
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Exploring software product management decision problems with constraint solving –
opportunities for prioritization and release planning

Regnell, Björn; Kuchcinski, Krzysztof

Published in:
2011 Fifth International Workshop on Software Product Management (IWSPM)

DOI:
10.1109/IWSPM.2011.6046203

2011

Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):
Regnell, B., & Kuchcinski, K. (2011). Exploring software product management decision problems with constraint
solving – opportunities for prioritization and release planning. In 2011 Fifth International Workshop on Software
Product Management (IWSPM) (pp. 47-56). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/IWSPM.2011.6046203

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/IWSPM.2011.6046203
https://portal.research.lu.se/en/publications/2baaaef7-2513-40b4-b5be-eeae5db0c0c9
https://doi.org/10.1109/IWSPM.2011.6046203

Exploring Software Product Management Decision Problems
with Constraint Solving – Opportunities for Prioritization and Release Planning

Björn Regnell, Krzysztof Kuchcinski
Dept. of Computer Science

Lund University
Sweden

Email: bjorn.regnell@cs.lth.se

Abstract—Decision-making is central to Software Product
Management (SPM) and includes deciding on requirements
priorities and the content of coming releases. Several al-
gorithms for prioritization and release planning have been
proposed, where humans with or without machine support
enact a series of steps to produce a decision outcome. Instead
of applying some specific algorithm to find an acceptable
solution to a decision problem, we propose to model SPM
decision-making as a Constraint Satisfaction Problem (CSP),
where relative and absolute priorities, interdependencies, and
other constraints are expressed as relations among variables
representing entities such as feature priorities, stakeholder
preferences, and resource constraints. The solution space is
then explored with the help of a constraint solver without
humans needing to care about specific algorithms. This paper
discusses advantages and limitations of CSP modeling in
SPM and gives principal examples as a proof-of-concept
of CSP modeling in requirements prioritization and release
planning. A discussion of further research on constraint
solving in SPM is also given.

Keywords-software product management; requirements
engineering; release planning; prioritization; constraint pro-
gramming;

I. INTRODUCTION

Software Product Management (SPM) involves
decision-making that is critical to the success or failure
of software products [1]. In particular, a product
manager needs to establish requirements priorities and
determine release plans in dialog with internal and
external stakeholders [2], [3]. Several approaches have
been proposed for these decisions problems, e.g. binary
search trees for requirements prioritization [4], [5], and,
e.g. optimization by linear programming [6], [7], [8]
or genetic algorithms [9] for release planning. These
approaches stipulate a specific algorithm to be enacted by
humans only, or by humans using a supporting computer
program.

In this paper we propose a different approach, namely
to support SPM by modeling a decision problem inde-
pendently of a solution algorithm as an integer finite
domain Constraint Satisfaction Problem (CSP) [10] and
then use a integer finite domain CSP solver such as JaCoP
[11], [12] to explore the set of solutions that satisfy the
constraints. There are several potential benefits of this
approach, including:

• Flexible specification. CSP specification of SPM de-
cision problems is flexible in the sense that it is pos-

sible to combine many different types of constraints
on a problem in one single model without changing
the underlying method for solving it.

• Interactive exploration. It is possible to get a single
solution as well as deriving all solutions, when multi-
ple solutions exist. Thus, stakeholders can investigate
the solution space as well as the consequences of
changing the constraints to better understand what
decision parameters that influence properties of the
solution. In cases when the set of all solutions is
too large to be practically feasible to investigate
exhaustively, adding further constraints incrementally
can help reduce the search space.

• Optimization support. CSP enables optimization to
obtain a solution that maximizes or minimizes desired
properties. Existing CSP solvers have a large set
of pre-defined constraints providing efficient algo-
rithms for finding solutions to optimization problems,
which can be used concisely to model SPM decision
problems. By restricting the problem specification
to constraints over integer finite domains, we avoid
many problems of algorithmic complexity. As sub-
sequently illustrated, integer value approximations of
real values are sufficient for many SPM problems.

The contribution of this paper is threefold: (1) a demon-
stration of how to apply a CSP approach to SPM using
examples from requirements prioritization and release
planning, together with (2) a discussion of benefits and
limitation of the approach, as well as (3) a set of issues
of further research into how CSP tools can be developed
to provide powerful support for decision-making in SPM.

With these contributions we do not claim to escape
the inherent difficulties of real-world prioritization and
release planning. Our aim is instead to add an alternative
to existing algorithmic approaches, such as the Analytical
Hierarchy Process [4] for prioritization or Integer Linear
Programming [7], [31] for release planning – an alternative
that can provide a powerful, general and concise toolbox
for flexible investigation of the nature of real-world SPM
decision problems (rather than their algorithmic solution)
by combining standard, high-level, declarative languages,
such as MiniZinc [14], with ready-made optimization
algorithms in CSP solvers, such as JaCoP [12].

The paper is organized as follows. Section II provides
a short introduction to constraint satisfaction and gives

examples of existing algorithmic approaches to require-
ments prioritization and release planning. In Section III a
constraint-driven approach to requirements prioritization
is illustrated through examples. Section IV demonstrates
how a previously published release planning example can
be concisely modeled as a CSP. In Section V we discuss
benefits and limitations of the proposed approach, and
Section VI concludes the paper with a list of issues of
further research in order to forward the utility of CSP as
a vehicle for decision-making in SPM.

II. RELATED WORK

This section provides a brief introduction to constraint
satisfaction. Examples of related work from two areas
relevant to SPM are given, namely requirements prior-
itization and release planning, to give a basis for the
subsequent sections where CSP modeling is proposed as
a new approach to support SPM in deciding priorities and
release plans.

A. Constraint Satisfaction

We here provide a short introduction to constraint
programming. A more thorough discussion on constraint
programming and its application can e.g. be found in Rissi
et al [13] or Tsang [10].

