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Abstract

Collective motion is ubiquitous in biological and synthetic systems across many
length- and timescales. On the macroscopic scale, examples include schools of fish,
herds of sheep and flocks of birds. On the microscopic scale, bacteria, algae and syn-
thetic self-propelled particles exhibit a range of collective phenomena. In suspensions
of swimming bacteria, collective motion is often caused by hydrodynamic interactions
between the swimmers, and is manifested as long-ranged chaotic flows, dubbed active
turbulence. In this work, we study collective motion in simplified models of bacterial
and algal suspensions with particle-resolved lattice Boltzmann simulations. Using an
extended force dipole as a minimal model for a microswimmer, we have been able
to study large systems, containing up to 3 × 106 particles, and to capture inform-
ation about large-scale collective behaviours. We have studied four separate aspects
of collective motion in microswimmer suspensions. First, we performed unpreceden-
tedly large simulations of 3-dimensional active suspensions to test predictions from
kinetic theory about the transition to active turbulence and characterize the ensuing
turbulent state. The focus was then turned to the effects of swimming velocity on
the transition to active turbulence of pusher suspensions. In nature, front- and rear-
actuated microswimmers (so called pushers and pullers, respectively) coexist, which
motivated us to study how the presence of pullers in the suspension changes the col-
lective behaviour of pushers. Finally, motivated by the fact that most experiments are
performed in 2-dimensional geometries, we also investigated and characterized the
collective phenomena in a quasi-2-dimensional system, finding important qualitative
differences compared to unbounded suspensions.
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Popular scientific summary

In many nature documentaries, one can see birds flying in big flocks, fish swimming
together in schools, or sheep moving together as a herd. Moving as one big entity
is often a huge advantage that makes it easier to survive: it is safer to find food and
water if one is shielded in a crowd, hiding away from predators. Similar behaviour
can be observed if one looks into a microscope to study bacteria and algae. These
microorganisms are able to swim on their own by propelling themselves with flagella
connected to their cell bodies. Together, such microswimmers can swim faster with
coherent motion over much larger distances than the individual bacterium. This is
called active turbulence, because if one looks at a video of such a suspension of bac-
teria, they will swim together in a jet-like motion. The properties and origin of such a
collective behaviour of the bacteria is thus an interesting and important phenomenon
to study, and that is the objective of this thesis.

My work focuses on two different types of microswimmers. One has flagella in the
back and propels itself by performing a circular motion with the flagella, it is called
a pusher. Puller microswimmers, on the other hand, have two flagella in the front,
moving in a breaststroke-like pattern. Good examples of pushers and pullers are E.
coli bacteria and the Chlamydomonas algae respectively. Active turbulence occurs only
in suspensions of pusher microorganisms, because they can mutually reorient them-
selves, resulting in the ability of pushers swimming side-by-side, which is not observed
in the case of pullers.

To understand how the properties of the individual microswimmers can lead to dif-
ferent collective behaviour, computer simulations are a good tool. Using different
models for the microswimmers, as well as for their environment, one can mimic dif-
ferent experimental situations, but also understand how they would behave in envir-
onments which might not be easy to realise in an experiment. For example, confining
their motion to a thin layer of fluid, which is often done in experiments, or letting
them move without any boundaries. Computer simulations thus enable us to study
microswimmers in detail, and to see what macroscopic properties different models
would predict.

In this thesis, I studied the hydrodynamic interactions between different microswim-
mers mediated by the fluid in which they move, and how this can result in a collective
motion. Using a rather simple model for the swimmers, we could capture some im-
portant phenomena that occur when bacteria swim together. We could see the active
turbulence in pusher suspensions, and also how the presence of pullers in a pusher sus-
pension changes the dynamics. Confining the microswimmers to a two-dimensional
layer, we also observed clustering of pullers. These are all phenomena that have been
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observed experimentally, which is an indication of that the model used in the sim-
ulations includes the important features to understand what has been observed in
experiments.
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Nomenclature

Latin alphabet

a Effective body radius
c Velocity vector
cs Speed of sound
c(R) Spatial correlation function of the fluid velocity
c(t) Temporal correlation function of the fluid velocity
dr Rotational diffusion coefficient
D Centre of mass diffusion coefficient
e Propulsion direction
E Rate of strain tensor
f Phase-space density
fi Single-particle distribution function
f eq Equilibrium distribution function
F Force
h Height of fluid film
I Unit tensor
kc Critical wavevector
l Swimmer length
lp Average persistence length of the microswimmers
L Side-length of the simulation box
∆L Lattice spacing
n Number density of microswimmers
nc Critical density
N Number of microswimmers
p Pressure
pi Orientation of swimmer i
P Polar order parameter
Pn n-th Legendre polynomial
ri Position of swimmer i
r Position
Re Reynolds number
S Nematic order parameter
t Time
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T Relaxation time
u Momentum
U(r) Fluid velocity
URMS Root-mean-square fluid velocity
vr Radial slip velocity
vθ Tangential slip velocity
vs Swimming speed
V Vorticity tensor
wi Weights of the velocity set
W Flow field generated by the flagellum

Greek alphabet

γ Shape parameter
∆ Ratio of the microswimmer density and the critical density
θ Angle
κ Dipole strength
κn Nondimensionalized dipole strength
λ Tumbling frequency
Λ Non-dimensional microswimmer persistence length
µ Dynamic viscosity
ξ Characteristic lengthscale
ρ Density
τ Characteristic timescale
χ Fraction of pullers
Ψ Probability density
ω Vorticity
Ω Collision operator
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a b

Figure 1.1 (a) A school of barracudas ¹ and (b) collective motion of microtubules mixed with
kinesin. The scale bar represents 100 µm. ²

Most aqueous environments are full of microorganisms, like algae in sea and lake wa-
ter and bacteria in the human body. Some of them can actively propel themselves,
because their survival depends on being able to effectively move around to find food
and better living conditions. This thesis will highlight some of the phenomena arising
from the swimming of microorganisms, and from the forces they apply to their en-
vironment when doing so.

