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Popular summary

To correctly describe the laws that govern the physical world, we have to study the
structure of matter and the interactions between the fundamental constituents of the
universe. The basic building block for all regular matter in the universe is the atom,
which is made up of electrons orbiting the atomic nucleus. The atom is a quantal
manybody system, characterized by the discrete, and distinctive for each element,
energy levels of the electrons. Interactions of the electrons with internal and ex
ternal electromagnetic fields give rise to atomic transitions, through absorption, or
emission, of photons with certain energies, causing the total energy of the system to
change. Since the allowed energy levels are unique to an element, so are the energies
corresponding to transitions between those levels.

Our knowledge on the formation and evolution of the universe, in principle, comes
from the electromagnetic radiation that is emitted from stars through atomic transi
tions. The emitted electromagnetic radiation is, commonly, displayed as an energy
spectrum, which contains lines of different energies and intensities. The positions of
the spectral lines reveal the elements a specific star consists of, and from their intensi
ties the elemental abundances can be deduced. For the interpretation of the observed
spectra, reference atomic data are, however, needed. Laboratory measurements are
usually costly and timeconsuming, and as a result, the produced experimental data
are not always sufficient. It is, therefore, necessary to develop –and continuously
improve the already existing– quantum mechanical models that describe the atomic
structure and underlying processes that generate the observed spectra. Computations
can, then, be performed to predict atomic parameters, such as energies and probabil
ities of atomic transitions. Such examples are the computations that were performed
in Papers IIII for several carbon and aluminium ions. Atomic parameters used to
characterize the response of spectral lines to a given value of an external magnetic
field were additionally generated in Paper Iv.

Although the atomic nucleus is ∼ 104 times smaller than the size of the atom, its
finite mass and extended charge density distribution have a measurable effect on the
atomic spectra. For a particular element, the spectral lines from different isotopes
display a small shift in energy, known as the isotope shift. In systems containing a
nucleus with a nonzero total spin, the nuclear electromagnetic moments, further,
interact with the electromagnetic field generated by the electrons at the region of the
nucleus. This interaction results in splittings of the atomic energy levels, known as
the hyperfine structure, and in consequence, transitions between these levels emerge
in the spectra as different lines. The atomic electrons are, therefore, sensitive probes
of the properties of the nucleus they are bound to. In Papers vvII, we show how the
modeling of isotope shifts and hyperfine structures can be combined with experimen

vii



tal data to extract information about the specifics of the charge density distributions
and the electromagnetic moments of nuclei. Nuclearmodel independent informa
tion are used to benchmark nuclear structure calculations based on different effective
interactions. An understanding of the structure and dynamics of atomic nuclei is
fundamental to our overall picture of the universe, as nucleosynthesis is inseparably
connected with stellar and galactic evolution.

viii



Populärvetenskaplig sammanfattning på svenska

För att beskriva lagarna som styr den fysiska världen, behöver vi studera materiens
struktur och hur dess olika delar växelverkar. Den grundläggande byggstenen för all
känd materia i universum är atomen, vilken består av elektroner som rör sig runt en
atomkärna. Atomen är ett kvantiserat mångkropparsystem, vars struktur karakterise
ras av de diskreta och för ämnet unika energinivåer. Växelverkan mellan elektroner
na och interna och externa elektromagnetiska fält leder till energiövergångar genom
absorption eller emission av fotoner med väldefinierade energier. Dessa övergångar
medför att elektronerna hoppar från ett tillstånd till ett annat, varvid atomens energi
nivå ändras. Eftersom energinivåerna är unika för ämnet, så blir på motsvarande sätt
energierna för övergångarna mellan dessa nivåer unika.

Vår kunskap om universums skapelse och utveckling kommer i huvudsak från ljuset
som sänds ut från atomerna i stjärnorna. Ljuset uppdelas i ett energispektrum, med
spektrallinjer med olika energier och intensiteter. Spektrallinjernas energier, eller po
sitioner, avslöjar vilka ämnen som bygger upp stjärnorna, och från linjernas intensitet
kan förekomsten av de olika ämnena bestämmas. För att tolka observerade spektra be
hövs atomär referensdata. Dessa data kan bestämmas via laboratoriemätningar, men
dessa är ofta dyra och tidskrävande. Data från experiment täcker inte heller behoven
fullt ut. Det är därför nödvändigt att utveckla och förbättra kvantmekaniska modeller
och teorier, vilka beskriver atomens energinivåer och övergångarna mellan nivåerna.
Baserat på dessa modeller kan sedan beräkningar utföras, vilka ger de tillåtna energi
nivåerna och sannolikheterna för energiövergångar. Exempel på sådana beräkningar
presenteras i Artiklarna IIII för ett antal joner i kol och aluminium. Atomär data som
karakteriserar hur atomer påverkas av externa magnetiska fält beskrivs i Artikel Iv.

Även om atomkärnan är ungefär 104 gånger mindre än atomen, så har dess massa och
utsträckta laddningsfördelning en mätbar effekt på atomens energispektrum. För ett
givet ämne uppvisar spektrallinjerna från olika isotoper ett litet energiskift, känt som
isotopskiftet. I atomer med kärnor med ett totalt rörelsemängdsmoment skilt från
noll växelverkar kärnans elektromagnetiska moment med det eletromagnetiska fältet
genererat av elektronerna. Denna växelverkan leder till en experimentellt mätbar upp
spaltning av energinivåerna, känd som hyperfinstruktur. Atomens elektroner är alltså
känsliga prober, vilka känner av egenskaperna hos kärnan. I Artiklarna vvII visar vi
hur modellering av isotopskift och hyperfinstruktur kan kombineras med experimen
tell data, för att bestämma kärnornas laddningsfördelningar och elektromagnetiska
moment. Sådan modelloberoende information kan sedan användas för att validera
kärnstrukturberäkningar baserade på olika effektiva krafter mellan nukleonerna i kär

ix



nan. Tillsammans är en ökad förståelse för kärnornas struktur och dynamik viktig
för vår övergripande bild av universum, då kärnsyntes är tätt knuten till stjärn och
galaxutveckling.
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Chapter 1

Introduction and Motivation

Physics investigates the basic principles and laws that govern the physical world we live
in. Through astrophysical observations, a continuous effort is put to unveil the mys
teries of our universe. To understand how the universe, its galaxies and solar systems
were formed and evolved, we need to closely study their constituents; celestial objects
including our Sun and other stars. Stars are hot spheres of plasma that are powered
by nuclear fusion in their cores, where various elements are formed. Stellar evolution
studies are, thereby, inseparable with nucleosynthesis and chemical evolution [1].

The main source of information about stars is the “light” they emit. When the emit
ted electromagnetic radiation is displayed according to the energy/wavelength, the
result is an energy spectrum. Hot opaque objects, such as the photospheres of stars,
resembling a blackbody, emit electromagnetic radiation at all wavelengths, which
results in continuum spectra. As soon as the electromagnetic radiation is observed
through the stars’ cooler atmospheres, some of the light is, however, absorbed, giving
rise to socalled absorption spectra (see, e.g., Fig. 1.1). Conversely, if one examines
the incoming light from a lowdensity gas cloud, such as a nebula, only the emitted
wavelengths are observed, producing an emission spectrum. Absorption and emis
sion spectra consist of lines of different energies and intensities. The positions of the
observed lines depend on the elements an astronomical object consists of and, from
their shapes, the elemental abundances can be deduced [2, Ch. 16]. Correct deduction
of elemental abundances and chemical evolution modeling are essential for putting
together a complete picture of the stellar and galactic evolution [3–5].

The elemental abundances are, however, not observed, but interpreted. To extract
more useful information from astrophysical observations, the underlying processes
that generate the spectra need to be well understood and described. Examples of such

3



Figure 1.1: Sample of spectra in the optical region that are used for abundance analysis. The
blue spectrum corresponds to the Sun, the red and dark gray spectra are the stan
dard benchmark giants Arcturus and muLeo, while the lighter gray spectra repre
sent about 50 other giants [6]. For a more thorough description of the spectra, see:
http://www.astro.lu.se/~henrikj/posters.shtml.

processes are the interactions of the electromagnetic radiation with different atomic
systems, causing them to transition from one energy state to another. In many cases,
the descriptions of atomic structures and interactions are only available through quan
tum mechanical calculations that need to be benchmarked against precision experi
ments. Reliable atomic data can, then, be generated and may be used to identify the
observed spectral lines [7, 8] and to deduce elemental abundances. Papers IIII, in
cluded in this thesis, are examples of atomic structure calculations of transition rates,
weighted oscillator strengths, as well as lifetimes of excited states. The transition rates
and weighted oscillator strengths, respectively, determine the anticipated intensities of
emission and absorption lines, for a certain amount of a particular species and under
certain plasma conditions (pressure, temperature, density, and so on). They are, thus,
essential in astrophysical applications, e.g., in abundance and plasma analyses of stars.

The universe is abundant in sources of magnetic fields, such as planets and stars. Mag
netic fields play a key role in some of the most important astrophysical phenomena,
such as stellar flares, Xray emission, and starspots, which are observed at the surface
layers of stars, including our Sun [9–12]. Cosmic magnetism is studied, e.g., through
the detection of polarized light, exhibiting the effects steaming from the presence of
magnetic fields. Quantifying the polarization of light as a function of the wavelength,
known as spectropolarimetry, is the most powerful tool for identifying the magnetic
fields in astrophysical objects [13]. An important parameter in the interpretation of
spectropolarimetric observations is the Landé gfactor, describing the splitting of the
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atomic energy levels for a given value of the magnetic field. Paper Iv reports on cal
culations of Landé gfactors in several atoms and ions of astrophysical interest. The
Landé gfactors are also interesting from a purely theoretical viewpoint, as they provide
valuable information about the coupling conditions in atomic systems, and they can
be used to identify and label the atomic states [14, 15].

The presence of different isotopes of the same element in astronomical objects gives
rise to splittings of the atomic spectral lines, which are referred to as isotope shifts.
When these splittings are resolved in the observed spectra, isotope shift data can be
used to derive the isotopic abundances (see, e.g., [16]). Observed stellar isotopic abun
dances may reveal admixtures, which are very different from the ones observed in our
solar system and are referred to as isotope anomalies [17, 18]. Such anomalies are
powerful tools for gaining more insight into the mechanisms that occur during nu
cleosynthesis [19, 20]. Isotope shift data are crucial even when the isotopic splittings
are not resolved. In the latter case, they appear in the spectra as line broadenings,
altering the shapes of the line profiles, as well as the total line intensities. To correctly
interpret the observed spectra and perform abundance analyses, it is necessary that
the modeling of the line profiles accounts for the predicted isotope shifts [21].

In species with nonzero nuclear spin, i.e., odd number of nucleons, the noncentral
electromagnetic interactions between the nuclei and the electron clouds in atoms
cause further splittings of the finestructure energy levels, which are known as the hy
perfine structure. Highresolution spectra often reveal the different components of the
atomic spectral lines that correspond to the transitions between the hyperfine structure
levels. Yet, when these lines are not resolved, they represent an additional broadening
mechanism. Correct interpretation of the observed spectral lines requires that both
isotope shifts and hyperfine structure splittings are taken into account in the calculations
of the synthetic spectra [22, 23]. Figure 1.2 shows an example of a synthetic spectrum,
where the hyperfine structure has been omitted, thus hampering the interpretation of
the observed spectrum. It should be noted that as the hyperfine interaction breaks
the J symmetry of the atom, it may open forbidden (J = 0→ J = 0) transitions,
known as hyperfineinduced transitions. Such transitions are important for plasma
diagnostics, such as the determination of densities and isotopic ratios in lowdensity
plasmas [24, 25].

The isotope shifts arise from the isotope specific properties of atomic nuclei. The finite
nuclear masses give rise to recoil energies, which reflect the mass shift contributions
to the total isotope shifts, whereas the extended and unique nuclear charge density
distributions induce dissimilar central fields felt by the electrons that represent the
field shift contributions. Both these contributions to the observed isotope shifts can
be factorized into electronic and nuclear parts. The nuclear parts are written in terms
of the nuclear masses and the radial moments of the nuclear charge density distribu
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Figure 1.2: Line of neutral scandium at 22024.15Å. The black line is observed spectrum from
Arcturus, and the red line is a synthetic spectrum using data for the scandium line
that do not include hyperfine structure. For more details see [26].

tions, for the mass and field shift effects, respectively. On the other side, the hyperfine
structures emerge from the interactions between the electrons’ magnetic and inhomo
geneous electric fields and the electromagnetic moments of the nucleus. The lowest
nontrivial nuclear magnetic and electric multipoles are the magnetic dipole and elec
tric quadrupole moments. To the lowest orders, the hyperfine splittings can, thus,
be described by (1) the interaction of the nuclear magnetic dipole moment with the
magnetic field generated by the electrons at the site of the nucleus and (2) the interac
tion of the electric quadrupole moment with the electric field gradient at the nucleus.
All in all, the quantum mechanical calculations of isotope shifts and hyperfine structures
must rely on the information on the relevant nuclear structure parameters.

The isotope shifts and hyperfine structures can, alternatively, be evaluated using high
precision experimental techniques, such as laser spectroscopy [27] and dielectronic
recombination [28]. The measurements of the isotope shifts and hyperfine structures can
further be combined with firstprinciples (ab initio) calculations of the electronic parts
of these interactions to deduce nuclear properties, such as spins, multipole moments,
and charge radii. As of today, this combined effort from theory and experiment has
made available nuclear structure properties for isotope sequences, spanning the entire
periodic table [29]. The observed trends are used to benchmark the nuclear structure
calculations, which are key to understanding the nucleosynthesis mechanisms. In Pa
pers v and vI, the hyperfine structure measurements that were performed in neutral tin
using collinear laser spectroscopy [30] were combined with atomic structure calcula
tions to extract the electric quadrupole moments of oddmass tin isotopes. Paper vII
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presents a novel method that combines experimental isotope shifts and calculations of
the electronic mass and field shift parameters to probe details of nuclear charge density
distributions beyond the –typically extracted– charge radii.

This thesis aims at complementing Papers IvII by giving an insight on the compu
tations of the aforementioned atomic parameters, while addressing the greatest chal
lenges. During the past decades, various computational methods have been developed
for the description of the atom and its structure (see, e.g., [31–33]). The results of the
papers included in this thesis were produced using the latest versions of the Gen
eral Relativistic Atomic Structure Package (GRASp) [32, 34], which implements the
multiconfiguration DiracHartreeFock (MCDHF) approach [35]; a fully relativistic
variational method. Chapter 2 provides the theoretical background of fully relativistic
atomic structure calculations, focusing on the principles of the MCDHF approach,
and thereafter, Chapters 3, 4, and 5 summarize the works that were performed in Pa
pers IIv, Papers vvI, and Paper vII, respectively. Chapter 6 contains a brief outlook
of the thesis.
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Chapter 2

Relativistic Atomic Structure¹

The relativistic atomic structure theory is fully discussed in a number of previous
works, including the book on atomic structure by Johnson [37], which uses the frame
work of perturbation theory to illustrate the fundamental concepts of the relativistic
treatment of atoms. The book by Grant [35] describes in great detail the relativistic
modeling of atoms and molecules using a variational approach, and in particular, the
multiconfiguration DiracHartreeFock (MCDHF) method, which is the method of
our choice. A very readable description of the relativistic atomic theory can also be
found in the publication by Dyall et al. [38], which reports on the MCDHF method
and its implementation into the GRASp code. Finally, both nonrelativistic and rela
tivistic multiconfiguration methods are discussed in the recent review article by Froese
Fischer et al. [39]. With this chapter, we aim at providing the reader with the basic
principles of the relativistic multiconfiguration method as it applies to the mostup
todate versions of GRASp [32, 34].

As a starting point, in Sec. 2.1, the relativistic manyelectron Hamiltonians, which are
at the heart of the variational and configuration interaction problems, are presented.
By introducing the concept of the central field approximation, in Sec. 2.2, we show
how the approximate wave functions of finestructure states, known as atomic state
functions, can be obtained as expansions over antisymmetrized basis functions, which
are coupled products of oneelectron Dirac orbitals. Thereafter, Sec. 2.3 describes the
variational and configuration interaction methods that are implemented to determine,
from an energetic point of view, the “best” atomic state functions. Besides the en
ergies of atomic levels, the resulting atomic state functions are also used to compute
other measurable quantities. The matrix elements of tensor operators associated with
these observables are evaluated according to Sec. 2.4. The chapter concludes with an

¹This chapter is based on a similar chapter from the licentiate thesis of Papoulia A. [36].
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account of the general computational methodology that is followed in the multicon
figuration calculations for generating the atomic state expansions (see Sec. 2.5).

2.1 Relativistic ManyElectron Hamiltonians

For complex atomic systems with N>1 electrons, the Hamiltonian can be expressed
in terms of a sum over N oneparticle operators hi and N(N −1)/2 twoparticle
operators hij ,

H =

N∑
i=1

hi +

N∑
i<j

hij , (2.1)

where the restriction i<j on the sum of the second part ensures that particles do not
interact with themselves, and that there is also no occurrence of terms involving the
same pair of particles, such as h12 and h21.

2.1.1 The DiracCoulomb Hamiltonian

A common first approach to the relativistic treatment is to apply a DiracCoulomb
approximation in which the oneelectron operator in Eq. (2.1) has the general form

hi = Ti + Vnuc(ri) , (2.2)

where Ti is the kinetic energy of the electron i and Vnuc(ri) is the potential energy
arising from the Coulomb interaction of this electron with the atomic nucleus, with
ri being the distance between the electron and the nucleus.

The potential Vnuc(ri) accounts for an extended nuclear charge density distribution,
instead of the one from a pointlike nucleus. An extended charge distribution can be
obtained by an approximate model, such as the Fermi distribution [40], which is used
in the latest versions of GRASp. The nuclear charge distribution models are central to
Paper vII and will be discussed more thoroughly in Ch. 5.

According to Dirac’s theory, the kinetic energy in Eq. (2.2) is given by

TD
i = c αi · pi + (βi − 1)c2. (2.3)

This expression is shifted so that the zeroenergy corresponds to the electron ionization
limit (to coincide with nonrelativistic conventions). The constant c denotes the speed
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of light in atomic units², p ≡ −i∇ is the electron momentum operator, where i
denotes the imaginary unit and ∇ is the gradient, or else nabla, operator, and α and
β are the 4×4 Dirac matrices:

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
, (2.4)

where I is the unit 2×2 matrix, and σ= (σx, σy, σz) is defined by the Pauli spin
matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.5)

In the relativistic treatment of the atom, the oneparticle Dirac operator is, then,
given by

hD
i = TD

i + Vnuc(ri) . (2.6)

The twoparticle operator in Eq. (2.1) can, to a first approximation, be represented
by the potential energy V (i, j) that emerges from the Coulomb interaction between
two electrons i and j, that is

hC
ij = V (i, j) =

1

rij
, (2.7)

where rij = |ri − rj | is the interelectronic distance. Inserting (2.6) and (2.7) in
Eq. (2.1) results in, what is known as, the DiracCoulomb Hamiltonian

HDC =

N∑
i=1

[c αi · pi + (βi − 1)c2 + Vnuc(ri)] +

N∑
i<j

1

rij
. (2.8)

The DiracCoulomb Hamiltonian is the one used in the selfconsistent field (SCF)
calculations. The SCF procedure will be discussed later in Sec 2.3.3.

2.1.2 Breit interaction

In relativistic atomic structure, the twoelectron interaction is essentially much more
complex than the instantaneous Coulomb interaction given by Eq. (2.7), making the

²The atomic units are defined by requiring that the Planck’s constant ℏ, and the electron’s rest mass
me and charge e, all have the value 1. The speed of light in the vacuum is given by c = 1/α, where
α ≈ 1/137 is the finestructure constant.
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DiracCoulomb Hamiltonian (2.8) only a first approximation. For precision calcu
lations, further corrections suggested by quantum electrodynamics (QED) [41] must
be taken into account [42].

The leading correction to the Coulomb interaction is given by the socalled transverse
Breit operator, describing the magnetic interactions and retardation effects. The latter
effects emerge from the finite speed of the exchanged virtual photons between a pair
of electrons [43]. The frequencydependent Breit operator, correct to firstorder, is
expressed as

HB(ω) = −
N∑
i<j

[
αi ·αj cos (ωijrij/c)

rij
+ (αi ·∇i)(αj ·∇j)

cos (ωijrij/c)− 1

ω2
ijrij/c

2

]
,

(2.9)

where ωij = |ϵi − ϵj |/c is the angular frequency of the exchanged virtual photon,
related to the differences between the oneparticle energies of the electrons i and j
and ∇ is the gradient operator involved in the differentiation of rij = |ri − rj |.

In the low frequency approximation, where ωij→0, the Breit interaction reduces to

HB = −
N∑
i<j

1

2rij

[
(αi ·αj) +

(αi · rij)(αj · rij)
r2ij

]
, (2.10)

where the first term on the righthand side is referred to as the magnetic (Gaunt)
operator and the second term is the retardation correction.

Accounting for the Breit interaction by adding either the operator (2.9) or the operator
(2.10) to the Hamiltonian (2.8), results in the DiracCoulombBreit Hamiltonian

HDCB = HDC +HB(ω) ≃ HDC +HB. (2.11)

The Breit corrections to the DiracCoulomb Hamiltonian are accounted for in the rel
ativistic configuration interaction (RCI) calculations that follow the SCF procedure.
Additional significant QED contributions, such as the selfenergy (SE) and vacuum
polarization (VP), can also be included in the RCI calculations. This yields the final
Hamiltonian

HDCB+QED = HDCB +HSE +HVP. (2.12)
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2.2 Relativistic Wave Functions

In studies of atomic structure, the fundamental problem is the calculation of the wave
functions that describe the quantum states of interest. Once the wave functions have
been determined, a number of atomic properties can be computed (see Sec. 2.4).
The Hamiltonian operators (2.8) and (2.12) have both a discrete and a continuous
spectrum. In this thesis, we shall limit ourselves to the wave functions that belong
to the discrete spectrum, which represent bound states. Wave functions representing
bound states are assumed to be normalized.

A stationary state of anN electron system is described by a wave functionΨ(r1,...,rN ),
where ri represents the space coordinates of the electron i. To determine the wave
function, we need to solve the wave equation for the HamiltonianH of choice, which,
in mathematical terms, is an eigenvalue problem

HΨ(r1, ..., rN ) = EΨ(r1, ..., rN ) . (2.13)

Solutions to (2.13), thus, exist only for certain values of E, representing the total en
ergy of the system. Due to the twoparticle term (2.7) that enters the DiracCoulomb
Hamiltonian (2.8), the eigenvalue problem cannot be solved exactly, and the atomic
structure calculations are based upon an approximation, in which the original wave
function is replaced by products of oneelectron orbitals.

In the context of the central field approximation, the potential arising from the Cou
lomb interaction between the electrons is replaced by a central average potential due
to the nucleus and the other electrons, i.e.,

Vav(ri) = Vnuc(ri) + u(ri) . (2.14)

The DiracCoulomb Hamiltonian of Eq. (2.8) can, then, be expressed as

HDC ≈ H0 =
N∑
i=1

hD
i , (2.15)

where
hD
i = c αi · pi + (βi − 1)c2 + Vav(ri) (2.16)

is the modified Dirac Hamiltonian operator representing the energy of an electron i
moving in the spherically symmetric scalar potential of (2.14).

The eigenvalue problem is approximated by

H0Ψ0(r1, ..., rN ) = E0Ψ0(r1, ..., rN ) , (2.17)
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and since the approximate Hamiltonian H0 is separable, the eigenvalues and eigen
functions can, respectively, be written as

E0 = ⟨Ψ0|H0|Ψ0⟩ =
N∑
i=1

ϵi (2.18)

and

Ψ0(r1, ..., rN ) =

N∏
i=1

ϕi(ri) , (2.19)

where ϕi(ri) are the oneelectron wave functions and ϵi are the corresponding one
electron energies.

2.2.1 Oneelectron Dirac orbitals

The central field orbitals ϕ(r) satisfy the singleparticle Dirac equation

hDϕ(r) = ϵϕ(r) . (2.20)

The Hamiltonian hD commutes with the parity π and total angular momentum j=
l + s, where l is the orbital angular momentum and s= 1

2σ is the electron’s spin,
in units ℏ = 1. One must, thus, seek Dirac orbital solutions ϕnlsjm(ri) that are
simultaneous eigenfunctions of these operators, so that

πϕnlsjm = (−1)lϕnlsjm,

j2ϕnlsjm = j(j + 1)ϕnlsjm,

jzϕnlsjm = mϕnlsjm, m = −j,−j + 1, ..., j .

(2.21)

Dirac orbitals determined in a central field form an orthonormal set. Additionally, the
Dirac equation (2.20) allows the separation of the radial coordinates from the angular
and spin coordinates, and the Dirac orbitals take the general form

ϕnlsjm(r) =
1

r

(
Pnlj (r)Ωlsjm(θ, φ)
iQnlj (r)Ωl̃ sjm(θ, φ)

)
, (2.22)

wherePnlj(r) andQnlj(r) are, respectively, the large and small components of the ra
dial function andΩlsjm(θ, φ) are the twocomponent spinangular functions, known
as spherical spinors. The spherical spinors Ωlsjm(θ, φ) are constructed from the cou
pling of the spherical harmonics Ylml

(θ, φ) with the spinors χ 1
2
,ms

, that is
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Ωlsjm(θ, φ) =
∑

ml,ms

⟨l, 1
2
;ml,ms|j,m⟩Yl,ml

(θ, φ)χ 1
2
,ms

, (2.23)

where ⟨l, 12 ;ml,ms|j,m⟩ is a ClebschGordan (CG) coefficient and

χ 1
2
, 1
2
=

(
1
0

)
, χ 1

2
,− 1

2
=

(
0
1

)
. (2.24)

The spherical spinors satisfy the orthonormality conditions, just as the spherical har
monics do.

From the coupling of the angular momentum and spin, it follows that j = l ± s
with s = 1

2 and, for a given value of j, the l quantum number can take two possible
values, i.e., l = j± 1

2 . In Eq. (2.22), the spherical spinors of the large and small radial
components are obtained by, respectively, choosing l and l̃, which are associated to
each other with the relation

l̃ =

{
l + 1 for j = l + 1

2

l − 1 for j = l − 1
2 .

(2.25)

In this manner, the pair of twocomponent spinors will have opposite parity. This is a
consequence of the fact that the relativistic parity operator is given by π=βπ0, where
π0 is the ordinary parity operator with π2

0 = 1. Besides the parity π, the spherical
spinors are eigenfunctions of l2 and s2, as well as the total angular momentum j2

and jz , so that

l2Ωlsjm = l(l + 1)Ωlsjm ,

s2Ωlsjm =
1

2
(
1

2
+ 1)Ωlsjm ,

j2Ωlsjm = j(j + 1)Ωlsjm ,

jzΩlsjm = mΩlsjm .

(2.26)

The quantum numbers n, j, and m are not sufficient to uniquely describe an atomic
state, and the modified Dirac Hamiltonian of Eq. (2.16) does not commute with l
and s. Since the Hamiltonian (2.16) commutes with j2, l2 and s2, it also commutes
with s · l, and it is convenient to introduce the additional quantum number κ as the
eigenvalue of the operator K=−(1 + j2 − l2 − s2) = −1− σ · l, so that

KΩlsjm = κΩlsjm , (2.27)
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where

κ =

{
−(l + 1) for j = l + 1

2

l for j = l − 1
2 .