Formally, a constraint satisfaction problem (CSP)
is defined as a 3-tuple S = (V,D, C) where
V = {x1, x2, . . . , xn} is a set of variables, D =
{D1,D2, . . . ,Dn} is a set of finite domains, and C is a
set of constraints. Finite domain variables are defined by
their domains, i.e. the range of values that can be assigned
to the variables. A finite domain is usually expressed
using integers, for example x :: 1..7, meaning that x
can take integer values ranging from 1 to 7. A constraint
c(x1, x2, . . . , xn) ∈ C among variables of V is a subset of
D1 ×D2 × . . .×Dn that restricts which combinations of
values the variables can simultaneously take. Equations,
inequalities and even programs can define a constraint.

A solution to a CSP is the assignment of a value from a
variable’s domain, for each variable so that all constraints
are satisfied. For a specific problem we may want just one
solution, all solutions or a (close to) optimal solution given
some objective function defined in terms of the variables.

A CSP solver is built using consistency methods and
systematic search procedures. Consistency methods try to
remove inconsistent values from the domains in order to
reach a set of pruned domains such that their combinations
are valid solutions. Each time a value is removed from a
finite domain, all the constraints that contain that variable
are revised. Most consistency methods are not complete
and the solver needs to explore the remaining domains for
a solution using search.

Solutions to a CSP are usually found by systematically
assigning values taken from the variables’ domains to the
variables. This assignment is implemented as a depth-
first-search. The consistency method is called as soon as
the domains of the variables for a given constraint are
pruned. If a partial solution violates any of the constraints,

backtracking will take place, reducing the size of the
remaining search space. The solvers can also find an
optimal solution that is defined by combining depth-first-
search with a branch-and-bound algorithm.

An example search for a single solution is depicted in
Figure 1. The example problem has four finite domain
variables and five inequality constraints. The search as-
signs value one to variable x0 and the solver propagates
this decision by pruning the domains of variables x1

and x2. Finally, assignment to variable x2 triggers solver
propagation and a solution is obtained. Solver consistency
and propagation methods makes it possible in this case to
find the solution based on two variables instead of four.

Variables
x0 :: 1..3, x1 :: 1..3
x2 :: 1..3, x3 :: 1..3

Constraints

x0 ≠ x1
x0 ≠ x2
x1 ≠ x2
x1 ≠ x3
x2 ≠ x3

An example search for a single solution

x0

x2

x0 = 1

solution

x1 = 2

Constraint store
x0 =1, x1 :: 2..3,
x2 :: 2..3, x3 :: 1..3

Constraint store
x0 =1, x1 = 2,
x2 = 3, x3 = 1

Figure 1. An example depth-first-search for a single solution.

For the purpose of illustrating how constraint solving
can be applied to SPM we use our JaCoP solver [11] but
our methods can be used together with other available
solvers.

MiniZinc [14] is standard language for specifying finite
domain CSP models. MiniZinc is high-level enough to ex-
press most constraint problems, but low-level enough to be
mapped onto existing solvers. MiniZinc is a subset of the
more general Zinc language. MiniZinc includes constructs
for specifying variables, their domains and constraints
over variable using predicates. MiniZinc specifications
are compiled to FlatZinc and executed using some CSP
solver such as JaCoP [11]. In subsequent sections we use
MiniZinc specifications to illustrate the application of CSP
modeling to SPM.

CSP has been applied in a variety of areas [13], [10],
including e.g. feature modeling [15], program compre-
hension [16], testing [17], and hardware synthesis [11].
In particular, CSP has also been applied in requirements
engineering by Salinesi et al [18], [19] where constraint
solving is used in a product line engineering context.
Salinesi et al. use constraints to express feature models
and apply constraint solving to find a set of features that
satisfies the feature model, with respect to selected or
excluded features according to the variation points of the
feature model.

This paper proposes to extend the application of CSP
to the SPM-relevant areas of prioritization and release
planning, which we believe are particularly suitable for
CSP modeling. The subsequent subsections provide some
relevant examples of related work in these two areas.

B. Requirements Prioritization

Requirements prioritization involves identifying high-
priority requirements to reflect the opinions of the stake-
holders of a system and its future evolution [20], [21], [4],
[22]. SPM is carried out in a market-driven context [23],
and prioritization in software product development typi-
cally involves product managers that gather estimates of
the future business value of candidate features of coming
software releases and balancing this information against
product investment costs in terms of e.g. implementation
effort [24], [2].

Requirements prioritization research has for more than
a decade produced new knowledge into specific methods,
see e.g. the systematic review by Herrmann et al [25]
identifying 15 different requirements prioritization meth-
ods. Common to these methods are that they propose a
specific algorithm to be enacted by human, potentially
with support of a computer tool. Examples include priority
ranking using for example a binary search tree algorithm
[5], priority grouping [22], cumulative voting [26], and
pair-wise comparison on a ratio scale as input to a
modification of the AHP algorithm [20]. The output of
these methods include a numerical assignment that maps
the set of requirements to be prioritized to a scale e.g.
ordinal or ratio [22]. Prioritization methods have also
been empirically investigated exemplified by Lehtola et al
[27] finding several problems of practice, including that
stakeholders sometimes find it difficult to estimate how
much more valuable one requirement is than another on
a ratio scale. Practitioners also sometimes find it difficult
to estimate which number in a priority grouping to give
to factors.

In this paper we propose to enable stakeholders to mix
different ways doing prioritization in a flexible manner
enabled by a constraint-based specification of priorities,
as demonstrated subsequently. This approach represents
a different way of looking at prioritization, that may
help address some of the problems identified in empirical
research and moves focus from specific algorithms to
problem formulation.

C. Release Planning

The term (software) release planning is here used to de-
note the activity of deciding how to assign releasable prod-
uct characteristics (features, requirements) to a planned
sequence of releases of an evolving software product.
Prioritization can be viewed as a sub-problem of release
planning, where the latter not only involves assigning
priorities according to a set of criteria reflecting the views
of a set of stakeholders, but also includes scheduling,
resource planning and taking into account requirements
inter-dependencies [28]. Release planning is far from
trivial and depending on the complexity of the problem
it can be very challenging to find a good balance among
the factors that impact on the goodness of a release plan,
determined e.g. by its business value, risk, investment
costs, technical feasibility and last but not least stakeholder
satisfaction [8].