1.1 Active matter

Active matter is a research field at the boundary between physics, biology and che-
mistry, which studies particles, biological or synthetic, that are able to extract energy
from the environment and use that to perform thermodynamic work, thus driving
them out of thermodynamic equilibrium.³-⁵ This work, usually in the form of self-
propulsion, often leads to large-scale collective motion. Macroscopic examples of such
collective motion include bird flocks⁶ and schools of fish (Fig. 1.1a), while examples
of collective motion at smaller scales include motility-induced clustering,⁷ enhanced
diffusion of passive tracer particles in active suspensions,⁸-¹¹ and bacterial or active
turbulence. This denotes large scale flows in bacterial suspensions at high enough
densities, with fluid flows significantly faster than the swimming velocity of an in-
dividual bacterium.¹²-¹⁶ Another experimental example of active turbulence are the
swirls created by microtubules mixed with motor proteins, shown in Fig. 1.1b.

Various theoretical models have been used to describe these experimental phenomena,
starting from basic physical principles. One of the earliest and most widely studied
model of active matter is the Vicsek model,¹⁷ which describes the dynamics of flocking
using self-propelled particles with a simple polar alignment rule. In spite of its simpli-
city, the Vicsek model has proven successful in qualitatively describing the collective
behaviour of groups of animals, like the flocking of birds. Another well-studied mi-
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a b c

Figure 1.2 Some examples of biological microswimmers: (a) Chlamydomonas ¹  (flagellated 
puller alga), (b) E. coli ²  (flagellated pusher bacterium), and (c) Paramecium ²¹ (ciliated euka-
ryote).

nimal active matter model considers suspensions of spherical self-propelled particles
with isotropic repulsive interactions, so-called active Brownian particles. As the den-
sity increases, their local velocity decreases due to collisions, resulting in an instability
leading to separation into dense and dilute phases, dubbed motility-induced phase
separation.¹⁸ Both of these models describe particles that move by exchanging mo-
mentum with a solid substrate, and thus fall into a class called ”dry” active matter.

Microscopic active particles that instead move by swimming through a momentum-
conserving fluid fall into the class of wet active matter, or microswimmers. Since they
are self-propelled, each swimmer is force- and torque-free.³,²² Synthetic swimmers
can have very different shapes and sizes, typically ranging from micrometers to cen-
timeters. The shapes are also varied between platelets, rods, spheres and helices.²² A
common experimental example of synthetic microswimmers are self-propelled Janus
particles,⁷,²³,²⁴ which have two parts with different physical or chemical properties.
The asymmetric structure enables the two hemispheres of the particles to react in dif-
ferent ways to their environment, resulting in self-propulsion. The mechanism for
this can be a chemical reaction catalysed by the particle surface or the local heating
of the particle, generating motion through thermophoresis or local demixing of the
solvent.²² Biological microswimmers, in contrast, typically swim by deforming (part
of ) their bodies. Many species of microorganisms use a collection of flagella to propel
themselves.³,²⁵ Spermatozoa and Caulobacter have only a single flagellum attached to
the body by a rotary motor that turns it,³ while the alga Chlamydomonas (Fig. 1.2a)
has two head-mounted flagella that beat synchronously, resulting in a breaststroke-
like swimming gait.²⁶ Escherichia coli (Fig. 1.2b) and Salmonella typhimurium have
a bundle of side- and rear-mounted helical flagella that rotate as a bundle to propel
the cells.²⁷ When they want to change direction, they unbundle the flagella by ro-
tating them counterclockwise, leading to a so-called ”tumble”. In ciliated species,
like Paramecium (Fig. 1.2c) and other protozoa, the whole surface of the organism is
covered by a carpet of cilia, which beat in an organized wave-like pattern, mediated

3
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by hydrodynamic interactions, leading to self-propulsion.²⁸ In wet active matter, hy-
drodynamic interactions are dominating and as a result of flow fields of the individual
microorganisms, pusher bacteria can mutually reorient resulting in collective motion.

1.2 Goals of this thesis

In this thesis, I will study several aspects of hydrodynamically induced collective phe-
nomena in model microswimmer suspensions, in particular active turbulence. The
main goals of this work are:

• To characterize the turbulent state and the transition from disordered swim-
ming to bacterial turbulence in 3-dimensional pusher suspensions, and com-
pare the results to analytical predictions

• To investigate the effect of varying swimming speed on the transition to bac-
terial turbulence

• To study collective motion in binary mixtures of pushers and pullers

• To investigate the effect of 2-dimensional confinement on the collective beha-
viour in pusher and puller suspensions.

4



2 Swimming at low Reynolds 
numbers

5



2.1 Navier–Stokes equations

In the simulations in this thesis, the effect of hydrodynamic interactions between mi-
croswimmers is studied, where the fluid is described by the Navier–Stokes equations
for an incompressible fluid. These describe the velocity U(r, t) of a fluid with a dens-
ity ρ and viscosity a µ²⁹,³⁰

ρ

{
∂U

∂t
+ (U · ∇)U

}
= −∇p+ µ∇2U+ F, ∇ ·U = 0 (2.1)

where p is the pressure andF contains all forces applied to the fluid. The left-hand side
of the equation describes the effects of inertia, whereas the right-hand side contains the
effect of viscous and external forces. The ratio of the inertial and viscous contributions
is commonly expressed as the dimensionless Reynolds number:

Re =
Inertial forces
Viscous forces

=
ρUl

µ
(2.2)

where l and U represent the typical length and velocity scales of the problem in ques-
tion. The typical size of a bacterium is a few micrometers and the velocity is around
10 µm/s, resulting in Re ≈ 10−4 in water.³⁰ A Reynolds number significantly below
unity means that the inertial forces are negligible, which is clearly the case for mi-
croswimmers. In contrast, larger animals swim at Reynolds numbers where inertial
forces dominate: For small fish Re ≈ 102 and for humans Re ≈ 104.³¹ As we will
see below, this difference has important implications for what swimming mechanisms
are useful at the microscale compared to those adopted by macroscopic animals.