(2.28)

In doing so, we can rewrite the Dirac orbitals of Eq. (2.22) as

ϕnκm(r) =
1

r

(
Pnκ(r)Ωκm(θ, φ)
iQnκ(r)Ω−κm(θ, φ)

)
. (2.29)

Each quantum state is now uniquely described by the quantum numbers n, κ,m.

The spherical spinors are linearly independent, and after inserting the Dirac orbitals
of Eq. (2.29) in the wave equation (2.20), we get

(Vav(r)− E)Pnκ(r)− c

(
d
dr

− κ

r

)
Qnκ(r) = 0

c

(
d
dr

+
κ

r

)
Pnκ(r) + (Vav(r)− 2c2 − E)Qnκ(r) = 0 .

(2.30)

These equations are solved for each electron i, in the common average potential, Vav,
produced by the nucleus and the remaining N −1 electrons. The radial functions
{Pnκ(r), Qnκ(r)} are defined on a grid

ri = A(eB(i−1) − 1) , i = 1, ..., imax , (2.31)

where A represents the first nonzero grid point, B is a constant, and the imax is
chosen to properly capture the full extent of the large and small components of the
continuous radial function³.

For bound states, the radial orbitals must be square integrable and must also satisfy
the orthonormality condition, i.e,∫ ∞

0
[Pnκ(r)Pn′κ(r) +Qnκ(r)Qn′κ(r)]dr = δnn′ . (2.32)

Further, the radial amplitudes should vanish at the endpoints, that is r → 0 and
r → ∞. Near the origin, the radial functions can be expanded in power series of the
form

Pnκ(r) = rs(p0 + p1r + ...) , Qnκ(r) = rs(q0 + q1r + ...) , (2.33)

³In the standard version, GRASp2018, a default value for imax is 590 grid points, and the first non
zero grid point has a Zdependence according to A = 2−6/Z.
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where pi, qi, and the index s > −1/2 are constants that depend on the nuclear
potential model and the Dirac orbital, and they are determined by solving the set
of equations (2.30). For large r, the radial functions reduce asymptotically to zero.
By convention, the first oscillation of the large component Pnκ(r) is chosen to be
positive. The number of nodes in Pnκ(r) is given by n− l−1, just as in the non
relativistic case, while the number of nodes in the small component Qnκ(r) is given
byn−l−1 for κ < 0 andn−l for κ > 0. Node counting is essential in SCF methods,
such as the MCDHF approach (see Sec. 2.3), ensuring that the desired physical states
are found.

At this point, it should be noted that multiconfiguration methods do not assume a
Vav, but rather assume the forms of the oneelectron orbitals and, then, use the “full”
Hamiltonian to solve the eigenvalue problem (2.13). In the MCDHF approach, the
forms of the (Dirac) orbitals result from solving Eqs. (2.30) as described above.

2.2.2 Configuration state functions

The HamiltonianH0 of (2.15) is invariant with respect to permutations of the electron
coordinates ri, and thus, any permutation in the product function of (2.19) also leads
to an eigenfunction. According to the Pauli exclusion principle, only wave functions
that are antisymmetric describe physical atomic states and such wave functions can
be represented by what is known as a Slater determinant

Φ(r1, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣
ϕα1(r1) ϕα1(r2) . . . ϕα1(rN )
ϕα2(r1) ϕα2(r2) . . . ϕα2(rN )

. . . . . . . . . . . .
ϕαN (r1) ϕαN (r2) . . . ϕαN (rN )

∣∣∣∣∣∣∣∣ , (2.34)

which, in a more compact manner, can be written as

Φ(r1, ..., rN ) =
1√
N !

∑
P

(−1)pP
N∏
i=1

ϕαi(ri) , (2.35)

where P is an operator that permutes the coordinates of the electrons, with the sum
P being over all possible N ! permutations, p is the parity of the permutation, and
αi = niκimi is the quantum label that uniquely describes a Dirac orbital.

The relativistic N electron DiracCoulomb Hamiltonian, which also includes the
electronelectron Coulomb interaction, commutes with the total angular momen
tum operator J = j1 + j2 + ... + jN . Hence, we seek manyelectron solutions to
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the eigenvalue problem (2.13) that are eigenfunctions of J2 and Jz , with J and M
being good quantum numbers together with the parity P , so that

ΠΦ = PΦ, P = (−1)l1+...+lN ,

J2Φ = J(J + 1)Φ ,

JzΦ = MΦ , M = −J,−J + 1, ..., J .

(2.36)

The approximate wave functions (2.35) in the form of Slater determinants are usually
not eigenfunctions of J2. However, by taking linear combinations of Slater deter
minants belonging to the same configuration⁴, we can obtain wave functions with
the desired J symmetry. These functions are better approximations to the exact wave
functions than the Slater determinants themselves. Each such solution defines a con
figuration state function (CSF), denoted

Φ(γPJM) ≡ |γPJM⟩ , (2.37)

where γ represents the configuration, the angular momentum coupling tree, and other
quantum numbers that are necessary to entirely describe the CSF. We require that the
CSFs form an orthonormal set, so that

⟨γµPµJµMµ|γνPνJνMν⟩ = δµν . (2.38)

Alternatively, a CSF can be constructed from products of Dirac orbitals using a re
cursive method in terms of coefficients of fractional parentage (CFPs) and explicit
antisymmetrization. In GRASp, the latter approach is applied, which is described in
detail in the review article by Fischer et al. [39] and the book by Grant [35, Ch. 6].

2.2.3 Atomic state functions

The single CSF approach does not capture effects that arise from the correlated motion
of the electrons. To include electron correlation [44] (for more details see Sec. 2.5), we
must look for a better approximation to the exact wave functions. For a certain parity
P , there is an infinite number of CSFs coupled to the same total angular momenta
J and M . Each set of CSFs with the same P , J , and M quantum numbers form a
basis for a function space of approximate wave functions, which are known as atomic
state functions (ASFs). An ASF, Ψ(ΓPJM), is then written as a linear combination

⁴That is determinants with the same set of niκi quantum numbers, but with different mi quantum
numbers.
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of CSFs, Φ(γµPJM), i.e.,

Ψ(ΓPJM) ≡ |ΓPJM⟩ =
NCSFs∑
µ=1

cγµJΦ(γµPJM) , (2.39)

where cγµJ = ⟨γµPJ |ΓPJ⟩ (suppressing now the quantum number M for brevity)
are the mixing coefficients of the expansion. As follows from the orthonormality of
the CSFs (see Eq. (2.38)) and the normalization property of the total wave functions,
the mixing coefficients must satisfy the condition

NCSFs∑
µ=1

c2γµJ = 1 . (2.40)

The label Γ of the ASF is, normally, the same as the label γµ of the dominating
CSFs after transformation from jj to LSJ coupling according to the prescription
of Gaigalas et al. [45].

In atomic structure calculations, it is likely that we are interested in more than one
atomic state, represented by multiconfiguration functions according to Eq. (2.39).
When performing multiconfiguration calculations that target multiple atomic states
|ΓiPJ i⟩, i = 1, ..., NASFs at the same time, the different ASFs are chosen to be
orthonormal, so that

(cΓiJi)†cΓjJj = δij , (2.41)

where the column vector

cΓJ = {cγµJ , µ = 1, ..., NCSFs} (2.42)

contains the mixing coefficients that determine an atomic state.

2.3 Multiconfiguration DiracHartreeFock

In the previous section, it was shown that the wave function of an atomic state can
be approximated by a superposition of CSFs Φ(γµPJ), according to Eq. (2.39). The
CSFs are, however, constructed based on the assumption that the oneelectron Dirac
orbitals ϕnκm, with radial parts {Pnκ(r), Qnκ(r)}, arise from a general central field
approximation. To determine the radial orbitals and mixing coefficients that yield the
“best” approximation–in terms of energy–to the exact wave functions, the MCDHF
method is employed. In the MCDHF method, the large and small components of
the radial functions are obtained by solving a set of integrodifferential equations that
result from applying the variational principle [46, 47] on the energy functional of one,
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or more, ASFs, with additional terms ensuring the orthonormality of the orbitals. The
MCDHF equations are presented after a brief introduction to the calculation of the
matrix elements that are needed for the construction of the energy functional.

2.3.1 Energy matrix elements

Approximate eigenenergies of the atom at hand are obtained as diagonal expectation
values of the approximate DiracCoulomb Hamiltonian, i.e.,

EΓJ = ⟨ΓPJ |HDC|ΓPJ⟩ = (cΓJ)
†HcΓJ , (2.43)

where H is the Hamiltonian matrix with elements

Hµν = ⟨γµPJ |HDC|γνPJ⟩ . (2.44)

The matrix elements Hµν are expressed as sums of products of spinangular coeffi
cients and radial integrals, i.e.,

Hµν =
∑
ab

tµνab I(a, b) +
∑
abcd;k

vµνabcd;kR
k(ab, cd) , (2.45)

where, for instance, a represents the Dirac orbital in the subshell naκa occupied in
the µ:th CSF.

In Eq. (2.45), the oneparticle contributions of the operator (2.6) give rise to the spin
angular coefficients tµνab and the radial integrals I(a, b) given by

I(a, b) = δκaκb

∫ ∞

0
[Pnaκa(r)Vnuc(r)Pnbκb

(r)

−cPnaκa(r)

(
d

dr
− κ

r

)
Qnbκb

(r)

+c Qnaκa(r)

(
d

dr
+

κ

r

)
Pnbκb

(r)

+Qnaκa(r)
(
Vnuc (r)− 2c2

)
Qnbκb

(r)
]
dr , (2.46)

where the condition κa = κb = κ follows from the orthogonality property of the
spherical spinors. In the special case of diagonal matrix elements, tµµaa is given by the
occupation number wµ

a of the orbital a in the µ:th CSF. The twoparticle contribu
tions of the operator (2.7) are evaluated by first expanding the Coulomb potential in
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terms of Legendre polynomials, so that

1

rij
=

∞∑
k=0

rk<

rk+1
>

Pk(cosω) , (2.47)

where ω is the angle between the position vectors ri and rj , r< ≡ min(ri, rj), and
r> ≡ max(ri, rj). In the coupled tensorial form, the above equation takes the form

1

rij
=

∞∑
k=0

rk<

rk+1
>

(C(k)(θi, ϕi) ·C(k)(θj , ϕj)) , (2.48)

where the C(k)(θi, ϕi) are renormalized spherical harmonics of rank k. Eq. (2.48),
finally, yields the spinangular coefficients vµνabcd;k and the relativistic Slater integrals
Rk(ab, cd), which are given by

Rk(ab, cd) =

∫ ∞

0
[Pnaκa(r)Pncκc(r)

+Qnaκa(r)Qncκc(r)]
1

r
Y k(bd; r)dr , (2.49)

with the relativistic Hartree Y kfunctions defined by

Y k(ab; r) = r

∫ ∞

0

rk<

rk+1
>

[Pnaκa(s)Pnbκb
(s)

+Qnaκa(s)Qnbκb
(s)] ds , (2.50)

where r< (r>) denotes the smaller (larger) of r and s. By introducing theY functions,
Hartree showed in [48] that the double radial integrals of the twobody Coulomb in
teraction could be evaluated through a pair of onedimensional integrals given by
Eqs. (2.49) and (2.50).

In GRASp, the evaluation of the spinangular coefficients tµνab and vµνabcd;k, needed
for constructing the Hamiltonian matrix elements Hµν , relies on the latest angular
momentum methods developed by Gaigalas et al. [49, 50]. These methods use al
gebraic expressions for matrix elements adapted for spinangular integrations in jj
coupling, involving the calculation of reduced CFPs and completely reduced matrix
elements of double tensors.
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2.3.2 The MCDHF equations

In the publications included in this thesis, the wave functions of the targeted atomic
states were simultaneously determined using the extended optimal level (EOL) scheme
[p. 401; 35, 38]. The EOL energy functional is expressed in terms of the statistical
weight of each targeted state |ΓiJ i⟩, i.e.,

F({c}, {P}, {Q}) =
∑NASF

i=1 (2J i + 1) EΓiJi∑NASF
i=1 (2J i + 1)

+
∑
ab

δκaκb
λab Cab , (2.51)

where the orthonormality of the radial orbitals is ensured by introducing the Lagrange
multipliers λab for each orthonormality constraint

Cab ≡
∫ ∞

0
[Pnaκa(r)Pnbκb

(r) +Qnaκa(r)Qnbκb
(r)] dr − δnanb

= 0 . (2.52)

The energy functional (2.51) is optimized by requiring that it remains stationary with
respect to variations in both the mixing coefficients, cγµJ , and the radial parts of the
Dirac orbitals, {Pnκ(r), Qnκ(r)}.

For a specific set of radial functions {Pnκ(r), Qnκ(r)}, initial estimates are provided
by, either oneelectron orbitals resulting from the ThomasFermi statistical theory of
the atom [51, § 7.8], or, simply, screened hydrogenic orbitals with an effective nuclear
charge

Zeff = Z − σ(nκ) , (2.53)

where σ is a screening constant that depends on the Dirac orbital [52, p. 39]. Using the
initial estimates of the radial functions, the optimal values of the mixing coefficients
cΓJ = {cγµJ , µ = 1, ..., NCSF} are obtained as solutions to the RCI problem

HcΓJ = EΓJcΓJ . (2.54)

Given a set of mixing coefficients cγµJ , the stationary condition with respect to cou
pled variations in the radial orbitals, i.e., {δPnκ(r), δQnκ(r)}, leads to a set of cou
pled integrodifferential equations similar to (2.30)
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wa


V (a; r) −c

[
d

dr
−

κa

r

]

c

[
d

dr
+

κa

r

]
V (a; r)− 2c2


[

Pnaκa(r)

Qnaκa(r)

]
=

∑
b

ϵabδκaκb

[
Pnbκb

(r)

Qnbκb
(r)

]
, (2.55)

which are known as the MCDHF equations. In Eq. (2.55),wa is the generalized occu
pation number of the orbital a and ϵab are energy parameters related to the Lagrange
multipliers. To incorporate the correct qualitative features of the exact wave func
tions, the radial orbitals must satisfy the boundary conditions discussed in Sec. 2.2.1.
Subject to these conditions, the MCDHF equations are solved for each subshell naκa,
on the logarithmic grid given by (2.31), using a finite difference method.

The average and central field MCDHF potential V (a; r) is built from the nuclear,
direct, and exchange contributions, i.e.,

V (a; r) = Vnuc(r) + Y (a; r) +X(a; r) . (2.56)

Variations of the Slater integrals of the type Rk(ab; ab), weighted with the angular
coefficients and the state averaged mixing coefficients, contribute to the direct poten
tial Y (a; r). On the other hand, variations of the other Rk(ab; cd) integrals, where
a ̸=c andb ̸=d, and the offdiagonal I(a, b) integrals, both weighted with the angu
lar coefficients and the state averaged mixing coefficients, contribute to the nonlocal
exchange potential X(a; r). The expressions for the direct and exchange potentials,
involving both diagonal and offdiagonal contributions are rather lengthy, and thus
not provided here. Instead, the interested reader is referred to Dyall et al. [38], or the
book by Grant [35, p. 400].

2.3.3 Selfconsistent field procedure

Since the direct and exchange potentials depend on the radial orbitals, the RCI prob
lem of Eq. (2.54) and MCDHF equations given by (2.55) are simultaneously solved
through an iterative nonlinear process, which is referred to as the selfconsistent
field (SCF) procedure. This procedure –as its name reveals– is continued until self
consistency is reached, with respect to the radial orbitals, mixing coefficients, and
energies, based on specified convergence criteria. The SCF procedure can be summa
rized in the following steps (see also Fig. 2.1):
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Figure 2.1: The algorithm to solve the MCDHF equations based on the SCF scheme. The first
and last instants, respectively, correspond to the required input and the output of
the SCF calculations.

1. Given initial estimates for the radial orbitals, the energy matrix elements are
evaluated. The mixing coefficients are obtained by a first diagonalization of the
Hamiltonian matrix.

2. The energy functional (2.51) is constructed and the stationary condition is ap
plied; first, with respect to variations in the radial orbitals (step 3) and then
with respect to variations in the mixing coefficients (step 4).

3. The diagonal and offdiagonal Lagrange multipliers are estimated. The MCDHF
equations (2.55) are solved by using the direct and exchange contributions to
the potential (2.56) from the previously resulted radial orbitals. An improved
estimate for the radial orbitals is obtained.

4. The RCI problem (2.54) is solved after utilizing the new set of radial orbitals.
An improved estimate for the mixing coefficients is obtained. The total energies
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of the targeted states are determined.

5. The convergence of the radial orbitals, mixing coefficients, and energies is ex
amined. If the convergence criteria are met, the SCF calculations are com
pleted, yielding the final orbital basis and mixing coefficients. If not, the pro
cess is repeated from step 2.

2.3.4 Relativistic configuration interaction

The MCDHF method is employed to generate the orbital basis. Given this basis, the
final wave functions of the targeted states are determined in subsequent RCI calcula
tions, based on the DiracCoulombBreit and QED Hamiltonian of Eq. (2.12). In the
RCI calculations, the CSFs are fixed and only the mixing coefficients, cΓJ , are eval
uated by diagonilizing the Hamiltonian matrix. The eigenvalues of the Hamiltonian
matrix represent the total energies of the targeted states.

2.4 Computation of Atomic Properties

Once the wave functions have been determined from MCDHF and RCI calculations,
measurable properties can be obtained by evaluating the expectation values, or, in the
case of transition properties, the amplitudes, of one or twoelectron operators. One
electron operators describe the electric and magnetic multipole transitions (see Ch. 3),
the hyperfine structure interactions (see Ch. 4), and the normal mass shift and field
shift effects (see Ch. 5). On the other hand, the specific mass shift interaction is an
example of a twoelectron operator (see Ch. 5).

According to the WignerEckart theorem [51, §11.4], the matrix elements of a one
electron spherical tensor operator O(k)

q , of rank k, can be written as

⟨ΓPJM |O(k)
q |Γ′P ′J ′M ′⟩ =

(−1)J−M

(
J k J ′

−M q M ′

)
⟨ΓPJ ||O(k)||Γ′P ′J ′⟩ , (2.57)

where the entire dependence on the magnetic quantum numbers is contained in the
3jsymbol and the phase factor. The physical nature of the operator is, thus, entirely
contained in the reduced matrix element ⟨ΓPJ ||O(k)||Γ′P ′J ′⟩.
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After inserting the multiconfiguration expansions of Eq. (2.39), the reduced matrix
elements are given by

⟨ΓPJ ||O(k)||Γ′P ′J ′⟩ =
∑
µ,ν

cγµJcγ′
νJ

′⟨γµPJ ||O(k)||γ′νP ′J ′⟩ . (2.58)

The reduced matrix elements between CSFs, in the right hand side of of (2.58), are,
in turn, written as

⟨γµPJ ||O(k)||γ′νP ′J ′⟩ =
∑
a,b

dµν
ab;k ⟨a||o

(k)||b⟩ , (2.59)

where dµν
ab;k are the spinangular coefficients, containing all the information about

the configurations and the angular couplings [49, 50], and ⟨a||o(k)||b⟩ are the one
electron reduced matrix elements between two Dirac orbitals a and b. The latter are
written as products of radial integrals and matrix elements involving the spherical
spinors of the two Dirac orbitals.

The matrix elements of a twoelectron operator, G, between CSFs can be expressed as

⟨γµPJM |G|γ′νP ′J ′M ′⟩ =
∑
abcd;k

ξµνabcd;kW
k(ab, cd) , (2.60)

where ξµνabcd;k are the spinangular coefficients containing information about the struc
ture and couplings of the CSFs andW k(ab, cd) are the effective interaction strengths,
which can be written in terms of double radial integrals and factors involving matrix
elements between the spherical spinors of the active orbitals.

The oneelectron reduced matrix elements of Eq. (2.59) and the effective interaction
strengths of Eq. (2.60) depend only on the nature of the interaction operator and
the Dirac orbitals. The shapes of the Dirac orbitals are determined by the effective
fields in which the electrons move, which are established by the included CSFs in
the expansions of Eq. (2.39). They might, thus, vary based on the specifics of the
computational approach that is followed.

2.5 General Computational Methodology

The accuracy of multiconfiguration calculations relies on the expansions of the ASFs
in Eq. (2.39), which need to be truncated so that the CSFs effectively capture electron
correlation [44]. To generate lists of CSFs that systematically account for the electron
correlation effects and build accurate wave functions, multiconfiguration calculations
often follow a welldefined optimization scheme, known as the SDMR approach [39,
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52, §4.2.2]. In this section, we describe the general methodology of atomic structure
calculations that are based on this approach. The details, which depend on the shell
structure of the atomic system at hand and the number of targeted states, will be
discussed within the next chapters.

In the SDMR approach, the starting point is to define a multireference (MR) set.
The MR set contains the configurations of the targeted atomic states, which can be
merged with important, e.g., closely degenerate, configurations [39]. Applying the
rules for coupling angular momenta, the configurations in the MR produce a set of
CSFs that account for the leading electron correlation effects and the major part of the
ASFs. These effects describe what is known as static correlation, which contributes to
the longrange rearrangement of the electron charge distribution. By performing an
MCDHF calculation with a CSF expansion built from the MR configurations, a first
approximation of the wave functions of the targeted states is acquired. The orbitals
of the states that we optimize on are considered as occupied and are, thus, required to
have the node structure of hydrogenic orbitals, which is determined by the principal
quantum number, n, and azimuthal, l, quantum numbers, as discussed in Sec. 2.2.1.
They are referred to as spectroscopic, while the orbitals that make up the rest of the
MR configurations are part of the correlation orbitals. The resulting radial orbitals
from this initial MCDHF calculation are kept frozen in all subsequent calculations.

The initial approximation of the wave functions is improved by also accounting for
dynamic correlation effects, which are related to the cusp condition⁵ [53]. To do so,
the atomic state expansions are enlarged with CSFs that interact, i.e., have nonzero
matrix elements, with the ones generated by the MR configurations. Due to the one
and twobody operators in the Hamiltonian, such CSFs are built from configurations
that are formed by allowing single (S) and double (D) substitutions of electrons from
the MR orbitals to an active set (AS) of correlation orbitals. The AS is systematically
increased by introducing, at each step, a “layer” of correlation orbitals, consisting of
at most one orbital per angular symmetry [54, 55]. The correlation orbital layers in
the AS are optimized in successive MCDHF calculations by keeping the previously
generated orbitals frozen. Based on the nature of the SD substitutions, the CSFs
are classified into: CSFs that capture valencevalence (VV), corevalence (CV), and
corecore (CC) correlation effects [39, 52, §4.2.2]. The radial orbital basis is obtained
by performing MCDHF calculations, where all, or some, of the classes of CSFs are
considered. After the orbital basis is generated, additional electron correlation effects,
even beyond the SDMR model, can be accounted for in the final RCI calculations.

The classes of CSFs that are selected to build the wave functions depend on the com
puted atomic properties. When computing transition parameters, the outer parts of

⁵The cusp condition arises form the singularity of the interelectronic Coulomb interaction 1/rij
near points of coalescence where rij = 0.
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the wave functions must be well approximated, and CSFs that capture VV and CV
electron correlation effects are the most critical [56]. On the other side, the compu
tations of properties arising from electronnucleus interactions, such as isotope shifts
or hyperfine structures, require that the parts of the wave functions close to the origin
are ably described, making corecorrelation effects important [57, 58]. Even so, the
inclusion of one, or more, classes of CSFs does not ensure that the correlation orbitals
will be properly localized to effectively capture the relevant correlation effects.

In the MCDHF calculations, the correlation orbitals are obtained by applying the
variational principle on the weighted energy functional of the targeted states. As a
result, the orbitals of the first correlation layers mainly overlap with the spectroscopic
orbitals accounting for the effects that minimize the energy the most, and the wave
functions are optimized so that they, primarily, give accurate total energies [59, 60].
Taking as an example the “conventional” set of computations in berylliumlike carbon
presented in Paper I, the MCDHF calculations were performed with CSF expansions
built from SDMR substitutions from all spectroscopic orbitals with the restriction
that only one substitution was allowed from the 1s2 core. In this way, the CSFs
capture VV and CV correlation effects. Since the 1snl paircorrelation effects are
comparatively important, correcting for the cusp condition, the orbitals of the first
correlation layers were spatially localized between the 1s orbital and the 2s and 2p or
bitals. Consequently, there were not enough correlation orbitals localized farther from
the 1s2 core to ably describe the outer parts of the wave functions representing highly
excited states. To obtain orbitals localized in regions of space, which might describe
effects that do not lower the energy much, but are important for other properties, the
energetically dominant effects must first be saturated. This eventually leads to very
large orbital sets and CSF lists, which are often limited by the available computational
resources, and therefore, alternative computational strategies must be explored.
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Chapter 3

Spectrum Calculations of Transition
Properties Involving Rydberg Series

During the past few decades, technology has rapidly been progressing, and the high
resolution instruments that are now used in astronomical spectroscopy have raised
the demands on atomic transition data [61]. The new generation of telescopes and as
tronomical spectrographs have been designed for the infrared wavelength region [62–
64], and reference data from the higher parts of atomic spectra must also be made
available [65]. Due to the limited resources and the numerous possible transitions,
laboratory measurements are not capable of supplying astrophysicists with complete
sets of data relevant to radiative processes. Therefore, the interpretation of the ob
served starlight largely relies on theoretical results, whose accuracy steadily improves
with the increasing computing power and the continuous advances in computational
methods [7, 8, 66].

In line with the most recent astrophysical needs, Papers I and II report on extended
transition data, namely wavelengths, transition rates, weighted oscillator strengths,
and lifetimes, for the systems of neutral and singly, doubly, and triplyionized car
bon (C IIv). In particular, we note that the considered levels in each of the C I and
C III ions amount to a hundred, or more. Paper III provides a large amount of data, of
the same aforementioned transition parameters, for the systems of neutral and singly
ionized aluminium (Al III). In addition, Paper Iv presents extended data of Landé
gfactors for several atoms and ions, including C IIv and Al III.

