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To my parents





Abstract

Non-smooth convex optimization problems occur in all fields of engineering.
A common approach to solving this class of problems is proximal algorithms,
or splitting methods. These first-order optimization algorithms are often sim-
ple, well suited to solve large-scale problems and have a low computational
cost per iteration. Essentially, they encode the solution to an optimization
problem as a fixed point of some operator, and iterating this operator even-
tually results in convergence to an optimal point. However, as for other first
order methods, the convergence rate is heavily dependent on the conditioning
of the problem. Even though the per-iteration cost is usually low, the num-
ber of iterations can become prohibitively large for ill-conditioned problems,
especially if a high accuracy solution is sought.

In this thesis, a few methods for alleviating this slow convergence are stud-
ied, which can be divided into two main approaches. The first are heuristic
methods that can be applied to a range of fixed-point algorithms. They are
based on understanding typical behavior of these algorithms. While these
methods are shown to converge, they come with no guarantees on improved
convergence rates.

The other approach studies the theoretical rates of a class of projection
methods that are used to solve convex feasibility problems. These are prob-
lems where the goal is to find a point in the intersection of two, or possibly
more, convex sets. A study of how the parameters in the algorithm affect the
theoretical convergence rate is presented, as well as how they can be chosen
to optimize this rate.
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1
Introduction

Optimization problems occur naturally in almost every branch of science and
engineering. In many cases it is natural to minimize a cost function, whether
it is finding the shortest path, the least expensive policy, or the most energy
efficient design. Optimization problems also occur naturally whenever there
is uncertainty, for finding the most likely outcome or model, in areas such
as statistics, economics, control, medicine and many more. In other cases,
the function to be minimized is not directly based on a cost or statistical
property, but rather chosen to produce a favorable solution out of a set of
feasible solutions, such as when regularizing to increase sparsity or promote
smoothness.

To be able to solve a generic optimization problem, it is necessary to
know something about the properties and structure of the problem — is the
solution unique, is a local minimum also a global minimum, what smoothness
properties are known, and how does the function value correspond to the
quality of the solution? Because of the large variation in properties between
different problems and fields, there exists a large set of algorithms, specialized
to solve different classes of problems.

In the field of convex optimization, several of these properties are known
and it is possible to create algorithms for a large set of applications. Although
these algorithms might not be the most efficient possible for a specific prob-
lem, their properties are often well studied and understood, making it possible
to create general purpose solvers.

Convex optimization has become increasingly popular, and is used in a
wide variety of fields. Even non-convex problems are often relaxed or re-
formulated to be solved using tools from convex optimization. A common
example is the branch-and-bound approach for mixed-integer quadratic pro-
gramming [Fletcher and Leyffer, 1998].

There are several mature and robust solvers that can be used for gen-
eral purpose convex optimization, from specialized open source alternatives
such as SeDuMi [Sturm, 1999] and SDPT3 [Toh et al., 1999], to more gen-
eral non-convex solvers such as IPOPT [Wächter and Biegler, 2006], as well
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Chapter 1. Introduction

as commercial solvers such as MOSEK [Andersen and Andersen, 2000] and
Gurobi [Gurobi Optimization LLC, 2020].

These solvers are often interior-point solvers with a computational com-
plexity that becomes problematic as the problems get larger.

In this thesis, splitting methods that can solve large sets of non-smooth
convex problems are studied. Although some structure of the problem is
assumed, the algorithms are designed independently of any specific knowledge
of the underlying problem. These methods are generally designed to have a
lower computational complexity, and are therefore better suited to handle
large scale problems.

This thesis also focuses on algorithms designed for a subclass of convex
optimization problems — convex feasibility problems. These problems, where
a point in the intersection of convex sets is sought, have a wide range of ap-
plications. A common application is image recovery in various fields [Youla,
1978; Stark, 1990], such as MRI recovery [Samsonov et al., 2004] and radi-
ation therapy treatment planning [Censor et al., 1988]. Other applications
include antenna design [Junjie Gu et al., 2004], solving the Dirichlet prob-
lem [Browder, 1958], H∞ robust control design [Packard et al., 1992], robust
stability analysis [Feron et al., 1995], and many more [Combettes, 1997].

It is also possible to reformulate many convex optimization problems into
feasibility problems. The most obvious approach is to find a solution with an
upper bound on the function value. Bisection can then be used iteratively
to find solutions with lower cost, until the optimal solution is found. This
can be done for any convex optimization problem. Another approach is to
exploit duality and directly encode the optimality conditions in a feasibility
problem. This is illustrated for the case of conic programming in Section 2.4.

A common problem for these splitting methods is the potentially slow
convergence rate, especially when the problem is ill-conditioned. This thesis
is focused on analyzing and improving upon this problem.

1.1 Outline
The rest of this thesis is outlined as follows. In the remainder of this chapter,
some basic notation and definitions are introduced. Chapter 2 introduces the
theory and algorithms that form the basis of this thesis, and Section 2.6 gives
an overview of the contents of each of the papers. The papers that this thesis
is based on are listed in Chapter 3, where the individual contributions of the
authors are declared. Lastly, the collection of papers that form the bulk of
this thesis is included.

14



1.2 Notation and Definitions

1.2 Notation and Definitions
This section introduces the notation and some basic definitions that are used
throughout this thesis.

Notation
The open and closed intervals are denoted (a, b) and [a, b] respectively, and
the extended real line is defined as R := R ∪ {+∞}. The scalar product
is denoted 〈x, y〉 with corresponding norm ‖x‖2 :=

√
〈x, x〉. The adjoint of

a linear operator L is denoted by L∗. For simplicity, we assume that all
functions f are defined in the whole space Rn, and allow for the image to be
in R.

We note that many of the results and concepts in this thesis, but not all,
can be naturally extended from Rn to Hilbert-spaces. However, to simplify
the notation, and since it often suffices in practice, we have limited most
results to Rn.

Convex Optimization Theory
Definition 1—Convex Set
A set C is convex if for all x, y ∈ C and α ∈ [0, 1]

(1− α)x+ αy ∈ C.

Definition 2—Relative Interior
For a convex set C, the relative interior is the set

ri(C) := {x ∈ C | ∀y ∈ C ∃α > 1 : αx+ (1− α)y ∈ C}.

Definition 3—Projection onto Convex Set
The orthogonal projection onto a nonempty closed convex set is C defined
as

ΠC(x) := argmin
z∈C

‖x− z‖2.

Definition 4—Relaxed Projection onto Convex Set
The relaxed projection, with relaxation parameter α ∈ R, onto a nonempty
closed convex set C is defined as

Πα
C(x) := (1− α)x+ αΠC(x).

Definition 5—Convex Cone
A convex set C is a convex cone if for all x ∈ C and α > 0

αx ∈ C.

15



Chapter 1. Introduction

Definition 6—Convex function
A function f : Rn → R, is convex if for all x, y ∈ Rn and α ∈ [0, 1]

f((1− α)x+ αx) ≤ (1− α)f(x) + αf(y).

Definition 7—Epigraph
The epigraph of a function f : Rn → R is the set

epi(f) := {(x, y) ∈ Rn × R | f(x) ≤ y}.

Definition 8—Closed (lower semicontinuous)
We say that a function is closed if the set epi(f) is closed.

Definition 9—Smoothness
A function f : Rn → R is β-smooth if it is continously differentiable with
gradient ∇f , and if for all x, y ∈ Rn

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

Definition 10—Effective Domain
The effective domain (or support) of a function f : Rn → R is defined as the
set

dom(f) := {x ∈ Rn | f(x) <∞}.

We say that a function f is a proper function if dom(f) 6= ∅, i.e. f 6≡ ∞. We
note that f can be convex only if dom(f) is a convex set.

Definition 11—Subdifferential
The subdifferential of a function f : Rn → R at a point x ∈ Rn is defined as

∂f(x) = {s ∈ Rn | f(y) ≥ f(x) + 〈s, y − x〉,∀y ∈ Rn}.

A vector s is said to be a subgradient to f at x if s ∈ ∂f(x).

An illustration of subgradients is shown in Fig. 1.1.

Definition 12—Linear convergence
Let (xk)k∈N be a sequence in Rn that converges to x∗ ∈ Rn. The rate is said
to be linear if

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= µ,

for some µ ∈ (0, 1). The rate is sublinear if the result holds only for µ = 1 .
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Figure 1.1 Illustration of subgradients to f(x) = max(x2, x) at different
points. The affine minorants (blue dotted) are shown with their normals
(s,−1) (black) for some s ∈ ∂f(x). The function is differentiable at −0.5
so the subdifferential satisfies ∂f(−0.5) = {∇f(−0.5)}. At 0, the function
is not differentiable and several subgradients si ∈ ∂f(0) are illustrated. In
particular 0 ∈ ∂f(0), so a minimum is achieved at x = 0 by Fermat’s rule.
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2
Background

This chapter introduces the basic concepts and algorithms that form the basis
of the theory and algorithms in this thesis. The main concepts are fixed-point
iterations, averagedness, and the proximal operator. The theory surrounding
these concepts is vast and technical even in the setting of convex optimization.
This section is not meant to be an in-depth treatment of these concepts, but
rather provide a light overview of the theory and algorithms, with focus on
intuition.

For a full, mathematically rigorous background on the concepts and the-
ory that underlie this thesis, the reader is referred to one of the many text-
books on convex optimization, for instance [Bauschke and Combettes, 2017;
Rockafellar, 1970; Hiriart-Urruty and Lemarechal, 1996].

Smooth optimization generally considers problems of the form

minimize f(x) (2.1)

where f : Rn → R is differentiable. These problems are often solved using
gradient and Newton-type methods by searching for a point where ∇f(x) =
0, which is equivalent to x being a local minimizer. In this thesis, we focus on
non-smooth problems where these methods are not applicable. In particular,
we consider proximal algorithms, also called splitting methods or first-order
algorithms. The computational cost of these methods generally scales well
with the dimension of the problem, making them suitable for large scale
optimization. Although these first order algorithms often have a relatively
low cost per iteration, but may suffer from slow convergence rate when the
problem is ill-conditioned. This can be contrasted to Newton-type methods,
where each iteration becomes expensive as the problem size grows, but where
the number of iterations tends to stay small.

To introduce the concepts and algorithms that are relevant for this thesis,
the following problem formulation is considered, which is common in the
setting of splitting methods

minimize
x

f(x) + g(x),

18



2.1 Algorithm Primitives

where f : Rn → R is convex and possibly smooth and where g : Rn → R
is convex and non-smooth. By allowing either of the functions to be zero,
both smooth and non-smooth optimization problems can be written in this
form. A minimizer to this problem satisfies 0 ∈ ∂(f(x) + g(x)), which under
appropriate assumptions on f and g is equivalent to 0 ∈ ∂f(x) + ∂g(x).

2.1 Algorithm Primitives
The two main primitives that are used to create algorithms in this thesis, are
the gradient step and the proximal operator.

The gradient descent step can be applied to a smooth function f : Rn → R
and is written

I − γ∇f

where ∇f is the gradient of f and γ > 0 is a step-length.
For a non-smooth function, it is not possible to use gradients, instead a

tool for solving these problems is the proximal operator, or prox operator for
short.

Definition 13—Proximal operator

proxγf (z) := argmin
x

(
f(x) +

1

2γ
‖x− z‖22

)
where γ > 0.

This operator can be seen as an implicit gradient step. From the definition,
we see that x = proxγf (z) only if

z ∈ x+ γ∂f(x),

i.e., x is a point such that a subgradient ascent step from x with length γ
results in z. An illustration of the proximal operator is shown in Fig. 2.1.

In the special case when f is an indicator function

iC(x) :=

{
0 if x ∈ C
∞ else

of a closed and nonempty convex set C, the prox reduces to the the orthogonal
projection

proxγiC (z) = argmin
x∈C

‖x− z‖2 =: ΠC(z).

Applying the prox operator requires solving an optimization problem,
which can be computationally expensive for a general function f . However,
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Figure 2.1 Illustration of the proximal operator x = proxγf (z) =

argminx(f(x) + 1
2γ
‖x − z‖22) for γ = 0.5 and different points zi. The func-

tion f(x) = max(x2, x) is shown in red, and the function to be minimized:
f(x) + 1

2γ
‖x − zi‖22, is shown with blue dotted lines for different points zi.

The minimizing points of these functions, i.e. xi = proxγf (zi), are marked
with blue crosses.

for many functions such as quadratic functions, the `1 and `2 norms, as well
as indicator functions of many convex sets, it has a closed form solution, or
is relatively simple to solve. When this is the case, the function is said to be
proximable.

2.2 Fixed-Point Iterations
A common tool for creating and analyzing an optimization algorithm is to
formulate the optimization problem as a fixed-point problem

find x

s.t. x ∈ Sx

20



2.2 Fixed-Point Iterations

x̄ x

L = 1
L = 0.75
L = 0.5
L = 0.25

Figure 2.2 Illustration of an L−Lipschitz operator S for different Lips-
chitz constants L. The shaded discs illustrate the different areas to which
Sx is restricted when x̄ ∈ fixS.

where S is some operator and any point x̄ ∈ fixS := {x | x ∈ Sx} is either
a solution to the original optimization problem, or a point from which the
solution can be easily extracted. An algorithm can then be created as

xk+1 ∈ Sxk,

as long as the operator S is such that the sequence (xk)k∈N converges to a
fixed point. To simplify the notation in the remainder of this chapter, it is
assumed that the operators S are single valued.

One such property that guarantees convergence to a fixed point is
L−Lipschitz continuity with L < 1, which is called a contraction.

Definition 14—Lipschitz Continuous Operator
S : Rn → Rn is L−Lipschitz continuous if for all x, y ∈ Rn

‖Sx− Sy‖ ≤ L‖x− y‖.

With y = x̄ ∈ fixS and xk+1 = Sxk it follows that

‖xk+1 − x̄‖ = ‖Sxk − Sx̄‖ ≤ L‖xk − x̄‖

and therefore xk converges linearly to x̄.
However, it is often not possible to create an operator that is cheap to

evaluate with L < 1, and instead sometimes a 1−Lipschitz continuous oper-
ator has to suffice.

Definition 15—Nonexpansive operator
T : Rn → Rn is nonexpansive if it is 1−Lipschitz continuous, i.e., if for all
x, y ∈ Rn

‖Tx− Ty‖ ≤ ‖x− y‖.

Convergence is no longer guaranteed for a nonexpansive operator, a simple
counter example is a rotation around the unique fixed point 0. However, it
is possible to create an operator that converges through averaging.
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x̄ x

α = 1
α = 0.75
α = 0.5
α = 0.25

Figure 2.3 Illustration of an α−averaged (α < 1) and nonexpansive (α =
1) operator S for different α. The discs illustrate the different areas to which
Sx is restricted when x̄ ∈ fixS. The shaded regions can be seen to be convex
combinations of the area where ‖x̄− x‖ ≤ 1 and the point x.

Definition 16—Averaged Operator
S : Rn → Rn is an α−averaged operator if

S = (1− α)I + αT

where T is nonexpansive, and α ∈ (0, 1).

An illustration of averaged operators is shown in Fig. 2.3. We first note
that fixT = fixS which follows directly from the definition of an averaged
operator. Moreover, letting y = x̄ ∈ fixS and xk+1 = Sxk it follows that

‖xk+1 − x̄‖ = ‖Sxk − Sx̄‖ ≤ ‖xk − x̄‖

with equality only if xk ∈ fixS [Bauschke and Combettes, 2017, Prp. 4.35]. It
is then possible to show that xk → x̄ for some x̄ ∈ fixS as k →∞ [Bauschke
and Combettes, 2017, Thm. 5.15]. However, the convergence rate is generally
sublinear when iterating averaged operators.

Examples
We now illustrate how these properties can be used to show convergence on
two simple problem formulations.

The Gradient Method. The gradient method for minimizing a smooth
function f is defined as

xk+1 = xk − γ∇f(xk).

With γ > 0 it is clear that x ∈ fix(I − γ∇f) if and only if ∇f(x) = 0.
Therefore, for convex functions, a fixed point is also an optimal point.

If the function f is both smooth and convex, then it can be shown that
the operator

I − γ∇f
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is α−averaged for sufficiently small γ > 0 [Bauschke and Combettes, 2017,
Thm. 18.15, Prp. 26.1 (iv)(d)]. If f is also strongly convex, then the operator
is contractive [Bauschke and Combettes, 2017, Ex. 22.4(iv), Prp. 26.16]. The
algorithm therefore results in convergence, either linear or sub-linear, to an
optimal point, as long as a fixed point exists, which is always the case for
contractions, but not necessarily so for averaged operators.

Proximal Point Algorithm. For minimization problems where the func-
tion f is not smooth, but instead proximable, it is possible to use the proximal
point method

xk+1 = proxγf (xk).

When f is proper, closed and convex, we note that x ∈ fix(proxγf ) if
and only if 0 ∈ ∂f(x). That is, the set of fixed points of the prox operator
coincides with the set of optimal points of the function. Moreover, the prox
operator is 1

2−averaged, or firmly nonexpansive, for convex f [Bauschke and
Combettes, 2017, Prp. 12.28]. This gives convergence for the proximal-point
algorithm to a minimum of f , as long as a minimum exists.

2.3 Splitting methods
The examples in the previous section considered problems where the function
was either smooth or proximable. For many interesting problems, neither of
these properties hold. However it is often possible to split the problem into
two functions, such that each function has favorable properties. A common
formulation is the composite form

minimize
x

f(x) + g(x),

where f is either smooth or proximable, and g is proximable.

Forward-Backward Splitting
One setting where the forward-backward algorithm can be applied is prob-
lems of the form

minimize
x

f(x) + g(x)

where f : Rn → R is β-smooth and convex, and where g : Rn → R is proper,
closed and convex. The algorithm

xk+1 := proxγg(xk − γ∇f(xk)),

where γ ∈ (0, 2
β ).
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It is easy to verify that x̄ is a fixed point to the algorithm if and only if

0 ∈ ∂g(x̄) +∇f(x̄),

which is equivalent to it being a minimum under the assumptions
above [Bauschke and Combettes, 2017, Cor. 16.48]. Furthermore, the algo-
rithm is a composition of two averaged operators, which itself is an averaged
operator [Bauschke and Combettes, 2017, Prp. 4.46]. The algorithm will
therefore converge to an optimal point, if a minimum exists.

Douglas-Rachford Splitting
Another algorithm is the Douglas-Rachford splitting method. It can be ap-
plied to problems of the form

minimize
x

f(x) + g(x) (2.2)

where both f, g : Rn → R are proper, closed, convex and proximable. The
algorithm is given by

xk := proxγg(zk)

yk := proxγf (2xk − zk)

zk+1 := zk + 2α(yk − xk)

where γ > 0 and α ∈ (0, 1). With the definition of the reflected proximal
operator

Rγf (x) := 2proxγf (x)− x
the algorithm can also be written as

zk+1 := ((1− α)I + αRγgRγf )zk.

Since the prox is 1
2−averaged, the reflected proximal operators Rγf and

Rγg are nonexpansive. The composition RγgRγf is therefore also nonexpan-
sive [Bauschke and Combettes, 2017, Prp. 4.31]. The algorithm is thus an
averaging of a nonexpansive operator, and the algorithm will converge to a
fixed point z̄.

A main difference between the Douglas-Rachford algorithm and for ex-
ample Forward-Backward is the set of fixed points. z̄ is a fixed point if and
only if

0 ∈ ∂f(x̄) + ∂g(x̄)

where x̄ := proxγg(z̄). So a fixed point z̄ is not necessarily a solution to the
original problem, but it is easy to recover a solution x̄ from it. The algorithm
is known as the Peaceman-Rachford algorithm when α = 1. However, this
algorithm is not guaranteed to converge under standard assumptions.
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Alternating Direction Method of Multipliers
The alternating direction method of multipliers (ADMM) can be applied to
problems of the form

minimize
x,z

f(x) + g(z)

s.t. Ax+Bz = c

where f : Rn → R, g : Rm → R are proper closed and convex and A ∈
Rp×n, B ∈ Rp×m and c ∈ Rp.

The algorithm can be written as

xk+1 := argmin
x
{f(x) +

ρ

2
‖Ax+Bzk − c+ uk‖22}

yk+1 := 2αAxk+1 − (1− 2α)(Bzk − c)

zk+1 := argmin
z
{g(z) +

ρ

2
‖yk+1 +Bz − c+ uk‖22}

uk+1 := uk + (yk+1 +Bzk+1 − c)

where ρ > 0 and α ∈ (0, 1). It is well known that this algorithm can be seen
as Douglas-Rachford splitting on a dual formulation of the problem, see e.g.
Paper I Appendix B.

2.4 Feasibility Problems and Algorithms
Feasibility problems are problems that seek a point that satisfies a set of
constraints, with no regard to any objective function. A general formulation
is the following

find x
s.t. x ∈ C1 ∩ C2 ∩ . . . Cp,

where each set Ci is nonempty, closed and convex.
By using indicator functions this can be written as an optimization prob-

lem, and in the case of two convex sets C and D, it is of the composite
form (2.2) for which, for example, Douglas-Rachford splitting can be applied

minimize
x

iC(x) + iD(x).

Some problems are naturally expressed as feasibility problems, but it
is also possible to reformulate optimization problems into settings where
algorithms designed for feasibility problems can be applied. The simplest
example is

minimize
x

f(x)
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where f is a (quasi-)convex function. Since the set {x | f(x) ≤ c} is convex
for all c ∈ R, it is possible, through for example bisection over c, to solve a
sequence of feasibility problems

find xk

s.t. f(xk) ≤ ck

until the lowest ck is found where the problem still has a feasible solution xk.
If such a ck exists, xk will satisfy ck = f(xk) with f(x) ≥ f(xk) for all other
x, i.e. xk is a minimizer to f .

Conic Primal-Dual Embedding Sometimes it is possible to reformulate
an optimization problem as a single feasibility problem by embedding the
optimality conditions into the problem. One example of embedding optimal-
ity conditions is the primal-dual embedding in conic optimization, where the
primal and dual optimality conditions are combined to generate a feasibility
problem. Consider the conic optimization problem

minimize
x,s

cTx

s.t. Ax+ s = b
(x, s) ∈ Rn ×K

where K is a product of nonempty, closed and convex cones. Many problems
can be reformulated into this form.

The dual problem can be formulated as

minimize
y

−bT y
s.t. −A>y = c

y ∈ K∗

where K∗ is the dual cone of K. Under the assumption of strong duality, all
optimal points x∗, y∗ satisfy c>x∗ = −b>y∗. Thus, embedding the primal and
dual problems, and replacing the objectives with the optimality condition,
results in the primal-dual embedding

find (x, s, y)

s.t.

A I 0
0 0 −AT
cT 0 bT

xs
y

 =

bc
0


(x, s, y) ∈ Rn ×K ×K∗.

The optimization problem is therefore rewritten into a feasibility problem,
which under appropriate assumptions, such as strong duality and primal/dual
feasibility, is equivalent to the original. In particular, this formulation results
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in a feasibility problem with one affine set and one convex cone, and it is
therefore possible to apply, for example, the Douglas-Rachford algorithm to
solve it.

There are other reformulations that try to handle cases where the problem
is not necessarily consistent, such as the Homogeneous Self-Dual Embedding
(HSDE). This formulation is used in the SCS solver where ADMM is used to
solve the feasibility problem, and is described in detail in [O’Donoghue et al.,
2016].

Alternating Projections
The method of alternating projections (AP or MAP) is a classic and well
studied algorithm for solving feasibility problems. It was first introduced by
von Neumann for two subspaces [Neumann, 1950], and later generalized to
linear inequalities by [Agmon, 1954] and to more general sets by [Bregman,
1965]. It has been applied to a range of problems, both convex and non-
convex [Deutsch, 1992].

For the problem of two convex sets C and D, the algorithm is simply

xk+1 = ΠCΠDxk,

where ΠC and ΠD are the projection operators onto the correspond-
ing sets. The operators are 1

2−averaged, and their composition is
2
3−averaged [Bauschke and Combettes, 2017, Prp. 4.16, Prp. 4.44]. Moreover,
the set of fixed points of the composition coincides with the intersection. The
algorithm will therefore converge to a point in the intersection whenever it
is nonempty, but the convergence rate can be very slow.

Generalized Alternating Projections
This algorithm is a generalization of alternating projections. It allows for
(over-)relaxed projections onto the convex sets, as well as an averaging of the
iteration. In the case of two convex sets C and D, it is defined as

xk+1 = (1− α)xk + αΠα2

C Πα1

D xk, (2.3)

where α ∈ (0, 1] and Πα2

C ,Πα1

D are relaxed projection operators with relax-
ation parameters α1, α2 ∈ (0, 2], see Fig. 2.4 for an illustration. Since the
projections are 1

2−averaged, the relaxed projections will be at least nonex-
pansive. For details on the fixed-point sets for different choices of the pa-
rameters, see Paper IV. Variations of this method has been presented under
other names, such as generalized Douglas-Rachford in e.g. [Dao and Phan,
2019] and method of alternating relaxed projections in [Bauschke et al., 2014].

There are several similar relaxations that have been presented over the
years. Early versions were defined for solving systems of linear inequali-
ties [Agmon, 1954; Motzkin and Shoenberg, 1954; Gubin et al., 1967], but
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x?

x1

xAP
2

xDR
2

Figure 2.4 Illustration of one iteration of the generalized alternating
projections algorithm when applied to a feasibility problem with one affine
set D (line) and a convex set C (gray), from the point x1. The point xAP

2

is generated by the alternating projections algorithm with the short arrows
representing the projections. The point xDR

2 is generated by the Douglas-
Rachford algorithm, i.e. reflection on the line D, reflection on the set C, and
half averaging with x1, each represented by the long arrows. The generalized
alternating projections method can result in any point spanned by the large
triangle, depending on the relaxation parameters α, α1α2.

were soon extended to convex sets [Bregman, 1965], and are known un-
der different names such as relaxed alternating projections and partially re-
laxed alternating projections [Bauschke et al., 2016] depending on their pa-
rameterization. Another slightly different approach is Dykstra’s projection
method [Dykstra, 1983].

The formulation (2.3) above requires only one projection on each set per
iteration, and captures many of the previous variations as special cases. In
particular, it recovers alternating projections when α = α1 = α2 = 1, the
standard Douglas-rachford algorithm when α = 1/2, α1 = α2 = 2 and the
Peaceman-Rachford algorithm when α = 1, α1 = α2 = 2.

2.5 Existing Work
This section presents an overview of some of the related work on convergence
rates for splitting methods, both practical and theoretical approaches. The
body of research in this field is very large, and this section is meant to give an
overview of some of the approaches and results, but is in no way exhaustive.
Each of the papers in this thesis contains a more specific background for their
respective topics.
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A common approach to improve convergence is to re-scale the problem so
that it is better conditioned, or equivalently changing the metric on which the
algorithm is based. This approach is often dependent on the specific algorithm
or problem, but there has been research on computing variable metrics in
the general setting of monotone inclusion problems, see [Combettes and Vũ,
2014]. In [Giselsson and Boyd, 2015] the authors compute an a priori optimal
metric for the forward-backward algorithm, however, most approaches rely
on adaptatively updating the scaling.

With the recent interest in deep learning, several adaptive methods have
been studied for scaling gradient-descent steps, such as ADAGRAD [Duchi
et al., 2011], ADAM [Kingma and Ba, 2014] and RMSProp [Hinton et al.,
2012]. These algorithms can be seen as an adaptive diagonal re-scaling of
the problem, that often improves the practical convergence rates, but with
limited theoretical results to back it up.

Another approach is to incorporate second-order information into the
algorithm as in Newton or quasi-Newton methods, as BFGS, LBFGS, Broy-
den’s method and Anderson acceleration that locally can result in super-
linear convergence rates. These methods can be applied directly on the fixed-
point equations, which are usually nonlinear and nonconvex even if the orig-
inal problem is convex. Therefore, when applied to splitting problems, they
often lack global convergence guarantees, and need to be combined with a
potentially slower, but globally stable algorithm. A framework for doing this
was presented with a focus on line-search in Paper I, and several specific
algorithms with similar characteristics have been presented since.

Recently, an algorithm for accelerating any type of nonexpansive mapping
was proposed in [Zhang et al., 2018]. The algorithm builds on an Anderson
acceleration scheme [Anderson, 1965; Fang and Saad, 2009], with a safe-guard
that falls back on the non-accelerated algorithm. Although the numerical
results are impressive, it comes with no guarantees on improved convergence
rate.

In [Themelis and Patrinos, 2019], the authors propose a similar approach
to increase the local convergence of fixed-point iterations. The algorithm
is based on quasi-Newton directions, that through back-tracking, will be
accepted based on a safe-guard. Under some assumptions, such as metric
sub-regularity, the authors show that the scheme can generate super-linear
convergence. The algorithm seems to perform very well on some problems,
but there is no comprehensive numerical evaluation of the algorithm as far
as the author knows.

Another class of improvements are various momentum-type acceleration
schemes such as Nesterov acceleration [Nesterov, 1983]. One such example is
the FISTA [Beck and Teboulle, 2009] algorithm, which was shown to improve
the sublinear convergence rate of the forward-backward method, from O(1/k)
to O(1/k2).
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Many similar approaches have been presented, often with a focus on finite-
sum problems as motivated by machine learning. Some examples include the
Catalyst [Lin et al., 2015] and Katyusha [Allen-Zhu, 2017] algorithms. In the
setting of stochastic-gradient methods, various approaches have been pre-
sented to reduce the variance of the gradient estimation to reach linear con-
vergence. These include methods such as SAG [Blatt et al., 2007], SAGA [De-
fazio et al., 2014], Finito [Defazio, Domke, et al., 2014], SVRG [Johnson and
Zhang, 2013] and SVAG [Morin and Giselsson, 2020].

For feasibility problems, many different algorithms have been studied and
applied in various settings, from subspaces and linear inequalities, to general
convex sets, non-convex sets and manifolds. Common algorithms include the
method of alternating projections, Douglas-Rachford splitting, Dykstra’s al-
gorithm and various relaxed versions of them. Although the algorithms are
often simple, strict convergence rates are only known for specific cases. There
has been a recent interest in optimizing the parameters of these algorithms,
both for subspaces [Bauschke et al., 2016] and manifolds [Lewis and Malick,
2008; Artacho and Campoy, 2019].

The convergence rates of the algorithms in this thesis depend not only on
the class of the problem, such as linearity or convexity, but also on the spe-
cific properties of each problem that can vary with the problem data. There
has been extensive research on how these properties affect the convergence
rates. For feasibility problems there are various types of regularity conditions
that can be used to guarantee rates for different algorithms [Kruger, 2006].
Different types of smoothness have also been used to prove linear convergence
by showing finite identification of manifolds, such as [Hare and Lewis, 2004;
Liang et al., 2014; Liang et al., 2015].

Although it is important to establish which properties are necessary to
guarantee linear convergence, the specific rate must be fast enough to reach
good accuracy in a reasonable number of iterations.

An analysis based on the properties above often gives an upper bound
on the worst-case converge rate for different algorithms, but they vary in
tightness of the results — better analyses result in better rates. Optimizing
algorithm parameters for these worst-case rates have been done for various
algorithms such as Douglas-Rachford [Giselsson, 2015], with varying degrees
of tightness. A methodology for automating such performance estimation has
recently been proposed and implemented [Ryu et al., 2020].

2.6 Overview of Papers
Paper I is based on the observation that although convergence of fixed-point
algorithms might be slow, it is sometimes the case that the directions of the
iterates are good. That is, the iterations usually seem to go in the direction

30



2.6 Overview of Papers

towards the optimal point, however, with very small steps. A line search
approach, that can be applied to these fixed-point algorithms, is therefore
proposed, where it is possible to take much longer steps when the direction
is good.

In Paper II, the line search method is applied to the GAP method, and
it is shown that it can be performed with negligible cost per iteration, when
one of the sets is affine. This is the case for example with the primal-dual
embedding that was described in Section 2.4. Moreover, in this case the line
search criterion is convex in the line search parameter.

The next two papers study how the convergence rate of GAP depends
on the relaxation parameters. The goal is to select parameters to improve
convergence rates for ill-conditioned problems.

In Paper III, the algorithm is studied in the setting of two affine sets.
Although the setting itself is not very interesting, it provides valuable insights
into how these algorithms behave. It is shown that the rate is limited by the
smallest angle between the sets — the Friedrichs angle — and that the rate
can be significantly improved by selecting the right parameters. Under general
assumptions, the optimal parameters are found as a function of the Friedrichs
angle. It is also shown that the resulting convergence rate is significantly
faster compared to previously known methods on ill-conditioned problems.

Paper IV extends the result in Paper III from affine sets to local results for
smooth manifolds under regularity assumptions on the intersection. This is
a step towards local rates for convex feasibility problems. If it can be shown
that the GAP algorithm will identify two smooth manifolds, for example
the boundaries of the convex sets, then the local rate and optimal param-
eters follow. It is shown for smooth solid convex sets, where the regularity
assumptions hold, that this is the case.

In Paper V, a new approach to solving Quadratic Programs (QP) using
an active set method is presented. The novelty is in how the linear system
in the active set method is solved. It is based on well-known theory from
the field of proximal algorithms. The algorithm is designed to be especially
efficient when projecting onto a polytope defined by few inequalities and in
high dimensions. The algorithm was developed for the purpose of projecting
onto the intersection of the separating halfplanes generated by the iterations
of many first order algorithms, such as the GAP algorithm. This long-step
approach could potentially accelerate the local convergence of projection al-
gorithms such as GAP, but is not covered in the paper.

Paper VI takes another approach to solving non-smooth optimization
problems. It presents an envelope function of a class of proximal algorithms,
that unifies several already known envelope functions. It is shown that this
function is both smooth and convex under appropriate assumptions, with
stationary points that correspond to solutions of the original problem. This
allows for well-known smooth optimization algorithms to be applied on this
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class of non-smooth problems.
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Publications

This section contains a list of the publications that are included in this thesis,
as well as a statement on the contributions made by the individual authors.
The notation has been adjusted in some of the papers, compared to the
published versions, to be consistent throughout this thesis.

Paper I
Giselsson, P., M. Fält, and S. Boyd (2016). “Line search for averaged oper-

ator iteration”. In: 2016 IEEE 55th Conference on Decision and Control
(CDC), pp. 1015–1022. doi: 10.1109/CDC.2016.7798401.

The general idea was proposed by M. Fält, and a first version of the main
proof was found by P. Giselsson. Most of the results were found through
collaboration between M. Fält and P. Giselsson. S. Boyd helped with the
applications, writing and general insights. The numerical experiments were
conducted by M. Fält.

The appendix of this paper is available on arXiv but excluded in the
published version due to page limitations. This thesis includes the full version.

Paper II
Fält, M. and P. Giselsson (2017). “Line search for generalized alternating

projections”. In: 2017 American Control Conference (ACC), pp. 4637–
4642.

The main idea was proposed by M. Fält. Most of the writing and results
were produced through close collaboration between M. Fält and P. Giselsson.
The numerical experiments were conducted by M. Fält.
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Paper III
Fält, M. and P. Giselsson (2017). “Optimal convergence rates for general-

ized alternating projections”. In: 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pp. 2268–2274.

Most of the results and writing of this paper was done by M. Fält, in close
collaboration with P. Giselsson. The numerical experiments were conducted
by M. Fält.

The appendix containing most of the proofs in this paper is available
on arXiv but excluded in the published version due to page limitations. This
thesis includes the published version. The full proofs are included in Paper IV
instead.

Paper IV
Fält, M. and P. Giselsson (2020). “Generalized alternating projections on

manifolds and convex sets”. In: Submitted to TBD.

This paper was written by M. Fält, and the results were found by M. Fält
through discussions and advice from P. Giselsson.

Paper V
Fält, M. and P. Giselsson (2019). “QPDAS: dual active set solver for mixed

constraint quadratic programming”. In: 2019 IEEE 58th Conference on
Decision and Control (CDC), pp. 4891–4897.

This paper was written by M. Fält, and the results were found by M. Fält
through discussions and advice from P. Giselsson.

Paper VI
Giselsson, P. and M. Fält (2018). “Envelope functions: unifications and fur-

ther properties”. J. Optim. Theory Appl. 178:3, pp. 673–698. issn: 0022-
3239. doi: 10.1007/s10957-018-1328-z.

The ideas in the paper was proposed by P. Giselsson who wrote and found
most of the results through discussions with M. Fält.
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Other publications
The following papers, authored or co-authored by the author of this thesis,
cover other topics in optimization but are not included in this thesis:

Fält, M. and P. Giselsson (2019). System identification for hybrid systems
using neural networks. arXiv: 1911.12663 [math.OC].

Troeng, O. and M. Fält (2018). “A seemingly polynomial-time algorithm
for optimal curve fitting by segmented straight lines”. In: 2018 IEEE
Conference on Decision and Control (CDC), pp. 4091–4096.

Troeng, O. and M. Fält (2019). “Sparsity-constrained optimization of in-
puts to second-order systems”. In: 2019 18th European Control Confer-
ence (ECC), pp. 406–410.
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Paper I

Line Search for Averaged Operator
Iteration

Pontus Giselsson Mattias Fält Stephen Boyd

Abstract

Many popular first order algorithms for convex optimization, such as
forward-backward splitting, Douglas-Rachford splitting, and the alter-
nating direction method of multipliers (ADMM), can be formulated as
averaged iteration of a nonexpansive mapping. In this paper we pro-
pose a line search for averaged iteration that preserves the theoretical
convergence guarantee, while often accelerating practical convergence.
We discuss several general cases in which the additional computational
cost of the line search is modest compared to the savings obtained.

© 2016 IEEE. Reprinted, with permission, from Proceedings of the 55th Con-
ference on Decision and Control (CDC), Las Vegas, USA 2016.
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1. Introduction
First-order algorithms such as forward-backward splitting, Douglas-Rachford
splitting, and the alternating direction methods of multipliers (ADMM) are
often used for large-scale convex optimization. While the theory tells us that
these methods converge, practical convergence can be very slow for some
problem instances. One effective method to reduce the number of iterations
is to precondition the problem data. This approach has been extensively
studied in the literature and has proven very successful in practice; see, e.g.,
[Benzi, 2002; Bramble et al., 1997; Hu and Zou, 2006; Ghadimi et al., 2015;
Giselsson and Boyd, 2015; Giselsson and Boyd, 2016] for a limited selection
of such approaches.

Another general approach to improving practical efficiency is to carry
out a line search, i.e., to first compute a tentative next iterate and then to
select the next iterate on the ray from the current iterate passing through the
tentative iterate. Typical line searches are based on some readily computed
quantity such as the function value or norm of the gradient or residual. A well
designed line search preserves the theoretical convergence of the base method,
while accelerating the practical convergence. Line search is widely used in
gradient descent or Newton methods; see [Boyd and Vandenberghe, 2004;
Nocedal and Wright, 2006]. These line search methods cannot be applied to
all first-order methods mentioned above, however, since in general there is
no readily computed quantity that is decreasing. (The convergence proofs
for these methods typically rely on quantities related to the distance to an
optimal point, which cannot be evaluated while the algorithm is running.) In
this paper we propose a general line search scheme that is applicable to most
first-order convex optimization methods, including those mentioned above
whose convergence proofs are not based on the decrease of an observable
quantity.

We exploit the fact that many first-order optimization algorithms can be
viewed as averaged iterations of some nonexpansive operator, i.e., they can
be written in the form

xk+1 = (1− ᾱ)xk + ᾱSxk = xk + ᾱ(Sxk − xk), (3.1)

where ᾱ ∈ (0, 1) and S : Rn → Rn is nonexpansive, i.e., it satisfies ‖Su −
Sv‖2 ≤ ‖u − v‖2 for all u, v. The superscript k denotes iteration number.
The middle expression shows that the next point is a weighted average of
the current point xk and Sxk. The expression on the right-hand side of (3.1)
shows that the iteration can be interpreted as taking a step of length ᾱ in the
direction of the fixed-point residual rk = Sxk − xk. Assuming a fixed-point
exists, the iteration (3.1) converges to the set of fixed-points.

In this paper we will show how steps sometimes much larger than ᾱ can
be taken, which typically accelerates practical convergence. This iteration
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has the form

xk+1 = xk + αk(Sxk − xk), (3.2)

where αk > 0 is chosen according to line search rules described below. We
refer to αk as the step length in the kth iteration, and ᾱ as the nominal step
length. The choice αk = ᾱ recovers the basic averaged iteration (3.1). We
refer to the selection of αk as a line search, since we are selecting the next
iterate as a point on the line or ray passing through xk in the direction of
the residual.

The merit function used to accept a step length αk in the line search is
the norm of the fixed-point residual ‖r‖2 = ‖Sx−x‖2. To evaluate this merit
function for a candidate point, we must compute Sx, which corresponds to
the dominant cost of taking a full iteration of the nominal algorithm. In the
general case, then, the line search is computationally expensive, and there is
a trade-off between the cost of the line search (which depends on the number
of candidate points examined), and the savings in iterations due to the line
search. But we have identified many common and interesting problem and
algorithm combinations for which the fixed-point residual can be computed
at low additional cost along the candidate ray. In these situations, perform-
ing one iteration with line search is roughly as expensive as performing one
standard iteration of the nominal algorithm, so the additional cost of the line
search is minimal. This happens when the nonexpansive operator S can be
written as S = S2S1 where S1 : Rn → Rn is affine and S2 : Rn → Rn is
relatively cheap to evaluate.

The paper is organized as follows. In Section 2, we state the line search
method and prove its convergence. In Section 3, we show that the line search
can be carried out efficiently when S = S2S1 and S2 is cheap to evaluate and
S1 is affine. In Section 4, we show how to implement the line search for some
popular algorithms. Finally, in Section 6 we provide numerical examples that
show the efficiency of the proposed line search.