One consequence of the low Reynolds number dynamics of microswimmers is the
scallop theorem,³¹,³² which states that, if a low-Re swimmer deforms its body peri-
odically in a way that is identical when viewed forward and backward in time, its
net motion will be zero. Importantly, this applies independently of the rate of the
transformations, so that performing the same deformation forward and backward at
different speeds cannot lead to net propulsion. It is called the scallop theorem since
scallops swim by rapidly opening their two shells and then closing them at a slower
speed. Thus, they can only propel themselves thanks to inertial forces, while the same
swimming gait would not work for a microswimmer.

6



Figure 2.1 Stream lines of the flow field around a force monopole (left) and a force dipole
(right).

2.2 Flow singularities

In the zero Reynolds number limit, we can neglect the inertial terms in the Navier–
Stokes equations, leading instead to the Stokes equations:³⁰

∇p = µ∇2U+ F, ∇ ·U = 0. (2.3)

In comparison to the full Navier–Stokes equations, the Stokes equations are far less
complex to solve. Due to their linearity, even fairly complex flow fields can thus be
described using a superposition of flow singularities, corresponding to the different
terms in a multipole expansion of the flow field. Performing a multipole expansion,
one arrives at the leading term, which is a Stokeslet (a monopole), which describes
the flow field due to a point force F = Fpδ(r) applied to the fluid at the origin:

U =
F

8πµ
·
(
I
r
+

rr

r3

)
(2.4)

where r = |r| and I is the identity matrix. The flow field is shown in Fig. 2.1a and
decays as 1/r, as can be seen from Eq. 2.4. To approximately describe the flow field
around a microswimmer, we need to proceed to the second term in the multipole
expansion, since the swimmers are force free. The second term in the expansion is the
force dipole. For a point dipole with dipole strength κ, the dipolar flow field is given

7



by

U =
κ

8πr3
(3 cos2 θ − 1)r (2.5)

where θ is the angle and the flow field decays as 1/r2 (Fig. 2.1 on the right). For an
extended force dipole consisting of two forces ±F separated by a length l, κ is given
by

κ = ±Fl

µ
(2.6)

where κ, depending on the relative orientation of the two forces, can be either pos-
itive (pointing away) or negative (pointing towards each other). Translated into
microswimmer language, these two cases correspond to microswimmers that are
either rear-actuated (”pushers”, κ > 0) or front-actuated microswimmers (”pullers”,
κ < 0). Most swimming bacteria are pushers, while the alga Chlamydomonas is com-
monly used as a model puller organism, although it actually switches between pusher
and puller sequences over a period of its beating cycle.³³,³⁴ As we will see below, this
nature of the swimmer flow field (pusher or puller) has large implications on collective
behaviour.
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3 Collective motion in wet 
active matter
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a b c d

Figure 3.1 Schematic flow field around (a) a pusher and (b) a puller. (c) The hydrodynamic
alignment between two pushers and (d) the corresponding antialignment between two pullers.

3.1 Hydrodynamic interactions of microswimmers

The hydrodynamic interactions between swimming cells are important already at low
microswimmer density because they are long ranged.¹²,³⁵-³⁷ We already established in
Chapter 2.2 that a microswimmer is force-free and the flow field around it is dipolar
to leading order and thus decays as 1/r2. We also established that there are two types
of microswimmers depending on the sign of the dipole strength: pushers and pullers.
Due to the orientation of their force dipoles, pushers expel fluid along their main
axis and attracts the fluid perpendicular to it, while pullers do the opposite (Fig. 3.1
a and b). This results in a hydrodynamic attraction between two pushers side-by-
side and a repulsion between two pullers in the same configuration.³,³⁸ The other,
and more important effect of the dipolar flow field is the mutual reorientation of the
microswimmers due to their velocity gradients. As seen in Fig. 3.1c, when two pushers
come close to each other, they will mutually reorient into a configuration where they
swim side-by-side. In contrast, pullers tend to reorient towards a 180◦ angle, thus
destabilizing the side-by-side configuration (Fig. 3.1d).

A biologically important phenomenon is a microswimmer near a boundary. Due to
the hydrodynamic interactions with the wall, this configuration will affect the dynam-
ics of microswimmers in different ways depending on their propulsion mechanism.
For example, E. coli or spermatozoa swim in a circular motion parallel to the wall,
because of the torque from their rotating flagella. Due to their dipolar flow fields,
pusher swimmers tend to align with the surface, just as it would do with another
pusher, while pullers will swim directly towards the wall and therefore accumulate at
the surface.³⁹-⁴¹