Performing largescale spectrum calculations, where numerous atomic states are con
currently targeted, is most certainly not trivial. To build wave functions that produce
not just accurate energy levels, but also reliable transition data for all considered states,
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special attention must be paid to the optimization scheme of the orbital basis. For
instance, the shapes of the generated correlation orbitals must be such that they ac
count for the LSterm dependencies [67], i.e., the dependencies on the coupling of
the CSFs to form different terms from the same configuration [52, p. 55]. At the same
time, the spectra of C IIv and Al III involve states that are part of Rydberg series,
bringing additional challenges to the computations (see, e.g., [68]). A Rydberg series
is defined as the set of the configuration states that are formed by exciting the out
ermost electron of the ground state configuration to orbitals of increasing principal
quantum number n, but same l symmetry (see also [69, p. 85]). In magnesiumlike
ions, as for instance Al II, where the ground state configuration is [Ne]3s2 –using [Ne]
to indicate the 10electron neon core–, a Rydberg series can be represented as

[Ne]3snl 2S+1L , n > 3 . (3.1)

It is common that doublyexcited states, referred to as perturbers, enter the Rydberg
series and strongly interact with them (the closer the perturber and a Rydberg state
come in energy, the stronger is the interaction between them). For instance in Al II,
members of the 3snf 3F series (omitting now the neon core for brevity) are strongly
mixed with the 3p3d 3F perturber, meaning that the ASFs of the Rydberg states in
clude the CSF representing the perturber, with the latter having a large expansion
coefficient. To correctly predict the positions of stronglymixed states, the wave func
tions must be highly correlated, which translates to a very large orbital basis and, most
likely, millions of CSFs. Moreover, states that are part of Rydberg series encompass
valence orbitals of increasing principal quantum number n. Accordingly, spectrum
calculations involving Rydberg series have to describe states with electron distribu
tions localized in different regions of space, extending far away from the atomic core
(see also Fig. 3.1). Since the overlap between Rydberg states can be minor, finding an
optimal orbital basis that describes all Rydberg states equally well is not straightfor
ward and different computational strategies must be explored.

As, in general, with the studies of atomic structure, the difficulties associated with Ry
dberg series, which are related to electron correlation, are more prominent in neutral
and nearneutral systems. It is, however, seen that computations in more heavily
charged systems may also be undermined by an improper choice of optimization
strategy for the radial orbital basis used to construct the wave functions. Paper I
reports on spectrum calculations of transition data, focusing on the C Iv and C III
ions. Different computational strategies for optimizing the orbital basis were investi
gated in this work, and the quality of the respective results was, ultimately, assessed.
It was observed that, for transitions involving lowlying states, and as long as enough
correlation orbitals have been generated, the transition data are accurately computed
independently of the specifics of the orbital optimization strategy. Yet, the transition
data related to transitions involving high Rydberg states are subject to disproportion
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Figure 3.1: The spectroscopic np orbitals, comprising the 3snp 1,3Po and 3s2np 2Po Rydberg
series in each of the calculated spectra of Al II (left) and Al I (right), are displayed as
a function of

√
r. The 2p orbital is part of the core, whereas the orbitals with n>2

belong to the valence shell, occupying different regions in space, as eventually do
the total electron distributions of the Rydberg states.

ately large theoretical uncertainties when the chosen optimization strategy results in
correlation orbitals that are contracted in comparison to the outer Rydberg orbitals.

In Paper I, it was further shown that, when the generated correlation orbitals are prop
erly localized to effectively describe the outer parts of the wave functions represent
ing the high Rydberg states, reliable transition data can be obtained for all targeted
states. This is achieved by performing MCDHF calculations based on CSF expan
sions, which are, most often, constructed by imposing restrictions on the allowed
electron substitutions from inner subshells. (For further details, the reader is referred
to the paper.) The highquality transition data in C Iv and C III, which were included
in Paper II to facilitate the analysis of astrophysical spectra, resulted from the orbital
optimization schemes suggested in Paper I. Drawing on the detailed investigations of
Paper I, specialized orbital optimization strategies were applied in Paper II to further
produce accurate transition data for the more complex systems of C II and C I.

By paying special attention to the orbital optimization strategies, updated transition
data were also computed for the systems of Al III, which are contained in Paper III.
Although the computed transition properties are, on average, of high quality, the
transitions involving high Rydberg states were found to be problematic. Additional
computations have now been performed in Al II (manuscript in preparation), and
the results have demonstrated that the overall accuracy of the transition data can be
improved by choosing a more appropriate strategy for constructing the radial orbital
basis. It appears that the improvement in accuracy is impressive for transitions that
involve high Rydberg states (see also Sec. 3.3.3).
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In Sec. 3.1, we describe how the various atomic transition properties are theoretically
evaluated and introduce the quantity that was used in Papers IIII to estimate the the
oretical uncertainties. Subsequently, in Sec. 3.2, we focus on the computations that
were performed in the carbon ions and discuss the accuracy of the energies and tran
sition data contained in Paper II. Sec. 3.3 is dedicated to the computations that were
carried out in Al I and Al II. Within this section, the orbital optimization strategies
that were applied in Paper III are described and motivated. The most significant re
sults and conclusions, which emphasize the computational challenges in these two
systems, are then summarized. Some engaging results based on the newly applied
computational schemes in Al II, which lead to an overall reduction of the theoretical
uncertainties of the computed transition data, are also presented. Sec. 3.4 discusses
the accuracy of the Landé gfactors that were computed in Paper Iv.

3.1 Transition Properties

As a result of the interactions of the atomic electrons with the electromagnetic field,
transitions between a lower state |ΓPJM⟩ and an upper state |Γ′P ′J ′M ′⟩ are ob
served through emission, or absorption, of a photon with energy hν=EΓ′J ′−EΓJ

and wavelength λ=c/ν. Following the early works in Refs. [70, 71], as well as Ch. 8
in Grant’s book [35], the relativistic expression providing the rate, or probability, A(k)

for a spontaneous emission, from an upper state |Γ′P ′J ′M ′⟩ to any of the 2J + 1
states |ΓPJM⟩ of lower energy, gives

A(k)(Γ′P ′J ′,ΓPJ) =
2ω

c

1

(2k + 1)(2J ′ + 1)
|⟨ΓPJ∥T(k)∥Γ′P ′J ′⟩|2 , (3.2)

where ω is the angular frequency of the transition and T(k) =
∑N

i=1 t
(k)(i) is the

multipole transition operator of rank k, with the sum running over the number N
of electrons. The transition rate does not depend on the arbitrary choice of the ori
entation of the coordinate system, and it is, therefore, independent of the projection
quantum number M ′.

The oneparticle interaction operator,T(k), can be separated into individual operators
for multipole transitions of electric (Ek) and magnetic (Mk) type. The electromag
netic scalar and vector potentials defining the operator T(k) are expressed in terms of
composite spherical tensor operators. Their analytical expressions are, e.g., given in
Eqs. (8.1.5) and (8.1.10) of Ref. [35].
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Instead of giving the rate, the strength of a transition is often expressed in terms of the
weighted oscillator strength gf (k), which is defined as

gf (k)(ΓPJ,Γ′P ′J ′) =
1

ω

1

(2k + 1)
|⟨Γ′P ′J ′∥T(k)∥ΓPJ⟩|2 , (3.3)

and is directly proportional to the intensity of a spectral line. The weighted oscillator
strengths are most commonly used in the analyses of astrophysical spectra consisting
of absorption lines.

According to Sec. 2.4, the reduced matrix elements of the transition operator, which
are parts of Eqs. (3.2) and (3.3), are subsequently written in terms of oneelectron
reduced matrix elements between two Dirac orbitals a and b, so that

⟨a||t(k)||b⟩ = ⟨ja||C(k)||jb⟩Ma,b(ω;G
(k)) , (3.4)

whereC(k) is the renormalized spherical harmonic of rank k andMa,b(ω;G
(k)) is the

radial transition integral, which corresponds to either an electric Ek, or a magnetic
Mk, multipole amplitude. The magnetic multipoles are independent of the gauge
parameter, G(k), whereas the electric multipoles are expressed as

Ma,b(ω;G
(k)) = Me

a,b(ω; 0) +G(k)Ml
a,b(ω) , (3.5)

whereMl
a,b(ω) represents the longitudinal part of the electric interaction. The analyt

ical expressions of the Ek and Mk transition integrals can be found in [35, p. 43940].

By setting G(k)=0 in Eq. (3.5), the computations are performed in what is known as
the Coulomb gauge, while, for G(k)=

√
2, the Ek transition integrals are computed

in the socalled Babushkin gauge. In nonrelativistic calculations, the Coulomb and
Babushkin gauges, respectively, correspond to the velocity and length forms (see also
Appx. A). The latter naming is often adopted in relativistic calculations, as is the case
with Papers II and III.

The two gauges are equivalent for hydrogenic wave functions based on an infinitely
heavy point nucleus, that is for exact solutions. As long as approximate manyelectron
wave functions are used, the two gauges result in different values [71]. Taking the
nonrelativistic limit (see Appx. A), it is seen that, in the computations of transition
integrals corresponding to the Coulomb gauge, the emphasis is given to the inner
parts of the radial orbitals, whereas in the transition integrals corresponding to the
Babushkin gauge, the weight is put on the “tail” of the radial orbitals. Producing
transition data, for manyelectron systems, that are weakly sensitive to the choice of
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gauge, hence, requires that the wave functions are accurately represented in regions
of space both near and far from the nucleus.

The lifetime τΓ′J ′ of any of the excited states |Γ′P ′J ′M ′⟩ is given in terms of a sum
over transition rates for all the possible decay channels, so that

τΓ′J ′ =
1∑

k,ΓPJ A
(k)(Γ′P ′J ′,ΓPJ)

. (3.6)

Figure 3.2 shows three possible decay channels of an upper state u ≡ |Γ′P ′J ′M ′⟩,
each with rates A1, A2, and A3. The lifetime of this state is given by τu = 1/(A1 +
A2 + A3). Although single line properties, such as transition rates and weighted
oscillator strengths, are generally hard to measure, measurements of the lifetimes of
excited states are easier to perform. If the lifetime measurements are precise enough,
they can be used to benchmark the theoretical predictions and to guide the labelling
of the energy levels.

Figure 3.2: An example of an upper state u having three possible decay channels. The corre
sponding transition rates for each channel are A1, A2 and A3.

Another quantity that is easier to obtain experimentally is the branching fraction Q,
which represents the relative intensity of lines originating from the same upper state
u ≡ |Γ′P ′J ′⟩ and is expressed as

Q(k)(Γ′P ′J ′,ΓPJ) = τΓ′J ′
∑
k

A(k)(Γ′P ′J ′,ΓPJ) . (3.7)

According to Eq. (3.7), in the example of Fig. 3.2, the branching fraction of “tran
sition 1”, in particular, is given by Q1 = A1/(A1 + A2 + A3). It follows that
A1 = Q1/τu, and correspondingly A2 = Q2/τu, and so forth. Thus, by combining
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measurements of branching fractions with reference data of lifetimes, transition rates
and weighted oscillator strengths can be derived (see, e.g., [72]).

Electric dipole (E1) transitions, typically, dominate over magnetic and higher electric
multipole transitions, yielding the largest rates, and thus having the largest contribu
tions to the lifetimes of the excited atomic states. In Papers IIII, solely E1 transition
rates have been computed, from which the lifetimes were deduced.

As previously mentioned, the matrix elements of the E1 transition operator can be
evaluated in both Babushkin and Coulomb gauges. The agreement between the com
puted values in the two different gauges can be used to indicate the accuracy of the
computed transition parameters [73]. Accordingly, in Papers IIII, the uncertainties
of the computed transition data, such as transition rates A, were estimated using the
quantity (see also [74]):

dT =
|AB −AC |

max(AB, AC)
. (3.8)

Although the uncertainties dT should, generally, be used in a statistical manner for a
group of transitions with similar properties (as done in Papers II and III), individual
dT values can point out problematic transitions, which could further be analyzed.
Such analysis was, for example, conducted in Paper I, which eventually allowed the
computational strategies to improve.

3.2 C IIV

Carbon is the fourthmost abundant element in the universe (after hydrogen, helium,
and oxygen) [75], and it plays a critical role in understanding the mechanisms of
nucleosynthesis and in stellar and galactic chemical evolution modeling [76, 77]. In
particular, carbonrich stars and white dwarfs call for more insight from observations
to improve constraints on stellar and galactic evolution models [77, 78]. To effectively
analyze the obtained highresolution spectra within large spectroscopic surveys (see,
e.g., [79–82]), uptodate reference atomic (together with molecular) data should be
available. Owing to its high abundance, carbon has a significant impact on the opacity
in the atmospheres and interiors of stars. The opacity is a parameter necessary to
understand and model stellar atmospheres and radiation transport [5, 83]. Calculating
the opacities and modeling stellar atmospheres requires accurate information on very
large numbers of atomic transitions.

To address the astrophysical demands, the MCDHFRCI calculations of transition
properties that were performed in Papers I and II targeted the 100, 69, 114, and 53
lowest energy levels, in C IIv, respectively. In turn, these energy levels resulted in
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1553, 806, 1805, and 386 possible E1 transitions, in each of the carbon ions. The
computational schemes are described in detail in the papers. A summary is also given
in Table 1 of Paper II, including the configurations of the targeted states, MR spaces,
active sets of orbitals, and numbers of generated CSFs in the final RCI calculations.
In the following, we discuss the theoretical uncertainties of the computed data and
compare their accuracy among the different carbon ions.

3.2.1 Results and discussion

The computed excitation energies,ERCI, were benchmarked against the critically eval
uated energies, ENIST, suggested by the National Institute of Standards and Tech
nology (NIST) Atomic Spectra Database [84]. Figure 3.3 displays the relative dif
ferences between the computed energies and the NIST recommended values for all
four carbon ions. As seen, in the majority of the cases, the relative discrepancies,
(ERCI−ENIST)/ENIST, are of the order of 0.35%, 0.08%, 0.03%, and 0.003%, for
C IIv, respectively. In a few instances, however, the relative discrepancies appear to
be greater than 1.0%. These correspond to states in C I that belong to the 2s2p3

configuration and which are, in general, stronglymixed. More particularly, we note
that the 2s2p3 3Po states, represented by No= 24 – 26 in the figure, are more than
50%mixed with other 3Po states. When taking into account the outliers, the average
discrepancies between the computed and the NIST recommended energies are, ulti
mately, found to be 0.41%, 0.081%, 0.041%, and 0.0044%, for C IIv, respectively.

The quality of the produced transition data was, primarily, assessed based on extensive
comparisons with results from both previous calculations and available measurements.
In addition, the theoretical uncertainties of the computed transition rates and life
times were evaluated based on the agreement between the reduced matrix elements
of the transition operator, respectively, evaluated in the Babushkin and Coulomb
gauges, or else the quantity dT (see Eq. (3.8)).

The weak transitions usually do not have a noticeable impact on the modeling of
stellar atmospheres. For this reason, the discussion on the theoretical uncertainties
dT of the computed transition data is restricted to transitions with rates A>102 s−1,
in C I and C II, and A>100 s−1, in C III and C Iv. The scatter plots of the estimated
dT values, for all these transitions, are provided in Fig. 2 of Paper II. The average
uncertainties dT are of the order of 8.05%, 7.20%, 1.77%, and 0.28%, for C IIv,
respectively. Yet, when only looking at the strong transitions, with A>106 s−1, the
uncertainties dT appear to be remarkably decreased, especially for the C IIII ions.
It should be noted that, for those strong transitions, the mean dT values are 1.68%,
1.53%, 0.297%, and 0.205%, in each of the C IIv ions.
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Figure 3.3: Left panel of Fig. 1 from Paper II, displaying the relative differences between the
computed energy levels and the values suggested by the NIST database [84]. The
numbers, No., in the xaxis correspond to the same labels provided in the second
column of Table A1 in Paper II.

Considering that transitions with A>106 s−1 have the largest influences on the life
times, the latter properties are, ultimately, predicted with uncertainties dT , which are
well below 5%, for almost all targeted excited states in C IIv. The relative differences
between the computed lifetimes in the Babushkin and Coulomb gauges, which define
the dT values, are displayed in Fig.3.4, for all four carbon ions. By looking at the fig
ure, we observe that there are a few outliers in the upper left corner, which correspond
to the four longlived states in C IIII. It must be pointed out that these states decay
to the ground state only through intercombination (IC) transitions, which have small
rates due to the large, but canceling, contributions (see also [85]).

One can say that the updated ab initio data contained in Paper II are, overall, of very
high quality; also taking into consideration the total number of lines for which data
were made available. The uncertainty evaluations of both computed energy separa
tions and transition data, however, demonstrate the growing difficulties of the theo
retical atomic structure studies with the increasing number of electrons that must be
correlated. In carbon, this is observed when gradually going from N = 3 to N = 6
electrons and is also well illustrated in Figs. 3.3 and 3.4.

Finally, the computed transition data in C I were validated, in an astrophysical context,
by performing a solar carbon abundance analysis. The dispersion of the linebyline
abundance results, generally, reflects the quality of the adopted atomic data. A solar
carbon abundance analysis had recently been performed by Amarsi et al. [86], based
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Figure 3.4: Right panel of Fig. 1 from Paper II, displaying the relative differences between the
computed lifetimes in the Babushkin and Coulomb gauges, or else the quantity
dT . The numbers, No., in the xaxis correspond to the same labels provided in
the second column of Table A1 in Paper II.

on theoretical transition data provided by Hibbert et al. [87], which are commonly
used in stellar spectroscopy applications. In Paper II, the solar carbon abundances
were postcorrected by making use of the updated theoretical gf data in C I. It was
deduced that the dispersion in the linebyline abundance results are similar in the
cases where the new and old sets of gf data are, respectively, used.

3.3 Al III

Aluminium is one of the interesting elements for chemical analysis of the Milky Way
(see also Sec. 1 in Paper III), and one example is the GaiaESO Public Spectroscopic
Survey (GES) [79, 80]. The common line list and corresponding atomic data that
were used for abundance studies within GES, in the years 2012 to 2019, have just
been published [88]. Within this recent work, the need for further improvements in
atomic data for Al I was explicitly highlighted. The work of Paper III was motivated
by the lack of reliable atomic transition data in aluminium ions. The MCDHFRCI
calculations of transition data that were performed in the paper targeted the 28 and 78
lowest energy levels, in Al I and Al II, respectively. The configurations of the targeted
states are shown, for both systems, in Table 3.1.

38



Table 3.1: Summary of the computational schemes for Al I and Al II. The first column dis
plays the configurations of the targeted states. MR and AS, respectively, denote
the multireference space and the active sets of orbitals used in the MCDHF and
RCI calculations, and NCSFs are the numbers of generated CSFs in the final RCI
calculations, for the even (e) and odd (o) parity states. The second computational
scheme in Al II was applied in additional calculations, which go beyond Paper III.

Targeted configurations MR AS NCSFs

Al I, Nlevels = 28

3s3p2, 3s2{n1s, 3s3p2, {3s2, 3p2}{n1s, {12s,12p,12d e: 4 362 628
n2p, n3d, n4f, 5g} n2p, n3d, n4f, 5g} 11f,11g,10h} o: 2 889 385
(4 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 6, (4 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 6,
3 ≤ n3 ≤ 6,4 ≤ n4 ≤ 5) 3 ≤ n3 ≤ 6,4 ≤ n4 ≤ 5)

Al II, Nlevels = 78

3s2, 3p2, 3s6h, 3p3d 3s2, 3p2, 3s6h, 3p3d {13s,13p,12d, e: 911 795

3s{n1s,n2p,n3d,n4f,n5g} 3s{n1s,n2p,n3d,n4f,n5g} 12f,12g,8h,7i} o: 1 269 797
(4 ≤ n1 ≤ 7, 3 ≤ n2 ≤ 7, (4 ≤ n1 ≤ 7, 3 ≤ n2 ≤ 7,
3 ≤ n3 ≤ 6, 4 ≤ n4 ≤ 6, 3 ≤ n3 ≤ 6, 4 ≤ n4 ≤ 6,
5 ≤ n5 ≤ 6) 5 ≤ n5 ≤ 6)

Al II, Nlevels = 78 (Beyond Paper III)

3s2, 3p2, 3s6h, 3p3d 3s2, 3p2, 3s6h, 3p3d {15s,15p,14d, e: 1 677 045
3s{n1s,n2p,n3d,n4f,n5g} 3s{n1s,n2p,n3d,n4f,n5g} 14f,13g,8h,7i} o: 2 143 943
(4 ≤ n1 ≤ 7, 3 ≤ n2 ≤ 7, (4 ≤ n1 ≤ 9, 3 ≤ n2 ≤ 9,
3 ≤ n3 ≤ 6, 4 ≤ n4 ≤ 6, 3 ≤ n3 ≤ 8, 4 ≤ n4 ≤ 8,
5 ≤ n5 ≤ 6) 5 ≤ n5 ≤ 7)

The theoretical investigations of the Al I and Al II ions have been particularly challeng
ing due to the perturbers that enter the Rydberg series, resulting in a strong mixing
of some of the states. In Al II, the lower part of the spectrum is dominated by the
strong interaction between the 3s3d 1D and 3p2 1D configuration states. This can
readily be deduced by looking at the LScomposition of these states as, for instance,
given in the NIST database [84]. Moving higher, the spectrum of Al II is governed by
the strong configuration mixing of the 3snf 3F series with the 3p3d 3F states. As Al I
has an additional electron in the valence shell, in this system the strong twoelectron
interaction between the 3s3d 1D and 3p2 1D states manifests itself in the interaction
between the 3s23d 2D and 3s3p2 2D states. In fact, the 3s3p2 2D perturber state is
smeared out over the entire discrete part of the 3s2nd 2D Rydberg series, resulting in
the strong mixing of all these states [89].
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The positions of stronglymixed states are predicted correctly only if the wave func
tions are highly correlated, namely the atomic state expansions must contain a very
large number of CSFs. At the same time, the CSF expansions should be generated
so that the correlation orbitals are properly localized to adequately describe the wave
functions of all targeted states. The computational strategies that were followed in
Paper III aimed at facing these challenges. The computations in Al I and Al II are
described below. A summary is also given in Table 3.1, displaying the MR spaces, ASs
of orbitals, and numbers of CSFs that were generated in the final RCI calculations.

3.3.1 Computations

In the computations of Al I, static electron correlation was captured by extending
the MR to include, besides the configurations of the targeted states, configurations of
CSFs that give substantial contributions to the total wave functions (see also Table 3.1).
Following the general methodology described in Sec. 2.5, the atomic state expansions
were enlarged with CSFs that were formed by allowing single and restricteddouble
(SrD)MR electron substitutions from the valence spectroscopic orbitals to six layers
of correlation orbitals (see “AS” in Table 3.1). The applied restriction was that there was
at most one substitution from orbitals withn=3. By doing so, the correlation orbitals
were localized, between the inner n=3 valence orbitals and the outer orbitals of the
higher Rydberg states, to ably describe all states considered. This is a compromise we
had to make due to the fact that we could not afford (computationally) to first saturate
other types of substitutions before we get enough correlation orbitals overlapping with
the outer orbitals of the higher Rydberg states (see also Sec. 2.5). Subsequent RCI
calculations included CSF expansions produced by single, double, and triple (SDT)
substitutions from all valence orbitals and SD substitutions from the valence orbitals
and the 2p6 core, with the limitation of allowing maximum one hole in 2p6.

Al II is less complex than Al I, and it is computationally feasible to build the radial
orbital basis using CSF expansions that are produced by SrDMR electron substitu
tions (the MR merely consists of the targeted configurations shown in Table 3.1), from
the valence orbitals and the 2p6 core, with the restriction that only one substitution
is allowed from 2p6. In this manner, the CSFs capture both VV and CV electron
correlation effects. The 2pnl paircorrelation effect is, yet, relatively important, and
the generated correlation orbitals are spatially localized between the 2p core orbital
and the inner valence orbitals. Hence, the wave functions are not properly described
for all states, and in particular, not for the higher Rydberg states considered. This is
also reflected in the large theoretical uncertainties of computed data associated with
transitions that involve high Rydberg states.
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A correct representation of all targeted states in Al II demands that the correlation
orbitals occupy, instead, the space of the valence orbitals. Hence, the Al II data, pre
sented in Paper III, were computed based on CSF expansions that were formed by
only allowing VV substitutions of electrons to effectively build six layers of correla
tion orbitals (see “AS” in Table 3.1). This time, the resulting correlation orbitals are
more extended, overlapping with orbitals of higher Rydberg states. In the subsequent
RCI calculations, the CSF expansions were augmented by enabling SrDMR elec
tron substitutions from the valence orbitals and the 2s and 2p core orbitals, with the
restriction that there was maximum one substitution from the n=2 orbitals.

3.3.2 Results

The spectrum calculations that were performed in Paper III produced a great number
of updated ab initio excitation energies and transition data. An important task was to
evaluate the accuracy of these data. The computed excitation energies were compared
with the critically evaluated energies proposed by NIST [84] and were found to be in
very good agreement. On average, the relative differences between computed energies,
ERCI, and critically compiled energies, ENIST, are < 0.6% and < 0.2%, in Al I
and Al II, respectively. Additionally, we note that in the computations of Al II, all
differences∆E=ENIST−ERCI maintain the same sign, and similar is the case for Al I,
with the exceptions of the 3s24d 2D3/2,5/2 a¹ states. That being so, the uncertainties
in the predicted excitation energies of two states associated with a transition most
often cancel out, and the majority of the derived transition energies are in excellent
agreement with the NIST recommended values.

The theoretical uncertainties of the computed transition data essentially arise from the
disagreement of the radial transition integrals (3.5), evaluated in the Babushkin and
the Coulomb gauges, respectively. These uncertainties are reflected in the dT values
given by Eq. (3.8). For the strong transitions, with rates A> 106 s−1, the A values
are subject to uncertainties dT that are typically of the order of 5% in Al I and 3% in
Al II. It is, however, observed that, when the transitions involve high Rydberg states,
the agreement between the AB and AC values is not as good. For instance, when
the 3s26s 2S1/2 state participates in a transition in Al I, the average uncertainty dT is
about 8%. In Al II, for transitions involving the 3s7p 1,3P states, the dT values are
consistently large, ranging between 8% and 37%. Consequently, the lifetimes of the
3s7p 1,3P states are computed with average uncertainties of the order of 13%. The
latter uncertainties are by far the largest among all computed lifetimes in Al II.

¹The subscript a is used to distinguish the two terms that are assigned the same label after the com
putations.
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3.3.3 Beyond Paper III

The computations of transition data in the Babushkin and the Coulomb forms, re
spectively, involve radial transition integrals given by (3.5), which probe separate parts
of the wave functions (see also Appx. A). Obtaining transition data that are weakly
sensitive to the choice of gauge, i.e., dT ∼0, requires that the radial parts of the wave
functions are well approximated as a whole. In the computations of Al I and Al II,
despite the specific optimization strategies, the correlation orbitals are, in most cases,
rather contracted compared to the spectroscopic outer Rydberg orbitals, and the outer
parts of the wave functions representing the high Rydberg states are not always effec
tively described. As a result, computed data for transitions involving high Rydberg
states are often subject to unexpectedly large dT values.

To improve the overall accuracy of the computed transition data, a more balanced
orbital basis, with correlation orbitals that occupy regions of space far from the atomic
core, should be generated. To do so, one could consider to include in the MR set
configurations that encompass orbitals with higher principal quantum numbers n,
such as 3s2nl configurations with n=7, 8 in Al I and 3snl configurations with n=
8, 9 in Al II. A similar orbital optimization strategy has been applied in the past in
spectrum calculations of Mg I [72].