2. The line search method

2.1 Line search test
The line search method first computes the nominal next iterate x̄k according
to the basic averaged iteration (3.1), and then (possibly) selects a different
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value of αk. The algorithm has the following form.

rk := Sxk − xk (3.3)

x̄k := xk + ᾱrk (3.4)

r̄k := Sx̄k − x̄k (3.5)

xk+1 := xk + αkr
k (3.6)

In the first step we compute the current residual, in the second step we
compute the nominal next iterate, and in the third step we compute the
nominal next residual. In the last step, we form the actual next iterate.

In (3.6) the step length αk must satisfy the following. Either αk = ᾱ, i.e.,
we take the nominal step, or αk ∈ (ᾱ, αmax] is such that

‖rk+1‖2 = ‖Sxk+1 − xk+1‖2 ≤ (1− ε)‖r̄k‖2, (3.7)

where ε ∈ (0, 1) and αmax ≥ ᾱ are fixed algorithm parameters. Thus we
either take the nominal step, or one that reduces the norm of the fixed point
residual compared to the nominal step.

We will discuss the details of the computation and give some specific
methods to choose αk later; but for now we observe that to verify the line
search test (3.7), we must evaluate rk+1, which is the first step (3.3) of the
next iteration. In a similar way, if we take the nominal step, i.e., choose
αk = ᾱ, then step (3.5) is the first step of the next iteration. In either case,
there is no additional computational cost.

2.2 Convergence analysis
We analyze the proposed line search method and provide residual and iterate
convergence results. All results are proven in Appendix A.

Theorem 1
Suppose that S : Rn → Rn is nonexpansive and let ᾱ ∈ (0, 1). Then the
iteration (3.3)-(3.6) satisfies ‖rk‖2 → c as k →∞.

So, the norm of the residual converges. Next, we show that the residual
converges to zero if a fixed-point to S exists, i.e., if fixS = {x ∈ Rn | x =
Sx} 6= ∅.

Theorem 2
Suppose that S : Rn → Rn is nonexpansive, that fixS 6= ∅, and that
ᾱ ∈ (0, 1). Then the iteration (3.3)-(3.6) satisfies rk → 0 and xk+1 → xk as
k →∞.

If a fixed-point to S exists, the fixed-point residual will converge to zero.
Next, we establish what happens when no fixed-point to S exists.
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Theorem 3
Suppose that S : Rn → Rn is nonexpansive, that fixS = ∅, that inf ‖Sx −
x‖ = c > 0, and that ᾱ ∈ (0, 1). Then the iteration (3.3)-(3.6) satisfies rk → d
and xk+1 − xk → ᾱd with ‖d‖ = c as k →∞.

This result relies heavily on [Bauschke and Moursi, 2015, Proposition 4.5]
(which is a specification of more general results in [Bruck and Reich, 1977,
Corollary 1.5] and [Baillon et al., 1978, Corollary 2.3]). It says that, in the
limit, the residual converges to a vector with smallest fixed-point residual. So
the iterates converge to a line. This can, e.g., be used to devise infeasibility
detection methods for these methods.

Next, we establish a rate bound for a difference of residuals.

Theorem 4
Suppose that S : Rn → Rn is nonexpansive and ᾱ ∈ (0, 1). Then the
iteration (3.3)-(3.6) satisfies

n∑
k=0

‖r̄k − rk‖22 ≤
ᾱ

1− ᾱ
‖r0‖22. (3.8)

Let knbest ∈ {0, . . . , n} be the iterate k (up to n) for which ‖r̄k − rk‖2 is
smallest. Then

‖r̄k
n
best−rk

n
best‖22 ≤

ᾱ

(n+ 1)(1− ᾱ)
‖r0‖22. (3.9)

If S is a δ-contraction with δ ∈ [0, 1), i.e., ‖Sx − Sy‖ ≤ δ‖x − y‖ for all
x, y ∈ Rn, stronger convergence results can be obtained.

Theorem 5
Assume that S : Rn → Rn is δ-contractive with δ ∈ [0, 1) and ᾱ ∈ (0, 1).
Then the iteration (3.3)-(3.6) satisfies

‖rk+1‖2 ≤ (1− ᾱ+ ᾱδ)‖rk‖2

for all iterations k.

So, the fixed-point residual converges linearly to zero (which it can since
contractive operators always have a unique fixed-point).

Remark 1
All results in this section are stated in the Euclidean setting with the standard
2-norm. But they also hold in general finite-dimensional real Hilbert space
settings.
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3. Computational cost
The fixed-point residual must be evaluated to carry out the line search test
(3.7). In the general case this requires us to evaluate the operator S, which
has the same cost as a full iteration of the algorithm. Therefore, in the general
case it may be too expensive to evaluate many (or even just more than one)
candidate step lengths αk compared to the savings in iterations due to the
line search.

In this section we consider a special case in which the line search can
be carried out more efficiently, i.e., many candidate points along the ray
can be evaluated with low additional cost. Suppose that S = S2S1, where
S2 : Rn → Rn is cheap to evaluate compared to S1, and S1 : Rn → Rn is
affine. The algorithm (3.3)-(3.6) in this case becomes:

rk := S2S1x
k − xk (3.10)

x̄k := xk + ᾱrk (3.11)

r̄k := S2S1x̄
k − x̄k (3.12)

xk+1 := xk + αkr
k (3.13)

In between (3.12) and (3.13), we perform the line search test (3.7),

‖rk+1‖2 = ‖S2S1x
k+1 − xk+1‖2 ≤ (1− ε)‖r̄k‖2, (3.14)

for multiple candidate values of αk.
We now analyze the complexity, assuming that the cost of evaluating S2,

and vector-vector operations, are negligible (or at least, dominated by the
cost of evaluating S1). In one iteration with line search we need to compute
S1x

k in (3.10), S1x̄
k in (3.12), and S1(xk + αkr

k) for each candidate αk in
(3.14). Since S1 is affine, i.e., of the form

S1(x) = Fx+ h (3.15)

with F ∈ Rn×n and h ∈ Rn, we have for any α,

S1(xk + αrk) = Fxk + h+ αFrk.

So once we evaluate F2x
k and F2r

k, we can evaluate S1(xk + αrk) for any
number of values of α, at the cost of only vector operations. In particular,
we can evaluate S1x̄

k in step (3.12), and S1x
k+1 for multiple values of αk in

the line search test (3.14), with no further evaluations of S1. We can express
the first three steps of the algorithm as

rk := S2(Fxk + h)− xk (3.16)

x̄k := xk + ᾱrk (3.17)

r̄k := S2

(
Fxk + h+ ᾱFrk

)
− x̄k (3.18)

46



3 Computational cost

which involves two evaluations of F (and two evaluations of S2), and some
vector operations. The next step is the line search, in which we evaluate the
residual r using

rk+1 = S2

(
Fxk + h+ αkFr

k
)
− (xk + αkr

k) (3.19)

for p candidate values of αk. Each of these involves a few vector operations,
and one evaluation of S2, since we use the cached values of Frk and Fxk.
One iteration costs 2 + p evaluations of S2, 2 evaluations of F , and order p
vector operations.

Finally, as observed above, we will have already evaluated the step (3.10)
for the next iteration, so one evaluation of F (and S2) does not count (or
rather, counts towards the next iteration). Thus the computational cost of
one iteration with p candidate values of αk is one evaluation of S1 (hence F )
and p+1 evaluations of S2. If the cost of evaluating S1 dominates the cost of
evaluating S2 (and vector operations), the computational cost of the iteration
with line search is the same as the basic iteration without line search.

A variation. For some algorithms such as forward-backward splitting the
averaged iteration (3.1) is more conveniently written as

xk+1 := T2T1x
k (3.20)

where T2 : Rn → Rn and T1 : Rn → Rn. So, in this case (1 − ᾱ)xk +
ᾱS2S1x

k = T2T1x
k. (The nominal ᾱ is hidden in the composition between

T2 and T1.)
Instead of using S2S1x − x as residuals in (3.10)-(3.13), we can use

ᾱ(S2S1x− x) = T2T1x− x. An equivalent algorithm then becomes

rk := T2T1x
k − xk (3.21)

x̄k := xk + rk (3.22)

r̄k := T2T1x̄
k − x̄k (3.23)

xk+1 := xk + αkr
k (3.24)

where αk ∈ [1, αmax].
Now, let T1 be affine, i.e., of the form

T1x = Fx+ h. (3.25)

Then the steps (3.16)-(3.18) (with the xk+1 update) becomes

rk := T2(Fxk + h)− xk (3.26)

x̄k := xk + rk (3.27)

r̄k := T2

(
Fxk + h+ Frk

)
− x̄k (3.28)

xk+1 := xk + αkr
k (3.29)
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The residual for the line search that is evaluated between (3.28) and (3.29)
is computed as

rk+1 = T2

(
Fxk + h+ αkFr

k
)
− (xk + αkr

k) (3.30)

for multiple candidate values of αk.

Evaluating affine operators. To evaluate the affine operator S1 : Rn →
Rn typically involves a matrix multiplication or a matrix inversion, where the
matrix is the same in all iterations.

There are two main methods for repeated matrix inversion. The first is
to factorize the matrix to be inverted once before the algorithm starts. Then
forward and backward solves are used in every iteration. The cost of the
forward and backward solves depends on the sparsity of the factors, but is
typically more thanO(n) up toO(n2). The second option is to use an iterative
method (with warm start). This requires a number of multiplications with
the matrix to invert and is hence more expensive than O(n).

Assuming that the cost of evaluating S2 : Rn → Rn is O(n), the cost of
evaluating S1 dominates the one of evaluating S2 in this setting.

4. Optimization algorithms
Many popular optimization algorithms can be implemented with the pro-
posed line search method. In this section, we show how S, S2 and S1 (or T2

and T1) look for some of these. Before this, we introduce some operators.
The proximal operator associated with a proper closed and convex

f : Rn → R ∪ {∞} is defined as

proxγf (z) := argmin
x
{f(x) + 1

2γ ‖x− z‖
2
2} (3.31)

where γ > 0. The reflected proximal operator is defined as

Rγf := 2proxγf − Id. (3.32)

If f is the indicator function of a nonempty closed and convex set C, i.e.,

f(x) = ιC(x) :=

{
0 if x ∈ C
∞ else

(3.33)

then the proximal operator in (3.31) is a projection:

proxγf (z) = ΠC(z) := argmin
x∈C

‖x− z‖2 (3.34)

and the reflected proximal operator in (3.32) is RγιC = RιC = 2ΠC − Id.
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4.1 Forward-backward splitting
The forward-backward splitting method (see, e.g., [Combettes and Wajs,
2005]) solves composite optimization problems of the form

minimize f(x) + g(x), (3.35)

where f : Rn → R is convex and differentiable with an L-Lipschitz contin-
uous gradient ∇f and g : Rn → R ∪ {∞} is proper closed and convex.

The forward-backward algorithm for this problem is

xk+1 := proxγg(x
k − γ∇f(xk)), (3.36)

where γ ∈ (0, 2
L ) is the step size and proxγg is defined in (3.31).

If γ ∈ (0, 2
L ), it can be shown (by combining [Bauschke and Combettes,

2011, Proposition 4.33], [Bauschke and Combettes, 2011, Proposition 23.7,
Remark 4.24)(iii)], and [Combettes and Yamada, 2015, Proposition 2.4] or
[Giselsson, 2017, Proposition 3]) that

proxγg(Id− γ∇f) = (1− ᾱ)Id + ᾱS

with ᾱ = 2
4−γL , where

S = (1− 1
ᾱ )Id + 1

ᾱproxγg(Id− γ∇f)

is nonexpansive. So, the forward-backward splitting algorithm (3.36) is an
averaged iteration of a nonexpansive mapping with ᾱ = 2

4−γL . So, if γ ∈
(0, 2

L ), we can do line search in forward-backward splitting.
We identify T2 = proxγg and T1 = (Id − γ∇f) in (3.20). With these

definitions, forward-backward splitting with line search is implemented as
(3.21)-(3.24).

T1 affine. The operator T1 = (Id− γ∇f) is affine if f : Rn → R is convex
quadratic, i.e., if

f(x) = 1
2x

TPx+ qTx

with P ∈ Rn×n positive semi-definite and q ∈ Rn. The operator T1 becomes

T1 = (Id− γP )x− γq.

Comparing to (3.25), we identify F = Id − γP and h = −γq. With these F
and h, forward-backward splitting with line search can be implemented as in
(3.26)-(3.29).

So a full iteration with line search needs only one multiplication with
F = (Id− γP ). If in addition T2 = proxγg is cheap to evaluate, one full line
search iteration can be evaluated roughly at the same cost as a basic iteration
of the algorithm.
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4.2 Douglas-Rachford splitting
The Douglas-Rachford splitting method [Lions and Mercier, 1979] solves
problems of the form

minimize f(x) + g(x),

where f : Rn → R ∪ {∞} and g : Rn → R ∪ {∞} are proper closed and
convex.

The algorithm is given by the following iteration

xk := proxγf (zk) (3.37)

yk := proxγg(2x
k − zk) (3.38)

zk+1 := zk + 2α(yk − xk) (3.39)

where γ is a positive scalar and α ∈ (0, 1).
Using the reflected proximal operator defined in (3.32) the Douglas-

Rachford algorithm can be written as

zk+1 := ((1− α)Id + αRγgRγf )zk. (3.40)

The reflected proximal operators Rγg and Rγf are nonexpansive [Bauschke
and Combettes, 2011, Corollary 23.10], and so is their composition RγgRγf .

The algorithm (3.40) is exactly on the form used in Section 3 where
S2 = Rγg, S1 = Rγf , S = RγgRγf , and ᾱ = α. With these definitions,
Douglas-Rachford with line search can be implemented as (3.10)-(3.13).

Note that Rγfzk = 2xk − zk in (3.37)-(3.39), RγgRγf = 2yk − 2xk + zk

and the residual rk = RγgRγfz
k − zk = 2(yk − xk).

S1 affine. If S1 = Rγf is affine and S2 = Rγg is cheap to evaluate, the line
search can be done almost for free, see Section 3.

The operator S1 = Rγf = 2proxγf − Id is affine if proxγf is affine, which
it is if f is of the form

f(x) =

{
1
2x

TPx+ qTx if Ax = b

∞ else

with P ∈ Rn×n positive semi-definite, q ∈ Rn, A ∈ Rm×n, and b ∈ Rm. (Any
of the quadratic or linear functions, or the affine constraint can be removed,
and the operator S1 is still affine.) The proximal and reflected proximal
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operators of f become

proxγf (z) =
[
I 0

] [P + γ−1I AT

A 0

]−1 [
γ−1z − q

b

]
Rγf (z) = 2proxγf (z)− z = 2

[
I 0

] [P + γ−1I AT

A 0

]−1 [
γ−1z − q

b

]
− z

=: Fz + h

where F ∈ Rn×n and h ∈ Rn.
In this situation, the first three steps of the line search algorithm are

(3.16)-(3.18) with S2 = Rγg and the residual is (3.19). As shown in Section 3,
we only need one evaluation of F per full iteration.

Note that in practice, the matrix F is typically not stored explicitly.
One alternative is to factorize

[
P+γ−1I AT

A 0

]
before the algorithm starts. This

factorization is cached and used in all consecutive iterations to compute Frk
(and Fz0). Another option is to use an iterative method (with warm-start)
to solve the corresponding linear system of equations.

4.3 ADMM
The alternating direction method of multipliers [Glowinski and Marroco,
1975; Gabay and Mercier, 1976; Boyd et al., 2011] solves problems of the
form

minimize f(x) + g(z)
subject to Ax+Bz = c, (3.41)

where f : Rn → R∪{∞} and g : Rm → R∪{∞} are proper closed convex,
and A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.

A standard form of ADMM (with scaled dual variable u and relaxation
α ∈ (0, 1)) is:

xk+1 = argmin
x
{f(x) + ρ

2‖Ax+Bzk − c+ uk‖22} (3.42)

xk+1
A = 2αAxk+1 − (1− 2α)(Bzk − c) (3.43)

zk+1 = argmin
z
{g(z) + ρ

2‖x
k+1
A +Bz − c+ uk‖22} (3.44)

uk+1 = uk + (xk+1
A +Bzk+1 − c) (3.45)

where α = 1
2 gives standard ADMM without relaxation. This form of ADMM

does not have a variable for which the algorithm is an averaged iteration of
a nonexpansive mapping.

In Appendix B it is shown that ADMM is Douglas-Rachford splitting
applied to a specific problem formulation. (This is a well known fact, see,
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e.g., [Gabay, 1983; Eckstein, 1989].) Therefore, ADMM is α-averaged and
can be written on the form

vk+1 = (1− α)vk + αR1R2v
k (3.46)

where R1 : Rp → Rp and R2 : Rp → Rp are reflected proximal operators.
These reflected proximal operators are given by (see (3.74) and (3.76) in
Appendix B where ρ = 1

γ ):

R1(v) = 2A argmin
x
{f(x) + ρ

2‖Ax− v − c‖
2
2} − 2c− v, (3.47)

R2(v) = −2B argmin
z
{g(z) + ρ

2‖Bz + v‖22} − v. (3.48)

The algorithm (3.46) (and therefore ADMM in (3.42)-(3.45)) can then be
implemented as (see Appendix B):

zk := argmin
z
{g(z) + ρ

2‖Bz + vk‖22} (3.49)

xk := argmin
x
{f(x) + ρ

2‖Ax+ 2Bzk + vk − c‖22} (3.50)

vk+1 := vk + 2α(Axk +Bzk − c) (3.51)

The iteration (3.46) is on the form discussed in Section 3 with S2 = R1,
S1 = R2, S = R1R2, and ᾱ = α. With these definitions, ADMM with line
search can be implemented as (3.10)-(3.13).

Note that R2v
k = −2Bzk − vk in (3.49)-(3.51), R1R2v

k = 2Axk − 2c +
2Bzk + vk, and the residual rk = 2(Axk +Bzk − c) in (3.51).

R2 affine. If R2 is affine and R1 is cheap to evaluate, then line search can
be performed efficiently, see Section 3.

The operator R2 is affine if g is of the form

g(z) =

{
1
2z
TPz + qT z if Lz = b

∞ else

with P ∈ Rm×m positive semi-definite, q ∈ Rm, A ∈ Rs×m, and b ∈ Rs. The
operator R2 in (3.48) becomes

R2(v) =
[
−2B 0

] [P + ρBTB LT

L 0

]−1 [−(q + ρBT v)
b

]
− v

=: Fv + h

where F ∈ Rp×p and h ∈ Rp.
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With these definitions of F and h, the first three steps of ADMM with
line search is (3.16)-(3.18) with S2 = R1 and the residual is (3.19). Therefore,
only one application of R2 (and F ) is needed per full line search iteration,
see Section 3.

Also here, the matrix F is typically not stored explicitly. Instead, either
a cached factorization of

[
P+ρBTB LT

L 0

]
or an iterative method (with warm-

start) is used to compute Frk (and Fv0).

4.4 Consensus
The consensus algorithm [Boyd et al., 2011, Section 7] solves problems of the
form

minimize f(x) =

N∑
i=1

fi(x) (3.52)

where f : Rn → R ∪ {∞} and all fi : Rn → R ∪ {∞} are proper closed
and convex. An equivalent formulation is

minimize fi(xi) + ιC(x1, . . . , xN ) (3.53)

where the consensus constraint set C is

C = {(x1, . . . , xN ) ∈ Rn × · · · × Rn | x1 = · · · = xN}

and ιC is an indicator function defined in (3.33). That is, every xi ∈ Rn in
(3.53) is a local version of the global x ∈ Rn in (3.52).

We use the following formulation of the consensus algorithm:

xki := proxγfi(2z
k
av − zki ) (3.54)

zk+1
i := zki + (xki − zkav) (3.55)

where zav = 1
N

∑N
i=1 zi is the average of the zi’s.

This consensus algorithm is obtained by applying Douglas-Rachford split-
ting with α = 1

2 to (3.53). (To use ADMM as in [Boyd et al., 2011] would
give an equivalent algorithm, see [Eckstein, 1989], but without a variable for
which the algorithm is an averaged iteration.) Therefore, it is 1

2 -averaged and
can be written on the form

zk+1 := 1
2 (zk +RγfRιCz

k) = 1
2

(
zk +Rγf (2zkav − zk)

)
where z = (z1, . . . , zN ). Using local variables, it can instead be written as

zk+1
i := 1

2

(
zki +Rγfi(2z

k
av − zki )

)
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for all i = {1, . . . , N}.
The local updates of the algorithm with line search become:

rki := Rγfi(2zav − zki )− zki (3.56)

z̄ki := zki + 1
2r
k
i (3.57)

r̄ki := Rγf (2z̄kav − z̄ki )− z̄ki (3.58)

zk+1
i := zki + αkr

k
i (3.59)

where either αk = 1
2 , or αk ∈ ( 1

2 , αmax] is chosen in accordance with (3.7),
i.e., such that

‖rk+1‖2 ≤ (1− ε)‖r̄k‖2.

where rk = (rk1 , . . . , r
k
N ).

Note that the local residual rki in (3.56) is given by 2(xki − zkav) in (3.55)
(and similarly for r̄ki in (3.58)).

The operator RιC is always affine. Therefore, a full iteration with line
search can be performed with only one evaluation of RιC , see Section 3.
However, RιC is often cheaper to evaluate than Rγf . So, to evaluate a can-
didate point in the line search involves the costly operator Rγf and may be
almost as costly as a full iteration of the algorithm.

4.5 Alternating projection methods
We consider the problem of finding a point in the intersection of two
nonempty closed and convex sets C and D. That is, we want to find any
x ∈ C ∩ D. This can equivalently be written as solving the optimization
problem

minimize ιC(x) + ιD(x) (3.60)

where ιC : Rn → R∪{∞} and ιD : Rn → R∪{∞} are indicator functions
(defined in (3.33)) for C and D respectively .

There are numerous algorithms for finding such x. We focus on alternating
projections and Douglas-Rachford splitting.

Alternating projections. The alternating projections [Neumann, 1950]
is given by

xk+1 = ΠCΠDx
k. (3.61)

Since ΠC and ΠD are 1
2 -averaged [Bauschke and Combettes, 2011, Propo-

sition 23.7], the composition is 2
3 -averaged [Combettes and Yamada, 2015,
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Proposition 2.4] or [Giselsson, 2017, Proposition 3]. Therefore, alternat-
ing projections is an averaged iteration with ᾱ = 2

3 and of the form
xk+1 = T2T1x

k where T2 = ΠC and T1 = ΠD.
Since alternating projections is an instance of (3.20), we can implement

alternating projections with line search as (3.21)-(3.24) (with T2 = ΠC and
T1 = ΠD).

Douglas-Rachford. The problem (3.60) can also be solved using Douglas-
Rachford splitting. The algorithm becomes

zk+1 = (1− α)zk + αRιCRιDz
k

where α ∈ (0, 1). That is, we have a composition of two reflections.
This algorithm is treated in Section 4.2 where we identified RιC = S2 and

RιD = S1.

Remark 2
Note that the γ parameter used in standard Douglas-Rachford is not present
here (since the projection is independent of this). Therefore, the only param-
eter to be tuned is α, i.e., the one we perform line search over.

D affine. When D is affine, i.e., D = {x | Ax = b}, then

ΠD(x) =
[
I 0

] [I AT

A 0

]−1 [
x
b

]
,

RιD (x) = 2ΠD(x)− x =
[
2I 0

] [I AT

A 0

]−1 [
x
b

]
− x.

Both these operators are affine.
Assume that ΠC (and hence RιC = 2ΠC − Id) is cheap to evaluate.

Then the line search can be implemented in alternating projections and in
Douglas-Rachford splitting with almost no additional cost compared to their
basic iterations (see Section 3).

Alternating projections with line search is implemented as (3.26)-(3.29)
with T2 = PC and Fx + h = ΠD. The residual used for the line search is
(3.30). The three first steps of Douglas-Rachford with line search is (3.16)-
(3.18) with S2 = RιC and Fx+h = RιD . The residual used for the line search
is (3.19).

4.6 Other algorithms
There are numerous other optimization algorithms that are averaged itera-
tions of some nonexpansive mapping. For instance, forward-backward split-
ting for solving monotone inclusion problems and for solving Fenchel dual
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problems, as well as projected and standard gradient methods fit the frame-
work. The line search can also be used in Douglas-Rachford splitting for
solving monotone inclusion problems. Also, preconditioned ADMM methods
[Chambolle and Pock, 2011] can be interpreted as an averaged iteration of
some nonexpansive mapping [He and Yuan, 2012]. The recently proposed
three operator splitting method in [Davis and Yin, 2015] is another example.
Finally, the proximal point algorithm [Rockafellar, 1976] for finding the zero
of one maximally monotone operator is an averaged iteration. Actually, an
algorithm is an averaged iteration of a nonexpansive mapping if and only if it
is an instance of the proximal point method. Many of the methods mentioned
above are discussed in [Ryu and Boyd, 2016].

5. Line search variations
There are numerous ways to create variations of the line search method. In
this section, we list some that can improve practical convergence.

Line search activation. We do not need to perform line search in every
iteration. Line search can be used in a subset of the iterations only. If a cheap
test can indicate if a line search is beneficial, this can be used as an activation
rule for the line search.

Let vk = xk − xk−1 be the difference between consecutive iterates. We
have observed that if vk+1 and vk are almost aligned, large step lengths αk
are typically accepted. If they are not aligned, we are typically restricted
to smaller αk. So, an activation rule could be that the cosine between the
vectors vk+1 and vk is large, i.e., that

(vk+1)T vk

‖vk+1‖2‖vk‖2
> 1− ε̂ (3.62)

for some small ε̂ > 0.
This is particularly useful for methods where the affine operator S1 is not

dominating (as in consensus). Even for methods where S1 is dominating, this
can be useful. In some cases we get fewer iterations when this activation rule
is used, than if not.

Other candidate points. We are not restricted to perform the line search
along the residual direction rk. We can accept any candidate point x̂k+1 as
the next iterate if its fixed-point residual is smaller than for the nominal
point.

We introduce the residual function

r(x) = Sx− x. (3.63)
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Then we can replace the test in (3.7) with

‖r(x̂k+1)‖2 ≤ (1− ε)‖r(x̄k)‖2. (3.64)

The full algorithm becomes

rk := Sxk − xk

x̄k := xk + ᾱrk

r̄k := Sx̄k − x̄k

xk+1 :=

{
x̂k+1 if (3.64) holds
xk + ᾱrk else

It is straightforward to verify that all convergence results for the residuals rk
in Section 2.2 still hold in this more general setting.

One special case is to perform line search along another direction dk.
Then the candidate point is x̂k+1 = xk+αkd

k. To evaluate the test in (3.64),
we need to compute S2S1(xk + αkd

k). One evaluation is in the general case
as expensive as one iteration of the method. However, if dk = rk and S1 is
affine, we saw in Section 3 that no additional S1 applications are needed to
perform the line search. If the direction dk instead is a linear combination
of previous residuals, i.e., dk =

∑k
i=0 θir

i where θi ∈ R, also no additional
applications of S1 are needed due to it being affine.

Another line search condition. Here, we present another line search
test that does not compare progress with a nominal step, but with the last
iterate that was decided by a line search. The progress is not measured with
the residual function r in (3.63), but with a different function s.

To state the line search test, we let ik be the index of the last iterate (up
to the current iterate k) that was decided by a line search, i.e., that was not
the result of a nominal step. Then any candidate point x̂k+1 can be accepted
as the next iterate if the following conditions hold

‖s(x̂k+1)‖2 ≤ (1− ε)‖s(xik)‖2 and ‖r(x̂k+1)‖2 ≤ C‖s(x̂k+1)‖2,

where C is a positive scalar, ε is a small positive scalar, and r is the residual
function in (3.63). If these conditions are not satisfied, the algorithm instead
takes a nominal step xk+1 = xk + ᾱrk.

The convergence results in this setting become weaker. The rate results in
Theorem 4 and 5 cannot be guaranteed. The results concerning the residual
sequence rk in Theorem 1, Theorem 2, and Theorem 3 can, however, be
shown to hold. Let k0, k1, k2, . . . be the iteration indices whose iterates have
been decided by accepting a candidate line search point. Then

‖s(xkp)‖2 ≤ (1− ε)‖s(xkp−1)‖2 ≤ (1− ε)p‖s(xk0)‖2,
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Figure 1. Fixed-point residual vs iteration for Douglas-Rachford with
and without line search.

which implies for iteration indices k ∈ [kp+1, kp] that

‖r(xk)‖2 ≤ ‖r(xkp)‖2 ≤ C‖s(xkp)‖2 ≤ (1− ε)p‖s(xk0)‖2,

since {‖r(xk)‖2} is a nonincreasing sequence in the basic method. If the tests
are satisfied an infinite number of times, then p → ∞ and ‖r(xk)‖2 → 0
as k → ∞. If the tests are satisfied a finite number of times (which they
are if, e.g., infx ‖Sx− x‖2 > 0), the algorithm reduces to the basic iteration
after a finite number of steps. Using these insights, the proofs to the results
concerning the residual rk in Theorem 1, Theorem 2, and Theorem 3 can
easily be modified to show that the results hold also in this setting.

To improve performance, one might want to add a condition that accepts
a candidate point if there is an improvement compared to the previous iterate,
i.e., if the following condition is satisfied

‖s(x̂k+1)‖2 ≤ (1− ε)‖s(xk)‖2.

This condition is, however, not needed to guarantee convergence of the
method.
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Figure 2. Step length αk vs iteration in the line search method.

6. Numerical examples

6.1 Nonnegative least squares
To evaluate the efficiency of the line search, we solve a nonnegative least
squares problem using the Douglas-Rachford algorithm. The problem is of
the form

minimize ‖Ax− b‖22
subject to x ≥ 0

where A ∈ R1000×1000 is dense and b ∈ R1000.
The entries in the data matrix A are drawn from a normal distribution

with zero mean and unit variance. Then, each row of A is scaled with a
uniformly distributed random number between 0.1 and 1.1 to worsen the
conditioning of the problem. The entries in b are drawn from a normal dis-
tribution with zero mean and unit variance.

To fit the Douglas-Rachford framework, we let f(x) = ‖Ax − b‖22 and
g(x) = ι(x ≥ 0). The operator proxγf is affine and the operator proxγg is
(very) cheap to evaluate compared to proxγf . Therefore, this problem is on
the form discussed in Section 3. So an iteration with line search is just slightly
more expensive than performing a basic iteration of the algorithm.

In the line search test (3.14), we let ε = 0.03 (which may or may not be
a good choice in other examples) and αk is decided using back-tracking from
αmax = 50 with a factor 1/1.4 for each candidate α. The back-tracking is
stopped either when the test is satisfied, or when the candidate α ≤ ᾱ, in

59



Paper I. Line Search for Averaged Operator Iteration

which case αk = ᾱ. This gives a worst case of 14 line search test points.
The computational cost for proxγf is roughly 2n2 after an initial matrix

factorization. The cost for proxγg is, on the other hand, roughly n. To evalu-
ate the line search test, no additional proxγf computations are needed. But
about 10 vector additions or multiplications with scalars and one proxγg is
needed for every candidate point (the same as in the standard algorithm). So,
evaluating one candidate point costs approximately 10n. A worst case of 14
candidate points costs 140n for a full line search. Comparing this to the cost
for one basic iteration, 2n2 + 10n, gives, when n = 1000, that one iteration
with line search costs, in the worst case, 1.07 times a basic iteration.

Figure 1 shows the fixed-point residual vs iteration number for Douglas-
Rachford with and without line search (the Douglas-Rachford parameters are
chosen to be ᾱ = 1

2 and γ = 3). For this example, the number of iterations
is reduced by roughly a factor four. The improvement in execution time is
roughly the same because of the modest 7% increase in computational cost
due to the line search.

Figure 2 shows what values αk that are chosen in the line search. An
αk = ᾱ corresponds to a standard Douglas-Rachford iteration. In 175 out of
the 2800 iterations, an αk > ᾱ was selected. Among these 158 had αk > 5.

6.2 An alternating projections example
To visualize the line search, we solve a two dimensional feasibility problem
using alternating projections.

We want to find a point in the intersection between two sets C = {x ∈
R2 | ‖x‖ ≤ 1} and D = {x ∈ R2 | x = (x1, x2), x1 = 1}. So C is the unit
circle, and D is a vertical line that touches the boundary of C at (1, 0). The
unique intersection point is x? = (1, 0).

In Figure 3 we show one iteration of the standard alternating projections
algorithm and one iteration with line search. In Figure 4 we show 50 steps
of alternating projections.

We see that the progression in 50 steps of alternating projections is
roughly the same as the progression of one step with line search (when the
farthest acceptable candidate point is chosen). The line search scheme does,
on the other hand, compute six candidate points to advance this far. (Or
really five, since the first is the basic next step.) So, we gain roughly a factor
10 in this step.

This is just a simple example where both projections are very cheap. If
the cost of projecting onto the subspace is dominating the other cost of the
other projection. Then the cost of performing one iteration with line search
is roughly the same as the cost of one basic iteration. In such cases, we can
gain a lot by performing line search.
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Figure 3. The left figure shows one iteration of alternating projections.
The residual in this figure is r1 = x2−x1. In the right figure, an alternating
projections step with line search is performed. The residual direction is
shown in red. We evaluate six candidate points x1i , i ∈ {1, . . . , 6}, along this
line. (The points themselves, ΠDx

1
i and ΠCΠDx

1
i are marked with crosses

in the figure.) The norm of each residual r1i = ΠCΠDx
1
i−x1i is printed in the

figure. The 4th point x14 has the smallest residual norm. This corresponds
to αk = 19.75. Another option is to choose the farthest candidate point
with residual norm smaller than ‖r11‖. This holds for the fifth point with
αk = 26. Both these choices are convergent. In this case we get closer to
the intersection point by choosing the farthest point.
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x?

C D

x1

x50

Figure 4. This figure shows 50 iterations of alternating projections. Com-
paring to Figure 3 reveals that roughly 50 steps of alternating projections
give the same progression as one step with line search (when the farthest
acceptable point is chosen) in this example.
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A. Proofs to results in Section 2

A.1 Proof of Theorem 1
First, we show that ‖rk‖2 = ‖xk − Sxk‖2 → c as k → ∞. We show this by
considering the cases αk = 1 and αk > 1 separately.

First, we consider the case αk = 1. For convenience, we introduce the
operator T = (1− ᾱ)Id + ᾱS. Then the update for x̄k in (3.4) can be written
as

x̄k = xk + ᾱ(Sxk − xk) = (1− ᾱ)xk + ᾱSxk = Txk.

Noting that ‖x− Tx‖2 = ‖x− (1− ᾱ)x− ᾱSx‖2 = ᾱ‖x− Sx‖2 implies

‖rk+1‖2 = ‖r̄k‖2 = ‖x̄k − Sx̄k‖2 = 1
ᾱ‖x̄

k − T x̄k‖2 = 1
ᾱ‖Tx

k − TTxk‖2.

Therefore, since T is nonexpansive:

‖rk+1‖2 ≤ 1
ᾱ‖x

k − Txk‖2 = ‖xk − Sxk‖2 = ‖rk‖2. (3.65)
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Next, we consider the case where αk > 1. Since ‖r̄k‖2 ≤ ‖rk‖2, we get
from the line search test (3.7) that

‖rk+1‖2 ≤ (1− ε)‖r̄k‖2 ≤ (1− ε)‖rk‖2. (3.66)

So {‖rk‖2}∞k=1 is a decreasing sequence which is bounded below (by 0). Hence
it converges. This completes the proof.

A.2 Proof of Theorem 2
Combining (3.65) and (3.66), we get

‖rk+1‖2 ≤ (1− ε)k0‖r0‖2 (3.67)

where k0 is the number of times that αk satisfies αk > 1. If k0 → ∞ as
k →∞, then ‖rk+1‖2 → 0 as k →∞. On the other hand, if k0 stays finite as
k →∞, there exists a finite kmax after which the line search is not activated
again. Then for k ≥ kmax, the algorithm reduces to xk+1 = Txk, which
satisfies ‖rk‖2 = ‖xk−Sxk‖2 = 1

ᾱ‖x
k−Txk‖2 → 0 as k →∞, see [Bauschke

and Combettes, 2011, Theorem 5.14]. This concludes the proof.

A.3 Proof of Theorem 3
Combining (3.65) and (3.66), we get

‖rk+1‖2 ≤ (1− ε)k0‖r0‖2 (3.68)

where k0 is the number of times that αk satisfies αk > 1. If k0 → ∞ as
k → ∞, then ‖rk+1‖2 → 0 as k → ∞. This is a contradiction to that
inf ‖Sx − x‖2 > 0. Hence k0 must be finite and there exists a kmax after
which the algorithm reduces to the basic averaged iteration.

Let T = (1−ᾱ)Id+ᾱS, xkmax = x̃0 and ∆k = k−kmax. Then a straightfor-
ward generalization of [Bauschke and Moursi, 2015, Proposition 4.5] to allow
for averaged operators (instead of only firmly nonexpansive or 1

2 -averaged)
gives that

‖ᾱrk − v‖ = ‖xk − xk+1 − v‖ = ‖T∆kx̃0 − T∆k+1x̃0 − v‖ → 0

for a specific v. Therefore rk → 1
ᾱv =: d as k → ∞. Further, xk+1 − xk =

ᾱrk → ᾱd as k →∞.
The v is the infimal displacement vector (see [Bauschke and Moursi, 2015,

Fact 2.2]) that satisfies v ∈ ran(Id − T ) (i.e., v is in the closure of the
range of Id − T ) and ‖v‖2 = infx ‖x − Tx‖2. Therefore ‖d‖2 = 1

ᾱ‖v‖2 =
1
ᾱ infx ‖x− Tx‖2 = infx ‖x− Sx‖2. This concludes the proof.
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A.4 Proof of Theorem 4
We need the following lemma for this proof.

Lemma 1
Suppose that S : Rn → Rn nonexpansive and that ᾱ ∈ (0, 1). Then every
iteration of (3.3)-(3.6) satisfies

ᾱ(1− ᾱ)‖r̄k−rk‖22 ≤ ‖xk − x̄k‖22 − ‖xk+1 − x̄k+1‖22. (3.69)

Proof. Let T = (1 − ᾱ)Id + ᾱS. Then T is ᾱ-averaged, and it satisfies
[Bauschke and Combettes, 2011, Proposition 4.25(iii)]

1−ᾱ
ᾱ ‖(Id− T )x̄k − (Id− T )xk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22.

Now, since (Id − T )x = (Id − (1 − ᾱ)Id − ᾱS)x = ᾱ(Id − S)x, we have
(Id− T )xk = ᾱrk and (Id− T )x̄k = ᾱr̄k. Therefore

ᾱ(1− ᾱ)‖r̄k − rk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22.

The algorithm chooses either αk = ᾱ or αk > ᾱ. If αk = ᾱ, we have Txk =
x̄k = xk+1 and T x̄k = Txk+1 = x̄k+1. Therefore

ᾱ(1− ᾱ)‖r̄k − rk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22
= ‖xk − x̄k‖22 − ‖xk+1 − x̄k+1‖22.

If instead αk > ᾱ, we get

ᾱ(1− ᾱ)‖r̄k − rk‖22 ≤ ‖xk − x̄k‖22 − ‖Txk − T x̄k‖22
= ‖xk − x̄k‖22 − ‖x̄k − T x̄k‖22
≤ ‖xk − x̄k‖22 − 1

(1−ε)2 ‖xk+1 − Txk+1‖22
≤ ‖xk − x̄k‖22 − ‖xk+1 − Txk+1‖22
= ‖xk − x̄k‖22 − ‖xk+1 − x̄k+1‖22

where the second inequality holds due to the line search test in (3.7) and the
third inequality holds since ε ∈ (0, 1). Therefore (3.69) holds for all k and
the proof is complete. 2

Now we are ready to prove the result. A telescope summation of (3.69) gives

ᾱ(1− ᾱ)

n∑
k=0

‖r̄k − rk‖22 ≤ ‖x0 − x̄0‖22 = ᾱ2‖r0‖22.
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This proves (3.8). To prove (3.9), we note that knbest ∈ {0, . . . , n} is the
iteration k (up till n) with smallest ‖r̄k − rk‖2. Therefore

(n+ 1)‖r̄k
n
best − rk

n
best‖22 ≤

n∑
k=0

‖r̄k − rk‖22 ≤
ᾱ

1− ᾱ
‖r0‖22.

This concludes the proof.

A.5 Proof of Theorem 5
First, we introduce T = (1 − ᾱ)Id + ᾱS which is ᾱ-averaged, and satisfies
‖x − Sx‖2 = 1

ᾱ‖x − Tx‖2. Let’s consider the case when αk = ᾱ. Then
x̄k = Txk and

‖rk+1‖2 = ‖r̄k‖2 = ‖x̄k − Sx̄k‖2 = 1
ᾱ‖x̄

k − T x̄k‖2 = 1
ᾱ‖Tx

k − TTxk‖2
= 1

ᾱ‖(1− ᾱ)(xk − Txk) + ᾱ(Sxk − STxk)‖2.

The triangle inequality gives that

‖rk+1‖2 ≤ 1
ᾱ ((1− ᾱ)‖xk − Txk‖2 + ᾱ‖Sxk − STxk‖2)

≤ 1
ᾱ ((1− ᾱ)‖xk − Txk‖2 + ᾱδ‖xk − Txk‖2)

= 1
ᾱ (1− ᾱ+ ᾱδ)‖xk − Txk‖2

= (1− ᾱ+ ᾱδ)‖xk − Sxk‖2
= (1− ᾱ+ ᾱδ)‖rk‖2.