10



3.2 Theoretical models of active turbulence

A detailed description of active matter systems and their complex behaviour is chal-
lenging due to the many factors involved, like the cell shape and the nature of its
flow field as well as other, non-hydrodynamic interactions. As mentioned above, act-
ive turbulence is a phenomenon, where pusher microorganisms exhibit large-scale,
turbulent-like, coherent motion.⁴²-⁴⁴ This collective motion occurs when the density
is high enough. To theoretically describe these systems, multiple models have been
suggested. One successful model is called active nematics, which describes the active
suspension using continuum equations.⁴,⁴⁵,⁴⁶ The starting point of these models is a
set of equations describing equilibrium nematic liquid crystals as a base. The velocity
field of the surrounding fluid is then described by coupling the liquid crystal equa-
tions to the Stokes equation, including an extra term due to the ”active stress” caused
by the microswimmers. Again, the sign of this term indicates if the activity is pusher-
or puller-like. Suitable experimental model systems reminiscent of active nematics
models are made of elongated, self-propelled particles, like microtubules mixed with
motor proteins, other filaments or dense suspensions of elongated bacteria. Experi-
mental examples of pushers and pullers are microtubule and kinesin suspensions,⁴³
as seen in Fig. 1.1b and mouse fibroblast cells,⁴⁷ respectively. In the collective state,
at the boundaries of the collective region (jets) topological defects form, where the
orientation of the domain changes.⁴⁸ Active nematic-type models are successful in
capturing large-scale dynamics, but due to their continuum nature they are not able
to describe the interactions at the lengthscale of a particle. These models assume a
nematic alignment even in the absence of activity, which is absent in bacterial sus-
pensions except for at extremely high densities.

Another approach to theoretically describe microswimmer suspensions is kinetic the-
ory. Such a theory starts directly from the equations of motion, describing each
swimmer as a point dipole acting on the surrounding fluid.³⁶,⁴⁹-⁵² The swimmer is
described by the dipole strength, which also determines if it is a pusher or a puller. By
using the Fokker–Planck equation, the equations of motion of the individual swim-
mers can be recast as an equation for the continuum probability density Ψ(r,p, t) of
microswimmers: ⁵³

∂Ψ

∂t
= −∇r · (ṙΨ)−∇p · (ṗΨ) (3.1)

The flux in particle position, ṙ, depends on the swimming velocity and the local fluid
velocity, as well as on the translational diffusion, while the orientational velocity is
modelled using Jeffery’s equation⁵⁴ including thermal rotational diffusion⁵⁰

ṙ = vsp+U(r)−D∇r(lnΨ) (3.2)
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pusher neutral puller

Figure 3.2 Flow fields around a pusher squirmer    (left), neutral squirmer    (middle), and  
puller squirmer    (right).

ṗ = (I− pp) · [(γE+V) · p− dr∇p(lnΨ)] (3.3)

whereD and dr are the centre of mass and rotary diffusion coefficients, I is the identity
matrix, E and V are the fluid rate of strain and vorticity tensors, and γ is the shape
parameter, with γ = 0 corresponding to a spherical swimmer and γ = 1 to an
infinitely thin rod. Performing a linear stability analysis on the homogeneous and
isotropic base state shows that this state is unstable for pusher suspensions, which
has been interpreted as a transition to active turbulence, while puller suspensions
are linearly stable at all densities. This interpretation is furthermore supported by
non-linear simulations of the mean-field equation (Eq. 3.1), which shows chaotic,
large-scale motion similar to what is observed in experiments.

3.3 Computational models of microswimmers

To form an intermediate link between experiments and kinetic theory, one usually
performs simulations using particle-resolved microswimmer models.

Historically, the most well-studied model is the squirmer model, that was originally
developed by Lighthill⁵⁸ and Blake.⁵⁹ Here, the microswimmer propels through an
imposed slip velocity on its surface. It models the motion of microorganisms which
propel themselves using beating cilia covering the surface, such as Paramecium or
Volvox. For a spherical swimmer with axisymmetric motion, the radial and tangential
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slip velocities can be written as:

vr =
∞∑
n=1

AnPn

(p · r
a

)
(3.4)

vθ =
∞∑
n=1

BnVn

(p · r
a

)
(3.5)

where Pn is the n-th Legendre polynomial and Vn is defined by:

Vn(cos θ) =
2

n(n+ 1)
sin θP ′

n(cos θ). (3.6)

The position vector r represents the centre of the particle, p its propulsion direction,
a is the squirmer radius, and An and Bn are constants that characterize the motion
of the swimmers. The fluid velocity is described by the Stokes equations. The ratio
of B2/B1 determines the type of the swimmer. When it is positive, the flow-field
is puller-like and if it is negative it is pusher-like, while B2/B1 = 0 corresponds
to a ”neutral” swimmer which has neither characteristic. The flow fields of all three
types are shown in Fig. 3.2. Starting from a suspension where the swimmers are
randomly distributed, but their orientations are aligned, pushers quickly decorrelate,
while puller suspensions at high densities show flocking with long-ranged polar or-
der at the lengthscale of the whole system.⁶⁰ Furthermore, it has been found that
the hydrodynamic interactions suppress motility-induced phase separation (MIPS)
for spherical squirmers, but using elongated swimmer bodies, the MIPS is instead
enhanced if the force dipole is weak. Furthermore, pullers are more likely to cluster
than neutral swimmers and pushers,⁶¹ in two dimensions, in analogy with the results
found by us and discussed in Chapter 7. In spite of the similar results obtained using
two different models, squirmer collective behaviour is different from that predicted
for purely dipolar swimmers, due to the more complex flow fields and the presence of
excluded volume.

Another particle-based method to simulate collective motion is to use slender rod
swimmers. In this, the particles have a high aspect ratio and they propel themselves
with a force density imposed on half of the rod, while having a no-slip boundary on the
other half. This can result in both pusher and puller dipolar flow fields, depending on
the position of the imposed velocity on the particle. Using this model, one can observe
a transition to active turbulence above a critical density for pusher suspensions, in
accordance with the predictions from kinetic theory. This results in large-scale flows
and enhanced diffusion in of passive tracer particles.⁶²-⁶⁴ Pullers, however, do not
show any bacterial turbulence, as predicted by kinetic theory.
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Figure 4.1 Schematic representation of a model pusher microswimmer.

