Sweden. 

1. Introduction

The association between short- and long-term exposure to ambient air pollution as pollution
within the outdoor breathable air, especially particulate matter (PM),  and Cardiovascular diseases 
(CVD) morbidity and mortality have been investigated in many studies (Atkinson et al. 2013; 
Beelen et al. 2008; Bell et al. 2008; Brook et al. 2004; Dominici et al. 2006; Grahame and 
Schlesinger 2010; Le Tertre et al. 2002; Lim et al. 2014; Luo et al. 2016; Meister et al. 2012; Pope 
et al. 2004; Qiu et al. 2017; Stockfelt et al. 2017; Sun et al. 2010; Sunyer et al. 2003; Zhang et al. 
2014). The World Health Organisation (WHO) defines Cardiovascular diseases (CVD) as a group 
of disorders of the heart and blood vessels and includes coronary heart disease, cerebrovascular 
disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease, deep vein 
thrombosis and pulmonary embolism (WHO 2019) and was the leading cause of death with over 
17.9 million premature deaths in 2016 (Hadley et al. 2018). In a relatively recent study of Global 
Burden of Diseases, it was estimated that about 4.7 million deaths in 2015 were attributable to 
ambient particle mass with a diameter less than 2.5 μm (PM2.5) (Cohen et al. 2017), mainly 
through CVD (Thurston and Newman 2018). 

To manage the effects of multiple air pollutants on CVD health outcomes, healthcare policies 
and intervention efforts need to be informed of where in space these associative effects are 
particularly more pronounced in order to devise place-specific intervention approaches, with a full 
view of the environmental, demographic and social-economic conditions prevailing in the specific 
places. This would subsequently enable effective pollutant-specific measures to be designed and 
implemented for different areas. 

In Sweden, whereas some scholars have studied air pollution and CVD, they have only 
considered selected cities. For example, Le Tertre et al. (2002) and Sunyer et al. (2003) observed 
significant short-term effects of air pollution on CVD admissions in eight European cities, 
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including Stockholm. Stockfelt et al. (2017) observed long-term effects of total and source-specific 
particulate matter (both <10μm in diameter (PM10) and PM2.5) air pollution on CVD incidence 
in Gothenburg city, calling for efforts to reduce air pollution if its negative health effects are to be 
minimised. Additionally, Segersson et al. (2017) studied the health impacts of source-specific air 
pollution (PM10, PM2.5 and Black Carbon (BC)) in Stockholm, Gothenburg and Umea cities. 
They concluded that the majority of the observed premature deaths were related to local emissions 
and that road traffic and residential wood combustion had the largest impact.  

To study the effect of these local emissions on CVD hospitalization requires the use of local 
spatial regression models. However, such local studies have not yet been done in Sweden. So, 
whereas the effect of different air pollutants might be known for some selected cities (mainly 
Stockholm, Umea and Gothenburg), the multi-pollutant associations with CVD across the whole 
of Sweden remain to be studied. Moreover, single-city analyses have been shown to be prone to 
publication bias (Chen et al. 2017), where authors choose to publish only cities with positive 
associations. 

The main objective of this study, therefore, was to analyse multi-pollutant (PM10, PM2.5, 
BC, Sulphur oxides (SOx), and Carbon monoxide (CO)) associations with CVD and their spatial 
variation across Sweden for the years 2005 to 2010, using Geographically Weighted Poisson 
Regression (GWPR). This was done while accounting for underlying neighbourhood deprivation, 
using the computed Neighbourhood Deprivation Index (NDI) from the four socioeconomic factors 
low education, unemployment, low income, and recipient of social welfare (Winkleby et al. 2007), 
an index that is independently associated with CVD (Lawlor et al. 2005; Li et al. 2019; Sundquist 
et al. 2004a). The advantage with the GW(P)R framework lies in its robustness to the effects of 
multicollinearity (Fotheringham and Oshan 2016), a condition common with multi-pollutant data 
(Stockfelt et al. 2017). Our goal was thus to identify how the strength of the association between 
CVD hospitalization and each of the ambient air pollution variables varies across Sweden while 
accounting for underlying socioeconomic factors through NDI. Areas of particularly high 
associations provide opportunities for further research to pinpoint the possible causality factors as 
well as aiding targeted sensitization, intervention and control measures.  

2. Literature Review

The pathophysiological pathways of CVD as triggered by particulate matter (PM) air pollution
were investigated by Pope et al. (2004), identifying pulmonary and systemic inflammation, 
accelerated atherosclerosis, and altered cardiac autonomic function as possible mechanisms. These 
mechanisms are re-echoed by Vidale and Campana (2018).  

Whereas most studies have almost exclusively concentrated on PM air pollution, especially 
PM10 and PM2.5 (Bell et al. 2008; Cohen et al. 2017; Dominici et al. 2006; Lim et al. 2014; 
Meister et al. 2012; Pope et al. 2004; Qiu et al. 2017; Segersson et al. 2017; Stockfelt et al. 2017; 
Zhang et al. 2014), others have also studied other gaseous air pollutants like nitrogen oxides (NOx), 
CO, sulphur dioxide (SO2), ozone (O3) and BC (Atkinson et al. 2013; Beelen et al. 2008; Grahame 
and Schlesinger 2010; Le Tertre et al. 2002; Sun et al. 2010; Sunyer et al. 2003) with an assumption 
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that they trigger the same pathways in CVD as triggered by particulate matter. For most of these 
studies, their motivating question could be generally summarized as: “in my study area, is ambient 
air pollution significantly associated with CVD morbidity and/or mortality; if so, to what extent?” 
Consequently, most of these studies have been limited to the boundaries of single cities. Other 
studies have considered multiple cities but only for comparison reasons (Segersson et al. 2017; 
Zhang et al. 2014) to evaluate where the effects of air pollution are contributing more to CVD 
health outcomes. However, such studies ignore the fact that even within cities, the association 
between air pollution and CVD can be and is often heterogeneous (Luo et al. 2016).  

In a recent paper detailing clinical handling of the CVD-air pollution challenge, Hadley et al. 
(2018) highlighted the importance of geospatial maps in identifying areas of elevated CVD risk 
from ambient air pollution to aid targeted intervention at individual and population level. Their 
recommendations call for localised spatial regression models to help distil the heterogeneity within 
the relative risk, but also to link the different risk factors to CVD outcomes. Among other risk 
factors, neighbourhood deprivation has previously been shown to independently predict heart 
disease morbidity (Sundquist et al. 2004a). Using a Neighbourhood Deprivation Index (NDI), 
Winkleby et al. (2007) found that age-adjusted Coronary Heart Disease (CHD) incidence and case 
fatality from CHD was about twice as high for persons in high versus low deprivation 
neighbourhoods in Sweden. Similarly, having accounted for age and other individual-level factors, 
Lawlor et al. (2005) found that the odds for CHD were 27% higher for women in British wards 
with higher deprivation scores than the median score. More recently, Li et al. (2019), showed after 
adjusting for potential confounders a significant and still retained association between 
neighbourhood deprivation and heart failure among patients with diabetes mellitus in Sweden. 

To address spatial heterogeneity, different studies have used different methods that are 
subsequently discussed. For example, Alexeeff et al. (2018) used Cox proportional hazard 
regression to study the association between the incidence of CVD and long-term exposure to 
transport-related air pollution (TRAP), including nitrogen dioxide (NO2), nitric oxide (NO), and 
BC, in Oakland California. Their results show that street-level variation in TRAP exposure within 
urban neighbourhoods significantly contributes to differences in risk of CVD events. However, as 
with most studies using Cox proportional hazard regression (Jerrett et al. 2017; Qiu et al. 2017; 
Stockfelt et al. 2017), the heterogeneity in the association was not explicitly accounted for. Failure 
to account for spatial heterogeneity and spatial autocorrelation, a phenomenon where similar 
values tend to be near each other, has been shown to lead to underestimation of the uncertainty 
associated with the effects of air pollution on health outcomes (Burnett et al. 2001). 

Luo et al. (2016) used a mixed Cox proportional hazard model to analyse the spatial 
heterogeneity of the effects of NO2 on Cardiovascular mortality in the 16 districts of Beijing. They 
applied conditional logistic regression to evaluate the district-specific effects of NO2 on 
Cardiovascular mortality. Their results showed independent and spatially varied effects of NO2 
on CVD mortalities, providing actionable evidence of districts with higher risk. They, however, 
also did not explicitly handle the spatial effects of spatial autocorrelation and spatial heterogeneity 
within the NO2 and CVD data. Blangiardo et al. (2016) used a two-stage Bayesian model, first to 
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estimate the concentration of NO2 from sparse monitoring stations to spatial units (used by the 
Clinical Commissioning Group - CCG) across England, and secondly to investigate the effect of 
NO2 on prescription rates of chronic respiratory diseases using integrated nested Laplace 
approximations. However, given the nature of the prescription data used (aggregated at CCG 
level), they could not make inference at the individual level or link the data with hospital 
admissions. Additionally, the use of Bayesian-based methods is extremely computer intensive 
resulting in lengthy processing times for large datasets. 