Carlshamre [29] discusses release planning in market-
driven software product development and propose the
use of tool support for exploring different release plans
in terms of their value to different stakeholders. The
systematic review by Svahnberg et al [30] on strategic
release planning models identifies two research groups
with major contributions on tool support for release plan-
ning: (1) Ruhe et al [8] with the EVOLVE-family of
models [9], [31] supported by the commercially available
ReleasePlanner tool [32]; and (2) van den Akker et al
[33], [6], [7] with a research prototype for release planning
implemented based on the ILOG CPLEX Optimizer [34]
with a spreadsheet program as a user interface. Both these
tools use Integer Linear Programming (also proposed by
Bagnall [35]) as underlying technology for finding (near-)
optimal solutions to the release planning problem modeled
as a set of linear inequalities over integer-valued variables.

In this paper we propose an alternative to the linear pro-
gramming approach through constraint satisfaction, with
the potential of a more powerful problem modeling.

III. CONSTRAINT-DRIVEN PRIORITIZATION

In order to specify requirements prioritization as a
constraint satisfaction problem, we here define prioriti-
zation as the problem of creating a mapping from a set
of n requirements entities, {ri|1 ≤ i ≤ n} to a set
of numerical values {pi|1 ≤ i ≤ n} that reflects the
requirements priorities according to a specific criterion
and some stakeholders’ views. The entities can be e.g.
features, user stories, or quality requirements. Criteria can
be e.g. market value, development cost, urgency, risk etc.
The range of each numerical value pi belongs to [1 . . .m].
Thus, the interpretation of such a mapping is that pi
represents the priority of requirements ri with respect
to a certain criteria and a certain (set of) stakeholder(s)
on m different integer values. In general, requirements
prioritization could of course include mappings to any
numerical range, but in order to simplify the constraint
solving we here restrict the problem to finite sets of
integers. Some particular prioritization methods, such as
AHP [4] have a range of real valued numbers in [0 . . . 1],
but this can e.g. be approximated by the range of integers
[0 . . . 100] in percent, to keep the range to a finite set.

We demonstrate prioritisation as a CSP for three exam-
ple approaches from literature: priority ranking, priority
grouping and cumulative voting, [22], [4], [26].

In priority ranking the range of the priority mapping is
the same as the number of requirements, m = n. Thus
the set of requirements are prioritized on an ordinal scale
[4]. Specification 1 provides an example of a CSP priority
ranking model in MiniZinc.

In Specification 1, the first constraint is general and
provides the property of a true ranking saying that all ranks
are different, while the subsequent constraints represent
the specific relative priority judgments of a hypothetical
stakeholder. Stakeholders can express the priorities using
different types of relative constraints including greater
than, less than, greater than or equal, etc. Thus, the stake-

Specification 1 A priority ranking example.

int: n = 5;
array[1..n] of var 1..n: P;
constraint
alldifferent(P);

constraint P[1] > P[2];
constraint P[2] > P[3];
constraint P[3] < P[4];
constraint
forall (i in 1..n)
(P[5] >= P[i]);

solve satisfy;
output [show(P)];

holders can choose order of the pairwise comparisons,
as well as how the pairwise comparisons are expressed.
Further, we can see that the final constraint in Specifica-
tion 1 is used to pinpoint that one feature has a higher rank
than all other features, which illustrates that CSP modeling
offers the expressive power of first order predicates. While
implementations of AHP for requirements prioritisation
often decides the order of pairwise comparisons together
with a stipulated scale on how to compare the requirements
that is embodied in the specific algorithm of AHP [21],
the approach in Specification 1 offer a more general and
flexible way to express priorities that gives the control over
the way the prioritisation is carried out to the stakeholder
in terms of both which steps are taken in which order and
the actual formulation of the relative priorities.

There are 3 solutions to Specification 1, as provided by
the JaCoP solver output:

P = array1d(1..5, [4, 3, 1, 2, 5])
P = array1d(1..5, [4, 2, 1, 3, 5])
P = array1d(1..5, [3, 2, 1, 4, 5])

This set of three solutions gives the priorities of r5 = 5
and r3 = 1 in all solutions. However, for r1, r2 and r4
the different solutions give different priorities, providing
different options to the stakeholder that are structurally
different while still satisfying the constraints. As demon-
strated in this example, the stakeholder does not need to
be exhaustive in providing ratio scale priorities for each
pair-wise comparison of requirements, but can provide
those constraints that are known. If the problem is under-
determined due to incomplete information then the solver
can give a set of all solutions to be assessed. If the
solution set is small then the stakeholders can select the
preferred option, or if the solution set is very large then the
stakeholders may consider adding additional constraints
to reduce the solution space. If the problem includes
inconsistent constraints then no solution is provided and
the set of conflicting constraints can be highlighted by the
solver and revisited by the stakeholder.

In general, the problem of identifying minimal subsets
of inconsistent constraints is difficult, but a solver can
report the constraint that caused inconsistency. Dependen-
cies between these constraints and other constraints can
give hints to stakeholders of where to look to resolve an
inconsistency.

In priority grouping the prioritization involves a map-
ping to m groups, representing different priority levels,
often with an interpretation such as "very high", "high",
"medium", "low", "very low"; this typical example has
m = 5 groups, modeled using MiniZinc as shown in
Specification 2.

Specification 2 A priority grouping example.

int: n = 7;
array[1..n] of var 1..5: P;
constraint
forall (i in {1,2,3})
(P[i] = 5);

constraint P[4] > 3 /\ P[5] < P[4];
constraint P[6] = P[4] + 1;
constraint P[7] >= P[5] + 3;
solve satisfy;
output [show(P)];

In Specification 2 the first constraint is used by the
hypothetical stakeholder to express that three specific
requirements have top priority, illustrating the ability to set
absolute priorities of groups of requirements. Subsequent
constraints apply different types of relative priority deci-
sions. The slash-backslash syntax in the second constraints
illustrates the use of logical conjunction. This example
shows the flexibility provided by CSP specification to
enable a combination of both absolute and relative priority
judgments.