4.1 Swimmer model

In our simulations, we consider N microswimmers moving through a fluid, repre-
sented by the Navier-Stokes equations as solved by a lattice Boltzmann solver, as ex-
plained in Section 4.2. Each of the swimmers is modelled as extended force dipoles,
with the two point forces representing the propulsive force exerted by the (front- or
rear-mounted) flagella. Since each swimmer is force free, the forces are equal in mag-
nitude with opposite signs, ±Fp, where p is the orientation of the swimmer and
F is the magnitude of the force. The two forces are separated by a length l, which
we use as the basic measure of the swimmer size. A schematic representation of the
swimmer is shown in Fig. 4.1. The force dipole is characterized by the dipole strength
κ as defined in Eq. 2.6, and the sign of κ determines the type of swimmer (pusher or
puller). The position, ri, and orientation, pi, of swimmer i evolves according to the
following equations of motion:³⁶,⁶⁵

ṙi = vspi +U(ri), (4.1)

ṗi = (I− pipi) · ∇U(ri) · pi ≈ (I− pipi) ·
U(ri)−U(ri − lpi)

l
(4.2)

where U(ri) is the fluid velocity evaluated at the position of the swimmer i, vs is
the constant swimming velocity, and I is the unit tensor. The discretized Jeffery’s
equation in Eq. 4.2 was used for an infinite aspect ratio. Jeffery’s equation is used to
describe the reorientation of a particle through a viscous medium. In addition to the
reorientation described by Eq. 4.1 and 4.2, the microswimmers also undergo random
reorientations with a frequency λ. This run-and-tumble motion results in a random
walk, which has a persistence length lp = vs/λ.

Importantly, the microswimmers in this model have no explicitly resolved bodies,
and are thus fully fore-aft symmetric apart from the self-propulsion added through
Eq. 4.1. The introduction of this symmetry breaking can however be used to calculate
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an ”effective body size”, assuming a spherical body of radius a in Fig. 4.1.³⁶ With no
external velocity field present, one can write the force balance of the swimmer as:

Fp− 6πµa(vsp−W) = 0 (4.3)

where the second term on the left-hand side is the Stokes drag on the body, and W is
the flow field generated by the flagellum evaluated at the head of the swimmer. This
is given by a Stokeslet (−Fp) at the position of the flagellum, i.e.

W =
1

8πµl
(I+ pp) · (−Fp) = − Fp

4πµl
. (4.4)

Substituting this into Eq. 4.3, one obtains the following expression for the swimming
speed

vs =
F

6πµa

(
1− 3

2

a

l

)
. (4.5)

The second term in Eq. 4.5 is a correction term to the Stokes–Einstein equation for an
isolated spherical body. An effective radius a of the swimmer’s body can be obtained
from Eq. 4.5 in order to calculate approximate packing fractions that can be compared
with experimental parameters.

4.2 Lattice Boltzmann method

To resolve the hydrodynamic interactions between microswimmers, the lattice
Boltzmann (LB) method was used to solve the Navier–Stokes equations. It is based
on the Boltzmann equation for molecules in a gas:⁶⁶

∂f

∂t
+ uα

∂f

∂rα
+

Fα

ρ

∂f

∂uα
= Ω(f) (4.6)

where f(r,u, t) is the phase-space density of particles with position r and momentum
u at time t, and Ω is the so-called collision operator.

As indicated by its name, in the lattice Boltzmann method the distribution function
at f is instead calculated at discrete points in space at discrete timesteps. Rather than
representing individual fluid molecules, the fluid is thus described through these prob-
ability distributions; LB methods are therefore usually called ”mesoscopic” methods.
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D2Q9 D3Q15

Figure 4.2 Schematic representation of a two- (left) and a three-dimensional LB lattice (right).
The arrows show the set of velocity vectors ci.

Furthermore, the velocity directions are reduced to a finite set, where the number
of possible directions depends on the lattice used. As an example, consider the two-
dimensional lattice in Fig. 4.2 on the left, where the particle in the middle is able to
move in 8 directions or remain at its original position. When the particle moves, it
can do so with two different magnitudes for the velocity; 1 or

√
2, corresponding to

moving along the axes or along the diagonals, respectively. We thus assign a discrete
single-particle distribution function fi(x, t), where the index i ∈ {0, 8} represents
the 9 possible velocity directions (including being stationary), to all lattice points.
By calculating moments of the distribution functions fi, one can then obtain the
macroscopic observables of the fluid. The fluid density ρ can thus be expressed as

ρ =
∑
i

fi(r, t). (4.7)

The fluid velocity is calculated as the average of the microscopic velocities:

U =
1

ρ

∑
i

fi(r, t)ci (4.8)

where ci is the velocity vector pointing in direction i. The velocities together with
their weights form velocity sets that are indicated with DdQq, where d and q repres-
ent the dimension of the system and the number of accessible neighbouring lattice
points, two examples are shown in Fig 4.2. One can discretize the Boltzmann equa-
tion (Eq. 4.6) to obtain the lattice Boltzmann equation:

fi(r+ ci∆t, t+∆t) = fi(r, t) + Ωi(r, t) (4.9)

which describes the particle with a velocity c moving to the lattice point r + ci∆t
during the time step ∆t. Eq. 4.9 can conveniently be separated into alternating
”streaming” steps, where the distribution functions are propagated along the lattice,
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and ”collision” steps, where the probability distributions are relaxed towards their
local equilibrium value. The operator Ωi can take on several forms and describes
particle collisions in an approximate manner. A standard collision operator is the
Bhatnagar–Gross–Krook (BGK) operator:⁶⁷

Ωi(f) = −
fi − f eq

i

T
∆t. (4.10)