Regarding methods that explicitly address spatial heterogeneity, most of them fall within the 
category of Geographically Weighted Regression (GWR), with slight modifications to account for 
the nature of the data being modelled (Gomes et al. 2017). For example, whereas both GWR and 
Geographically Weighted Poisson Regression (GWPR) can be used for modelling of spatially 
heterogeneous processes, allowing for relationships between a response and a set of covariates to 
vary across geography (Fotheringham et al. 2015; Nakaya 2015), they are different modelling 
frameworks – GWR assumes Gaussian outcomes (Fotheringham et al. 2002) and GWPR assumes 
Poisson counts (Nakaya et al. 2005).  Poisson counts are more appropriate for modelling small 
area disease rates, especially where the local expected number is low (Nakaya et al. 2005), as was 
with our case. For data with overdispersion, Geographically Weighted Negative Binomial 
Regression (GWNBR) model is sometimes preferred (da Silva and Rodrigues 2014). These models 
have been used in many studies and compare differently. 

By using scan statistics and GWR, Lim et al. (2014) investigated the correlation between 
PM10 and CVD mortality (daily counts of death from 2008 to 2010) in Seoul metropolitan area, 
South Korea. They concluded that CVD mortality was related to the concentration of PM10 and 
that this relationship was heterogeneous across their study area. Since count data was used in their 
study, we argue that GWPR would have been a more appropriate model. By comparing the Root 
Means Square Error (RMSE) from GWPR and global negative binomial (GNB) models, Li et al. 
(2013) found that GWPR performed better than the GNB model since it had a lower RMSE. Gomes 
et al. (2017) also studied the performances of GNB, GWPR and GWNBR models. They concluded 
that GWPR and GWNBR models performed better than the GNB model. They also asserted that 
GWNBR had performed better than GWPR, judging by the Akaike Information Criterion (AIC) 
metric. However, in their study, GWPR outperformed GWNBR when judged using the RMSE 
metric as used by Li et al. (2013). Additionally, the use of GWNBR resulted in a wider bandwidth, 
hence banding effects were observed in the obtained coefficient maps (more homogeneous). Given 
that our primary concern was spatial heterogeneity of the associations, between the two (GWNBR 
and GWPR), GWPR was more tailored for our specific problem. 

GWPR has been used in analysing local variations in associations between health outcomes 
(disease counts, incidence rates, mortality risks, etc.) and a set of environmental and socio-
economic characteristics (Alves et al. 2016; Feuillet et al. 2015; Nakaya et al. 2005). Specific to 
CVD, GWPR was used by Chen et al. (2010) to examine the non-stationary effects of extreme 
cold on mortality in Taiwan. By studying these non-homogeneous spatial patterns between disease 
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outcomes and a set of variables, these studies provide actionable tools in managing diseases and 
increase our understanding of how geography influences these associations.  

In Sweden, however, such local spatial regression analyses for CVD and ambient air pollution 
at a countrywide level have hitherto not been studied. Moreover, CVD is the highest cause of death 
in Sweden with about 91,000 deaths in 2015 (Brooke et al. 2017). The prevalence of CVD in 2015 
was 1,942,532 cases in 2015; approximately 20% of the 9.747 million Swedish population in 2015 
(Wilkins et al. 2017). Whereas some studies have been done on CVD and air pollution in Sweden 
(Le Tertre et al. 2002; Segersson et al. 2017; Stockfelt et al. 2017; Sunyer et al. 2003), they only 
considered selected cities (Stockholm, Gothenburg, and Umea), and so the multi-pollutant effect 
of air pollution on CVD and the spatial variation of such effects across Sweden remains to be 
studied. Our aim was to adopt a Poisson modelling framework to analyse the association between 
PM10, PM2.5, BC, CO, and SOx and CVD hospitalization while accounting for neighbourhood 
deprivation, and the spatial variation of this association across the whole Sweden. 

3. Materials and Methods

3.1. Data Acquisition 

3.1.1. Cardiovascular data 

The CVD data used in this study are based on Swedish hospital records of CVD admission 
between January 1st, 2005 and December 31st, 2010. According to the World Health Organization’s 
International Classification of Diseases (ICD-10), the following CVDs were considered: Coronary 
heart disease (CHD) codes including I20, I21, I22, I23, I24, I25; Ischemic stroke codes including 
I63 (excluding I63.6), I65, I66, I67.2, I67.8, G45 and G46 (G46 was only included when it was in 
combination with another diagnosis), and atherosclerotic and aortic disease codes including I70, 
I71, I72, I73 (excluding I73.0, I73.1), I74 and I77.1. 

Hospital admissions including date of admission were obtained from the Swedish National 
Board of Health and Welfare and comprised 538,573 hospital admissions across Sweden for the 
years 2005 to 2010 as shown in Figure 1. From National Population Registers, the approximate 
location of each patient within 100m was also obtained, providing a basis for spatial aggregations. 
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Figure 1. Sweden Counties (with SAMS) and Trends of CVD Hospital Admissions in Sweden from 2005 to 2010 

3.1.2. Emission data 

The emission data (hereinafter used interchangeably with “air pollution”) used in this research 
was based on the Swedish Environmental Emissions Data (SMED) and consists of particulate 
matter (PM10 and PM2.5), Black Carbon, Sulphur Oxides and Carbon monoxide emission records 
across Sweden, in a 1 km by 1 km grid resolution for the period 2005 to 2010. The details for the 
calculation of the 1 km by 1 km grid estimates and the validation of these estimates were discussed 
by Gidhagen et al. (2009). The SMED consortium uses this very emission inventories for the report 
of greenhouse gases to the European Commission, under the Climate Convention obligation 
(Gidhagen et al. 2009; Gidhagen et al. 2013). The data was generated by SMED as annual averages 
from eight sectors of the power supply, industrial processes, product usage, transportation, work 
machines, agriculture, waste and sewerage, and international aviation and shipping (SMED 2016). 
The same data has previously been used, at the urban level, by Stockfelt et al. (2017) in their study 
of air pollution and CVD in the city of Gothenburg, Sweden. 

3.1.3. Neighbourhood Deprivation Index 

NDI is a summary measure used to characterise neighbourhood-level deprivation. Deprivation 
indicators that have been used in previous studies were identified to characterise neighbourhoods; 
principal component analysis was then used to generate the SAMS specific z-score (first principal 
component) indicative of NDI. Four variables were selected for persons aged 25 – 64 years. These 
four were low educational status (<10 years of formal education); unemployment (not employed, 
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excluding full-time students, those completing compulsory military service, and early retirees); 
social welfare recipient (receiving social welfare support); and low income (income from all 
sources, defined as less than 50% of individual median income. 

3.1.4. Scale of modelling 

All modelling and analysis were carried out at SAMS (Small Area for Market Statistics) level, 
which is a census regional division, defined by Statistics Sweden (http://www.scb.se), based on 
homogenous types of buildings so that they approximately contain 1000 residents. The admissions 
at the individual level and emission values for each pollutant were aggregated to these SAMS 
blocks. For SAMS whose underlying population was less than 50 persons, they were excluded 
from the analysis as their inclusion would lead to unstable statistical estimates (Sundquist et al. 
2004b; Sundquist and Yang 2007). This reduced the original number of SAMS from the original 
9194 to 8419. 

3.2. Study methodology 
We used the Poisson framework to model the associative relationships between ambient air 

pollution and CVD admissions in Sweden while accounting for neighbourhood deprivation. 
Poisson was chosen because the observed CVD admissions were recorded as counts and also given 
that the local expected number was low.  

Global Poisson model (GPM) was applied first to recognize the relations of individual 
pollutants with CVD, in addition to understanding the significance of these relations at the global 
level. The existence of spatial correlation in data results in biased estimates of the global models 
(Anselin 1988; Anselin and Rey 1991). Given that the GPM does not account for spatial effects in 
the observed CVD, a spatial lag term was introduced to address the influence of neighbourhood 
values on the observed CVD values to the GPM, leading to the spatially auto-regression Poisson 
(SAR-Poisson) model. This was important as CVD cases in a region are also influenced by the 
underlying socio-economic, demographic and environmental factors (Poulter 1999), which are 
seldom random in space. However, SAR-Poisson, being a global model, does not handle local 
spatial heterogeneity in the obtained associations. 

Regression models that allow for geographical weighting are better suited for handling spatial 
heterogeneity (Nakaya 2015). We thus employed Geographically Weighted Poisson Regression 
(GWPR) model that allows for the establishment of coefficient terms and all other regression 
parameters for each spatial unit (8419 units for our case).  