Additional computations have now been performed in Al II, employing a similar ap
proach to the aforementioned orbital optimization strategy, which is based on an “ex
tended” MR configuration space. The extended MR space, together with the AS of
orbitals and the numbers of CSFs generated in the final RCI calculations, are shown
in the last segment of Table 3.1. The uncertainties dT of the transition rates com
puted in Paper III and in the additional –most recent– calculations are compared for
a few groups of transitions in Fig. 3.5. Each group is selected to include transitions
between a fixed state and Rydberg states described by electron distributions gradually
localized farther from the atomic core. Looking at Fig. 3.5, we observe that, when the
extended MR configuration space is used, the uncertainties in the transition rates are
substantially reduced. In fact, in some of the cases, the reduction is remarkable.
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Figure 3.5: The uncertainties dT of the computed transition rates for transitions between the
3s7p 1P1, or 3s7p 3P0, state and various successive Rydberg states in Al II. The
magenta diamonds correspond to the resulting dT values from the computations
based on the VVMR approach that was applied in Paper III, whereas the blue
circles indicate the dT values from the computations based on the VVMR+ ap
proach, which employed an “extended” set of MR configurations. In all cases,
the uncertainties are significantly reduced. Yet, for the displayed transitions in the
upper panels, the reduction is rather remarkable.

3.4 Landé gfactors

In intermediate coupling, i.e., LS J approximation, the Landé gΓJ factor, for a state
specified by |ΓPJM⟩, is given by

gΓJ =
∑
LS

w(LS)gJ(LS) , (3.9)

where w(LS) are the weights of the LSterms determining the LScomposition of
the wave function. The Landé gΓJ factors are, therefore, valuable probes of the cou
pling conditions in atoms. When two states are close in energy, the knowledge of the
gΓJ factors can be used to identify them, providing the values of the gΓJ factors are
significantly different [14, 15]. Accordingly, information on gΓJ factors can be useful
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for identifying stronglyinteracting states with different LSterms.

Since the Landé gΓJ factors are directly dependant on the mixing of the different
LSterms, they also depend on the predicted energy separations. The accuracy of the
Landé gΓJ factors, computed in Paper Iv, was, thus, evaluated based on the accuracy
of the resulting energy separations. For this purpose, a new parameter, denoted dES ,
was introduced to quantify the average relative differences between the computed
energy separations and recommended values from the NIST database (for the exact
definition of this parameter see Sec. 4.1 in Paper Iv). As also seen in Table 4 of
Paper Iv, the dES values, are below 0.5%, for both even and odd parity states in C I
Iv and Al II, as well as for the odd states in Al I. For the even states in Al I, the dES

value is ∼1.5%.

Using Eq. (3.9), the mixing between different LSterms can be evaluated by compar
ing the computed gΓJ factors with the corresponding gJ(LS) values from the pure
LScoupling. In Paper Iv, this comparison was performed for all computed states
in the studied ions, and it is visualized in Fig. 1 of the paper. The good agreement
between the gΓJ and gJ(LS) values, in C IIIv and Al III, indicates that the states of
these atoms and ions are well described within the LScoupling approximation. On
the other hand, in C I, there are many states for which the discrepancies between the
gΓJ and gJ(LS) values reach ∼15%, calling for a more rigorous treatment.
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Chapter 4

Hyperfine Structure  Extracting
Nuclear Quadrupole Moments of
Tin Isotopes

Nuclei with an odd proton number, Z, and/or an odd neutron number, N , have
a nonzero total nuclear spin, I . Nuclei also possess electromagnetic multipole mo
ments, higher than the electric monopole, representing the nuclear charge. The lowest
nontrivial nuclear magnetic and electric multipoles are the magnetic dipole moment,
µI , and electric quadrupole moment, Q. The latter reflects the deviation –to first
order– of a nuclear charge distribution from the spherical shape [90], constituting
an important characteristic of the structure of a nucleus [91, Ch. 7]. In atomic sys
tems containing nuclei with nonzero spin I , the nuclear electromagnetic moments
interact with the magnetic field and inhomogeneous electric field, produced by the
electrons at the position of the nucleus. As a result of this interaction, the nucleus
experiences a torque, which generates orientation potential energy and gives rise to
further splittings of the finestructure energy levels. These splittings are about three
orders of magnitude smaller than the finestructure splittings and are, thus, known
as the hyperfine structure (HFS) [92]. Theoretical investigations of the HFSs require
that the computed electronic parts of the interactions are merged with trustworthy
values of the respective nuclear electromagnetic moments.

In general, experiments can, very accurately, determine the magnetic dipole moments
µI , which are, practically, considered to be known [93, 94]. On the other hand, it is
rather difficult to measure the electric quadrupole momentsQ, via direct experimental
nuclear techniques. Highprecision measurements of HFS splittings combined with
computed hyperfine electronic factors can, alternatively, be used to semiempirically
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determine the nuclear quadrupole moments (see, e.g., [95–97]). The systematic tab
ulation of the Q values along the isotope sequences [98, 99] and their comparisons
with the theoretical predictions allow the nuclear models to be thoroughly tested and
the description of the effective nuclear interactions to be improved [100]. In Paper v,
HFS measurements of the 5s25p6s 3Po

1 and 5s25p6s 1Po
1 states in neutral tin (Sn I)

were combined with calculations of the corresponding electronic factors to extract the
Q moments of the oddmass tin isotopes in the range 117−131Sn.

The tin isotope sequence, with a magic number of protons at Z=50, is particularly
interesting for nuclear structure studies. Tin, besides being the chemical element with
the largest number of stable isotopes, is the heaviest known element containing two
isotopes with closed both proton and neutron shells. These are the neutrondeficient
100Sn [101] and neutronrich 132Sn isotopes [102]. The intermediate tin isotopes, with
only their proton core complete, may acquire quadrupole moments through the ge
ometry of the valence neutron orbitals. In the oddmass tin isotopes, the unpaired
neutron, in principle, polarizes the spherical core, modifying its electromagnetic prop
erties (see, e.g., [91, Fig. 7.8]). This matter polarization effect is visualized, for a por
tion of the studied isotopes, in Fig. 4.1. Highprecision data on quadrupole moments
along the tin isotopic chain can, thus, provide the required criteria for probing the
shell structure predicted by nuclear models.

The extracted Q(Sn) values, in Paper v, exhibit massdependent trends, which are
remarkably smooth, namely linear, or, at most, quadratic (see also Fig. 3a, b in the
paper). This observed global behavior of the extracted quadrupole moments was re
produced by the nuclear density functional theory (DFT) calculations that were per
formed in the paper, using recently optimized input parameters. Nonetheless, local
patterns, including the crossover point at the neutron number N for which the va
lence shell becomes halffilled and the quadrupole moment vanishes, do not always
conform to expectations. This suggests that further theoretical developments and a
more dedicated microscopic modeling are required in the future.

As previously mentioned, in Paper v, the nuclear quadrupole moments were deter
mined based on the theoretical evaluation of the electronic parts of the hyperfine
interaction. The multiconfiguration calculations of the hyperfine electronic factors in
neutral systems, such as Sn I, are particularly challenging due to their high sensitivity
to different electron correlation effects and the large number of electrons to correlate.
To be in a position to estimate the final values of these properties and their uncer
tainties, it is, therefore, common to perform multiple sets of largescale calculations,
employing different electron correlation models [58]. Paper vI reports on the specifics
of the four separate ab initio calculations that were carried out to deduce the final value
of the electronic part of the electric quadrupole interaction in the 5s25p6s 1Po

1 state,
which was, ultimately, used to extract the Q(Sn) values. In Paper vI, the rigorous
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assessment of the uncertainties of the latter computed electronic factor is further dis
cussed in detail. Since the accuracy of the inferred Q(Sn) values is affected by the
uncertainties of the atomic structure calculations, ensuring the highest quality of the
latter is an absolute requirement for interpreting the patterns that these experimental
observables follow.

In Sec. 4.1, we describe the theory of the HFS interaction, demonstrating how the
hyperfine splittings of the energy levels are, to the lowest orders, given by the mag
netic dipole and electric quadrupole coupling constants A and B, respectively. The
latter constants can simply be written as products of the nuclear magnetic dipole and
electric quadrupole moments and the corresponding electronic contributions. The
importance of different electron correlation effects in the computations of the hy
perfine electronic factors is, subsequently, discussed in Sec. 4.2. Within this section,
one of the three sets of separate MCDHFRCI calculations that were carried out in
Papers vvI (reflecting the author’s major contribution to these works) is analyzed,
justifying the adopted computational strategy.

4.1 Hyperfine Structure

The DiracCoulomb Hamiltonian of Eq. (2.8) solely takes into account the central
part of the nuclear charge density distribution. The noncentral interaction between
the electrons and the nuclear electromagnetic multipole moments gives rise to what
is known as the hyperfine structure (HFS). The corresponding contribution to the
Hamiltonian can be represented by a multipole expansion

HHFS =
∑
k≥1

T(k) ·M(k), (4.1)

where T(k) and M(k) are two spherical tensor operators of the same rank k, which,
separately, act on the electronic, |ΓPJMJ⟩, and nuclear, |ηΠIMI⟩, spaces [92]. The
nuclear states are characterized by the parityΠ, the total angular momentum I and its
projection quantum numberMI , together with the label η, which contains additional
information necessary to uniquely describe each state. In the expansion (4.1), k=1
represents the magnetic dipole (M1) part, while k=2 refers to the electric quadrupole
(E2) component, of the hyperfine interaction. Higher than secondorder terms are
far less significant¹ and most often neglected.

The hyperfine interaction couples the nuclear spin, I , and electronic angular mo
mentum, J , to a total angular quantum number F =I +J . The coupled electronic

¹Indicatively, we note that magnetic octupole (M3) shifts are typically ∼108 times smaller than M1
splittings [104].
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and nuclear states, which are eigenfunctions of F 2 and Fz , are characterized by the
quantum numbers F and MF and are expressed as

|ηΓΠPIJFMF ⟩ =
∑

MI ,MJ

⟨I, J ;MI ,MJ |F,MF ⟩|ηΠIMI⟩|ΓPJMJ⟩ , (4.2)

with ⟨I, J ;MI ,MJ |F,MF ⟩ being the CG coefficients. Assuming that the HFS en
ergies are small in comparison to the finestructure splittings, the hyperfine interac
tion can be treated in firstorder perturbation theory. In this case, for a specific state
|ΓPJ⟩, the total HFS contribution to the finestructure energy, EΓJ , is given by

EHFS
ΓJF = ⟨ηΓΠPIJFMF |

∑
k=1,2

T(k) ·M(k)|ηΓΠPIJFMF ⟩ , (4.3)

which corresponds to the diagonal HFS effect. Following [51, § 11.8], the two terms
of Eq. (4.3) are evaluated according to

⟨ηΓΠPIJFMF |T(k) ·M(k)|ηΓΠPIJFMF ⟩ =

(−1)I+J+F

{
I J F
J I k

}
⟨ΓPJ∥T(k)∥ΓPJ⟩⟨ηΠI∥M(k)∥ηΠI⟩ ,

(4.4)

where the dependence on the total momentum F is contained in the 6jsymbol and
the phase factor. Due to the properties of the 6jsymbol in the expression above,
Eq. (4.3) includes terms only up to k = 2min(I, J). Papers v and vI exclusively
considered J = 1 states in neutral tin, which potentially, permit both M1 and E2
interactions. However, among the studied tin isotopes, there were a few isomers with
nuclear spin I = 1/2, for which only the M1 components exist, and no nuclear
quadrupole moments were extracted (see Table 1 in Paper v).

In the majority of cases, the nuclear operators, M(1) and M(2), are not explicitly
used–their expressions can yet be found in, e.g., [104]. Instead, the expectation values
of the M(1) and M(2) operators in the state with the maximum component of the
nuclear spin, i.e.,MI=I , are directly connected to the conventional nuclear magnetic
dipole moment, µI , and electric quadrupole moment, Q, so that

µI = ⟨ηπII|M (1)
0 |ηπII⟩ (4.5)

and
Q

2
= ⟨ηπII|M (2)

0 |ηπII⟩ . (4.6)
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By making use of the WignerEckart theorem [51, § 11.4] in Eqs. (4.5) and (4.6) and
substituting the formulas for the respective 3jsymbols as found in [105, §4.2], we get

⟨ηπI∥M(1)∥ηπI⟩ = µI

√
((2I + 1)(I + 1))

I
(4.7)

and

⟨ηπI∥M(2)∥ηπI⟩ = Q

2

√
(2I + 3)(I + 1)(2I + 1)

I(2I − 1)
. (4.8)

To evaluate the expectation value (4.3), using Eq. (4.4), the nuclear reduced matrix
elements are replaced by the expressions (4.7) and (4.8). After also utilizing the for
mulas for the 6jsymbols found in [105, §4.2], the HFS energy corrections to the
finestructure levels are, finally, written as

EHFS
ΓJF =

1

2
AΓJC +BΓJ

3
4C(C + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (4.9)

where C=F (F+1)−J(J+1)−I(I+1) and AΓJ , BΓJ are the socalled HFS con
stants, which do not depend on the F quantum number, and, respectively, describe
the intensities of the M1 and E2 interactions for a specific |ΓPJ⟩ state. The HFS
constants are expressed as

AΓJ ≡ A =
µI

I

1√
J(J + 1)(2J + 1)

⟨ΓPJ∥T(1)∥ΓPJ⟩ , (4.10)

and

BΓJ ≡ B = 2Q

√
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
⟨ΓPJ∥T(2)∥ΓPJ⟩ . (4.11)

For an N electron atom, the electronic operators for each of the M1 and E2 interac
tions are given by

T(1) =

N∑
i=1

t(1)(i) =

N∑
i=1

−i
√
2α r−2

i

(
αiC

(1)(θi, φi)
)(1)

(4.12)

and

T(2) =

N∑
i=1

t(2)(i) =

N∑
i=1

−r−3
i C(2)(θi, φi) , (4.13)
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where α is the finestructure constant, α is the Dirac matrix, and C(1) and C(2) are
the renormalized spherical harmonics of rank 1 and 2, respectively. The M1 opera
tor (4.12) represents the magnetic field produced at the region of the nucleus by the
orbital motions and spins of the electrons, whereas the E2 operator (4.13) describes
the rate of change in the electric field, or the electric field gradient (EFG), which is
generated by the electrons at the site of the nucleus.

The A and B constants can be obtained by combining the computed values of the
electronic factors,

Ael = AI/µI , Bel = B/Q , (4.14)

with information on the nuclear electromagnetic moments µI and Q. When high
precision measurements of the A and B constants, together with accurate values of
nuclear magnetic dipole moments µI , are available, the computed electronic factors
Ael andBel can be used to semiempirically determine the nuclear electric quadrupole
moments Q [98, 99].

4.2 Computing the Electronic Factors Ael and Bel

The computations of the electronic Ael and Bel factors, in principle, rely on how ac
curately the generated magnetic fields and EFGs at the nuclear region are described.
In an atomic state, an unpaired valence selectron, with a finite probability density
at the nucleus, is likely to give the largest contribution to the magnetic field near
the origin. However, electron correlation effects, and especially, the polarization ef
fects resulting from the Coulomb interaction between core and valence subshells, may
provide significant corrections to the representations of the magnetic fields, as well as
contributions to the EFGs.

Taking for convenience the nonrelativistic limit, in the HartreeFock approximation,
the closed electron core has a charge distribution, which is spherically symmetric and
gives no contribution to the magnetic field and EFG. Closed subshells also have zero
spindensities due to the full cancellation of the spinup and spindown contributions,
and as a result, no magnetic field is, overall, generated from the core. Yet, in reality,
outer valence electrons polarize the electron core, resulting in a distortion of the spher
ically symmetric charge distribution. Further on, the interactions between an outer
valence electron and the individual core electrons are, practically, different for spin
up and spindown. As a general rule, the Coulomb exchange interaction weakens the
repulsion between core and valence electrons with the same spin orientation, pulling
the core electron towards the valence subshell [52, §8.14]. This interaction distorts the
core, whose spindensity, eventually, becomes nonzero.
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In the MCDHF calculations, the distortion, or else polarization, of the core can be
represented by CSFs that are generated by single (S) electron substitutions from the
core orbitals of the MR configurations. More particularly, the spinpolarization ef
fects are largely captured by S substitutions from the core sorbitals. It should be
mentioned that, as inner selectrons have very high spindensities at the site of the
nucleus, even small differences between the spindensities of the two selectrons in the
same subshell can induce a net interaction, which is comparable to the effect from an
open valence subshell. The orbitalpolarization effects, which impact both magnetic
field and EFG, are taken into account by the S substitutions from core orbitals with
l ≥ 1. The HFS interaction is described by oneparticle operators (see Eqs. (4.12) and
(4.13)), and when computing the hyperfine electronic factors Ael and Bel, the CSF
expansions should, in principle, include S substitutions from all orbitals that are part
of the MR configurations.

Although the spin and orbitalpolarization effects directly captured by S electron
substitutions give the most substantial corrections to the computed electronic HFS
factors, there are more effects, such as additional corevalence (CV) correlation ef
fects and threeparticle interactions, which are also critical. By including CSFs that
capture CV electron correlation, in addition to valencevalence (VV) correlation, the
valence orbitals will undergo a contraction. Since the operatorsT(1) andT(2) scale as
r−3, this effective contraction of the valence orbitals will raise the Ael and Bel values.
It should be pointed out that, even though it is not directly obvious from Eqs. (4.12)
and (4.13), the common r−3 dependence is explained by the different structures of the
corresponding oneelectron matrix elements in the nonrelativistic limit [37, § 5.2].
CSFs produced by triple (T) substitutions from the MR configurations further in
crease the electronic HFS factors. As the HFS is described by oneparticle operators,
and the energy corrections are obtained by (one and) twoparticle operators, the CSFs
built from T substitutions account for the spin and orbitalpolarization effects of the
most energetically important configurations that are obtained by double (D) substi
tutions from the configurations in the MR (in the same way that CSFs built from D
substitutions account for the polarization effects of the most energetically important
configurations obtained by S substitutions from the MR configurations).

4.2.1 The SrDMRMCDHF and RCI calculations

In Papers vvI, three independent sets of MCDHFRCI calculations (together with
a fourth set of calculations based on the configuration interaction DiracFockSturm
theory [106]), were carried out to deduce the hyperfine electronic factors Ael and Bel

of the 5s5p6s 1,3Po
1 states in Sn I. In each of the three independent MCDHFRCI

calculations, the wave functions representing the atomic states were obtained based
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on various approximations with respect to the orbital basis and the CSF expansions.
In this thesis, we focus on the set of multiconfiguration calculations, which applied
an orbital optimization strategy based on CSF expansions that were built from S and
restricteddouble (rD) electron substitutions from a multireference (MR) configura
tion space and are, accordingly, denoted SrDMRMCDHF.

The HFS in Sn I is characterized by a large magnetic dipole splitting of the 3Po
1 state

and a sizeable electric quadrupole splitting of the 1Po
1 state. The quadrupole mo

ments of the studied tin isotopes were extracted by combining the measured B[1Po
1]

constants, for each of the isotopes, with the calculated electronic factor Bel[1Po
1].

Additionally, by combining the knowledge on magnetic dipole moments (as ob
tained from the literature [107, 108]) with the measured A[3Po

1] constants, the elec
tronic factorAel[3Po

1] was experimentally determined (see also “Methods” in Paper v).
The Aexpt

el [3Po
1]= 2396.6(7) MHz/µN value was used to benchmark the calculated

Ael[3Po
1] value, further assisting the evaluation of the uncertainty in the calculated

electronic factorBel[1Po
1] (see Sec. IV B in Paper v). For this reason, we solely present

and discuss the Ael[3Po
1] and Bel[1Po

1] values.

In what follows, the SrDMRMCDHF and RCI calculations are motivated by dis
cussing, in brief, the captured electron correlation effects and by quantifying the im
pact that some of them had on the computed electronic factorsAel[3Po

1] andBel[1Po
1].

For further details, the reader is referred to Sec. III A.3 in Paper vI.

The SrDMRMCDHF orbital optimization strategy mainly differs from the SrDSR
MCDHF calculations, which are described in Sec. III A.2 of Paper vI, in choosing
a set of MR configurations from which substitutions of electrons were allowed. By
defining an MR space that produces a set of CSFs accounting for the major electron
correlation effects, a better initial representation of the targeted atomic states was ob
tained. Moreover, when further generating CSFs by allowing S (and D) substitutions
from the MR configurations, triple (and quadrupole) substitutions from the targeted
5s5p6s configuration were also considered. As already mentioned, such CSFs play a
critical role in the computation of the HFS constants.

More specifically, in the MCDHF calculations, the orbital basis was obtained based on
CSF expansions that were built from SrD substitutions from the 4d, 5s, 5p, 5d, and
6s spectroscopic orbitals, with the limitation that there was at most one substitution
from the 4d core subshell. In this way, besides VV electron correlation effects, CV
correlation and polarization effects of the 4d orbital were also taken into account. To
make sure that the values of all computed properties were converged, nine layers of
correlation orbitals were generated, corresponding to more than one million of CSFs
(see Table IV in the paper). That being said, during the optimization of the orbital
basis, CSFs formed from S, or D, substitutions from orbitals deeper in the atomic
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core were not generated, as the computational resources at our disposal did not allow
us to do so.

After ensuring the convergence of the computed properties within the (CV)SrDMR
MCDHF orbital optimization scheme, a final RCI computation was carried out, in
which the atomic state expansions were augmented to include CSFs accounting for
additional correlation effects. Due to the limited computational power, the CSF ex
pansions had to be generated so that the most crucial effects were captured. To assess
the relative significance of the various correlation effects on the computation of the
electronic factors Ael[3Po

1] and Bel[1Po
1], preliminary RCI calculations (using an or

bital basis restricted to four layers of correlation orbitals) were performed. In each of
these RCI calculations, the atomic state expansions were, progressively, enlarged to
include CSFs that had been generated by, first, allowing additional D substitutions
from the 4d orbital and then, gradually, also enabling S substitutions from the 4p,
4s, 3d, and so on, orbitals, down to the innermost 1s orbital. The resulting Ael[3Po

1]
and Bel[1Po

1] values are shown in Table 4.1. In addition, starting from the RCI calcu
lations, which employed CSF expansions based on SD substitutions from the 4d, 5s,
5p, and 6s orbitals, further CV correlation effects were considered by, first, opening
the 4p orbital and, then, the 4s orbital to generate CSFs based on D substitutions,
with the restriction of allowing maximum one hole in 4p6 and, then, also maximum
one hole in 4s2. These results are displayed in the last two rows of Table 4.1.

As seen in Table 4.1, the CSFs formed by allowing D substitutions from the 4d orbital,
accounting for corecore (CC) electron correlation effects, are clearly the most impor
tant. However, we observe that the effect of adding CC correlation is to decrease the
value of the electronic factor Ael[3Po

1]. The effect of CC correlation in the compu
tations of HFSs is mainly indirect. Due to their important contribution to the total
energy, the CSFs accounting for CC correlation are expected to have relatively large
mixing coefficients. As a result, the mixing coefficients of CSFs describing effects that
are more important for HFS interactions, such as the orbitalpolarization of the 4d
subshell, take lower values. This is, eventually, counterbalanced by the inclusion of
CSFs that are formed from S substitutions from the rest of the core subshells. All
these classes of CSFs were considered in the atomic state expansions of the final RCI
calculation.

Looking at the last portion of Table 4.1, it is confirmed that the contributions from
the CV correlation effects of both 4p and 4s subshells are significant. Nonetheless,
our computational resources allowed us to include CSFs based on rD substitutions
only from the 4p orbital, and not from the 4s orbital, when constructing the final
expansions of the atomic states. After including all nine layers of correlation orbitals,
we note that the atomic state expansions contained more than 3.5 millions of CSFs
(see also Table VI in the paper).

54



Table 4.1: The effect of different types of electron substitutions on the computation of the
electronic factors Ael[3Po

1] and Bel[1Po
1]. The reference values displayed in the first

row were computed after optimizing four correlation orbital layers in the SrDMR
MCDHF calculations. Contributions from additional substitutions were evaluated
in subsequent RCI calculations, where the CSF expansions were enlarged by, first,
including D substitutions from the 4d orbital and, then, progressively adding S
substitutions from the 4p orbital down to the 1s orbital. In the last portion of the
table, contributions from CV correlation effects were evaluated in RCI calculations,
where CSFs were generated by allowing SrD substitutions from n≥4 orbitals, with
the restriction that there was at most one substitution, initially, only from the 4p
orbital, and then, from the 4s orbital as well.

Subst. Orbital Ael[3Po
1] Bel[1Po

1]

SrD 4d 2 109 591

SD 4d 1 996 605
+ S 4p 2 058 671
+ S 4s 2 062 671
+ S 3d 2 061 672
+ S 3p 2 081 684
+ S 3s 2 086 684
+ S 2p 2 094 687
+ S 2s 2 097 687
+ S 1s 2 099 687

SD 4d 1 996 605

+ SrD 4p 2 087 674
+ SrD 4s 2 095 675
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Chapter 5

Probing Nuclear Properties in
Heavy Atoms via Isotope Shifts

Besides the hyperfine structure splittings of the atomic energy levels (taking place
in systems with nonzero nuclear spin), the interplay between the atomic electrons
and the nucleus further manifests itself in isotopedependent energy shifts. When
spectral lines from different isotopes of the same element are observed, the isotope
specific properties of nuclei induce a small energy separation, known as the line iso
tope shift (IS). By far the most significant contributions to the observed IS are the
mass shift (MS) and field shift (FS) effects [109]. The MS emerges from the differ
ence in the nuclear recoil energies, due to the finite isotopic masses, whereas the FS
arises from the different central field potentials that the electrons experience, owing
to the unique nuclear charge density distributions. While the impact of the MS is the
most prominent in light atoms, the FS dominates in middleZ, or heavier, systems.
This is due to the increased nuclear radii for larger nuclear masses and simultaneous
contraction of the atomic orbitals for higher Z (see Fig. 5.1).

Within the framework of perturbation theory, the MS and FS contributions to the
IS are factorized into electronic and nuclear parts [111]. The electronic parts depend
on the atomic states participating in the studied transitions, while the nuclear parts
are evaluated based on relevant nuclear properties; for the MS and FS, these are,
respectively, the nuclear masses and radial moments of the nuclear charge density
distributions of the isotopes in question. For a charge density distribution ρ(r), the
radial moments, of order n, are given by

⟨rn⟩ =
∫∞
0 dr3 rnρ(r)∫∞
0 dr3ρ(r)

, (5.1)
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Figure 5.1: Nuclear charge (blue) and radial electron (red) density distributions in ground
states of selected nobel gases. As the atomic number Z increases, the nuclear
charge density distributions gradually expand, while at the same time, the atomic
orbitals, and consequently the electron density distributions, become more and
more contracted. Image credits: [110]

where the value of the denominator is determined by the normalization condition.
The nuclear radial moments provide information about the specifics of the shapes of
the nuclear charge density distributions, including their radial extent and the density
diffuseness around the nuclear surfaces (surface thickness).

Experimental techniques, such as elastic electron scattering, typically yield precise in
formation on nuclear radial moments, up to infinite order [112, 113]. Even so, electron
scattering experiments are only possible for stable and longlived isotopes. In radioac
tive and shortlived systems, the theoretical predictions of ISs might have to rely on
radial moments that are obtained from models approximating the nuclear charge den
sity distributions. In the studies of atomic structure, the most commonly adopted ap
proximation is the Fermi model [40], which, yet, does not fully capture the details of
the nuclear charge distributions. This was also demonstrated in Paper vII, where the
Fermi distribution was compared with “realistic” nuclear charge density distributions,
obtained from microscopic nuclear models [114, 115].

