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Abstract—Software bugs cost time, money, and lives. They
drive software research and development efforts, and are central
to modern software engineering. Yet we lack a clear and general
definition of what bugs are. Some bugs are defects, clearly defined
as failures to meet some requirement or specification. However,
there are many forms of undesirable program behaviour that are
completely compatible with a typical program’s specification.

In this paper, we argue that the lack of a criterion for
identifying non-defect bugs is hampering the development of tools
that find and fix bugs. We propose such a criterion, based on the
idea of wasted effort, discuss how bugs that meet our definition
of software ticks can complement defects, and sketch how our
definition can help future work on software tools.

Index Terms—software ticks, software bugs, software defects

I. INTRODUCTION

Software bugs are a natural part of software engineering.
Many prominent advances in our field are due to programming
language design to prevent certain bugs [1]–[3], methodolo-
gies to improve how software teams manage or understand
bugs [4]–[7], and tools that automatically detect bugs [8]–[17]
or even fix them [18], [19].

However, the literature seems to lack a clear definition
of what a software bug is. This lack of clarity means that
designers of bug-finding tools lack a general test for deciding
whether (or in what context) a given bug pattern is appropri-
ate. The impact of this question extends beyond bug finding:
as we make progress in synthesising code [20], in mining and
applying bug fixes [21], and in other strategies for manually or
automatically evolving software [22], we need to ask whether
these systems can introduce new bugs.

The nature of a bug is more than a philosophical question.
Folklore already tells us that drawing the line between bug and
(unexpected) feature can be difficult [23], and the literature
confirms this idea: Koru and Tian [24] note that in an Open
Source setting “the concept of defect is broad, including fail-
ures, faults, changes, new requirements, new functionalities,
ideas, and tasks,” where they describe “defect” and “bug” as
“closely related” concepts. Herzig et al. [25] found that more
than a third of bug reports in five Open Source projects were
not actual bug reports. Sun [26] and Wang [27] surveyed issue
tracker reports (including bug reports) and found that between
a third and a quarter of “invalid” and “won’t fix” issues
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TABLE I
FRACTION OF FIXED ISSUES, NON-ISSUES, AND “WON’T-FIX” ISSUES
AMONG CLOSED ISSUES IN THE MOZILLA BUG TRACKER AND DONE

ISSUES IN THE OPENJDK TRACKER.

Mozilla (2020-10-14) OpenJDK (2020-10-14)
Category Count Fraction Count Fraction
Total 910561 100% 269400 100%
Fixed 423486 46.5% 173954 64.6%
Non-Issue 71902 7.9% 20304 7.5%
Wont-Fix 54043 5.9% 19824 7.4%

(respectively) were due to reporters and developers disagreeing
on behaviour or developers finding a bug not worth their
effort1. These two issue categories can be quite prominent;
in Mozilla and OpenJDK, there is one “invalid” or “won’t
fix” issue for roughly every four fixed issues (Table I). Thus,
it is common for users and developers to disagree on whether
something is a bug and worth fixing.

In this paper, we examine software bugs that are not
software defects (Section II) and find that the distinguishing
characteristic for most of them is wasted effort (Section III).
We propose the term software tick for such effort-wasting bugs
and show how this definition can guide future bug-related
research (Section IV).

II. CHARACTERISING BUGS

While we are not aware of a clear definition of bugs, the
IEEE gives us an actionable definition of (software) defects:

“defect: An imperfection or deficiency in a work
product where that work product does not meet its
requirements or specifications and needs to be either
repaired or replaced [. . . ]”

— IEEE standard 1044-2009 [28]
This definition is valuable but assumes requirements or

specifications. Many programs come with some specifications,
in the form of human-readable documentation, types, unit tests,
assertion checks, or perhaps even formal contracts [29], [30],
but we cannot in general expect these to give us a compre-
hensive specification (cf. test coverage in Hilton et al. [31]).
In other words, much of any given program’s behaviour will
be unspecified.