Next, we consider the case when αk > ᾱ. Since ‖r̄k‖2 ≤ (1 − ᾱ + ᾱδ)‖rk‖2
the line search test (3.7) implies that

‖rk+1‖2 ≤ (1− ε)‖r̄k‖2 ≤ (1− ε)(1− ᾱ+ ᾱδ)‖rk‖2 ≤ (1− ᾱ+ ᾱδ)‖rk‖2.

That is, the algorithm is linearly convergent with factor (at most) (1−ᾱ+ᾱδ)
in both situations. This concludes the proof.

B. ADMM derivation
In this section, we show the equivalence between the standard ADMM for-
mulation (3.42)-(3.45) and the ADMM version used for line search (3.49)-
(3.51). We also show that the version used for line search, (3.49)-(3.51), is
an α-averaged iteration of a nonexpansive mapping.

We do this by showing that the ADMM iterations can be derived by
applying Douglas-Rachford splitting to a specific problem formulation. This
derivation is not new [Gabay, 1983; Eckstein, 1989], but we include it here for

65



Paper I. Line Search for Averaged Operator Iteration

completeness and to explicitly arrive that the ADMM variation (3.49)-(3.51)
that we need for the line search.

ADMM solves problems of the form

minimize f(x) + g(z)
subject to Ax+Bz = c

(3.70)

where f : Rn → R∪{∞} and g : Rm → R∪{∞} are proper closed convex,
A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.

Using image functions (that are also called infimal postcompositions) de-
fined as

(L . ψ)(y) = inf{ψ(x) | Lx = y}

where L ∈ Rn×m is a linear operator and ψ : Rn → R ∪ {∞} is a proper
function, it is straightforward to verify that (3.70) is equivalent to

minimize (−A . f)(−u− c) + (−B . g)(u).

Let p1(u) = (−A . f)(−u− c) and p2(u) = (−B . g)(u) to get the equivalent
problem

minimize p1(u) + p2(u). (3.71)

To arrive at the standard ADMM iterations, we apply Douglas-Rachford
splitting to (3.71). The algorithm becomes

vk+1 = (1− α)vk + αRγp1
Rγp2

vk (3.72)

where the reflected proximal operators Rγp1 and Rγp2 are given by Rγp1 =
2proxγp1

− Id and Rγp2 = 2proxγp2
− Id. Under the assumption that the

infimum over x is attained in the following prox evaluation, we have

proxγp1
(v) = argmin

u
{inf
x
{f(x) | −Ax = −u− c}+ 1

2γ ‖u− v‖
2
2}

= A argmin
x
{f(x) + 1

2γ ‖Ax− v − c‖
2
2} − c. (3.73)

The reflected proximal operator becomes

Rγp1(v) = 2A argmin
x
{f(x) + 1

2γ ‖Ax− v − c‖
2
2} − 2c− v. (3.74)

Again, assuming that the following infimum is attained, we get

proxγp2
(v) = argmin

u
{inf
z
{g(z) | −Bz = u}+ 1

2γ ‖u− v‖
2
2}

= −B argmin
z
{g(z) + 1

2γ ‖Bz + v‖22} (3.75)
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and reflected proximal operator

Rγp2(v) = −2B argmin
z
{g(z) + 1

2γ ‖Bz + v‖22} − v. (3.76)

Using the prox expressions (3.73) and (3.75), and defining ρ = 1
γ , we find

that the Douglas-Rachford algorithm (3.37)-(3.39) applied to (3.71) becomes

zk = argmin
z
{g(z) + ρ

2‖Bz + vk‖22} (3.77)

xk = argmin
x
{f(x) + ρ

2‖Ax+ 2Bzk + vk − c‖22} (3.78)

vk+1 = vk + 2α(Axk +Bzk − c) (3.79)

This is exactly the iteration (3.49)-(3.51) which is used in the line search.
This algorithm is equivalent to ADMM, but keeps the vk variables in which
the algorithm can be interpreted as an averaged iteration of a nonexpansive
mapping, see (3.72).

To derive the ADMM iterations (3.42)-(3.45), we next substitute vk+1 =
uk + 2α(Axk − c) − (1 − 2α)Bzk. Let xkA = 2αAxk − (1 − 2α)(Bzk − c) to
get vk+1 = uk + xkA − c and

zk = argmin
z
{g(z) + ρ

2‖x
k−1
A +Bz − c+ uk−1‖22}

xk = argmin
x
{f(x) + ρ

2‖Ax+ 2Bzk + uk−1 + xk−1
A − 2c‖22}

uk = uk−1 + (xk−1
A +Bzk − c)

since vk+1 = uk + xkA − c inserted in (3.79) implies

uk = uk−1 + xk−1
A − xkA + 2α(Axk +Bzk − c)

= uk−1 + xk−1
A − (2αAxk − (1− 2α)(Bzk − c)) + 2α(Axk +Bzk − c)

= uk−1 + (xk−1
A +Bzk − c)

(This implies that vk = uk − Bzk.) Next, insert the third equation into the
second to get

zk = argmin
z
{g(z) + ρ

2‖x
k−1
A +Bz − c+ uk−1‖22}

xk = argmin
x
{f(x) + ρ

2‖Ax+Bzk − c+ uk‖22}

uk = uk−1 + (xk−1
A +Bzk − c)
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Now, change order of the xk update and the uk update and move the xk
update to the first line and insert xk−1

A to get

xk−1 = argmin
x
{f(x) + ρ

2‖Ax+Bzk−1 − c+ uk−1‖22}

xk−1
A = 2αAxk−1 − (1− 2α)(Bzk−1 − c)
zk = argmin

z
{g(z) + ρ

2‖x
k−1
A +Bz − c+ uk−1‖22}

uk = uk−1 + (xk−1
A +Bzk − c)

Now, let xk → xk+1 and xkA → xk+1
A to get

xk = argmin
x
{f(x) + ρ

2‖Ax+Bzk−1 − c+ uk−1‖22}

xkA = 2αAxk − (1− 2α)(Bzk−1 − c)
zk = argmin

z
{g(z) + ρ

2‖x
k
A +Bz − c+ uk−1‖22}

uk = uk−1 + (xkA +Bzk − c)

Letting k → k + 1 gives ADMM on the standard form (3.42)-(3.45).

Remark 3
ADMM can also be derived by applying Douglas-Rachford to the Fenchel
dual of (3.70), see [Gabay, 1983]. The Fenchel dual is

minimize f∗(−ATµ) + cTµ+ g∗(−BTµ).

Letting d1(µ) := f∗(−ATµ)+cTµ and d2(µ) := g∗(−BTµ), this is equivalent
to

minimize d1(µ) + d2(µ).

It holds that p∗1 = d1 and p∗2 = d2, see [Bauschke and Combettes, 2011,
Corollary 15.28]. It is also known that Douglas-Rachford when applied to
minimize p1 + p2 is equivalent to applying Douglas-Rachford to minimize
p∗1 + p∗2 (which is d1 + d2), see [Eckstein, 1989]. Therefore we can also apply
Douglas-Rachford to this dual formulation to get ADMM. This derivation is
longer and therefore not used here.
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Paper II

Line Search for Generalized Alternating
Projections

Mattias Fält Pontus Giselsson

Abstract

This paper is about line search for the generalized alternating pro-
jections (GAP) method. This method is a generalization of the von
Neumann alternating projections method, where instead of alternat-
ing projections, relaxed projections are alternated. The method can
be interpreted as an averaged iteration of a nonexpansive mapping.
Therefore, a recently proposed line search method for such algorithms
is applicable to GAP. We evaluate this line search and show situations
when the line search can be performed with little additional cost. We
also present a variation of the basic line search for GAP—the pro-
jected line search. We prove its convergence and show that the line
search condition is convex in the step length parameter. We show that
almost all convex optimization problems can be solved using this ap-
proach and numerical results show superior performance with both the
standard and the projected line search, sometimes by several orders of
magnitude, compared to the nominal method.

© 2017 IEEE. Reprinted, with permission, from Proceedings of the American
Control Conference (ACC), Seattle, USA 2017.
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1. Introduction
Alternating projections is a well known method for feasibility problems,
where the objective is to find a point in the intersection of (convex) sets.
The method alternates projections onto the sets. It was first introduced for
half-spaces [Agmon, 1954] and later generalized to more general sets [Breg-
man, 1967]. In practice, the method is often quite slow. A generalization to
this method was proposed in [Gubin et al., 1967], which is based on per-
forming relaxed projections onto the sets instead of standard projections. A
relaxation parameter defines how far the relaxed projection should go to-
wards or past the projection point. Depending on the relaxation parameters,
it can be shown that the method is an averaged iteration of a nonexpansive
mapping. The fixed-points to the mapping correspond to solutions to the
feasibility problem.

Many variations and extensions of this basic method have been proposed
and accompanied, with linear or sublinear convergence estimates [Bauschke,
1996; Bauschke and Borwein, 1996]. We present a framework for several of
these generalizations and collect the relevant results. The framework includes
well known methods such as the alternating projections and the generalized
Douglas-Rachford algorithm for feasibility problems. These are first order
methods that scale better with the number of variables than second order
methods and usually have a low computational cost per iteration. They are
therefore suitable for solving large-scale problems. The practical rate of con-
vergence can, however, be slow and is dependent on preconditioning for good
performance. A good preconditioning can be hard to find and is usually prob-
lem specific.

Line search is a well established concept in optimization and is often used
to improve practical performance of a method. Typically, it assumes that a
descent direction for the objective function is at hand, and it accepts points
with sufficient decrease and possibly some condition on the slope [Boyd and
Vandenberghe, 2004; Nocedal and Wright, 2006]. For averaged iterations of
nonexpansive mappings, descent directions are not obtained in general. In
the recent paper [Giselsson et al., 2016], a line search method that can be
applied to averaged iterations was proposed. The line search is performed
in the direction of the fixed-point residual, which is the direction obtained
by applying the nonexpansive operator. Instead of being based on objective
function value decrease, it relies on a decrease in the norm of the fixed-point
residual.

The main contribution of this paper is an alternative to the basic line
search for GAP—the projected line search. This is developed for the case
with two sets, where one is affine. The projected line search method performs
line search, not in the residual direction, but in its projection on the affine set.
We prove that the method converges to the intersection of the sets, and show
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that the line search condition is convex in the step length parameter. We also
present a numerical example that illustrates the properties of the methods,
and show that the projected line search can achieve superior performance.

Section 2 contains some background and notation. In Section 3 we present
the generalized alternating projections algorithm and collect relevant results.
In Section 4 we show how the line search in [Giselsson et al., 2016] can be
applied to this algorithm. The projected line search is presented in Section 5
together with some basic results. An overview of how this method can be
used to solve a large set of convex optimization problems is presented in
Section 6, and a numerical example is presented in Section 7.

2. Background and Notation
The notation 〈·, ·〉 is used for scalar products and Id is the identity operator.
The fixed-points of an operator T are denoted fixT , i.e. fixT = {x ∈ Rn |
Tx = x}, and the fixed-point residual r(x) for a point x is defined as r(x) :=
Tx − x. An operator S : Rn → Rn is said to be nonexpansive if it satisfies
‖Sx−Sy‖2 ≤ ‖x−y‖2, (and firmly nonexpansive it is satisfies ‖Sx−Sy‖22 ≤
〈x− y, Sx− Sy〉), for all x, y ∈ Rn. An operator T is α-averaged, with α ∈
(0, 1), if it can be written as T = (1 − α)Id + αS for some nonexpansive S.
ΠC is the orthogonal projection onto the closed, convex and nonempty set
C, i.e. ΠC(x) = arg miny∈C(‖y − x‖2).

3. Generalized Alternating Projections
Generalized alternating projections is an algorithm for finding a point in the
intersection of p sets Ci with i = 1, . . . , p, i.e., a point x ∈ C1 ∩ · · · ∩ Cp.
Throughout this paper, we assume that that sets Ci are nonempty, closed
and convex, and that

C1 ∩ ... ∩ Cp 6= ∅, (3.1)

i.e., that a common feasible point exists.
To define the algorithm, we introduce the under (α ∈ (0, 1)) and over

(α ∈ (1, 2]) relaxed projection on the set C as follows:

PαC = (1− α)Id + αΠC (3.2)

where α ∈ (0, 2] and ΠC is the orthogonal projection onto the set C. For
α = 1, we get the standard projection P 1

C = ΠC and for α = 2, we get
the reflection P 2

C = 2ΠC − Id =: RC . Since ΠC is firmly nonexpansive,
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x?

x1
x2

AP

x2
DR

Figure 1. Illustration of the generalized alternating projections for two
different settings on a 2-dimensional problem with intersection x?. The first
set is the vertical line, and the second is the shaded area. The point x2AP is
obtained by an alternating projections step (α1 = α2 = 1, α = 1) and x2DR

is obtained by a Douglas-Rachford step (α1 = α2 = 2, α = 0.5). The red
arrows represent the residuals Pα2

C2
Pα1
C1
x1 − x1 along which we will perform

line search in Section 4.

see [Bauschke and Combettes, 2011, Corollary 4.29, Example 12.25, Propo-
sition 12.27], the relaxed projector is α

2 -averaged for α ∈ (0, 2) and nonex-
pansive for α = 2.

The generalized alternating projections method (GAP) is:

xk+1 = (1− α)xk + αP
αp
Cp
P
αp−1

Cp−1
· · ·Pα1

C1
xk. (3.3)

For simplicity, we introduce the GAP operator T as

T = (1− α)Id + αP
αp
Cp
P
αp−1

Cp−1
· · ·Pα1

C1
(3.4)

to arrive at the notationally more convenient iteration xk+1 = Txk for (3.3).
The algorithm (3.3) generalizes the classical alternating projections

method, since if α = αi = 1, we get

xk+1 = ΠCpΠCp−1
· · ·Π1x

k.

For p = 2, the generalized Douglas-Rachford algorithm for feasibility
problems [Douglas and Rachford, 1956; Lions and Mercier, 1979], also falls
under the formulation (3.3) by letting α1 = α2 = 2. Then

xk+1 = (1− α)xk + αRC2
RC1

xk

where RC = 2ΠC − Id is a reflector. These two algorithms are illustrated for
a simple 2-dimensional problem in Figure 1.
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Below, we present some basic results on the algorithm (3.3). Most of
these are known but spread out in the literature so we collect them here for
convenience of the reader. To this end, we let

β :=

∑p
i=1

αi
2−αi

1 +
∑p
i=1

αi
2−αi

, (3.5)

and state the following assumptions on α.

Assumption 1
Suppose that either of the following holds:

A1 α ∈ (0, 1
β ) with β in (3.5) and that αi ∈ (0, 2) for i = 1, . . . , p

A2 α ∈ (0, 1) and αi ∈ (0, 2] for i = 1, . . . , p with at most one αi = 2

A3 α ∈ (0, 1) and p = 2 with α1 = α2 = 2.

These assumptions imply that the GAP operator T is averaged. This is
shown next.
Proposition 1
Suppose that Assumption 1 with case A1 holds. Then the GAP operator T
in (3.4) is averaged with constant αβ ∈ (0, 1), with β in (3.5). Suppose that
Assumption 1 with case A2 or A3 holds. Then T is averaged with constant
α ∈ (0, 1).

A proof is found in the Appendix.
Next, we show a result on the fixed-point set of the GAP operator in (3.4).

Proposition 2
Suppose that Assumption 1 holds with case A1 or A2 and that C1∩· · ·∩Cp 6=
∅. Then fixT = C1 ∩ · · · ∩ Cp, where T is the operator in (3.4).

A proof is found in the Appendix.
The main convergence result for the algorithm now follows directly

from [Bauschke and Combettes, 2011, Theorem 5.14] under assumption A1
or A2 since T is averaged and its fixed-point set is C1 ∩ · · · ∩ Cp.

Proposition 3
Suppose that Assumption 1 holds with case A1 or A2 and that C1∩· · ·∩Cp 6=
∅. The fixed-point residuals r(xk) converge to 0 and the iterates xk converge
to a point in the intersection C1 ∩ · · · ∩ Cp, as k →∞ in algorithm (3.3).

Algorithm (3.3) with case A3 in Assumption 1 corresponds to gener-
alized Douglas-Rachford applied to feasibility problems. The properties in
this case are slightly different but well known, and we summarize them be-
low [Bauschke and Combettes, 2011, Proposition 25.1, Theorem 25.6].
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Proposition 4
Suppose that Assumption 1 holds with case A3 and that C1 ∩ C2 6= ∅, then
the fixed-point set satisfies ΠC1fixT = C1 ∩C2. Additionally, the fixed-point
residuals r(xk) in algorithm (3.3) converge to 0 as k → ∞ and the iterates
xk converge to a point x such that ΠC1

x ∈ C1 ∩ C2.

We see that we need to monitor the sequence ΠC1
xk to find a feasible

point in the Douglas-Rachford case. For other choices of αi, it is also typically
better to monitor the sequence ΠC1x

k than xk to faster find an intersection
point.

4. Line search
A method for applying line search on algorithms based on iterating averaged
operators was recently proposed in [Giselsson et al., 2016]. The method was
shown to often improve practical convergence. In this section we describe
how the method can be applied to generalized alternating projections. We
also repeat the result on when the line search can be carried out with little
additional cost compared to a basic iteration.

The line search algorithm can be applied to averaged iterations of the
form

xk+1 = (1− α)xk + αSxk = xk + α(Sxk − xk), (3.6)

where α ∈ (0, 1) and S : Rn → Rn is nonexpansive. GAP is precisely on this
form with S = P

αp
Cp
P
αp−1

Cp−1
· · ·Pα1

C1
. The second expression in (3.6) shows that

an averaged iteration performs a step with length α in the residual direction
r(x) = Sx−x. We call this the nominal step x̄k := xk+αr(xk). The residual
direction is illustrated in Figure 1.

The line search scheme presented in [Giselsson et al., 2016], suggests to
perform line search in the residual direction. To do this, the α that multiplies
the residual direction should be chosen on-line. The algorithm with line search
can be written as:

xk+1 := xk + αk(Sxk − xk) := xk + αkr(x
k) (3.7)

where the line search parameter αk must satisfy either αk = α, i.e., we take
the nominal step x̄k, or αk ∈ (α, αmax] is such that

‖r(xk+1)‖2 ≤ (1− ε)‖r(x̄k)‖2 (3.8)

where ε ∈ (0, 1) and αmax ≥ α are fixed algorithm parameters. To accept
a step length αk in the line search, the residual r(x) should be smaller for
the next iterate xk+1 than for the nominal step x̄k. This preserves the non-
increasing property of the fixed-point residual ‖r(xk+1)‖, even when line
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4 Line search

search is used. As shown in [Giselsson et al., 2016], this is enough to, e.g.,
guarantee convergence of the residual sequence. An appropriate αk can for
example be selected using a simple forward or backward tracking.

The following form of the algorithm shows which computations are needed
in each iteration:

rk := Sxk − xk (3.9)

x̄k := xk + αrk (3.10)

r̄k := Sx̄k − x̄k (3.11)

xk+1 := xk + αkr
k, (3.12)

where S = P
αp
Cp
P
αp−1

Cp−1
· · ·Pα1

C1
. The criterion for line search, i.e. accepting

αk 6= α in (3.12), can be written

‖rk+1‖2 = ‖Sxk+1 − xk+1‖2 ≤ (1− ε)‖r̄k‖2 (3.13)

where xk+1 = xk+αkr
k, see (3.12). This general form of the algorithm reveals

that we need to compute S(xk +αkr
k) for each candidate αk to verify (3.8),

as well as calculating Sx̄k in each iteration. So, to evaluate a candidate point
in the line search is roughly as costly as performing one basic step in the
algorithm. This may or may not be too costly compared to what is saved due
to the line search.

In the following, we will show that sometimes many candidate points can
be evaluated in the line search with little additional cost. In the case where
the sets Cn, . . . , C1 are affine, i.e. Ci = {x ∈ R | Aix = bi}, the projection
z = ΠCix is affine and given by the solution to the KKT conditions of the
projection. The relaxed projections will therefore also be affine:

PαiCi x = (1− αi)x+ αi
[
I 0

] [ I ATi
Ai 0

]−1 [
x
bi

]
.

It follows that the composition PαnCn · · ·P
α1

C1
is affine, and GAP (3.3) can be

written as:

xk+1 = (1− α)xk + αS2S1x
k

where S1x = PαnCn · · ·P
α1

C1
x =: Fx + h, with F and h implicitly defined, and

S2 = P
αp
Cp
· · ·Pαn+1

Cn+1
. The following iterations show that several candidate αk

can be tested, without multiple evaluations of S1 [Giselsson et al., 2016]:

rk := S2(Fxk + h)− xk (3.14)

x̄k := xk + αrk (3.15)

r̄k := S2

(
Fxk + h+ αFrk

)
− x̄k (3.16)

xk+1 := xk + αkr
k (3.17)
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where αk is selected so that

‖S2(Fxk+1 + h)− xk+1‖2 ≤ (1− ε)‖r̄k‖2. (3.18)

The computed quantity Fxk+1 = Fxk+αkFr
k is then reused in (3.14), (3.16)

and (3.18) in the following iteration. Therefore, we only need to compute Fx0

and Frk for all k to evaluate any number of candidate αk in any number of
line searches. If the cost of applying S2 is negligible, then the line search will
result in no significant increase in computation per iteration.

5. Projected line search
In this section we present an alternative to the standard line search, that we
call projected line search. We present this line search for feasibility problems
with two sets, C1 = C and C2 = D, where C is affine. This method does not
select the next iterate in the direction of the residual but rather along its
projection on the affine set.

The proposed algorithm, with S = Pα2

D Pα1

C , is:

rk := Sxk − xk (3.19)

x̄k := xk + αrk (3.20)

r̄k := Sx̄k − x̄k (3.21)

where the next step is to either take a nominal step:

xk+1 := xk + αrk = x̄k (3.22a)

or line search is performed:

xk+1 := ΠC(xk + αkr
k). (3.22b)

To accept the line search in (3.22b), the line search parameter αk ∈ (α, αmax]
must satisfy the following condition, where iLS is the index when the last line
search was performed, and r(xiLS+1) = SxiLS+1 −xiLS+1 is the residual at the
following iteration:

‖r(xk+1)‖2 ≤ (1− ε)‖r(xiLS+1)‖2. (3.23)

Compared to the algorithm with basic line search, the difference is that
the candidate points in the projected line search are projected onto the set
C. The test for accepting a line search is also different. Instead of comparing
the norm of the next residual r(xk+1) to the residual of the nominal step
r(x̄k), we compare it to the residual in the last step that was chosen by a
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5 Projected line search

line search, r(xiLS+1). The reason for comparing the residual to the iterate
xiLS+1 is that the projected line search often increases the residual compared
to the nominal step x̄k. However, by ensuring that the residual r(xk+1) is
smaller than r(xiLS+1), we can guarantee that it will eventually decrease. This
is proven for general line search schemes in [Giselsson et al., 2016] and we
state it for the projected line search below.

Theorem 1
Assume that Assumption 1 holds and the projected line search algo-
rithm (3.19)-(3.22b) is used with line search criteria (3.23). Then the fixed-
point residual r(xk) = Sxk − xk will converge to 0 as k →∞.

A general framework for finding fixed-points to nonexpansive operators
was proposed in [Themelis and Patrinos, 2019] after initial submission of this
paper. The results can be used to show convergence of the projected line
search in a stricter sense:
Theorem 2
Assume that Assumption 1 holds and the projected line search algo-
rithm (3.19)-(3.22b) is used with line search criteria (3.23). Then xk con-
verges to a point x ∈ fixT .

We now show two additional properties of the projected line search.

Theorem 3
Assume that the set C is affine. Then the projected line search condi-
tion (3.23) is convex in the step length αk and the norm of the residual
simplifies to ‖r(xk+1)‖2 = α2distD(xk+1).

Proofs for Theorem 2 and 3 are found in the Appendix.
This result implies that we are not restricted to forward or back tracking

schemes when finding step length αk. We can perform, e.g., golden section
search on the line search condition, or bisection on its gradient. This way the
number of candidate points to be evaluated, before a good/optimal point is
found, can be reduced. The theorem also illustrates that minimizing the left
hand side of the line search condition (3.23) is equivalent to minimizing the
distance between the two sets along the line search direction. This gives an
intuitive explanation to why this is a reasonable objective function.

We showed that the standard line search could be performed without
significant extra computational cost in some cases, the same is true for the
projected line search. If C is affine, then xk+1 = ΠC(xk + αkr

k) can be
evaluated for several αk without any significant cost since the linear parts of
ΠCx

k and ΠCr
k are known from previous steps, as for the basic line search.

From Theorem 3 we know that evaluating the residual simplifies to evaluating
the distance from xk+1 the setD. Thus, if C is affine andD is relatively cheap
to project on, the line search will incur no significant cost.
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6. Cone programming
Many convex optimization problems, including LP, QP, SOCP, SDP, and in
particular problems that can be solved using optimization modeling interfaces
such as CVX [Grant and Boyd, 2016], CVXPY [Diamond and Boyd, 2016],
Convex.jl [Udell et al., 2014], can be written as cone programs of the form

minimize cTx
subject to Ax+ s = b

s ∈ K

where K is a product of nonempty, closed and convex cones. Assuming strong
duality, the primal and dual problems can be combined into the following
primal-dual feasibility problem

find (x, s, y)

subject to

A I 0
0 0 −AT
cT 0 bT

xs
y

 =

bc
0


(s, y) ∈ K ×K∗.

This is a feasibility problem with one affine subspace and one product of con-
vex cones. There are many other ways to construct a feasibility problem with
an affine subspace and a product of convex cones. One example is the homo-
geneous self-dual embedding which is often used in interior-point methods [Ye
et al., 1994] and in the first-order optimization solver SCS [O’Donoghue et
al., 2016]. Therefore, most convex optimization problems (at least those that
can be posed as cone programs) can be solved using GAP, with one affine
subspace and one product of convex cones. This is precisely the formulation
for which the basic line search and the projected line search can be carried
out with little additional cost and where the line search condition for the
projected line search is convex in the line search parameter.

7. Numerical example
In this section we demonstrate the performance improvements of GAP when
line search is used. We consider the following problem

find z
such that Q(z − p) = 0

z ≥ 0,
(3.24)

where p = 10−71 to guarantee feasibility of the problem, and Q ∈ R50×100

is randomly generated with independent normally distributed elements with
unit variance and zero mean.
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7 Numerical example

We define two sets as C = {z | Q(z − p) = 0} and D = {z | z ≥ 0}. De-
pending on Q, the feasible set C∩D may be very small or consist of infinitely
long rays in the nonnegative orthant. For this particular problem, Q is gen-
erated such that no ray in the affine set lies completely in the nonnegative
orthant. Therefore, the intersection is relatively small.

As a termination criteria, we use the following high accuracy requirement:

‖Q(z − p)‖2 ≤ 10−10

z ≥ 0,

and we let α1 = α2 ∈ [1, 2] and α = 0.85/β, with β in (3.5).
As proposed in [Giselsson et al., 2016], we do not perform line search in

each iteration, but use the rule

〈rk, r̄k〉
‖rk‖2‖r̄k‖2

< 1− 10−4 (3.25)

to trigger it. The reason is that this often improves performance more than if
line search is used in every iteration. The rationale behind the rule is that a
large αk can often be accepted when the iterates are moving along a straight
line, i.e. when the angle between consecutive iterates is small. Numerical
experiments suggest that consecutive iterates along a line seems to coincide
with slow convergence, further motivating the use of line search when this
occurs.

Both the basic and the projected line search are performed using a simple
forward-tracking scheme with a factor 1.4, and the results for different α1 =
α2 are shown in Figure 2. The norm of the residual for each iteration is shown
in Figure 3, for two different α1 = α2.

Without line search, it is clear from Figure 2 that the choice α1 = α2 = 1
and α1 = α2 = 2, corresponding to alternating projections and Douglas-
Rachford splitting respectively, are far from optimal. They require approx-
imately 5000 and 8 · 106 iterations compared to only 113 iterations for the
optimal α1 = α2. However, this behavior does not apply to all problems. In
some cases, the number of iterations is monotonically decreasing in α1 = α2.

Figure 2 also reveals that the basic line search can considerably improve
performance, especially for small values of α1, α2, while the improvement for
larger values is more modest. However, the projected line search performs
considerably better, even for large α1 = α2, with only 52 iterations for the
optimal α1 = α2. In particular, it decreases the iterations for α1 = α2 = 2
with more than a factor 105.

So far, we only compared the number of iterations for the different meth-
ods. Since the line search methods have a higher cost per iteration, we now
evaluate what is actually gained by performing line search. We focus on the
two cases with α1 = α2 = 1.0 and 1.95. Figure 4 shows the number of
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Figure 2. Number of iterations to solve problem (3.24) for different
α1, α2, with and without line search.
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Figure 3. Norm of the residual for each iteration when solving prob-
lem (3.24) with different settings. It can be noted that the norm is strictly
decreasing both without line search and with the standard line search. The
peaks for the projected line search correspond to when a candidate αk was
accepted, which sometimes result in a temporary increase in the norm due
to the constructed line search condition.
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Figure 4. Number of times the line search was triggered and accepted
for different algorithms and settings.

times the trigger criterion for line search (3.25) was satisfied for the stan-
dard and projected line search. It also shows how many times the line search
found a point that satisfied the corresponding criterion for line search ac-
ceptance, i.e. (3.8) and (3.23). The number of evaluated candidate points
(i.e. different αk) averaged around 10 for each line search attempt, with a
maximum of 18. Since C = {z | Q(z − p) = 0} is affine, only one extra
projection on C was needed for line search (to initialize the algorithm). To
evaluate the acceptance criterion, (3.8) or (3.23), a few vector operations and
one projection onto D = {z | z ≥ 0} is needed for each αk. But projecting
onto D is simply a max-operation and is thus very cheap.

8. Conclusions
We have shown that a recently proposed line search [Giselsson et al., 2016]
is applicable to the generalized alternating projections method. We have
also proposed an alternative line search method for GAP, the projected line
search. Furthermore, we have shown that the line search condition for the
projected line search is convex in the step length parameter. Both line search
methods were evaluated on a feasibility problem, and showed significant per-
formance improvements compared to the nominal method.
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APPENDIX

8.1 Proof of Proposition 1
We start with the first claim. We know from [Bauschke and Combettes, 2011,
Proposition 4.8] that ΠCi is firmly nonexpansive, and since αi ∈ (0, 2) we
know from [Bauschke and Combettes, 2011, Corollary 4.29] that PαiCi are
αi
2 -averaged.

The composition PαpCp . . . P
α1

C1
is therefore β-averaged with β in (3.5), ac-

cording to [Combettes and Yamada, 2015; Giselsson, 2017]. Therefore

T = (1− α)Id + α((1− β)Id + βS)

= (1− αβ)Id + αβS.

where S is nonexpansive. Since α ∈ (0, 1
β ) we have αβ ∈ (0, 1) and the first

claim is proven.
The second claim is proven by noting that PαiCi is nonexpansive when

αi = 2 [Bauschke and Combettes, 2011, Corollary 4.10]. This implies that the
composition is nonexpansive and the claim follows directly since α ∈ (0, 1).

8.2 Proof of Proposition 2
To show this, we need the following lemma.

Lemma 1
Suppose that C is a nonempty closed and convex set and α 6= 0. Then
fixPαC = C, i.e. x ∈ C if and only if PαCx = x.

Proof. It holds for projection operators with α = 1 [Bauschke and Com-
bettes, 2011, Equation 4.8]. Since

PαCx = αΠCx+ (1− α)x = x+ α(ΠCx− x)

we have PαCx = x if and only if ΠCx = x if α 6= 0. 2

The result follows directly for the case A1 from [Bauschke and Combettes,
2011, Corollary 4.37] since fixPαiCi = Ci and PαiCi are αi-averaged operators.

For the case A2, let j be the index with αj = 2 and first assume that
j 6= 1, j 6= p. Define S1 = PCp . . . PCj+1

and S2 = PCj−1
. . . PC1

.
Since all PαiCi are averaged for i = j+1, . . . , p, and since fixPαiCi = Ci from

Lemma 1, [Bauschke and Combettes, 2011, Corollary 4.37] gives that S1 is
strictly quasi-nonexpansive and that fixS1 = ∩pi=j+1Ci. The same argument
shows that S2 is stricty quasi-nonexpansive with fixS2 = ∩j−1

i=1Ci.
Let T1 = S1P

2
Cj
. Nonexpansiveness of P 2

Cj
implies quasi-nonexpansiveness,

so T1 is also quasi-nonexpansive with fixT1 = ∩pi=jCi by [Bauschke and Com-
bettes, 2011, Proposition 4.35]. Again applying [Bauschke and Combettes,
2011, Proposition 4.35] to T = T1S2 gives the result.
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In the special case where j = p or j = 1, the results follows in the same
way for T = P 2

Cp
S2 or T = S1P

2
C1

respectively.

8.3 Proof of Theorem 2
The projected line search falls under [Themelis and Patrinos, 2019, Algorithm
1] with c0 := 0, c1 := 1− ε, q = 0 and σ := α(1/β − α). The result therefore
follows from [Themelis and Patrinos, 2019, Theorem 4.1].

8.4 Proof of Theorem 3
For the new iterate xk+1 in (3.22b), we have xk+1 = ΠC(xk + αkr

k),
and therefore xk+1 ∈ C. Let the shortest distance to a set Ω be denoted
distΩ(x) := ‖ΠΩx− x‖2. The norm of the residual then simplifies to

‖r(xk+1)‖ = ‖Pα2

D Pα1

C xk+1 − xk+1‖ (3.26)

= ‖α2ΠDx
k+1 + (1− α2)xk+1 − xk+1‖ (3.27)

= α2distD(xk+1) (3.28)

= α2distD
(
ΠC(xk + αkr

k)
)
. (3.29)

Since C is affine, so is ΠC . This implies that ΠC(xk + αkr
k) is affine in αk.

So the norm of the residual is the composition between the convex function
distD and an affine function in αk, hence convex [Boyd and Vandenberghe,
2004, p. 79] in αk.
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Paper III

Optimal Convergence Rates for
Generalized Alternating Projections

Mattias Fält Pontus Giselsson

Abstract

Generalized alternating projections is an algorithm that alternates re-
laxed projections onto a finite number of sets to find a point in their
intersection. We consider the special case of two linear subspaces, for
which the algorithm reduces to a matrix iteration. For convergent ma-
trix iterations, the asymptotic rate is linear and decided by the mag-
nitude of the subdominant eigenvalue. In this paper, we show how to
select the three algorithm parameters to optimize this magnitude, and
hence the asymptotic convergence rate. The obtained rate depends on
the Friedrichs angle between the subspaces and is considerably better
than known rates for other methods such as alternating projections
and Douglas-Rachford splitting. We also present an adaptive scheme
that, online, estimates the Friedrichs angle and updates the algorithm
parameters based on this estimate. A numerical example is provided
that supports our theoretical claims and shows very good performance
for the adaptive method.

© 2017 IEEE. Reprinted, with permission, from Proceedings of the 56th
Annual Conference on Decision and Control (CDC), Melbourne, Australia,
2017.
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1. Introduction
Many methods for finding a point in the intersection of a finite number of
sets exist. Notable examples include alternating projections [Neumann, 1950;
Deutsch, 1992], its generalization, generalized alternating projections, that
allows for relaxed projections [Agmon, 1954; Motzkin and Shoenberg, 1954;
Bregman, 1965], Dykstra’s algorithm [Boyle and Dykstra, 1986], Douglas-
Rachford splitting [Douglas and Rachford, 1956; Lions and Mercier, 1979],
and its dual algorithm ADMM [Glowinski and Marroco, 1975; Boyd et al.,
2011]. Considerable effort has gone into understanding and analyzing per-
formance and convergence rates of these methods. Convex and nonconvex
feasibility problems have been analyzed in [Phan, 2016; Hesse and Luke,
2013], and convex optimization and monotone inclusion problems in [Lions
and Mercier, 1979; Davis and Yin, 2017; Giselsson and Boyd, 2017; Giselsson,
2017].

For feasibility problems with two subspaces, it has been long known that
the standard alternating projection method converges linearly with exact rate
being the squared Friedrichs angle [Deutsch, 1995]. The Friedrichs angle is the
smallest non-zero principal angle between the subspaces, see [Deutsch, 1992]
for background on principal angles. More recently, it was shown in [Bauschke
et al., 2014] that the Douglas-Rachford algorithm converges with a rate given
by the Friedrichs angle.

These projection based algorithms reduce to matrix iterations when the
two sets are subspaces. This was exploited in [Bauschke et al., 2016], where
sharp convergence rates for matrices are provided. They apply their results to
find optimal parameters for the generalized alternating projections method.
Two of the parameters are kept fixed and they optimize over the third.

In this paper, we extend the results of [Bauschke et al., 2016]. We optimize
the sharp convergence rate for the generalized alternating projection method
over all three algorithm parameters. The obtained optimal rate turns out to
be significantly better than the ones considered in [Bauschke et al., 2016].
The optimal parameters in our setting also depends on the Friedrichs angle.
This angle is of course not known a priori. Therefore, we have developed
an adaptive scheme that estimates the Friedrichs angle during the course
of the iterations. Under easily achievable assumptions on the starting point
of the algorithm, we show that it is always a conservative estimate of the
true Friedrichs angle. Indeed, in examples we see that the estimated angle
approaches the Friedrichs angle.

The intention of this work is not to present a new method for solving
linear systems of equations. It is rather a starting point to optimize local lin-
ear convergence behavior for the generalized alternating projection method,
when solving, e.g., problems with affine and conic constraints. Such feasibil-
ity problems can solve essentially any convex optimization problem, by first
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reformulating the problem as a cone program (which is done in the CVX
modeling languages [Grant and Boyd, 2016; Diamond and Boyd, 2016; Udell
et al., 2014]), and then use primal dual embedding, as in [O’Donoghue et al.,
2016]. The local convergence analysis of such problems is outside the scope of
this paper. Encouraging results have, however, been presented, e.g., in [Liang
et al., 2015] and [Demanet and Zhang, 2016]. They show that the local linear
convergence rate for Douglas-Rachford splitting for specific convex optimiza-
tion problems is exactly the Friedrichs angle, i.e., the same as for subspaces.
The results rely on sufficient local smoothness or polyhedral/affine sets and
finite identification of active sets or manifolds. The finite identification prop-
erty implies that locally, the problem reduces essentially to an affine subspace
intersection problem.

We verify the theoretical results on numerical examples and demon-
strate that the generalized alternating projections with optimal parameters
performs significantly better than with previously studied parameters in,
e.g., [Deutsch, 1992; Bauschke et al., 2016]. We also observe that the proposed
adaptive method performs in line with the method with optimal parameters.

2. Preliminaries
Let the inner product and induced norm be denoted by 〈u, v〉 and ‖v‖ :=√
〈v, v〉 for vectors u, v ∈ Rn. Let the set of eigenvalues for a matrixA ∈ Rn×n

be denoted by σ(A), the spectral radius as ρ(A) := max {|λ| | λ ∈ σ(A)}
and let ‖A‖ be the operator norm ‖A‖ := supx∈Rn:‖x‖=1 ‖Ax‖. PC is the
orthogonal projection onto a closed, convex and nonempty set C, i.e. PCx =
argminy∈C {‖x− y‖} .

The following definitions and facts follow closely those in the related
work [Bauschke et al., 2016].

Definition 1
The principal angles θk ∈ [0, π/2], k = 1, . . . , p between two subspaces U ,V ∈
Rn, where p = min(dimU ,dimV), are recursively defined by

cos θk := max
uk∈U, vk∈V

〈uk, vk〉

s.t. ‖uk‖ = ‖vk‖ = 1,

〈uk, vi〉 = 〈ui, vk〉 = 0,∀ i = 1, ..., k − 1.

Fact 1
[Bauschke et al., 2016, Def 3.1, Prop 3.3] The principal angles are unique
and satisfy 0 ≤ θ1 ≤ θ2 ≤ . . . θp ≤ π/2. The angle θF := θs+1, where s =
dim(V ∩ U), is the Friedrichs angle and it is the smallest non-zero principal
angle.
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Definition 2
A ∈ Rn×n is linearly convergent to A∞ with linear convergence rate µ ∈
[0, 1) if there exist M,N > 0 such that∥∥Ak −A∞∥∥ ≤Mµk ∀k > N, k ∈ N.

Definition 3
[Bauschke et al., 2016, Fact 2.3] For A ∈ Rn×n we say that λ ∈ σ(A) is
semisimple if ker(A− λI) = ker(A− λI)2.

Fact 2
[Bauschke et al., 2016, Fact 2.4] For A ∈ Rn×n, the limit A∞ := limk→∞Ak

exists if and only if

• ρ(A) < 1 or

• ρ(A) = 1 and λ = 1 is semisimple and the only eigenvalue on the unit
circle.

Definition 4
[Bauschke et al., 2016, Def. 2.10] Let A ∈ Rn×n be a (nonexpansive) matrix
and define

γ(A) := max {|λ| | λ ∈ {0} ∪ σ(A) \ {1}} .
Then λ ∈ σ(A) is a subdominant eigenvalue if |λ| = γ(A).

Fact 3
[Bauschke et al., 2016, Thm. 2.12] If A ∈ Rn×n is convergent to A∞ then

• A is linearly convergent with any rate µ ∈ (γ(A), 1)

• If A is linearly convergent with rate µ ∈ [0, 1), then µ ∈ [γ(A), 1).