The collision step redistributes the particles in phase space and relaxes the system
towards equilibrium f eq

i , where T is the relaxation time, and the equilibrium distri-
bution is given by

f eq
i = wiρ

(
1 +

U · ci
c2s

+
(U · ci)2

2c4s
− U ·U

2c2s

)
(4.11)

where wi represents the weights of the velocity set, cs is the speed of sound, relating
pressure and density as p = c2sρ. Combining Eqs. 4.9 and 4.10 we obtain the lattice
Boltzmann equation with the BGK operator:

fi(r+ ci∆t, t+∆t) = fi(r, t)−
∆t

T
(fi(r, t)− f eq

i (r, t)) . (4.12)

As described above, Eq. 4.12 can be thought of as a two-step process, where the right-
hand side represents the effect of collisions, while the effect of these are then streamed
to the neighbouring sites, as shown by the resulting distribution on the left-hand side.

4.3 Implementation of point forces

The lattice Boltzmann method, as described in Section 4.2, cannot directly be applied
to systems with sedimenting particles, active matter, interacting polymers, etc., since
it only contains the normally encountered pressure and viscous forces. To also include
external forces such as gravity or the forces exerted by swimmers, one needs to im-
plement such forces into the lattice Boltzmann scheme. Unlike gravity, which would
add a spatially constant force over the surface of the particle in colloidal systems, it
is often possible to approximate the effect of a particle with a point force, at least for
distances that are large compared to the size of the particle. The implementation of
such a model has been described by⁶⁸ where the singular forces at the position of the
colloidal particles were regularized over two lattice units in each dimension, using a
method by Peskin.⁶⁹ This scheme enables the interpolation of forces and fluid velo-
cities between the off-lattice swimmers and the lattice fluid. The method introduces
a new set of distribution functions

f̄i(r, t) = fi(r, t)−
∆t

2
Ri(r, t) (4.13)
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in which the propagation of the system can be written

f̄i(r+ ci∆t, t+∆t) = f̄i(r, t) +Ri(r, t)∆t (4.14)

where Ri = −Ωij [fj(r, t)− f eq
j (r, t)] + Φi(r, t) describes the forces and the colli-

sions, where

Φi(r, t) = wi

(
F · ci
c2s

+
(UF+ FU) : Qi

2c4s

)
. (4.15)

Here, Qi = cici − c2sI and F is the force acting on the lattice point. The latter is
obtained by interpolating all swimmer forces using the regularized δ-function⁶⁹

δp(r) =
1

(∆L)3
g
( x

∆L

)
g
( y

∆L

)
g
( z

∆L

)
(4.16)

g(r) =


3−2|r|+

√
1+4|r|−4r2

8 , |r| ≤ 1,

5−2|r|−
√

−7+12|r|−4r2

8 , 1 ≤ |r| ≤ 2,

0, |r| ≤ 2

(4.17)

where∆L is the lattice spacing. With this regularization, one can also easily represent
an extended dipole, like the one used in this thesis, as a combination of two point
forces having the same magnitude, a distance l apart.

4.4 Computational details

The D3Q15 lattice (as in Fig. 4.2) was used with periodic boundary conditions for the
3-dimensional simulations, while in quasi-2 dimensions, no-slip walls were applied
in the z direction. In LB units, we used F = 1.57 × 10−3, l = 1, µ = 1/6 and
λ = 2×10−4, and if not specified otherwise, vs = 10−3. The results are presented in
nondimensionalized units, where the lengthscales are scaled with the swimmer size l
and the timescales with l/vs. These numbers were chosen to ensure the low Reynolds
number limit, which yieldsRe = 6×10−3. We can compare the nondimensionalized
dipole strength κn = F/(µlvs) ≈ 9.4 with the same value for an E. coli, which is
κn ≈ 11.2 using F = 0.42 pN and l = 1.9 µm⁷⁰.
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Figure 5.1 (a) The root-mean-square fluid velocity as a function of swimmer density for push-
ers, pullers and noninteracting swimmers, in a simulation box of L = 150 and vs = 0.001. In (b,
c, d) the fluid velocity variance ⟨U2⟩ divided by the corresponding noninteracting value ⟨U2⟩0 is
plotted for different reduced persistence lengths Λ = vs/(λl). In (b) it is plotted as a function
of swimmer density n and in (c, d) as a function of ∆ = n/nc, obtained from (c) LB simulations
and (d) from kinetic theory. The dashed line represents the noninteracting case.

In this chapter, the main results of Papers i and ii are summarized, where both the
transition to active turbulence and the ensuing collective state was characterized. In
Paper II, we studied the effect of the swimming speed on the transition to collective
motion. Using a three-dimensional simulation box and a large number of swimmers
enabled us to determine the emerging length- and timescales of the collective beha-
viour.

We first investigated the root-mean-square (RMS) fluid velocity, URMS = ⟨U2⟩1/2,
as a function of the microswimmer number density n = N/L3 for pushers, pullers
and noninteracting microswimmers, while keeping the swimming speed constant at
vs = 0.001. Noninteracting swimmers constitute a reference model, where all inter-
actions between the swimmers are switched off, while they are still swimming with
a constant velocity and stirring up the surrounding fluid, corresponding to Eqs. 4.1
and 4.2 with all terms containing U removed. The results of these simulations for the
different types of swimmers are shown in Fig. 5.1a. It is clear that at very low dens-
ities, swimmer–swimmer interactions are negligible, and pushers and pullers become
statistically equivalent. When increasing the density of swimmers, URMS increases
proportionally to n1/2, in accordance with previous results.³⁶ With increasing dens-
ity, pushers and pullers begin to deviate from the noninteracting swimmer results,
although in different ways. As discussed in Chapters 2.2 and 3.1, pullers have a
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U/vs U/vs U/vs n = 0.05  n = 0.15  n = 0.3

Figure 5.2 Snapshots of the fluid velocity field at different microswimmer densities. The ar-
rows show the fluid velocities in the xy plane while the colours show the velocities in the third
dimension.

different single-swimmer flow field compared to pushers and they do not show any
collective behaviour in three dimensions. In accordance with this, the RMS fluid ve-
locity curve for pullers falls below the one for noninteracting swimmers. For pushers,
however, the RMS fluid velocity increases dramatically beyond a density of n ≈ 0.15
indicating a transition to collective motion. This development of collective motion is
clearly visible in Fig. 5.2, which shows snapshots of the fluid velocity field for pusher
suspensions. Consequently, we mostly focused on pushers in the projects described
in Papers i and ii.