3.3. Statistical methods 
We investigated the associations between annual ambient air pollution exposures (PM10, 

PM2.5, BC, SOx and CO) from the eight sectors (power supply, industrial processes, product 
usage, transportation, work machines, agriculture, waste and sewerage, and international aviation 
and shipping), NDI and CVD admission count. Let  be the CVD admission count for a particular 
SAMS . Denote the five ambient air pollution determinants, and NDI as  , . 
The SAMS specific population is denoted by . The conventional GPM can then be specified by 
equation (1). 

(1)
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To model for the possible existence of spatial dependence in the observed CVD admissions, 
SAR-Poisson model was derived from the original GPM in equation (1) by adding a spatial lag 
term, , shown in equation (2).

(2) 

where  is the spatially lagged dependent variable for the weights matrix , and  is a spatially 
lagged coefficient. The weight matrix was defined by considering n-nearest neighbours.  

GWPR extends this traditional model by allowing for all parameters to vary with geographical 
location, defined by SAMS in our study. This introduces a location parameter, , a 
vector containing the two-dimensional coordinates describing the location of the particular SAMS 
(centroid coordinates). The Poisson model in equation (1) can be rewritten as equation (3). 

(3) 

The regression coefficients s in equation (3) are calculated for each and every SAMS , making 
them spatially varying. This makes GWPR a local spatial regression model allowing for 
geographically varying parameters. In our study, there were a total of 8419 estimated coefficients 
corresponding to the 8419 SAMS used.  

The geographical weighting in GWPR is such that a kernel window is placed around every 
SAMS, and the s are computed using all the data contained within the kernel window, allowing 
for neighbourhood data to contribute to the value of  at that specific SAMS. A bi-square adaptive 
weighting kernel, defined by equation (4), was used for our study. 

 (4) 

where  is the distance between SAMS  and the nearby SAMS . Observations closer to 
SAMS  would carry more weights and have greater impacts on parameter estimates than those 
far away, in accordance with the first law of geography (Tobler 1970).  is a constant bandwidth 
defining the neighbourhood, and for GWPR, it denotes a value that yields the lowest Akaike 
Information Criterion (AIC), a metric that deals with the trade-off between the goodness of fit of 
the model and model simplicity, defined by equation (5), through the bandwidth selection 
procedure (Nakaya et al. 2005).  

 (5) 

where D and K denote the deviance and the effective number of parameters in the model with 
bandwidth G, respectively.   

4. Results

To examine the possible determinants the spatial variation of CVD across Sweden and over
time, each ambient air pollution variable and NDI were regressed against the SAMS-specific CVD 
outcome. Table 1 shows the model estimates for the GPM model combining all the independent 
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variables. Generally, the associations were both positive and negative except for SOx that was 
positive throughout. 

Table 1. Global Poisson model Estimates (2005 to 2010) 

Estimate 
(2005) 

Estimate 
(2006) 

Estimate 
(2007) 

Estimate 
(2008) 

Estimate 
(2009) 

Estimate 
(2010) 

(Intercept) -0.207*** 1 -0.2364*** -0.271*** -0.3117*** -0.3911*** -0.4653**
NDI -0.058*** 0.05548*** 0.05565*** 0.05709*** -0.0618*** -0.06027***
BC -5.275E-07** -4.846E-07** -8.8E-07*** -1.1E-06*** -1.8E-06*** -1.6E-06***
CO -7.064E-09*** -7.53E-09*** -4.1E-09** 3.56E-09*** 3.85E-09* 3.98E-09.

PM10 2.295E-07*** 1.559E-07*** 2.23E-07*** 1.3E-07*** 5.28E-08 -3.7E-08
PM25 -2.798E-07*** -1.173E-07** -2.6E-07*** -1.8E-07*** -1E-07. 3.49E-08 
SOx 3.19E-08*** 1.531E-08* 3.12E-08*** 3.82E-08*** 4.92E-08*** 3.51E-08*** 

1 Significant codes:  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 2 shows the SAR-Poisson model estimates. All the variables generally remained 
significant throughout the years, consistent with the results from the GPM. However, the 
introduction of the lag term created some changes in the nature of the associations observed in the 
overall GPM. For example, PM10 and BC become consistently negative while PM2.5 becomes 
consistently positive, just as SOx and the lag term. CO and the NDI term retain their mixed 
associations.  

Table 2. Spatial Autoregressive Global Poisson model Estimate (2005 to 2010) 

 Estimate 
(2005) 

 Estimate 
(2006) 

 Estimate 
(2007) 

 Estimate 
(2008) 

 Estimate 
(2009) 

 Estimate 
(2010) 

(Intercept) -0.3904*** -0.4181*** -0.4546*** -0.4975*** -0.5718*** -0.6523***
lag 0.01426*** 0.01464*** 0.01518*** 0.01585*** 0.01656*** 0.01834***

NDI -0.04152*** 0.03937*** 0.03987*** 0.04134*** -0.04672*** -0.04522***
BC -3.926E-07** -2.47E-07. -6.3E-07*** -8.7E-07*** -1.2E-06*** -1.3E-06***
CO -5.843E-09*** -3.807E-09** -3.6E-09* 3.17E-09*** 2.02E-09 4.67E-09*

PM10 -3.321E-07*** -2.619E-07*** -3.3E-07*** -4.2E-07*** -5E-07*** -5.8E-07***
PM25 4.747E-07*** 3.837E-07*** 4.92E-07*** 5.76E-07*** 6.76E-07*** 7.67E-07*** 
SOx 1.156E-08 7.031E-09 8.4E-09 2.2E-08* 2.25E-08* 1.52E-08. 

This unstable nature of the associations could be possibly due to multicollinearity existing 
within the air pollution and NDI variables. Indeed, by computing for the Variation Inflation Factor 
(VIF) statistic for the five variables, values ranging from 2 to 20 were obtained. Ideally, these 
values should be less than 5; values between 5 and 10 indicate moderate multicollinearity while 
values above 10 indicate extreme multicollinearity (Alves et al. 2016). It thus showed that we were 
dealing with a substantial amount of multicollinearity.  

Being a local regression model, GPWR accounts for spatial heterogeneity and is robust against 
multicollinearity (Fotheringham and Oshan 2016). Figure 2 shows the performance of the three 
models: the GPM, the SAR-Poisson model and the GWPR model. It shows that GWPR has 
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consistently lower AIC values, followed by SAR-Poisson, and GPM has the highest AIC values 
throughout the study period. 

Figure 2. Model Performance by Akaike Information Criterion (AIC) for the 3 models  

Table 3 shows the summary of parameter estimates as obtained from the GWPR model. They 
are described by the minimum, lower quartile, median, upper quartile, and the maximum. Given 
that the parameter values were not standardised in the global models, the intercept is the only 
comparable parameter between the global and these local estimates. We note that the median 
intercept coefficient estimates for both models (GWPR and overall GPM) were relatively similar, 
for all the years. Additionally, some parameter estimates range from negative to positive over the 
study area, exhibiting a wider dynamic range compared to the averaged values reported by GPM.  

Table 3. Summary statistics for varying (Local) coefficients from the GWPR model 

Coefficients Minimum of 
Coefficients 

Lower Quartile 
of Coefficients 

Median of 
Coefficients 

Upper Quartile 
of Coefficients 

Maximum of 
Coefficients 

2005 Intercept 0.898 1.316 1.438 1.572 1.841 
NDI_2005 -0.750 -0.513 -0.429 -0.283 -0.093

BC -2.565 -0.213 -0.016 0.217 1.490
CO -1.874 -0.123 0.074 0.371 1.629

PM10 -6.988 -0.976 -0.181 0.508 3.759
PM25 -2.857 -0.339 0.152 0.784 4.847
SOx -5.605 -0.156 -0.039 0.038 6.241

2006 Intercept 0.873 1.302 1.403 1.551 1.793
NDI_2006 0.090 0.268 0.440 0.509 0.783

BC -3.038 -0.313 -0.057 0.174 1.558
CO -1.888 -0.043 0.144 0.443 1.543
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PM10 -4.268 -0.893 -0.109 0.446 4.085 
PM25 -1.559 -0.210 0.075 0.577 2.569 
SOx -5.365 -0.151 -0.027 0.090 6.384 