Prioritisation with cumulative voting [26], [22] (also
known as the 100$-test) can be modeled similar to Spec-
ification 2, modified with that P is specified to be in the
range of 0 . . . 100, together with the following constraint
to ensure the cumulative property:

constraint sum (i in 1..n) (P[i]) = 100;

Cumulative voting is similar to AHP in that the pri-
orities are given on a scale that can be interpreted as if
there is a limited pool of 100 priority points or percentages
available. In addition, the AHP algorithm gives a consis-
tency index based on the redundant information given if
each requirements is involved in more than one pairwise
comparison, while the cumulative voting in general lacks
this consistency checking ability. The constraint solving
approach to requirements prioritization proposed here pro-
vides inherent consistency support as the solver detects if
the circular relationships of an over-determined problem
specification includes inconsistent constraints.

The constraint-based prioritization models above can be
generalized to include several criteria and several stake-
holders in a similar way as is illustrated with the release
planning example in Specification 3, further explained in
the subsequent Section IV.

In summary, the above examples demonstrate that re-
quirements prioritization can be modeled as a constraint
satisfaction problem, using a CSP language such as MiniZ-
inc. We argue that the specifications concise and flexible
based on the facts that the models are expressed at a
high-level and can combine different types of relative and

absolute priority judgments at the discretion of the human
stakeholders. Constraint-based requirements prioritization
is different compared to previous approaches in that the
actual algorithm for finding the total set of ranks, groups
or cumulative priority points is left to the machine, while
humans can concentrate on deciding relative and absolute
priorities in a consistent way.

IV. RELEASE PLANNING AS A CSP

We demonstrate in this section how the release plan-
ning problem can be modeled as a constraint satisfaction
problem using the same example as Ruhe et al [8]. (This
is a small example used for illustration purposes, a larger
example is given in [31].) The example project includes 15
features to be planned for either one of the next 2 releases
or postponed. There are 2 stakeholders that have different
views on each feature’s value and urgency. The value of a
feature is modeled as an integer in the range (1..9), with
9 representing the highest value. Urgency is modeled as a
tuple with an integer for each release (plus the postponed
case) in the range (0..9), where 9 represents highest
urgency and 0 represents no urgency. The example also
includes 4 limited resources including a certain number
of person hours of analysts, developers, testers and a
monetary budget. For each feature and resource there is an
estimate of how much of that resource that is consumed if
that feature is selected. There is also a maximum available
total capacity for each release. Resource consumption and
capacity is represented by non-negative integers. We refer
to Ruhe et al [8] for a more elaborate definition of the
example. In Specification 3 this release planning example
is re-modeled as a CSP using the MiniZinc language.

Input variables. The input variables of the CSP model
follow the notation in Ruhe et al [8], where N = 15,
K = 2, R = 4, and S = 2 represent number of
features, releases, resources and stakeholders respectively.
The array input variables are: r representing the resource
consumption for each feature and resource; value repre-
senting feature value for for each stakeholder and feature;
urgency representing the urgency for each stakeholder,
feature and release; C and P representing coupling and
precedence relations among features respectively; lambda
representing the relative importance of each stakeholder;
ksi representing the relative importance of each release;
and finally Cap representing the available resources for
each release and resource.

Output variables. The output variables of the CSP
model in Specification 3 are: the WAS function [8]
representing the weighted average satisfaction of all stake-
holders for all features weighted with lambda, value and
urgency for each release; the K array representing a
release plan solution in terms of which feature is chosen
to be implemented in which release number or zero if not
chosen at all; and F representing the objective function to
be maximized, subsequently defined as a constraint over
WAS.

Constraints. There are three constraints of this CSP
model: The first constraint expresses coupling and prece-

Specification 3 The release planning example by Ruhe et
al [8] modeled as a constraint satisfaction problem.

int: N; % number of features
int: K; % number of releases
int: R; % number of resources
int: S; % number of stakeholders
array[1..N] of string: feature_id;
array[1..N, 1..R] of int: r;
array[1..S, 1..N] of int: value;
array[1..S, 1..N, 1..3] of int: urgency;
array[1..3, 1..2] of int: C; % coupling
array[1..5, 1..2] of int: P; % precedence
array[1..S] of int: lambda; % stakeholder importance
array[1..K] of int: ksi; % release importance
% ksi is multiplied by 10 to have integers
array[1..K, 1..R] of int: Cap; %capacity
array[1..N, 1..K] of var int:
WAS = array2d(1..N, 1..K,
[ksi[k] * sum (j in 1..S)
(lambda[j] * value[j,i] * urgency[j,i,k])
| i in 1..N, k in 1..K]);

% Variables ==========
array[1..N] of var 1..K+1: x; % feature release number
var int: F; % objective function

% Constraints =========
constraint % dependency constraints
forall (i in index_set_1of2(C))
(x[C[i,1]] = x[C[i,2]])

/\
forall (i in index_set_1of2(P))
(x[P[i,1]] <= x[P[i,2]]);

constraint % resource constraints
forall (k in 1..K, j in 1..R)
(sum (i in 1..N)
(r[i,j] * bool2int(x[i] = k)) <= Cap[k, j]);

constraint % objective function
F = sum (k in 1..K, i in 1..N)
(WAS[i, k] * bool2int(x[i] = k));

solve maximize F;
output["x = "++show(x)++"\n"++"F = "++show(F)];

The listing below is an excerpt of the code to specify the input data
that is specific to this particular instance as given by Table 1 in Ruhe et
al [8]. Only initial numbers for the input array variables r, value and
urgency are shown here.

N = 15; K = 2; R = 4; S = 2;
lambda = [4, 6]; ksi = [7, 3];
% ksi is multiplied by 10 to have integer values
C = [|7, 8, |9, 12, |13, 14, |];
P = [|2, 1, |5, 6, |3, 11, |8, 9, |13, 15, |];
Cap = [| 1300, 1450, 158, 2200,

| 1046, 1300, 65, 1750, |];
r = [| 150, 120, 20, 1000, | 75, 10, 8, 200,

% ... etcetera
value = [| 6, 7, 9, 5,

% ... etcetera
urgency = array3d(1..S, 1..N, 1..3, [

% stakeholder 1
5, 4, 0,
5, 0, 4,
9, 0, 0,
% ... etcetera

dence with a predicate saying: (1) for all feature that are
part of the set of couplings (in this example there are 3
coupled feature pairs): the features should be in the same
release, AND (2) for all features: if that feature is second
in a precedence pair relation (in this example there are 5
precedence relations) then it should be implemented in a
later release than its preceding feature or not chosen at all.
The /\ and \/ syntax elements mean logical conjunction
(AND) and logical disjunction (OR) respectively.