By making the assumption that the electron density is –to a very good approximation–
constant within the nuclear volume, the FS contribution to the IS is simply given by
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the product of the electronic parameter and the difference in the secondorder radial
moments ⟨r2⟩ of the studied isotopes [116]. This means that from knowledge of an IS
measurement, for one atomic transition, and computations of the corresponding elec
tronic MS and FS parameters, the change in the ⟨r2⟩ values between two isotopes can
be extracted in a nuclearmodelindependent way. In fact, combining highprecision
measurements of ISs, via laser spectroscopy [27] or dielectronic recombination [28],
with accurate predictions of the electronic MS and FS parameters, has proven to be
a key approach for extracting the δ⟨r2⟩ values in a large number of isotope pairs,
including radioactive systems (see, e.g., [117–121]). Thanks to this combined effort
from theory and experiment, data of variations in ⟨r2⟩ have been made available for
isotope sequences along, practically, the entire periodic table [122]. The data on mean
square charge radii, which contain information about the sizes and shapes of nuclei,
can eventually be compared with predictions from stateoftheart nuclear models to
assess their ability to reproduce the global behaviour of these observables, as well as
further microscopic features [123].

In relatively heavy systems, the constant electron density approximation, however,
breaks down, and to obtain an accurate description of the observed ISs, it is necessary
to take into account the variations of the electron densities across the nuclear volumes.
This leads to the reformulation of the FS, which contribution is now expressed as an
expansion over the differences in the firstfour even nuclear radial moments of the two
isotopes in question [124–126]. It has been shown that, in systems with Z ∼ 90, the
corrections in the description of the FS, due to the terms containing the variations in
higher than secondorder nuclear radial moments, can be of the order of 10% [124].

In Paper vII, it was further deduced that, provided the shape variation is large be
tween the two isotopes, replacing the higherorder radial moments obtained from the
Fermi model with radial moments from realistic charge density distributions can have
a significant effect on the description of the FSs in systems with Z ≳ 50. In some
cases, this effect is greater than the experimental uncertainties, suggesting the possi
bility to extract information about higher than secondorder radial moments from IS
measurements. In Paper vII, a promising method for the simultaneous extraction of
the δ⟨r2⟩ and δ⟨r4⟩ values, using experimental ISs, was introduced, by also quanti
fying the statistical errors that arise from the uncertainties in the IS measurements.
It was concluded that an increase in the experimental precision by 1−2 orders of
magnitude is necessary to extract the δ⟨r2⟩ and δ⟨r4⟩ values with adequate accuracy.
It was recently shown [127] that possible access to both ⟨r2⟩ and ⟨r4⟩ moments could
establish more reliable constraints in the prediction of the surface thickness of the nu
clear charge density distributions, which, in approximate models, such as the Fermi
distribution, is set to be constant.
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To be in a position to extract the information on the ⟨r2⟩ and ⟨r4⟩ radial moments
from measurements of atomic transition energies, one must also bear in mind that
the electronic parts that make up the MS and FS contributions must be evaluated
with very high precision. Although, in highlycharged systems, this might be feasible,
the accuracy of atomic structure calculations in neutral, or nearneutral, systems is
often limited by the electron correlation effects, which might not be effectively cap
tured. Besides the MS and FS contributions, there are additional effects, such as QED
and nuclear polarization corrections, which also contribute to the observed ISs and
must be accurately estimated. The nuclear polarization contribution refers to the in
teraction of a nucleus with the radiation field, which results in virtual excitations of
collective nuclear states [128, Ch. 19]. This effect is always present in atomic transi
tions and, when identifying the various contributions to the observed ISs, it can be
the largest uncertainty factor [129].

In Sec. 5.1, we describe how the observed ISs can be predicted by separately evaluating
the MS and FS contributions. Sec. 5.2 summarizes the most important findings from
the investigations that quantified the effect of using realistic nuclear charge density
distributions when computing the FSs. The developed method for the simultaneous
extraction of the δ⟨r2⟩ and δ⟨r4⟩ radial moment differences is presented in Sec. 5.3.
Thereafter, Sec. 5.4 discusses the systematical (model) errors and statistical uncertain
ties that should be considered.

5.1 Isotope Shift

Given a transition k, the experimentally measurable line frequency IS, for a pair of
isotopes A,A′, is given by

δνA,A′

k,IS = νAk − νA
′

k =
δEA,A′

k,IS

h
=

δEA,A′

u,IS − δEA,A′

l,IS

h
, (5.2)

where δEA,A′

u,IS and δEA,A′

l,IS are, respectively, the shifts in the energies of the upper,
u, and lower, l, levels taking part in the transition (see also Fig. 5.2). For a particular
level, the IS is expressed as the sum of the MS and FS contributions. Accordingly, for
a transition k, the line IS can be written as

δEA,A′

k,IS = δEA,A′

k,MS + δEA,A′

k,FS . (5.3)

Below, we describe how these two contributions are evaluated in atomic structure
computations with the latest versions of GRASp [32, 34] and its extension code RIS 4 [111].
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Figure 5.2: The upper u and lower l levels that are, respectively, associated with an atomic
transition k, in the isotopesA andA′ of an element. The shift in energy is different
in magnitude for each of the upper, u, and lower, l, levels of the two isotopes,
resulting in the observed IS for the transition k.

5.1.1 Mass shift

The DiracCoulomb Hamiltonian, presented earlier in Sec. 2.1, is based on the infinite
(nuclear) mass approximation¹. The finite nuclear mass MA, of an isotope A, gives
rise to a recoil effect, known as the mass shift (MS). The Hamiltonian accounting
for the recoil motion of the nucleus, within the (αZ)4m2/MA approximation, as
derived by Shabaev [130] and, in an independent way, by Palmer [131], is given by

HA
MS =

1

2MA

N∑
i,j

(
pi · pj −

αZ

ri

(
αi +

(αi · ri)ri
r2i

)
· pj

)
. (5.4)

After separating the onebody (i = j) and twobody (i ̸= j) terms into the normal
mass shift (NMS) and specific mass shift (SMS) contributions, respectively, the recoil
Hamiltonian (5.4) splits into

HA
MS = HA

NMS +HA
SMS . (5.5)

One may observe that each of the first terms in the operators HA
NMS and HA

SMS rep
resents the NMS and SMS operators in the nonrelativistic limit (see also Appx. B).

¹This assumption relies on the fact that an atomic nucleus has a much larger mass than the electrons
around it; the mass of nuclei range from 1.672621777(74)·10−27kg to about 4.88·10−25kg for the
heaviest nucleus known, while the electron’s mass is 9.10938291(40)·10−31kg.
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For a state specified by |ΓPJM⟩, the (massindependent) normal mass shift,KΓJ,NMS,
and specific mass shift, KΓJ,SMS, parameters are, respectively, defined by

KΓJ,NMS

MA
=

1√
2J + 1

⟨ΓPJ ||HA
NMS||ΓPJ⟩ (5.6)

and
KΓJ,SMS

MA
=

1√
2J + 1

⟨ΓPJ ||HA
SMS||ΓPJ⟩ , (5.7)

where the expectation values of the NMS and SMS operators above are evaluated
using the zeroorder wave functions obtained according to Sec. 2.3.

Finally, the level MS between two isotopes A,A′, with masses MA,MA′ , respectively,
is given by

δEA,A′

ΓJ,MS =

(
1

MA
− 1

MA′

)
(KΓJ,NMS +KΓJ,SMS) . (5.8)

The corresponding line MS, for a transition k, can, then, be expressed as

δEA,A′

k,MS =

(
1

MA
− 1

MA′

)
(∆Kk,NMS +∆Kk,SMS) , (5.9)

where ∆Kk,NMS and ∆Kk,SMS are the differences in the KΓJ,NMS and KΓJ,NMS
parameters between the upper and lower states involved in the transition k.

5.1.2 Field shift

As also mentioned in Sec. 2.1, the nuclear potential of the DiracCoulomb Hamilto
nian, implemented in GRASp, accounts for an extended nuclear charge density distri
bution. The FS effect is induced by the penetration of the electronic wave functions
into the nuclear region (see also Fig. 5.1), and it is, consequently, more prominent
for electrons moving in the s1/2 and p1/2 orbitals, which may have an appreciable
electron density at the nucleus.

In atomic structure calculations using the infinite mass approximation, the level FS
between two isotopesA,A′ can be estimated by subtracting the level energies obtained
from two separate calculations that use different sets of parameters describing the
nuclear charge distributions of the two isotopes [132]. In the GRASp codes, the nuclear
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charge density distribution is approximated by the spherical twoparameter Fermi
model

ρ(r) =
ρ0

1 + e
r−c
a

, (5.10)

where the normalization constant ρ0 can, e.g., be chosen so that∫ ∞

0
4πr2ρ(r)dr = Z . (5.11)

In the expression (5.10), the a parameter is related to the surface (skin) thickness t
of the distribution by t = 4ln(3)a [40]. The surface thickness, which defines the
interval where the density decreases from 90% to 10% of ρ(0), has a default value
t=2.3 fm. The c parameter represents the halfdensity radius and is determined based
on the value of a and the selected rootmeansquare (rms) radius

√
⟨r2⟩. A plot of

the Fermi distribution, highlighting the t and c parameters, is shown in Fig. 5.3.
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Figure 5.3: A spherical twoparameter Fermi nuclear charge density distribution for the
neodymium (Nd) isotope with mass number A = 142. The Fermi distribution
is determined by the surface thickness t and the halfdensity radius c, which is
chosen so that it reproduces the rms radius ⟨r2⟩ = 4.935 fm, as predicted by
microscopic nuclear structure calculations.

The Fermi model given by Eq. (5.10) can be generalized to also describe deformed
nuclei. The halfradius c parameter is, then, replaced by

c(θ) = c0

(
1 +

∞∑
l=2

l∑
m=−l

βlm Ylm(θ, ϕ)

)
, (5.12)
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where βlm are the nuclear multipole deformation parameters, and Ylm are the spheri
cal harmonics. In many cases, only axially symmetric quadrupole nuclear deformation
is considered, so that

c(θ) = c0
[
1 + β20Y20(θ)

]
, (5.13)

where c0 is adjusted to reproduce the selected
√

⟨r2⟩ value. The quadrupole deforma
tion parameter β20 is related to the static nature (rigidity) of the nuclear deformation,
contrary to the spectroscopic electric quadrupole moment Q, which probes the dy
namic nature (softness) of the nuclear deformation and is separately obtained from
HFS measurements. The nuclear parameters β20 and Q are, thus, complementary
measures of deformation (see, e.g., [29]).

When several isotopes are considered, the abovementioned “exact” calculations are
cumbersome, computationally expensive, and, in general, the result of subtracting
large numbers, which is likely to be unstable. Alternatively, we can use an approach
based on perturbation theory. Within the framework of perturbation, the firstorder
level FS, for a state |ΓPJM⟩, can be expressed as

δE
(1)A,A′

ΓJ,FS = −
∫
R3

(
V A′

nuc(r)− V A
nuc(r)

)
ρeΓJ(r)d

3r , (5.14)

where V A
nuc(r) and V A′

nuc(r) are the oneelectron potentials arising from the differ
ent nuclear charge distributions of the two isotopes A and A′, and ρeΓJ(r) is the level
electron density distribution inside the nuclear volume of the reference isotopeA. Av
eraging over the magnetic components M , the spherically symmetric electron density
within the nucleus is evaluated as

ρeΓJ(r) =
〈
ΓPJ

∣∣∣∣∣∣ δ̂(r)
r2

∣∣∣∣∣∣ΓPJ
〉
, (5.15)

where δ̂(r) =
∑N

i=1 δ̂(r−ri), with δ̂(r−ri) probing the presence of the electron i
at a particular distance r from the origin.

Assuming a finite nuclear charge distribution, the electron density within the nucleus
can be expanded as an even polynomial function [124–126]. After keeping only the
first few terms, the electron density around r=0 is given by

ρeΓJ(r) =
ρeΓJ(r)

4π
≈ bΓJ(r) = bΓJ,1 + bΓJ,2r

2 + bΓJ,3r
4 + bΓJ,4r

6. (5.16)
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After inserting the expansion above in Eq. (5.14), we arrive at the expression for the
reformulated (level) field shift (RFS) [111, 126], which is written as

δE
(1)A,A′

ΓJ,FS ≈ δE
(1)A,A′

ΓJ,RFS =

4∑
n=1

FΓJ,nδ⟨r2n⟩A,A′
, (5.17)

where FΓJ,n are the level electronic factors given by

FΓJ,n =
2πZbΓJ,n
n(2n+ 1)

, (5.18)

and
δ⟨r2n⟩A,A′

= ⟨r2n⟩A − ⟨r2n⟩A′
(5.19)

are the differences in radial nuclear moments, of order 2n, between the isotopesA and
A′. These moments can be taken from any nuclear model, calculation, or experiment.

The computations of the electronic factors FΓJ,n, together with the MS parameters
KΓJ,NMS and KΓJ,SMS, are performed with the Ris 4 code [111]. In RIS 4, the poly
nomial expansion bΓJ(r) is, for each level, fitted to the constructed electron density
ρeΓJ(r) using a leastsquares method.

The corresponding line FS, for a transition k, can, then, be expressed as

δEA,A′

k,FS =
4∑

n=1

2πZ∆bk,n
n(2n+ 1)

δ⟨r2n⟩A,A′
, (5.20)

where ∆bk,n are the differences in the coefficients bΓJ,n between the upper and lower
states.

5.2 Realistic Nuclear Charge Distributions

In Sec. III.B of Paper vII, calculated FS values in Ba I (Z = 56) are compared with
experimental IS data [133], from which the theoretical MS contributions were sub
tracted [134]. To calculate the FSs according to Eq. (5.20), we used nuclear radial
moments that resulted from: (i) the Fermi model given by (5.10) and (ii) the realistic
nuclear charge distributions obtained from DFT calculations [135]. The comparison
shows that the calculations based on the Fermi distribution fail to capture the general
behavior of the observed FSs. On the other hand, the microscopic nuclear calcula
tions capture both the right trend with neutron number and, in addition, some of the
oddeven staggering (see also Fig. 5.4).
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Figure 5.4: Figure 3 from Paper vII. The predicted absolute FS values are compared to the
available experimental data [133]. The computed FSs are based on nuclear radial
moments, which have resulted (1) from nuclear DFT calculations (UNEDF1) and
(2) from the Fermi distribution.

The Fermi model was used with the rms radii given by√
⟨r2⟩ = 0.836 ·A

1
3 + 0.570 fm (A > 9) , (5.21)

where A denotes the mass number of the isotope. The major correction to the de
scriptions of the observed FS values is clearly provided by the use of realistic rms radii.
However, by also making use of realistic higherorder radial moments, the predicted
FSs are further improved. In Fig. 5.5, the Fermi and realistic nuclear charge distri
butions are, for instance, compared for the system of neodymium (Z = 60). The
Fermi distribution, shown in the figure, is tuned so that is has the same ⟨r2⟩ radial
moment as the more realistic charge distribution denoted as “DFT”. Nonetheless,
the density profiles differ to some extent. The Fermi model, with fixed skin thickness
t = 2.3 fm, does not properly describe the density wiggles and diffuseness of the
distribution. These features are encoded in higherorder radial moments.

In Sec. IV of Paper vII, we further investigate the magnitude of the corrections when
realistic higherorder radial moments are used, in Eq. (5.17), to predict the FS. This
was done by evaluating the socalled correction term, which is defined as

δνA,A′

realistic − δνA,A′

Fermi =

4∑
n=2

Fk,n[ δ
〈
r2n
〉A,A′

realistic −δ
〈
r2n
〉A,A′

Fermi ] . (5.22)

The magnitude of (5.22) was estimated for a wide range of isotopes in Lilike systems
and in Ba I. For isotope pairs A,A′ of a specific element, the absolute value of (5.22)
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Figure 5.5: Comparison between the nuclear charge density distributions resulting from
the Fermi model (blue) and the DFT calculations (orange) in the spherical
neodymium (Nd) with mass number A = 142. The Fermi model has a fixed
skin thickness t = 2.3 fm and is fitted to reproduce the ⟨r2⟩ moment provided by
the realistic DFT calculations. Discrepancies in the specifics of the distributions
are observed. (Image credits: [110].)

typically grows with the difference between the neutron number ∆NA,A′ . When
more neutrons are added (or removed), they alter the protons’ distribution, leading
to changes in the diffuseness. As also seen in Fig. 5.5, this effect is not sufficiently
captured by the Fermi model. In deformed nuclei, the corrections further depend on
the quadrupole deformation parameter β20, which is assumed to be zero in the Fermi
model given by (5.10). The corrections increase when the difference in deformation
between the reference and the target isotope gets larger. The same trends are observed
in Ba I. When, instead, the axially symmetric deformed Fermi model is used, the
correction term appears to be smaller.

Besides the IS measurements in Ba I, experimental ISs are also available for the first
two resonance transitions in the 142,150Nd57+ isotope pair [136]. In highlycharged
systems, the MS contribution is generally much smaller, and the uncertainties in the
observed FS values are most often restricted to the experimental uncertainties. That
being so, the uncertainties of the observed ISs in 142,150Nd57+ are compared with
the estimated correction terms resulting from the use of realistic higher than second
order radial moments (see Fig. 6 in Paper vII). It is deduced that effects, such as
deformation, which are captured by these nuclear radial moments, could be detected.
In the next two sections, the developed method for possible simultaneous extraction
of the δ⟨r2⟩ and δ⟨r4⟩ radial moment differences from IS measurements is outlined.
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5.3 Simultaneous Extraction of δ⟨r2⟩ and δ⟨r4⟩

The RFS expression given by Eq. (5.20), combined with experimental IS data, in
principle, enables the extraction of differences in higherorder radial moments. Given
measurements for at least four transitions, a system of four equations can be solved,
i.e.,

δνk,RFS = Fk,1δ
〈
r2
〉
+ Fk,2δ

〈
r4
〉
+ Fk,3δ

〈
r6
〉
+ Fk,4δ

〈
r8
〉
, (5.23)

where k=1, 2, 3, 4. However, it is rare that observed ISs are available for four tran
sitions in the same pair of isotopes, and such systems of equations cannot be formed
so that they give trustworthy solutions for higher than secondorder moments.

The expansion (5.23) is truncated, and the set of r2n, where n= 1, 2, 3, 4, does not
form an orthonormal basis. By instead expanding in a set of orthogonal polynomials
yn, the RFS expression is written as

δνk,RFS = ck,1δ ⟨y1⟩+ ck,2δ ⟨y2⟩+ ck,3δ ⟨y3⟩+ ck,4δ ⟨y4⟩ , (5.24)

where the new expansion coefficients ck,n are expressed in relation to the electronic
factors Fk,n and the functions yn are given in terms of the r2n moments (see also
Appendix in Paper vII). The expansion (5.24) converges substantially faster than the
original summation (5.23). In fact, simply the δ ⟨y1⟩ and δ ⟨y2⟩, which are given in
terms of the δ⟨r2⟩ and δ⟨r4⟩, need to be considered when the sum is rearranged.
Then, for a pair of isotopes A,A′ and a transition k, the RFS can, to a very good
approximation, be expressed as

δνk,RFS ≈ ck,1δ ⟨y1⟩+ ck,2δ ⟨y2⟩ . (5.25)

From knowledge of observed ISs for at least two transitions, a system of two equa
tions is then solved for the unknowns δ ⟨y1⟩ and δ ⟨y2⟩, from which the δ⟨r2⟩ and
δ⟨r4⟩ values are determined. It is demonstrated in Paper vII that the expression (5.25)
enables the determination of the differences in the ⟨r2⟩ and ⟨r4⟩ moments much
more accurately than when the first two terms of the original expression (5.23) are
considered. Yet, there are still systematical and statistical errors that must be taken
into account, and their nature will be discussed next.

68



5.4 Errors in the Extraction of δ⟨r2⟩ and δ⟨r4⟩

5.4.1 Systematical errors

From observed ISs, experimental FS values can be obtained by estimating and sub
tracting the MS contributions and residual effects, δνk,RES, so that

δν
expt
k,FS = δν

expt
k,IS − δνk,MS − δνk,RES . (5.26)

The residual effects are related to QED corrections, as well as model errors induced by
the perturbation treatment that led to the RFS expression². They can be represented
by the discrepancy between the “exact” variational solution δνexact

k,VA and the RFS solu
tion δνk,RFS. Making a qualified guess for the unknown rms radii of the target (and
perhaps also the reference) isotope, and assuming a spherical Fermi distribution that
yields the higherorder moments for both isotopes, this discrepancy can be evaluated.
A qualified guess of rms radii is provided by, e.g., the parametrization of Eq. (5.21). In
heavy nuclei, the QED effects become significant and it is, thus, crucial to precisely
determine the δνk,RES term in these systems. In Sec. V.B of Paper vII, the contribu
tions from QED effects were, indicatively, investigated for two different isotope pairs
in uranium (Z=92), and they were found to be of the order of 1.5%.

5.4.2 Statistical errors

The δ⟨r2⟩ and δ⟨r4⟩ moments are determined based on the δ ⟨y1⟩ and δ ⟨y2⟩ values,
which are extracted by solving the matrix equation[

δν1,RFS
δν2,RFS

]
= C

[
δ ⟨y1⟩
δ ⟨y2⟩

]
. (5.27)

where

C =

[
c1,1 c1,2
c2,1 c2,2

]
(5.28)

is the matrix containing the expansion coefficients of the equations that are formed
based on Eq. (5.25). The unknown δ ⟨y1⟩ and δ ⟨y2⟩ are, thus, evaluated according to[

δ ⟨y1⟩
δ ⟨y2⟩

]
= C−1

[
δν1,RFS
δν2,RFS

]
. (5.29)

²It should be mentioned that contributions from nuclear polarization effects, which can often be an
important source of systematical errors, have been neglected in the work of Paper vII.
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To obtain the δ ⟨y1⟩ and δ ⟨y2⟩ values, the matrix C must be invertible. If the matrix
determinant is zero, then the matrix is singular and cannot be inverted. Occasionally,
the determinant of the matrix can approach zero, but still be nonzero. In this case,
the matrix is close to singular and the extracted δ ⟨y1⟩ and δ ⟨y2⟩ will be hugely af
fected, even by a small change in the field shifts δν1,RFS and δν2,RFS. This means that
the values of δ ⟨y1⟩ and δ ⟨y2⟩ and, in turn, the δ⟨r2⟩ and δ⟨r4⟩ moments, might be
greatly affected by the uncertainties in the observed ISs, the computed MS contribu
tions, and the evaluated residual effects represented by Eq. (5.26).

A matrix determinant equal to zero is obtained if the two equations are linearly depen
dent. To minimize the statistical errors when solving Eq. (5.29), the set of electronic
factors Fk,n –which affect the values of the coefficients ck,n– for the two transitions
must be as linearly independent as possible.
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Chapter 6

Outlook

The continuous advances in astronomical instrumentation constantly raise the de
mands on atomic transition data, which must now also cover the nearinfrared wave
length region. In the long wavelength regime, lines of atoms are produced by tran
sitions between states lying close in energy, which often correspond to transitions
between highly excited states. In the latter instance, largescale spectrum calculations
of transition parameters must be carried out, which become all the more challenging
when the targeted spectra include Rydberg series. In Paper I, it was demonstrated
that by paying special attention to the construction of the radial orbital basis that
builds the atomic state functions, reliable transition data can be obtained, including
the transitions that involve high Rydberg states that were proven to be problematic.

Drawing on the detailed investigations of Paper I, specialized orbital optimization
strategies were applied in Paper II to produce accurate and extended data of transition
rates, weighted oscillator strengths, and lifetimes, for the C IIv ions. By paying special
attention to the applied orbital optimization strategies, a large amount of updated
data, of the same aforementioned transition parameters, was also produced for the
systems of Al III, and they are contained in Paper III. However, recent investigations
have shown that the accuracy of the computed transition data in Al III can further
be improved. Additionally, Paper Iv contains extended data of Landé gfactors for
several atoms and ions of astrophysical interest, including C IIv and Al III.

As we move away from the valley of stability, data of nuclear structure properties are,
generally, scarce. By combining highresolution measurements of hyperfine structure
splittings, or isotope shifts, with ab initio calculations of the electronic parts of these
interactions, nuclear observables can be extracted for long isotopic sequences, which
include radioactive systems. In Paper v, collinear laser spectroscopy measurements of
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the hyperfine structure in neutral tin were combined with the computed electronic
factors to extract the nuclear electric quadrupole moments, Q, of oddmass tin iso
topes in the range A=117−131. To be in a position to determine the final value of
the electronic part of the electric quadrupole hyperfine interaction and estimate the
associated theoretical uncertainty, four separate ab initio calculations were carried out.
The four different applied computational methodologies are described in Paper vI.

In Paper vII, a promising method for the extraction of both δ⟨r2⟩ and δ⟨r4⟩ ra
dial moment differences, from measurements of isotope shifts, was presented and
tested. Considering both systematical and statistical errors for isotope pairs in differ
ent lithiumlike systems, it was deduced that an increase in experimental precision by
1−2 orders of magnitude, or/and access to data for more independent transitions is
essential. From the theoretical side, effort to accurately compute the mass shift con
tributions, mainly in neutral and nearneutral systems, must be made. A combined
theoretical and experimental progress would allow possible tabulation of changes in
the ⟨r4⟩ nuclear moments. It was recently shown that the ⟨r4⟩ moment is directly
related to the surface thickness of the nuclear charge density distribution, and thus,
prediction of ⟨r4⟩ values would allow more realistic estimates of nuclear structure
corrections for the interpretation of new physics quests [127].
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Appendix A

Nonrelativistic Electric Dipole
Transition Operators

In C IIv, and also Al III, the relativistic effects are expected to be small, justifying an
examination of the reduced matrix elements of the electric dipole (E1) transition op
erator within the nonrelativistic framework. In the nonrelativistic limit, the reduced
matrix elements of the E1 operator are, in the length and velocity forms, respectively,
expressed as

⟨ΓPJ ||
N∑
i=1

riC
(1)(θi, ϕi)||Γ′P ′J ′⟩ (A.1)

and
1

EΓ′J ′ − EΓJ
⟨ΓPJ ||

N∑
i=1

∇(1)
i ||Γ′PJ ′⟩, (A.2)

where C(1) is the renormalized spherical harmonic of rank 1, ∇(1)
i is the gradient

tensor operator of rank 1, and EΓ′J ′ −EΓJ is the energy of the transition [137]. Each
of the reduced matrix elements (A.1) and (A.2) involves sums over radial transition
integrals of the kind ∫ ∞

0
P (r)rP ′(r) dr (A.3)

and ∫ ∞

0
P (r)

d

dr
P ′(r) dr, (A.4)

weighted with the products of the mixing coefficients of the CSFs (see Eq. (2.59)) and
the angular coefficients [49, 50, 137]. In the integrals (A.3) and (A.4), P ′(r) and P (r)
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are the radial functions of the large components of the Dirac orbitals (2.29), which,
respectively, build the CSFs of the upper state |Γ′P ′J ′⟩ and the lower state |ΓPJ⟩.
In the computation of the integrals (A.3), the emphasis is, evidently, given to the outer
part of the radial orbitals. On the other hand, when computing the integrals (A.4),
the emphasis is given to the inner part of the orbitals.

