LUND UNIVERSITY

C++ Standardization Meeting March 15-20, 1992

Bruck, Dag M.

1992

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Briick, D. M. (1992). C++ Standardization Meeting March 15-20, 1992. (Technical Reports TFRT-7491).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/cd489629-5865-4e8d-97c2-901a26643f45

ISSN 0280-5316
ISRN LUTFD2/TFRT--7491--SE

C++ Standardization Meeting
March 15-20, 1992

Dag M. Briick

Department of Automatic Control
Lund Institute of Technology
May 1992



Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

May 1992

Document Number

ISRN LUTFD2/TFRT--7491--SE

Author(s)
Dag M. Briick

Supervisor

Sponsoring organisation
ABB Automation
Ericsson
Televerket

Title and subtitle

C++ Standardization Meeting — March 15-20, 1992

Abstract

1. Run-time type information

2. Function return type relaxation
3. Namespace control

4. Name lookup

5. Lifetime of temporaries

committee before and during the March 1992 meeting:

This report describes some of the most important “open” issues being worked on in the C++ standardization

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 7

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.




1. Overview

The most important “open” issues being worked on in the C++ standardiza-
tion committee before and during the March 1992 meeting are

e Run-time type information

e Function return type relaxation
e Namespace control

e Name lookup

o Lifetime of temporaries

There are various other issues being discussed in both the extensions work-
ing group and the library working group. The core language working group
has been all busy with name lookup. The environment working group seems
to have committed suicide, and the formal syntax group does not seem to
do anything useful at all (most of its members have gone to core language
sessions).

2. Extensions working group

Run-time type information

Run-time type information (RTTI), sometimes called dynamic type informa-
tion, would enable the user to determine the “true” type of an object accessed
through a pointer or a reference [Stroustrup and Lenkov, 1992]. The RTTI
mechanism should serve two slightly different purposes:

¢ Enable checked type casts, in particular, downcasting from base class to
derived class.
Base* p = new Derived;

Derived* q = cast<Derived>(p);
This is one possible syntax, which looks like a template class instantiation,
but there are alternatives.

o Give access to information about the object. The minimum information
is the name of the actual type, but it should be possible to extend the
type information arbitrarily.

RTTI is common in object-oriented languages, but does not yet exist in C++.
The reason is that branching on the type instead of defining suitable virtual
functions may lead to bad program design. However, there seems to be good
reasons for allowing access to RTTI:

e Some operations are very awkward to express with virtual functions, for
example, a function that counts the number of objects of a particular kind
in a list.

e It may be impossible to add a new virtual function, e.g., to an existing
library without source code.

e High-level optimization. It is possible to select a better algorithm if we
know the real type of the object.

e Every major library does it without any language support. Current mech-

anisms are incompatible and difficult to extend, which makes it difficult
to combine libraries.



e On the other hand, the function return type relaxation (see next section)
will reduce the overall need for type casts in C++ programs.

The checked cast operation is generally regarded as essential. The checked
pointer cast would either perform the cast if it is legal, or ruturn a nil pointer;
an illegal reference cast would throw an exception. Some people have argued
that the old unchecked cast should be replaced with the checked cast, using the
same syntax. This would break existing C++ code, in particular, libraries that
use “magic” pointer values as flags. There are also some cases with multiple
inheritance where the RTTI mechanism would not have enough information
to do a downcast.

I think it is essential that the application will be able to intercept illegal
casts, either to print debugging information, or just to log potential errors in a
program. A possible sollution is the “new handler” approach in current C++,
except that no recovery should be possible for illegal casts.

Access to additional type information is more controversial, and it is yet
too early to give any details about the proposal.

Base* p = new Derived;

if (typeid(p) == Typeid<Derived>())
// do something with a derived class object
In this example, typeid(p) creates a magic token which could be used for
acccessing more information about the type of the object. This token can also
be compared to known type names, and Typeid<Derived> () is a template-like
syntax for creating such a typeid object.

Another problem is to make typeids unique, in particular, in a system
with dynamically loaded libraries. For that reason, the typeid cannot be a
simple pointer. The best way to augment the RTTI system with application-
specific information is to use maps (associative arrays) which use typeids as
search keys. Consequently, typeids must be small, efficient to compare, and
it should be possible to create arrays of typeids. Maybe the standard should
specify a class template for tables of type information.

Function return type relaxation

A very common request is to be able to write a cloning function for a class
hierarchy like this:
struct A {
virtual A* clone() const;
};
struct B : public A {
Bx clone() comst; // different return type
};
This is an example of “covariant” return types, and it is type-safe [O’Riordan,
1991], [Bruns and Lenkov, 1992]. This has not been possible in the past, but
the committee voted to include the following text:

It is an error for a derived class function to differ from a base class
virtual function in the return type only, unless the return types are
either both pointers to classes or both references to classes, and the
class in the original return type is an accessible base class of the class
in the new return type.