2007 Intercept 0.813 1.263 1.371 1.531 1.759 
NDI_2007 0.092 0.257 0.419 0.499 0.776 

BC -2.534 -0.209 -0.001 0.231 1.870 
CO -2.005 -0.078 0.113 0.366 1.321 

PM10 -5.239 -0.895 -0.227 0.375 4.561 
PM25 -2.553 -0.314 0.158 0.539 4.691 
SOx -5.113 -0.126 -0.021 0.062 8.773 

2008 Intercept 0.715 1.243 1.357 1.492 1.733 
NDI_2008 0.097 0.257 0.407 0.486 0.782 

BC -3.846 -0.128 0.100 0.333 1.404 
CO -0.499 -0.143 -0.032 0.023 0.228 

PM10 -5.158 -0.691 -0.185 0.509 7.446 
PM25 -3.548 -0.443 0.151 0.678 5.132 
SOx -5.250 -0.196 -0.048 0.031 9.307 

2009 Intercept 0.654 1.131 1.250 1.414 1.738 
NDI_2009 -0.784 -0.463 -0.395 -0.272 -0.098

BC -3.313 -0.280 -0.051 0.189 1.976
CO -2.149 -0.002 0.188 0.408 1.575

PM10 -5.582 -1.368 -0.351 0.391 8.087
PM25 -2.951 -0.228 0.314 0.879 5.191
SOx -5.787 -0.128 -0.018 0.128 10.021

2010 Intercept 0.520 1.036 1.185 1.338 1.764
NDI_2010 -0.842 -0.450 -0.400 -0.288 -0.100

BC -2.314 -0.283 -0.092 0.061 2.092
CO -2.116 -0.006 0.228 0.544 1.563

PM10 -7.036 -1.370 -0.480 0.392 4.762
PM25 -5.386 -0.188 0.401 0.973 6.651
SOx -4.454 -0.190 -0.034 0.122 12.116

The spatial variation of the associations between CVD and the five air pollution variables (BC, 
CO, PM10, PM2.5, and SOx) were visualised by maps. The mean spatial variations of the 
coefficients of all the five air pollutants are given by Figure 3. This was obtained by averaging 
SAMS-specific coefficients for individual pollutants, over the six-year period. Labels (a), (b), (c), 
(d), and (e) in Figure 3 was used to distinguish the spatial coefficient variations for BC, CO, SOx, 
PM10, and PM2.5, respectively. By averaging, areas of particularly persistent high associations 
were highlighted. For example, BC (a) shows a moderately strong association in Gotland (an island 
in the southeast), across mid-lower-western regions and across mid-upper-western regions of 
Sweden. Weaker associations for BC are observed mainly in the northern parts of Sweden. PM10 
(d) is the most pronounced with strongest associations in the mid-lower parts of Sweden and
persistently moderate to strong associations in the North. CO (b) and SOx (c) show generally
moderate associations while PM2.5 (e) shows generally low associations with CVD, across
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Sweden. The upper northern part particularly shows lower associations with PM2.5 over the six-
year study period. 

Figure 3. Combined Spatial Variations (2005 -2010) in BC (a) CO (b), SOx (c), PM10 (d) and PM2.5 (e) 
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5. Discussion

This study employed a spatial perspective with emphasis on spatial non-stationarity to assess
the association between ambient air pollution variables (BC, CO, PM10, PM2.5, and SOx) and 
CVD admissions while accounting for neighbourhood deprivation in Sweden from 2005 to 2010. 
Neighbourhood deprivation in the form of the established index, NDI, was used to account for the 
underlying socio-economic variables mainly because it has been shown to independently predict 
heart disease morbidity. The results of our analysis also showed that NDI has a consistently 
significant association with CVD in Sweden, as indicated by the results of the global Poisson 
models. This was consistent with the results obtained by previous studies in Britain (Lawlor et al. 
2005) and Sweden (Kawakami et al. 2011; Sundquist et al. 2004b; Winkleby et al. 2007). 

The GWPR model as an effective tool to evaluate these non-stationary relations was used to 
compute the spatially-varying regression parameter estimates across Sweden. GWPR assumes a 
Poisson distribution to model count-based outcomes and is hence statistically more appropriate 
than conventional regression models based on Gaussian distribution like conditional and 
simultaneous autoregressive models (Chen et al. 2010). Through the Akaike Information Criterion 
(AIC) statistic, Figure 2 shows that GWPR was the best model fit against global Poisson models 
as measured by the lowest AIC value. It was followed by SAR-Poisson, and global Poisson model 
was the worst of the models. To examine how GWPR successfully captured the spatially non-
stationary variations in the coefficient parameters, Table 3 was examined. Here, some estimated 
coefficients range from negative to positive over the study area. This indicates how GPWR was 
able to capture the spatial non-stationarity, and how the global models (in Table 1 and Table 2) 
can be misleading by assuming constant association coefficients across the study area.  

We argue that traffic-related PM10 could be responsible for the persistent strong associations 
with CVD in the middle-south and southwest of Sweden (Figure 3). This position is consistent 
with the results of Segersson et al. (2017) who contended that PM10 and BC are primarily 
produced by road traffic through both wear particles and exhaust. However, the moderately 
stronger associations of PM10 in the northern part of Sweden were unclear to attribute to any 
specific source.  PM2.5, CO, and BC are known to be mainly produced by residential wood 
combustion and road traffic sources (Segersson et al. 2017; Stockfelt et al. 2017). We thus 
speculate that residential wood heating, fuel burning, and road traffic could be largely responsible 
for the observed spatial patterns between BC, PM10, PM2.5, and CO air pollution and CVD in 
Figure 3. On the other hand, SOx is known to be a shipping pollutant due to the high sulphur 
content of marine fuels (Nikopoulou et al. 2013). Therefore, the patterns observed in SOx 
associations could be attributed to the numerous navigational routes along the coastline (especially 
the southern half of Sweden).  

It should be emphasized that our interpretation of place-specific association obtained in this 
study is more general as pollutants may exhibit associations in places away from their sources. 
This noncommittal interpretation was called for by Meister et al. (2012) who cautioned about the 
interpreting place-specific associations of PM2.5 and health outcomes as large portions of it in 
cities tend to be transported over long distances.  

Our findings, having considered spatial heterogeneity, were consistent with conclusions from 
previous studies (Alves et al. 2016; Feuillet et al. 2015; Gomes et al. 2017; Li et al. 2013; Lim et 
al. 2014; Nakaya 2015; Nakaya et al. 2005) regarding the heterogeneity of relations. From global 
models, we observed generally weak but highly significant associations between air pollution 
variables and CVD, evidenced by relatively small coefficient values. These weak and mixed 
associations were also observed by Stockfelt et al. (2017) and Taj et al. (2017) in their city-specific 
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studies in Sweden. This could be generally explained by the fact that CVD is multi-factorial 
(Poulter 1999) and influenced by many other lifestyle and socio-economic determinants, like 
smoking, hypertension, lack of exercises, to mention but a few, in addition to ambient air pollution. 
However, they could also be due to the combined effects of overdispersion and multicollinearity 
in the data (Gomes et al. 2017).  

Overdispersion issues are well handled by Global Negative Binomial models (GNB), and 
would as such be a better alternative (Alves et al. 2016; Li et al. 2013). However, given the spatial 
nature of the data as evidenced by the significant lag term in the SAR-Poisson model, we reasoned 
that the probabilistic mechanisms used by global GNB to handle such overdispersion would 
overlook its specific local-scale causes, which was also mentioned by Alves et al. (2016). 
Moreover, our tests showed that the global GNB results were not very different from the GPM 
results. Additionally, the unobserved heterogeneity as computed from the density of variance of 
GNB random effects (Rodríguez 2019) had the quartile ranges [0.185 (Q1); 0.581 (Q2); and 1.373 
(Q3)], meaning that CVD admissions at the lower quantile of the unobserved heterogeneity were 
81% lower than expected, CVD admissions at the median were 8% higher and those at the upper 
quantile were 37% higher than expected. The observed overdispersion was therefore in part due to 
heterogeneity, which is better handled by local spatial models. 

While for the local model, GWNBR is known to better handle overdispersion than GWPR (da 
Silva and Rodrigues 2014), applying GWNBR on a section of our dataset resulted in banding 
effects, characterised by homogeneous regions in the resultant coefficient maps. This could be 
attributed to the bandwidth selection procedure converging at wider bandwidths for GWNBR 
which shows that GWNBR was not able to handle spatial heterogeneity. This was consistent with 
results obtained by Gomes et al. (2017). It was thus a split-decision between better handling of 
either overdispersion (GWNBR) or heterogeneity (GWPR). Since spatial heterogeneity was our 
primary goal, GWPR was selected for our analysis. 

Multicollinearity between air pollution variables has been highlighted by Stockfelt et al. 
(2017) as the limitation responsible for few multi-pollution studies like our own. However, in an 
elaborate study of GWR, Fotheringham and Oshan (2016) illustrated that GWR is robust even 
under extreme multicollinearity and produces reliable results.  

Finally, whereas this study achieved what it set out to do, the authors are aware that this being 
an ecological study, there is a need to acknowledge ecological bias. Given that all data (CVD and 
air pollution) had to be aggregated to SAMS level (underlying population was available at this 
level), the obtained associations cannot reflect the would-be associations at the individual level.  