In the simple Hartree–Fock model, the approximate wave functions usually display
a correct asymptotic behavior towards large r (see also Sec. 5 of Paper I), and since
the integrals (A.3) are also computationally simpler, the computed transition data
are traditionally provided in the length form [p. 4012; 51, 138–140]. It was, however,
shown in Paper I that, when multiconfiguration methods concurrently target multiple
atomic states, all wave functions are not always well approximated at large r, and the
velocity form may, by contrast, give the most accurate results.
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Appendix B

Nonrelativistic Mass Shift

For an infinitely heavy, i.e., MA → ∞, point charge nucleus, the zeroorder non
relativistic (NR) manyelectron Hamiltonian is given by

HNR
∞ =

N∑
i=1

(
p2
i

2me
− Z

ri

)
+

N∑
i<j

1

rij
, (B.1)

where the first term,

T∞ =
N∑
i=1

p2
i

2me
, (B.2)

simply is the kinetic energy of the N electron atomic system¹.

For a finite nuclear mass MA, of an isotope A, the kinetic energy of the nucleus must
be considered, and the total kinetic energy of the atomic system, T , in an arbitrary
coordinate system, becomes

T = T∞ + TMA =
1

2me

N∑
i=1

p2
i +

1

2MA
p2
MA . (B.3)

We want to transform to the centerofmass (cm) coordinate system, where the observer
is at rest. From the momentum conservation law, in the cmsystem, we get

pcm
MA = −

N∑
i=1

pcm
i . (B.4)

¹In atomic units, me=1, but it is explicitly included here to avoid any misunderstandings.
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By inserting (B.4) into (B.3), the total kinetic energy, T cm, in the cmsystem becomes

T cm =
1

2me

N∑
i=1

(pcm
i )2 +

1

2MA

(
−

N∑
i=1

pcm
i

)2

=
1

2me

N∑
i=1

(pcm
i )2 +

1

2MA

N∑
i=1

(pcm
i )2 +

1

2MA

N∑
i≠j

pcm
i · pcm

j

= T cm
∞ +

1

2MA

N∑
i=1

(pcm
i )2 +

1

2MA

N∑
i ̸=j

pcm
i · pcm

j . (B.5)

The nonrelativistic perturbation Hamiltonian, describing the mass shift (MS) when
the finite nuclear mass MA is taken into account, corresponds to the nuclear recoil
energy, which, in the cmsystem², is given by

HNR
MS = ∆T cm = T cm − T cm

∞ =
1

2MA

N∑
i=1

p2
i +

1

2MA

N∑
i ̸=j

pi · pj . (B.6)

Hughes and Eckart [141] suggested the division of the recoil Hamiltonian (B.6) into
the normal mass shift (NMS) and specific mass shift (SMS) contributions, so that

HNR
NMS =

1

2MA

N∑
i=1

p2
i (B.7)

and

HNR
SMS =

1

2MA

N∑
i ̸=j

pi · pj . (B.8)

The operators (B.7) and (B.8) resemble the leadingorder terms of the relativistic NMS
and SMS operators, discussed in Sec. 5.1.1. Evaluating the expectation values of the
nonrelativistic recoil operators with relativistic (zeroorder) wave functions would,
however, overestimate the relativistic corrections to the MS effect [142]. When one
works in the relativistic scheme, it is important to use the complete form of the oper
ator (5.4).

²In the following, working in the cm coordinate system is implied and thus, the “cm” superscripts in
the electron momentum operators are omitted for brevity.
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Nuclear, Plasma and Astrophysics”⁶. This paper is included in the PhD thesis of SS.

Paper VII: Effect of realistic nuclear charge distributions on isotope shifts
and progress towards the extraction of higherorder nuclear radial moments

The majority of the results and figures presented in Secs. III, IV, and V.AB were
produced in the course of my master thesis project [143], performing both nuclear
and atomic structure calculations. I further produced the results shown in Secs. V.C
D and generated all tables and figures. All computational steps were carried out under
the guidance of GC and JE. I was the main responsible for the preparation of the core
of the manuscript, i.e., Secs. IIV. I presented this work (orally) at the 2017 CompAS
meeting and at the 12th International Conference on Relativistic Effects in Heavy
Element Chemistry and Physics (REHE 2017)⁷.

⁶http://www.solvayinstitutes.be/event/workshop/new_frontiers_2019/new_frontiers_
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Abstract: Astronomical spectroscopy has recently expanded into the near-infrared (nIR) wavelength
region, raising the demands on atomic transition data. The interpretation of the observed spectra
largely relies on theoretical results, and progress towards the production of accurate theoretical data
must continuously be made. Spectrum calculations that target multiple atomic states at the same time
are by no means trivial. Further, numerous atomic systems involve Rydberg series, which are associated
with additional difficulties. In this work, we demonstrate how the challenges in the computations of
Rydberg series can be handled in large-scale multiconfiguration Dirac–Hartree–Fock (MCDHF) and
relativistic configuration interaction (RCI) calculations. By paying special attention to the construction
of the radial orbital basis that builds the atomic state functions, transition data that are weakly sensitive
to the choice of gauge can be obtained. Additionally, we show that the Babushkin gauge should not
always be considered as the preferred gauge, and that, in the computations of transition data involving
Rydberg series, the Coulomb gauge could be more appropriate for the analysis of astrophysical
spectra. To illustrate the above, results from computations of transitions involving Rydberg series in
the astrophysically important C IV and C III ions are presented and analyzed.

Keywords: infrared spectra; spectrum calculations; multiconfiguration methods; Rydberg series;
Rydberg states; electric dipole transitions; transition rates; Babushkin gauge; Coulomb gauge; length
form; velocity form

1. Introduction

The starlight emitted at optical or shorter wavelengths is efficiently scattered by intervening
interstellar and intergalactic dust particles. To observe stars deeper into the galactic center and go even
beyond the Milky Way, astrophysical missions and spectrographs were recently designed to observe
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nIR radiation, which has higher transmission through dust clouds [1–3]. Accurate transition data from
the IR part of the spectrum are thus required to interpret the spectra of distant astronomical objects
observed, and to carry out chemical abundance studies.

The interest in the nIR region is relatively recent, and atomic data corresponding to wavelengths
from 1 to 5 µm are scarce. Due to the limited resources and the numerous possible transitions,
laboratory measurements are insufficient to provide astrophysicists with complete sets of atomic
transition data. Critically evaluated theoretical data are, therefore, necessary to complement
experiments and to allow for accurate chemical abundance analyses of stars. In the long wavelength
IR regime, lines of atoms are produced by transitions between states lying close in energy, which often
correspond to transitions between highly excited states. The latter instance necessitates atomic structure
calculations over a large portion of a spectrum. Extensive spectrum calculations that produced
transition data in the nIR region were formerly carried out as part of the Opacity Project [4]. The latter
non-relativistic calculations were based on the close-coupling approximation of the R-matrix theory.

Performing spectrum calculations, in which multiple atomic states are targeted at the same time,
is generally not trivial. In multiconfiguration calculations, the correlation between the electrons is
taken into account by expanding the targeted states in a number of symmetry adapted basis functions,
which are built from products of spin-orbitals. To accurately predict the energies of all the targeted
states, the shapes of the radial parts of the spin-orbitals must be such that they account for the
LS-term dependencies; i.e., the way the electrons are coupled to form different terms from the same
configuration [5]. Additionally, many studies involve states that are part of Rydberg series. Perturbers
often enter the Rydberg series and the atomic state expansions must correctly predict their positions [6].
Computations of Rydberg series have to further describe states with electron distributions occupying
different regions in space, extending far out from the atomic core. The above challenges require that
special attention is paid to the optimization scheme of the wave functions; i.e., how the orbital basis
is generated. The challenges in the computations of Rydberg series become more apparent when
computing transition data.

The transition parameters (line strengths, oscillator strengths, and transition rates) are expressed
in terms of reduced matrix elements of the transition operator. Different choices of gauge, Babushkin
and Coulomb, for the transition operator lead to alternative expressions for the reduced matrix
elements, and consequently, the transition parameters. Gauge invariance of the transition data
is a straightforward matter for hydrogenic systems. Yet, the use of approximate wave functions
results in different values for transition data expressed in different gauges. During the past years,
recommendations for choosing the appropriate gauge became contradictory, suggesting further work
in the field [7–12]. The Babushkin gauge (or length form) is sensitive to the outer part of the wave
functions that governs the atomic transitions, and transition data expressed in this gauge are often
considered to be more reliable than transition data expressed in the Coulomb gauge (or velocity
form) [13]. It is, however, argued that provided reasonably accurate approximate wave functions,
the Coulomb gauge (or velocity form) may give the best results when the transition energy is not
very small [14]. Recent work suggests that the Coulomb gauge gives more accurate results and is the
preferred gauge for transitions involving high Rydberg states [15].

In this paper, we present and analyze results from computations of Rydberg series in the C IV and
C III ions. Although the latter are of astrophysical interest, the goal of the paper is not benchmarking
transition data for these two ions against other theoretical methods, but instead assessing the relative
reliability of the MCDHF/RCI results obtained with the two different gauges. Using the MCDHF
method, we apply different computational strategies for optimizing the radial orbital basis used
for constructing the wave functions and compare the results. For transitions involving low-lying
states, the transition data are accurately computed in both the Babushkin and the Coulomb gauge,
independently of how the radial orbitals are optimized. On the other hand, transitions involving
high Rydberg states are problematic, and the Babushkin gauge does not provide trustworthy results
when conventional optimization strategies are applied. However, by paying special attention to the
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construction of the radial orbital basis that builds the atomic state functions, transition data that are
weakly sensitive to the choice of gauge are produced for all the computed transitions in the ions
we study. The present article is an extended transcript of the poster presentation given on 24 June
2019 at the 13th International Colloquium on Atomic Spectra and Oscillator Strengths (ASOS2019)
for Astrophysical and Laboratory Plasmas that took place at Fudan University in Shanghai, China
(https://asos2019.fudan.edu.cn).

2. Theory

2.1. MultiConfiguration Calculations

Numerical representations of atomic state functions (ASFs), which are approximations to the
exact wave functions, are obtained using the fully relativistic MCDHF method [16,17]. In the MCDHF
method, the ASFs Ψ(γπ JMJ) are expanded over NCSF antisymmetrized basis functions Φ(γνπ JMJ),
which are known as configuration state functions (CSFs), i.e.,

Ψ(γπ JMJ) =
NCSF

∑
ν=1

cνΦ(γνπ JMJ). (1)

In the expression above, J and MJ are the angular momentum quantum numbers, π is the parity,
and γν denotes other appropriate labeling of the CSF ν, such as orbital occupancy and angular coupling
tree. The CSFs are coupled products of one-electron Dirac orbitals ψnκ,m, which have the general form:

ψnκ,m(r) =
1
r

(
Pnκ(r)χκ,m(θ, ϕ)

iQnκ(r)χ−κ,m(θ, ϕ)

)
, (2)

where χ±κ,m(θ, ϕ) are the two-component spin-angular functions and {Pnκ(r), Qnκ(r)} are, respectively,
the radial functions of the large and small components, which are represented on a logarithmic grid.
The selection of the CSFs to be included in the expansion (1) depends on the shell structure of the atom
at hand and the computed properties, as explained in Section 3. The shape of the radial functions
{Pnκ(r), Qnκ(r)} is determined by the effective field in which the considered electron moves, which is
in turn established by the included CSFs [18].

The expansion coefficients cν, together with the radial parts of the spin-orbitals, are obtained
in a self-consistent field (SCF) procedure. The set of SCF equations to be iteratively solved results
from applying the variational principle on a weighted energy functional of all the targeted atomic
states according to the extended optimal level (EOL) scheme [19]. In fully relativistic calculations,
the energy functional is estimated from the expectation value of the Dirac-Coulomb Hamiltonian [17].
The angular integrations needed for the construction of the energy functional are based on the second
quantization formalism in the coupled tensorial form [20,21].

The MCDHF method is employed to generate an orbital basis. Given this basis, the final wave
functions Ψ(γπ JMJ) of the targeted states are determined in subsequent RCI calculations. In the RCI
calculations, the spin-orbitals defining the basis are fixed and only the expansion coefficients cν are
evaluated by diagonalizing the Hamiltonian matrix. At this step, the expansions based on Equation (1)
can be augmented to include CSFs that account for additional electron correlation effects. All MCDHF
and RCI calculations were performed using the relativistic atomic structure package GRASP2018 [22].

2.2. Transition Parameters

Once the wave functions Ψ(γπ JMJ) have been determined, transition parameters can be computed.
In this work, we focus on the computation of transition rates (or probabilities) for electric dipole (E1)
transitions. Electric dipole transitions are much stronger than electric quadrupole (E2) and magnetic
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multipole (Mk) transitions. For the transition rate A(k) of electric dipole (k = 1) emission from an upper
state γ′π′ J′M′J to any of the 2J + 1 states γπ JMJ of lower energy, we have the following proportionality

A(1)(γ′π′ J′, γπ J) ∼ (Eγ′π′ J′ − Eγπ J)
3 S(1)(γπ J, γ′π′ J′)

2J′ + 1
, (3)

where Eγ′π′ J′ − Eγπ J is the transition energy and S(1)(γπ J, γ′π′ J′) is the line strength given by

S(1)(γπ J, γ′π′ J′) = |〈Ψ(γπ J)||O(1)||Ψ(γ′π′ J′)〉|2. (4)

The E1 transition rates are therefore expressed in terms of reduced matrix elements of the electric
dipole transition operator O(1). From Equation (1), it follows that

〈Ψ(γπ J)||O(1)||Ψ(γ′π′ J′)〉 = ∑
k,l

ckc′l〈Φ(γkπ J)||O(1)||Φ(γ′lπ
′ J′)〉. (5)

The choice of gauge parameter determines whether the electric dipole matrix elements are
computed in the Babushkin or the Coulomb gauge, which in non-relativistic calculations correspond
to the length and the velocity form, respectively [10]. The two forms are equivalent for hydrogenic
wave functions, but they result in different values when approximate many-electron wave functions
are used. As shown later, in Section 4, these values reveal a strong dependence on the generated orbital
basis and the captured correlation effects. Although the present results arise from fully relativistic
calculations, similar behavior is observed when non-relativistic multiconfiguration calculations are
performed [15].

The explicit expressions of the electric dipole reduced matrix elements in the Babushkin and the
Coulomb gauge are given in [10]. Taking for convenience the non-relativistic limit, the electric dipole
reduced matrix elements are, in the length and the velocity form, respectively, given by

〈Ψ(γπ J)||
N

∑
i=1

riC(1)(i)||Ψ(γ′π′ J′)〉 (6)

and
1

Eγ′π′ J′ − Eγπ J
〈Ψ(γπ J)||

N

∑
i=1
∇(1)(i)||Ψ(γ′π′ J′)〉, (7)

where the summation runs over the number N of electrons and C(1) is the renormalized spherical
harmonic of rank 1 [23]. The reduced matrix elements of (6) and (7) involve, respectively, sums over
radial transition integrals of the kind ∫ ∞

0
P(r)rP′(r) dr (8)

and ∫ ∞

0
P(r)

d
dr

P′(r) dr, (9)

weighted with the products of the expansion coefficients of the CSFs and the angular coefficients [20,21,23].
P′(r) and P(r) are the radial functions of the large components of the Dirac one-electron spin-orbitals (2)
that build the CSFs of the initial state γ′π′ J′ and the final state γπ J, respectively. In the present work,
the initial and final states belonging to different parities are built from a common orbital basis.

In the computation of the integrals (8), the emphasis is given to the tail of the radial orbitals,
while in the integrals (9) the emphasis is given instead to the inner part of the radial orbitals. In the
simple Hartree–Fock (HF) model, the approximate wave functions usually display a correct asymptotic
behavior towards large r (see also Section 5), and since the former integrals are also computationally
simpler, the transition rates are traditionally provided in the length form [7–9,14]. As discussed in
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Section 5, when multiconfiguration methods concurrently target multiple atomic states, all wave
functions are not always well approximated at large r; and the velocity form, or correspondingly,
the Coulomb gauge, may by contrast, give the best results.

The agreement between the transition rates AB and AC, respectively, evaluated in the Babushkin
and the Coulomb gauge is used as an indicator of accuracy. This is particularly useful when laboratory
measurements are not available for comparison. The uncertainty of the computed transition rates in
the preferred gauge can be estimated as

dT =
|AB − AC|

max(AB, AC)
, (10)

which reflects the relative discrepancy between the Babushkin and the Coulomb gauge of the computed
line strengths [24,25]. Although the accuracy indicators dT should be used in a statistical manner for a
group of transitions with similar properties (see [6]), individual dT values can point out problematic
transitions, which could further be analyzed.

3. Computational Methodology—Optimization of the Orbital Basis

The accuracy of multiconfiguration calculations relies on the CSF expansion of Equation (1).
A first approximation of the ASFs is acquired by performing an MCDHF calculation on expansions
that are built from the configurations that define what is known as the multi-reference (MR) [17].
The orbitals that take part in this initial calculation are called spectroscopic orbitals and are kept frozen
in all subsequent calculations. The initial approximation of the ASFs is improved by augmenting the
expansion with CSFs that interact with the ones that are generated by the MR configurations. Such
CSFs are built from configurations that differ by either a single (S) or a double (D) electron substitution
from the configurations in the MR [17,26]. Following the SD-MR scheme, the interacting configurations
are obtained by allowing substitutions of electrons from the spectroscopic orbitals to an active set of
correlation orbitals, which is systematically increased (each step introducing an additional correlation
orbital layer) [27,28]. These configurations produce CSFs that can be classified, based on the nature of
the substitutions, into CSFs that capture valence–valence (VV), core–valence (CV), and core–core (CC)
electron correlation effects.

Building accurate wave functions requires a very large orbital basis. Even so, a large but incomplete
orbital basis does not ensure that the wave functions give accurate properties other than energies.
In the MCDHF calculations, the correlation orbitals are obtained by applying the variational principle
on the weighted energy functional of all the targeted atomic states. Thus, the orbitals of the first
correlation layers will overlap with the spectroscopic orbitals that account for the effects that minimize
the energy the most [18,29]. The energetically dominant effects must first be saturated to obtain orbitals
localized in other regions of space, which might describe effects that do not lower the energy much,
but are important for, e.g., transition parameters. One must, therefore, carefully choose the orbital
basis with respect to the computed properties [30].

Valence atomic transitions are governed by the outer part of the wave functions and this part must
be properly described by the correlation orbitals to obtain reliable transition parameters. States that are
part of Rydberg series encompass valence orbitals of increasing principal quantum number n. Spectrum
calculations that involve Rydberg series need, thus, to describe states with electron distributions
localized in different regions of space extending far out from the atomic core. Since the overlap
between orbitals describing Rydberg states is in some cases minor, generating an optimal orbital basis
is not straightforward [6]. This raises the need to explore different computational strategies.

3.1. C IV

In lithium-like carbon, the configurations being studied are 1s2nl with n = 2 to 8 and l = 0 to 4 and
1s26h. These configurations define the MR and correspond to 53 targeted atomic states of both even and
odd parity, which are simultaneously optimized. For simple systems such as three-electron systems,
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the MCDHF calculations are conventionally performed using CSF expansions that are produced
by SD-MR electron substitutions from all spectroscopic orbitals. In this manner, the CSFs capture
all valence (V), CV, and CC correlation effects. The 1s1s pair-correlation effect is energetically very
important and the orbitals of the first correlation layers overlap with the 1s core orbital accounting for
this effect (see Table 1). After building six correlation layers by utilizing this conventional approach,
we see that all correlation orbitals up to 14s, 14p, 14d, 12 f , 12g, 8h, and 7i are rather contracted in
comparison with the outer Rydberg orbitals. As a consequence, the wave functions are not properly
described for all states, and in particular, not for the higher Rydberg states considered.

Table 1. The mean radii 〈r〉 (a.u.) of the spectroscopic and correlation orbitals that belong to the s
and p symmetries in C IV. The correlation orbitals result from two different optimization schemes,
the conventional and the alternative, and they occupy different regions in space.

Spectroscopic Correlation Spectroscopic Correlation

Conventional Alternative Conventional Alternative

1s 0.27 9s 0.51 1.12 9p 0.44 0.87
2s 1.31 10s 0.43 0.92 2p 1.28 10p 0.41 1.03
3s 3.00 11s 0.42 0.84 3p 2.95 11p 0.40 1.00
4s 5.55 12s 0.46 0.87 4p 5.64 12p 0.45 1.18
5s 8.81 13s 0.56 0.87 5p 8.99 13p 0.48 2.59
6s 12.82 14s 0.40 1.26 6p 13.10 14p 0.77 5.94
7s 17.58 7p 17.94
8s 23.09 8p 23.54

For a more appropriate description of the wave functions, the correlation orbitals must occupy the
space between the 1s core orbital and the inner valence orbitals. This can be accomplished by imposing
restrictions on the allowed substitutions for obtaining the orbital basis. Thus, the MCDHF calculations
are alternatively performed using CSF expansions that are produced by SD-MR substitutions with the
restriction of allowing maximum one hole in the 1s core shell. In this case, the shape of the correlation
orbitals is established by CSFs accounting for V and CV correlation effects. The resulting correlation
orbitals are, as shown in Table 1, more extended, overlapping with orbitals of higher Rydberg states.

The final wave functions of the targeted states are determined in subsequent RCI calculations,
where D substitutions from the 1s core orbital and triple (T) substitutions from all the spectroscopic
orbitals, are included. The number of CSFs in the final even and odd state expansions are, respectively,
1,077,872 and 1,287,706, distributed over the different J symmetries.

3.2. C III

In beryllium-like carbon, the configurations in question are 1s22snl with n = 2 to 7 and l = 0
to 4 and 1s22p2, 1s22p3s, 1s22p3p, and 1s22p3d. These configurations define the MR and correspond
to 114 targeted atomic states of both even and odd parity, which are simultaneously optimized.
Having introduced two correlation orbitals, 8s and 8p—specifically targeted to account for the
LS-term dependence [31], i.e., the difference between the ns orbitals for 2sns 3S and 2sns 1S and
the difference between the np orbitals for 2snp 3P◦ and 2snp 1P◦—the MCDHF calculations are
conventionally performed using CSF expansions that are produced by SD-MR electron substitutions
from all spectroscopic orbitals with the restriction that only one excitation is allowed from the 1s2

atomic core. In this manner, the CSFs capture VV and CV correlation effects. The 1snl pair-correlation
effect is comparatively important, and the orbitals of the first correlation layers are spatially localized
between the 1s orbital and the 2s and 2p orbitals. As the CV correlation effects start to saturate,
the correlation orbitals are gradually located further away from the 1s2 atomic core (see Table 2).
The correlation orbitals up to 12s, 12p, 12d, 12 f , 11g, and 8h are, however, still contracted in comparison
with the outer Rydberg orbitals.
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Table 2. Same as Table 1, but for radial orbitals in C III. The correlation orbitals 8s and 8p, which are
introduced to account for the LS-term dependencies, are the same in both optimization schemes and
fairly diffuse in comparison with the rest of the correlation orbitals.

Spectroscopic Correlation Spectroscopic Correlation

Conventional Alternative Conventional Alternative

1s 0.26 9s 1.05 4.86 9p 1.00 3.56
2s 1.28 10s 1.48 3.67 2p 1.23 10p 1.24 3.37
3s 3.57 11s 1.88 3.25 3p 3.74 11p 1.56 3.37
4s 6.63 12s 1.87 8.40 4p 7.04 12p 1.52 9.04
5s 10.80 5p 11.37
6s 15.95 6p 16.71
7s 22.10 7p 23.04

term corr. term corr.

8s 8.22 8p 5.55

For a more appropriate description of the wave functions, the correlation orbitals must occupy
the space of the valence orbitals. In the alternative approach, this is accomplished by allowing
SD substitutions only from the outer valence orbitals accounting for VV correlation. The resulting
correlation orbitals are, as shown in Table 2, more extended, overlapping with orbitals of higher
Rydberg states.

The final wave functions of the targeted states are determined in subsequent RCI calculations,
where SDT substitutions from all the spectroscopic orbitals are included, with the restriction that only
one substitution is allowed from the 1s2 atomic core. The number of CSFs in the final even and odd
state expansions are, respectively, 1,578,620 and 1,274,147, distributed over the different J symmetries.

4. Results

Excitation energies are produced, based on the conventional and alternative computational
strategies that were described in Section 3, and are compared with the critically evaluated data from
the National Institute of Standards and Technology’s (NIST’s) Atomic Spectra Database (ASD) [32].
In C IV, the computed excitation energies are in excellent agreement with the NIST’s recommended
values. Both computational approaches give similar energies and the relative differences from the NIST
values are less than 0.01%. For the more complex system of C III, the computed excitation energies
agree also well with the energies proposed by NIST. The relative differences between theoretical
and critically compiled energies are, on average, of the order of 0.1% and 0.02%, when following the
conventional and the alternative approach, respectively. The NIST database does not provide excitation
energies for the 2s6s 2S, 2s7s 2S, and 2s7p 3P◦ states, which are included in the computations.

Transition rates A are produced based on the two different computational strategies. In the present
computations, the uncertainties in the predicted excitation energies of two states associated with a
transition most often cancel out, and consequently, the majority of the evaluated transition energies
are ultimately in perfect agreement with the NIST values. The uncertainties of the computed transition
rates solely emerge from the disagreement of the computed line strengths in the Babushkin and
the Coulomb gauge, which are then reflected in the dT values. When the conventional strategy
is applied, most of the transition rates are predicted with uncertainties dT lower than 1% and 5%,
in lithium-like and beryllium-like carbon, respectively. Yet, for transitions involving high Rydberg
states, the uncertainties increase remarkably, especially for the more complex C III ion. The alternative
strategy for optimizing the radial orbitals yields transition rates that are overall more accurate.
The improvement in accuracy is significant for transitions that involve high Rydberg states.

The uncertainties dT of the transition rates computed with the conventional and alternative
approaches are presented and analyzed for groups of transitions in the studied carbon ions. Each
group is selected to include transitions between a fixed state and Rydberg states described by electron

105



Atoms 2019, 7, 106 8 of 15

distributions that are gradually localized farther from the atomic core. Accordingly, Figure 1a,b
illustrates the uncertainties dT for the 2p 2P◦1/2 − ns 2S1/2 and np 2P◦1/2 − 8s 2S1/2 groups of transitions
in C IV. Similarly, Figure 2a,b illustrates the dT values for the 2s2 1S0− 2snp 1P◦1 and 2sns 1S0− 2s7p 1P◦1
groups of transitions in C III.

Figure 1a demonstrates the uncertainties for the series of transitions between the low-lying
2p 2P◦1/2 state and successively higher Rydberg ns 2S1/2 states. The uncertainty dT of the transition
rates computed with the conventional approach grows almost exponentially with the increasing
principal quantum number n. The transition rate for the 2p 2P◦1/2 − 8s 2S1/2 transition, which is the
transition between the two states with the largest energy difference in the plot, eventually exhibits the
highest uncertainty—12.4%. When the alternative approach is utilized instead, the uncertainties range
between 0% and 0.4% for the respective transitions. The same trends are also observed in other groups
of transitions in C IV, such as the 2p 2P◦ − nd 2D, the 2s 2S− np 2P◦, and so forth.
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Figure 1. (a) The uncertainty dT of the computed transition rates for transitions between the 2p 2P◦1/2
state and Rydberg ns 2S1/2 states of increasing principal quantum number n in C IV. The black
squares and magenta diamonds, respectively, correspond to the results from the conventional and the
alternative strategies for optimizing the radial orbitals. (b) Same as the first panel, but for transitions
between the 8s 2S1/2 state and successive Rydberg np 2P◦1/2 states in C IV.