The second constraint expresses the resource constraints
with a predicate saying that for all releases and resources
the sum of the resource consumption of all chosen features
should be less than or equal to the available capacity for
that release and resource. The bool2int function converts
a Boolean expression to zero if it is false and to one if it
is true. It is used her to only sum up the resource values if
the feature is chosen, i.e. its release number is non-zero.

The third constraint includes the specification of the
objective function F defined as the sum over all releases
and all features of the weighted average stakeholder sat-
isfaction for the chosen features of a particular solution.

The statement solve maximize F instructs the solver
to search for an optimal solution with respect to F . The
output after compiling and executing this code includes
the x array with the feature allocations to releases:

x = [3, 1, 1, 1, 3, 3, 1, 1, 2, 3, 3, 2, 1, 1, 3]
F = 20222

This means that the optimal solution allocates features
2, 3, 4, 7, 8, 13 and 14 to release 1. Features 9 and 12 are
allocated to release 2, while features 1, 5, 6, 10, 11, and
15 are postponed.

The maximum value of the objective function is output
as F = 20222 (with the ksi array a factor 10 higher to
give integer values). 1

We can use the solver to find alternative solutions, e.g.
by adding the constraint that the objective function should
be more than 95% of the maximum objective function and
changing the solver instruction to a satisfaction instead of
an optimization:

constraint F > 19210;
solve satisfy;

If we run solver with the all-solutions option, we
then get an output of, in this case, 12 different near-
optimal solutions that our hypothetical product manager
can scrutinize. Some of the solutions are structurally
different from others in that different sets of features are
shifted among releases [8].

The MiniZinc CSP model in Specification 3 follows the
original definitions by Ruhe et al [8], but the optimization
problem can actually be specified more computationally
efficiently with a so called global constraint that makes the
solving process more efficient. In the case of the release
planning problem example above we can model it as a bin

1Our solver found an inconsistency in the original solution in Ruhe et
al [8]. Solution x2 where F = 17080 uses 75 units of resource 3 and
is thus violating the capacity limit of 65 for release 2. This error may
explain discrepancies between our solution and the previously published.

packing problem and use the bin_packing_capa global
constraint [36] as follows.

forall (j in 1..R)(
let {
array[1..K+1] of int: capacity =

array1d(1..K+1,
[Cap[k, j] | k in 1..K] ++ [10000])

} in
bin_packing_capa(capacity,x,[r[n,j]|n in 1..N])

);

In the specification above, each resource is modeled
as one global bin packing constraint and each release is
modeled as a bin that can be filled with features. Bins
1 and 2 are designated for releases 1 and 2, and have
respective capacities as defined in the original formulation.
Bin 3 is used to pack all features that are not allocated
neither to the first nor the second release and is given
a high capacity of 10000 to make it fit any postponed
feature.

The formulation of release planning as a binpacking
problem is not novel [37], but with a CSP problem
formulation in a high-level language such as MiniZinc
we can reuse the standard algorithms implemented in
solvers such as JaCoP. We are thereby taking a step away
from algorithm implementation details that previous work
is focused on [37], [35], so that we can keep a high-
level view of the problem modeling. However, a human
problem formulator such as a product manager needs to
be aware of and realize that binpacking is a suitable global
constraint for certain types of decision problems, and may
need support by tailored tools that can point to such
opportunities in particular cases when the computational
solution search needs faster computation.

V. DISCUSSION: BENEFITS AND LIMITATIONS

Benefits. We propose in this paper to model the SPM
decision-making problems of prioritization and release
planning as constraint satisfaction problems, and we argue
that this approach can complement existing approaches,
providing several potential benefits as discussed below.

1) General, powerful, flexible and concise decision
problem specification. The specification of SPM
decision-making problems such as prioritization and
release planning as a constraint satisfaction problem
offers the generality and expressive power of pred-
icate logic constraints when using high-level CSP
languages such as MiniZinc [14] that includes many
built-in operators, predicates and functions such as
comparisons (e.g. <, ==), arithmetic operations (e.g.
+, *, sum, min), logical operations (e.g. and, xor,
forall), set operations (e.g. union, subset, in,
card), array operations (e.g. length, index_set),
coercions (e.g. round, int2float, bool2int), and
bounds operations (ub, lb, dom). In Section III we
illustrate how different ways of expressing priority
relations (absolute, relative, etc.) can be combined
in a flexible way. The problem specifications can
be very concise; a previously published non-trivial
release planning problem can be specified using a

small set of constraints using less than 40 lines of
MiniZinc code.

2) Problem focus, with no specific algorithm stipulated.
As pointed out in Section II, previous work on
requirements prioritization and release planning sug-
gests that product managers engage in the enactment
of a specific algorithm [5] or focus researchers
attention on algorithm implementation details [37].
With a constraint-based approach to SPM, the ma-
chine takes care of the solution finding algorithms,
while humans can focus on the problem formulation
including the understanding of the constraints and
the specification of relations among requirements,
stakeholders and resources in the application do-
main.

3) Computational scalability. For small prioritization
and release planning problems a CSP solver typ-
ically provides solutions within milliseconds. For
large and complex problems the algorithmic com-
plexity may yield longer execution times that even
may be unreasonably long, but available solvers such
as JaCoP embodies much of the existing knowledge
on heuristic for efficient search for solutions, e.g.
through the use of global constraints as discussed
in Section IV. Benchmarking with existing opti-
mization solutions on larger problems including the
complexity introduced with task scheduling [31]
would be interesting for further work.

4) Inspiration from priority options and alternative re-
lease plans. Constraint satisfaction provides the op-
portunity of investigating a problem with many solu-
tions, as solvers with a simple option can provide all
solutions that satisfy a set of general constraints. A
product manager can iteratively adjust the high-level
constraints and explore the consequences, simply
by changing the high-level constraint specification.
Thus, the SPM decision-making can be informed
and inspired by computer-generated solution options
given as direct feedback on formal decision problem
specifications.