As we can see from Eq. 5.3, the critical density is not affected by the swimming
speed, and previous studies⁴,³⁶ have already shown that that bacterial turbulence is
still present for shakers, where vs = 0, even though the effect of the swimming speed
on the transition remains to be investigated. Recent results from kinetic theory⁵² fur-
thermore predict that swimmer–swimmer correlations are important even far below
the transition to collective motion. However, unlike the transition to bacterial turbu-
lence, these pretransitional correlations are predicted to be suppressed by swimming,
making the transition curve steeper. In Paper II, we compare simulation results be-
low the transition to a number of predictions from kinetic theory. We furthermore
studied the effect of swimming speed above the transition, a regime, which is not ac-
cessible using kinetic theory. We varied the swimming speed vs, which we quantify
through the non-dimensional microswimmer persistence length Λ = vs/(λl). The
tumbling frequency was kept constant at the same value as in Paper I, in order to keep
a constant value of the critical density nc. The values used can be found in Table 5.1.
However, as one can see from Table 5.1, the critical density moves to higher values for
the two highest swimming velocities considered (Λ = 25 and Λ = 50). This is not
in accordance with theoretical predictions, but can be explained by the presence of
inertial effects in the LB simulations, which become significant at high swimming ve-
locities. In order to account for this and to be able to compare the curves both directly
and to the predictions from kinetic theory, we plot the fluid velocity variance ⟨U2⟩
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Table 5.1 Swimming velocity vs used in the simulations and the corresponding values of the
reduced persistence length. The values of the observed critical density nc are also shown to-
gether with the corresponding values of∆ at n = 0.1 in order to compare the simulation results
with kinetic theory.

vs Λ nc ∆(n = 0.1)

0 0 0.15 0.7
0.001 5 0.15 0.7
0.002 10 0.15 0.7
0.005 25 0.2 0.5
0.01 50 0.4 0.3

for different values of Λ against the rescaled density ∆ = n/nc, where the nc values
used can be found in Table 5.1. All sufficiently low densities, all pusher suspensions
in Fig. 5.1b behave like noninteracting ones (dashed line), but one can see that the
deviation from noninteracting behaviour gets smaller as Λ is increased, indicating a
suppression of swimmer-swimmer correlations for higher swimming velocities. As a
comparison, the theoretical predictions ⁵² below the transition are plotted in Fig. 5.1c
showing a good correspondence with our LB simulation data.

In order to find the characteristic length- (ξ) and timescales (τ ) of the collective be-
haviour, the decay of the correlation of the fluid velocity was calculated. The spatial
and temporal velocity correlation functions are defined as:

c(R) = ⟨U(0) ·U(R)⟩ (5.1)

c(t) = ⟨U(0) ·U(t)⟩ (5.2)

In Fig. 5.3a, the spatial velocity correlation function of the fluid velocity in pusher
suspensions at four different densities and Λ = 5 is shown. The velocity correla-
tions decay quickly at low densities but becomes significantly more long-ranged in
the transition region and in the collective motion regime. The same behaviour is seen
when looking at the time correlation of the fluid velocity in Fig. 5.3b. To determ-
ine the characteristic length- and timescales of the bacterial turbulence, the value of
r and t were determined when the correlation functions had decayed to 0.2 for the
spatial correlation (dashed line in Fig. 5.3a) and 0.4 for the time correlation func-
tions (Fig. 5.3b). Both the characteristic length- and timescales in Fig. 5.3c show
peaks around the transition density n = 0.15 − 0.2 before decaying to a plateau
value. As the location of the peaks in ξ and τ roughly correspond to the transition
to active turbulence, we furthermore used this data to test previous predictions from
kinetic theory for the value of the critical density nc for the onset of collective motion.
The critical density required for the transition to bacterial turbulence in an infinite,
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Figure 5.3 (a) Spatial and (b) time correlation functions of the fluid velocity for a system with
L = 210 and vs = 0.001 (corresponding to Λ = 5). The dashed line shows the value used
to determine the characteristic length- and timescales. (c) The characteristic length- (ξ) and
timescales (τ ) for L = 150. The dashed lines indicate the critical densities (nc) obtained with
different wavevectors, kc. (d) The characteristic lengthscale for different densities as a function
of the box length L show the finite size effects. The error bars were obtained by subdividing
each simulation into blocks.

unbounded suspension, nc is given by¹²,³⁶,⁴⁹-⁵¹

nc = 5λ/κ (5.3)