Having as a starting point the 2p 2P◦1/2− 8s 2S1/2 transition, Figure 1b demonstrates the uncertainties
for the series of transitions between the high Rydberg 8s 2S1/2 state and successively higher Rydberg
np 2P◦1/2 states. As n increases, the transition energy gets smaller. The uncertainties of the transition
rates computed with the conventional approach exhibit a nearly exponential decay with increasing n.
Similarly to Figure 1a, when following the alternative strategy, the uncertainties in the transition rates
are substantially reduced, ranging between 0.1% and 0.4%. Other groups of transitions in C IV, such as
the np 2P◦ − 8d 2D series and the ns 2S− 8p 2P◦ series, follow analogous trends.

Figure 2a displays the dT values for transitions between the low-lying 2s2 1S0 state and successively
higher Rydberg 2snp 1P◦1 states. Looking at Figure 2a, when the conventional approach is applied the
uncertainties dT increase sharply for n > 5. For the 2s2 1S0 − 2s7p 1P◦1 transition, i.e., the transition
between the two states with the largest energy difference, the dT rises to 63%. The latter is about five
times larger than the highest estimated dT value in the figures above. Once more, when the radial
orbitals are optimized using the alternative strategy, the uncertainties drop dramatically, ranging
between 0% and 1.4% for the respective transitions. More groups of transitions in C III that reveal
similar behavior are the 2s2p 1P◦1 − 2sns 1S0 series and the 2p2 3P0 − 2snp 3P◦1 series.
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Figure 2. (a) The uncertainty dT of the computed transition rates for transitions between the 2s2 1S0

state and Rydberg 2snp 1P◦1 states of increasing principal quantum number n in C III. The black squares
and magenta diamonds, respectively, correspond to the results from the conventional and alternative
strategies for optimizing the radial orbitals. (b) Same as the first panel, but for transitions between the
2s7p 1P◦1 state and successive Rydberg 2sns 1S0 states in C III.

Starting with the 2s2 1S0 − 2s7p 1P◦1 transition, Figure 2b displays the dT values for transitions
between the high Rydberg 2s7p 1P◦1 state and successively higher Rydberg 2sns 1S0 states. Likewise,
in Figure 1b, the increase in n corresponds to transitions between states that gradually come closer
in energy. The uncertainties of the transition rates computed with the conventional approach
reduce rapidly as n increases. Applying the alternative strategy results in much lower uncertainties,
which extend between 0.5% and 6.6%. A similar trend is also observed in the 2snp 1P◦1 − 2s7s 1S0 series
of transitions in C III. Although the last two points in Figure 2b correspond to transitions between
states lying close in energy, the uncertainties are comparatively high. Nevertheless, the alternative
strategy still predicts the transition rates with lower uncertainties.

Altogether, for transitions between low-lying states, the transition rates are accurately predicted
independently of whether the conventional or the alternative computational strategy is employed.
Further, when both states involved in a transition in C IV are high Rydberg states, the transition rates
are also predicted with high accuracy in both computations. On average, the same holds for transitions
between high Rydberg states in C III. The line strengths of transitions between two states close in
energy, and with the outer electrons occupying nearly the same region of space, are relatively large,
and therefore, weakly affected by the optimization strategy of the radial orbitals. Quite the contrary,
transitions between a low-lying state and a high Rydberg state are problematic in both carbon ions.
The line strength of transitions between two states with large energy differences, and with the outer
electrons occupying different parts of space, take smaller values, which are more sensitive to how the
radial orbitals are optimized with regard to correlation.

To better understand the origins of the large dT values in transitions between low-lying states
and high Rydberg states, the convergences of the individual transition rates AB and AC, computed in
the Babushkin and the Coulomb gauges respectively, are studied with respect to the increasing active
set of correlation orbitals. In connection with the figures above, this is done for the 2p 2P◦1/2 − 8s 2S1/2
transition in C IV (see Figure 3a) and 2s2 1S0 − 2s7p 1P◦1 transition in C III (see Figure 3b); i.e.,
the transitions with the highest uncertainties dT. In Figure 3a,b, the convergences of the AB and AC
values are illustrated for the two different computational approaches.

As seen in Figure 3a,b, when the computations are performed in the alternative manner,
the transition rates given by AB and AC ultimately come really close in value. Considering the
small final dT value, the agreement between the AB and AC values is expected. One observes that the
transition rate given by AC is rather stable with respect to the increasing orbital set. The AC value
varies by only 1% and 6.2% for each of the transitions displayed in the figures below. On the contrary,
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the AB value varies by 13.7% and 27.2%, respectively. In the 2p 2P◦1/2 − 8s 2S1/2 transition, it takes
five correlation layers for the AB value to start converging, while in the 2s2 1S0 − 2s7p 1P◦1 transition it
takes three layers of correlation orbitals for the AB value to converge.
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Figure 3. (a) The transition rates A in the Babushkin (circles) and the Coulomb (triangles) gauges for
the 2p 2P◦1/2 − 8s 2S1/2 transition in C IV, as a function of the increasing number of correlation layers.
The transition rates computed in the conventional and the alternative manner are respectively shown
in black and magenta. (b) Same as the first panel, but for the 2s2 1S0 − 2s7p 1P◦1 transition in C III.

Looking at Figure 3a,b, when the conventional approach is applied, the individual AB and AC
values do not converge, as the large final uncertainties dT reveal. The transition rate given by AC is,
however, again stable and is also consistent with the AB and AC values provided by the alternative
computational strategy. Throughout the optimization of the radial orbitals in the conventional manner,
the AC value varies by only 0.9% and 2.3% for each of the transitions displayed in Figure 3a,b,
respectively. Although it seems that the AB values will eventually approach the AC ones, this would
require a very large orbital basis, which is beyond the reach of the available computational resources.
One may deduce that when the conventional computational strategy is applied the transition rates AB,
computed in the Babushkin gauge, are problematic and unreliable.

5. Discussion

Transition data, such as transition rates A, are expressed in terms of reduced matrix elements of
the transition operator (see Equation (5)), which can be computed in different gauges. According to
Equation (10), the uncertainty of the computed A values is assessed by the agreement of the transition
rates computed in the different gauges. Computations of reduced matrix elements in different gauges,
however, probe separate parts of the wave functions. Hence, the radial parts of the wave functions
must be well approximated as a whole to obtain gauge invariant transition rates.

For transitions between low-lying states, both computational strategies yield reduced matrix
elements of the transition operator that almost reach gauge invariance, and the transition rates are,
overall, accurately predicted. There are enough correlation orbitals spatially localized between the
core and the inner valence orbitals that make up the low-lying states. As a result, the inner parts of
the wave functions are adequately approximated. Moreover, the spectroscopic outer valence orbitals,
which make up the higher Rydberg states and are localized farther from the atomic core, improve the
description of the outer parts of the wave functions for representing the low-lying states, ensuring
that they have the correct asymptotic behavior. The radial parts of the latter wave functions are then
effectively described at all r values, being insensitive to the choice of the optimization strategy with
regard to correlation.

For transitions between a low-lying state and a high Rydberg state, the conventional computational
strategy fails to produce accurate transition rates. The correlation orbitals are significantly contracted
compared to the outer Rydberg orbitals. Further, there are no spectroscopic orbitals farther localized
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to correct for the fact that the asymptotic behavior of the tail of the wave functions that represent
the higher Rydberg states is not well approximated. Thus, the Babushkin gauge that probes the
outer part of the wave functions does not produce trustworthy results. The inner parts of the wave
functions representing the higher Rydberg states are, however, adequately approximated, and as a
result, the Coulomb gauge yields transition rates that are more reliable (see also, Figure 3a,b).

The alternative computational strategy generates correlation orbitals that are more extended,
increasing the overlap with the spectroscopic orbitals that make up the higher Rydberg states. In this
case, the correlation orbitals are properly localized to ably describe the asymptotic behavior of the
outer part of the wave functions representing the higher Rydberg states. That being so, after the
final MCDHF and RCI computations in the alternative manner, the reduced matrix elements of the
transition operator are practically gauge invariant and the transition rates are also accurately predicted
for the transitions between low-lying states and high Rydberg states (see also, Figure 3a,b).

The radial transition integrals (8) and (9) that take part in the computations of the reduced matrix
elements of the transition operator have an upper integration bound that goes to infinity. In (8) and (9),
P(r) and P′(r) are the radial parts of the spectroscopic and correlation orbitals that are included in the
computations. If we express the transition integrals as a function of the upper integration bound R,
we get ∫ R

0
P(r)rP′(r) dr (11)

and ∫ R

0
P(r)

d
dr

P′(r) dr, (12)

respectively. We can keep R = ∞ for the spectroscopic orbitals so that they extend to their full values
and only introduce a cut-off value for R in the transition integrals involving correlation orbitals.
In this manner, the effect on the transition rate values, from correlation orbitals gradually localized
farther from the origin, can be studied. In connection with Figure 3a, the effect that the shape of
the correlation orbitals has on the computation of transition rates is, in Figure 4a, examined for the
2p 2P◦1/2 − 8s 2S1/2 transition in C IV. In Figure 4a, the transition rates are computed by employing
the alternative computational strategy and both Babushkin and Coulomb gauges are displayed. One
observes that the two gauges are affected differently by the outer parts of the correlation orbitals.

In Figure 4a, the transition rate computed in the Coulomb gauge is mainly influenced by the
correlation orbitals that are localized close to the origin and in the vicinity of the atomic core. Correlation
orbitals occupying regions with

√
R > 1 have an insignificant effect on the Coulomb gauge. This explains

the fact that the conventional computational strategy, which generates more contracted orbitals, still
predicts with accuracy, the transition rates in the Coulomb gauge. Oppositely, the Babushkin gauge is
hugely affected by the correlation orbitals occupying the region between

√
R = 5 and

√
R = 6. Looking

at Figure 4b, the 8s radial orbital, which extends far out from the 1s2 atomic core, begins its asymptotic
decay at about

√
R = 5 and dies out at

√
R ≈ 6. Only when we have orbitals extending into this

region, the asymptotic behavior of the wave function representing the 8s 2S1/2 state is well described,
and thus, the Babushkin gauge will yield accurate transition rates. As previously seen, the conventional
computational strategy fails to do so.
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Figure 4. (a) The transition rates A in the Babushkin and the Coulomb gauges for the 2p 2P◦1/2− 8s 2S1/2

transition in C IV, as a function of the square root of the upper integration bound R in the radial
transition integrals (11) and (12) involving correlation orbitals. The radial transition integrals involving
spectroscopic orbitals extend to their full values, so that R = 0 corresponds to transition rates computed
from wave functions exclusively built from spectroscopic orbitals. The wave functions are produced
by the alternative computational strategy. (b) The spectroscopic 2p and 8s radial orbitals in C IV as a
function of

√
r. The two orbitals occupy different regions in space and their overlap is minor. The 8s

orbital extends far out from the atomic core.

A similar study was performed for a transition between two high Rydberg states. In Figure 5a,
the effect of the shape of the correlation orbitals on the computed transition rates is examined for the
7p 2P◦1/2− 8s 2S1/2 transition in C IV. As seen in Figure 5a, correlation has nearly the same effect on both
gauges. Although the 7p and 8s orbitals extend far out from the atomic core (see Figure 5b), correlation
orbitals occupying the large R region remain unimportant in the Babushkin gauge. For transitions
between states close in energy, the line strengths take large values and the change in the transition
rates due to correlation is very small. For this reason, the conventional computational strategy also
yields accurate transition rates for transitions between high Rydberg states.
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Figure 5. (a) Same as Figure 4a, but for the 7p 2P◦1/2 − 8s 2S1/2 transition in C IV. (b) The spectroscopic
7p and 8s radial orbitals in C IV as functions of

√
r. Both orbitals occupy nearly the same regions in

space, overlapping to a great extent.

To clarify the fact that the asymptotic behavior of the wave function at large distances is (or is
not) well approximated, depending on the alternative (or the conventional) optimization strategy,
Brillouin’s theorem [33,34] can be put forward to emphasize the importance of the variational content of
the wave functions. When being interested into the description of Rydberg states 1s2nl 2L (L = l) in the
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single-configuration non-relativistic HF approximation, node counting of the valence radial function,
nc = n− l − 1, provides a simple and efficient way to select the desired state in the self-consistent
procedure [34]. Each separately optimized state implicitly contains all single-electron excitations
nl → n′l of both lower and upper parts of the spectrum, including the continuum 1s2εl, with the
associated interesting property

〈ΦHF(1s2nl 2L)|H|Φ(1s2n′l 2L)〉 = 〈ΦHF(1s2nl 2L)|H|Φ(1s2εl 2L)〉 = 0, ∀(n′, ε) (13)

whereH is the scalar non-relativistic Hamiltonian that is used in the energy functional to derive the
HF equations. The annihilation property of the (ML, MS)-independent interaction matrix elements
between the reference HF CSF built with the optimized HF orbitals, i.e., ΦHF, and all single-electron
excitation CSFs Φ, defines Brillouin’s theorem and explains the reasonable accuracy of the HF
approximation through the richness of its variational content. The above discussion can be extended
to the relativistic framework by considering nκ → (n′, ε)κ single-electron excitations and taking forH
the relativistic Hamiltonian that is used for deriving the DHF equations [17].

In the present work, it is hard to define the variational content of the MCDHF approach due to
the complexity of the energy functional, but one should keep in mind that the optimization strategy is
based (i) on a layer-by-layer approach in which only the last layer is variational while the previous ones
are kept frozen, and (ii) on the use of the EOL method targeting, simultaneously, a large number of
states for a spectrum calculation. The resulting lack of variational freedom for the individual states can
(partially) be counterbalanced by the inclusion of enough interacting states in the Hamiltonian matrix.
Going back to the single-configuration approximation case mentioned above, any member of a Rydberg
series can be described through configuration interaction involving Brillouin one-electron excitations
with a resulting CI-expansion strictly equivalent to the single approximation HF wave function if
the basis of single-excitation CSFs is large and rich enough. This equivalence has been exploited to
solve convergence problems encountered in the MCHF study of Rydberg series in strontium [35] or to
demonstrate the correspondence between different orbital optimization schemes for describing the
discrete-continuum interactions in complex systems [36]. In the context of our work, one illustrates
the inadequacy of the orbitals obtained in the conventional approach that are used to compensate the
lack of variational freedom in the representation of the high-lying Rydberg members. On the contrary,
the alternative strategy proposed produces orbitals that have a better localization for describing the
single-electron excitations, which would have been implicitly included with a fully optimized MCDHF
wave function targeting a single Rydberg state.

6. Summary and Conclusions

The computations of transition data in the systems of lithium-like and beryllium-like carbon
are examples of spectrum calculations that involve Rydberg series. In this work, we showed that,
independently of the optimization scheme of the radial orbitals, transition parameters corresponding
to the lower part of the spectrum are computed with high accuracy. As astronomical spectroscopy
raises the demand on atomic data, highly accurate transition parameters are, however, also required
for transitions that involve high Rydberg states. We demonstrated how this can be achieved by paying
special attention to the optimization scheme of the radial orbitals with respect to correlation. Finally,
we showed that the Babushkin gauge should not, by default, be considered as the preferred gauge,
and that, in the computations of Rydberg series, it might be required that the transition rates in the
Coulomb gauge are used as a reference for the interpretation of astrophysical observations.
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ABSTRACT
Accurate atomic data are essential for opacity calculations and for abundance analyses of the Sun and other stars. The aim of
this work is to provide accurate and extensive results of energy levels and transition data for C I–IV. The Multiconfiguration
Dirac–Hartree–Fock and relativistic configuration interaction methods were used in this work. To improve the quality of
the wavefunctions and reduce the relative differences between length and velocity forms for transition data involving high
Rydberg states, alternative computational strategies were employed by imposing restrictions on the electron substitutions when
constructing the orbital basis for each atom and ion. Transition data, for example, weighted oscillator strengths and transition
probabilities, are given for radiative electric dipole (E1) transitions involving levels up to 1s22s22p6s for C I, up to 1s22s27f for
C II, up to 1s22s7f for C III, and up to 1s28g for C IV. Using the difference between the transition rates in length and velocity
gauges as an internal validation, the average uncertainties of all presented E1 transitions are estimated to be 8.05 per cent,
7.20 per cent, 1.77 per cent, and 0.28 per cent, respectively, for C I–IV. Extensive comparisons with available experimental and
theoretical results are performed and good agreement is observed for most of the transitions. In addition, the C I data were
employed in a re-analysis of the solar carbon abundance. The new transition data give a line-by-line dispersion similar to the
one obtained when using transition data that are typically used in stellar spectroscopic applications today.

Key words: atomic data – atomic processes – radiative transfer – Sun: abundances.

1 IN T RO D U C T I O N

Accurate atomic data are of fundamental importance to many
different fields of astronomy and astrophysics. This is particularly
true for carbon. As the fourth-most abundant metal in the cosmos
(Asplund et al. 2009), carbon is a major source of opacity in the
atmospheres and interiors of stars. Complete and reliable sets of
atomic data for carbon are essential for stellar opacity calculations,
because of their significant impact on stellar structure and evolution
(e.g. VandenBerg et al. 2012; Chen et al. 2020).

Accurate atomic data for carbon are also important in the context of
spectroscopic abundance analyses and Galactic Archaeology. Carbon
abundances measured in late-type stars help us to understand the
nucleosynthesis of massive and asymptotic giant branch stars, and
thus the Galactic chemical evolution (e.g. Franchini et al. 2020;
Jofré, Jackson & Tucci Maia 2020; Stonkutė et al. 2020). In early-
type stars, carbon abundances help constrain the present-day Cosmic
Abundance Standard (e.g. Nieva & Przybilla 2008, 2012; Alexeeva
et al. 2019). In the Sun, the carbon abundance is precisely measured
in order to put different cosmic objects on to a common scale
(e.g. Caffau et al. 2010; Amarsi et al. 2019). In all of these cases,
oscillator strengths for C I (cool stars) and for C I–IV (hot stars)
underpin the spectroscopic analyses; this is especially the case for
studies that relax the assumption of local thermodynamic equilibrium
(LTE, e.g. Przybilla, Butler & Kudritzki 2001; Nieva & Przybilla

� E-mail: wenxian.li@mau.se

2006), in which case much larger sets of reliable atomic data are
needed.

On the experimental side, a number of studies of transition
data have been presented in the literature. Neutral C I transition
probabilities for the 2p4p → 2p3s transition array have been studied
by Miller et al. (1974) using a spectroscopic shock tube and by
Jones & Wiese (1984) using a wall-stabilized arc. The measurements
of relative oscillator strengths for 2p3p → 2p3s, 2p3d → 2p3p, and
2p4s → 2p3p have been performed by Musielok, Veres & Wiese
(1997), Bacawski, Wujec & Musielok (2001), and Golly, Jazgara &
Wujec (2003) using a wall-stabilized arc. Older measurements of
oscillator strengths are also available using the same technique
(Maecker 1953; Richter 1958; Foster 1962; Boldt 1963; Goldbach &
Nollez 1987; Goldbach, Martin & Nollez 1989). By analysing the
high-resolution spectra obtained with the Goddard High Resolution
Spectrograph on the Hubble Space Telescope, Federman & Zsargo
(2001) derived oscillator strengths for C I lines below 1200 Å.

For C II, a number of measurements have also been performed.
Träbert et al. (1999) measured the radiative decay rates for the
intercombination (IC) transitions 2s2p2 4P → 2s22p 2Po at a heavy-
ion storage ring, and the total measured radiative decay rates to the
ground term were 125.8 ± 0.9 s−1 for 4P1/2, 9.61 ± 0.05 s−1 for
4P3/2, and 45.35 ± 0.15 s−1 for 4P5/2. The aforementioned results are,
however, not in agreement with the values measured by Fang et al.
(1993) using a radio-frequency ion trap, that is, 146.4(+ 8.3, -9.2) s−1

for 4P1/2, 11.6(+ 0.8, -1.7) s−1 for 4P3/2, and 51.2(+ 2.6, -3.5) s−1 for
4P5/2. Goly & Weniger (1982) measured the transition probabilities
from a helium–carbon arc for some multiplets of {2p3, 2s23p} →

C© 2021 The Author(s)
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2s2p2 and 2s24s → 2s23p with estimated relative uncertainty of
50 per cent. Using an electric shock tube, Roberts & Eckerle (1967)
provided the relative oscillator strengths of some C II multiplets
with relative uncertainties of 7 per cent. Reistad et al. (1986) gave
lifetimes for 11 C II levels using the beam-foil excitation technique
and extensive cascade analyses.

For C III, the IC decay rate of the 2s2p 3Po
1 → 2s2 1S0 transition

was measured to be 121.0 ± 7 s−1 by Kwong et al. (1993) using a
radio-frequency ion trap and 102.94 ± 0.14 s−1 by Doerfert et al.
(1997) using a heavy-ion storage ring. The discrepancy between the
values obtained from the two different methods is quite large, that is,
of the order of 15 per cent. The result given by the latter measurement
is closer to earlier ab initio calculations ranging between 100
and 104 s−1 (Fischer 1994; Fleming, Hibbert & Stafford 1994;
Ynnerman & Fischer 1995). Several measurements have also been
performed for the lifetimes of the low-lying levels of C III (Mickey
1970; Buchet-Poulizac & Buchet 1973; Reistad & Martinson 1986;
Nandi et al. 1996).

For the system of Li-like C IV, the transition probabilities of the
1s22p 2Po

1/2,3/2 → 1s22s 2S1/2 transitions were measured by Berkner
et al. (1965) using the foil-excitation technique and by Knystautas
et al. (1971) using the beam-foil technique, respectively. There
are also a number of measurements of lifetimes in C IV using the
beam-foil technique (Buchet-Poulizac & Buchet 1973; Donnelly,
Kernahan & Pinnington 1978; Jacques et al. 1980).

On the theoretical side, Froese Fischer et al. have performed
detailed studies of C I–IV, focusing on the low-lying levels. They
carried out Multiconfiguration Hartree–Fock (MCHF) calculations
and used the Breit–Pauli (MCHF-BP) approximation for computing
energy levels and transition properties, for example, transition
probabilities, oscillator strengths, and lifetimes, in C I (Tachiev &
Fischer 2001; Fischer & Tachiev 2004; Fischer 2006), C II (Tachiev &
Fischer 2000), C III (Tachiev & Fischer 1999; Fischer 2000),
and C IV (Fischer et al. 1998; Godefroid, Fischer & Jönsson
2001).

Hibbert et al. have presented extensive calculations for optical
transitions. They used the c IV3 code (Hibbert 1975) to calculate
oscillator strengths and transition probabilities in C I (Hibbert et al.
1993), C II (Corrégé & Hibbert 2004), and C III (Kingston & Hibbert
2000). In the calculations of Hibbert et al. (1993) and Corrégé & Hi-
bbert (2004), empirical adjustments were introduced to the diagonal
matrix elements in order to accurately reproduce energy splittings.
Their C I oscillator strengths are frequently used in the abundance
analyses of cool stars (Section 5).

A number of other authors have also presented theoretical tran-
sition data for carbon. Zatsarinny & Fischer (2002) calculated the
oscillator strengths for transitions to high-lying excited states of C I

using a spline frozen-cores (FCS) method. Nussbaumer & Storey
(1984) provided the radiative transition probabilities using the LS-
and intermediate-coupling approximations, respectively, for the six
energetically lowest configurations of C I. Nussbaumer & Storey
(1981) calculated the transition probabilities for C II, from terms
up to 2s24f 2Fo, using the LS- and close coupling approximation,
respectively.

In view of the great astrophysical interest for large sets of
homogeneous atomic data, extensive spectrum calculations of tran-
sition data in the carbon atom and carbon ions were carried out
under the umbrella of the Opacity Project using the close coupling
approximation of the R-matrix theory, and the results are available in
the Opacity Project online data base (TOPbase, Cunto & Mendoza
1992; Cunto et al. 1993). The latest compilation of C I transition
probabilities was made available by Haris & Kramida (2017), and

those of C II–IV can be found in earlier compilations by Wiese &
Fuhr (2007a, b) and Fuhr (2006).

In this context, the General-purpose Relativistic Atomic Structure
Package (GRASP) has, more recently, been used by Aggarwal &
Keenan (2015) to predict the radiative decay rates and lifetimes of
166 levels belonging to the n ≤ 5 configurations in C III. Using an
updated and extended version of this code (GRASP2K), Jönsson et al.
(2010) determined transition data involving 26 levels in C II.

Although for the past decades, a considerable amount of research
has been conducted for carbon, there is still a need for extended
sets of reliable theoretical transition data. To address this, we
have carried out new calculations based on the fully relativistic
Multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic
configuration interaction (RCI) methods, as implemented in the
newest version of the GRASP code, GRASP2018 (Jönsson et al. 2013;
Fischer et al. 2019). We performed energy spectrum calculations
for 100, 69, 114, and 53 states, in C I–IV, respectively. Electric
dipole (E1) transition data (wavelengths, transition probabilities, line
strengths, and oscillator strengths) were computed along with the
corresponding lifetimes of these states.

This paper is structured into six sections, including the Intro-
duction. Our theoretical methods are described in Section 2, and
computational details are given in Section 3. In Section 4, we present
our results and the validation of the data. As a complementary method
of validation, in Section 5, we use the derived data in a re-analysis
of the solar carbon abundance. Finally, we present our conclusions
in Section 6.

2 TH E O RY

In the MCDHF method (Grant 2007; Fischer et al. 2016), wave-
functions for atomic states γ (j ) PJM , j = 1, 2, . . . , N with angular
momentum quantum numbers JM and parity P are expanded over
NCSFs configuration state functions (CSFs)

�(γ (j ) PJM) =
NCSFs∑

i

c
(j )
i �(γi PJM). (1)

The CSFs are jj-coupled many-electron functions, recursively built
from products of one-electron Dirac orbitals. As for the nota-
tion, γ i specifies the occupied subshells of the CSF with their
complete angular coupling tree information. The radial large and
small components of the one-electron orbitals and the expansion
coefficients {c(j )

i } of the CSFs are obtained, for a number of
targeted states, by solving the Dirac–Hartree–Fock radial equations
and the configuration interaction eigenvalue problem resulting from
applying the variational principle on the statistically weighted energy
functional of the targeted states with terms added for preserving the
orthonormality of the one-electron orbitals. The energy functional
is based on the Dirac–Coulomb (DC) Hamiltonian and accounts for
relativistic kinematic effects.

Once the radial components of the one-electron orbitals are
determined, higher order interactions, such as the transverse photon
interaction and quantum electrodynamic (QED) effects (vacuum
polarization and self-energy), are added to the DC Hamiltonian.
Keeping the radial components fixed, the expansion coefficients
{c(j )

i } of the CSFs for the targeted states are obtained by solving
the configuration interaction eigenvalue problem.