3. Optimal parameters for GAP
Let the relaxed projection onto a set C, with relaxation parameter α, be
defined as PαC := (1 − α)I + αPC . The generalized alternating projections
(GAP) [Fält and Giselsson, 2017b] for two closed, convex and nonempty sets
U and V, with U ∩ V 6= ∅, is then defined by the iteration

xk+1 := Sxk, (3.1)

where
S = (1− α)I + αPα2

U Pα1

V =: (1− α)I + αT. (3.2)

The operator S is averaged and the iterates converge to the fixed-point
set fixS under the following assumption, see e.g. [Fält and Giselsson, 2017b]
where these results are collected.
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Assumption 1
Assume that α ∈ (0, 1], α1, α2 ∈ (0, 2] and that either of the following holds

A1 α1, α2 ∈ (0, 2)

A2 α ∈ (0, 1) with either α1 6= 2 or α2 6= 2

A3 α ∈ (0, 1) and α1 = α2 = 2

To study the convergence rate of S, and its dependence on the parameters
α1, α2 and α, we need to characterize the eigenvalues of S. To this end, we
state the following proposition, as found in [Bauschke et al., 2016, Prop. 3.4].

Proposition 1
Let U and V be affine subspaces in Rn satisfying p := dim(U), q := dim(V),
where p ≤ q, p + q < n and p, q ≥ 1. Then, the projection matrices PU and
PV become

PU = D


Ip 0 0 0
0 0p 0 0
0 0 0q−p 0
0 0 0 0n−p−q

D∗, (3.3)

PV = D


C2 CS 0 0
CS S2 0 0
0 0 Iq−p 0
0 0 0 0n−p−q

D∗ (3.4)

and

PUPV = D


C2 CS 0 0
0 0p 0 0
0 0 0q−p 0
0 0 0 0n−p−q

D∗, (3.5)

where C and S are diagonal matrices containing the cosine and sine of the
principal angles θi, i.e.

S = diag(sin θ1, . . . , sin θp),

C = diag(cos θ1, . . . , cos θp),

and D ∈ Rn×n is an orthogonal matrix.

Under the assumptions in Proposition 1, the linear operator T , implicitly
defined in (3.2), becomes

T = Pα2

U Pα1

V = ((1− α2)I + α2PU )((1− α1)I + α1PV)

= (1− α2)(1− α1)I + α2(1− α1)PU

+α1(1− α2)PV + α1α2PUPV

= D blkdiag(T1, T2, T3)D∗
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where

T1 =

(
Ip − α1S

2 α1CS
α1(1− α2)CS (1− α2)(Ip − α1C

2)

)
, (3.6)

T2 = (1− α2)Iq−p, T3 = (1− α2)(1− α1)In−p−q.

The rows and columns of T1 can be reordered so that it is a block-diagonal
matrix with blocks

T i1 =

(
1− α1s

2
i α1cisi

α1(1− α2)cisi (1− α2)(1− α1c
2
i )

)
, i ∈ 1, . . . , p (3.7)

where si := sin θi, ci := cos θi. The eigenvalues of T are therefore λ3 :=
(1− α2), λ4 := (1− α2)(1− α1), and for every T 1

1

λ1,2
i =

1

2

(
2− α1 − α2 + α1α2c

2
i

)
(3.8)

±
√

1

4
(2− α1 − α2 + α1α2c2i )

2 − (1− α1)(1− α2).

Remark 1
The property p ≤ q was used to arrive at these results. If instead p > q, we
reverse the definitions of PU and PV in Proposition 1. Noting that σ(T ) =
σ(TT ), we get a new block-diagonal matrix T̄ with blocks T̄1 = TT1 , T̄3 = TT3
and T̄2 = (1− α1)Ip−q. Therefore, the matrix will have eigenvalues in either
1− α1 or 1− α2 depending on the dimensions of U and V.

Motivated by Fact 3, we are looking for parameters that minimize the
magnitude of the subdominant eigenvalues. We will do this for both cases
in Remark 1. In the following sequence of theorems, we will show that the
optimal parameters are

α = 1, α1 = α2 = α∗ :=
2

1 + sin θF
, (3.9)

and that the subdominant eigenvalues have magnitude γ(S) = γ∗, where

γ∗ :=
1− sin θF
1 + sin θF

. (3.10)

Theorem 1
The GAP operator S in (3.2) with α, α1, α2 as defined in (3.9) satisfies γ(S) =
γ∗ and is linearly convergent with any rate µ ∈ (γ∗, 1).

The proof is too long to fit in this format. We therefore present a sketch of the
proof and refer to the full proof in the technical report [Fält and Giselsson,
2017a].
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Sketch of proof. The proof is divided into two cases: (p+q < n) and (p+q ≥
n). The first case is shown by calculating the eigenvalues using Proposition 1.
All eigenvalues corresponding to the principal angles have magnitude |α∗ −
1| = γ∗, and the other eigenvalues are either smaller or located in λ = 1. The
result follows from Fact 2 and 3.

The second case is shown by extending the space Rn with k extra dimen-
sions so that p+ q < n+ k. Proposition 1 can then be used in the new space
to show the result. 2

We now show that no other choices of α, α1, α2 can achieve a lower linear
convergence rate under the assumption that the relative dimension of U and
V is unknown. Motivated by this, we formulate the following assumption.

Assumption 2
Suppose that U and V are linear subspaces and that the dimensions p :=
dim(U), q := dim(V) satisfy p, q ∈ {1, . . . , n− 1} and consider the cases:

B1: p < q, B2: p = q, and B3: p > q.

Proposition 2
To optimize the convergence rate of S, for all cases in Assumption 2, it is
necessary to minimize the largest modulus of the eigenvalues in the set(

{λ1,2
i }i∈1,...,p ∩ {1− α2, 1− α1, (1− α2)(1− α1)}

)
\ {1}. (3.11)

Proof. These are the eigenvalues from the matrices in (3.6) together with
1−α1, as motivated in Remark 1. If we let γ1 = γ(S) under assumption B1,
γ2 = γ(S) under B2, and γ3 = γ(S) under B3, it follows, from Remark 1, that
the largest modulus of the eigenvalues in (3.11) is equal to max(γ1, γ2, γ3).2

Next, we show that the rate obtained in Theorem 1 is indeed optimal.

Theorem 2
The GAP operator S in (3.2) with θF < π/2 and α1, α2, α > 0 is linearly
convergent with any rate µ ∈ (γ∗, 1), for all cases in Assumption 2, if and
only if α, α1, α2 are chosen as in (3.9).

A sketch of the proof is presented below, the full proof can be found in
the technical report [Fält and Giselsson, 2017a].

Sketch of proof. This proof consists of several parts and is also divided into
the cases p + q < n and p + q ≥ n. We first consider the specific choice
of α = α̂ := α∗/α1 (in case B1 of Assumption 2) or α = α̂ := α∗/α2 (in
case B3). We show that this choice will always result in one eigenvalue with
real part larger than γ∗, unless α1 = α2 = α∗. We also observe that α = α̂
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results in one eigenvalue in 1 − α∗ = −γ∗. By noting how a change in α
affects the eigenvalues we can conclude that changing α from α̂ will result in
increasing magnitude of one of these two eigenvalues. It is thus clear that no
combination of α, α1, α2 can result in γ(S) < γ∗ for all cases in Assumption 2.
The case p+q ≥ n can then be shown with the same trick as in Theorem 1.2

Remark 2
The case with θF = π/2 is trivial and results in convergence in one iteration
with the optimal parameters. This case is excluded from the theorem since
there are also other methods that achieve the same rate. We also exclude the
cases when either of α1, α2, α are non-positive, since such choices typically
result in a non-convergent algorithm. The assumption on the parameters is,
however, less restrictive than Assumption 1.

Remark 3
The result is derived under the assumption that both 1− α2 and 1− α1 are
considered, i.e. q < p and q > p respectively (see Remark 1). The same result
follows in either of these cases if we instead assume that θp = π/2, which is
a safe assumption if we do not know the largest principal angle.

We now state the convergence rate of the sequence xk.

Theorem 3
The sequence xk+1 := Sxk with optimal parameters α = 1, α1 = α2 =

2
1+sin θF

converges linearly to x∗ := PfixSx
0 according to∥∥xk − x∗∥∥ ≤ µk ∥∥x0
∥∥ ∀k ≥ N, (3.12)

with any rate µ ∈ (γ∗, 1), for γ∗ in (3.10), i.e., xk is R-linearly convergent to
x∗.

A proof is located in Appendix A.1.

Remark 4
For linear subspaces U ,V, under the Assumption 1 case A1 or A2, we have
fixS = U ∩ V, see e.g. [Fält and Giselsson, 2017b]. For case A3 we have
fixS = V ∩ U + (V⊥ ∩ U⊥), see [Bauschke et al., 2014].

4. Comparison with other choices of parameters
In Section 3, we derive, for two linear subspaces, the optimal parameters for
the generalized alternating projections method. These parameters are opti-
mal under the assumption that the relative dimensions of the two subspaces
are unknown, or that the largest principal angle θp = π/2. There are other
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methods that can perform better if these assumptions are not true. For ex-
ample, if dimU ≤ dimV, the parameters

α = 1, α1 = 2, α2 =
2

1 + sin(2θF )
, (3.13)

(referred to as GAP2α in Section 6) result in that most eigenvalues have
modulus

cos θF − sin θF
cos θF + sin θF

. (3.14)

This rate is better than γ∗, although marginally for small θF . However, if the
largest principal angle, θp, is large enough, the corresponding eigenvalues will
approach −1. This choice will then converge much slower than the optimal
method in Section 3. This is observed in the numerical example in Section 6.

When dimU ≤ dimV, it is sometimes possible to get even better per-
formance by selecting α2 > 2. However, this method is not convergent if
dimU > dimV, and it would generally not be convergent for general convex
sets.

In [Bauschke et al., 2016], optimal parameters are found by keeping two
of the parameters fixed and optimizing over the third.

The first method is the relaxed alternating projections (α1 = α2 = 1),
which is shown to be optimal for α = 2

1+sin2 θF
with rate γ = (1−sin2 θF )/(1+

sin2 θF ). This is better than the alternating projections with α = 1 which is
convergent with rate γ = cos2 θF [Deutsch, 1995].

The generalized Douglas-Rachford (α1 = α2 = 2), is shown to be optimal
for α = 0.5 with rate γ = cos θF .

These rates are considerably worse than the optimal rates, as seen in
Figure 1, especially for small θF . The methods are referred to as MAP and
DR in the numerical example in Section 6.

The partial relaxed alternating projections (α = α2 = 1) was was shown
to be optimal for

α2 =
2

sin2 θp + sin2 θF
, with rate γ =

sin2 θp − sin2 θF

sin2 θp + sin2 θF
. (3.15)

This rate is sometimes better than γ∗ if θp < π/2, but not for small enough
θF . In fact, it is only better if sin2 θp < sin θF . It also requires knowledge of
θp, and is not generally convergent if dimU > dimV.

An illustration of where the eigenvalues are located for these methods is
shown in Figure 1.
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Im

Re

(a) Douglas-Rachford
γ(S) ≈ 0.99

Im

Re

(b) MAP
γ(S) ≈ 0.96

Im

Re

(c) GAP 1.65
γ(S) ≈ 0.90

Im

Re

(d) PRAP 1.65
γ(S) ≈ 0.92

Im

Re

(e) GAP2α
γ(S) ≈ 0.748

Im

Re

(f) GAP*
γ(S) ≈ 0.75

Figure 1. Convergence rates for different methods, as described in Sec-
tion 4, for θF ≈ 0.14 (8.8◦). The eigenvalues corresponding to the principal
angels are shown for 30 angles, evenly spaced from θF to π/2, as dots from
red to blue. The eigenvalues corresponding to (1−α2) and (1−α2)(1−α1)
are shown as green dots. The radius γ(S) is shown in orange. GAP1.65
represents GAP with α = 1 and α1 = α2 = 1.65 < α∗ = 1.75. The par-
tial relaxed alternating projections (PRAP) from Equation (3.15), the best
algorithm in the previous work [Bauschke et al., 2016], is shown under the
assumption θp = π/4. We see that the optimal parameters gives a much
better result than the previously suggested methods. This is achieved by
placing the eigenvalues at the same radius. Increasing the parameters from
the optimal (α1 = α2 > α∗ = 1.75), increases the radius of the eigenval-
ues corresponding to the principal angles. If decreased, the result looks like
GAP 1.65, where one of the eigenvalues corresponding to θF is subdominant.
GAP2α (Equation (3.13)) is shown under the assumption θp ≈ 0.91π/2. Al-
though it performs slightly better than GAP* under this assumtion, it gets
considerably worse if θp increases.
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V

U
xk

yk := Pα1

V xk

zk := PUP
α1

V xk

θ̂k

Figure 2. Illustration of the estimate θ̂k.

5. Adaptive generalized alternating projections
The generalized alternating projections algorithm with α1 = 1, α1 = α2 =

2
1+sin θF

is optimal under the assumption that the relative dimensions be-
tween U and V is unknown. However, this parameter choice requires that the
Friedrichs angle is known. This is typically not the case. In this section, we
present an adaptive method that continuously tries to estimate the Friedrichs
angle θF and updates α1 and α2, based on this estimate.

Consider the following estimate of the Friedrichs angle at iteration k

cos θ̂k :=
|
〈
xk − yk, zk − yk

〉
|

‖xk − yk‖ ‖zk − yk‖
, (3.16)

where yk = Pα1

V xk and zk = PUP
α1

V xk. If xk = yk or zk = yk we define the
estimate as cos θk := 0. The estimate is illustrated in Figure 2
Next, we show that this value is always an overestimation of the Friedrichs
angle, provided that the first iterate is in U + V.

Theorem 4
The estimate θ̂k in Equation (3.16) always satisfies θ̂k ≥ θF if the starting
point x0 ∈ U + V.

Proof. Assume that xk ∈ U+V. Since for a projection it holds that PVxk ∈ V,
it follows that yk = Pα1

V xk, a linear combination of xk and PVx
k, satisfies

yk ∈ U + V. In the same way it follows that zk ∈ U + V and xk+1 ∈ U + V.
By induction, this must hold for all iterations since x0 ∈ U + V.

Let v1 := xk − yk and v2 := zk − yk. We have v1 = xk − Pα1

V xk =
α1(I − PV)xk = α1PV⊥x

k ∈ V⊥ and in the same way v2 ∈ U⊥. We also see
that v1, v2 ∈ U + V, since they are linear combinations of elements in U + V.
Noting that U + V = (U⊥ ∩ V⊥)⊥ [Deutsch, 1995, Lem. 2.11] we get,

v1 ∈ U⊥ ∩ (U⊥ ∩ V⊥)⊥, v2 ∈ V⊥ ∩ (U⊥ ∩ V⊥)⊥.
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Using the definition of the cosine of the Friedrichs angle between two sets
U ,V [Deutsch, 1995, Def. 2.1]:

cF (U ,V) := max

{
| 〈v, u〉 |
‖v‖ ‖u‖

:
v ∈ U ∩ (U ∩ V)⊥

u ∈ V ∩ (U ∩ V)⊥

}
and the property cF (U ,V) = cF (U⊥,V⊥) [Deutsch, 1995, Thm. 2.16] we
immediately get

cos θ̂k =
| 〈v1, v2〉 |
‖v1‖ ‖v2‖

≤ cF (U⊥,V⊥) = cF (U ,V) = cos θF

where we let |〈v1,v2〉|
‖v1‖‖v2‖

:= 0 if ‖v1‖ = 0 or ‖v2‖ = 0.

We therefore conclude that θ̂k ≥ θF . 2

Next, we propose an adaptive version of the generalized alternating pro-
jections method:

Algorithm 1
Let k = 0, x0 ∈ Rn and α0 ∈ (0, 2).

yk := Pα
k

V xk

xk+1 := Pα
k

U yk

θ̂k := acos
|
〈
xk − yk, xk+1 − yk

〉
|

‖xk − yk‖ ‖xk+1 − yk‖

αk+1 :=
2

1 + sin θ̂k

We now motivate, without proof, that the estimate will tend toward θF
if x0 ∈ U + V.

Let θ̂k be the current estimate of θF and α1 = α2 = 2
1+sin θ̂k

. Since

θ̂k ≥ θF , we get α1 = α2 ≤ α∗. As seen in Figure 1(c), eigenvalues corre-
sponding to large principal angles have radius smaller than α∗ − 1. However
smaller principal angles will have one positive real eigenvalue, and the largest
eigenvalue corresponds to θF with real part greater than α∗ − 1. Iterating
the operator should therefore result in convergence to the subspace spanned
by the eigenvectors corresponding to θF , and the estimated angle will de-
crease towards θF . This behavior was observed in the numerical example in
Section 6.

We now show that Algorithm 1 is always convergent, for general convex
sets, if it is modified so that αk 6= 2. This is true if θ̂F > 0 or if the algorithm
is modified, for example as

αk ← min

{
2

1 + sin θ̂k
, 2− ε

}
,
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for some ε > 0.

Theorem 5
Consider Algorithm 1 for two non-empty, closed, convex sets U ,V with U ∩
V 6= ∅. If θ̂k satisfies θ̂k > 0 for all k ≥ 0 then xk → x∗ for some x∗ ∈ U ∩ V.

Proof. If θ̂k > 0, then αk+1 6= 2. Thus αk+1 ∈ (0, 2) and each iteration is the
result of an averaged mapping Sk with fixed points U ∩V. It follows that the
iterates converge to the fixed point set U ∩ V, see e.g. [Fält and Giselsson,
2017b]. 2

6. Numerical Example
In this section, we compare the theoretical results to numerical experiments.
We have generated a set of problems of the form

V = {x | Ax = 0} , U = {x | Bx = 0}

with A ∈ Rn×200, B ∈ R100×200. The matrices are generated with indepen-
dent normal distributed elements, with zero mean and unit variance. The
initial point x0 is randomly chosen in the same way. The dimension of A
is selected from 13 different categories with n ∈ {1, . . . , 99}, and at least
500 problems are generated for each category, resulting in over 8000 different
problems. The problems have Friedrichs angles in the range θF ∈ (5 ·10−4, 1).

We solve the problem of finding x ∈ U ∩V using the following algorithms:

• Method of alternating projections (MAP):

SMAP := (1− α)I + αPVPU

with optimal α = 2
1+sin(θF )2 , according to [Bauschke et al., 2016].

• Douglas-Rachford method (DR):

SDR :=
1

2
(I +RVRU )

where RC := P 2
C = 2PC − I.

• The optimal generalized alternating projections (GAP∗):

SGAP∗ := Pα
∗

V Pα
∗

U ,

with α∗ = 2
1+sin θF

.
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Figure 3. Number of iterations for different methods, as described in
Section 6, plotted against the Friedrichs angle θF . The theoretical rates
are plotted in lines as the solution to γ(S)n = 10−8 for GAP*, DR, and
MAP. For GAP2α we show the rate (in dashed red line) assuming that
θp is sufficiently small, according to the discussion in Section 4. We see
that this method can perform better than GAP*, particularly for large θF .
However, since θp is unknown, convergence is sometimes extremely slow.
The convergence for GAP1.8 is constant for small θF , but the convergence
rate slows down considerably when θF decreases to the point where 1.8 <
α∗. We see that GAP* performs in line with the theoretical result, and
considerably better than both DR and MAP. The adaptive method (GAPA)
performs marginally worse than GAP* for large θF . No difference in the
number of iterations can be seen between GAP* and GAPA when θF is
small.
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• The adaptive generalized alternating projections (GAPA):

SGAPA := PαkV PαkU ,

implemented as in Algorithm 1.

• Generalized alternating projections with a = 1, α1 = 2, α2 = 2
1+sin(2θF )

(GAP2α):
SGAP2α = Pα2

V RU ,

as described in Section 4.

• Generalized alternating projections with α = 1, α1 = α2 = 1.8
(GAP1.8):

SGAP1.8 := P 1.8
V P 1.8

U .

For each of the methods we monitor the shadow sequence

zk = PUS
kx0

and terminate when ∥∥PV∩Uzk − zk∥∥ < 10−8

or when the number of iterations reach 200, 000.

Remark 5
The analysis in this paper concerns the convergence of the sequence towards
a fixed-point. We are actually more interested in the shadow sequence (that
we monitor in the examples), since it can find a point in the intersection
long before the sequence converges to the fixed-point set. This may be favor-
able for the Douglas-Rachford algorithm because of its dominating complex
eigenvalues, compared to what its convergence rate suggests.

The problems were generated and solved with Julia [Bezanson et al., 2017],
and the results are shown in Figure 3. We see that the methods perform in
line with the theoretical rates. The method with optimal parameters performs
considerably better and more reliably than for other choices. We see that
the adaptive method performs almost identically to the optimal parameters,
without prior knowledge of the Friedrichs angle.

We have verified numerically that the estimate in the adaptive method
converges to the Friedrichs angle. For all problems that took more than 17
iterations to converge, the estimate in the last iteration, was indeed conser-
vative (θ̂k > θF ). Furthermore, the relative error |θ̂k− θF |/ ‖θF ‖ was smaller
than 5% (0.1%) at the last iteration, for all problems that ran more than 100
(400) iterations. These results were obtained, even though no measures were
taken to ensure x0 ∈ U + V.
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7. Conclusions
We derived the optimal parameters for the generalized alternating projections
method for two linear subspaces. The optimal rate is considerably better than
previously analyzed parameters, and we verify the results with an extensive
set of numerical examples. We also presented an adaptive method, that in
practice is able to perform in line with the optimal parameters, with no prior
knowledge about the problem.

It remains as future work to study how the results apply to more general
feasibility problems.

A. Appendix

A.1 Proof of Theorem 3
Using [Bauschke et al., 2016, Thm. 2.12] we get for convergent A:∥∥xk − x∗∥∥ =

∥∥Akx0 −A∞x0
∥∥ =

∥∥(Ak −A∞)x0
∥∥

=
∥∥(A−A∞)kx0

∥∥ ≤ ∥∥(A−A∞)k
∥∥ ‖x0‖ .

Using the spectral radius formula and ρ(A − A∞) = γ(A) [Bauschke et al.,
2016, Thm. 2.12] we have, for any µ ∈ (γ(A), 1)

lim
k→∞

∥∥(A−A∞)k
∥∥ 1
k = ρ(A−A∞) = γ(A) < µ,

so there exists N ∈ N such that
∥∥(A−A∞)k

∥∥ ≤ µk, ∀k ≥ N and thus∥∥xk − x∗∥∥ ≤ µk ∥∥x0
∥∥ ∀k ≥ N. (3.17)

From [Bauschke et al., 2016, Corollary 2.7] we know that S∞ = PfixS

since S is nonexpansive, we therefore get x∗ = PfixSx
0.

From Theorem 1 we know that γ(S) = 1−sin θF
1+sin θF

, and the proof is com-
plete.
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Paper IV

Generalized Alternating Projections on
Manifolds and Convex Sets

Mattias Fält Pontus Giselsson

Abstract

In this paper we extend the previous convergence results on the gener-
alized alternating projection method, from subspaces [Fält and Gisels-
son, 2017a], to include smooth manifolds. We show that locally it will
behave in the same way, with the same rate as predicted in [Fält and
Giselsson, 2017a]. The goal is to get closer to a rate for general convex
sets, where convergence, but not rate is known. If a finite identification
property can be shown for two convex sets, to locally smooth manifolds,
then the rates from this paper also apply to those sets. We present a
few examples where this is the case, and also a counter example for
when this is not the case.

Submitted.
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1. Introduction
The problem of finding a point in the intersection of sets has a long history
with many proposed algorithms. They generally rely on successive projections
onto the respective sets. The method of alternating projections (MAP, or
AP) was famously studied by von Neumann [Neumann, 1950] for the case of
two subspaces, and has a wide range of applications [Deutsch, 1992]. Many
variants have been suggested and shown to converge in the case of convex sets,
for example using relaxed projections [Agmon, 1954; Motzkin and Shoenberg,
1954; Bregman, 1965; Gubin et al., 1967], Dykstra’s algorithm [Boyle and
Dykstra, 1986], Douglas–Rachford splitting [Douglas and Rachford, 1956;
Lions and Mercier, 1979], and its dual algorithm ADMM [Glowinski and
Marroco, 1975; Boyd et al., 2011].

Many results on the linear convergence rates of these algorithms have
been shown and are generally stated either as a function of a regularity
constant, or as a function of the smallest angle between the sets, which in
the case of affine sets is known as the Friedrichs angle θF . In the case of two
subspaces, the method of alternating projections was shown to converge with
the linear rate cos2(θF ) [Deutsch, 1995], and the Douglas–Rachford method
with rate cos(θF ) [Bauschke et al., 2014a]. In [Bauschke et al., 2016], the
authors studied a few methods with relaxed projections and the optimal
rates with respect to the relaxation parameters were found. The generalized
alternating projection (GAP), which generalizes most of the algorithms above
by allowing several relaxation parameters, was studied in [Fält and Giselsson,
2017a], and it was shown that the faster rate 1−sin θF

1+sin θF
is achievable with the

right parameters. It was also shown that, under general assumptions, this is
the best possible rate for this generalization.

When it comes to general convex sets, local linear convergence of these
algorithms is not guaranteed. Several different assumptions on the intersec-
tion between the sets have been proposed and shown to be sufficient. Some of
these assumptions include linear regularity or bounded linear regularity, see
for example [Lewis et al., 2009; Bauschke and Borwein, 1993]. An overview
on set regularities can be found in [Kruger, 2006]. Under sub-transversality
assumptions of two convex sets, the R-linear rate presented in [Luke and
Martins, 2020] translates to a cos(θF /2) contraction rate for the Douglas–
Rachford algorithm, when translated to the subspace setting.

For general non-convex sets, convergence to a feasible point can not be
guaranteed, and instead local convergence is studied. For the alternating
projections method, different types of regularity have been shown to be suf-
ficient for local linear convergence [Lewis et al., 2009; Bauschke et al., 2013b;
Bauschke et al., 2013a; Noll and Rondepierre, 2013]. For the alternating
projections algorithm, the results in [Lewis et al., 2009] for possibly non-
convex super-regular sets with linearly regular intersection translates to the
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known optimal rate of cos2(θF ) when applied to sub-spaces. In [Drusvyatskiy
et al., 2015], the authors showed that a transversality property can be used
to guarantee local linear convergence. However, both the assumptions and
rates presented in this paper are quite conservative. For example, in the case
of two subspaces, the rate presented in [Drusvyatskiy et al., 2015] translates
to cos2(θF /2) which is considerably worse than the known contraction rate
cos(θF ) and the local linear rate cos2(θF ). Among the few known results for
the relaxed versions of alternating projections, local linear convergence was
shown for the MARP algorithm in [Bauschke et al., 2014b] under different
regularity assumptions. However, this paper assumes that the projections are
under-relaxed, which was shown in [Fält and Giselsson, 2017a] to result in
sub-optimal local rates.

One approach to show local convergence rates for general convex sets is
by showing that the algorithms eventually project onto subsets that have
nicer properties, i.e. that the algorithm identifies these subsets in finite time.
This can be done by partitioning the boundary of sets into a collection of
smooth and open manifolds, and then studying the algorithm on these man-
ifolds. There has been a lot of research into these identification properties
for various algorithms, see for example [Hare and Lewis, 2004; Lewis and
Wright, 2011; Liang et al., 2015]. However, as far as the authors know, none
of these results apply to projection methods on feasibility problems. The fun-
damental problem seems to be that gradients are vanishing at any feasible
point when a feasibility problem is reformulated as an optimization problem,
so the regularity assumptions are therefore not satisfied.

However, for specific problems it can sometimes be known that the algo-
rithm will identify such surfaces, for example when the entire boundary is a
smooth manifold, or when the algorithm is known to converge to the relative
interior of one of the manifolds.

In [Lewis and Malick, 2008], the authors study alternating projections
in the setting of two smooth manifolds and show that the problem locally
can be approximated by affine sets. They prove that the convergence rates
known from affine sets translates to local linear rates in this setting under a
transversality condition. A similar result is found in [Andersson and Carlsson,
2013] under slightly relaxed assumptions.

In this paper, we study the same setting for the generalized alternating
projections algorithm. We show that the weaker assumption in [Andersson
and Carlsson, 2013] is sufficient to show local linear convergence of the gen-
eralized alternating projections method on smooth manifolds. Moreover, we
show that the optimal rates and parameters from [Fält and Giselsson, 2017a]
translate to this setting. Furthermore, the local linear rate is strict since affine
sets are a special case of smooth manifolds.

Lastly, we provide some classes of convex sets where this result can be
used to prove the convergence rate, as well as one counter-example where
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we illustrate that even in the setting of polyhedral sets and the presence of
regularity, the problem can not always be locally reduced to that of affine
sets, as is the case for alternating projections.

2. Notation
We denote the identity operator by I and the operator norm by ‖ · ‖. For a
matrix A we let Λ(A) be the set of eigenvalues and ρ(A) := maxλ∈Λ(A) |λ| the
spectral radius. If the limit limk→∞Ak exists, we denote it by A∞ and define
σ(A) := ‖A − A∞‖. For a vector v ∈ Rn we also denote the vector norm
by ‖v‖ :=

√
〈v, v〉. The Jacobian of a function F at a point x is denoted by

JF (x). We denote the closed ball around a point x ∈ Rn and with radius δ,
i.e. {y ∈ Rn | ‖x−y‖ ≤ δ}, by Bδ(x) and the open ball {y ∈ R | ‖x−y‖ < δ}
by Boδ(x).

3. Preliminaries
Definition 1—Projection
The projection of an element x ∈ Rn onto a closed, non-empty subset C ⊂ Rn
is defined by

ΠC(x) := argmin
y∈C

‖x− y‖

when the argmin is unique.

Definition 2—Relaxed Projection
Let the relaxed projection onto a closed, non-empty subset C ⊂ Rn, with
relaxation parameter α, be defined as

Πα
C := (1− α)I + αΠC .

3.1 Subspaces
In this section we introduce some basic properties of subspaces that will be
useful in the study of the local properties of manifolds.

Definition 3
The principal angles θk ∈ [0, π/2], k = 1, . . . , p between two subspaces U ,V ∈
Rn, where p = min(dimU ,dimV), are recursively defined by

cos θk := max
uk∈U, vk∈V

〈uk, vk〉

s.t. ‖uk‖ = ‖vk‖ = 1,

〈uk, vi〉 = 〈ui, vk〉 = 0,∀ i = 1, . . . , k − 1.
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Fact 1
[Bauschke et al., 2016, Def 3.1, Prop 3.3] The principal angles are unique
and satisfy 0 ≤ θ1 ≤ θ2 ≤ . . . θp ≤ π/2. The angle θF := θs+1, where s =
dim(U ∩ V), is the Friedrichs angle and it is the smallest non-zero principal
angle.

The cosine of the Friedrichs angle occurs naturally in many convergence
rate results and is denoted as follows.
Definition 4
Given two subspaces U ,V ∈ Rn, with Friedrichs angle θF , we denote its
cosine as

c(U ,V) := cos(θF ).

We see that θi = 0 if and only if i ≤ s, where s = dim(U ∩ V), so θF is
well defined whenever min(dimU ,dimV) = p > s = dim(U ∩ V), i.e. when
no subspace is contained in the other.

Definition 5
A ∈ Rn×n is linearly convergent to A∞ with linear convergence rate µ ∈
[0, 1) if there exist M,N > 0 such that∥∥Ak −A∞∥∥ ≤Mµk ∀k > N, k ∈ N.

Definition 6
[Bauschke et al., 2016, Fact 2.3] For A ∈ Rn×n we say that λ ∈ Λ(A) is
semisimple if ker(A− λI) = ker(A− λI)2.

Fact 2
[Bauschke et al., 2016, Fact 2.4] For A ∈ Rn×n, the limit A∞ := limk→∞Ak

exists if and only if

• ρ(A) < 1 or

• ρ(A) = 1 and λ = 1 is semisimple and the only eigenvalue on the unit
circle.

Definition 7
[Bauschke et al., 2016, Def. 2.10] Let A ∈ Rn×n be a matrix with ρ(A) ≤ 1
and define

γ(A) := max {|λ| | λ ∈ {0} ∪ Λ(A) \ {1}} .
Then λ ∈ Λ(A) is a subdominant eigenvalue if |λ| = γ(A).

Fact 3
[Bauschke et al., 2016, Thm. 2.12] If A ∈ Rn×n is convergent to A∞ then

• A is linearly convergent with any rate µ ∈ (γ(A), 1)

• If A is linearly convergent with rate µ ∈ [0, 1), then µ ∈ [γ(A), 1).
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3.2 Manifolds
The following definitions and results follow those in [Lewis and Malick, 2008].

Definition 8—Smooth Manifold
A set M ⊂ Rn is a Ck-manifold around a point x ∈ M if there is an open
set U ⊂ Rn containing x such that

M∩ U = {x : F (x) = 0}

where F : U → Rd is a Ck function with surjective derivative throughout U .

Definition 9—Tangent space
The tangent space to a manifoldM is given by

TM(x) = ker JF (x).

and is independent to the choice of F that defines the manifold.

Definition 10—Normal vector
v ∈ Rn is a normal vector to the manifold M ⊂ Rn at x ∈ Rn if 〈v, t〉 = 0
for all t ∈ TM(x).

Definition 11—Smooth boundary
We say that a closed set C ⊂ Rn has a Ck smooth boundary around x̄ ∈ Rn
if bd (C) is a Ck smooth manifold around x̄.

Remark 1
We note that if a set C ∈ Rn is solid, i.e. int(C) 6= ∅, with a Ck smooth
boundary around some point x̄, then the boundary is defined in some neigh-
borhood U of x̄ by some f : Rn → R as bd (C) ∩ U = {x : f(x) = 0}. The
tangent space given by ker Jf (x) is therefore an Rn−1 dimensional plane, with
normal vector ∇f(x). Since f is a Ck smooth function, the normal vector is
a Ck−1 smooth function of x.

We now define the regularity condition that will be sufficient to show
linear convergence of the GAP method.

Assumption 1—Regularity
Two manifolds M,N satisfy the regularity assumption at a point x if they
are Ck-smooth (k ≥ 2) around x ∈M∩N and

A1. M∩N is a Ck smooth manifold around x

A2. TM∩N (x) = TM(x) ∩ TN (x).

114



3 Preliminaries

In previous literature such as [Lewis and Malick, 2008], the standard
regularity assumption is transversality.

Definition 12—Transversality
Two Ck-smooth manifoldsM,N are transversal at x̄ if TM(x̄)+TN (x̄) = Rn.

We note that both A1 and A2 in Assumption 1 are implied by the
transversality assumption [Kruger et al., 2018]. Moreover, transversality is
not a consequence of Assumption 1 as we see in the following example.

Example 1
LetM = {(x, 0, x2) | x ∈ R} andN = {(0, y, 0) | y ∈ R} whereM∩N = {0}.
We have TM(0) = {(x, 0, 0) | x ∈ R} and TN (0) = N . So the mani-
folds clearly satisfy Assumption 1 at 0, but not the transversality condition
TM(0) + TN (0) = {(x, y, 0) | x, y ∈ R} 6= Rn.

With some abuse of notation, we define the angle between two manifolds
at a point in their intersection, using their tangent spaces.

Definition 13
For x ∈M∩N let

c(M,N , x) := c(TM(x),TN (x)).

The regularity condition implies that both the manifolds and their in-
tersection locally behave similarly to their tangent planes. In particular, the
angle between the two tangent planes is zero in some direction if and only
if this direction is also parallel to the intersection of the manifolds, as seen
by A2. This is crucial to show linear convergence later. We also note that,
under the regularity assumptions, the Friedrichs angle θF is positive unless
one manifold is locally a subset of the other. To see this, we know that θF
is well defined and positive unless one tangent plane is a subset of the other,
for example TM(x) ⊂ TN (x). But since dim(TM(x)) = dim(M) around x,
A2 implies that also dim(M) = dim(M∩N ) around x, i.e. thatM locally
is a subset of N . Under the regularity assumption, we therefore either have
a positive Friedrichs angle or a locally trivial problem.

We now show that relaxed projections are locally well defined on smooth
manifolds, and that their Jacobian is given by relaxed projections onto their
tangent planes. By well defined we mean that the projection point exists and
is unique.

The following Lemma is from [Lewis and Malick, 2008, Lem 4].

Lemma 1—Projection onto Manifold
IfM is a Ck manifold (with k ≥ 2) around x̄ ∈M, then ΠM is well defined
and Ck−1 around x̄. Moreover JΠM(x̄) = ΠTM(x̄).
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Lemma 2—Relaxed Projection onto Manifold
IfM is a Ck manifold (with k ≥ 2) around x̄ ∈M, then JΠαM

(x̄) = Πα
TM(x̄),

and Πα
M are well defined and Ck−1 around x̄.

Proof. JΠαM
(x̄) = J(1−α)I+αΠM(x̄) = (1 − α)I + αΠTM(x̄) = Πα

TM(x̄). The
result now follows from Lemma 1. 2

4. Generalized Alternating Projections
In this section, we define the generalized alternating projections (GAP) op-
erator, and state some known results. We denote the feasibility problem of
finding x ∈ U ∩ V by (U ,V) to signify that the algorithm depends on the
ordering of the two sets.

Definition 14—Generalized alternating projections
The generalized alternating projections algorithm (GAP) [Fält and Giselsson,
2017b] for two nonempty sets (U ,V), with U ∩ V 6= ∅, is defined by the
iteration

xk+1 := Sxk, (3.1)

where
S = (1− α)I + αΠα2

U Πα1

V =: (1− α)I + αT. (3.2)

For closed convex sets, the operator S is averaged and the iterates con-
verge to the fixed-point set fixS under the following assumption, see e.g. [Fält
and Giselsson, 2017b] where these results are collected.

Assumption 2
Assume that α ∈ (0, 1], α1, α2 ∈ (0, 2] and that either of the following holds

B1. α1, α2 ∈ (0, 2)

B2. α ∈ (0, 1) with either α1 6= 2 or α2 6= 2

B3. α ∈ (0, 1) and α1 = α2 = 2

The following result was shown in [Fält and Giselsson, 2017b].

Lemma 3
Let (U ,V) be two subspaces with U ∩ V 6= ∅. The fixed point set fixS := {x |
Sx = x} of the GAP operator S in (3.1) is; U ∩ V under Assumption 2 case
B1 and B2, and U ∩ V + (U⊥ ∩ V⊥) under Assumption 2 case B3.
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To study the local behavior of the GAP method, it is crucial to understand
its behavior on linear subspaces. Throughout this section, we assume that
the subspaces (U ,V) are non-empty and that the problem is consistent, i.e.
U ∩ V 6= ∅. In particular we note that 0 ∈ U ∩ V.

The following proposition and remark are found in [Bauschke et al., 2016,
Prop. 3.4], and [Fält and Giselsson, 2017a] respectively.

Proposition 1
Let U and V be subspaces in Rn satisfying p := dim(U), q := dim(V), where
p ≤ q, p + q < n and p, q ≥ 1. Then, the projection matrices ΠU and ΠV
become

ΠU = D


Ip 0 0 0
0 0p 0 0
0 0 0q−p 0
0 0 0 0n−p−q

D∗, (3.3)

ΠV = D


C2 CS 0 0
CS S2 0 0
0 0 Iq−p 0
0 0 0 0n−p−q

D∗ (3.4)

and

ΠUΠV = D


C2 CS 0 0
0 0p 0 0
0 0 0q−p 0
0 0 0 0n−p−q

D∗, (3.5)

where C and S are diagonal matrices containing the cosine and sine of the
principal angles θi, i.e.

S = diag(sin θ1, . . . , sin θp),

C = diag(cos θ1, . . . , cos θp),

and D ∈ Rn×n is an orthogonal matrix.

Under the assumptions in Proposition 1, the linear operator T , implicitly
defined in (3.2), becomes

T = Πα2

U Πα1

V = ((1− α2)I + α2ΠU )((1− α1)I + α1ΠV)

= (1− α2)(1− α1)I + α2(1− α1)ΠU

+α1(1− α2)ΠV + α1α2ΠUΠV

= D blkdiag(T1, T2, T3)D∗
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where

T1 =

(
Ip − α1S

2 α1CS

α1(1− α2)CS (1− α2)(Ip − α1C
2)

)
, (3.6)

T2 = (1− α2)Iq−p, T3 = (1− α2)(1− α1)In−p−q.

The rows and columns of T1 can be reordered so that it is a block-diagonal
matrix with blocks

T1i =

(
1− α1s

2
i α1cisi

α1(1− α2)cisi (1− α2)(1− α1c
2
i )

)
, i ∈ 1, . . . , p (3.7)

where si := sin θi, ci := cos θi. The eigenvalues of T are therefore λ3 :=
(1− α2), λ4 := (1− α2)(1− α1), and for every T1i

λ1,2
i =

1

2

(
2− α1 − α2 + α1α2c

2
i

)
(3.8)

±
√

1

4
(2− α1 − α2 + α1α2c2i )

2 − (1− α1)(1− α2).

Remark 2
The property p ≤ q was used to arrive at these results. If instead p > q, we
reverse the definitions of ΠU and ΠV in Proposition 1. Noting that Λ(T ) =
Λ(T>), we get a new block-diagonal matrix T̄ with blocks T̄1 = T>1 , T̄3 = T>3
and T̄2 = (1−α1)Ip−q. Therefore, the matrix can have eigenvalues 1−α1 or
1− α2 depending on the dimensions of U and V.

If either p = 0 or q = 0, then the problem is trivial. We note that if
p+ q ≥ n, we can simply embed the sets in a bigger space. Since U and V are
contained in the original space, the iterates will also stay in this subspace if
the initial point is. The algorithm therefore behaves identically and the extra
dimensions can be ignored. Although we do not have an explicit expression
for the GAP operator T in this case, we can calculate the eigenvalues, as
stated in the following theorem.