6. Conclusions

The primary contribution of this study is the global as well as local analyses of the association
between several established air pollutants and CVD in Sweden, on a nationwide basis while 
accounting for socio-economic factors through an established neighbourhood deprivation index. It 
has successfully demonstrated that multi-pollutant associations with CVD are not homogenous 
across Sweden and is, to the best of our knowledge, the first nationwide study that spatially 
analyses multi-pollutant data and CVD with a particular focus on spatial non-stationarity. In this 
six-year study of CVD admission counts and ambient air pollution, we found generally weak but 
statistically significant global associations between main particulate matter pollutants and CVD 
admissions. More importantly, using GWPR, we found these associations to be non-homogeneous 
but varied across space. Generally, more dynamism in the observed patterns was associated with 
southern parts of Sweden than with the northern regions. These results are, despite certain 
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limitations, useful because they indicate that health policies targeting air pollution and CVD 
preventive and management efforts in Sweden may be defined at local levels rather than at a global 
(national – in this case) level. Moreover, with areas of persistent high associations between air 
pollution and CVD identified, more focused studies could be conducted in these areas to learn 
more about the drivers of such associations so as to better inform future healthcare policy and 
intervention efforts. 
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Abstract 
CVD and cancer are the two leading causes of death worldwide. Improvement in cancer early detection 
and treatment has resulted in an increased number of cancer survivors. However, many of the survivors 
tend to develop CVD often leading to their demise. Conversely, people with pre-existing CVD conditions, 
especially the elderly, have increased chances of developing cancer and dying from the same.  The World 
Health Organization, consequently, recommends joint management of both diseases. However, in 
Sweden, as with many other countries, few studies have explored the nature of the associations between 
the two disease mortalities and their spatial variation at a population level.  

This study uses correlation, global Moran’s index and global bivariate Moran’s index to investigate 
national trends of cancer and CVD crude mortality rates in the Swedish elderly. Spatial scan statistics, 
spatial overlay and local entropy maps were used to analyse for spatial co-occurrence, local joint spatial 
clustering and associations in the 2010—2015 cancer and CVD crude mortality rates for the Swedish 
elderly (65+ years). Mortality data were obtained from the Swedish Healthcare Registry.  

Our results showed that throughout the years of study, the correlation between cancer and CVD crude 
mortality rates was averagely positive. Spatial correlation analysis (univariate and bivariate) showed that 
the contribution of the neighbourhood mortality rates to the observed mortality rates was weak, though 
significant. From cluster analysis, the cancer and CVD crude mortality rates showed differences in 
clustering spatial scales with CVD clustering at a smaller scale. Finally, local entropy maps showed that 
cancer and CVD crude mortality rates were not always related across Sweden, but whenever they were, 
the relationship was mainly positive and linear. 

This study contributes to cancer and CVD public health efforts in Sweden by identifying areas where the 
two causes of death spatially co-occur, and where the two exhibit no spatial overlap. This provides a 
valuable starting ground for more focused studies to identify local drivers and/or informs coordinated 
targeted intervention in both causes of death.  

Keywords: Cancer, CVD, spatial variation, Local Entropy Map (LEM), spatial scan statistics, Swedish 
elderly 
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1 Background 
Globally, and especially in the industrialized economies, more people are likely to die of cancer 
and cardiovascular diseases than of other diseases. Cardiovascular diseases (CVD), a group of 
disorders affecting the heart and blood vessels, are the leading cause of death, accounting for 
about 31% of all global deaths and with 18 million people estimated to have died from CVD in 
2016 (WHO 2019b). Cancer, a generic term for a large group of diseases that lead to the growth 
of abnormal cells that outgrow their boundaries and invade other adjoining body parts, is the 
second leading cause of death and is estimated to have accounted for 9.6 million global deaths 
in 2018 (WHO 2019a). 

Improvements in early detection and treatment of cancer have led to an increase in the number 
of cancer survivors (Miller et al. 2019). However, there are concerns that most cancer survivors 
tend to die from cardiovascular diseases (Armenian et al. 2016). Research has indicated that 
cardiotoxic therapies like anthracyclines and chest radiation (Rugbjerg et al. 2014) interact with 
the heart structures in such a way that predisposes one to CVD. These pathways were 
comprehensively discussed by Moslehi (2016) in their study on cardiovascular effects of 
targeted cancer therapies. Additionally, cancer survivors tend to be more likely to have CVD 
known risk factors like diabetes, hypertension, obesity, etc. (Armenian et al. 2016). In spite of 
this seemingly direct link between the two diseases, many studies have tended to study them 
independently. Indeed, a recent commentary article by Blaes and Shenoy (2019) asks the 
question as to whether it is time to include cancer in cardiovascular risk prediction tools.  

Whereas the answer to this inclusion/exclusion question is wide, we contend that by analysing 
for the simultaneous spatial occurrence of clusters in these two diseases (cancer and CVD), the 
results would provide a plausible forward step towards simultaneous management of the two 
diseases as advised by the WHO. To this end, previous studies have not addressed the possible 
spatial co-occurrence of clusters for cancer and CVD. Moreover, a spatial co-occurrence study 
would establish areas where both disease morbidities and /or mortalities jointly cluster, thereby 
supporting surveillance and informing targeted intervention. Perhaps more importantly, such a 
study would form a basis for more focused studies to establish the driving factors behind the 
simultaneous clustering, in addition to providing plausible clues as to whether cancer ought to 
be considered a risk factor in CVD prediction and/or vice versa. 

This paper addresses this gap by investigating the simultaneous spatial clustering and local 
association of Cancer and CVD in the Swedish elderly (65+ years). Mortality data from the 
Swedish Healthcare Registry were used to identify people, sixty-five and above years of age, 
that died of either cancer or CVD. Correlation analysis through Pearson’s r, global Moran’s and 
bivariate Moran’s indices were used to examine the correlation tendencies for crude CVD and 
cancer mortality rates. Then scan statistics and local entropy map was used to identify areas 
where in space the two mortality rates co-clustered and related together through the years 2010 
to 2015. 
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2 Related studies 
The relationship between cancer and CVD has been previously investigated (Miller et al. 2019, 
Armenian et al. 2016, Rugbjerg et al. 2014, Strongman et al. 2019). These and many more studies 
seem to agree that chemotherapy and radiotherapy, characteristic of cancer treatment, pre-
exposes the cancer survivors to CVD (Moslehi 2016), often leading to their death (Blaes and 
Shenoy 2019). For example, in a retrospective cohort study of cancer survivors and controls 
(aged 40 years or older) from Southern California, USA, Armenian et al. (2016) observed that 
cancer survivors with CVD had a 3.8 fold risk of all-cause mortality when compared with the 
survivors without CVD.  

Similarly, in a population-based cohort study of women diagnosed with early-stage breast 
cancer (EBC) in Ontario, Canada, Abdel-Qadir et al. (2017) analysed competing risk of death 
from CVD and from EBC (n = 98,999). The authors found that CVD was the leading competing 
risk within the study cohort.  

Relatedly, having noticed that evidence was scarce on the specific CVDs in survivors of a wide 
array of cancers, Strongman et al. (2019) used large-scale electronic health records from linked 
databases in the UK to establish these risk factors. Using a record of 10,825 cancer survivors and 
523,541 controls (aged 18 years or older), they compared a range of CVD outcomes using crude 
and adjusted Cox models. They observed an increased risk of venous thromboembolism in 
patients of 18 out of the 20 site-specific cancers; heart failure increase in 10 out of the 20 cancers. 
Also, they observed elevated risks of arrhythmia, coronary heart disease, stroke, pericarditis, 
and valvular heart disease for multiple cancer sites. This reassures the thinking that 
cardiotoxicity associated with cancer treatment increases the risk of cancer survivors 
developing cardiovascular diseases, and most probably dying from the same.  

These studies and several other similar ones (Mahase 2019, Blaes and Shenoy 2019, Giza et al. 
2017) highlight the urgent need for simultaneous management of both cancer (e.g. breast, lung, 
kidney, ovarian, etc.) and CVD. From a patient-management perspective, Strongman et al. 
(2019) elaborated the challenge in managing post-cancer CVD as long-term follow-up is being 
done mostly by cancer specialists who in turn put less focus on CVD sequelae. This position 
was re-echoed by Moslehi (2016) who called for closer collaboration between cardiologists and 
oncologists in order to manage this double threat. From a surveillance point of view, we argue 
that analysing for spatial co-occurrence of clusters in both CVD and cancer mortality rates 
would highlight areas of elevated joint-mortality across the region of study, providing workable 
evidence on where areas of most need are located. Subsequently, this would better inform 
coordinated oncology and cardiology intervention efforts for better management of both 
diseases, hence reduced mortalities.   