1For Sun [26], we count categories 1, 2, and 3 but note that this survey
was on a single closed-source repository. For Wang [27], we count “Expected
Behaviour”, “Not Worth to Fix”, “Hard to Fix”, and “Have Workaround”.



As we saw in the introduction, there are many program
properties that are not defects but that at least some users
and developers find undesirable. In the following, we explore
bug taxonomies, bug checkers, and other research literature to
find program properties that are universally or at least widely
undesirable, to see if we can find commonalities among them
that allow us to form a useful criterion for non-defect bugs.

A. Bug Taxonomies

Bug taxonomies categorise individual bugs into general
bug classes that can offer us some insight into common
properties among large sets of bugs. For example, Catolino
et al. [32] extract nine bug categories from 1280 bug reports.
Their four largest categories are Program Anomaly issues
(41.3%), including e.g. premature termination; GUI-related
issues (17%), including aesthetic issues and “unusual” error
messages; Configuration issues (16%), including incorrect
dependencies and paths; and Test Code-related issues (7%), in-
cluding ineffective unit tests. The remaining categories (≤4%
each) cover security, performance, access and deprecation,
networking, and database issues.

While they do not explore which of their bugs are defects,
their descriptions hint at several properties that a wide audi-
ence might find undesirable. For instance, their example of
premature termination while running tests in the Eclipse IDE
(Eclipse issue #92067) is clearly undesirable.

As an example of a GUI-related issue, consider report
#1906 in the Chromium browser: visiting a website might
show an outdated view of that site, and the only mechanism
to refresh this view was to restart the browser. This behaviour
was clearly undesirable at least for web site developers.

Some other GUI issues are more challenging to classify.
Consider Chromium bug reports #150 and #33056, which ask
to replicate behaviours from two unrelated software systems
(Firefox and EMACS) that clash with intended behaviour in
Chromium. Clearly, for some Firefox and EMACS users the
Chromium behaviour is undesirable, but for others, Firefox
and EMACS behaviour may be foreign and undesirable.

Meanwhile, Test Code-related issues (such as their example
of ineffective unit tests) illustrate yet another perspective
of bugs: Bugs that do not (directly) impair users, but are
undesirable for developers.

What we can take away from this work is that:
1) some behaviours are undesirable but need not be defects,
2) some behaviours are trade-offs between one community

and another,
3) program properties may be undesirable for developers

but invisible to users, and
4) performance issues (including energy, execution time,

and memory usage [33]) can be undesirable.

B. Contemporary Bug Checkers

Bug checking tools like FindBugs/SpotBugs [8], PMD [34],
or Error Prone [35] scan code for “bug patterns” and re-
port their matches to the code’s developers. Hovemeyer and
Pugh’s key insight in FindBugs was that many small, highly

TABLE II
OUR CLASSIFICATION OF FINDBUGS 0.5.0 BUG CATEGORIES. SOME BUGS

FALL INTO MULTIPLE CATEGORIES.

Category Count Example
Useless 19 DM STRING CTOR
Threads 10 NN NAKED NOTIFY
Defect 6 FI EXPLICIT INVOCATION
Subtle 6 DM STRING CTOR
Risky 3 MS EXPOSE REP
Stuck 2 SP SPIN ON FIELD
Other 4 RU INVOKE RUN

specialised bug checkers might be more useful than a single
general-purpose analysis, which means that these tools offer a
broad variety of such patterns.

Since these tools offer many hundreds of different patterns,
we selected a subset by examining all 50 bug patterns from the
original release of FindBugs (0.5.0 2). While these bug patterns
might be limited by the analysis infrastructure of their time,
they are likely to focus on bug patterns that the FindBugs
authors considered particularly important.