5) Incomplete SPM decision problem specifications. In
SPM practice, decisions are often based on incom-
plete and inaccurate information. As the constraint
satisfaction solvers can provide many solutions, a
product manager can start with an incomplete spec-
ification that only includes a small set of constraints,
and then generate a family of solutions that may be
acceptable under a given uncertainty, and if needed
the product manager can iteratively provide more
details by adding more constraints or adjusting the
constraints so that a harder limit on the solution
space is specified.

6) Detecting inconsistent priorities or impossible re-
lease plans. In practice, relations among require-
ments such as relative priority relations may include
circular references that are gives an inconsistent
specification. A CSP solver can, often within short
execution time, detect if there is no solution to a

constraint-based priority specification or a release
planning problem. The product manager can revisit
the inconsistent specification and relax or otherwise
update the constraints given.

7) Open constraint solver API. Our examples in Sec-
tions III and IV we used the MiniZinc language [14]
to illustrate the power of a high-level CSP language
in SPM problem specification. It is, however, also
possible to use the API of a constraint solver, such
as the JaCoP API [12], directly in Java to provide
database connectivity, Internet access, graphical user
interfaces, etc.

Some of the above benefits, in particular benefit 3
and 4, also holds for Integer Linear Programming (ILP)
that has been applied in previous approaches to release
planning, e.g. [8], [33], but we believe that these benefits
are even further emphasized if combined with the other
benefits of a CSP approach, e.g. a powerful problem
specification language and iterative exploration of the
solution space. CSP is a complementary method to ILP,
and these approaches can be combined to utilize the best
abilities of each solving strategy in a specific situation.
However, the rich set of CSP constraints, exemplified in
benefit 1 above, goes beyond linear inequalities and also
include arithmetical and specialized global constraints not
only for integers but also for sets. This can potentially
make problem specification easier for product managers,
although this conjecture needs to be verified empirically.
CSP specification also provides more flexibility in the
choice of solving strategy, compared to ILP, as CSP can
address both optimization and satisfaction problems.

Limitations. There are several potential limitations of
the constraint solving approach to SPM that are outlined
subsequently:

1) Constraint solving competence needed. Product
managers need a degree of understanding of con-
straint solving, and it can be questioned if the aver-
age product manager is capable of using a constraint
specification language. Some product managers have
engineering background and may very well be able
to utilize the expressive power of languages such as
MiniZinc. Other product managers may get access
to the power of constraint solving techniques if
provided with a GUI front end that can hide some
of the details.

2) Scalability in output analysis by humans. The
strength of enabling incomplete specifications can
also be a problem if the solution space turns out
to be very large. As the number of features of a
release plan increases, a product manager may be
overloaded with solution options, resulting in a scal-
ability threat to the proposed approach. However, it
may be possible to develop heuristics for assisting
product managers in the exploration of the solution
space.

3) No SPM-specific constraints. As SPM currently is no
major application area of constraint solving, the al-
gorithms implemented are perhaps better tailored to

other areas than SPM. There may be unimplemented
constraint types or search heuristics that is needed
to better support SPM, that may be discovered if
constraint solving is applied in empirical studies and
industrial SPM practice.

4) No GUI tailored for SPM. Currently, to the best of
our knowledge, no user interface front-end to con-
straint solvers exists that is tailored specifically to
SPM with user-friendly packaging of SPM-relevant
decision problems.

5) Further development in constraints solving tech-
nology may be needed. The industrial practice of
SPM often involves great uncertainty in estimates
of e.g. business value and implementation effort and
information on inter-dependencies may be lacking.
A problem that includes inconsistent constraints may
need "softer" satisfaction search to satisfy a relevant
subset of soft constraints [38]. Thus, constraint
solving technology may not be mature enough for
SPM to handle a reality of ill-structured problems,
frequent inconsistencies and confidence intervals
with a stochastic nature.

Based on the above limitations and the demonstration
of the idea to apply constraint solving to SPM decision-
making problems in previous sections, we propose in
Section VI a set of issues of further research that may
help to realize potential benefits and address some of the
potential limitations.

VI. CONCLUSION AND FURTHER RESEARCH

In summary, this paper makes the following claims of
contribution, novelty and utility:

• Contribution. We demonstrate how constraint sat-
isfaction can be applied to software product man-
agement decision problems, such as requirements
prioritization and release planning. This approach is
discussed in terms of benefits and limitations leading
to a set of issues for further research.

• Novelty. Previous approaches have been devoted to
specific algorithms for solving the decision problems
of prioritization and release planning. The approach
of constraint satisfaction has to the best of our
knowledge not been proposed previously, being the
first approach that may help humans to focus on the
problem specification while enabling the machine to
combine standard implementation of many different
optimization and satisfaction algorithms.

• Utility. Our conjecture is that constraint satisfaction
problem specification for SPM can provide a more
general, powerful, flexible and concise way of ex-
pressing prioritization and release planning problems
with problem understanding rather than algorithmic
implementation in focus. We demonstrate using ex-
amples how these benefits may be realized and dis-
cuss potential limitations. The discussion on benefits
and limitations can be a basis both for future em-
pirical work in SPM to verify the potential benefits,
as well as for research into new solver capabilities,

user interfaces and methodological support to address
limitations.

Research agenda. Based on the provided demonstration
and discussion of a constraint satisfaction approach to
SPM decision-making, we conclude by giving a list of
issues that can act as a part of a research agenda for the
communities of SPM and CSP researchers to take on in
future research:

1) Empirical studies. There is a need to verify the
proposed approach by empirical investigation of
domain-specific constraints in prioritization and re-
lease planning. In particular, it is important to further
understand what types of constraints that are most
important in practice, and how practicing product
managers and other SPM stakeholders think when
they decide on priorities and release plans. A major
conjecture to be investigated is the utility of high-
level CSP specification languages such as MiniZinc
in use by practitioners as a tool for understanding
and investigation of SPM decision problems.