The proposal only allows covariant pointer or reference return types; returning
the objects themselves would require more complicated code generation, and

2



would in any case not preserve polymorphic behaviour. This feature will
reduce the need for many explicit type casts.

Namespace control

A major problem in developing large C++ applications is namespace pollution,
in other words, that names (identifiers) are used for different purposes in the
application. The problem becomes accute when multiple libraries are used in
a single program.

A proposal to encapsulate names, e.g., function declarations and class
definitions, in explicitly named namespaces has been submitted by Siemens
Nixdorf [Bauche et al., 1992]. The ideas are basically sound, but the proposal
needs to be revised and extended. The most important issues concern the
impact on name lookup and overloading; the proposed syntax also causes a
syntax ambiguity. It is worth pointing out that the name of the namespace
will become part of any function signatures and class names. The reason is
that names must be resolved at link time as well, not just at compile time.
Consequently, it will not be possible to encapsulate existing header files for a
binary library.

The resolution at the March 1992 meeting was for the authors to revise the
proposal document based on comments during the meeting, and to continue
the discussion by e-mail reflectors.

Minor proposals

There are a number of minor extensions being analyzed. Keyword arguments
(as in Ada) were proposed by Siemens Nixdorf. The concept is pretty easy to
integrate with existing C++, although the rules for overloading must be re-
vised and extended. The fundamental question is whether this feature is really
needed. Keyword arguments are most useful with long parameter lists, and
OOP seems to encourage a programming style with simpler functions; a plau-
sible explanation is that objects contain much state information that need not
be transferred through separate arguments. Another problem is that keyword
arguments make the coupling between library and application tighter (argu-
ment names cannot be changed), and that the semantics of existing libraries,
which are not designed with keyword arguments in mind, may change.

Mentor Graphics has proposed special new and delete functions for ar-
rays. There is some discussion of how these new functions should be declared,
and how they interact with the runtime system. For example, most compilers
allocate extra storage to register the size of the array, and this implementa-
tion detail should not be visible to the program. During the analysis of the
proposal, two new variations were suggested, so the issue is still not resolved.

I have suggested that it should become possible to overload functions that
only take arguments of an enumeration type. Some operations cannot be done
on enumeration variables in current C++, e.g., increment and decrement:

enum Status {bad, good, excellent};

Status operator ++ (Status s) throw (RangeError)
{
switch (s) {
case bad: return good;
case good: return excellent;
default: throw RangeError();



}
}

This is currently not possible because earlier versions of C++ allowed implicit
conversion from integer types to enumerations, so overloading on enumeration
could change operations on integers. The proposal will be analyzed, but there
seems to be no hidden difficulties. The most serious problem is that a library
that defines an operation on an enumerated type may change the interpretation
of a program that relied on the enumerators being converted to integers before
applying the operation.

Other questions that have to be answered are if enumerations can be
replaced by classes when overloading is required, and if it is possible to de-
fine a template class for enumerations. Using templates instead of built-in
enumerations has the following disadvantages:

e There is no way to restrict the domain of enumerators; the user can always
create another enumerator and append it to an existing enumeration. This
means that a piece of code cannot assume a fixed set of enumerators.

e Enumerations with templates are somewhat awkward to declare.

e Current implementations cannot generate as efficient code for a template
class implementation of enumerations. Built-in enumerations are essen-
tially integer types with additional type constraints.

The basic requirement, to provide overloading on a set of named symbols, can
be met with a template class.

The “operator dot” proposal from Jim Adcock [Adcock, 1991] has not
progressed any further. Andrew Koenig and Bjarne Stroustrup have written
a paper with major objections [Koenig and Stroustrup, 1991], but the second
analysis paper that was delivered at the March meeting (author shall remain
unnamed) turned out to be completely useless.

Philippe Gautron et al. have surveyed various unrelated extension and
restriction proposals for templates. The issues are complicated, but a few
trivial extensions, such as the ones described in [Lippman, 1991}, are not
unreasonable. The presentation was rather bewildering, and the audience was
confused.

Rejected proposals

The extensions working group has analyzed and rejected a few proposals at
the March 1992 meeting. One proposal pointed out an encapsulation loophole:
that you can call the base class version of a virtual function although it has
been redefined in a derived class. The proposal actually called for a different
protection mechanism with finer granularity than the present scheme in C++,
so it was regarded as outside the scope of the committee.

Another proposal suggested that classes should have free access to all
data members, regardless of their protection. This idea breaks every form of
encapsulation, and the proposal was quickly dismissed.

The third rejection concerned “invisible” private parts of a C++ class.
The solution in present C++ is to use an abstract base class as the public
interface, or to use a pointer to an auxiliary data structure. Both methods
provide the desired functionality without language extension.

The extension working group has rejected two proposals at previous meet-
ings: keyword inherited (can be solved with a typedef), and overriding of
member function (can be done with simple class derivations).