We marked each bug pattern by why this pattern matches
undesirable code, and observed a considerable variety among
the bug patterns. We summarise our classification in Table II
and describe our categories below:
• Useless bug patterns capture (seemingly) inefficient code,

i.e., code that could be replaced by simpler and more
efficient code, and ineffective code. Specifically, nine
of the ten patterns describe (suspected) failed method
overriding due to typos or parameter type mismatch, but
could also rarely also be Subtle (see below), though we
did not count them as such.

• Threads patterns detect flaky concurrency and complex
or incorrect concurrency patterns (five instances each).
Either of these may be challenging to test for and debug.

• Defect patterns catch violations of Java Class Library
specifications.

• Subtle captures program behaviour that requires in-
depth knowledge of the Java language semantics (e.g.,
static class initialisation order) that at least novice Java
programmers will normally lack. Even if the program
behaves “as intended”, these patterns increase the risk
that novice developers will break the code or (needlessly)
spend substantial time understanding this code.

• Risky captures coding practices, such as exposing muta-
ble arrays, that come with implicit usage contracts that the
language cannot enforce (e.g., whether an exposed array
must only be read). This category is similar to Subtle, but
the subtlety here comes from the developers’ own APIs.

• Stuck captures infinite loops and deadlocks. These are
clearly undesirable for end-users.

• Other captures several properties that are not necessarily
bugs but look very similar to incorrect uses of well-

2https://github.com/findbugsproject/findbugs/tree/
f81d23a330656a62bf7edafca81309c9d1fe3204

https://github.com/findbugsproject/findbugs/tree/f81d23a330656a62bf7edafca81309c9d1fe3204
https://github.com/findbugsproject/findbugs/tree/f81d23a330656a62bf7edafca81309c9d1fe3204


known coding patterns (e.g., defining a non-static field
serialVersionID, which is the same name as a static
field that the Java serialisation API can use if present).

As in the previous section, we find several take-aways:

1) The FindBugs designers consider useless and ineffective
code to be a bug.

2) Similarly, they find risky and subtle code undesirable.
3) Overall, we find that these patterns make a case against

needless complexity.

C. Bugs as Complexity

While we lack the space for a complete survey, we consider
three strands of bug finding work that look at suspicious code
behaviour: API protocols, “bad smells”, and clones.

a) API Protocols: Not all sequences of API calls are
sensible. Expert developers can give us specifications for how
to use these APIS, in the form of API protocols, which we
can then use to check for API misuses [14], [17], [36]. We can
also infer API protocols from execution traces (as in Pradel
et al. [37]). While these specifications are not “absolute” in
the same sense as hand-written ones (e.g., Pradel et al. report
a 49% false positive rate), inferred API protocols allow us to
find bugs that manifest as divergence from the norm.

b) Bad Smells: Fowler introduces “bad smells” [38] as
hints that code needs refactoring. Palomba et al. [39] explored
several of these smells in an empirical study with Open Source
and industrial developers. They report the following insight:
‘Smells related to complex/long source code are generally
perceived as an important threat by developers. This happens
for Complex Class, God Class, Long Method, and Spaghetti
Code.’ The developers did not consider other smells, especially
Class Data Should Be Private, Middle Man, or Inappropriate
Intimacy, to be similarly serious. We observe that a key
difference between these two classes of smells is that the
former focus on the complexity of the behaviour of a single
entity, whereas the latter focus on positioning functionality
within two adjacent layers of abstraction.

c) Code Clones: One smell that Palomba et al. did not
explore is Duplicated Code. Code clones can contribute to
bug spread and complicate maintenance when they evolve
independently [40], especially for structural clones [41].

All three of these strands of work further confirm that
complexity (in which we include divergence from the norm)
is undesirable. This insight is not surprising; for instance, the
field of Cognitive Load Theory [42] has empirically explored
for decades how accidental complexity (in our terminology)
makes it harder for learners to build mental models of the
material that they study. In the terms of Cognitive Load
Theory, the extraneous load of code complexity can inhibit
schema construction in learners, where schemas are “generic,
abstracted knowledge structure” with “default values” [43].