Theorem 1
Let U and V be subspaces in Rn satisfying p := dim(U), q := dim(V), and let
s = dim(U ∩ V). The eigenvalues of T = Πα2

U Πα1

V are

{1}s, {(1− α1)(1− α2)}s+n−p−q,
{1− α2}max(0,q−p), {1− α1}max(0,p−q),

{λ1,2
i } for every i ∈ {s+ 1, . . . ,min(p, q)}

where λ1,2
i is defined by (3.8) and {λ}i denotes (possibly zero) multiplicity i

of eigenvalue λ.
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Proof. When either p = 0 or q = 0, we get s = 0 and the result is trivial from
the definition of the projections and T . The case when p ≤ q and p+ q < n
follows directly from Proposition 1 by observing that s of the eigenvalues in
1 and (1− α1)(1− α2) arise from λ1,2

i for i ∈ {1, . . . , s}, i.e. when θi = 0.
For the case when q < p and p + q < n it follows from Remark 2 that

the eigenvalues in 1 − α2 will be in 1 − α1 instead, and that the rest of the
eigenvalues are the same.

For the case when p+q ≥ n we provide a proof similar to that in [Bauschke
et al., 2014a, p. 54]. We can extend the space Rn to Rn+k := Rn×Rk so that
p+ q < n+ k =: n̄, where we define the scalar product in this new space as
〈(u1, u2), (v1, v2)〉 := 〈u1, v1〉+ 〈u2, v2〉 for u1, v1 ∈ Rn, u2, v2 ∈ Rk.

Let Ū := U × {0k}, V̄ := V × {0k} so that

ΠŪ =

(
ΠU 0
0 0k

)
, ΠV̄ =

(
ΠV 0
0 0k

)
.

It follows that

T̄ := Πα2

Ū Πα1

V̄ =

(
T 0
0 (1− α1)(1− α2)Ik

)
, (3.9)

where T = Πα2

U Πα1

V . T̄ has the same eigenvalues as T , as well as k new
eigenvalues in (1 − α1)(1 − α2). As seen in the definition of Ū , V̄ and T̄ ,
these artificial eigenvalues correspond to directions that are orthogonal to the
original space Rn. If we now apply the result for p+ q < n̄ to T̄ , and observe
that the principal angles are the same for Ū , V̄ as for U ,V, we see that the
eigenvalues are as those stated in the theorem, but with s+n̄−p−q eigenvalues
in (1−α1)(1−α2). Subtracting the k artificial eigenvalues, we conclude that
the operator T must have s+ n− p− q eigenvalues in (1− α1)(1− α2). 2

Proposition 2
Let U and V be subspaces in Rn satisfying p := dim(U), q := dim(V), and let
s = dim(U ∩ V). Then the GAP operator S satisfies

σ(S) = ‖S − S∞‖
≤ max(‖S1 − S∞1 ‖, |1− α2(1− α)|,

|α+ (1− α)(1− α1)(1− α2)|, |1− α|)

where S1 = (1− α)I + αT1 with T1 defined in Proposition 1.

Proof. If either p = 0 or q = 0 we trivially have S = (1−α)I so ‖S−S∞‖ =
|1 − α| and the result hols. If p < q and p + q < n, p, q ≥ 1 then it follows

119



Paper IV. Generalized A.P. on Manifolds and Convex Sets

directly from Proposition 1 with Si = (1− α)I + αTi that

‖S − S∞‖ = ‖D ((1− α)I + αT )D∗ − (D((1− α)I + αT )D∗)
∞ ‖ =

= ‖((1− α)I + αT )− ((1− α)I + αT )∞)‖
= ‖blkdiag(S1 − S∞1 , S2 − S∞2 , S3 − S∞3 ))‖
≤ max(‖S1 − S∞1 ‖, |1− α2(1− α)|, |α+ (1− α)(1− α1)(1− α2)|)

and the result holds. If p < q and p + q ≥ n we extend the space as in
Theorem 1. Since T̄ in (3.9) is a block diagonal matrix containing T we
get with S̄ = (1 − α)I + αT̄ that ‖S − S∞‖ ≤ ‖S̄ − S̄∞‖ and the result
follows by applying the case p + q < n to the operator S̄. For the case
remaining cases where p < q, we note as in Remark 2 that we can study
S> = (1 − α)I + αΠα1

V Πα2

U where the relative dimensions of the subspaces
now satisfy the assumptions. Applying the previous results to this case yields
‖S> − S>∞‖ = ‖(S − S∞)>‖ = ‖S − S∞‖ and the proof is complete. 2

It was shown in [Fält and Giselsson, 2017a] that the parameters

α = 1, α1 = α2 = α∗ :=
2

1 + sin θF
, (3.10)

result in that the subdominant eigenvalues of S have magnitude γ(S) = γ∗,
where

γ∗ := α∗ − 1 =
1− sin θF
1 + sin θF

. (3.11)

When the Friedrichs angle does not exist, i.e., when one subspace is contained
in the other, we define α∗ = 1 and γ∗ = 0. The next two theorems show that
this rate is optimal under mild assumptions. The theorems were published
without proofs by the authors in [Fält and Giselsson, 2017a]. We restate them
with minor modifications and prove them here.

Theorem 2
[Fält and Giselsson, 2017a, Thm. 1] The GAP operator S in (3.2), for linear
subspaces (U ,V) in Rn, with α, α1, α2 as defined in (3.10) satisfies γ(S) =
γ∗, where γ(S) and γ∗ are defined in Definition 7 and (3.11) respectively.
Moreover, S is linearly convergent with any rate µ ∈ (γ∗, 1).

Proof. See appendix. 2

Remark 3
Although the rate in Theorem 2 is dependent on knowing the true Friedrichs
angle θF , it is sufficient to have some conservative estimate θ̂F < θF . As
seen in the proof of Theorem 2, choosing the parameters as α1 = α2 =
2/(1 + sin θ̂F ), results in the rate γ = (1− sin θ̂F )/(1 + sin θ̂F ).

120



4 Generalized Alternating Projections

Under the assumption that the relative dimensions of the subspaces are
unknown, it was stated that the rate γ∗ is optimal. We restate it with slight
modifications for clarity, and prove it here.

Theorem 3
[Fält and Giselsson, 2017a, Thm. 2] Let (U1,V1) and (U2,V2) be two feasibility
problems, where the sets are linear subspaces in Rn. Assume that dim(U1) <
dim(V1), dim(U2) > dim(V2) and that c(U1,V1) = c(U2,V2) = cos(θF ), θF <
π/2. Let S1, S2 be the corresponding GAP operators as defined in (3.2), both
defined with the same parameters α1, α2, α > 0. Then, both S1 and S2 are
linearly convergent with all rates µ ∈ (γ∗, 1) if and only if

α = 1, α1 = α2 = α∗ :=
2

1 + sin θF
.

Proof. See appendix. 2

This theorem shows that there is no choice of parameters that can perform
better than that in (3.10) independently of the dimensions of the sets. Any
choice of parameters that performs better than those in (3.10) for a specific
problem, where the dimensions of the sets are not the same, will necessarily
perform worse on all problems where the relative dimensions are reversed, if
the Friedrichs-angle is kept constant.

Remark 4
The are a few cases that are excluded in the theorem that should be explained.
When θF = π/2, we have γ∗ = 0, which is obviously optimal, however, there
are choices of α, α1, α2 other than (3.10) that achieve this rate. The same is
true if the Friedrichs angle is not well defined, i.e., when one set is contained
in the other. In that case, by defining θF = π/2, we get γ(S) = 0 with the
parameters in (3.10), but the solution is not unique.

As noted in [Fält and Giselsson, 2017a], there are specific choices of (U ,V)
where it is possible to get γ(S) < γ∗. However, if one of the principal angles is
large enough, for example θi = π/2, then it is not possible to get a rate better
than γ∗. In the cases where γ(S) < γ∗, the difference in rate is negligible if
θF is small, as long as the parameters are chosen so that the algorithm is
convergent for every (U ,V). For example, if dimU ≤ dimV and all principal
angles θi are small enough, then the parameter choice GAP2α in [Fält and
Giselsson, 2017a]

α = 1, α1 = 2, α2 =
2

1 + sin(2θF )

achieves a rate of

cos θF − sin θF
cos θF + sin θF

= 1− 2θF + 2θ2
F − 8θ3

F /3 +O(θ4
F ) (as θF → 0)
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compared to

γ∗ =
1− sin θF
1 + sin θF

= 1− 2θF + 2θ2
F − 5θ3

F /3 +O(θ4) (as θF → 0).

This should be contrasted to the rates of alternating projections and Douglas–
Rachford, which are are 1 − θ2

F + O(θ4
F ) and 1 − θ2

F /2 + O(θ4
F ) as θF → 0

respectively. So for small angles θF , the improvement over AP and DR is
significant (O(θF )), and the difference to GAP2α is very small (O(θ3

F )). As
mentioned above, the rate for GAP2α is only valid under an assumption on
the relative dimensions of the manifolds, and that all principal angles are
small enough.

5. Manifolds
In this section we study the local properties of the GAP operator on two
manifolds M,N instead of linear subspaces. These results generalize the
results in Section 4 of [Lewis and Malick, 2008], from alternating projections
to the GAP algorithm, with similar proofs but under the relaxed Assumption
1 instead of transversality.

We begin by showing that the GAP operator is locally well defined and
well behaved around all points that satisfy the regularity assumptions.

Lemma 4
Let (M,N ) satisfy Assumption 1 at x̄ ∈M∩N , and let α1, α2 ∈ [0, 2]. Then
ΠM∩N , Πα2

MΠα1

N and S = (1 − α)I + αΠα2

MΠα1

N are well defined and of class
Ck−1 around x̄.

Proof. From Assumption 1 A1 it follows that M ∩ N is a Ck manifold
(with k ≥ 2) so from Lemma 2 we know that there exists δ > 0 so that
ΠM,ΠN ,ΠM∩N are well defined and of class Ck−1 on Bδ(x̄). Restrict fur-
ther x ∈ Bδ/3(x̄) then

‖x̄−Πα1

N (x)‖ ≤ ‖x̄− x‖+ ‖x−Πα1

N (x)‖ = ‖x̄− x‖+ α1 ‖x−ΠN (x)‖
≤ ‖x̄− x‖+ α1 ‖x− x̄‖ ≤ 3 ‖x− x̄‖ ≤ δ

so Πα1

N (x) ∈ Bδ(x̄) and we therefore have Πα2

MΠα1

N and S well defined and
Ck−1 on Bδ/3(x̄). 2

To simplify notation, we denote the GAP operator applied to the tangent
spaces TM(x̄), TN (x̄) by

ST(x̄) := (1− α)I + αΠα2

TM(x̄)Π
α1

TN (x̄). (3.12)

We next show that the local behavior of S around a point x̄ ∈ M ∩ N
can be described by ST(x̄).
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Lemma 5
Let (M,N ) satisfy Assumption 1 at x̄ ∈M∩N . Then the Jacobian at x̄ of
the GAP operator S in (3.2) is given by

JS(x̄) = (1− α)I + αΠα2

TM(x̄)Π
α1

TN (x̄) = ST(x̄).

Proof. By Lemma 2, the chain rule, and x̄ ∈M∩N we have

JΠ
α2
MΠ

α1
N

(x̄) = JΠ
α2
M

(Πα1

N (x̄))JΠ
α1
N

(x̄) = JΠ
α2
M

(x̄)JΠ
α1
N

(x̄)

= Πα2

TM(x̄)Π
α1

TN (x̄).

Moreover

JS(x̄) = J(1−α)I(x̄) + αJΠ
α2
MΠ

α1
N

(x̄)

= (1− α)I + αΠα2

TM(x̄)Π
α1

TN (x̄) = ST(x̄)

by definition of ST(x̄) in (3.12). 2

Proposition 3
Let M,N satisfy Assumption 1 at x̄ ∈ M ∩ N and the parameters of the
GAP operator S satisfy Assumption 2 case B1 or B2. Then

TM(x̄)∩N (x̄) = TM(x̄) ∩ TN (x̄) = fixST(x̄) (3.13)

and

ΠfixST(x̄)
= S∞T(x̄). (3.14)

Proof. The first equality follows from Assumption 1. From Lemma 3, under
Assumption 2 case B1 and B2, we know that fixST(x̄) = TM(x̄) ∩ TN (x̄) and
from non-expansiveness of ST(x̄) and [Bauschke et al., 2016, Corollary 2.7],
we have that ΠFixST(x̄) = S∞T(x̄). 2

We next prove that the convergence rate of Sk(x) to the intersection, tends
to the rate γ(ST(x̄)) as the initial point gets closer to the intersection and
the number of iterations k increases.

Theorem 4
Let (M,N ) satisfy Assumption 1 at x̄ ∈ M∩N and the parameters of the
GAP operator S satisfy Assumption 2 case B1 or B2. Then

1. for all c >
∥∥ST(x̄) −ΠTM(x̄)∩TN (x̄)

∥∥, where ST(x̄) := (1 − α)I +
αΠα2

TM(x̄)Π
α1

TN (x̄), there exists some η > 0 so that for all x ∈ Bη(x̄)

‖S(x)−ΠM∩N (x)‖ ≤ c ‖x−ΠM∩N (x)‖ . (3.15)
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θF

M
x̄

N

TN (x̄) + x̄

TM(x̄) + x̄

Figure 1. Illustration of manifoldsM,N and the approximation by tan-
gent planes at a point x̄ ∈M∩N .

2. for all µx̄ ∈ (γ(ST(x̄)), 1) there exists N ∈ N, such that for any k ≥ N

lim sup
x→x̄,x 6∈M∩N

∥∥Sk(x)−ΠM∩N (x)
∥∥

‖x−ΠM∩N (x)‖
≤ µkx̄. (3.16)

Proof. Let xr be any point xr 6∈ M∩N , close enough to x̄, such that Lemma
4 is satisfied. Denote x̄r = ΠM∩N (xr). Since x̄r ∈ M∩N we trivially have
Sx̄r = x̄r.

Moreover, S and ΠM∩N are C1 around x̄ by Lemma 4. By [Cartan, 1971,
Eq (3.8.1), Thm 3.8.1], a C1 function f : Rn → Rn at a point a ∈ Rn can be
approximated as

f(x)− f(y) = Jf (a)(x− y) + ‖x− y‖ψ(x, y), where lim
x,y→a

ψ(x, y) = 0,

at x, y ∈ Rn. Using this, with f(x) = S(x) − ΠM∩N (x), at x = xr, y =
x̄r, a = x̄ we get

S(xr)−ΠM∩N (xr) = (JS(x̄)− JΠM∩N (x̄))(xr − x̄r) + ‖xr − x̄r‖ψ(xr, x̄r),

(3.17)

where lim
xr,x̄r→x̄

ψ(xr, x̄r) = 0.

We can replace the Jacobians by noting that Lemma 5, Lemma 1 and As-
sumption 1 A2 at x̄ implies

JS(x̄)− JΠM∩N (x̄) = ST(x̄) −ΠTM(x̄)∩TN (x̄)

where ST(x̄) = (1−α)I+αΠα2

TM(x̄)Π
α1

TN (x̄). Using this equality in (3.17), taking
the norm of both sides, applying the triangle inequality and Cauchy-Schwarz,
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and dividing by ‖xr − x̄r‖ results in

‖S(xr)− x̄r‖
‖xr − x̄r‖

≤
∥∥ST(x̄) −ΠTM(x̄)∩TN (x̄)

∥∥+ ‖ψ(xr, x̄r)‖, if xr 6= x̄r. (3.18)

Continuity of ΠM∩N around x̄ means that ψ(xr, x̄r) = ψ(xr,ΠM∩N (xr))→
0 as xr → x̄, so for any c >

∥∥ST(x̄) −ΠTM(x̄)∩TN (x̄)

∥∥, there exists some η > 0
so that

∀xr ∈ Bη(x̄) : ‖S(xr)− x̄r‖ ≤ c ‖xr − x̄r‖ . (3.19)

This proves part 1 of the theorem.
In the same way for Sk, since S(x̄) = ST(x̄)(x̄) = x̄, using the chain rule,

we get
JSk(x̄) = (JS(x̄))

k
= SkT(x̄),

so in the same way we conclude∥∥Sk(xr)− x̄r
∥∥

‖xr − x̄r‖
≤
∥∥∥SkT(x̄) −ΠTM(x̄)∩TN (x̄)

∥∥∥+ ψ(xr, x̄r), if xr 6= x̄r (3.20)

From Proposition 3 we have that ΠTM(x̄)∩TN (x̄) = S∞T(x̄) and thus∥∥Sk(xr)− x̄r
∥∥

‖xr − x̄r‖
≤
∥∥∥SkT(x̄) − S

∞
T(x̄)

∥∥∥+ ψ(xr, x̄r), if xr 6= x̄r.

Continuity of ΠM∩N around x̄ = ΠM∩N (x̄), with x̄r = ΠM∩N (xr), implies

lim sup
xr→x̄,xr 6∈M∩N

∥∥Sk(xr)− x̄r
∥∥

‖xr − x̄r‖
≤
∥∥∥SkT(x̄) − S

∞
T(x̄)

∥∥∥ .
Using the results in [Fält and Giselsson, 2017a] with Definitions 5, 6, 7, and
Facts 2, 3 implies that for any µx̄ with γ(ST(x̄)) < µx̄ there exists N ∈ N so
that for all k ≥ N ∥∥∥SkT(x̄) − S

∞
T(x̄)

∥∥∥ ≤ µkx̄.
We conclude that for any µx̄ ∈ (γ(ST(x̄)), 1), there exists N such that for all
k ≥ N

lim sup
x→x̄,x 6∈M∩N

∥∥Sk(x)−ΠM∩N (x)
∥∥

‖x−ΠM∩N (x)‖
≤ µkx̄, (3.21)

which proofs part 2 of the theorem. 2

It remains to show that the sequence of iterates actually converges. To
do this, we first show that ‖ST(x̄) −ΠTM(x̄)∩TN (x̄)‖ < 1.
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Lemma 6
Let α, α1, α2 satisfy Assumption 2 case B1 or B2, and letM,N satisfy As-
sumption 1 at x̄ ∈M∩N . Then

σ(ST(x̄)) := ‖ST(x̄) −ΠTM(x̄)∩TN (x̄)‖ < 1 (3.22)

where ST(x̄) = αΠα2

TM(x̄)Π
α1

TN (x̄) + (1− α)I

Proof. First note that ΠTM(x̄)∩TN (x̄) = ΠFixST(x̄)
= S∞T(x̄) by Proposition 3.

Proposition 2 therefore gives that

‖ST(x) − S∞T(x)‖ ≤ max(‖S1 − S∞1 ‖, |1− α2(1− α)|,
|α+ (1− α)(1− α1)(1− α2)|, |1− α|),

where S1 is a block diagonal matrix with blocks S1i = (1−α)I+αT1i , where
T1i are defined in (3.7) as

T1i =

(
1− α1s

2
i α1cisi

α1(1− α2)cisi (1− α2)(1− α1c
2
i )

)
,

where ci = cos(θi), si = sin(θi) for each principal angle θi. Under Assumption
2 case B1 or B2 we have |1−α2(1−α)| < 1, |α+(1−α)(1−α1)(1−α2)| < 1
and |1−α| < 1. It remains to show that ‖S1−S∞1 ‖ = maxi ‖S1i − S∞1i ‖ < 1.
We now look at each block S1i corresponding the each of the principal angles
θi. Each block with θi = 0 becomes

S1i = αT1i + (1− α)I =

(
1 0
0 α(1− α1)(1− α2) + (1− α)

)
S∞1i =

(
1 0
0 0

)
,

so the corresponding singular values are 0 and |α(1−α1)(1−α2)+(1−α)| < 1.
The remaining cases are θi ∈ (0, π/2] for which (S1i)

∞ = ΠfixS1i
= 0. To

study the largest singular value ‖S1i − S∞1i ‖ = ‖S1i‖ = ‖αT1i + (1 − α)I‖
so ‖S1i‖ ≤ 1, hence we only need to show that ‖S1i‖ 6= 1. From the triangle
inequality we get ‖αT1i+(1−α)I‖ ≤ α‖T1i‖+(1−α) ≤ 1, with equality only
if ‖T1i‖ = 1. To this end, we consider ‖T1i‖2 = max(eig(T1iT

>
1i )) and study

the eigenvalues of of T1iT
>
1i . Non-expansiveness again implies that ‖T1i‖ ≤ 1.

We now aim to show that these blocks have singular values smaller than 1
when θi ∈ (0, π/2]. After simplifying with the identity s2

i + c2i = 1 we get

T1iT
>
1i =

(
1− 2α1s

2
i + α2

1s
2
i (2− α1)α1(1− α2)cisi

(2− α1)α1(1− α2)cisi (1− α2)2(1− 2α1c
2
i + α2

1c
2
i )

)
=:

(
a b
c d

)
.
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For any of these eigenvalues to be 1 it must be that

det

(
a− 1 b
c d− 1

)
= 0,

i.e

0 = 1− a− d+ ad− bc. (3.23)

Simplifying the expressions yields the following identities

1− a− d = α1s
2
i (2− α1)− (1− α2)2(1− 2α1c

2
i + α2

1c
2
i )

ad = (1− α2)2(α2
1c

2
i s

2
i (4− 4α1 + α2

1) + (1− α1)2)

bc = (1− α2)2α2
1c

2
i s

2
i (4− 4α1 + α2

1)

ad− bc = (1− α1)2(1− α2)2

and thus

1− a− d+ ad− bc = α1s
2
i (2− α1)− (1− α2)2(1− 2α1c

2
i + α2

1c
2
i )

+ (1− α1)2(1− α2)2

= s2
iα1(2− α1)− (1− α2)2(2α1(1− c2i ) + α2

1(c2i − 1))

= s2α1(2− α1)− (1− α2)2α1s
2
i (2− α1)

= s2
iα1α2(2− α1)(2− α2).

So from (3.23), for the largest eigenvalue to be 1 it must be that

0 = sin(θi)
2α1α2(2− α1)(2− α2).

Within the ranges α1, α2 ∈ (0, 2) and θi ∈ (0, π/2] we have

sin(θi)
2α1α2(2− α1)(2− α2) > 0,

which leads to max(eig(T1iT
>
1i )) = ‖T1i‖2 < 1, and thus ‖S1i‖ < 1. This

completes the proof for case B1 from Assumption 2.
Now consider the case B2 from Assumption 2 where either α1 = 2 or

α2 = 2, i.e. ‖T1i‖ = 1, but α ∈ (0, 1) and assume that also ‖S1i‖ = 1. From
compactness of the unit circle in Rn and continuity of the norm we get from
the definition of the operator norm that there exists a ‖v‖ = 1 such that
‖S1iv‖ = 1. But then 1 = ‖S1iv‖2 = ‖αT1iv + (1 − α)v‖2. However, on the
boundaries α = 0 or α = 1 we get ‖S1iv‖ = 1. Since the squared norm is
strongly convex we have for any α ∈ (0, 1) where T1iv 6= v the contradiction
‖αT1iv + (1− α)v‖2 < 1. This leaves the case where T1iv = v, which means
that v is a fixed point of T , but the only fixed point is v = 0, which does not
satisfy ‖v‖ = 1. Thus, there is no ‖v‖ = 1 such that ‖S1iv‖ = 1 and therefore
‖S1i‖ < 1. This concludes the proof. 2
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We are now ready to show that the algorithm will locally converge to
some point in the intersection with the contraction factor in Lemma 6. The
proof is similar to that in [Lewis and Malick, 2008], where the authors show
the result for the special case of alternating projections.

Theorem 5
Let (M,N ) satisfy Assumption 1 at x̄ ∈ M ∩ N , and S in Definition 14
satisfy Assumption 2 case B1 or B2. If the initial point x0 is close enough to
x̄ then the GAP method

xk+1 = Sxk

is well defined. Moreover, the sequence (xk)k∈N converges to some point x∗ ∈
M∩N , and for every µx̄ ∈ (σ(ST(x̄)), 1), there exists a β > 0 such that

‖xk − x∗‖ ≤ βµkx̄. (3.24)

Proof. By Lemma 6 we have σ(ST(x̄)) = ‖ST(x̄) − ΠTM(x̄)∩TN (x̄)‖ < 1. Let
c ∈ (0, 1) be such that ‖ST(x̄) − ΠTM(x̄)∩TN (x̄)‖ < c < 1 and choose η such
that Sx and ΠM∩N (x) are well defined by Theorem 4 for x ∈ Bη(x̄) and so
that Theorem 4.1 is satisfied, i.e

∀x ∈ Bη(x̄), ‖Sx−ΠM∩N (x)‖ ≤ c‖x−ΠM∩N (x)‖. (3.25)

Let the initial point x0 ∈ Bδ(x̄) where δ := η/(2
∑∞
k=0 c

k) = η(1−c)/2 < η
and define x̄k := ΠM∩N (xk). By the choice of η, if xk ∈ Bη(x̄) then x̄k and
xk+1 are well defined. We now show the following results by induction:

‖xk − x̄‖ ≤ 2δ

k∑
i=0

ci (H0)

‖xk − x̄k‖ ≤ δck (H1)

‖x̄k − x̄k−1‖ ≤ 2δck (H2)

‖x̄k − x̄‖ ≤ 2δ

k∑
i=0

ci (H3)

where we note that 2δ
∑k
i=0 c

i ≤ 2δ
1−c = η.

Case k = 0: Let x̄−1 := x̄0. We have trivially

‖x0 − x̄‖ ≤ δ ≤ 2δ (H00)
‖x0 − x̄0‖ ≤ ‖x0 − x̄‖ ≤ δ (H10)
‖x̄0 − x̄−1‖ = 0 ≤ 2δ (H20)
‖x̄0 − x̄‖ ≤ 2δ. (H30)

128



5 Manifolds

Now assume that (H0)-(H3) hold up to some k. Then by the triangle inequal-
ity, (3.25), (H1), and (H3) we get

‖xk+1 − x̄‖ ≤ ‖xk+1 − x̄k‖+ ‖x̄k − x̄‖

≤ c‖xk − x̄k‖+ ‖x̄k − x̄‖ ≤ δck+1 + 2δ

k∑
i=0

ci ≤ 2δ

k+1∑
i=0

ci.

(H0+)

By the definition of the projection, (3.25), and (H1) we get

‖xk+1 − x̄k+1‖ ≤ ‖xk+1 − x̄k‖ ≤ c‖xk − x̄k‖ ≤ δck+1. (H1+)

Again, by the triangle inequality, the definition of projection and (H1+)

‖x̄k+1 − x̄k‖ ≤ ‖x̄k+1 − xk+1‖+ ‖xk+1 − x̄k‖ ≤ 2‖xk+1 − x̄k‖ ≤ 2δck+1

(H2+)

and by (H2+) and (H3):

‖x̄k+1 − x̄‖ ≤ ‖x̄k+1 − x̄k‖+ ‖x̄k − x̄‖ ≤ 2δck+1 + 2δ

k∑
i=0

ci = 2δ

k+1∑
i=0

ci.

(H3+)

By induction we have now shown that (H0)–(H3) must hold for all k ≥ 0.
We now show that (x̄k)k∈N is Cauchy. By the triangle inequality, (3.25),

and (H1):

‖x̄k+1 − x̄k‖ ≤ ‖x̄k+1 − xk+1‖+ ‖xk+1 − x̄k‖
≤ ‖x̄k+1 − xk+1‖+ c‖xk − x̄k‖ ≤ δck+1 + δck+1 ≤ 2δck+1.

Thus for any p, k ∈ N with p > k

‖x̄p − x̄k‖ ≤
p−1∑
i=k

‖x̄i+1 − x̄i‖ ≤ 2δ

p−1∑
i=k

ci+1 ≤ 2δck+1
∞∑
i=0

ci =
2δ

1− c
ck+1,

so the sequence is Cauchy. Therefore x∗ = limp→∞ x̄p ∈M∩N exists and

‖x∗ − x̄k‖ ≤
2δ

1− c
ck+1.

Lastly, by the triangle inequality and (H1)

‖xk − x∗‖ ≤ ‖xk − x̄k‖+ ‖x̄k − x∗‖ ≤ δck +
2δ

1− c
ck+1 = δ

1 + c

1− c
ck,

hence (3.24) holds with β = δ 1+c
1−c and µx̄ = c. 2

129



Paper IV. Generalized A.P. on Manifolds and Convex Sets

Theorem 5 implies that the sequence generated by the generalized alter-
nating projection algorithm converges to a point in the intersection when
started close enough. However, as is the case for the method of alternat-
ing projections, the rate predicted by σ(ST(x∗)) is very conservative. We
now show that the iterates converge to the intersection with the faster rate
γ(ST(x∗)) from Definition 7. The theorem and proof are similar to that in
[Lewis and Malick, 2008, Rem. 4], where the authors show it for alternating
projections.

Theorem 6
Let (M,N ) satisfy Assumption 1 at x̄ ∈ M ∩ N , let the initial point x0

be close enough to x̄, and the GAP operator S from Definition 14 satisfy
Assumption 2 case B1 or B2. Further assume that (M,N ) satisfies Assump-
tion 1 at the limit point x∗ of the sequence (xk)k∈N generated by the GAP
method

xk+1 = Sxk.

Then the convergence is R-linear toM∩N with any rate µx∗ ∈ (γ(ST(x∗)), 1).
That is, for any µx∗ ∈ (γ(ST(x∗)), 1), there exists N ∈ N such that

dM∩N (xk) ≤ µkx∗ , ∀k > N. (3.26)

Proof. We note that Theorem 5 establishes the existence of a limit point x∗.
Take any µx∗ ∈ (γ(ST(x∗)), 1) and let µ̄x∗ = (µx∗ + γ(ST(x∗)))/2. Theorem 5
implies that eventually xr ∈ Bη(x∗), and thus by Theorem 4.2, with µ̄x∗ ∈
(γ(ST(x∗)), 1), there exists N ∈ N so that ∀t > N ,

dM∩N (xt+n) =
∥∥Stxn −ΠM∩N (xn)

∥∥
< µ̄tx∗ ‖xn −ΠM∩N (xn)‖ = µ̄tx∗dM∩N (xn),

as long as xn 6∈ M ∩N . By induction this leads to

dM∩N (xkt+n) < µ̄ktx∗dM∩N (xn), ∀k = 1, 2, 3, . . . . (3.27)

Now fix t > N and assume that (3.26) does not hold, then there exists an
infinite sequence r1 < r2 < · · · , all satisfying

dM∩N (xrj ) > µ
rj
x∗ . (3.28)

We now show that this is impossible and that the theorem therefore must
hold. By Lemma 9 (see Appendix A.1) we can select a sub-sequence

(
rkj
)
j∈N

of (rj)j∈N where we can write rkj = a + bjt for some a ∈ N and increasing
sequence of integers (bj)j∈N, i.e. we have a new sub-sub-sequence where all
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iterates are a multiplicity of t iterations apart. Thus, picking any b so that
a+ bt > N , we have with rkj = a+ bjt = a+ bt+ (bj − b)t from (3.27) that

dM∩N (xrkj ) < µ̄
(bj−b)t
x∗ dM∩N (xa+bt).

Since µ̄x∗ < µx∗ we can find a large enough j so that(
µ̄x∗

µx∗

)(bj−b)t

≤ µa+bt
x∗

dM∩N (xa+bt)

and thus

dM∩N (xrkj ) < µ̄
(bj−b)t
x∗ dM∩N (xa+bt) ≤ µ

(bj−b)t
x∗ µa+bt

x∗ = µ
rkj
x∗ .

This contradicts the (3.28) so the theorem must hold. 2

Remark 5
For the case of the method of alternating projections (α = α1 = α2 = 1),
we see that these results coincide with those of [Lewis and Malick, 2008]. In
particular, the contraction rate is then given by σ(ST(x̄)) = c(TM(x̄), TN (x̄))
and the limiting rate is γ(ST(x̄)) = c2(TM(x̄), TN (x̄)). This corresponds to
the rates cos(θF ) and cos2(θF ) where θF is the Friedrichs angle of the corre-
sponding tangent planes.

We now show that the faster rate in Theorem 6 holds not only in distance
to the intersection, but also to a point x∗ ∈ M ∩ N . A similar result can
be found in [Andersson and Carlsson, 2013] for the alternating projections
method.

Theorem 7
Let (M,N ) satisfy Assumption 1 at x̄ ∈ M ∩ N , let the initial point x0

be close enough to x̄, and the GAP operator S from Definition 14 satisfy
Assumption 2 case B1 or B2. Further assume that (M,N ) satisfies Assump-
tion 1 at the limit point x∗ of the sequence (xk)k∈N generated by the GAP
method

xk+1 = Sxk.

Then for every µx∗ ∈ (γ(ST(x∗)), 1), there exists N ∈ N such that for all
k ≥ N

‖xk − x∗‖ ≤ µkx∗ ,

or equivalently
lim sup
k→∞

‖xk − x∗‖1/k ≤ γ(ST(x∗)).
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Proof. Take any µx∗ ∈ (γ(ST(x∗)), 1) and let µ̄ = (µx∗ + γ(ST(x∗)))/2 ≤ µx∗ .
Clearly µ̄ ∈ (γ(ST(x∗)), 1), so we know from Theorem 6 that there exists N
such that

dM∩N (xk) = ‖xk − x̄k‖ ≤ µ̄k, ∀k ≥ N, (3.29)

where x̄k := ΠM∩N (xk). Pick c < 1 and η so that Theorem 4.1 holds for
x̄ = x∗. Since (xk) → x∗ there is some M ≥ N so that xk ∈ Bη(x∗) for all
k ≥M and thus by Theorem 4.1

‖xk+1 − x̄k‖ ≤ c ‖xk − x̄k‖ , ∀k ≥M. (3.30)

Using (3.29), (3.30) and the triangle inequality, for k ≥M we get

‖x̄k+1 − x̄k‖ ≤ ‖x̄k+1 − xk+1‖+ ‖xk+1 − x̄k‖
≤ ‖x̄k+1 − xk+1‖+ c‖xk − x̄k‖ ≤ µ̄k+1 + cµ̄k

= µ̄k+1(1 +
c

µ̄
). (3.31)

By continuity of ΠM∩N around x∗, the point x̄∗ = limk→∞ x̄k exists. Using
the triangle inequality and (3.31) for k ≥M we get

‖x̄k − x̄∗‖ ≤
∞∑
i=k

‖x̄i+1 − x̄i‖ ≤
∞∑
i=k

µ̄i+1(1 +
c

µ̄
) (3.32)

= (1 +
c

µ̄
)µ̄k+1

∞∑
i=0

µ̄i (3.33)

≤ (1 +
c

µ̄
)

1

1− µ̄
µ̄k+1 =

µ̄+ c

1− µ̄
µ̄k. (3.34)

By continuity of ΠM∩N we also have x∗ = x̄∗ since x∗ ∈ M ∩ N . Again,
using the triangle inequality, (3.29) and (3.34) for k ≥M

‖xk − x∗‖ ≤ ‖xk − x̄k‖+ ‖x̄k − x∗‖ (3.35)

≤ µ̄k +
µ̄+ c

1− µ̄
µ̄k =

1 + c

1− µ̄
µ̄k. (3.36)

Lastly, since µ̄ < µx∗ , there is some L ≥M so that for all k ≥ L

‖xk − x∗‖ ≤
1 + c

1− µ̄
µ̄k ≤ µkx∗ . 2

We note that the local linear rate µ∗x < γ(ST(x∗)) is strict, in the sense
that it can not be improved without adding more assumptions or changing
the algorithm. This follows from the fact that the worst case rate is achieved
in the setting of affine sets, which is covered by this theorem.
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As shown in Theorem 3, to optimize the bound on the convergence rate
γ(ST(x∗)) from Theorem 7, in the case where the relative dimensions of the
tangent planes are unknown, the parameters should be chosen as

α = 1, α1 = α2 = α∗ :=
2

1 + sin θF
, (3.37)

where θF is the Friedrichs angle between the sets TM(x∗) and TN (x∗).

6. Convex sets
We now show how the convergence results of GAP on manifolds can be
extended to GAP on convex sets in some cases. We first note that the GAP
method is known to converge to some point in the intersection when the sets
are convex, see e.g [Fält and Giselsson, 2017b], so the question that remains
is the convergence rate. One way to extend the results in this paper to convex
sets is to show that the iterates will eventually behave identically as if the
projections were made onto smooth manifolds. One approach to do this is to
partition a convex set into locally smooth manifolds. This can be done for
many convex sets, as illustrated in Example 2.

Example 2
Consider the convex set C = {(x, y, z) | x2 + y2 ≤ z2, 0 ≤ z ≤ 1}. The set
can be partitioned into the following five locally smooth manifolds: C1 =
intC,C2 = {(x, y, z) | x2 + y2 = z2, 0 < z < 1}, C3 = {(x, y, 1) | x2 + y2 <
1}, C4 = {(x, y, 1) | x2 + y2 = 1}, C5 = {(0, 0, 0)}.

There is plenty of literature on this type of identification of surfaces.
For example, in [Liang et al., 2015] the authors study the Douglas–Rachford
algorithm for partially smooth functions. However, the assumptions do not
generally apply to convex feasibility problems since all reformulations into
the framework will either be non-smooth or have vanishing gradients at the
boundaries.

For the case of alternating projections on convex sets, the projections
will always lie on the boundary of the sets until the problem is solved. The
local convergence rate therefore follows trivially if the boundaries of these
sets satisfy the regularity assumptions at the intersection.

However, this is not the case for GAP in general because of the (over)-
relaxed projections. Even in cases of polyhedral sets, identification of affine
sets is not guaranteed as we show with an example in Section 6.2.

We therefore show the results under smoothness assumptions, for a
slightly restricted set of parameters. This set of parameters does however
include the parameters found by optimizing the rate in Theorem 7.
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Lemma 7
Let A be a closed solid convex set in Rn with C2 smooth boundary around
x̄ ∈ bdA. Then there exists a δ > 0 such that for all x ∈ Bδ(x̄) \A

Πα
Ax ∈ intA, ∀α ∈ (1, 2].

Proof. As noted in Remark 1, smoothness of bdA implies that there exists
a neighborhood of x̄ for which the outwards facing normal vector n(x) with
‖n(x)‖ = 1 is unique for all x ∈ bdA and that the normal n(x) is continuous
around x̄. Since A is solid and smooth at x̄, there is some ζ > 0 so that
x̄−βn(x̄) ∈ intA for all β ∈ (0, ζ]. We assume without loss of generality that
ζ < 1. We can now create an open ball with radius δ such that

Boδ(x̄− βn(x̄)) ⊂ intA. (3.38)

From continuity of n(x) we have that there exists ε′ > 0 such that for all
x ∈ bdA

‖x− x̄‖ ≤ ε′ ⇒ ‖n(x)− n(x̄)‖ ≤ δ. (3.39)

Now pick 0 < ε < min(δ(1 − β), β, ε′). By the triangle inequality, for all
x ∈ Bε(x̄) ∩ bdA,

‖(x− βn(x))− (x̄− βn(x̄))‖ ≤ ‖x− x̄‖+ β‖n(x)− n(x̄))‖ ≤ ε+ βδ

< δ(1− β) + βδ = δ.

Using this and (3.38),

x− βn(x) ∈ intA ,∀x ∈ Bε(x̄) ∩ bdA. (3.40)

Moreover, by convexity of A and non-expansiveness [Bauschke and Com-
bettes, 2011, Prp. 4.16] of the projection

ΠA(x) ∈ Bε(x̄),∀x ∈ Bε(x̄). (3.41)

Hence, by (3.40), (3.41) and since ΠA(x) ∈ bd (A) for x 6∈ A we have

ΠA(x)− βn(ΠA(x)) ∈ intA, ∀x ∈ Bε(x̄) \A. (3.42)

Moreover, the projection operator satisfies

n(ΠA(x)) =
x−ΠA(x)

‖x−ΠA(x)‖
,

for x 6∈ A [Bauschke and Combettes, 2011, Prp. 6.47]. By the definition
of relaxed projection we therefore have for x ∈ Bε(x̄) \ A that Πα

A(x) =
ΠA(x)− (α− 1)‖ΠA(x)− x‖n(ΠA(x)). Noting that since α ∈ (1, 2]

0 < (α− 1)‖ΠA(x)− x‖ ≤ ε < β < 1,
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we conclude that Πα
A(x) is a strict convex combination between ΠA(x) ∈ A

and ΠA(x)− βn(ΠA(x)) ∈ intA, i.e.

Πα
A(x) = γΠA(x) + (1− γ)(ΠA(x)− βn(ΠA(x)))

where γ := 1− (α− 1)‖ΠA(x)−x‖/β ∈ (0, 1), and therefore Πα
A(x) ∈ intA.2

6.1 Examples of convex sets
In this section we present some results on when the rate in Theorem 7 can
be applied to convex sets. We say that, for a convex set A, the algorithm has
identified a manifold M ⊂ A at some iteration k, if subsequent iterations
would be identical when the set A is replaced withM. We partition a smooth
convex set A into two parts bdA and intA, and show that either bdA or intA
is identified.

Assumption 3—Regularity of Convex Sets at Solution
Let A,B be two closed convex sets with x∗ ∈ A ∩ B. Assume that at least
one of the following holds

C1. x∗ ∈ bdA ∩ bdB and (bdA, bdB) satisfies Assumption 1 at the point
x∗,

C2. x∗ ∈ intA ∩ bdB where bdB is C2-smooth around x∗,

C3. x∗ ∈ bdA ∩ intB where bdA is C2-smooth around x∗,

C4. x∗ ∈ intA ∩ intB.