For the parameters used in this work, this corresponds to a critical density of nc =
0.106. This is somewhat lower than the transition density as estimated from the sim-
ulations. Kinetic theory shows, that, in three dimensions, the instability occurs at the
largest lengthscale available to the system, corresponding to the critical wavevector
kc → 0. In a simulation, the critical density will, however, change due to the finite
box and the hydrodynamic screening is introduced by the use of periodic bound-
ary conditions (PBCs). We numerically calculated the critical density for different
wavevectors up to kc = 8π/L.⁵¹,⁶⁵ As can be seen in Fig. 5.3c, the result using
the highest wavevector matches the simulation results indicating, that the shift of
the transition density is at least partially a finite-size effect. Using the length- and
timescales, we could also estimate the typical size of the simulation box necessary, to
avoid excessive finite size effects. The lengthscales in Fig. 5.3d seem to reach a plat-
eau above L = 100 for the data in both the transition (n = 0.15) and collective
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Figure 5.4 (a) The spatial velocity correlation functions below the transition (n = 0.1) from (a)
LB simulations and (b) kinetic theory, together with the temporal correlations below the transition
for (c) LB simulations and (d) kinetic theory. The spatial (e) and temporal (f) correlations are also
plotted above the transition (n = 0.5) from LB simulations. Here, the colours are the same as in
(e).

region (n = 0.3). This shows that large-scale simulations (minimum 105 particles)
are needed to study collective motion in bacterial suspensions.

The spatial and time correlation functions were also investigated for different swim-
ming speeds (Fig. 5.4). In panels a and b, the velocity correlation functions are plot-
ted, obtained from LB simulations and from kinetic theory,⁵² respectively. With
increasing Λ the correlations come closer to the data for the noninteracting system,
where there are no swimmer–swimmer correlations confirming the qualitative pic-
ture from the fluid velocity variance data (Fig 5.1). The simulation results are in good
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Figure 5.5 The angle θ between the orientations of two swimmers separated by a distance r.

agreement with the predictions from kinetic theory (Fig, 5.4b). Looking at the time
correlations (Fig. 5.4c and d), the trend is the same for both LB and kinetic the-
ory results: the correlation decreases faster with increasing Λ. There is a quantitative
difference for shakers (Λ = 0) between the two data sets, which could be due to
the approximated values of nc when calculating Λ for the simulations, or the finite
size effect when using a simulation box. Kinetic theory cannot predict the behaviour
above the critical density, so only simulation results are available for both correlation
functions (Fig. 5.4e and f ). The spatial correlations in the collective regime (n = 0.5)
increase monotonically with Λ, which means that the characteristic lengthscales of
the turbulent flow increase with increasing swimming velocity. The time correlations
also increase with Λ, which is the opposite behaviour compared to the case below the
transition. Surprisingly, this means that the timescale increases with increasing vs,
corresponding to a ”slowing down” of the collective flows with faster swimming.

We now turn to characterize the behaviour of the swimmers. In three dimensions, we
find no sign of any density inhomogeneity for the swimmers. In agreement with pre-
vious studies¹²,³⁶,⁵⁰,⁵¹ we find that the transition to bacterial turbulence is completely
due to the mutual reorientation of the pusher swimmers. In order to quantify this, we
looked at the orientational ordering of the swimmers. Defining the angle θ between
the orientation of two swimmers separated by a distance r (Fig 5.5), the polar P (r)
and nematic order parameters S(r) were defined as

P (r) = ⟨P1(cos θ)⟩|ri−rj |=r = ⟨cos θ⟩r (5.4)

and

S(r) = ⟨P2(cos θ)⟩|ri−rj |=r =

⟨
3 cos2 θ − 1

2

⟩
r

(5.5)

where P1 and P2 are the first and second Legendre polynomials.
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Figure 5.6 (a) The polar order parameter P (r) and (b) the nematic order parameter S(r) of the
swimmers at different densities. Solid lines indicate pushers and dashed lines represent pullers.

It is clear from Fig. 5.6a that there is a weak local polar alignment for pushers (solid
lines) and antialignment for pullers (dashed lines). Both of them converge to zero
around r = 5. In the case of the nematic order parameter in Fig. 5.6b, there is anti-
alignment for the pullers (dashed lines), but for pushers there is a significant ordering
at the highest density, which corresponds to the collective region. This indicates that
the transition to active turbulence is driven by the local nematic order induced by
hydrodynamic interactions, which is in accordance with previous theoretical predic-
tions⁵². This correlation is also more long-ranged than the polar ordering and decays
towards zero only above r = 20. These results show that the far-field hydrodynamics
is enough to cause significant nematic ordering of the swimmers even in the absence
of direct collisions between the swimmers, which are, however, likely to strengthen
this ordering. To compare with the lengthscale determined from the fluid statistics,
we further characterized this by integrating the order parameters, in analogy with the
Kirkwood G-factor, which measures the local orientational order in polar fluids:⁷¹

GP (R) ≡
∫ R

0
P (r)4πnr2dr, (5.6)

GS(R) ≡
∫ R

0
S(r)4πnr2dr. (5.7)

The functions GP and GS measure the range of the polar and nematic ordering,
respectively, around a single swimmer. Using the curves in Fig. 5.7a we define the
lengthscales ξP and ξS as the maximum of the corresponding G(R) curves. We can
now compare the lengthscale determined from the swimmers in Fig. 5.7b with our
previous results for the fluid velocity. The shape of the curves is similar to those in
Fig. 5.3b, but there are quantitative differences in the ξ-values. In the case of ξP ,
this could be due to the arbitrary cutoff used when analysing the spatial correlation
functions. The ξS curve, however, is shifted to higher values and with larger statist-
ical fluctuations, in accordance with the long-ranged nematic ordering in Fig. 5.6b.
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Figure 5.7 Characteristic lengthscales measured from the local polar and nematic ordering of
the swimmers. The cumulative polar order, GP , (a) and the resulting lengthscales (b). The error
bars were obtained by subdividing the simulations into four equal time intervals.

Nevertheless, we can conclude that all three methods used to obtain the characteristic
lengthscales in bacterial turbulence yield a maximum around the transition density
and go to a finite value in the collective regime, although the precise values of ξ differ
somewhat between the methods.
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