Thus, we argue that unnecessary complexity is undesirable:
it creates extra effort when changing code, and it interferes
with the developers’ ability to understand code.

III. SOFTWARE TICKS

As we have seen, there are many different classes of static
and dynamic program properties that researchers and practi-
tioners consider “bugs”. Many of these correspond to defects
as defined in IEEE 1044-2009, because they explicitly violate
a specification, either one that is part of the program itself,
or one that is implicit in the framework, libraries, language,
or the requirements. We can even go further and argue that
there are certain obvious implicit specifications, such as that
the code must not enter an “unproductive” infinite loop or rely
on “undefined behaviour” (as in C/C++).

However, this leaves out many of the bug types that we saw:
1) UI Bugs, in which the program’s interface violated user

expectations,
2) Performance Bugs, in which the program used excessive

computational resources,
3) Unnecessary Complexity in a program’s structure that

complicates maintainability and evolution.
These three grievances inconvenience users or developers

and possibly waste machine resources. For UI Issues, users
must spend effort to adapt to the software’s UI norms before
they can use it. For Performance Bugs, the program wastes
time, memory, energy and possibly other resources. Finally,
Unnecessary Complexity wastes developer time.

Thus, there is a common theme among these three types of
non-defect bugs: They waste effort.

However, the converse does not hold: wasted effort does not
mean that a program has a bug. For instance, we can use the
Apache web server’s URL-rewriting facilities to calculate our
taxes3, which would certainly be wasteful, but we can hardly
consider it a bug in this web server.

A criterion for non-defect bugs must therefore factor out
obvious misuse. This can be easy if we have a specification,
but even without one, we can often find the scope of a piece of
software in informal documentation. For instance, the Apache
server’s README file4 calls the software “a [...] web server”,
which clearly marks our example above as out of scope.
Below, we use “scope” and “specification” interchangeably.

A. Defining Software Ticks

Since ‘bug that wastes effort’ is a bit of a mouthful, we here
adopt the term tick for bugs that take away resources without
contributing anything useful.5

Definition 1. For a given scope and two software systems s
and s′, s′ is more resource-efficient than s iff within the scope,
s′ can produce equivalent results to s and s′ never consumes
more and sometimes consumes fewer resources than s.

Definition 2. A software tick is a property of the structure
or behaviour of a software system s such that there exists a

3https://web.archive.org/web/20200605041243/olsner.se/2008/01/21/
an-excursion-in-mod rewrite/

4https://github.com/apache/httpd/blob/trunk/README, 2020-11-17
5For contexts in which a more formal term is appropriate, we propose to

repurpose the term “Software Flaw” as a synonym for “Tick”.

https://web.archive.org/web/20200605041243/olsner.se/2008/01/21/an-excursion-in-mod_rewrite/
https://web.archive.org/web/20200605041243/olsner.se/2008/01/21/an-excursion-in-mod_rewrite/
https://github.com/apache/httpd/blob/trunk/README


procedure for transforming s into a software system s′ that (a)
lacks this property and (b) is more resource-efficient than s.

To emphasise, we use the term “resources” broadly, en-
compassing energy, time, and attention of the entities that
interact with the software, including users, developers, and
other software systems..

According to our definition, a software tick is then a
software property due to which the software’s resource usage
across all resource dimensions is not Pareto-optimal. We
thus exclude trade-offs: sacrificing user convenience to reduce
memory and execution time is not a tick, since these are
separate resource dimensions; thus, we also exclude the cost
for fixing the tick itself from our definition.

Conceptually we can relax this definition with “conversion
rates” between different forms of effort, or allow small deltas
e.g. strictly for machine effort (to emphasise the importance
of human effort), but in the absence of empirical studies we
leave these refinements for future work.

B. Bugs, Ticks, and Defects

Software defects capture program properties that violate
specifications and requirements. In principle, we can show that
a program is free of defects.