We now introduce a definition of ST(x∗) in the setting of convex sets to
simplify the following statements on convergence rates.

Definition 15
For two convex sets (A,B) that satisfy Assumption 3 at a point x∗ ∈ A∩B,
we define

ST(x∗) := (1− α)I + αΠα2

TM(x∗)Π
α1

TN (x∗)

where we let

M :=

{
bdA if x∗ ∈ bdA
intA if x∗ ∈ intA

, N :=

{
bdB if x∗ ∈ bdB
intB if x∗ ∈ intB.

We note that with the definition above, if x∗ ∈ intA, then we get the
corresponding set TM(x∗) = Rn and the projection operator Πα2

TM(x̄) =

I, and equivalently for x∗ ∈ intB. The corresponding rate γ(ST(x∗)) then
reduces to one of (1−α2), (1−α1) or (1−α1)(1−α2) according to Theorem
1.
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Theorem 8
Let (A,B) be solid convex sets with A ∩ B 6= ∅, let α = 1, 1 < α1, α2 < 2
in the GAP algorithm (3.1). Then the iterations converge to some point
xk → x∗ ∈ A ∩ B. If the sets (A,B) satisfy Assumption 3 at the point x∗,
then either the problem is solved in finite time, or eventually the algorithm
will identify the sets (bdA, bdB) and converge R-linearly with any rate
µ ∈ (γ(ST(x∗)), 1) to x∗ ∈ bdA ∩ bdB.

Proof. We know that xk → x∗ for some point x∗ from convexity of A and
B [Fält and Giselsson, 2017b, Prp. 3]. We first show that the problem is
solved in a finite number of iterations unless x∗ ∈ bdA ∩ bdB.

Assume x∗ ∈ intA ∩ intB. Then there is some open ball around x∗ that
is contained in A ∩B. By convergence of (xk)k∈N, there is some k such that
xk is in this ball, and we have convergence in finite time.

Assume x∗ ∈ bdA ∩ intB. Let δ be such that Lemma 7 is satisfied for
(A, x∗) and so that Bδ(x∗) ⊂ B. Then there is a k such that xk ∈ Bδ(x∗).
If xk ∈ A ∩ B the problem is solved in finite time. If not, then xk ∈ B \ A,
so trivially Πα1

B xk = xk, and by Lemma 7 we get xx+1 = Πα2

A xk ∈ intA. By
non-expansiveness of Πα2

A Πα1

B , we have xk+1 ∈ Bδ(x∗) ⊂ B, so xk+1 ∈ A∩B,
and the problem is solved in finite time.

Assume x∗ ∈ intA ∩ bdB and let δ be such that Lemma 7 is satisfied
for (B, x∗), and so that Bδ(x∗) ⊂ A. Eventually xk ∈ Bδ(x∗) for some k. If
xk ∈ B the problem is solved. If not, then xk ∈ A\B, but then Πα1

B xk ∈ B by
Lemma 7. Again, by non-expansiveness of Πα1

B we have Πα1

B xk ∈ Bδ(x∗) ⊂ A
so xk+1 = Πα1

B xk ∈ A ∩B and the problem is solved in finite time.
Now consider the case where x∗ ∈ bdA ∩ bdB. Choose δA and δB so

that Lemma 7 is satisfied for (A, x∗) and (B, x∗) respectively and let δ =
min(δA, δB). Since xk → x∗ there exists N ∈ N such that xk ∈ Bδ(x∗) for all
k > N . By Lemma 7, we then have xk+1 ∈ A. If xk+1 ∈ A ∩ B the problem
is solved in finite time, else xk+1 ∈ A\B. Now consider any j > N such that
xj ∈ A \ B with xj ∈ Bδ(x∗). The first projection Πα1

B (xj) is equivalent to
projecting onto the manifold bdB, and by Lemma 7, we have Πα1

B (xj) ∈ B.
Either this point is also in A in which case the problem is solved in finite
time, or the second projection Πα2

A Πα1

B (xj) is equivalent to projecting onto
the manifold bdA. By Lemma 7, we get xj+1 ∈ A. Thus either we have
xj+1 ∈ A ∩ B, in which case we have a solution in finite time. Otherwise,
xj+1 ∈ A \ B. By recursion over j > N , we see that either the problem is
solved in finite time, or xj+1 ∈ A \ B for all j > N , in which case each
projection onto the sets is equivalent to projecting onto their boundaries,
i.e. the algorithm has identified the manifolds. The rate then follows directly
from Theorem 7. 2
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Theorem 9
Let A be a solid convex set, B an affine set such that A ∩ B 6= ∅. Then
xk → x∗ for some point x∗ ∈ A ∩B for the GAP algorithm (3.1). If the sets
(A,B) satisfy Assumption 3 at x∗, then the iterates xk+1 = Sxk converge
R-linearly with any rate µ ∈ (γ(ST(x∗)), 1) to x∗.

Proof. This proof is similar to that of Theorem 8. The sequence (xk)k∈N
converges to some x∗ ∈ A ∩ B by convexity of the sets. First assume that
x∗ ∈ intA. Then, since xk → x∗ there exists N such that xj ∈ A for all
j > N . The problem is then locally equivalent to that of (Rn, B), i.e. two
subspaces.

If x∗ ∈ bdA, then let δ be such that Lemma 7 is satisfied for (A, x∗). Then
by convergence to x∗, eventually xj ∈ Bδ(x∗) for all j > N . If Πα1

B xj 6∈ A
then xj+1 ∈ intA by Lemma 7. And if Πα1

B xj ∈ A, then xj+1 ∈ A by the
definition of projection. So xj+1 ∈ A for all j > N .

If also Πα1

B xl ∈ A for some l > j > N , then since both xl and xl−1 are
in A, we have xl − xl−1 ∈ NB(ΠBxl−1). From convexity of A we have that
the segment between xl and xl−1 must be contained in A, so all subsequent
iterations must be on this line segment. But then ΠBxl = x∗ and by assump-
tion x∗ ∈ bdA, so convexity of A implies that the whole segment must be in
bdA. The algorithm has thus identified (bdA,B).

Otherwise, Πα1

B xj 6∈ A for all j > k, and the projection Πα2

A (Πα1

B )xj
is equivalent to projecting onto the boundary bdA, i.e, the algorithm has
identified (bdA,B). The rate then follows from Theorem 7 since B is a
smooth manifold. 2

We now introduce some regularity properties of convex sets and show
how they relate to the regularity of the manifolds corresponding to their
boundaries.

Definition 16—Substranservality of sets
[Kruger et al., 2018, Thm. 1 (ii)]
Two sets C,D are subtransversal at x∗ if there exist α > 0 and δ > 0 such
that

αdC∩D(x) ≤ max{dC(x), dD(x)} ∀x ∈ Bδ(x∗). (3.43)

sr[C,D](x∗) is defined as the exact upper bound of all α such that (3.43)
holds.

Definition 17—Transervality of sets
[Kruger et al., 2018, Thm. 1 (ii)]
Two sets C,D are transversal at x∗ if there exists α > 0 and δ > 0 such that

αd(C−x1)∩(D−x2)(x) ≤max{dC−x1
(x),dD−x2

(x)}
∀x ∈ Bδ(x∗), x1, x2 ∈ Bδ(0). (3.44)
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r[C,D](x∗) is defined as the exact upper bound of all α such that (3.44)
holds. Equivalently, (C,D) are transversal at x∗ if NC(x∗) ∩ (−ND(x∗)) =
{0} [Kruger et al., 2018, Thm. 2 (v)].

We note that the transversality condition NC(x∗) ∩ (−ND(x∗)) = {0} for
two sets (C,D) coincides with Definition 12 of transversality when the sets
are smooth manifolds, since the normal cones are linear subspaces in this
case [Halmos, 1947].

Definition 18—Acute and obtuse intersection
For two solid, closed, convex sets (A,B) with smooth boundaries, we say that
the intersection is acute at a point x∗ ∈ bdA ∩ bdB if 〈v1, v2〉 ≤ 0, where
v1, v2 are the unique vectors such that v1 ∈ NA(x∗), v2 ∈ NB(x∗), ‖v1‖ =
‖v2‖ = 1. Conversely, we say that the intersection is obtuse if 〈v1, v2〉 > 0.

Note that acute and obtuse refer to the shape of the intersection, and not
the angle between the normals, for which the property is reversed.

Lemma 8
Let A,B be solid, closed and convex sets in Rn with boundaries bdA,bdB
that satisfy Assumption 1 at some point x∗ ∈ bdA, bdB and assume
that TbdA(x∗) 6= TbdB(x∗). Let θF ∈ (0, π/2] be defined via cos(θF ) =
c(bdA, bdB, x∗). Then

1. the manifolds (bdA, bdB) are transversal at x∗,

2. the sets (A,B) are transversal at x∗, i.e. NA(x∗) ∩ (−NB(x∗)) = {0},

3. the sets (A,B) are subtransversal at x∗ and the following inequalities
hold

r[A,B](x∗) ≤ sr[A,B](x∗) ≤

{
sin(θF /2) if (A,B) acute at x∗

cos(θF /2) if (A,B) obtuse at x∗,

4. sin(θF /2) = r[bdA, bdB](x∗). Furthermore, if the intersection of
(A,B) is acute at x∗ then

sin(θF /2) = r[bdA, bdB](x∗) = r[A,B](x∗) = sr[A,B](x∗)

otherwise

cos(θF /2) = r[A,B](x∗) = sr[A,B](x∗).

Proof. The proofs follow the definitions and results on (sub-)transversality
of general sets from [Kruger, 2006].
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1: From smoothness of the manifolds bdA, bdB, the corresponding
normals are lines and trivially NbdB(x∗) = −NbdB(x∗). Moreover, since
TbdA(x∗) 6= TbdB(x∗) we have NbdA(x∗) 6= NbdB(x∗), and therefore
NbdA(x∗) ∩ (−NbdB(x∗)) = {0}.

2: The normals to the sets A,B at a point in their boundaries x∗ sat-
isfy NbdA(x∗) = NA(x∗) ∪ (−NA(x∗)) and correspondingly for B. Hence,
NA(x∗) ⊂ NbdA(x∗) and −NB(x∗) ⊂ NbdB(x∗), so from from case 1 it fol-
lows that NA(x∗) ∩ (−NB(x∗)) = {0}.

3: The first inequality follows directly from [Kruger et al., 2018, Thm. 4
(i)]. For the second inequality, let v1 ∈ NA(x∗),v2 ∈ NB(x∗) be the unique
vectors with ‖v1‖ = ‖v2‖ = 1, and define w = (v1+v2)/‖v1+v2‖. From case 2,
we see that v1 6= −v2 and thus 〈v1, v2〉 > −1. Thus 〈w, v1〉 = (〈v1, v2〉 +
1)/‖v1 + v2‖ > 0 and similarly 〈w, v2〉 > 0. Since A,B are convex sets,
TA(x∗)+x∗ and TB(x∗)+x∗ are separating hyperplanes to the corresponding
sets, and it follows from 〈w, v1〉 > 0, 〈w, v2〉 > 0 that x∗ + βw is separated
from the sets A and B when β > 0, i.e. x∗+βw 6∈ A∪B for β > 0. Moreover,
by definition of w, we have w ∈ NA(x∗) + NB(x∗) ⊂ NA∩B(x∗) where the
second inclusion holds trivially for convex sets. We can therefore conclude
that ΠA∩B(x∗ + βw) = x∗, and therefore

dA∩B(x∗ + βw) = β‖w‖ = β. (3.45)

We now calculate an expression for dA(x∗ + βw). Since x∗ + βw 6∈ A, the
projection onto A is locally equivalent to projecting onto the smooth manifold
bdA. From Lemma 1 we get with series expansion around x∗ that

ΠbdA(x∗ + βw) = ΠbdA(x∗) + ΠTbdA(x∗)(βw) +O(β2),

where ΠbdA(x∗) = x∗. The projection of w = (v1 + v2)/‖v1 + v2‖ onto
TbdA(x∗) is given by

ΠTbdA(x∗)(w) = w − 〈v1, w〉
‖v1‖2

v1 = w − 〈v1, w〉v1

and the distance dA(x∗ + βw) is therefore

dA(x∗ + βw) = ‖ΠbdA(x∗ + βw)− (x∗ + βw)‖
= ‖βΠTbdA(x∗)(w)− βw +O(β2)‖ = ‖β〈v1, w〉v1 −O(β2)‖

= β‖1 + 〈v1, v2〉
‖v1 + v2‖

v1 −O(β)‖, (3.46)

and in the same way for B: dB(x∗ + βw) = β‖ 1+〈v1,v2〉
‖v1+v2‖ v2 −O(β)‖.

By the Definition 4 of the Friedrichs-angle and Definition 13, we have

cos θF = c(bdA, bdB, x∗) = c(TbdA(x∗),TbdB(x∗))

= c((TbdA(x∗))⊥, (TbdB(x∗))⊥),
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where the last equality is well known, see e.g. [Kruger et al., 2018, Def.
3]. Since (TbdA(x∗))⊥ = NA(x∗) ∪ (−NA(x∗)) = {βv1 | β ∈ R}, and sim-
ilarly for B, Definition 4 of the Friedrichs angle results in that cos θF =
max{〈v1, v2〉,−〈v1, v2〉}, i.e.

〈v1, v2〉 =

{
− cos θF if 〈v1, v2〉 ≤ 0

cos θF if 〈v1, v2〉 ≥ 0.

Thus by definition of sr[A,B](x∗), (3.45) and (3.46)

sr[A,B](x∗) ≤ lim
β→0+

max(dA(x∗ + βw), dB(x∗ + βw))

dA∩B(x∗ + βw)

= lim
β→0+

max
i∈{1,2}

‖1 + 〈v1, v2〉
‖v1 + v2‖

vi −O(β)‖

=
1 + 〈v1, v2〉√

‖v1‖2 + 2〈v1, v2〉+ ‖v2‖2

=

{
1−cos θF√
2−2 cos θF

=
√

1− cos θF /
√

2 = sin(θF /2) if 〈v1, v2〉 ≤ 0
1+cos θF√
2+2 cos θF

=
√

1 + cos θF /
√

2 = cos(θF /2) if 〈v1, v2〉 ≥ 0.

4: By [Kruger et al., 2018, Prp. 8]

ra[C,D](x) = sup
n1∈NC(x), n2∈ND(x)
‖n1‖=‖n2‖=1

−〈n1, n2〉,

where ra[C,D](x) satisfies ra[C,D](x∗) + 2(r[C,D](x∗))2 = 1.
Since bdA,bdB are smooth manifolds, this results in ra[bdA, bdB](x∗) =

cos(θF ) by Definition 4 of the Friedrichs angle, since NbdA(x∗) = −NbdA(x∗)
and equivalently for bdB. Thus, since θF ∈ [0, π/2] and r[bdA,bdB](x∗) ≥ 0
holds by definition, we have r[bdA, bdB](x∗) =

√
(1− cos θF )/2 =

sin(θF /2) for all θF ∈ [0, π/2].
For r[A,B](x∗) we use the same result, but the unit normal vectors are

unique in this case. When 〈v1, v2〉 ≤ 0 we have 〈v1, v2〉 = − cos θF by def-
inition of θF . We therefore get ra[A,B] = cos θF and thus r[A,B](x∗) =√

(1− cos θF )/2 = sin(θF /2).
In the same way, when 〈v1, v2〉 ≥ 0 we have 〈v1, v2〉 = cos θF , so ra[A,B] =

− cos θF and r[A,B](x∗) =
√

(1 + cos θF )/2 = cos(θF /2).
But we always have r[A,B] ≤ sr[A,B] [Kruger et al., 2018, Thm. 4 (i)],

so together with case 3 we see that sr[A,B](x∗) is bounded both above and
below by

sin(θF /2) if 〈v1, v2〉 ≤ 0

cos(θF /2) if 〈v1, v2〉 ≥ 0,

which concludes the proof. 2
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Remark 6
The regularity constants above are continuous with respect to the normals
as they approach the limit between acute and obtuse since 〈v1, v2〉 → 0 ⇒
θF → π/2 and sin(π/4) = sin(π/4) = 1/

√
2.

The rates presented so far are stated either as a property of the operator
ST(x∗) or as a function of the Friedrichs angle θF between tangent planes
at the intersection. In previous work on alternating projections and similar
algorithms for convex and non-convex sets, the rates are often stated as a
function of a linear regularity constant [Lewis et al., 2009; Bauschke et al.,
2014b]. We now state the rate found by choosing the optimal relaxation
parameters (3.10) in terms of linear regularity.

Theorem 10
Let A,B be two solid, closed, and convex sets in Rn. Let x∗ ∈ A ∩B be the
limit point of the sequence (xk)k∈N ∈ R generated by the GAP algorithm
(14), and assume that

1. x∗ ∈ bdA ∩ bdB

2. (bdA, bdB) satisfies Assumption 1 at the point x∗.

Then the sets are κ̂-linearly regular, i.e., there exists δ > 0 and κ̂ > 0 such
that

dA∩B(x) ≤ κ̂max(dA(x), dB(x)), ∀x ∈ Bδ(x∗). (3.47)

Let κ be the lower limit of all such κ̂ and assume that κ ≥
√

2, then the GAP
algorithm with parameters

α = 1, α1 = α2 = 2

(
κ√

κ2 − 1 + 1

)2

(3.48)

will converge to x∗ with R-linear rate µ for any µ ∈ (γ, 1), where

γ =

(√
κ2 − 1− 1√
κ2 − 1 + 1

)2

= 1− 4

√
κ2 − 1

κ2 + 2
√
κ2 − 1

. (3.49)

Proof. Existence of a limit point for convex sets x∗ follows from the pre-
vious results or [Fält and Giselsson, 2017b]. First assume that TbdA(x∗) =
TbdB(x∗). Then by simple dimensionality and Assumption A2 it follows that
bdA = bdB in some neighborhood of x∗. It must therefore be that either
A ∩ B = A = B or A ∩ B = bdA ∩ bdB in some neighborhood of x∗. The
problem is then trivial, but dA∩B(x) = dA(x) = dB(x) for all x ∈ Bδ(x∗), so
κ = 1. This falls outside the scope of the rest of the result.
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Now assume instead that TbdA(x∗) 6= TbdB(x∗). The sets (A,B) are
therefore transversal by Lemma 8 case 2, and since NA(x∗) 6= NB(x∗), we
have θF > 0. Since 1/κ̂ = sr[A,B] ≤ 1/

√
2 we have by Lemma 8 case 4 that

1/κ̂ = r[bdA,bdB] = sr[A,B] = sin(θF /2).

The optimal parameters (3.10) are therefore, with θF = 2 arcsin(1/κ)

α1 = α2 =
2

1 + sin θF
=

2

1 + sin(2 arcsin(1/κ))
= 2

(
κ√

κ2 − 1 + 1

)2

∈ [1, 2).

By Theorem 9 and Theorem 3, the convergence to x∗ is R-linear with rate µ
for any µ ∈ (γ(ST(x∗)), 1) where

γ(ST(x∗)), 1) =
1− sin θF
1 + sin θF

=
1− sin(2 arcsin(1/κ))

1 + sin(2 arcsin(1/κ))
=

(√
κ2 − 1− 1√
κ2 − 1 + 1

)2

= 1− 4

√
κ2 − 1

κ2 + 2
√
κ2 − 1

. 2

Remark 7
The regularity parameter κ is always in the range κ ∈ [1,∞]. In partic-
ular, for ill-conditioned problems, i.e. large κ, the rate above approaches
γ ≈ 1 − 4

κ . This can be compared to the worse rate of alternating projec-
tions of γ = 1 − 4

κ2 as found in [Lewis et al., 2009] under linear regularity
assumptions for non-convex sets. We note that the difference in rates is be-
cause the algorithm is better, not because of better analysis, in particular, we
assume convexity. The contraction rate for the Douglas–Rachford algorithm,
presented in [Luke and Martins, 2020] for general convex sets is

√
1− κ−2,

which can be approximated for large κ by 1− 1
2κ2 .

Theorem 11
Let A,B be two solid, closed, and convex sets in Rn that satisfy Assumption 3
at every point x∗ ∈ A ∩ B. Assume that there is a κ̂ > 0 such that the sets
A,B are κ̂-linearly regular at every point x∗ ∈ A∩B, i.e., for every x∗ there
exists δx∗ > 0 such that

dA∩B(x) ≤ κ̂max(dA(x), dB(x)), ∀x ∈ Bδx∗ (x∗). (3.50)

Let κ = max(κ̂,
√

2), then the GAP algorithm with parameters

α = 1, α1 = α2 = 2

(
κ√

κ2 − 1 + 1

)2

(3.51)
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will converge to x∗ with R-linear rate µ for any µ ∈ (γ, 1), where

γ =

(√
κ2 − 1− 1√
κ2 − 1 + 1

)2

= 1− 4

√
κ2 − 1

κ2 + 2
√
κ2 − 1

. (3.52)

Proof. We note that κ =
√

2 implies that α1 = α2 = 1, otherwise α1 =
α2 ∈ (1, 2). Convergence to some x∗ ∈ A ∩ B follows from convexity, and if
x∗ 6∈ bdA∩bdB, then Theorem 8 states that the convergence is in finite time,
for which the rate holds trivially. The remaining case is x∗ ∈ bdA∩ bdB. If
TbdA(x∗) = TbdB(x∗), then bdA = bdB in some neighborhood of x∗ and
the problem is trivial with convergence in finite time.

Otherwise, TbdA(x∗) 6= TbdB(x∗) and consequently the Friedrichs angle
satisfies cos(θF ) > 0. First consider the case where the angle between the
sets (A,B) is obtuse at x∗. Let δ1 be such that Lemma 7 holds, i.e. Πα1

A x ∈
A and Πα2

B x ∈ B, for any x ∈ Bδ1(x∗). Let c = 〈nA(x∗), nB(x∗)〉, where
nA(x∗), nB(x∗) are the outward facing unit normals for the sets A,B at the
point x∗, which by definition of obtuse satisfies c > 0. By smoothness of the
boundaries of A and B, and continuity of their normals, there is some δ2 > 0
such that

〈nA(x), nB(y)〉 > 0,∀x ∈ Bδ2(x∗) ∩ bdA, y ∈ Bδ2(x∗) ∩ bdB, (3.53)

where nA(x), nB(y) are the outward facing unit normals to A and B at x and
y respectively. Now, by convergence of xk to x∗, there is some k such that
xk ∈ Bδ(x∗) where δ = min(δ1, δ2). Thus by Lemma 7 and non-expansiveness
of the projectors, we have Πα1

A x ∈ A and xk+1 = Πα2

B Πα1

A xk ∈ B. If xk+1 ∈ A,
then the problem is solved in finite time, and the result is trivial, otherwise
xk+1 ∈ B \ A. There must therefore exist a point x̄ on the line between
xk+1 ∈ B \ A and Πα1

A xk ∈ A such that x̄ ∈ bdA, moreover it must satisfy
〈nA(x̄), xk+1−Πα1

A xk〉 > 0 since the line is pointing out of the set A. But by
the definition of the projection and xk+1, we have

xk+1 −Πα1

A xk
‖xk+1 −Πα1

A xk‖
= −nB(x̃),

where x̃ = ΠBΠα1

A xkbdB. This leads to 〈nA(x̄), nB(x̃)〉 < 0. And since both
x̄ and x̃ are in Bδ(x∗) by non-expansiveness, this is a contradiction to (3.53),
i.e. xx+1 ∈ B \A can not hold, so xx+1 ∈ A∩B and the convergence is finite
and the result holds trivially.

The remaining case is when (A,B) is acute at x∗. By Lemma 8 case 4, we
have sr[A,B](x∗) = sin(θF /2) ≤ 1/

√
2, so by definition of sr (Definition 16),

it must hold that κ ≥ 1/sr[A,B](x∗) = 1/ sin(θF /2) ≥
√

2. By Theorem 10,
we see that the optimal rate would have been achieved if κ = 1/ sin(θF /2),
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C

D

p0

Πα1

C p0

p1

Πα1

C p1

p2

Figure 2. Illustration of the problem with a cone C and line D from
Example 3. The iterates p0, p1, p2, . . . are illustrated in red, the normal
cone to C with dashed lines, and the rays through (1,−γ) and (−1,−γ) are
shown with blue dotted lines. As shown in the example, the iterates stay
on the dotted lines and alternate between projecting on the two faces of C.

i.e. α1 = α2 > α∗, or equivalently that the parameters have been chosen as if
θF was smaller. But as seen in Remark 3, this still results in the sub-optimal
rate (3.52) based on this conservative κ. 2

Remark 8
We note that the adaptive method proposed in [Fält and Giselsson, 2017a]
for estimating θF by the angle between the vectors v1 = Πα1

B xk−xk and v2 =
Πα1

A xk −Πα2

B Πα1

A xk, works very well in the setting of two convex sets (A,B)
with smooth boundaries. This can be seen by observing that if v1/‖v1‖ = −n1

and v2/‖v2‖ = n2, where n1, n2 are normal vectors with unit length to A
and B at the point x∗, then the angle between them is exactly θF in the
acute case. And indeed, as long as the algorithm has not already converged,
we have v1/‖v1‖ → −n1, v2/‖v2‖ → n2 as xk → x∗, by the definition of
the projections and continuity of the normals around x∗. The estimate will
therefore converge to θF as xk → x∗.

6.2 Counter example
We now introduce a simple convex example, which illustrates that it is not
always possible to rely on finite identification of smooth manifolds for the
GAP algorithm 3.1, even in the case of convex polytopes.
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6 Convex sets

Example 3
Consider the convex feasibility problem (C,D) with C = {(x, y) | y ≥ |x|},
D = {(x, y) | y = 0} as illustrated in Figure 2, with parameters α = 1, α1 =
α2 = 1.5 for the GAP algorithm 3.1. Let

p0 = (1,−γ)

where γ = 1
12

(
1 +
√

73
)
≈ 0.795. The GAP algorithm will then alternate

between projecting onto the surfaces {y = x, x > 0} and {y = −x, x < 0}.

Proof. The first projection point will hit the boundary of the cone C at
ΠCp0 = 1

2 (1− γ, 1− γ) which is easily seen by that ΠCp0 − p0 = 1
2 (−1 −

γ, 1 +γ) ⊥ ΠCp0. The relaxed projection point and the next iterate can then
be calculated to

Πα1
C p0 =

1

4
(1− 3γ,−3 + γ)

p1 = Πα2

D Πα1

C p0 =
1

8
(2− 6γ,−3 + γ)

We note that γ2 = 1
6 (γ + 3), and simple arithmetic gives (p1)xγ = 1

8 (2 −
6γ)γ = 1

8 (γ − 3) = (p1)y. So p1 is simply p0 scaled and flipped around the
y axis, i.e., it is on the form p1 = β (−1,−γ). The next projection point is
therefore on the boundary of the cone C with x < 0, and because of the
symmetry around the y axis, the next iterate is

p2 = β2 (1,−γ) .

By linearity and induction, it is clear that the algorithm will not identify
any of the smooth surfaces {y = x, x > 0} or {y = −x, x < 0} but instead
alternate between them. 2

Remark 9
The example above shows that finite identification of either of the manifolds
{(x, y) | y = x, x > 0} and {(x, y) | y = −x, x < 0} does not occur for every
initial point. However, with some reasonable definition of smallest angle, for
example through the subregularity constant sr, we would have θF = π/4,
and the theory for subspaces would predict a worst case rate γ(S) = 0.5. It
is notable that the convergence rate β ≈ 0.35 in the example is significantly
better. It is therefore still an open question whether the smallest angle sets
an upper bound on the rate, through the eigenvalues in Theorem 1, even for
these problems.
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7. Conclusions
We have shown that the known convergence rates for the GAP algorithm on
affine sets extend to local rates on smooth manifolds, and that the optimal
parameters and rates hold also in this setting. These rates are significantly
better than previous known rates for similar projection methods. We have
also shown how these results can be applied to generate linear convergence
rates for two smooth and solid convex sets, and how they can be connected
to linear regularity.

Since finite identification of smooth manifolds can not generally be as-
sumed, it remains to be shown how these results can be applied to general
convex sets.

A. Appendix

A.1 Proof of Lemma 9
Lemma 9—Infinite Sub-sequence
Given any infinite sequence of increasing positive integers (rj)j∈N ∈ N, for
any integer n > 0 there exists an infinite sub-sequence (rjk)k∈N where

rjk = a+ nbk,

for some a ∈ N, some increasing sequence (bk)k ∈ N.

Proof. Fix n and consider the finite collection of sets Si = {v ∈ N | v =
i+nb, b ∈ N}, i = 0, . . . , n−1. We have ∪i=0,...,n−1Si = N, so ∪i=0,...,n−1(Si∩
{rj}j) = {rj}j∈N and thus one of the sets (Si∩{rj}j∈N) must be infinite. Let
a be the index so that (Sa ∩ {rj}j∈N) is infinite. This is clearly a subset of
{rj}j∈N and by the definition of Sa each element is of the form a+ nbk with
bk ∈ N, and the proof is complete. 2

A.2 Proof of Theorem 2
Since S = T with α = 1, we begin by showing that all eigenvalues to T in
Theorem 1 satisfy |λ| ≤ γ∗. For convenience of notation we introduce

f(θ) :=
1

2

(
2− α1 − α2 + α1α2 cos2 θ

)
(3.54)

g(θ) :=
√
f(θ)2 − (1− α1)(1− α2) (3.55)

so that λ1,2
i in (3.8) can be written λ1,2

i = f(θi)± g(θi). For α1 = α2 = α∗ =
2

1+sin θF
we get f(θF ) = 1−α∗+α∗2c2F /2 = 1−sin θF

1+sin θF
= α∗−1 and g(θF ) = 0.

The eigenvalues corresponding to θF are therefore λ1,2
F = α∗ − 1 = 1−sin θF

1+sin θF
.
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We also see that f(π/2) = 1− α∗, g(π/2) = 0. Since f(θ) is linear in cos2 θ,
which is decreasing in [θF , π/2], and |f(θF )| = |f(π/2)| = α∗ − 1, it follows
that |f(θi)| ≤ α∗−1 for all θi ∈ [θF , π/2]. This means that f(θi)

2−(α∗−1)2 ≤
0 and the corresponding λ1,2

i are complex with magnitudes∣∣∣λ1,2
i

∣∣∣ =
√
f(θi)2 + |f(θi)2 − (1− α∗)2| =

√
(1− α∗)2

= α∗ − 1 ∀i : θF ≤ θi ≤ π/2.

For the remaining eigenvalues we have |1 − α1| = α∗ − 1 = γ∗, |1 − α2| =
α∗ − 1 = γ∗, |(1− α1)(1− α2)| = (α∗ − 1)2 ≤ γ∗. Lastly, the eigenvalues in
λ = 1, correspond to the angles θi = 0, and are semisimple since the matrix
in (3.7) is diagonal for θi = 0. We therefore conclude, from Fact 2 and 3,
that α1 = α2 = α∗ results in that the GAP operator S = T in (3.2) is
linearly convergent with any rate µ ∈ (γ∗, 1) where γ∗ = α∗− 1 = 1−sin θF

1+sin θF
is

a subdominant eigenvalue.

A.3 Lemmas
Lemma 10
The matrix

M := (2− α∗)I +
α∗

α1
(TF1 − I), (3.56)

where TF1 is the matrix defined in (3.7) corresponding to the angle θF has
trace and determinant:

trM =
2

(1 + s)α1

(
−α1 − α2 + α2α1c

2 + 2α1s
)

detM =
4s(1− s)
α1(1 + s)2

(−α1 − α2 + α1α2(1 + s)) ,

where s := sin θF , c := cos θF .

Proof. Let s := sin θF , c := cos θF . The matrix can be written

M = (2− α∗)I +
α∗

α1

((
1− α1s

2 α1cs
α1(1− α2)cs (1− α2)(1− α1c

2)

)
− I
)

=

(
2− α∗ − α∗s2 α∗cs

α∗(1− α2)cs 2− α∗ + α∗

α1

(
(1− α2)(1− α1c

2)− 1
))

=

(
2− α∗(1 + s2) α∗cs

α∗(1− α2)cs 2− α∗ + α∗

α1

(
α1α2c

2 − α2 − α1c
2
)) .

Using that α∗ = 2
1+s , we can rewrite the diagonal elements

2− α∗(1 + s2) = α∗
(
1 + s− (1 + s2)

)
= α∗s(1− s)
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and

2−α∗ +
α∗

α1

(
α1α2c

2 − α2 − α1c
2
)

= α∗(1 + s)− α∗ + α∗
(
c2(α2 − 1)− α2

α1

)
= α∗

(
s+ c2(α2 − 1)− α2

α1

)
.

We can extract the factor α∗cs from the matrix and get

M = α∗cs

(
1−s
c 1

1− α2
s+c2(α2−1)−α2

α1

cs

)
.

The trace is therefore given by

trM = α∗cs

(
1− s
c

+
s+ c2(α2 − 1)− α2

α1

cs

)

= α∗
(

2s− s2 + c2α2 − c2 −
α2

α1

)
=
α∗

α1

(
−α1 − α2 + α2α1c

2 + 2α1s
)

=
2

(1 + s)α1

(
−α1 − α2 + α2α1c

2 + 2α1s
)

and the determinant

detM = (α∗cs)
2

 (1− s)
(
s+ c2(α2 − 1)− α2

α1

)
c2s

− (1− α2) c2s

c2s


= α∗2s

((
s+ c2(α2 − 1)− α2

α1
− s2 − c2s(α2 − 1) + s

α2

α1

)
− (1− α2) c2s

)
= α∗2s

(
s+ c2(α2 − 1)− α2

α1
− s2 + s

α2

α1

)
= α∗2s

(
s− 1 + α2c

2 +
α2

α1
(s− 1)

)
= α∗2s(1− s)

(
−1 + α2(1 + s)− α2

α1

)
=
α∗2s(1− s)

α1
(−α1 − α2 + α1α2(1 + s))

=
4s(1− s)
α1(1 + s)2

(−α1 − α2 + α1α2(1 + s)) . 2
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Lemma 11
Under the assumptions α = α∗

α1
, α1 ≥ α2 > 0 and θF ∈ (0, π/2), the matrix

M (3.56) in Lemma 10 satisfies

(α1 6= α∗ or α2 6= α∗)⇒ maxReΛ(M) > 0,

where Λ(M) is the set of eigenvalues of M .

Proof. We prove the equivalent claim

maxReΛ(M) ≤ 0⇒ α1 = α2 = α∗.

We have maxReΛ(M) ≤ 0 if and only if both eigenvalues ofM have negative
or zero real part, which is equivalent to

λ1 + λ2 ≤ 0 and λ1λ2 ≥ 0.

This is equivalent to

trM ≤ 0 and detM ≥ 0.

Using Lemma 10, this can be written{
2

(1+s)α1

(
−α1 − α2 + α2α1c

2 + 2α1s
)
≤ 0

4s(1−s)
α1(1+s)2 (−α1 − α2 + α1α2(1 + s)) ≥ 0

,

where s := sin(θF ) and c := cos(θF ). Since α1 > 0, s ∈ (0, 1), this is equivalent
to {

α1 + α2 − α2α1c
2 − 2α1s ≥ 0 (3.57a)

−α1 − α2 + α1α2(1 + s) ≥ 0. (3.57b)

This implies that the sum is positive, i.e.(
α1 + α2 − α2α1c

2 − 2α1s
)

+ (−α1 − α2 + α1α2(1 + s))

= (α2α1s
2 − 2α1s+ α1α2s)

= α1s (α2s− 2 + α2) ≥ 0

which, since α2, s > 0, is equivalent to α2(1 + s) ≥ 2, and thus

α2 ≥
2

1 + s
= α∗.

But then since α2 ≥ α∗, (3.57a) implies

α1 + α2 − α∗α1c
2 − 2α1s ≥ 0
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which is equivalent to

α1 + α2 − α∗α1c
2 − 2α1s = α1 + α2 − 2α1(1− s)− 2α1s

= α1 + α2 − 2α1 = α2 − α1 ≥ 0

i.e. α2 ≥ α1.
But by assumption α1 ≥ α2 so we know that (3.57) implies α1 = α2 ≥ α∗.

Equation (3.57a) yields

α1 + α2 − α2α1c
2 − 2α1s ≥ 0

⇒ 2α1 − α2
1c

2 − 2α1s ≥ 0

⇔ 2− α1c
2 − 2s ≥ 0

⇔ 2
(1− s)
c2

≥ α1

⇔ α∗ =
2

(1 + s)
≥ α1,

where the implication is from α1 = α2. We have therefore shown that α∗ ≥
α1 = α2 ≥ α∗ i.e. α∗ = α1 = α2 ≥ α∗. This completes the proof. 2

A.4 Proof of Theorem 3
The first direction, that both S1 and S2 are convergent with any rate µ ∈
(γ∗, 1) for the parameters in (3.10) holds by Theorem 2. We now prove that if
S1 and S2 converge with rate µ for all µ ∈ (γ∗, 1) then the parameters must be
those in (3.10). By Fact 2, if both operators converge with any rate µ ∈ (γ∗, 1)
then it must be that γ(S1) ≤ γ∗ and γ(S2) ≤ γ∗. By Definition 7, this means
that all eigenvalues λ to both S1 and S2 have |λ| ≤ γ∗, unless λ = 1. With
Si = (1 − α)I + αTi, we see from Theorem 1, that T1 has an eigenvalue in
1−α2, T2 in 1−α1, and both T1 and T2 have eigenvalues in λ1,2

i corresponding
to the angle θF . We therefore need that |1 + α (λ− 1) | ≤ γ∗ for each of the
eigenvalues λ. We start by defining α̂ = α∗/α1, where α∗ = 2/(1 + sin θF ),
and observe that α∗ − 1 = γ∗.

Assume that α1 ≥ α2 and α = α̂. For the eigenvalue λ = 1− α1, we get

1 + α̂(λ− 1) = 1 +
α∗

α1
(1− α1 − 1) = 1− α∗. (3.58)

Consider the eigenvalues to I + α̂(TF − I) where TF is the matrix (3.7)
corresponding to the angle θF , i.e., the eigenvalues λ1,2

i . We have

maxReΛ(I + α̂(TF − I)) > α∗ − 1 (3.59)

if and only if
maxReΛ((2− α∗)I + α̂(TF − I)) > 0. (3.60)
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By Lemma 11 we know that (3.60) is true when α = α̂, unless α1 =
α2 = α∗. We therefore know that for α = α̂, unless the optimal parameters
are selected, there will always be one eigenvalue of S2 in 1 − α∗ and one,
corresponding to θF , with real part greater than α∗ − 1. We now consider
the two cases α > α̂ and α < α̂. First note that α acts as a scaling of the
eigenvalues relative to the point 1, i.e., (1 − α) + αλ = 1 + α(λ − 1). It is
therefore clear that α > α̂ will result in one eigenvalue with real part less
than 1− α∗ = −γ∗, and thus γ(S1) > γ∗ and γ(S2) > γ∗.

Similarly, any α < α̂ will result in one eigenvalue (λ1
F ) with real part

greater than α∗−1 = γ∗. If this eigenvalue is not in 1, i.e., unless 1+α(λ1
F −

1) = 1, we know that γ(S) > γ∗ also in this case. Since α 6= 0 we have
1 +α(λ1

F − 1) = 1 if and only if λ1
F = 1. But λ1

F = 1 only if det(TF − I) = 0,
where TF is the block corresponding to θF in (3.7). Since α1, α2 6= 0 and
θF > 0 we get

det(TF − I) = −α1s
2
F (α1c

2
F − α2 + α1α2c

2
F )− α2

1(1− α2)c2F s
2
F = α1α2s

2
F 6= 0

and thus λ1
F 6= 1.

We conclude that when α1 ≥ α2, then γ(S2) > α∗ − 1 = γ∗ for all
parameters that are not α = 1, α1 = α2 = α∗.

The proof is only dependent on the eigenvalue 1 − α1, corresponding to
S2, and the eigenvalue λ1,2

F corresponding to θF . From symmetry of α1, α2 in
λ1,2
F we see that the same argument holds if we instead assume α2 ≥ α1, let
α̂ = α∗/α2, and consider the eigenvalues 1−α2 from S1 and λ1,2

F . This leads
to that when α2 ≥ α1, then γ(S1) > α∗ − 1 = γ∗ for all parameters that are
not α = 1, α1 = α2 = α∗. To conclude, unless α = 1, α1 = α2 = α∗, we have
either γ(S1) > γ∗ or γ(S2) > γ∗, which contradicts that they both converge
linearly with any rate µ ∈ (γ∗, 1).
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Paper V

QPDAS: Dual Active Set Solver for
Mixed Constraint Quadratic

Programming

Mattias Fält, Pontus Giselsson

Abstract

We present a method for solving the general mixed constrained convex
quadratic programming problem using an active set method on the
dual problem. The approach is similar to existing active set methods,
but we present a new way of solving the linear systems arising in the
algorithm. There are two main contributions; we present a new way
of factorizing the linear systems, and show how iterative refinement
can be used to achieve good accuracy and to solve both types of sub-
problems that arise from semi-definite problems.
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1. Introduction
Quadratic programming has been studied extensively and many mature
methods and algorithms exist. The main approaches to solving these prob-
lems are interior point [Wächter and Biegler, 2006], active set [Gill et al.,
1995; Ferreau et al., 2014], and operator-splitting methods [Stellato et al.,
2020; O’Donoghue et al., 2016]. Interior point methods typically converge in
a few iterations, but the computational complexity often makes them im-
practical for large scale problems. Operator-splitting methods, e.g. ADMM,
are designed for cheap iterations, but the convergence rate is usually much
slower. This can be acceptable when a low accuracy solution is sufficient,
but for higher accuracy, the number of iterations are often inhibitorily large,
especially for ill-conditioned problems.