2) Scalability. It is important to investigate the scalabil-
ity of the proposed approach both in terms of com-
putational efficiency and human usability aspects. It
would be interesting to compare runtime of existing
approaches to CSP solvers. In general, the bin
packing and knap sack problems are NP-complete,
thus ILP in combination with other optimization
approaches such as genetic algorithms may yield
faster execution in particular cases. Benchmarking
the computational efficiency for finding optimal and
near optimal solutions would thus be interesting.
Perhaps even more important is to investigate how
humans can handle large-scale solutions spaces, and
how support can be given to humans in their naviga-
tion among many different potential decisions. This
is related to the issue of visualization.

3) Visualization. In order to help product managers
in their decision-making it would be valuable to
investigate graphical user interfaces for solution
exploration including new ways of visualization of
priorities and their inter-relationships as well as de-
picting feature allocations to releases and resources.
By defining measures of distance between solutions
and providing support for the clustering of similar
solution, useful visualizations may be discovered.
This is related to solution robustness analysis.

4) Solution robustness analysis. In release planning it is
very interesting to do what-if-analysis [33] to inves-
tigate the effects of changed constraints on release
plans. Product managers may prefer solutions that
are not so sensitive to changes in feature alloca-
tions. Robustness of release plans expressed using
constraints may be investigated to see if and how
the CSP approach can support robustness analysis
beyond existing approaches.

5) Domain-specific languages for CSP in SPM. General
constraint satisfaction languages such as MiniZinc
lack some capabilities that would make specifica-

tions easier for product managers to interpret. In
parallel with further development of general CSP
languages, researchers can also investigate special
purpose languages for specification of SPM deci-
sion problems. The balance between generality and
specificity is an interesting topic for further research.

6) CSP solver API-development for SPM-tooling. By
adapting solver Application Programming Interfaces
such as the JaCoP API [12], more tailored support
for SPM tooling may be provided. Such work can be
a basis for combing existing requirements database
applications and feature tracking tools with the con-
straint solving approach.

7) Heuristics for global constraints. CSP solves pro-
vide a comprehensive toolbox for expressing con-
straint problems using efficient global constraints as
discussed in Section IV. However, modeling of SPM
decision-making problems with constraints require
specific competence. Thus, it would be interesting
to develop guidelines and heuristics that map SPM
decision problems to constraint specifications, and
investigate if this can help practitioners in utilizing
the potential benefits of CSP applications in SPM.

8) Analysis of inconsistent constraints. In general, the
problem of identifying minimal subsets of incon-
sistent constraints can be computationally hard for
large problems. However, better support for tracing
the solution search process beyond a line number
in a specification would be interesting, in particu-
lar pin-pointing constraints involved in an circular
inconsistencies through the common variables in-
volved in a set of relations.

9) Soft and stochastic constraints for SPM. The
decision-making in real-world SPM practice in-
volves great uncertainties and incomplete informa-
tion. Soft constraint approaches [38] and stochastic
constraint programming [39] can be investigated to
see if these extensions to CSP can provide added
benefits to the modeling of SPM problems.

The above potential items of a SPM-CSP research
agenda are given in non-prioritized order. However, we
believe that further empirical understanding of SPM
decision-making is of highest priority when selecting
research directions. Otherwise we risk focus on small
details with little relevance to future SPM practice.

ACKNOWLEDGMENT

The authors would like to give special thanks to Dietmar
Pfahl for valuable comments on a draft version of this
paper. Many thanks also to the anonymous reviewers that
provided many constructive improvement proposals. The
project is partly funded by the Swedish Foundation for
Strategic Research and VINNOVA (The Swedish Govern-
mental Agency for Innovation Systems) within the EASE
Industrial Excellence Center: http://ease.cs.lth.se/

REFERENCES

[1] S. Brinkkemper, C. Ebert, and J. Versendaal, “Proceedings
of the first international workshop on software product

management,” in Software Product Management, 2006.
IWSPM ’06. International Workshop on, sept. 2006, pp.
1 –2.

[2] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis,
J. Versendaal, and L. Bijlsma, “On the creation of a
reference framework for software product management:
Validation and tool support,” 2006 International Workshop
on Software Product Management (IWSPM’06), pp. 3–12,
2006.

[3] C. Ebert, “The impacts of software product management,”
Journal of Systems and Software, vol. 80, no. 6, pp. 850 –
861, 2007.

[4] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of
methods for prioritizing software requirements,” Informa-
tion and Software Technology, vol. 39, no. 14-15, pp. 939–
947, 1998.

[5] T. Bebensee, I. van de Weerd, and S. Brinkkemper, “Binary
priority list for prioritizing software requirements,” in Re-
quirements Engineering: Foundation for Software Quality,
ser. Lecture Notes in Computer Science, R. Wieringa and
A. Persson, Eds. Springer Berlin / Heidelberg, 2010, vol.
6182, pp. 67–78.

[6] C. Li, J. van den Akker, S. Brinkkemper, and G. Diepen,
“Integrated requirement selection and scheduling for the
release planning of a software product,” in Requirements
Engineering: Foundation for Software Quality, ser. Lecture
Notes in Computer Science, P. Sawyer, B. Paech, and
P. Heymans, Eds. Springer Berlin / Heidelberg, 2007,
vol. 4542, pp. 93–108.

[7] C. Li, M. van den Akker, S. Brinkkemper, and G. Diepen,
“An integrated approach for requirement selection and
scheduling in software release planning,” Requirements
Engineering, vol. 15, pp. 375–396, 2010.

[8] G. Ruhe and M. Saliu, “The art and science of software
release planning,” Software, IEEE, vol. 22, no. 6, pp. 47 –
53, nov.-dec. 2005.

[9] D. Greer and G. Ruhe, “Software release planning: an evo-
lutionary and iterative approach,” Information and Software
Technology, vol. 46, no. 4, pp. 243 – 253, 2004.

[10] E. Tsang, Foundations of Constraint Satisfaction.
Academic Press, London and San Diego, 1993. [Online].
Available: http://www.bracil.net/edward/FCS.html

[11] K. Kuchcinski, “Constraints-driven scheduling and resource
assignment,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 8, no. 3, pp. 355–383,
Jul. 2003.