Software ticks capture deficiencies across multiple forms
of software quality, e.g. efficiency, reliability, usability, and
maintainability. In general, we cannot show that a program is
free of ticks, since we cannot show the absence of possible
performance or usability enhancements.

Defects and ticks thus complement each other, one capturing
what must not be and one capturing what can be better. These
two categories can intersect if software quality is part of a
program’s specification. While practitioners and the literature
do not agree on where to draw the line between bug and non-
bug issues [24], the nomenclature of performance bugs [33]
as well as the popularity of bug patterns for bad coding
practices (Section II-B) are points in favour of treating ticks
as a category of bugs.

IV. IMPACT

Ticks are bugs that we can fix with impunity; nobody will
miss them. They offer a new perspective on bug detection, bug
fixing, and bug ranking, and open new directions for research,
as we detail below.

a) Finding and Fixing Ticks: Ticks set a high standard
for bug checkers: if the developers remove the tick, the
resultant program must be strictly better than it was before.
Many of the bug patterns that we find in existing bug checkers
(e.g., those based on dead code) match or approximate this def-
inition, with only a few side conditions (cf. Subtle behaviour
in Section II-B) standing in the way. Others, including “bad
smells” such as public fields instead of getters/setters in Java,
do not clearly match, since their impact on future maintenance
cost may or may not outweigh their benefit.

Ticks also address a conceptual limitation in automatic bug-
fixing tools: existing tools in this category focus on defects,
but when they remove a defect, they may introduce a tick.

Complementing these tools with automatic tick removal can
allow us to compensate, and to automatically improve software
quality. Moreover, we can consider the bug fixing tool’s
effort in our effort metric to steer tick removal towards better
automatic fixability.

b) Ranking Ticks: Ranking bug reports can be challeng-
ing, but our notion of effort adds new metrics to this process.

For example, consider a program that reads in data, per-
forms a complex computation, and produces output. If the
program aborts with an execution failure (e.g., an uncaught
exception) right after startup that signals that the output file
name is missing, then this failure is both timely and actionable.
In other words, this failure might have the form of an uncaught
exception, but the user needs little effort to recover.

If the program instead triggers a failure that merely signals
that “something went wrong”, then this failure is no longer
actionable and thus wastes user effort. If the failure provides
meaningful information but triggers only at the end of data
processing, it is no longer timely, wastes machine effort, and
may come at additional cost to users [44].

Here, our notion of wasted user effort allowed us to see
how timeliness and actionability help rank the effort attached
to a potential tick. We expect that wasted effort can overall
help us better understand when and how to report bugs.

c) Research: As we saw, we can use wasted effort to find
new types of ticks. Researchers in the area of performance
bugs have already explored this space, but we expect that
there is substantial room left, especially for user effort: when
does the system wait for the user when it could already be
making progress? Does the user really have to manually select
or confirm this information?

Finding ticks through wasted developer effort is more
challenging, as this effort depends on the developers’ future
plans for the software system. However, we can look to
complexity (Section II-C) as a proxy metric for effort: how
much must a developer know to correctly evolve this code?
Are developers consistent in what they do? The latter gives
us a new perspective on bug patterns that represent “bad
style” (e.g., “bad” method names or confusing overloading).
If we find many matches for such a pattern, then this pattern
may indicate a particular idiosyncrasy. If we can explain this
idiosyncrasy though second-order bug rules [45] such as ‘all
classes that are tagged @Legacy trigger this style bug’, we
can not only report this issue more concisely, but also gain a
better understanding of the effort attached to it.

Finally, we argue that our notions of wasted effort and tick
add a new lens through which we can view bug candidates
and help us prioritise our research efforts.

V. CONCLUSIONS

We have proposed the concept of software ticks to describe
bugs that waste user effort, developer effort, or machine effort,
and discuss how this concept complements software defects.
Moreover, we have outlined how software ticks offer new
directions in finding, managing, and resolving bugs.
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