The use of spatial methods to identify and/or qualify risk factors of disease mortality is not new 
in epidemiology, and certainly not new to cancer and CVD. The advantage of using the spatial 
approach lies in the ability to tie environmental exposure to the observed health outcomes 
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(Elliott and Wartenberg 2004). For example, in what is arguably the pioneering work on spatial 
clustering, Openshaw et al. (1988) used the ‘geographical analysis machine’ to identify five 
clusters of child leukaemia in the North of England. Their analysis gave a light on the 
possibility of other environmental factors, like air pollution other than residual radioactive 
radiation, being at play for the observed leukaemia clustering. Since then,  considerable 
research using cluster-hunting spatial methods, especially spatial scan statistics, has been done 
for many infectious diseases and mortalities including HIV (Cuadros, Awad and Abu-Raddad 
2013, Wand and Ramjee 2010), TB (Tiwari et al. 2006, Smith et al. 2017, Smith et al. 2018), 
measles (Tang et al. 2017), scarlet fever (Zhang et al. 2017), foot and mouth (Deng et al. 2013), 
and malaria (Gwitira et al. 2018) to mention but a few. For non-communicable diseases, CVD 
clustering has been investigated by Rajabi et al. (2018), colorectal cancer by Sherman et al. 
(2014), and cervical cancer by Chen et al. (2008), to list a few. 

Whereas some spatial co-clustering efforts have been done for HIV/TB (Aturinde et al. 2019), 
and HIV/malaria (Gwitira et al. 2018), no previous studies investigating the simultaneous 
spatial clustering for non-communicable diseases like CVD and cancer were available in the 
consulted literature. Co-clustering analyses support surveillance and intervention efforts by 
identifying areas most affected by comorbidities and mortalities, thereby providing grounds for 
more focussed studies to identify the local driving factors. This study, therefore, aims at 
investigating the spatial co-occurrence of CVD and cancer mortality through analysing the 
simultaneous spatial clustering patterns and associations of cancer and CVD in the Swedish 
elderly (65+ years) using mortality data from the Swedish Healthcare Registry. To this end, 
cluster-searching methods, especially spatial scan statistics, and local entropy maps were used.  

3 Methods 
The motivation behind bivariate relationship analysis lies in the need to illustrate that the event 
of the first phenomenon is somehow nearer of farther to the event of the second phenomenon 
than would be expected at random (Souris and Bichaud 2011). This is especially important in 
epidemiology as it helps in linking the two health outcomes through possible common 
underlying environmental or socioeconomic risk factors. In our case, the need was to illustrate 
that the event of population-adjusted CVD mortality was nearer to the event of Cancer 
mortality in the Swedish elderly across Sweden for the period 2010 to 2015.  

First, preliminary analysis of the non-spatial relationship between the two mortalities rates was 
done using Pearson’s correlation. Given the possibility of having spatial effects in the CVD and 
cancer mortality rate, Moran’s indices for both were therefore calculated. However, given that 
the objective of the study was to investigate the clustering and simultaneous co-occurrence of 
CVD and Cancer, spatial scan statistics (through SaTScan) and local entropy analyses were 
respectively applied.  
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3.1 Data  

3.1.1 Cardiovascular and Cancer data 
The CVD data used in this study are based on Swedish CVD mortality records for people 65+ 
years old between January 1st, 2010 and December 31st, 2015. According to the World Health 
Organization’s International Classification of Diseases (ICD-10), the following CVDs were 
considered: Coronary heart disease (CHD) codes including I20, I21, I22, I23, I24, I25; Ischemic 
stroke codes including I63 (excluding I63.6), I65, I66, I67.2, I67.8, G45 and G46 (G46 was only 
included when it was in combination with another diagnosis), and atherosclerotic and aortic 
disease codes including I70, I71, I72, I73 (excluding I73.0, I73.1), I74 and I77.1. 

For Cancer, the following ICD-10 codes were included: Neoplasms (C00-C97) and Neoplasm of 
uncertain or unknown behaviour of other and unspecified sites (D48*).  

Mortality data including date of death were obtained from the Swedish Healthcare Registry for 
the years 2010 to 2015. National Population Registers provided the approximate location of each 
deceased, providing a basis for spatial aggregations to Small Area for Market Statistics (SAMS) 
level. Statistics Sweden (https://www.scb.se/) defines SAMS as a census regional division 
based on homogenous types of buildings so that they approximately contain 1000 residents. 
Additionally, SAMS polygons with population were obtained from the National Population 
Registers. Some SAMS whose underlying population was less than 50 persons were excluded 
from the analysis as their inclusion would lead to unstable statistical estimates (Sundquist and 
Yang 2007, Sundquist et al. 2004).  The exclusion reduced the number of SAMS from 9194 to 
8419. Crude mortality rates were thus calculated from the aggregated mortality records and at 
the SAMS-level population.  

3.2 Statistical analysis 

3.2.1 Correlation 
The relationship between cancer and CVD mortality was investigated, preliminarily, by using 
Pearson’s correlation, with the underlying assumption being that the observed mortality due to 
the two disease mortalities is random across Sweden. As with most health-related data, 
however, this assumption of independence of occurrence tends to be violated by data having 
spatial effects – meaning that nearby observations tend to have similar values than far 
observations, with respect to Tobler’s first law of geography (Tobler 1970). To evaluate the 
contribution of the neighbourhood to the observed mortality in both causes of death, global 
Moran’s Index (Cliff and Ord 1970) was calculated. Further, to evaluate the neighbourhood 
contribution of cancer to the observed CVD and vice versa, global Bivariate Moran’s I (Anselin, 
Syabri and Kho 2006, Anselin and Rey 2014) was calculated.  

3.2.2 Spatial scan statistics  
SAMS-specific CVD and cancer mortality spatial clusters were detected using Kulldorff’s spatial 
scan statistics (Kulldorff 1997). This technique has previously been used in clustering analyses 
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of CVD (Rajabi et al. 2018), tuberculosis (Smith et al. 2018, Smith et al. 2017), HIV (Gwitira et al. 
2018), HIV-TB coinfection (Aturinde et al. 2019), to mention but a few. CVD and cancer clusters 
were detected using the Poisson probability model, with the assumption that the observed CVD 
and cancer mortality, condition on the population at risk, is random (Kulldorff 1997). The 
technique works by imposing circular windows of varying sizes across the study area (different 
locations defined by SAMS centroids). Then the mortality rate within the window was 
compared with the mortality rate outside the window. The potential clusters (assuming discrete 
Poisson) are then detected through evaluation of the calculated likelihood ratio (LR) given by 
equation (1).  

LR = [ ] [ ] [ ] > [ ]  
(1) 

where  is the total number of CVD or Cancer mortality rate in Sweden;  is the observed 
mortality rate within the window; [ ] is the adjusted expected mortality rate within the 
window – under the null hypothesis; () is the binary indicator for high-risk, low-risk or both 
(evaluating 1, 0, or 11 respectively).  The obtained LR values were then ranked and ordered 
with the window with maximum LR values among all possible radius options and in all 
possible centroid locations considered the most likely cluster. For this analysis, the statistical 
significance of the clusters was established through 999 Monte Carlo simulations. SaTScan v9.6 
software was used with the “spatial” option and the default user-defined maximum radius of 
the circular window maintained at 50% of the population at risk (sensitivity analysis of this 
radius showed no effect on the obtained results). 

3.2.3 Local entropy map (LEM) 
Entropy has its roots in thermodynamics and is a fundamental concept in information theory 
(Naimi et al. 2019). Entropy-based approaches have been used as a measure of complexity in 
physics (Shannon 1948), diversity in ecology (Ricotta and Anand 2006), and uncertainty in 
information theory (Gray 2011). In geography, joint entropy has been used to study spatially 
varying multivariate relationships (Guo 2010). It is this aspect of its application in spatially 
varying relationships that is utilized in this study. 

LEM is a non-parametric approach that allows for exploration of spatially varying relationships 
within variables (CVD and cancer crude mortality rates) observed at functional units (SAMS in 
our case) by computing for joint entropy using power-weighted minimum spanning trees as a 
proxy for the joint distribution of the variables (Jin and Lu 2017). Other spatial methods like 
Local Indicator of Spatial Association (LISA) and Geographically Weighted Regression (GWR) 
have been previously used to study spatially clustering patterns of phenomena. However, given 
their assumption of a prior relationship form (mainly linear), and the requirement for one to 
know the underlying distribution, a less constraining approach in terms of prior relationship 
and the prior distribution of the data, was preferred.  To detect simultaneous local relationships, 
LEM analysis generally involves four main steps (Guo 2010).  
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Firstly, the normalized power-weighted Minimum Spanning Tree (MST) length is determined 
from the bivariate plot of the two variables, and used to estimate the Renyi entropy value ( ) 
for the multivariate/bivariate dataset in each region using equation (2). 

= 11 log ( ,  , … , )
 

(2) 

where  is a -dimensional vector;  0 is the order of the Renyi entropy; ( ,  , … , ) is 
the minimum spanning tree length;   is the number of independent observations;  is a strictly 
positive constant that depends on the edge power,  and the dimensionality, . Secondly, the 
obtained Renyi entropy values are evaluated for their statistical significance using a 
permutation-based approach. This converts each local   to a p-value. Thirdly, all p-values 
(one for each region) are then processed with several statistical tests for the null hypothesis – 
independence (while controlling for the multiple-testing problem). The False Discovery Rate 
(FDR) method (Benjamini and Hochberg 1995) was used to control for the multiple-testing 
problem. It involves ranking the p-values in ascending order (e.g. < … < ); finding the 

first <  and assigning  as its critical value. Fourthly and finally, the p-values are
mapped and visualised for the examination of spatially varying local relationships between 
variables. 