[12] JaCoP web page, visited May 2010. [Online]. Available:
http://www.jacop.eu/

[13] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of
Constraint Programming. Amsterdam, The Netherlands:
Elsevier Science Publishers, 2006.

[14] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck,
and G. Tack, “Minizinc: Towards a standard cp mod-
elling language,” in Principles and Practice of Constraint
Programming (CP2007), ser. Lecture Notes in Computer
Science, C. Bessiere, Ed. Springer Berlin / Heidelberg,
2007, vol. 4741, pp. 529–543.

[15] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated
analysis of feature models 20 years later: a literature
review,” Information Systems, vol. 35, no. 6, 2010. [Online].
Available: http://dx.doi.org/10.1016/j.is.2010.01.001

[16] S. Woods and Q. Yang, “Program understanding as con-
straint satisfaction: representation and reasoning tech-
niques,” Automated Software Engineering, vol. 5, no. 2,
pp. 147 – 81, 1998/04/.

[17] R. DeMilli and A. Offutt, “Constraint-based automatic test
data generation,” IEEE Transactions on Software Engineer-
ing, vol. 17, no. 9, pp. 900 – 10, Sept. 1991.

[18] C. Salinesi, R. Mazo, D. Diaz, and O. Djebbi, “Using inte-
ger constraint solving in reuse based requirements engineer-
ing,” 18th IEEE International Requirements Engineering
Conference (RE’10), pp. 243–251, 2010.

[19] C. Salinesi, D. Diaz, O. Djebbi, R. Mazo, and C. Rolland,
“Exploiting the versatility of constraint programming over
finite domains to integrate product line models,” 17th
IEEE International Requirements Engineering Conference
(RE’09), pp. 375–376, 2009.

[20] J. Karlsson, “Software requirements prioritizing,” Require-
ments Engineering, 1996., Proceedings of the Second In-
ternational Conference on, pp. 110–116, 1996.

[21] J. Karlsson, S. Olsson, and K. Ryan, “Improved practical
support for large-scale requirements prioritising,” Require-
ments Engineering, vol. 2, pp. 51–60, 1997.

[22] P. Berander and A. Andrews, “Requirements prioritization,”
in Engineering and Managing Software Requirements,
A. Aurum and C. Wohlin, Eds. Springer Berlin Heidelberg,
2005, pp. 69–94.

[23] B. Regnell and S. Brinkkemper, “Market-driven require-
ments engineering for software products,” in Engineering
and Managing Software Requirements, A. Aurum and
C. Wohlin, Eds. Springer Berlin Heidelberg, 2005, pp.
287–308.

[24] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis,
J. Versendaal, and L. Bijlsma, “Towards a reference frame-
work for software product management,” 14th IEEE In-
ternational Requirements Engineering Conference (RE’06),
pp. 319–322, 2006.

[25] A. Herrmann and M. Daneva, “Requirements prioritization
based on benefit and cost prediction: An agenda for fu-
ture research,” in International Requirements Engineering,
2008. RE ’08. 16th IEEE, sept. 2008, pp. 125 –134.

[26] B. Regnell, M. Host, J. Natt och Dag, P. Beremark,
and T. Hjelm, “An industrial case study on distributed
prioritisation in market-driven requirements engineering
for packaged software,” Requirements Engineering, vol. 6,
no. 1, pp. 51–62, 2001.

[27] L. Lehtola and M. Kauppinen, “Empirical evaluation of two
requirements prioritization methods in product development
projects,” in Software Process Improvement, ser. Lecture
Notes in Computer Science, T. Dingsøyr, Ed. Springer
Berlin / Heidelberg, 2004, vol. 3281, pp. 161–170.

[28] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and
J. Natt och Dag, “An industrial survey of requirements
interdependencies in software product release planning,”
2001, pp. 84 – 91.

[29] P. Carlshamre, “Release planning in market-driven software
product development: Provoking an understanding,” Re-
quirements Engineering, vol. 7, no. 3, pp. 139–151, 2002.

[30] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B.
Saleem, and M. U. Shafique, “A systematic review on
strategic release planning models,” Information and Soft-
ware Technology, vol. 52, no. 3, pp. 237 – 248, 2010.

[31] A. Ngo-The and G. Ruhe, “Optimized resource allocation
for software release planning,” IEEE Transactions on Soft-
ware Engineering, vol. 35, no. 1, pp. 109 – 23, 2009.

[32] Release Planner web page, visited May 2010. [Online].
Available: https://www.releaseplanner.com/product.htm

[33] M. van den Akker, S. Brinkkemper, G. Diepen, and
J. Versendaal, “Software product release planning through
optimization and what-if analysis,” Information and Soft-
ware Technology, vol. 50, no. 1-2, pp. 101 – 111, 2008.

[34] IBM ILOG CPLEX Optimizer web page, visited
May 2010. [Online]. Available: http://www-
01.ibm.com/software/integration/optimization/cplex-
optimizer/

[35] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The next
release problem,” Information and Software Technology,
vol. 43, no. 14, pp. 883 – 90, 2001/12/15.

[36] P. Shaw, “A constraint for bin packing,” in Principles and
Practice of Constraint Programming (CP 2004), ser. Lec-
ture Notes in Computer Science, M. Wallace, Ed. Springer
Berlin / Heidelberg, 2004, vol. 3258, pp. 648–662.

[37] A. Szőke, “Bin-packing-based planning of agile releases,”
in Evaluation of Novel Approaches to Software Engineer-
ing, ser. Communications in Computer and Information Sci-
ence, L. A. Maciaszek, C. Gonzalez-Perez, and S. Jablon-
ski, Eds. Springer Berlin Heidelberg, 2010, vol. 69, pp.
133–146.

[38] P. Meseguer, F. Rossi, and T. Schiex, “Chapter 9
soft constraints,” in Handbook of Constraint Program-
ming, ser. Foundations of Artificial Intelligence, P. v. B.
Francesca Rossi and T. Walsh, Eds. Elsevier, 2006, vol. 2,
pp. 281 – 328.

[39] T. Walsh, “Stochastic constraint programming,” in 15th
European Conference on Artificial Intelligence, F. van
Harmelen, Ed. IOS Press, Amsterdam, 2002, pp. 111–
115.