Active set methods are fundamentally different from these approaches
[Bartlett and Biegler, 2006; Goldfarb and Idnani, 1983]. They are designed
to converge to the optimal point in a finite number of iterations, up to the
accuracy of round-off errors. They do this by iteratively improving a guess,
the working set, of the set of active constraints at the optimum, until the
correct solution is found. The set of active constraints at each iteration is
referred to as the active set. The number of working sets that needs to be
tested therefore usually grows quickly with the number of inequalities in
the problem. In this paper, we focus on an active set method, where the
working set is updated by either adding or removing one constraint at each
iteration. Other approaches where multiple constraints are modified exist,
and we believe our method can be used in such schemes, but that lies beyond
the scope of this work.

The method we present is applying the active set method to a form arising
when formulating the dual of a standard quadratic program. By using a dual
active set method, the main iterations of the algorithm, and the factorization
that needs to be updated, will scale with the set of constraints instead of
the number of primal variables. However, when there are linearly dependent
constraints, the dual will not have a positive definite quadratic cost, which
requires extra care in the solver.

At each iteration, active set methods seeks to decrease the cost function
given the constraints of the current working set. This sub-problem is posed
as minimizing the quadratic function, subject to equality constraints. When
the problem is positive definite, then so is this sub-problem, and a unique
minimizer exists. However, in the semi-definite case, these sub-problems can
be semi-definite and even unbounded. One approach to handle this problem
is to ensure that the active set is always modified in a way that keeps the
sub-problems bounded. Another approach is to allow the sub-problems to be
unbounded, and in this case, find a descent-direction of zero curvature [Wong,
2011]. Thus at each iteration, it has to be detected if the problem is un-
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2 Problem

bounded, and then a corresponding method, to either solve for a minimizer
or a descent direction, can be applied.

In our approach however, by using iterative refinement to solve the sub-
problems, we are able to use the same algorithm to solve the bounded and
unbounded case without first determining if the sub-problem is unbounded.

Although regularization and iterative refinement are used in other al-
gorithms to overcome problems with semi-definite and ill-conditioned Hes-
sians [Potschka and Kirches, 2010; Ferreau et al., 2014], they still rely on
methods to ensure that the sub-problems are bounded, such as linear depen-
dence tests when updating the working set. As far as the authors know, this
is the first time the same algorithm is used to solve both the consistent case,
and the case where the sub-problems are unbounded.

The second contribution is a different approach to factorizing the matrix
needed to solve the sub-problems, which is independent in size of the number
of constraints in the working set. These two contributions work well together,
but can be used independently of each other.

Although a big motivation for active-set methods is their ability of warm
start, i.e. reuse the factorization and solution from a previous similar problem,
we will not focus on that property in this article. Since the main outline of
our algorithm is the same as previous approaches, existing techniques for
warm starting also applies to our method.

We do however present a very simple approach to selecting an initial guess
of the active set in Section 4, based on the simple form of the dual problem.
This way of selecting an initial guess proves very powerful in the numerical
examples in Section 5.

1.1 Notation
For a vector v we denote the i:th element by (v)i, and for a matrix A, (A)i,j
denotes the element at row i, column j. Inequalities between vectors should
be interpreted as element wise inequality. For a finite set W, |W| is the
number of elements in the set, (W)i denotes the i:th element, given some
arbitrary but consistent throughout the article, ordering.

2. Problem
Consider the general mixed constraint quadratic program

min
1

2
xTPx+ qTx (3.1)

s.t. Ax = b

Cx ≤ d
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with x ∈ Rn, A ∈ Rmeq×n, C ∈ Rmin×n, where we assume that the matrix
P ∈ Rn×n is symmetric and positive definite, and that there exists at least
one feasible point. The resulting dual problem is

min
µeq,µin

1

2

[
µeq
µin

]T [
AP−1AT AP−1CT

CP−1AT CP−1CT

] [
µeq
µin

]
(3.2)

+

[
AP−1q + b
CP−1q + d

]T [
µeq
µin

]
s.t. µin ≥ 0,

where µeq ∈ Rmeq and µin ∈ Rmin are the dual variables for the equality and
inequality constraints, respectively. The minimum of the dual is attained by
strong duality [Boyd and Vandenberghe, 2010, p. 226] and the primal solution
x∗ is given by the KKT conditions as

x∗ = −P−1(q +ATµ∗eq + CTµ∗in). (3.3)

3. Active set method
We now focus on solving the dual problem (3.2), since a solution µ∗ to this
problem can be used to simply find a solution x∗ to the primal problem (3.1)
by solving (3.3). We implement the standard active-set method as described
in [Nocedal and Wright, 2006]. Since the dual problem (3.2) might not be
positive definite, we modify the algorithm to handle semi-definite problems.
To simplify the notation, let the dual problem be

min
µ

1

2
µTGµ+ µTh (3.4)

s.t. µin ≥ 0,

where

G =

[
AP−1AT AP−1CT

CP−1AT CP−1CT

]
, h =

[
AP−1q + b
CP−1q + d

]
,

and µT :=
[
µTeq µTin

]
. We define the set of indices corresponding to µin in µ

as I = {meq + 1, . . . ,meq +min}. Let Wk ⊆ I, the working set at iteration
k, be the current guess of the active set at the solution µ∗, i.e the set so
that µ at iteration k satisfies (µ)i = 0,∀i ∈ Wk. At each iteration of the
algorithm, a new point µk+1 is generated by decreasing the cost function,
given the constraints defined by the working set. If we let µk+1 := µk + pk,
this corresponds to finding a descent direction pk, such that (pk)i∈Wk

= 0.
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Substituting µk+1 for µ in equation (3.4) leads to the problem

min
pk

1

2
pTkGpk + pTk (h+Gµk) (3.5)

s.t. (pk)i = 0 ∀i ∈ Wk,

with KKT conditions [
G ATk
Ak 0

] [
pk
λ

]
=

[
−h−Gµk

0

]
, (3.6)

where λ ∈ R|Wk| and Ak ∈ R|Wk|×(meq+min) is the indicator matrix for the
indices in Wk, i.e., with some abuse of notation, (Ak)i,j = 1 if (Wk)i = j,
and 0 otherwise. An overview of the algorithm is presented in Algorithm 1.

The difference from [Nocedal and Wright, 2006] in Algorithm 1 are lines
8 and 23 which handle the case where the dual sub-problem (3.5) is un-
bounded. Line 23 assumes that there exists a largest αk. Because pk is a
descent direction of zero curvature, an unbounded αk would mean that the
dual is unbounded which contradicts the strong duality and that a primal
feasible point exists.

Note that the first step of finding a feasible point µ0 is trivial, e.g µ0 = 0
is feasible, since we only have non-negative inequality constraints and no
equality constraints. A discussion of finding a better initial guess is discussed
in Section 4.

In the following sections we will present how to solve the sequence of
sub-problems (3.5) in an efficient way. The main contribution is that we can
use a single factorization and algorithm to solve both the case of finding
a minimizer as well as finding a descent direction of zero curvature, using
iterative refinement with cheap updates to the factorization at each step.

3.1 Factorization
To solve the sub-problems in Algorithm 1 at lines 6 and 8 a factorization
of the quadratic term is needed. We begin by assuming that the columns
in [A C] are linearly independent. This will be relaxed in Section 3.3. The
matrix G is therefore positive definite and allows for a Cholesky factorization
G = LLT .

The crucial step in the active set method is solving the sub-problem (3.5)
of the form

min
µ

1

2
pTGp+ cT p (3.7)

s.t. (p)i = 0, i ∈ Wk,

where the indices in the working set Wk will be indices corresponding to the
constraints on µ2. When G is positive definite, there is a unique solution to
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Algorithm 1 Active-set method for solving problem (3.4)
Output: Solution µ∗ to problem (3.4)
1: Compute a feasible starting point µ0 (e.g µ0 = 0)
2: Let W0 be a set of active constraints at µ0

3: for k = 0, 1, 2, ... do
4: find pk according to :
5: if (3.5) is bounded then
6: find a minimizing pk to (3.5)
7: else
8: find a pk with negative cost such that pTkGpk = 0
9: end if

10: if pk = 0 {From line 6} then
11: Find Lagrange multipliers λ∗ from (3.6)
12: if (λ∗)i ≥ 0 for all i ∈ Wk then
13: return µ∗ ← µk
14: else
15: j ← arg minj∈Wk

(λ∗)j
16: µk+1 ← µk
17: Wk+1 ←Wk \ {j}
18: end if
19: else
20: if pk was minimizing (bounded) then
21: find the largest αk ≤ 1 so that µk + αkpk is feasible
22: else
23: find the largest αk so that µk + αkpk is feasible
24: end if
25: if constraints were blocking αk {line 21,23} then
26: Wk+1 ←Wk ∪ {j} {j is a blocking constraint}
27: else
28: Wk ←Wk

29: end if
30: end if
31: end for
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this problem and finding it is equivalent to solving the KKT system[
G ATk
Ak 0

] [
p
λ

]
=

[
−c
0

]
, (3.8)

where Ak is the indicator matrix, i.e. (Ak)i,j = 1 if (Wk)i = j and 0 other-
wise. Now, note that finding p in (3.7) is equivalent to solving the problem

min
1

2
pT Ḡp+ c̄T p

s.t. (p)i = 0 i ∈ Wk,

where Ḡ is a modified version of G with identity mapping for indices i ∈ Wk,
i.e. the new matrix Ḡ in terms of G is

(Ḡ)i,j =


1 if i = j ∈ Wk

0 if i 6= j and i ∈ Wk or j ∈ Wk

(G)i,j otherwise
(3.9)

and

(c̄)i =

{
0 if i ∈ Wk

(c)i else.

Problem (3.7) can therefore be solved from

Ḡp = −c̄

instead, and the dual variable λ in (3.8) can be calculated as

(λ)j = (−Gp− c)i for i = (Wk)j .

If G is positive definite, then so is Ḡ by Lemma 1 in the Appendix. The linear
solution can therefore be computed efficiently if a Cholesky factorization of Ḡ
is available. As we show in the appendix, updating the Cholesky factorization
L̄L̄T = Ḡ to L̃L̃T = G̃, where a single element is added (or removed) to
the working set Wk can be reduced to a rank-1 update (down-date) of the
Cholesky factorization. Since the matrix Ḡ is positive definite, regardless
of the active set, these updates are well behaved operations, and the rank-1
update can be done inO(n2) operations. This allows us to work with a matrix
that is considerably smaller than the full KKT system while keeping the
size of the factorized matrix Ḡ independent of the working set Wk, allowing
efficient memory usage. This approach is possible in the dual because of the
simple form of the constraints; µ2 ≥ 0, but could easily be adapted for the
slightly more general form µ2 ≥ v.

A common alternative to this factorization is to instead work with a
reduced Hessian. This corresponds to working with a Hessian that is defined
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on the null-space of Ak. This means that a factorization that reveals the
null-space of Ak is needed. When working with the special form of the dual,
this approach would be similar to ours, but the size of the factorized matrix
would vary with the size of the active set.

3.2 Iterative refinement for solving a linear system or its
null-space projection

To solve the general problem where the dual is positive semi-definite, we start
by analyzing the method known as iterative refinement using some tools from
monotone operator theory. The linear system

find x : Ax = b

is equivalent to finding a point 0 = F (x) where F (x) = Ax − b. The resol-
vent JγF = (γF + I)

−1 is known to be firmly non-expansive if and only if
F is monotone [Bauschke and Combettes, 2011, Prop 23.7]. Moreover F is
monotone if and only if A is positive semi-definite [Bauschke and Combettes,
2011, Ex 20.15]. The proximal point algorithm

xk+1 = JγFxk,

or equivalently

xk+1 = arg min
x

(
1

2
xTAx− bTx+

1

2γ
‖x− xk‖2

)
,

is known to converge to a point x∗ satisfying 0 ∈ F (x∗) when F is monotone
and such a point x∗ exists [Bauschke and Combettes, 2011, Thm 23.41].
This method can be used to get high accuracy solutions to linear systems,
especially when the problem is ill-conditioned or singular.

We now show what happens when there is no solution to Ax = b. This
result proves very useful when the dual problem is semi-definite as seen in
the next section.

Theorem 1
Let F (x) = Ax − b with A symmetric positive semi-definite. Assume that
there is no x∗ such that 0 = F (x∗). The iterative refinement

xk+1 = JγFxk

will result in a sequence where

(xk+1 − xk)→ −γbN,

where bN is the projection of b onto the null-space of A.
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Proof. The resolvent JγF is firmly non-expansive for positive definite A as
explained above. For firmly non-expansive T , the algorithm xk+1 = Txk has
the property that

(xk+1 − xk)→ δx,

where δx is the unique minimum norm element in range (I − T ) [Bauschke
et al., 2004, Cor 2.3], [Bailion et al., 1978, Fact 3.2]. Letting T = JγF , we first
calculate an expression for I−T . Rewriting the proximal point algorithm and
substituting ε = 1/γ gives

xk+1 = (γF + I)
−1
xk ⇔

(γF + I)xk+1 = xk ⇔
(γA+ I)xk+1 = xk + γb ⇔

xk+1 =

(
A+

1

γ
I

)−1(
1

γ
xk + b

)
⇔

xk+1 = (A+ εI)
−1

(εxk +Axk −Axk + b) ⇔

xk+1 = (A+ εI)
−1

(b−Axk) + xk

i.e. (I −T )(x) = (A+ εI)
−1

(Ax− b). Since I −T is an affine function in Rn,
its range is closed and we set out to find the minimum norm element. Let
y ∈ range (I − T ), then for some x we have

y = (I − T )(x) = (A+ εI)
−1

(Ax− b). (3.10)

Let N(A) and R(A) denote the null and range-space of A. From symmetry of
A we have N(A)⊥ = R(AT ) = R(A) so A is bijective on R(A)→ R(A), and
thus so is (A+ εI) and its inverse. Let x = xN +xR, where xN ∈ N(A), xR ∈
R(A) and similarly for b and y. Equation (3.10) can then be split to the parts
in the range and null-space, i.e.

yN = (A+ εI)
−1

(AxN − bN)

yR = (A+ εI)
−1

(AxR − bR),

where y = yN + yR. The first equation gives

AyN + εyN = −bN =⇒ yN = −1

ε
bN.

Since A and (A + εI)−1 are bijective on R(A) → R(A), i.e any yR can be
reached from xR, the second equation gives that

range(I − T ) =

{
y = yN + yR | yN = −1

ε
bN, yR ∈ R(A)

}
.
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The minimum norm element δx is thus given by yR = 0, yN = − 1
ε bN, i.e.

δx = −1

ε
bN = −γbN. 2

3.3 Semi-definite case
In the case where

[
A C

]
has linearly dependent columns, the matrix G will

be positive-semi definite. This is a common case, if for example C encodes
both upper and lower bounds. This means that the minimization problem
(3.7)

min
µ

1

2
pTGp+ cT p

s.t. (p)i = 0 i ∈ Wk,

in the active set method could be unbounded.
The goal is then to instead find a direction p in which the cost is decreasing

towards infinity, i.e. finding p such that

pTGp = 0

(p)i = 0 i ∈ Wk

cT p < 0.

Since G is symmetric, pTGp = 0 if and only if Gp = 0, so the two first
conditions are equivalent to Ḡp = 0 where Ḡ is as described in the previous
section.

The obvious choice here is to find the direction p∗ of maximal descent,
i.e. the projection of the linear part −c onto the null-space

p∗ = argmin
p

‖p+ c‖ (3.11)

s.t. Ḡp = 0.

There are a few alternatives to solving this problem in existing solvers.
One way is to use the more expensive QR decomposition, which can reveal the
null-space of G. However, if iterative refinement is to be used, an additional
factorization of G + εI would also be needed. We now show that this is not
needed with our approach.

Consider the problem (3.11) above. If p∗ = 0, then −c ∈ R
(
Ḡ
)
and

no such descent direction exist (i.e. (3.7) attains it minimum). If p∗ 6= 0,
then since p∗ is the orthogonal projection onto the subspace N(Ḡ) from −c,
we have p∗T c = −p∗T p∗ < 0, i.e p∗ is a direction of (maximal) descent.
But finding the projection of −c onto the null-space of Ḡ is precisely what
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the iterative refinement will achieve when there is no solution to the problem
Ḡx = c as shown in Theorem 1. We therefore see that if we apply the iterative
refinement to the problem Ḡx = c, it will either converge to the solution of
the problem (3.7), or if no solution exist, the iterates will reveal the direction
of maximal descent.

Factorization for semi-definite case The method of iterative refine-
ment relies on solving the linear system(

Ḡ+ εI
)
x = c

multiple times. Instead of storing the factorization Ḡ = L̄L̄T which might not
exist when Ḡ is semi-definite, we store the Cholesky factorization

(
Ḡ+ εI

)
=

L̃L̃T instead. Just as before, this factorization is simple to update when the
working set is changed.

Detecting Solution or Maximal Descent Although the behavior of the
iterative refinement is different depending on whether the linear system has a
solution or not, we need a way of detecting it. Other approaches to solving the
problem often struggle with differentiating between if there is no solution or if
the curvature is very low. Since our approach factorizes the matrix

(
Ḡ+ εI

)
we have a lower bound on the smallest eigenvalue, and the factorization can
be ensured to be robust. In our testing, ε ∈ (10−6, 10−8) seems to be a
good trade-off between robustness of the factorization and convergence rate.
Moreover, the iterates will behave fundamentally different when there is a
solution, and when there is not. In the first case, the iterates will converge,
and in particular ‖xk+1 − xk‖ → 0. In the case where there is no solution,
the difference xk+1−xk → − 1

ε bN so both ‖xk+1 − xk‖ and ‖xk‖ will be very
large.

Convergence rate In both cases, the convergence rate of the iterative
refinement, either of xk to a point x∗ or of the sequence xk+1 − xk to −γbn,
is determined by the eigenvalues of the matrix (γḠ+ I)−1. The rate is given
by the largest eigenvalue that is not 1, i.e. 1

γλmin+1 = ε
λmin+ε , where λmin is

the smallest non-zero eigenvalue Ḡ. It is therefore important to select ε to
be small enough in relation to the eigenvalues, without compromising the
numerical accuracy of the factorization.

Alternative approach using iterative refinement For ill-conditioned
problems, in the case where Ḡx = c lack a solution, the convergence of
xk+1−xk to the projection of −c onto the null-space of G might be relatively
slow. Iterative refinement can then be used to solve the projection problem
directly by applying it to the equation Ḡx = 0. The problem obviously has
a solution, moreover non-expansiveness of (I + γḠ)−1 implies that each step
of the algorithm gets closer to all the points in the set {x | Ḡx = 0}. But this
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set is a subspace, so xk → x∗ must then be the orthogonal projection onto
Ḡx = 0 from the initial point. Letting x0 = −c, thus solves Problem 3.11.

An alternative initial point would be xk+1−xk, as obtained after a couple
of iterations of trying to solve Ḡx = c using iterative refinement. Although
this method would not exactly give the projection from −c, but instead
from xk+1 − xk, it should be a good approximation of the maximal descent
direction, and it will satisfy the zero-curvature condition Ḡx = 0.

4. Initial active set
From the simple form of the dual problem (3.4) it is trivial to find a (dual)
feasible point, e.g µ0 = 0. However, a good initial guess of the active set at
the solution can significantly reduce the number of iterations, i.e changes to
the working set, needed to find the optimal point.

One approach would be to find a minimizer (if existent) to the un-
constrained problem. This would require an additional factorization of the
quadratic term. Instead, we look at the gradient of the cost function (3.4) at
the origin, i.e. h. For each coefficient pointing out from the feasible area, we
set that constraint to being active. This gives us an initial guess of the active
set at the solution as

W0 = {i | (h)i < 0, i ∈ I} ,

which we refer to as “smartstart” in the numerical examples below.

5. Numerical Examples
We apply the proposed algorithm to two different problems in this section,
and compare it to the active set solver qpOASES [Ferreau et al., 2014]. Our
algorithm is implemented in the programming language Julia [Bezanson et
al., 2017], and is open source and available on github [Fält, 2019]. As a result
of being written in Julia, the implementation is not only fast, but allows for
a wide range of different numerical types. The main numerical results are run
using Float64 (IEEE 754) for which efficient BLAS implementations are used
for the matrix factorizations and operations, but the code supports types of
arbitrary precision. The MPC example is chosen, not primarily to illustrate a
case where we expect an active set method to excel, but to illustrate that the
algorithm is able to handle even very ill-conditioned problems. The polytope
projection algorithm on the other hand is exactly the kind of problem where
a dual active set method is very efficient. The number of primal variables
is large, but the resulting dual problem is small. Moreover, since P = I,
recovering the primal solution from the dual using Equation (3.3) is cheap.
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5.1 MPC Example
To benchmark the algorithm, we consider the problem of controlling an
AFTI-16 aircraft in the Model Predictive Control (MPC) setting, as in [Be-
mporad et al., 1997; Giselsson, 2014]. The linear and discretized model of the
system is given by

x[k + 1] = Ax[k] +Bu[k], (3.12)

where

A =

0.999 −3.008 −0.113 −1.608
0 0.986 0.048 0
0 2.083 1.009 0
0 0.053 0.050 1

 , B =

−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002


We formulate the MPC problem as minimizing

J(x, u) = ΣNk=1x[k]TQx[k] + u[k]TRu[k].

subject to lx ≤ x[k] ≤ ux, x[0] = x0 and the dynamics (3.12). Using the
equation for the dynamics, the variables x[k] can be eliminated, and the
optimization problem can be written on reduced form:

min
µ̄

ūTFū+ 2ūTGx0 + xT0 Hx0 (3.13)

s.t. lū ≤ Cū ≤ uū,

where ūT =
[
u[1]T u[2]T . . . u[N ]T

]
. For our tests, we let N = 30, Q =

R = I, lx = −ux, with uTx =
[
0.2 0.2 0.2 0.2

]
. This gives a primal

problem with F ∈ R60×60, C ∈ R120×60, where F is positive definite with
a condition number κ(F ) ≈ 108, which illustrates that the problem is very
ill-conditioned. Rewriting it again to form the dual (3.2) results in a problem
with 240 variables, and a quadratic term with rank 60.

Whereas active set methods are well suited for MPC problems, where
multiple similar problems are solved in sequence, we focus on the perfor-
mance of solving a single problem. The results of solving the problem with
our method QPDAS, compared to qpOASES [Ferreau et al., 2014], are pre-
sented in Table 1, and were run on a standard desktop PC. The results for
qpOASES were obtained using its MATLAB interface. The two results for our
algorithm are presented both with and without the “smartstart” from Section
4, and includes the time to recover the primal solution. We also present the
number of iterations of iterative refinement that was used at each iteration.
For qpOASES, the three cases (primal 1), (primal 2) and (dual), correspond
to the cases where qpOASES was given either (i) the primal problem with in-
equalities encoded as upper bounds, (ii) encoded as upper and lower bounds,
or (iii) the dual problem.
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Table 1. MPC example

Method Time Iterations Refinement
Iterations

QPDAS (primal) 167ms 258 3− 6
QPDAS (primal smartstart) 24ms 35 3− 6

qpOASES (primal 1) 12ms 90 -
qpOASES (primal 2) 9.8ms 90 -
qpOASES (dual) 5.3ms 24 -

5.2 Polytope Projection
We consider the problem of projecting a point c ∈ Rn onto a polytope de-
scribed by a set of equalities Cx ≤ d, where C ∈ Rm×n and m is much
smaller than n. This is a case where the dual problem will be much smaller
than the primal and thus very well suited for a dual-active set method. More-
over, recovering the primal solution using equation (3.3) will be very cheap,
since the quadratic term P is identity. The total cost of recovering the primal
solution from the dual therefore consists of a matrix multiplication and a vec-
tor addition. The results are presented for two cases, n = 1000,m = 50 and
n = 10000,m = 500. The inequality constraints were generated randomly so
that approximately half of the constraints were active at the optimal point.
The tests were run in the same way as for the MPC example and are pre-
sented in Table 2 and 3.

Since the dual problem is considerably smaller than the primal, the cost of
recovering the primal solution is still noticeable. The cost for solving the dual,
excluding the cost of recovering the primal is therefore presented as (dual).
This enables a fair comparison between our method and qpOASES. The
results for the primal problem with qpOASES were run with the auxiliary
input hessianType=1 to indicate that the quadratic matrix is identity, to
avoid supplying a full matrix.

6. Conclusions
We have presented an active set algorithm for solving quadratic programming
problems of the form (3.4). The method requires a single factorization to
solve both sub-problems that arise in a standard active-set approach, and is
designed to be numerically robust. Together with a simple rule for selecting
the initial working set, the algorithm is able to solve problems with a few
number of inequalities extremely efficiently.

Adding a constraint According to the discussion above, adding a con-
straint for index i corresponds to creating an identity mapping in Ḡ for the
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Table 2. Polytope Projection, n = 1000,m = 50

Method Time Iterations Refinement
Iterations

QPDAS (primal) 1.7ms 25 3− 6
QPDAS (primal smartstart) 0.86ms 2 3− 6

QPDAS (dual) 0.79ms 25 3− 6
QPDAS (dual smartstart) 0.12ms 2 3− 6

qpOASES (primal) 12s 1071 -
qpOASES (dual) 0.48ms 31 -

Table 3. Polytope Projection, n = 10000,m = 500

Method Time Iterations Refinement
Iterations

QPDAS (primal) 750ms 245 3− 7
QPDAS (smartstart) 203ms 39 3− 7

QPDAS (dual) 613ms 245 3− 7
QPDAS (dual smartstart) 92ms 39 3− 7

qpOASES (primal) 11hours 11333 -
qpOASES (dual) 270ms 242 -

corresponding index. Let Ḡk = L̄L̄T be the matrix before the update, and
Gk+1 = LLT after, we get the following relations

Ḡk=


Ḡ11 Ḡ12 Ḡ13

ḠT12 Ḡ22 Ḡ23

ḠT13 ḠT23 Ḡ33

=


L̄11 0 0
L̄21

¯̀
22 0

L̄31 L̄32 L̄33




L̄11 0 0
L̄21

¯̀
22 0

L̄31 L̄32 L̄33



T

Gk+1=


G11 0 G13

0 1 0
GT13 0 G33

=


L11 0 0
L21 `22 0
L31 L32 L33




LT11 LT21 LT31

`22 LT32

LT33



with L11 = L̄11, L21 = 0, L31 = L̄31, L32 = 0, `22 = 1 we see that

Ḡ33 = L̄31L̄
T
31 + L̄32L̄

T
32 + L̄33L̄

T
33

G33 = L̄31L̄
T
31 + L33L

T
33

and since Ḡ33 = G33 we get

L33L
T
33 = L̄33L̄

T
33 + L̄32L̄

T
32

where L̄32 is a column vector.
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This corresponds to a rank-one update of Ḡk with L̄32L̄
T
32, either directly

of L33 , or of L̄ with
[

0
L̄32

] [
0
L̄32

]T
where 0 is a column with n− i+ 1 zeros,

where i is the row and column being updated. This update requires O(n)2

operations. The corresponding update from (Ḡk+εI) = L̄L̄T to (Gk+1+εI) =
LLT follows correspondingly.

Removing a constraint Removing a constraint corresponds to reversing
the process described above. The equations are given by

Ḡk=


Ḡ11 0 Ḡ13

0 1 0
ḠT13 0 Ḡ33

=


L̄11 0 0
0 1 0
L̄31 0 L̄33




L̄11 0 0
0 1 0
L̄31 0 L̄33



T

Gk+1=


G11 G12 G13

GT12 G22 G23

GT13 GT23 G33

=


L11 0 0
L21 `22 0
L31 L32 L33




LT11 LT21 LT31

`22 LT32

LT33



T

We get L11 = L̄11, L31 = L̄31

G12 = L11L
T
21 ⇒ LT21 = L11\H12

G22 = L21L
T
21 + `22`22 ⇒ `22 =

√
H22 − L21LT21

G23 = L21L
T
31 + `22L

T
32 ⇒ LT32 =

(
H23 − L21L

T
31

)
/`22

Ḡ33 =L̄31L̄
T
31 + L̄33L̄

T
33

G33 =L̄31L̄
T
31 + L32L

T
32 + L33L

T
33

but Ḡ33 = G33 so

L33L
T
33 = L̄33L̄

T
33 − L32L

T
32,

i.e. a rank-one down-date of L̄33 with L32L
T
32. The down-date requires O(n)2

operations, the same is true for the triangular back-solve and the rest are
vector operations.

Lemma 1
If G is positive definite, then so is Ḡ, as defined in equation (3.9).

Proof. Let S = {x | (x)i = 0 ∀i ∈ Wk}, and assume that G is positive
definite. We consider two cases: If x ∈ S with x 6= 0, then 0 < xTGx = xT Ḡx.
If x 6∈ S with x 6= 0, then xT Ḡx = xT G̃x+

∑
i∈Wk

x2
i , where G̃ is the matrix

G with rows and columns i ∈ Wk set to zero. From G being positive definite,
G̃ must be positive semi-definite, i.e. xT G̃x ≥ 0. And since x 6∈ S we get∑
i∈W x2

i > 0. Thus for all x 6= 0 we get xT Ḡx > 0. 2
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Paper VI

Envelope Functions: Unifications and
Further Properties

Pontus Giselsson, Mattias Fält

Abstract

Forward-backward and Douglas-Rachford splitting are methods for
structured nonsmooth optimization. With the aim to use smooth op-
timization techniques for nonsmooth problems, the forward-backward
and Douglas-Rachford envelopes where recently proposed. Under spe-
cific problem assumptions, these envelope functions have favorable
smoothness and convexity properties and their stationary points coin-
cide with the fixed-points of the underlying algorithm operators. This
allows for solving such nonsmooth optimization problems by minimiz-
ing the corresponding smooth convex envelope function. In this paper,
we present a general envelope function that unifies and generalizes
existing ones. We provide properties of the general envelope function
that sharpen corresponding known results for the special cases. We
also present a new interpretation of the underlying methods as be-
ing majorization-minimization algorithms applied to their respective
envelope functions.

Originally published in Journal of Optimization Theory and Application by
Springer Nature. Copyright cb, 2018, The Authors
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1. Introduction
Many convex optimization problems can be reformulated into a problem
of finding a fixed-point of a nonexpansive operator. This is the basis for
many first-order optimization algorithms such as; forward-backward split-
ting [Combettes, 2004], Douglas-Rachford splitting [Douglas and Rachford,
1956; Lions and Mercier, 1979], the alternating direction method of multipli-
ers (ADMM) [Gabay and Mercier, 1976; Glowinski and Marroco, 1975; Boyd
et al., 2011] and its linearized versions [Chambolle and Pock, 2011], the three
operator splitting method [Davis and Yin, 2015], and (generalized) alternat-
ing projections [Gubin et al., 1967; Agmon, 1954; Motzkin and Shoenberg,
1954; Eremin, 1965; Bregman, 1965; Neumann, 1950].

In these methods, a fixed-point is found by performing an averaged iter-
ation of the nonexpansive mapping. This scheme guarantees global conver-
gence, but the rate of convergence can be slow. A well studied approach for
improving practical convergence – that has proven very successful in practice
– is preconditioning of the problem data; see, e.g., [Benzi, 2002; Bramble
et al., 1997; Hu and Zou, 2006; Ghadimi et al., 2015; Giselsson and Boyd,
2015; Giselsson and Boyd, 2016; Giselsson, 2017] for a limited selection of
such methods. The underlying idea is to incorporate static second-order in-
formation in the respective algorithms.

The performance of the forward-backward and the Douglas-Rachford
methods can be further improved by exploiting the properties of the recently
proposed forward-backward envelope [Patrinos et al., 2014b; Stella et al.,
2017] and Douglas-Rachford envelope [Patrinos et al., 2014a]. As shown in
[Patrinos et al., 2014b; Stella et al., 2017; Patrinos et al., 2014a], the station-
ary points of these envelope functions agree with the fixed-points of the corre-
sponding algorithm operator. Under certain assumptions, they have favorable
properties such as convexity and Lipschitz continuity of the gradient. These
properties enable for nonsmooth problems to be solved by finding a stationary
point of a smooth and convex envelope function. In [Patrinos et al., 2014b;
Stella et al., 2017], truncated Newton methods and quasi-Newton methods
are applied to the forward-backward envelope function to improve local con-
vergence. During the submission procedure of this paper, these works have
been extended to the nonconvex setting in [Themelis et al., 2016; Themelis
et al., 2017] for both forward-backward splitting and Douglas-Rachford split-
ting.

A unifying property of forward-backward and Douglas-Rachford split-
ting (for convex optimization) is that they are averaged iterations of a non-
expansive mapping. This mapping is composed of two nonexpansive map-
pings that are gradients of functions. Based on this observation, we present
a general envelope function that has the forward-backward envelope and the
Douglas-Rachford envelope as special cases. Other special cases include the
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Moreau envelope and the ADMM envelope [Pejcic and Jones, 2016], since
they are special cases of the forward-backward and Douglas-Rachford en-
velopes respectively. We also explicitly characterize the relationship between
the ADMM and Douglas-Rachford envelopes as being essentially the nega-
tives of each other.

The analyses of the envelope functions in [Patrinos et al., 2014b; Stella
et al., 2017; Patrinos et al., 2014a] require, translated to our setting, that
one of the functions that define one of the nonexpansive operators in the
composition, is twice continuously differentiable. In this paper, we analyze
the proposed general envelope function in the more restrictive setting of the
twice continuously function being quadratic, or equivalently its gradient be-
ing affine. We show that if the Hessian matrix of this function is nonsingular
the stationary points of the envelope coincide with the fixed-points of the
nonexpansive operator. We provide sharp quadratic upper and lower bounds
to the envelope function that improve corresponding results for the known
special cases in the literature. One implication of these bounds is that the
gradient of the envelope function is Lipschitz continuous with constant two.
If, in addition, the before mentioned Hessian matrix is positive semidefinite
the envelope function is convex, implying that a fixed-point to the nonex-
pansive operator can be found by minimizing a smooth and convex envelope
function.

We also provide an interpretation of the basic averaged fixed-point itera-
tion as a majorization-minimization step on the envelope function. We show
that the majorizing function is a quadratic upper bound, which is slightly
more conservative than the provided sharp quadratic upper bound. We also
note that using the sharp quadratic upper bound as majorizing function
would result in computationally more expensive algorithm iterations.

Our contributions are as follows; i) we propose a general envelope function
that has several known envelope functions as special cases, ii) we provide
properties of the general envelope that sharpen (sometimes considerably) and
generalize corresponding known results for the special cases, iii) we provide an
interpretation of the basic averaged iteration as a suboptimal majorization-
minimization step on the envelope iv) we provide new insights on the relation
between the Douglas-Rachford envelope and the ADMM envelope.

2. Preliminaries

2.1 Notation
We denote by R the set of real numbers, Rn the set of real n-dimensional
vectors, and Rm×n the set of real m × n-matrices. Further R := R ∪ {∞}
denotes the extended real line. We denote inner-products on Rn by 〈·, ·〉 and
their induced norms by ‖ · ‖. We define the scaled norm ‖x‖P :=

√
〈Px, x〉,
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where P is a positive definite operator (defined in Definition 2). We will
use the same notation for scaled semi-norms, i.e., ‖x‖P :=

√
〈Px, x〉, where

P is a positive semidefinite operator (defined in Definition 1). The identity
operator is denoted by Id. The conjugate function is denoted and defined
by f∗(y) , supx {〈y, x〉 − f(x)}. The adjoint operator to a linear operator
L : Rn → Rm is defined as the unique operator L∗ : Rm → Rn that satisfies
〈Lx, y〉 = 〈x, L∗y〉. The linear operator L : Rn → Rn is self-adjoint if L = L∗.
The notation argminx f(x) refers to any element that minimizes f . Finally,
ιC denotes the indicator function for the set C that satisfies ιC(x) = 0 if
x ∈ C and ιC(x) =∞ if x 6∈ C.

2.2 Background
In this section, we introduce some standard definitions that can be found,
e.g., in [Bauschke and Combettes, 2011; Rockafellar and Wets, 1998].

Operator Properties

Definition 1—Positive semidefinite
A linear operator L : Rn → Rn is positive semidefinite, if it is self-adjoint
and all eigenvalues λi(L) ≥ 0.

Remark 1
An equivalent characterization of a positive semidefinite operator is that
〈Lx, x〉 ≥ 0 for all x ∈ Rn.

Definition 2—Positive definite
A linear operator L : Rn → Rn is positive definite, if it is self-adjoint and if
all eigenvalues λi(L) ≥ m with m > 0.

Remark 2
An equivalent characterization of a positive definite operator L is that
〈Lx, x〉 ≥ m‖x‖2 for some m > 0 and all x ∈ Rn.

Definition 3—Lipschitz continuous
A mapping T : Rn → Rn is δ-Lipschitz continuous with δ ≥ 0 if

‖Tx− Ty‖ ≤ δ‖x− y‖

holds for all x, y ∈ Rn. If δ = 1, then T is nonexpansive and if δ ∈ [0, 1[, then
T is δ-contractive.

Definition 4—Averaged
Amapping T : Rn → Rn is α-averaged if there exists a nonexpansive mapping
S : Rn → Rn and an α ∈]0, 1] such that T = (1− α)Id + αS.
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Definition 5—Negatively averaged
A mapping T : Rn → Rn is β-negatively averaged with β ∈]0, 1] if −T is
β-averaged.

Remark 3
For notational convenience, we have included α = 1 and β = 1 in the def-
initions of (negative) averagedness, which both are equivalent to nonexpan-
siveness. For values of α ∈]0, 1[ and β ∈]0, 1[ averagedness is a stronger
property than nonexpansiveness. For more on negatively averaged operators,
see [Giselsson, 2017] where they were introduced.

If a gradient operator ∇f is α-averaged and β-negatively averaged, then
it must hold that α+ β ≥ 1. This follows immediately from Lemma 1.

Definition 6—Cocoerciveness
A mapping T : Rn → Rn is δ-cocoercive with δ > 0 if δT is 1

2 -averaged.

Remark 4
This definition implies that cocoercive mappings T can be expressed as

T = 1
2δ (Id + S), (3.1)

where S is a nonexpansive operator. Therefore, 1-cocoercivity is equivalent
to 1

2 -averagedness (which is also called firm nonexpansiveness).

Function Properties

Definition 7—Strongly convex
Let P : Rn → Rn be positive definite. A proper and closed function f :
Rn → R is σ-strongly convex w.r.t. ‖ · ‖P with σ > 0 if f − σ

2 ‖ · ‖
2
P is convex.

Remark 5
If f is differentiable, σ-strong convexity w.r.t. ‖ · ‖P can equivalently be
defined as that

σ
2 ‖x− y‖

2
P ≤ f(x)− f(y)− 〈∇f(y), x− y〉 (3.2)

holds for all x, y ∈ Rn. If P = Id, i.e., if the norm is the induced norm, we
merely say that f is σ-strongly convex. If σ = 0, the function is convex.

There are many smoothness definitions for functions in the literature.
We will use the following, which describes the existence of majorizing and
minimizing quadratic functions.

Definition 8—Smooth
Let P : Rn → Rn be positive semidefinite. A function f : Rn → R is β-smooth
w.r.t. ‖ · ‖P with β ≥ 0 if it is differentiable and

−β2 ‖x− y‖
2
P ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ β

2 ‖x− y‖
2
P (3.3)

holds for all x, y ∈ Rn.
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Connections Our main result (see Theorem 1) is that the envelope func-
tion satisfies upper and lower bounds of the form

1
2 〈M(x− y), x− y〉 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 1

2 〈L(x− y), x− y〉
(3.4)

for all x, y ∈ Rn and for different linear operators M,L : Rn → Rn. Depend-
ing on M and L, we get different properties of f and its gradient ∇f . Some
of these are stated below. The results follow immediately from Lemma 4
in Appendix D and the definitions of smoothness and strong convexity in
Definition 7 and Definition 8, respectively.

Proposition 1
Assume that L = −M = βI with β ≥ 0 in (3.4). Then, (3.4) is equivalent to
that ∇f is β-Lipschitz continuous.

Proposition 2
Assume that M = σI and L = βI with 0 ≤ σ ≤ β in (3.4). Then, (3.4) is
equivalent to that ∇f is β-Lipschitz continuous and f is σ-strongly convex.

Proposition 3
Assume that L = −M and that L is positive definite. Then, (3.4) is equivalent
to that f is 1-smooth w.r.t. ‖ · ‖L.

Proposition 4
Assume that M and L are positive definite. Then, (3.4) is equivalent to that
f is 1-smooth w.r.t. ‖ · ‖L and 1-strongly convex w.r.t. ‖ · ‖M .

3. Envelope Function
In [Patrinos et al., 2014b; Patrinos et al., 2014a], the forward-backward and
Douglas-Rachford envelope functions are proposed. Under certain problem
data assumptions, these envelope functions have favorable properties; they
are convex, they have Lipschitz continuous gradients, and their minimizers
are fixed-points of the nonexpansive operator S that defines the respective
algorithms. In this section, we will present a general envelope function that
has the forward-backward and Douglas-Rachford envelopes as special cases.
We will also provide properties of the general envelope that are sharper than
what is known for the special cases.

We assume that the nonexpansive operator S that defines the algorithm
is a composition of S1 and S2, i.e., S = S2S1, where S1 and S2 satisfy the
following basic assumptions (that sometimes will be sharpened or relaxed).