In our analysis, LEMs were used to explore SAMS-specific spatial relationships between CVD 
and cancer mortality rates in the Swedish elderly. The estimation of entropy values from the 
length of the minimum spanning tree requires the definition of neighbourhood,  and the edge 
power, . The influence of  on the resulting entropy map is such that when a larger  is used, 
more robust entropy values are obtained since more data points are used in representing the 
relationship. However, this is achieved at the expense of local heterogeneity (with smaller  value). On the other hand, the influence of  is such that decreasing  value reduces the 
distance between long and short edges, thereby resulting in more robustness against noise and 
outliers. In his sensitivity analysis, Guo (2010) obtained better results with  in the range (35—
50) and  in the range (0.25—0.5). We conducted a sensitivity analysis of these two parameters
(  and ) on our CVD and cancer mortality data and found that the combination = 50 and= 0.5 resulted in fewer type 1 (false discovery) errors. These two parameter values were
therefore adopted this for our analysis.

The algorithm for the generation of LEM is provided by ESRI (2019). It basically relies on the 
comparison of the computed statistical metrics in the form of corrected Akaike Information 
Criterion (AICc) and adjusted R2 to segment the local relationships into the six classes of 
Positive Linear, Negative Linear, Convex, Concave, Undefined complex and Non-significant. 
Figure 1 schematically summarizes the used algorithm (ESRI 2019).  
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Figure 1: Schematic representation of the Local Entropy Map algorithm 

4 Results 

4.1 Trends in mortality of CVD and cancer by sex and age 
To explore trends within the mortality data, Figure 2 and Figure 3 were used for visualization. It 
should be noted that these visualizations depict the country-wide mortality before aggregation 
to SAMS. Figure 2 shows the total mortality per year, stratified by sex, while Figure 3 shows the 
trends in sex-stratified mortality by age.  
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Figure 2: Swedish elderly – total CVD and cancer mortality by sex (2010—2015) 

Generally, CVD total mortality in both males and females decreases for the period 2010 to 2015 
by 1172 and 2363, respectively. Cancer mortality in both males and females slightly increases by 
730 and 713, respectively during the study period.   

Figure 3: Variation of CVD and cancer mortality in the Swedish elderly by age (2010-2015) 

Figure 3 shows that cancer mortality curves for both males and females were close to each 
other, with the male mortality slightly higher than the female until around 87 years where the 
order reverses and female mortality becomes slightly higher. Conversely, the CVD mortality 
curves showed more variability with male mortality starting at a higher value compared to the 
female curve. The male CVD mortality curve peaks at about 87 years, before starting to drop. 

2010 2011 2012 2013 2014 2015
CVD-Male 15202 14844 14906 14352 14100 14030
CVD-Female 18171 17589 17660 16963 16350 15808
Cancer-Male 9139 9316 9446 9482 9751 9870
Cancer-Female 8055 8120 8487 8612 8565 8768
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The female CVD curve increases almost exponentially from 65 years to 91 years, before starting 
to drop almost exponentially too. Finally, it can be observed that for both CVD and cancer 
mortality, the females tended to outlive their male counterparts. 

4.2 Correlation analysis 
To distil the possible relationships at a national scale, the results from Pearson’s correlation and 
Moran’s indices (p<0.05 for Pearson’s and 9,999 randomizations for Moran’s) are presented in 
Table 1.  

Table 1: Correlation analysis of CVD and cancer crude mortality rates among the Swedish elderly (2010-2015) 
2010 2011 2012 2013 2014 2015 

Pearson’s r Correlation 

Cancer & CVD [M] 0.504 0.457 0.445 0.458 0.489 0.418 

Cancer & CVD [F] 0.490 0.445 0.387 0.475 0.508 0.470 

Cancer & CVD [Total] 0.636 0.625 0.540 0.597 0.635 0.577 

Moran’s I 

CVD [M] 0.143 0.158 0.156 0.173 0.145 0.177 

CVD [F] 0.090 0.082 0.093 0.079 0.100 0.072 

Cancer [M] 0.135 0.103 0.126 0.116 0.096 0.093 

Cancer [F] 0.106 0.100 0.079 0.093 0.099 0.094 

CVD [Total] 0.133 0.135 0.143 0.151 0.146 0.139 

Cancer [Total] 0.164 0.134 0.152 0.144 0.137 0.135 

Bivariate Moran’s I 

Cancer & CVD [M] 0.130 0.117 0.128 0.129 0.118 0.135 

Cancer & CVD [F] 0.105 0.087 0.093 0.089 0.098 0.088 

Cancer & CVD [Total] 0.145 0.137 0.134 0.137 0.141 0.136 

Table 1 shows that the correlation between CVD and cancer mortality rates was averagely 
positive – 51% (mean = 50.9, s.d = 0.08), in general, for the six-year study period. The correlation 
coefficients (p<0.05) showed no apparent temporal trends. When spatial effects were considered 
in the univariate setting (Moran’s I analyses), the results showed that the index was small and 
positive – indicating that the influence of neighbourhood mortality rates on the SAMS-observed 
mortatilty rates was weak though significant (mean = 0.123, s.d = 0.03). In the bivariate Moran’s 
I, also weak but significant (mean = 0.120, s.d = 0.02) influence of neighbourhood CVD 
mortality rates on the SAMS-level observed cancer mortality rates, and vice versa, was 
observed. In both spatial cases, there were no apparent temporal trends in the Moran’s indices. 
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To ensure the robustness of the obtained indices (for both univariate and bivariate), 9,999 
randomizations  were allowed used for this analysis. 

4.3 Cluster detection 
The analyses in Table 1 being global in nature, do not show where, in Sweden, these 
relationships were significant and where they were not. To investigate for simultaneous 
clustering of CVD and cancer crude mortality rates, the mortality-clusters analysed using 
spatial scan statistics (SaTScan – discrete Poisson) were spatially overlaid to identify 
overlapping areas. The results of this overlay are shown in Figure 4 (2010) and Figure 5 (2015). 

Figure 4: Spatial clustering of CVD and cancer crude mortality rate across Sweden, 2010 (Inset: Stockholm) 
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Figure 5: Spatial clustering of CVD and cancer crude mortality rate across Sweden, 2015 (Inset: Stockholm) 

Figure 4 and Figure 5 show that CVD and cancer clusters overlap most of the time. It also shows 
that most of the CVD mortality rate clusters tend to fall within the cancer mortality rate clusters 
as cancer clusters appear to be larger than CVD clusters. This was common in the central and 
southern parts of Sweden and points to different spatial clustering scales for the two mortalities. 
For example, the percentage overlap (in terms of area) between cancer and CVD for 2010 shows 
that for males, there was a 57.1% overlap while for women, there was a 90.4% overlap. This was 
calculated based on the common areas when compared with the area of CVD clusters. We noted 
minimum clustering around Stockholm area, most common clustering was around the areas in 
the south, mid-central, upper left and right for men while the south, mid-central and the greater 
part of the north had common CVD and cancer clustering.   

4.4 Local Entropy map analysis 
Figures 4 and Figure 5 are to the effect that there exists spatial co-occurrence between crude 
mortality rate clusters of CVD and cancer, and the two mortality rates have somewhat different 
clustering scales. However, they do not show the nature of the relationship between these two 
causes of death. To investigate the nature of their simultaneous relationships, local entropy 
maps were generated and are shown in Figure 6. Whereas we analysed for local entropy using 
male/female stratification, we obtained unstable estimates throughout the years of analysis 
(when compared with the results from spatial scan statistics). We thus adopted the use of total 
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crude SAMS mortality rates. For brevity and given that the patterns are more or less similar, 
only the years 2010 and 2015 were visualized. The remaining years were summarized in Table 
2. 

Figure 6: Local entropy map – relationship types between CVD and cancer crude mortality rate across Sweden 
(2010 and 2015) 

Figure 6 shows local entropy maps for the years 2010 and 2015, using total mortality rates for 
CVD and cancer. These results largely reflect what Figure 4 and Figure 5 show, only that 
mortalities for males and females were combined to get the total in Figure 6. For example, we 
noticed that for both there were many associations and combined clusters in the mid and 
southern parts of Sweden, as well as the right northern parts. Visual inspection and 
interpretation of the legend show that more than half of Sweden indicated no significant 
relationship between the two mortalities. Also, in areas where there was a significant 
relationship, the majority of these relationships were positive linear. That said, other complex 
relationships like concave, convex, and undefined complex existed. These other non-linear 
relationships were scattered around the study area, with the convex one being the more 
pronounced. A convex relationship indicated that the dependent variable (CVD) changed by a 
convex curve as the explanatory variable (cancer) increased, resulting in an upward-arcing 
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curve (concave – results in a downward-arcing curve). The percentages for each relationship 
from 2010 to 2015 are provided by Table 2 (  = 50,  = 0.5). 