3. Core language working group

Name lookup

The core language working group has finally made a break-through with name-
lookup. The committee voted the following principles into the working docu-
ment:

1. The scope of a name declared in a class consists not only of the text
following the name declarator, but also of all function bodies, default
arguments, and constructor initializers in that class (including such things
in nested classes).

2. A name N used in a class S must refer to the same declaration when
re-evaluated in its context and in the completed scope of S. (Completed
scope: the completely parsed scope, e.g., at the closing brace of the out-
ermost enclosing class definition.)

3. If reordering member declarations in a class yields an alternate valid pro-
gram under (1) and (2), the program’s meaning is undefined.

These principles are reasonably clear and also manage to cover the obscure
and pathological cases. The working group has tried to find algorithmic de-
scriptions of earlier attempts to define name-lookup, but the invented algo-
rithms have either been wrong or prohibitively slow, e.g., NP-complete or
O(n!), where n is the number of names in a class. The current principles are
supposed to implementable.

Most pathological cases are the result of obscure typedefs, extra par-
entethes, “implicit int” or a combination thereof. Here is an illegal example:

typedef int T;
struct X {
T £Q);
typedef float T;
};
In this case typename T is redefined after it has been used as the return type
of a member function. The use of “implicit int” causes many complications,
for example:

struct Y {
void f(const T);
typedef int T;
};
When the compiler sees const T it could be interpreted either as an unnamed
parameter of type constant T, or as the parameter T of type constant integer.
The typedef defines T as a type, but we then break Principle 2. The following
example is particularly obscure, but breaks Principle 3:

typedef int P(), QQ);
struct X {
static P(Q);
static Q(P);
};
Here is an explanation by Andrew Koenig:
The question is: for each declaration, what does it declare and
what is its type?
As it stands, the first declaration inside X declares Q as a static
member of type P, which is equivalent to type (int()). In other



words, it declares Q as a member function taking no arguments and
returning int.

Since Q is now defined and is not a type, the second declaration
declares Q as a function implicitly returning int and accepting an
argument of type P. This is a legitimate overloading of Q!

If you swap the two declarations, they now both declare P instead
of Q (proof by symmetry).

The use of “implicit int” is a heritage from C. Banning this sloppy feature, or at
least declaring it as an anachronism, would simplify the language specification
in many cases. It would also break many existing C++ programs, which
typically use this reasonably harmless construct:

const SIZE = 10;
A proposal to ban “implicit int” is not entirely unlikely, but indentifying and
analyzing all the effects is a daunting task.

Lifetime of temporaries

The lifetime of temporary variables is another currently unspecified issue that
must be straightened out {Koenig, 1992]. There are several possible alterna-
tives:

1. Early destruction, i.e., essentially as soon as the temporary value has been
used once. The problem is that some operations return a pointer to some
internal part of the object, e.g., String: :operator const char* ().

2. Late destruction, i.e., at the end of the enclosing block or function. The
disadvantage of this approach is that temporaries live for a long time.
In the case of large objects, for example, matrices, this may cause the
program to run out of free store.

3. Destruction at end of greatest enclosing expression, typically the enclosing
statement. This model seems to be a reasonable compromise, although
explicit pointers to internal structures are still a problem.

4. Destruction at the next branching point, i.e., a control structure or a
label. This is the model IBM uses in their compiler.

5. Some other alternatives that have the drawback that it is impossible to
specify when a particular implementation will actually destroy the tem-
poraries. Consequently, it is impossible to write a program that is guar-
anteed to execute correctly on all implementations.

The third and fourth alternatives are the most reasonable ones, and will hope-
fully be voted into the working draft at the next meeting.

4. References

Apcock, J. L. (1991): “Request for consideration: Overloadable unary op-
erator.().” Technical report, Microsoft. ANSI document number X3J16/91-
0140.

BavucHE, V., R. HARTINGER, and E. UNRUH (1992): “A proposal solving the
name space pollution problem in C++.” Technical report, Siemens Nixdorf
Informationssysteme AG. ANSI document number X3J16/92-0008.

BRruUNS, J. and D. LENKOV (1992): “Extending C++ to allow restricted return

types on virtual functions (with addendum).” Technical report, Chicago
Research and Trading. ANSI document number X3J16/92-0004.



KoEenie, A. (1992): “Lifetime of temporaries.” Technical report, AT&T Bell
Laboratories. ANSI document number X3J16/92-0020.

KOENIG, A. and B. STROUSTRUP (1991): “Analysis of overloaded operator.
().” Technical report, AT&T Bell Laboratories. ANSI document number
X3J16/91-0121.

LippMaN, S. B. (1991): C++ Primer. Addison-Wesley, second edition.

O’Ri1oRDAN, M. (1991): “Polymorphic over-riding of function return types.”
Technical report, Microsoft Corporation, Redmond, WA, USA. ANSI
document number X3J16/91-0051.

STROUSTRUP, B. and D. LENKoOV (1992): “Run-time type identification in
C++.” Technical report, AT&T Bell Laboratories. ANSI document number
X3J16/92-0028.