Assumption 1
Suppose that:
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(i) S1 : Rn → Rn and S2 : Rn → Rn are nonexpansive.

(ii) S1 = ∇f1 and S2 = ∇f2 for some differentiable functions f1 : Rn → R
and f2 : Rn → R.

(iii) f1 : Rn → R is twice continuously differentiable.

These assumptions are met for our algorithms of interest, see Section 4 for
details. In this general framework, we propose the following envelope func-
tion:

F (x) := 〈∇f1(x), x〉 − f1(x)− f2(∇f1(x)), (3.5)

which has gradient

∇F (x) = ∇2f1(x)x+∇f1(x)−∇f1(x)−∇2f1(x)∇f2(∇f1(x))

= ∇2f1(x)(x−∇f2(∇f1(x)))

= ∇2f1(x)(x− S2S1x). (3.6)

If the Hessian ∇2f1(x) is nonsingular for all x, then the set of stationary
points of the envelope coincides with the fixed-points of S2S1.

Proposition 5
Suppose that Assumption 1 holds and that ∇2f(x) is nonsingular for all
x ∈ Rn. Let

X? := {x ∈ Rn : ∇F (x) = 0}, fix(S2S1) = {x ∈ Rn : S2S1x = x}.

Then, X? = fix(S2S1).

Proof. The statement follows trivially from (3.6). 2

In Section 4, we show that the forward-backward and Douglas-Rachford en-
velopes are special cases of (3.5). In this section, we will provide properties
of the general envelope under the following restriction to Assumption 1.

Assumption 2
Suppose that Assumption 1 holds and that, in addition, S1 : Rn → Rn is
affine, i.e., S1x = Px+ q and f1(x) = 1

2 〈Px, x〉+ 〈q, x〉, where P ∈ Rn×n is
a a self-adjoint nonexpansive linear operator and q ∈ Rn.

Remark 6
That P a self-adjoint nonexpansive linear operator means that it is symmetric
with eigenvalues in the interval [−1, 1].
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When S1 = ∇f1 = P (·) + q is affine, the first two terms in the envelope
function definition in (3.5) satisfy

〈∇f1(x), x〉 − f1(x) = 〈Px+ q, x〉 − ( 1
2 〈Px, x〉+ 〈q, x〉) = 1

2 〈Px, x〉.

Therefore, the general envelope function in (3.5) reduces to

F (x) = 1
2 〈Px, x〉 − f2(∇f1(x)) (3.7)

and its gradient (3.6) becomes

∇F (x) = P (x− S2S1x). (3.8)

The remainder of this section is devoted to providing smoothness and con-
vexity properties of the envelope function under Assumption 2.

3.1 Basic Properties of the Envelope Function
The following two results are special cases and direct corollaries of a more
general result in Theorem 1, to be presented later. Proofs are therefore omit-
ted.

Proposition 6
Suppose that Assumption 2 holds. Then, the gradient of F is 2-Lipschitz
continuous. That is, ∇F satisfies

‖∇F (x)−∇F (y)‖ ≤ 2‖x− y‖

for all x, y ∈ Rn.

Proposition 7
Suppose that Assumption 2 holds and that P , that defines the linear part of
S1, is positive semidefinite. Then, F is convex.

If P is positive semidefinite, then the envelope function F is convex and
differentiable with a Lipschitz continuous gradient. This implies, e.g., that
all stationary points are minimizers. If P is positive definite we know from
Proposition 5 that the set of stationary points coincides with the fixed-point
set of S = S2S1. Therefore, a fixed-point to S2S1 can be found by minimizing
the smooth convex envelope function F .

3.2 Finer Properties of the Envelope Function
In this section, we establish sharp upper and lower bounds for the envelope
function (3.7). These results use stronger assumptions on S2 than nonexpan-
siveness, namely that S2 is α-averaged and β-negatively averaged:
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Assumption 3
The operator S2 is α-averaged and β-negatively averaged with α ∈]0, 1] and
β ∈]0, 1].

Before we proceed, we state a result on how averaged and negatively averaged
gradient operators can equivalently be characterized. The result is proven in
Appendix A.

Lemma 1
Assume that f is differentiable. Then, ∇f is α-averaged with α ∈]0, 1] and
β-negatively averaged with β ∈]0, 1] if and only if

− 2α−1
2 ‖x− y‖

2 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 2β−1
2 ‖x− y‖

2 (3.9)

holds for all x, y ∈ Rn, which holds if and only if

−(2α− 1)‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ (2β − 1)‖x− y‖2 (3.10)

holds for all x, y ∈ Rn.

These properties relate to smoothness and strong convexity properties of f .
More precisely, they imply that f is max((2α − 1), (2β − 1))-smooth and, if
α > 1

2 , (2α− 1)-strongly convex. With this interpretation in mind, we state
the main theorem.
Theorem 1
Suppose that Assumption 2 and Assumption 3 hold. Further, let δα = 2α−1
and δβ = 2β − 1. Then, the envelope function F in (3.7) satisfies

F (x)− F (y)− 〈∇F (y), x− y〉 ≥ 1
2 〈(P − δβP

2)(x− y), x− y〉

and

F (x)− F (y)− 〈∇F (y), x− y〉 ≤ 1
2 〈(P + δαP

2)(x− y), x− y〉

for all x, y ∈ Rn. Furthermore, the bounds are tight.

A proof of this result is found in Appendix B.
Utilizing connections established in Section 2.2, we next derive different

properties of the envelope function. Especially, we provide conditions under
which the envelope function is convex and strongly convex.

Corollary 1
Suppose that the assumptions of Theorem 1 hold and that P is positive
semidefinite. Then,

1
2‖x− y‖

2
P−δβP 2 ≤ F (x)− F (y)− 〈∇F (y), x− y〉 ≤ 1

2‖x− y‖
2
P+δαP 2

and F is convex and 1-smooth w.r.t. ‖ · ‖P+δαP 2 . If in addition P is positive
definite and either of the following holds:
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(i) P is contractive,

(ii) β ∈]0, 1[, i.e., δβ ∈]− 1, 1[,

then F is 1-strongly convex w.r.t. ‖·‖P−δβP 2 and 1-smooth w.r.t. ‖·‖P+δαP 2 .

Proof. The results follow from Theorem 1, the definition of (strong) con-
vexity, and by utilizing Lemma 5 in Appendix D to show that the smallest
eigenvalue of P − δβP 2 is nonnegative and positive respectively. 2

Less sharp, but unscaled, versions of these bounds can easily be obtained
from Theorem 1.

Corollary 2
Suppose that the assumptions of Theorem 1 hold. Then,

βl
2 ‖x− y‖

2 ≤ F (x)− F (y)− 〈∇F (y), x− y〉 ≤ βu
2 ‖x− y‖

2,

where βl = λmin(P − δβP 2) and βu = λmax(P + δαP
2).

Values of βl and βu for different assumptions on P , δα and δβ can be obtained
from Lemma 5 in Appendix D.

The results in Theorem 1 and its corollaries are stated for α-averaged and
β-negatively averaged operators S2 = ∇f2. Using Lemma 1 and Lemma 4,
we conclude that δ-contractive operators are α-averaged and β-negatively
averaged with α and β satisfying δ = δα = δβ . This gives the following
result.

Proposition 8
Suppose that Assumption 2 holds and that S2 is δ-Lipschitz continuous with
δ ∈ [0, 1]. Then, all results in this section hold with δβ and δα replaced by δ.

If instead S2 = ∇f2 is 1
δ -cocoercive, it can be shown (see [Bauschke and

Combettes, 2011, Definition 4.4] and [Nesterov, 2003, Theorem 2.1.5]) that

0 ≤ f2(x)− f2(y)− 〈∇f2(y), x− y〉 ≤ δ
2‖x− y‖

2.

In view of Lemma 1, we can state the following result.

Proposition 9
Suppose that Assumption 2 holds and that S2 is 1

δ -cocoercive with δ ∈]0, 1].
Then, all results in this section hold with δβ = δ and δα = 0.
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3.3 Majorization-Minimization Interpretation of Averaged
Iteration

As noted in [Patrinos et al., 2014b; Patrinos et al., 2014a], the forward-
backward and Douglas-Rachford splitting methods are variable metric gra-
dient methods applied to their respective envelope functions. In our setting,
with S1 being affine, they reduce to being fixed-metric scaled gradient meth-
ods. In this section, we provide a different interpretation. We show that a step
in the basic iteration is obtained by performing majorization minimization
on the envelope. The majorizing function is a closely related to the upper
bound provided in Corollary 1.

The interpretation is valid under the assumption that P is positive def-
inite, besides being nonexpansive. This implies that the envelope is convex,
see Corollary 1. It is straightforward to verify that P + δαP

2 � (1 + δα)P .
Therefore, we can construct the following more conservative upper bound to
the envelope, compared to Corollary 1:

F (x) ≤ F (y) + 〈∇F (y), x− y〉+ 1+δα
2 ‖x− y‖

2
P . (3.11)

Minimizing this majorizer, evaluated at y = xk, in every iteration k gives

xk+1 = argmin
x
{F (xk) + 〈∇F (xk), x− xk〉+ 1+δα

2 ‖x− x
k‖2P }

= xk − 1
1+δα

P−1∇F (xk)

= xk − 1
1+δα

P−1P (S2S1x
k − xk)

= xk − 1
1+δα

(S2S1x
k − xk)

= (1− 1
1+δα

)xk + 1
1+δα

S2S1x
k,

which is the basic method with 1
1+δα

-averaging. It is well known that the
gradient method converges with step-length α ∈]0, 2

L [, where L is a Lipschitz
constant. In this case, the upper bound (3.11) guarantees a Lipschitz constant
to ∇F of L = 1+ δα in the ‖ · ‖P -norm, see Lemma 4. Selecting a step-length
within the allowed range yields an averaged iteration with 1

1+δα
replaced by

α ∈]0, 2
1+δα

[.
The upper bound (3.11) used to arrive at the averaged iteration is not

sharp. Using instead the sharp majorizer from Corollary 1, yields the follow-
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ing algorithm:

xk+1 = argmin
x
{F (xk) + 〈∇F (xk), x− xk〉+ 1

2‖x− x
k‖2P+δαP 2}

= xk − (Id + δαP )−1P−1∇F (xk)

= xk − (Id + δαP )−1P−1P (S2S1x
k − xk)

= xk − (Id + δαP )−1(S2S1x
k − xk)

= (Id− (Id + δαP )−1)xk + (Id + δαP )−1S2S1x
k.

This differs from the basic averaged iteration in that (1 + δα)−1Id in the
basic method is replaced by (Id+δαP )−1. The drawback of using this tighter
majorizer is that the iterations become more expensive.

None of these methods is probably the most efficient way to find a sta-
tionary point of the envelope function (or equivalently a fixed-point to S2S1).
At least in the convex setting (for the envelope), there are numerous alterna-
tive methods that can minimize smooth functions such as truncated Newton
methods, quasi-Newton methods, and nonlinear conjugate gradient methods.
See [Nocedal and Wright, 2006] for an overview of such methods and [Patri-
nos et al., 2014b; Stella et al., 2017] for some of these methods applied to the
forward-backward envelope. Evaluating which ones that are most efficient
and devising new methods to improve performance is outside the scope of
this paper.

4. Special Cases
In this section, we show that our envelope in (3.5) has four known special
cases, namely the Moreau envelope [Moreau, 1965], the forward-backward
envelope [Patrinos et al., 2014b; Stella et al., 2017], the Douglas-Rachford
envelope [Patrinos et al., 2014a], and the ADMM envelope [Pejcic and Jones,
2016] (which is a special case of the Douglas-Rachford envelope).

We also show that our envelope bounds for S1 = ∇f1 being affine, coincide
with or sharpen corresponding results in the literature for the special cases.

4.1 Algorithm Building Blocks
Before we present the special cases, we introduce some functions, whose gra-
dients are operators that are used in the respective underlying methods. Most
importantly, we will introduce a function whose gradient is the proximal op-
erator:

proxγf (z) := argmin
x
{f(x) + 1

2γ ‖x− z‖
2},

where γ > 0 is a parameter.
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Proposition 10
Suppose that f : Rn → R∪{∞} is proper, closed, and convex and that γ > 0.
The proximal operator proxγf then satisfies

proxγf = ∇r∗γf ,

where r∗γf is the conjugate of

rγf (x) := γf(x) + 1
2‖x‖

2. (3.12)

The reflected proximal operator

Rγf := 2proxγf − Id (3.13)

satisfies Rγf = ∇pγf , where

pγf := 2r∗γf − 1
2‖ · ‖

2. (3.14)

This proximal map interpretation is from [Rockafellar, 1970, Theorem 31.5,
Theorem 16.4] and implies that the proximal operator is the gradient of
a convex function. The reflected proximal operator interpretation follows
trivially from the prox interpretation.

The other algorithm building block that is used in the considered algo-
rithms is the gradient step. The gradient step operator is the gradient of the
function 1

2‖x‖
2 − γf(x), i.e.,:

(x− γ∇f(x)) = ∇
(

1
2‖x‖

2 − γf(x)
)
.

4.2 The Proximal Point Algorithm
The proximal point algorithm solves problems of the form

minimize f(x),

where f : Rn → R ∪ {∞} is proper, closed, and convex.
The algorithm repeatedly applies the proximal operator of f and is given

by

xk+1 = proxγf (xk), (3.15)

where γ > 0 is a parameter. This algorithm is mostly of conceptual interest
since it is often as computationally demanding to evaluate the prox as to
minimize the function f itself.

Its envelope function, which is called the Moreau envelope [Moreau, 1965],
is a scaled version of the envelope F in (3.7). The scaling factor is γ−1 and
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the Moreau envelope fγ is obtained by letting S1x = ∇f1(x) = x, i.e., P = Id
and q = 0, and f2 = r∗γf in (3.7), where rγf is defined in (3.12):

fγ(x) = γ−1F (x) = γ−1
(

1
2‖x‖

2 − r∗γf (x)
)
. (3.16)

Its gradient satisfies

∇fγ(x) = γ−1
(
x− proxγf (x)

)
.

The following properties of the Moreau envelope follow directly from Corol-
lary 2 and Proposition 9 since the proximal operator is 1-cocoercive (see
Remark 4 and [Bauschke and Combettes, 2011, Proposition 12.27]).

Proposition 11
The Moreau envelope fγ in (3.16) is differentiable and convex and ∇fγ is
γ−1-Lipschitz continuous.

This coincides with previously known properties of the Moreau envelope, see
[Bauschke and Combettes, 2011, Chapter 12].

4.3 Forward-Backward Splitting
Forward-backward splitting solves problems of the form

minimize f(x) + g(x), (3.17)

where f : Rn → R is convex with an L-Lipschitz (or equivalently 1
L -

cocoercive) gradient, and g : Rn → R ∪ {∞} is proper, closed, and convex.
The algorithm performs a forward step followed by a backward step, and

is given by

xk+1 = proxγg(Id− γ∇f)xk, (3.18)

where γ ∈]0, 2
L [ is a parameter.

The envelope function, which is called the forward-backward envelope
[Patrinos et al., 2014b; Stella et al., 2017], is a scaled version of the envelope
F in (3.5) and applies when f is twice continuously differentiable. The scaling
factor is γ−1 and the forward-backward envelope is obtained by letting f1 =
1
2‖·‖

2−γf and f2 = r∗γg in (3.5), where rγg is defined in (3.12). The resulting
forward-backward envelope function is

FFB
γ (x) = γ−1

(
〈x− γ∇f(x), x〉 − ( 1

2‖x‖
2 − γf(x))− r∗γg(x− γ∇f(x))

)
.

The gradient of this function is

∇FFB
γ (x) = γ−1

(
(Id− γ∇2f(x))x+ (x− γ∇f(x))− (x− γ∇f(x))

− (Id− γ∇2f(x))proxγg(x− γ∇f(x))
)

= γ−1(Id− γ∇2f(x))
(
x− proxγg(x− γ∇f(x))

)
,
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which coincides with the gradient in [Patrinos et al., 2014b; Stella et al.,
2017]. As described in [Patrinos et al., 2014b; Stella et al., 2017], the sta-
tionary points of the envelope coincide with the fixed-points of the mapping
proxγg(x− γ∇f(x)) if (Id− γ∇2f(x)) is nonsingular.

S1 Affine We provide properties of the forward-backward envelope in the
more restrictive setting of S1 = ∇f1 = (Id− γ∇f) being affine. This applies
when f is a convex quadratic, f(x) = 1

2 〈Hx, x〉 + 〈h, x〉 with H ∈ Rn×n
positive semidefinite and h ∈ Rn. Then, S1x = Px + q with P = (Id − γH)
and q = −γh.

In this setting, the following result follows immediately from Corollary 1
and Proposition 9 (where Proposition 9 is invoked since S2 = proxγg is
1-cocoercive, see Remark 4 and [Bauschke and Combettes, 2011, Proposi-
tion 12.27]).

Proposition 12
Assume that f(x) = 1

2 〈Hx, x〉 + 〈h, x〉 and γ ∈]0, 1
L [, where L = λmax(H).

Then, the forward-backward envelope FFB
γ satisfies

1
2γ ‖x− y‖

2
P−P 2 ≤ FFB

γ (x)− FFB
γ (y)− 〈∇FFB

γ (y), x− y〉 ≤ 1
2γ ‖x− y‖

2
P

for all x, y ∈ Rn, where P = (Id − γH) is positive definite. If in addition
λmin(H) = m > 0, then P − P 2 is positive definite and FFB

γ is γ−1-strongly
convex w.r.t. ‖ · ‖P−P 2 .

Less tight bounds for the forward-backward envelope are provided next.
These follow immediately from the above and Lemma 5.

Proposition 13
Assume that f(x) = 1

2 〈Hx, x〉 + 〈h, x〉, that γ ∈]0, 1
L [ where L = λmax(H),

and that m = λmin(H) ≥ 0. Then, the forward-backward envelope FFB
γ is

γ−1(1−γm)-smooth and min ((1− γm)m, (1− γL)L)-strongly convex (both
w.r.t. to the induced norm ‖ · ‖).

This result is a less tight version of Proposition 12, but is a slight improvement
of the corresponding result in [Patrinos et al., 2014b, Theorem 2.3]. The
strong convexity moduli are the same, but our smoothness constant is a
factor two smaller.

4.4 Douglas-Rachford Splitting
Douglas-Rachford splitting solves problems of the form

minimize f(x) + g(x), (3.19)

where f : Rn → R ∪ {∞} and g : Rn → R ∪ {∞} are proper, closed, and
convex functions.
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The algorithm performs two reflection steps (3.13), then an averaging:

zk+1 = (1− α)zk + αRγgRγfz
k, (3.20)

where γ > 0 and α ∈]0, 1[ are parameters. The objective is to find a fixed-
point z̄ to RγgRγf , from which a solution to (3.19) can be computed as
proxγf (z̄), see [Bauschke and Combettes, 2011, Proposition 25.1].

The envelope function in [Patrinos et al., 2014a], which is called the
Douglas-Rachford envelope, is a scaled version of the basic envelope func-
tion F in (3.5) and applies when f is twice continuously differentiable and
∇f is Lipschitz continuous. The scaling factor is (2γ)−1 and the Douglas-
Rachford envelope is obtained by, in (3.5), letting f1 = pγf with gradient
∇f1 = S1 = Rγf and f2 = pγg, where pγg is defined in (3.14). The Douglas-
Rachford envelope function becomes

FDR
γ (z) = (2γ)−1 (〈Rγf (z), z〉 − pγf (z)− pγg(Rγfz)) . (3.21)

The gradient of this function is

∇FDR
γ (z) = (2γ)−1

(
∇Rγf (z)z +Rγf −Rγf −∇Rγf (z)Rγg(Rγf (z))

)
= (2γ)−1∇Rγf (z)(z −RγgRγf (z)),

which coincides with the gradient in [Patrinos et al., 2014a] since ∇Rγf =
2∇proxγf − Id and

z −RγgRγfz = z − 2proxγg(2proxγf (z)− z) + 2proxγf (z)− z
= 2(proxγf (z)− proxγg(2proxγf (z)− z)).

As described in [Patrinos et al., 2014a], the stationary points of the envelope
coincide with the fixed-points of RγgRγf if ∇Rγf is nonsingular.

S1 Affine We state properties of the Douglas-Rachford envelope in the
more restrictive setting of S1 = Rγf being affine. This is obtained for convex
quadratic f :

f(x) = 1
2 〈Hx, x〉+ 〈h, x〉,

where H is positive semidefinite. The operator S1 becomes

S1(z) = Rγf (z) = 2(Id + γH)−1(z − γh)− z,

which confirms that it is affine. We implicitly define P and q through the
relation S1 = Rγf = P (·)+q, and note that they are given by the expressions
P = 2(Id + γH)−1 − Id and q = −2γ(Id + γH)−1h respectively.

In this setting, the following result follows immediately from Corollary 1
since S2 = Rγg is nonexpansive (1-averaged and 1-negatively averaged).
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Proposition 14
Assume that f(x) = 1

2 〈Hx, x〉 + 〈h, x〉 and γ ∈]0, 1
L [, where L = λmax(H).

Then, the Douglas-Rachford envelope FDR
γ satisfies

1
4γ ‖z − y‖

2
P−P 2 ≤ FDR

γ (z)− FDR
γ (z)− 〈∇FDR

γ (y), z − y〉 ≤ 1
4γ ‖z − y‖

2
P+P 2

for all y, z ∈ Rn, where P = 2(Id + γH)−1 − Id is positive definite. If in
addition λmin(H) = m > 0, then P − P 2 is positive definite and FDR

γ is
(2γ)−1-strongly convex w.r.t. ‖ · ‖P−P 2 .

The following less tight characterization of the Douglas-Rachford envelope
follows from the above and Lemma 5.
Proposition 15
Assume that f(x) = 1

2 〈Hx, x〉 + 〈h, x〉, that γ ∈]0, 1
L [, where L = λmax(H),

and that m = λmin(H) ≥ 0. Then, the Douglas-Rachford envelope FDR
γ is

1−γm
(1+γm)2 γ

−1-smooth and min
(

(1−γm)m
(1+γm)2 ,

(1−γL)L
(1+γL)2

)
-strongly convex.

This result is more conservative than the one in Proposition 14, but im-
proves on [Patrinos et al., 2014a, Theorem 2]. The strong convexity modulus
coincides with the corresponding one in [Patrinos et al., 2014a, Theorem 2].
The smoothness constant is 1

1+γm times that in [Patrinos et al., 2014a, The-
orem 2], i.e., it is slightly smaller.

4.5 ADMM
The alternating direction method of multipliers (ADMM) solves problems of
the form (3.19). It is well known [Gabay, 1983] that ADMM can be inter-
preted as Douglas-Rachford applied to the dual of (3.19), namely to

minimize f∗(µ) + g∗(−µ). (3.22)

So the algorithm is given by

vk+1 = (1− α)vk + αRρ(g∗◦−Id)Rρfv
k, (3.23)

where ρ > 0 is a parameter, Rρf is the reflected proximal operator (3.13),
and (g∗ ◦ −Id) is the composition that satisfies (g∗ ◦ −Id)(µ) = g∗(−µ).

In accordance with the Douglas-Rachford envelope (3.21), the ADMM
envelope is

FADMM
ρ (v) = (2ρ)−1

(
〈Rρf∗(v), v〉 − p2

ρf∗(v)− p2
ρ(g∗◦−Id)(Rρf∗v)

)
(3.24)

and its gradient becomes

∇FADMM
ρ (v) = (2ρ)−1∇Rρf∗(v)(v −Rρ(g∗◦−Id)Rρf∗(v)).
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This envelope function has been utilized in [Pejcic and Jones, 2016] to
accelerate performance of ADMM. In this section, we will augment the anal-
ysis in [Pejcic and Jones, 2016] by relating the ADMM algorithm and its
envelope function to the Douglas-Rachford counterparts. To do so, we need
the following result which is proven in Appendix C.

Lemma 2
Let g : Rn → R ∪ {∞} be proper, closed, and convex and let ρ > 0. Then,

Rρg∗(x) = −ρRρ−1g(ρ
−1x),

Rρ(g∗◦−Id)(x) = ρRρ−1g(−ρ−1x),

pρ(g∗◦−Id)(y) = −ρ2pρ−1g(−ρ−1y),

where Rρg is defined in (3.13) and pρg is defined in (3.14).

Before we state the result, we show that the zk sequence in (primal)
Douglas-Rachford (3.20) and the vk sequence in ADMM (i.e., dual Douglas-
Rachford) in (3.23) differ by a factor only. This is well known [Eckstein, 1989],
but the relation is stated next with a simple proof.

Proposition 16
Assume that ρ > 0 and γ > 0 satisfy ρ−1 = γ, and that z0 = ρ−1v0. Then
zk = ρ−1vk for all k ≥ 1, where {zk} is the primal Douglas-Rachford sequence
defined in (3.20) and the {vk} is the ADMM sequence is defined in (3.23).

Proof. Lemma 2 implies that

vk+1 = (1− α)vk + αRρ(g∗◦−Id)Rρf∗v
k

= (1− α)vk + αρRρ−1g(−ρ−1(−ρRρ−1f (ρ−1vk)))

= (1− α)vk + αρRρ−1g(Rρ−1f (ρ−1vk))).

Multiply by ρ−1, let zk = ρ−1vk, and identify γ = ρ−1 to get

zk+1 = (1− α)zk + αRγg(Rγf (zk))).

This concludes the proof. 2

There is also a tight relationship between the ADMM and Douglas-
Rachford envelopes. Essentially, they have opposite signs.

Proposition 17
Assume that ρ > 0 and γ > 0 satisfy ρ = γ−1 and that z = ρ−1v = γv.
Then,

FADMM
ρ (v) = −FDR

γ (z).
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Proof. Using Lemma 2 several times, γ = ρ−1, and z = ρ−1v, we conclude
that

FADMM
ρ (v) = (2ρ)−1

(
〈Rρf∗(v), v〉 − pρf∗(v)− pρ(g∗◦−Id)(Rρf∗(v))

)
= (2ρ)−1

(
− ρ〈Rρ−1f (ρ−1v), v〉+ ρ2pρ−1(f◦−Id)(−ρ−1v)

+ ρ2pρ−1g(−ρ−1(−ρRρ−1f (ρ−1v)))
)

= −ρ2
(
〈Rρ−1f (ρ−1v), ρ−1v〉 − pρ−1f (ρ−1v) + pρ−1g(Rρ−1f (ρ−1v))

)
= −(2γ)−1 (〈Rγf (z), z〉 − pγf (z) + pγg(Rγf (z)))

= −FDR
γ (z).

This concludes the proof. 2

This result implies that the ADMM envelope is concave when the DR en-
velope is convex, and vice versa. We know from Section 4.4 that the operator
S1 = Rρf∗ is affine when the conjugate f∗ is quadratic. This holds true if

f(x) =

{
1
2 〈Hx, x〉+ 〈h, x〉, if Ax = b,

∞, else,

and H is positive definite on the nullspace of A. From Proposition 14 and
Proposition 15, we conclude that, for an appropriate choice of ρ, the ADMM
envelope is convex, which implies that the Douglas-Rachford envelope is con-
cave.

Remark 7
The standard ADMM formulation is applied to solve problems of the form

minimize f̂(x) + ĝ(z)
subject to Ax+Bz = c.

Using infimal post-compositions, also called image functions, the dual of this
is on the form (3.22), see, e.g., [Giselsson et al., 2016a, Appendix B], which
is a longer version of [Giselsson et al., 2016b], for details. Therefore also this
setting is implicitly considered.

5. Conclusions
We have presented an envelope function that unifies the Moreau envelope, the
forward-backward envelope, the Douglas-Rachford envelope, and the ADMM
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envelope. We have provided quadratic upper and lower bounds for the enve-
lope that coincide with or improve on corresponding results in the literature
for the special cases. We have also provided a novel interpretation of the un-
derlying algorithms as being majorization-minimization algorithms applied
to their respective envelopes. Finally, we have shown how the ADMM and
DR envelopes relate to each other.

Appendices

A. Proof of Lemma 1
The operator ∇f is α-averaged if and only if ∇f = (1 − α)Id + αR for
some nonexpansive operator R. Therefore, ∇f is α-averaged if and only if
∇f− (1−α)Id is α-Lipschitz continuous, since ∇f− (1−α)Id = αR. Letting
g := f − 1−α

2 ‖ · ‖
2, we get ∇g = αR. Therefore ∇g is α-Lipschitz. According

to Lemma 4 this is equivalent to that

|g(x)− g(y)− 〈∇g(y), x− y〉| ≤ α
2 ‖x− y‖

2

or equivalently

|f(x)− f(y)− 〈∇f(y), x− y〉 − 1−α
2 ‖x− y‖

2| ≤ α
2 ‖x− y‖

2,

which is equivalent to

− 2α−1
2 ‖x− y‖

2 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 1
2‖x− y‖

2. (3.25)

The β-negative averagedness is defined as that−∇f is β-averaged. Similar
arguments as the above give that ∇f is β-negatively averaged if and only if

− 1
2‖x− y‖

2 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 2β−1
2 ‖x− y‖

2. (3.26)

Now, the upper bound in (3.25) and the lower bound in (3.26) are redundant
and we arrive at

− 2α−1
2 ‖x− y‖

2 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 2β−1
2 ‖x− y‖

2

to prove the first equivalence. The second equivalence follows from Lemma 3.

B. Proof to Theorem 1
First, we establish that

−δα‖x− y‖2P 2 ≤ 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉 ≤ δβ‖x− y‖2P 2 .
(3.27)
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We have

〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉
= 〈∇f2(Px+ q)−∇f2(Py + q), P (x− y)〉
= 〈∇f2(Px+ q)−∇f2(Py + q), (Px+ q)− (Py + q))〉.

This implies that

−(2α− 1)‖x− y‖2P 2 = −(2α− 1)‖(Px+ q)− (Py − q)‖2

≤ 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉
≤ (2β − 1)‖(Px+ q)− (Py − q)‖2

= (2β − 1)‖x− y‖2P 2 ,

where Lemma 1 is used in the inequalities. Recalling that δα = 2α − 1 and
δβ = 2β−1, this shows that (3.27) holds. In addition, for any δ ∈ R, we have

〈∇F (x)−∇F (y), x− y〉 = 〈P (x−∇f2∇f1(x))− P (x−∇f2∇f1(y)), x− y〉
= 〈P (x− y), x− y〉
− 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉

= 〈(P − δP 2)(x− y), x− y〉+ δ‖x− y‖2P 2

− 〈P∇f2(Px+ q)− P∇f2(Py + q), x− y〉.
(3.28)

Let δ = −δα, then (3.28) and (3.27) imply

〈∇F (x)−∇F (y), x− y〉 ≤ 〈(P + δαP
2)(x− y), x− y〉.

Let δ = δβ , then (3.28) and (3.27) imply

〈∇F (x)−∇F (y), x− y〉 ≥ 〈(P − δβP 2)(x− y), x− y〉.

Applying Lemma 3 in Appendix D gives the result.
Next, we show that the bounds are sharp. The obtained inequality implies

through Lemma 3 and Lemma 4 that ∇F is Lipschitz continuous. Hence, by
Rademacher’s Theorem, it is differentiable almost everywhere, i.e., ∂2F is
unique almost everywhere. Using [Clarke, 1983, Proposition 2.6.2d], we can
conclude from the upper and lower bounds bounds, Lemma 3, and Lemma 4
that P − δβP

2 � ∂2F (x) � P + δαP
2. Now, let us select a point where

∂2F (x) = {∇2F (x)}. The Hessian satisfies

∇2F (x) = ∇(Px− P∇f2(Px+ q)) = P − P 2∇2f2(Px+ q).

Now, select a function f2 with β-negatively averaged gradient ∇f2 such that
its Hessian at Px+q satisfies∇2f2(Px+q) = −δβId (e.g., by letting∇f2(x) =
−δβx, which is β-negatively averaged). Then, ∇2F (x) = P + δβP

2, which
shows that the lower bound is tight. Similar arguments show that the upper
bound can be attained.
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C. Proof of Lemma 2
Using the Moreau decomposition [Bauschke and Combettes, 2011, Theo-
rem 14.3]

proxρg∗(x) = x− ρproxρ−1g(ρ
−1x),

we conclude that

Rρg∗(x) = 2proxρg∗(x)− x
= 2(x− ρproxρ−1g(ρ

−1x))− x
= −ρ

(
2(proxρ−1g(ρ

−1x))− (ρ−1x)
)

= −ρRρ−1g(ρ
−1x)

and

Rρ(g∗◦−Id)(x) = 2proxρ(g∗◦−Id)(x)− x
= −2proxρg∗(−x)− x
= −2(−x− ρproxρ−1g(−ρ−1x))− x
= 2ρproxρ−1g(−ρ−1x)) + x

= ρ(2proxρ−1g(−ρ−1x)− (−ρ−1x))

= ρRρ−1g(−ρ−1x).

To show the third claim, we first derive an expression for r∗ρ(g∗◦−Id). We have

r∗ρ(g∗◦−Id)(y) = (ρ(g∗ ◦ −Id) + 1
2‖ · ‖

2)∗(y)

= sup
z
{〈y, z〉 − ρ sup

x
{〈z, x〉 − g(−x)} − 1

2‖z‖
2}

= sup
z
{〈y, z〉+ ρ inf

x
{〈z,−x〉+ g(−x)} − 1

2‖z‖
2}

= sup
z
{〈y, z〉+ ρ inf

v
{〈z, v〉+ g(v)} − 1

2‖z‖
2}

= sup
z

inf
v
{〈y, z〉+ ρ〈z, v〉+ ρg(v)− 1

2‖z‖
2}

= inf
v

sup
z
{〈y + ρv, z〉+ ρg(v)− 1

2‖z‖
2}

= inf
v
{ 1

2‖y + ρv‖2 + ρg(v)}

= inf
v
{〈y, ρv〉+ 1

2‖ρv‖
2 + ρg(v)}+ 1

2‖y‖
2

= − sup
v
{〈−y, ρv〉 − 1

2‖ρv‖
2 − ρg(v)}+ 1

2‖y‖
2

= −ρ2 sup
v
{〈−ρ−1y, v〉 − 1

2‖v‖
2 − ρ−1g(v)}+ 1

2‖y‖
2

= −ρ2r∗ρ−1g(−ρ
−1y) + 1

2‖y‖
2,
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where the sup-inf swap is valid by the minimax theorem in [Sion, 1958], since
we can construct a compact set for the z variable due to strong convexity of
‖ · ‖2. This implies that

pρ(g∗◦−Id)(y) = 2r∗ρ(g∗◦−Id)(y)− 1
2‖y‖

2

= −2ρ2r∗ρ−1g(−ρ
−1y) + 1

2‖y‖
2

= −ρ2(2r∗ρ−1g(−ρ
−1y)− 1

2‖ − ρ
−1y‖2)

= −ρ2pρ−1g(−ρ−1y).

This concludes the proof.

D. Technical Lemmas
Lemma 3
Assume that f : Rn → R is differentiable and that M : Rn → Rn and
L : Rn → Rn are linear operators. Then,

− 1
2 〈M(x− y), x− y〉 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ 1

2 〈L(x− y), x− y〉
(3.29)

if and only if

−〈M(x− y), x− y〉 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ 〈L(x− y), x− y〉. (3.30)

Proof. Adding two copies of (3.29) with x and y interchanged gives

−〈M(x− y), x− y〉 ≤ 〈∇f(x)− f(y), x− y〉 ≤ 〈L(x− y), x− y〉. (3.31)

This shows that (3.29) implies (3.30). To show the other direction, we use
integration. Let h(τ) = f(x+ τ(y − x)), then

∇h(τ) = 〈y − x,∇f(x+ τ(y − x))〉.

Since f(y) = h(1) and f(x) = h(0), we get

f(y)− f(x) = h(1)− h(0) =

∫ 1

0

∇h(τ)dτ =

∫ 1

0

〈y − x,∇f(x+ τ(y − x))〉dτ.
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Therefore

f(y)− f(x)− 〈∇f(x), y − x〉

=

∫ 1

0

〈∇f(x+ τ(y − x)), y − x〉dτ − 〈∇f(x), y − x〉

=

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

=

∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), τ(y − x)〉dτ

=

∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), (x+ τ(y − x))− x〉dτ.

Using the upper bound in (3.30), we get∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), (x+ τ(y − x))− x〉dτ

≤
∫ 1

0

τ−1〈Lτ(x− y), τ(x− y)〉dτ

= 〈L(x− y), x− y〉
∫ 1

0

τdτ

= 1
2 〈L(x− y), x− y〉.

Similarly, using the lower bound in (3.30), we get∫ 1

0

τ−1〈∇f(x+ τ(y − x))−∇f(x), (x+ τ(y − x))− x〉dτ

≥ −
∫ 1

0

τ−1〈Mτ(x− y), τ(x− y)〉dτ

= −〈M(x− y), x− y〉
∫ 1

0

τdτ

= − 1
2 〈M(x− y), x− y〉.

This concludes the proof. 2

Lemma 4
Assume that f : Rn → R is differentiable and that L is positive definite.
Then, that f is L-smooth, i.e., that f satisfies

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ β
2 ‖x− y‖

2
L (3.32)
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for all x, y ∈ Rn, is equivalent to that ∇f is β-Lipschitz continuous w.r.t.
‖ · ‖L, i.e., that

‖∇f(x)−∇f(y)‖L−1 ≤ β‖x− y‖L (3.33)

holds for all x, y ∈ Rn.

Proof. We start by proving the result in the induced norm ‖ · ‖, i.e., with
L = Id. For this, we introduce the functions h := 1

β f and r := 1
2 (h+ 1

2‖ · ‖
2).

Since L = Id, the condition (3.33) is β-Lipschitz continuity of ∇f
(w.r.t. ‖ · ‖). This is equivalent to that ∇h = 1

β∇f is nonexpansive, which
by [Bauschke and Combettes, 2011, Proposition 4.2] is equivalent to that
1
2 (∇h + Id) = ∇

(
1
2 (h+ 1

2‖ · ‖
2)
)

= ∇r is firmly nonexpansive (or equiv-
alently 1-cocoercive). This, in turn, is equivalent to (see [Nesterov, 2003,
Theorem 2.1.5] and [Bauschke and Combettes, 2011, Definition 4.4]):

0 ≤ r(x)− r(y)− 〈∇r(y), x− y〉 ≤ 1
2‖x− y‖

2

for all x, y ∈ Rn. Multiplying by 2 and using 2r = h+ 1
2‖ · ‖

2, gives

0 ≤ h(x)− h(y)− 〈∇h(y), x− y〉+ 1
2 (‖x‖2 − ‖y‖2 − 2〈y, x− y〉)

= h(x)− h(y)− 〈∇h(y), x− y〉+ 1
2‖x− y‖

2 ≤ ‖x− y‖2.

Multiplying by β and using f = βh, we obtain

−β2 ‖x− y‖ ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ β
2 ‖x− y‖

2.

This chain of equivalences show that the conditions are equivalent when
L = Id.

It remains to show that the scaled version holds. For this, we introduce
the function g = f ◦ L−1/2. Letting u = L−1/2x and v = L−1/2y, we get
g(x) = f(u), g(y) = f(v), and ∇g(y) = L−1/2∇f(v). Inserting these into the
inequality (3.32) with L = Id applied to g shows (with some simple algebra)
that it reduces to the stated inequality (3.32) in f and L. Similarly, the
inequality (3.33) with L = Id applied to g reduces to the stated inequality
(3.32) in f and L. This concludes the proof. 2

Lemma 5
Suppose that P is a linear self-adjoint and nonexpansive operator with largest
eigenvalue λmax(P ) = L and smallest eigenvalue λmin(P ) = m, satisfying
−1 ≤ m ≤ L ≤ 1, and suppose that δ ∈ [−1, 1] and let j be the index
that minimizes | 1

2δ −λi(P )|. The smallest eigenvalue of P − δP 2 satisfies the
following:

(i) if δ ∈ [0, 1], then λmin(P − δP 2) = min(m− δm2, L− δL2).

197



Paper VI. Envelope Functions: Unifications and Further Properties

(ii) if δ ∈ [−0.5, 0], then λmin(P − δP 2) = m− δm2.

(iii) if δ ∈ [−1,−0.5], then λmin(P − δP 2) = λj(P )− δλj(P )2, where
j = argmin

i
(| 1

2δ − λi(P )|).

The largest eigenvalue of P + δP 2 satisfies the following:

(li) if δ ∈ [−0.5, 1], then λmax(P + δP 2) = L+ δL2.

(lii) if δ ∈ [−1,−0.5], then λmax(P + δP 2) = λj(P ) + δλj(P )2, where
j = argmin

i
(| 1

2δ + λi(P )|).

Proof. The spectral theorem implies that λi(P − δP 2) = λi(P ) − δλi(P )2.
Therefore, we need to find the eigenvalues λi(P ) that minimizes the function
ψ(λ) = λ− δλ2, where λi(P ) ∈ [−1, 1] for different δ ∈ [−1, 1].

(i) For δ ∈ [0, 1], the function ψ is concave, and the minimum is found in
either of the end points, so λmin(P − δP 2) = min(m− δm2, L− δL2).

For δ ∈ [−1, 0[ the function ψ is convex. The unconstrained minimum is at
1
2δ . The level sets of ψ are symmetric around 1

2δ . Therefore, the constrained
minimum is the eigenvalue λi(P ) closest to 1

2δ :

(ii) For δ ∈ [−0.5, 0[, λmin(P ) = m

(iii) For δ ∈ [−1,−0.5], λmin(P ) = λj(P ).

To show the largest eigenvalues of P + δP 2, we proceed analogously to
the above. Details are omitted. 2
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