Table 2: Percentage of the different relationships from LEM of Swedish elderly (2010—2015) 
2010 2011 2012 2013 2014 2015 

Positive Linear (%) 37 34 31 27 26 28 
Concave (%) 2 1 5 4 2 2
Convex (%) 8 5 6 3 5 7
Undefined Complex (%) 0 0 0 0 0 0
Not Significant (%) 53 59 58 66 67 63 
Total 100 100 100 100 100 100 

Table 2 shows that consistently, for more than half of Sweden the relationship between the two 
mortality rates was not significant. It indicates that whenever there was a significant 
relationship, this relationship was positively linear in 78% (±4%) of the occasions; it was convex 
in 14% (±3%); concave in 7% (±3%); and undefined complex in 1% (±0.4%) of the occasions. 
Therefore, and generally, it shows that for the areas where the relationship was established, it 
tended to be in the order positive linear, convex, concave, and lastly undefined complex 

5 Discussion 

5.1 Trends in mortality by sexes and age 
Our results showed that for both cancer and CVD, males had higher mortality compared to 
their female counterparts. This is consistent with Sweden-specific CVD admission results by 
Rajabi et al. (2018) who observed that men had significantly higher admission rates in the time 
period 2000—2011. It can only be inferred that these higher rates account for the slightly higher 
mortality rates in males in our results. Similarly, in their study of all incidence primary cancer 
cases in the nationwide Swedish cancer registry for the period 1970—2014, Radkiewicz et al. 
(2017) observed significantly higher mortality in men for 27 out of 39 cancer sites when 
compared to women who had only 2 out of 39 sites. Unlike other studies, we observed that the 
trends reversed and female mortality superseded the men’s for both CVD and cancer, past the 
age of 83 years and 87 years, respectively. The non-observance of the reversed trends with 
advanced age in previous studies could be due to the use of general (all-age) population 
compared to our study that is concerned with the elderly (65+ years). 

5.2 Correlation and spatial patterns of crude mortality rates 
Our exploratory study adopted several approaches to capture both the general global trends as 
well as the local patterns in the CVD and cancer data in terms of local clusters and local 
associations. Correlation analysis allowed for quantitative evaluation of the strength of the 
relationship between CVD and cancer mortality rates by reducing the information contained in 

 SAMS observations to a single number, falling into a normed interval (Filzmoser and Hron 
2009). Spatial scan statistics, known for reasonable specificity and sensitivity (Gwitira et al. 
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2018), scaled-down the global patterns into local spatial clusters (Lawson et al. 2016) whose 
overlay showed areas of potential joint CVD and cancer mortality. More importantly, the local 
relationships within the joint mortality were distilled by entropy through LEM. The advantage 
of the entropy approach lies in its non-parametric nature – no prior specification of the 
underlying data model is required (Guo 2010), and no assumptions made on the type of 
relationship existing between the variables, consequently making it more applicable in such 
exploratory studies (Jin and Lu 2017). Moreover, to the best of our knowledge, this is the first 
study considering joint clustering and association of CVD and cancer in Swedish elderly 
therefore assumptions on the relationship nature would miss out on other non-conformal 
relationships established in this study.  

Our results show that CVD and cancer mortality rates in the general Swedish elderly were 
averagely positively correlated (51%). This was further indicated by the small but significant 
global bivariate Moran’s I which measured the influence of neighbourhood mortality of each 
disease to the observed mortality rate in the other (e.g. neighbourhood influence of cancer 
mortality rate on the observed CVD mortality rate at each SAMS). Additionally, our clustering 
results showed that CVD and Cancer mortality rate among the elderly Swedish population did 
not always cluster together in space with about 60% of the country, including areas known for 
high population density like Stockholm, experiencing no significant relationships for the study 
period 2010—2015. This could mean that for a significant portion of Sweden, different 
mechanisms exist between CVD and cancer mortality rates, pointing to the need to still consider 
and treat these diseases as different. This, perhaps, justifies why for long these two diseases 
have been treated as separate disease entities (Giza et al. 2017). 

For the remaining 40% of Sweden, however, there were significant relationships between CVD 
and cancer mortality rates in the Swedish elderly. Our results from local entropy analysis 
showed that CVD and cancer mortality rates were positively related to each other. This positive 
relationship has been widely studied, and could be explained by the two causes of death having 
mechanistic overlaps (Weaver et al. 2013). These underlying mechanisms could be in the form 
of shared CVD risk factors like cigarette smoking, obesity, hypertension, diabetes, 
hyperlipidaemia, and physical inactivity (Giza et al. 2017, Koene et al. 2016) , becoming more 
pronounced in the old age (65+) of our current mortality study. Aside from the common risk 
factors, this positive relationship could be linked to cardiotoxic effects of cancer treatment in the 
form of radiotherapy, chemotherapy, and hormonal therapies (Moslehi 2016, Blaes and Shenoy 
2019), as well as the inherent physical inactivity and weight gain are known to exacerbate CVD 
(Koene et al. 2016). However, given the exploratory nature of our study, our aim was to 
establish spatial co-occurrence, and not to establishing the underlying mechanisms between 
these two causes of death. What is new to existing knowledge is that the relationships between 
these two mortality rates are not always positive and linear, but complex too. These convex, 
concave and undefined complex relationships as we observed, were also observed by Guo 
(2010) and Jin and Lu (2017) in similar studies. 
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Unique to this study was that CVD and cancer mortality rates had different spatial clustering 
scales, with CVD clustering at a smaller scale. By spatially overlaying the clusters obtained from 
scan statistics, the differences in the clustering scales became apparent. Spatial scan statistics are 
known to have reasonable sensitivity and specificity when compared to other cluster detecting 
methods (Wand and Ramjee 2010, Gwitira et al. 2018). This difference in clustering, in essence, 
indicates that at a population scale, CVD mortality clusters exist as enclaves within cancer 
mortality cluster territories. This is consistent with the fact that different cancers have differing 
effects on CVD. For example, in a population-based study of CVD risk factors in survivors of 20 
cancers, Strongman et al. (2019) found that whereas there was an increased CVD risk for breast 
and lung cancers, malignant melanoma, and non-Hodgkin lymphoma, they found a reduced 
CVD risk for prostate cancer and no association for other nine cancer, including bladder cancer. 
In relation to our result, it shows that CVD mortality enclaving in the background of bigger 
cancer mortality clusters could be highlighting areas with elevated cancer-induced or cancer-
promoted CVD mortalities. These areas of joint mortality rate burden would benefit from 
coordinated joint management of both cancer and CVD, while still diseases, as proposed by the 
WHO and an increasing number of scholars (Koene et al. 2016, Coviello 2018, Moslehi 2016, 
Strongman et al. 2019).   

5.3 Limitations 
Like many empirical studies, the analysis in this study has some limitations. Firstly, the scale of 
analysis was limited to the SAMS level as dictated by the population data. SAMS is the official 
level of population-level statistics dissemination in Sweden. As such, the results obtained were 
scale-dependent and would slightly change if the analysis was to be done at another scale. This 
scale-dependence problem is better known as the Modifiable Area Unit Problem (MAUP) 
(Nelson and Brewer 2017). Secondly, being an ecological study, no personal level data was used 
and therefore the observed patterns could not be distilled to their potential risk factors. Also, 
the observed patterns at the ecological scale could be different if observed at individual scales. 
However, given that the study set out to analyse the spatial clustering patterns and 
relationships between CVD and cancer mortality rates, we are convinced that this study 
achieved its set objectives. 

6 Conclusions 
The relationships between cancer and CVD crude mortality rates in the elderly and their spatial 
variation across Sweden were explored in both males and females for the period 2010—2015. 
Our clustering and overlay analysis showed that the two causes of death have different spatial 
clustering scales with CVD’s smaller mortality clusters existing as enclaves within the bigger 
cancer mortality clusters. Additionally, joint entropy analysis showed that cancer and CVD 
mortality rates were not always related pointing to the need for public health planners to 
consider cancer and CVD as separate entities in some areas. However, where they were 
significantly related, the relationship tended to be positive linear, pointing to the need for public 
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health planners to study and consider common mechanisms driving the double mortality rates 
in those areas.  By spatially designating areas with elevated CVD and cancer joint mortality 
rates, our study provides a stepping stone to the CVD and cancer healthcare community by 
informing the authorities of areas where simultaneous and better management of both diseases 
could reduce eventual mortalities, especially among the elderly in Sweden. Finally, our study 
provides an initial stage upon which more focused epidemiologic studies can be made to 
establish the underlying mechanisms and possible place-specific risk factors behind areas with 
elevated CVD-cancer mortality rates within the Swedish elderly. 
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