The evaluation of radiative E1 transition data (transition proba-
bilities AND oscillator strengths) between two states: γ

′
P

′
J

′
M

′
and

γ PJM is non-trivial. The transition data can be expressed in terms

MNRAS 502, 3780–3799 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/3780/6122584 by guest on 07 M
arch 2021

118



3782 W. Li et al.

of reduced matrix elements of the transition operator T(1):

〈 �(γPJ ) ‖T (1)‖ �(γ ′P ′J ′) 〉 =∑
j,k

cj c
′
k 〈�(γjPJ ) ‖T (1)‖�(γ ′

kP
′J ′) 〉, (2)

where cj and c′
k are, respectively, the expansion coefficients of the

CSFs for the lower and upper states, and the summation occurs
over all the CSFs for the lower and upper states. The reduced matrix
elements are expressed via spin-angular coefficients d

(1)
ab and operator

strengths as:

〈 �(γjPJ ) ‖T (1)‖�(γ ′
kP

′J ′) 〉 =∑
a,b

d
(1)
ab 〈 nalaja ‖T (1)‖ nblbjb 〉. (3)

Allowing for the fact that we are now using Brink-and-Satchler type
reduced matrix elements, we have

〈 nalaja ‖T (1)‖ nblbjb 〉 =(
(2jb + 1)ω

πc

)1/2

(−1)ja−1/2

(
ja 1 jb
1
2 0 − 1

2

)
Mab, (4)

where Mab is the radiative transition integral defined by Grant (1974).
The factor in front of Mab is the Wigner 3-j symbol that gives the
angular part of the matrix element. The Mab integral can be written
Mab = Me

ab + GMl
ab, where G is the gauge parameter. When G =

0 we get the Coulomb gauge, whereas for G = √
2 we get the

Babushkin gauge. The Babushkin gauge corresponds to the length
gauge in the non-relativistic limit and puts weight on the outer part
of the wavefunctions (Grant 1974; Hibbert 1974). The Coulomb
gauge corresponds to the velocity gauge and puts more weight on
the inner part of the wavefunctions (Papoulia et al. 2019). For E1
transitions, the Babushkin and Coulomb gauges give the same value
of the transition moment for exact solutions of the Dirac equation
(Grant 1974). For approximate solutions, the transition moments
differ, and the quantity dT, defined as (Froese Fischer 2009; Ekman,
Godefroid & Hartman 2014)

dT = |Al − Av|
max(Al, Av)

, (5)

where Al and Av are transition rates in length and velocity form, can
be used as an estimation of the uncertainty of the computed rate.

3 C O M P U TAT I O NA L SC H E M E S

Calculations were performed in the extended optimal level scheme
(Dyall et al. 1989) for the weighted average of the even and
odd parity states. The CSF expansions were determined using the
multireference-single-double (MR-SD) method, allowing single and
double (SD) substitutions from a set of important configurations,
referred to as the MR, to orbitals in an active set (AS, Olsen et al.
1988; Sturesson, Jönsson & Froese Fischer 2007; Fischer et al. 2016).
The orbitals in the AS are divided into spectroscopic orbitals, which
build the configurations in the MR, and correlation orbitals, which
are introduced to correct the initially obtained wavefunctions. During
the different steps of the calculations for C I–IV, the CSF expansions
were systematically enlarged by adding layers of correlation orbitals.

MCDHF calculations aim to generate an orbital set. The orbital
set is then used in RCI calculations based on CSF expansions that
can be enlarged to capture additional electron correlation effects. For
the same CSF expansion, different orbital sets give different results
for both energy levels and transition data. Conventionally, MCDHF
calculations are performed for CSF expansions obtained by allowing

substitutions not only from the valence subshells, but also from the
subshells deeper in the core, accounting for valence–valence (VV),
core–valence (CV), and core–core (CC) electron correlation effects.
Using orbital sets from such calculations, Pehlivan Rhodin et al.
(2017) predicted large dT values for transitions between low-lying
states and high Rydberg states, indicating substantial uncertainties
in the corresponding transition data. For transitions involving high
Rydberg states, it was shown that the velocity gauge gave the more
accurate results, which is contradictory to the general belief that
the length gauge is the preferred one (Hibbert 1974). Analysing the
situation more carefully, Papoulia et al. (2019) found that correlation
orbitals resulting from MCDHF calculations based on CSF expan-
sions obtained by allowing substitutions from deeper subshells are
very contracted in comparison with the outer Rydberg orbitals. As a
consequence, the outer parts of the wavefunctions for the Rydberg
states are not accurately described. Thus, the length form that probes
the outer part of the wavefunctions does not produce trustworthy
results, while the velocity form that probes the inner part of the
wavefunctions yields more reliable transition rates. In the same work,
the authors showed how transition rates that are only weakly sensitive
to the choice of gauge can be obtained, by paying close attention to
the CSF generation strategies for the MCDHF calculations.

In this work, following the suggestion by Papoulia et al. (2019),
the MCDHF calculations were based on CSF expansions for which
we impose restrictions on the substitutions from the inner subshells
and obtain, as a consequence, correlation orbitals that overlap more
with the spectroscopic orbitals of the higher Rydberg states, adding
to a better representation of the outer parts of the corresponding
wavefunctions. The MR and orbital sets for each atom and ion are
presented in Table 1. The computational scheme, including CSF
generation strategies, for each atom and ion is discussed in detail
below. The MCDHF calculations were followed by RCI calculations,
including the Breit interaction and leading QED effects.

3.1 C I

As seen in Table 1, in the computations of neutral carbon, config-
urations with n = 7 (l = s); 6 (l = p, d), which are not of direct
relevance, were included in the MR set to obtain orbitals that are
spatially extended, improving the quality of the outer parts of the
wavefunctions of the higher Rydberg states. The MCDHF calcula-
tions were performed using CSF expansions that were produced by
SD substitutions from the valence orbitals of the configurations in
the MR to the active set of orbitals, with the restriction of allowing
maximum one substitution from orbitals with n = 2. The 1s2 core
was kept closed and, at this point, the expansions of the atomic
states accounted for VV electron correlation. As a final step, an
RCI calculation was performed for the largest SD valence expansion
augmented by a CV expansion. The CV expansion was obtained by
allowing SD substitutions from the valence orbitals and the 1s2 core
of the configurations in the MR, with the restriction that there should
be at most one substitution from 1s2. The numbers of CSFs in the
final even and odd state expansions are, respectively, 14 941 842 and
15 572 953, distributed over the different J symmetries.

3.2 C II

Similarly to the computations in C I, in the computations of the
singly-ionized carbon, the configurations 2s2{8s, 8p, 9s, 9p}, which
are not our prime targets, were included in the MR set (see also
Table 1). In this manner, we generated orbitals that are localized far-
ther from the atomic core. The MCDHF calculations were performed
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Table 1. Summary of the computational schemes for C I–IV. The first column displays the configurations of the targeted states. MR
and AS, respectively, denote the multireference and the active sets of orbitals used in the MCDHF and RCI calculations, and NCSFs are
the numbers of generated CSFs in the final RCI calculations, for the even (e) and the odd (o) parity states.

Targeted configurations MR AS NCSFs

C I, Nlevels = 100

2s2p3 2s2p3 {11s,10p,10d,9f, e: 14 941 842
2s22p{n1s, n2p, n3d, 4f} 2s22p{n1s, n2p, n3d, 4f} 7g,6h} o: 15 572 953
(3 ≤ n1 ≤ 6, 2 ≤ n2 ≤ 5, 3 ≤ n3 ≤ 5) (3 ≤ n1 ≤ 6, 2 ≤ n2 ≤ 6, 3 ≤ n3 ≤ 5)

2p3{n1s, n2p, n3d}
(3 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 5, 3 ≤ n3 ≤ 6)
2s2p2{3s, 3p, 4p, 6p, 6d, 7s}
2s2p{n1s, n2p, n3d, 4f}6d
(3 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 5, 3 ≤ n3 ≤ 5)

C II, Nlevels = 69

2s2nl(n ≤ 6, l ≤ 4) 2s2p2, 2s2{n1s, n2p, n3d, n4f, n5g} {14s, 14p, 12d, 12f, e: 6 415 798
2s27l(l ≤ 3) (3 ≤ n1 ≤ 9, 2 ≤ n2 ≤ 9, 3 ≤ n3 ≤ 7, 10g, 8h} o: 4 988 973
2s2p2, 2p3, 4 ≤ n4 ≤ 7, 5 ≤ n5 ≤ 6)
2s2p3s, 2s2p3p 2p3, 2p2{n1s, n2p, n3d, n4f, n5g}

(3 ≤ n1 ≤ 9, 4 ≤ n2 ≤ 9, 3 ≤ n3 ≤ 7,
4 ≤ n4 ≤ 7, 5 ≤ n5 ≤ 6)
2s2p3s, 2s2p3p

C III, Nlevels = 114

2snl(n ≤ 7, l ≤ 4) 2snl (n ≤ 7, l ≤ 4) {12s, 12p, 12d, 12f, e: 1 578 620
2p2, 2p{3s, 3p, 3d} 2p2, 2p{3s, 3p, 3d} 11g, 8h} o: 1 274 147

C IV, Nlevels = 53

1s2nl (n ≤ 8, l ≤ 4) 1s2nl (n ≤ 8, l ≤ 4) {14s, 14p, 14d, 12f, 12g, e: 1 077 872
1s26h 1s26h 8h, 7i} o: 1 287 706

using CSF expansions obtained by allowing SD substitutions from
the valence orbitals of the MR configurations. During this stage,
the 1s2 core remained frozen and the CSF expansions accounted for
VV correlation. The final wavefunctions of the targeted states were
determined in an RCI calculation, which included CSF expansions
that were formed by allowing SD substitution from all subshells of
the MR configurations, with the restriction that there should be at
most one substitution from the 1s2 core. The numbers of CSFs in the
final even and odd state expansions are, respectively, 6 415 798 and
4 988 973, distributed over the different J symmetries.

3.3 C III

In the computations of beryllium-like carbon, the MR simply
consisted of the targeted configurations (see also Table 1). The
CSF expansions used in the MCDHF calculations were obtained by
allowing SD substitutions from the valence orbitals, accounting for
VV correlation effects. The final wavefunctions of the targeted states
were determined in subsequent RCI calculations, which included
CSFs that were formed by allowing single, double, and triple (SDT)
substitutions from all orbitals of the MR configurations, with the
limitation of leaving no more than one hole in the 1s2 atomic core.
The final even and odd state expansions, respectively, contained 1 578
620 and 1 274 147 CSFs, distributed over the different J symmetries.

3.4 C IV

Likewise the computations in C III, the MR in the computations of
lithium-like carbon was solely represented by the targeted config-
urations (see also Table 1). In the MCDHF calculations, the CSF

expansions were acquired by implementing SD electron substitutions
from the configurations in the MR, with the restriction of allowing
maximum one hole in the 1s2 core. In this case, the shape of the
correlation orbitals was established by CSFs accounting for valence
(V) and CV correlation effects. In the subsequent RCI calculations,
the CSF expansions were enlarged by enabling all SDT substitutions
from the orbitals in the MR to the active set of orbitals. The final
expansions of the atomic states gave rise to 1 077 872 CSFs with
even parity and 1 287 706 CSFs with odd parity, respectively, shared
among the different J symmetry blocks.

4 R ESULTS

The energy spectra and wavefunction composition in LS-coupling
for the 100, 69, 114, and 53 lowest states, respectively, for C I–IV

are given in Table A1. In the tables, the states are given with unique
labels (Gaigalas et al. 2017), and the labelling is determined by the
CSFs with the largest coefficient in the expansion of equation (1).
We first summarize the results here, before discussing the individual
ions in detail in Sections 4.1–4.4, below.

The accuracy of the wavefunctions from the present calculations
was evaluated by comparing the calculated energy levels with ex-
perimental data provided via the National Institute of Standards and
Technology (NIST) Atomic Spectra Database (Kramida et al. 2019).
In the left-hand panel of Fig. 1, energy levels computed in this work
are compared with the NIST data. A closer inspection of the figure
reveals that the relative discrepancies between the experimental
and the computed in this work energies are, in most cases, about
−0.35 per cent, −0.08 per cent, 0.03 per cent, and 0.003 per cent,
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Figure 1. Left-hand panel: comparison of computed energy levels in this work with data from the NIST data base, for C I–IV. The dashed lines indicate the
−0.5 per cent and 0.5 per cent relative discrepancies. Right-hand panel: the relative differences between the lifetimes in length and velocity forms, for C I–IV.
The dashed and solid lines indicate the 5 per cent and 10 per cent relative differences, respectively. No., as label in the x-axis, corresponds to the numbers in
Table A1.

respectively, for C I–IV. Only for levels of the 2s2p3 configuration
in C I, the disagreements are larger than 1.0 per cent. The average
difference of the computed energy levels relative to the energies from
the NIST data base is 0.41 per cent, 0.081 per cent, 0.041 per cent,
and 0.0044 per cent, respectively, for C I–IV. In Table A1, lifetimes in
length and velocity gauges are also presented. The right-hand panel
of Fig. 1 presents the relative differences between the lifetimes in
length and velocity forms for C I–IV. Except for a few long-lived
states that can decay to the ground state only through IC transitions,
the relative differences are well below 5 per cent.

The accuracy of calculated transition rates can be estimated
either by comparisons with other theoretical works and experimental
results, when available, or by the quantity dT, which is defined in
equation (5) as the agreement between the values in length and
velocity gauges (Froese Fischer 2009; Ekman et al. 2014). The
latter is particularly useful when no experimental measurements are
available. Transition data, for example, wavenumbers, wavelengths,
line strengths, weighted oscillator strengths, transition probabilities
of E1 transitions, and the accuracy indicators dT, are given in Ta-
bles A2–A5, respectively, for C I–IV. Note that the wavenumbers and
wavelengths are adjusted to match the level energy values in the NIST
data base, which are critically evaluated by Haris & Kramida (2017)
for C I and Moore & Gallagher (1993) for C II–IV. When no NIST
values are available, the wavenumbers and wavelengths are from the
present MCDHF/RCI calculations and marked with ∗ in the tables.

To better display the uncertainties dT of the computed transitions
rates and their distribution in relation to the magnitude of the
transition rate values A, the transitions are organized in five groups
based on the magnitude of the A values. A statistical analysis of
the uncertainties dT of the transitions is performed for the 1553,
806, 1805, and 386 E1 transitions, respectively, for C I–IV. In
Table 2, the mean value of the uncertainties 〈dT〉 and standard
deviations σ are given for each group of transitions. As seen in
Table 2, most of the estimated uncertainties dT are well below
10 per cent. Most of the strong transitions with A > 106 s−1

are associated with small uncertainties dT, less than 2 per cent,
especially for C III and C IV, for which 〈dT〉 is 0.297 per cent (σ
= 0.01) and 0.205 per cent (σ = 0.0041), respectively. It is worth
noting that, by employing the alternative optimization scheme of
the radial orbitals in the present calculations, the uncertainties

dT for transitions involving high Rydberg states are significantly
reduced.

Contrary to the strong transitions, the weaker transitions are asso-
ciated with relatively large dT values. This is even more pronounced
for the first two groups of transitions in C I and C II, where A is
less than 102 s−1. These weak E1 transitions are either IC or two-
electron one-photon transitions. The rates of the former transitions,
in relativistic calculations, are small due to the strong cancellation
contributions to the transition moment (Ynnerman & Fischer 1995),
whereas the rates of the latter transitions are identically zero in the
simplest approximation of the wavefunction and only induced by
correlation effects (Bogdanovich, Karpuškiene & Rancova 2007; Li
et al. 2010). These types of transitions are extremely challenging, and
therefore interesting from a theoretical point of view, and improved
methodology is needed to further decrease the uncertainties of the
respective transition data.

Fortunately, the weak transitions tend to be of lesser astrophysical
importance, either for opacity calculations, or for spectroscopic
abundance analyses. Thus, only the transitions with A ≥ 102 s−1 for
C I and C II, and A ≥ 100 s−1 for C III and C IV, are discussed in the
paper; although the complete transition data tables, for all computed
E1 transitions in C I–IV, are available online. The scatterplots of dT
versus A are given in Fig. 2. The mean dT for all presented E1
transitions shown in Fig. 2 is 8.05 per cent (σ = 0.12), 7.20 per cent
(σ = 0.13), 1.77 per cent (σ = 0.05), and 0.28 per cent (σ = 0.0059),
respectively, for C I–IV. A statistical analysis of the proportions of the
transitions with dT less than 20 per cent, 10 per cent, and 5 per cent
in all the presented E1 transitions is also performed and shown in the
last three rows of Table 2.

Finally, this work can be compared with other theoretical calcu-
lations. In Fig. 3, log gf values from this work are compared with
results from MCHF-BP (Fischer 2006; Tachiev & Fischer 2000,
1999; Fischer et al. 1998), CIV3 (Hibbert et al. 1993; Corrégé &
Hibbert 2004), and TOPbase data (Cunto & Mendoza 1992), when
available. As shown in the figure, the differences between the log gf
values computed in this work and respective results from other
sources are rather small for most of the transitions. Comparing the
MCDHF/RCI results with those from CIV3 calculations by Hibbert
et al. (1993), which are frequently used in the abundance analyses,
292(228) out of 378 transitions are in agreement within 20 per cent
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Table 2. Distribution of the uncertainties dT (in per cent) of the computed transition rates in C I–IV depending on the magnitude of the rates. The transition rates
are arranged in five groups based on the magnitude of the A values (in s−1). The number of transitions, No., the mean dT, 〈dT〉, (in per cent), and the standard
deviations, σ , are given for each group of transitions, in C I–IV, respectively. The last three rows show the proportions (in percentages) of the transitions with dT
less than 20 per cent, 10 per cent, and 5 per cent in all the transitions with A ≥ 102 s−1 for C I and C II and A ≥ 100 s−1 for C III and C IV, respectively.

C I C II C III C IV

Group No. 〈dT 〉(per cent) σ No. 〈dT 〉(per cent) σ No. 〈dT 〉(per cent) σ No. 〈dT 〉(per cent) σ

<100 62 52.6 0.34 80 29.6 0.32 137 10.8 0.18 20 5.92 0.061
100–102 156 34.0 0.25 134 17.1 0.24 239 5.57 0.096 10 2.38 0.017
102–104 451 13.2 0.15 128 14.4 0.19 354 2.48 0.050 6 0.667 0.0047
104–106 600 7.20 0.11 167 11.8 0.15 360 1.44 0.034 43 0.267 0.0035
>106 284 1.68 0.020 297 1.53 0.023 715 0.297 0.010 307 0.205 0.0041

dT < 20 per cent 87.4 89.5 98.4 100
dT < 10 per cent 77.3 80.7 95.7 100
dT < 5 per cent 62.0 68.7 91.7 99.4
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Figure 2. Scatterplot of dT values versus transition rates A of E1 transitions, for C I–IV. The solid lines indicate the 10 per cent relative agreement between the
length and velocity gauges.

(10 per cent) for C I, and 78(66) out of 87 transitions are within the
same range for C II. The results from the MCDHF/RCI and MCHF-
BP calculations are found to be in very good agreement for C III–IV,
with the relative differences being less than 5 per cent for all the
computed transitions. More details about the comparisons with other
theoretical calculations, as well as with experimental results, are
given in Sections 4.1–4.4.

4.1 C I

The computed excitation energies, given in Table A1, are compared
with results from NIST (Kramida et al. 2019). With the exception of
the levels belonging to the 2s2p3 configuration, for which the average
relative difference between theory and experiment is 1.22 per cent,
the mean relative difference for the rest of the states is 0.35 per cent.
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Figure 3. Differences between the calculated log gf values in this work and results from other theoretical calculations: MCHF-BP (red asterisk), CIV3 (blue
plus sign), and TOPbase (black point), for C I–IV.

The complete transition data, for all computed E1 transitions in
C I, can be found in Table A2. Based on the statistical analysis of
the uncertainties dT shown in Table 2, out of the 1335 transitions
with A ≥ 102 s−1, the proportions of the transitions with dT less than
20 per cent, 10 per cent, and 5 per cent are, respectively, 87.4 per cent,
77.3 per cent, and 62.0 per cent.

In C I, experimental transition data are available for the 2p3p
→ 2p3s, 2p3d → 2p3p, and 2p4s → 2p3p transition arrays using
a stabilized arc source (Musielok et al. 1997; Golly et al. 2003;
Bacawski et al. 2001). In Table A6, the experimental relative
line strengths, together with their uncertainties, are compared with
the present MCDHF/RCI theoretical values and with values from
the non-relativistic CIV3 calculations by Hibbert et al. (1993) that
included semi-empirical diagonal energy shifts by LS configuration
in the interaction matrix in the determination of the wavefunctions.
The estimated uncertainties dT of the MCDHF/RCI line strengths are
given as percentages in parentheses. In most cases, the theoretical
values fall into, or only slightly outside, the range of the estimated
uncertainties of the experimental values.

Comparing the MCDHF/RCI results with the results from the
CIV3 calculations by Hibbert et al. (1993), we see that 41 out
of the 50 transitions in common are in good agreement, with the
relative differences being less than 10 per cent (see Table A6). For
the 2p4s 3Po → 2p3p 3P transitions and the 2p4s 3Po

2 → 2p3p 3D1

transition, the S values deduced from the present MCDHF/RCI
calculations differ substantially from the experimental values, that

is, by more than 20 per cent, while the values from the CIV3
calculations appear to be in better agreement with the corre-
sponding experimental values. Based on the agreement between
the length and velocity forms, the estimated uncertainties dT of
the present MCDHF/RCI calculations for the above-mentioned
transitions are of the order of 8.5 per cent and 1.4 per cent, re-
spectively. For the 2p3d 3Po

2 → 2p3p 3P1, 2p4s 3Po
2 → 2p3p 3D2,

and 2p3d 3Do
2 → 2p3p 3D3 transitions, both theoretical results are

outside the range of the estimated uncertainties of the experimental
values. For the 2p3d 3Do → 2p3p 3P transitions, the evaluated
relative line strengths by Golly et al. (2003) slightly differ from
the observations by Bacawski et al. (2001). The latter seem to be
in better overall agreement with the transition rates predicted by the
present calculations.

In Table A7, the computed line strengths and transition rates are
compared with values from the spline FCS method by Zatsarinny &
Fischer (2002) and the MCHF-BP calculations by Fischer (2006).
Zatsarinny & Fischer (2002) presented oscillator strengths for transi-
tions from the 2p2 3P term to high-lying excited states, while Fischer
(2006) considered only transitions from 2p2 3P, 1D, and 1S to odd
levels up to 2p3d 3Po. As seen in the table, the present MCDHF/RCI
results seem to be in better agreement with the values from spline
FCS calculations. 76 out of 98 transitions from Zatsarinny & Fischer
(2002) agree with present values within 10 per cent, while only 38
out of 78 transitions from Fischer (2006) are within the same range.
The relatively large differences with Fischer (2006) may be due
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to the fact that limited electron correlations were included in their
calculations. In the MCHF-BP calculations, two types of correlation,
that is, VV, CV, have been accounted for; however, the CC correlation
has not been considered. Additionally, CSF expansions obtained
from SD substitutions are not as large as the CSF expansions used
in the present calculations. For the majority of the strong transitions
with A > 106 s−1, there is a very good agreement between the
MCDHF/RCI results and the spline FCS values, with the relative
difference being less than 5 per cent. On the other hand, for the
2p3d 3F → 2p2 3P and 2p4s 1P1 → 2p2 3P transitions, the observed
discrepancies between these three methods, that is, MCDHF/RCI,
spline FCS, and MCHF-BP, are quite large. These transitions are all
LS-forbidden transitions, the former is with �L = 2 and the latter is
spin-forbidden transition; these types of transitions are challenging
for computations and are always with large uncertainties. For
example, for the 2p3d 3F3 → 2p2 3P2 transition, the A values
from MCDHF/RCI, spline FCS, and MCHF-BP calculations are,
respectively, 7.92E+06, 6.24E+06, and 1.14E + 07 s−1, with the
relative difference between each two of them being greater than
20 per cent. Experimental data are, therefore, needed for validating
these theoretical results. On the contrary, based on the agreement
between the length and velocity forms displayed in the parentheses,
the estimated uncertainties of the MCDHF/RCI calculations for the
above-mentioned transitions are all less than 0.5 per cent.

4.2 C II

The relative differences between theory and experiment for all the
energy levels of 2s2p2 are 0.16 per cent, while the mean relative
difference for the rest of the states is 0.071 per cent (see Table A1).
The complete transition data, for all computed E1 transitions in C II,
can be found in Table A3. Out of the presented 592 E1 transitions
with A ≥ 102 s−1, the proportions of the transitions with dT less than
20 per cent, 10 per cent, and 5 per cent are, respectively, 89.5 per cent,
80.7 per cent, and 68.7 per cent.

In Table A6, the lifetimes from the present MCDHF/RCI cal-
culations are compared with available results from the MCHF-BP
calculations by Tachiev & Fischer (2000) and observations by Reistad
et al. (1986) and Träbert et al. (1999). Träbert et al. (1999) measured
lifetimes for the three fine-structure components of the 2s2p2 4P term
in an ion storage ring. For the measured lifetimes by Reistad et al.
(1986) of the doublets terms using the beam-foil technique, a single
value for the two fine-structure levels is provided. It can be seen that,
in all cases, the MCDHF/RCI computed lifetimes agree with the
experimental values by Reistad et al. (1986) within the experimental
errors. For the 2s2p2 4P1/2, 3/2, 5/2 states, as discussed in Introduction,
the discrepancies between the measured transition rates by Fang et al.
(1993) and by Träbert et al. (1999) are quite large. It is found that the
MCDHF/RCI values are in better agreement with the results given by
the latter measurements, with a relative difference less than 3 per cent.
For these long-lived states, the measured lifetimes are better repre-
sented by the MCDHF/RCI results than by the MCHF-BP values.

The computed line strengths and transition rates are compared with
values from the MCHF-BP calculations by Tachiev & Fischer (2000)
and the CIV3 calculations by Corrégé & Hibbert (2004) in Table A8.
We note that the agreement between the present MCDHF/RCI and the
MCHF-BP transition rates exhibits a broad variation. In the earlier
MCHF-BP and our MCDHF/RCI calculations, the same correlation
effects, that is, VV and CV, have been accounted for. However, the
CSF expansions obtained from SD substitutions in the MCHF-BP
calculations are not as large as the CSF expansions used in the
present calculations, and as a consequence, the LS-composition of
the configurations might not be predicted as accurately in the former

calculations. The MCDHF/RCI results seem to be in better overall
agreement with the values from the CIV3 calculations, except for
transitions from 2p3 2Po to 2s2p2 {4P, 2S} and to 2s23d 2D. For
these transitions, involving 2p3 2Po as the upper level, the transition
rates A are of the order of 102–104 s−1. The dT values are relatively
large in the present calculations. This is due to the strong cancellation
effects caused by, for example, the strong mixing between the 2p3 2Po

and 2s2p3s 2Po levels for 2p3 2Po → 2s2p2 2S, and the mixing
between the 2p3 2Po and 2s24p 2Po levels for 2p3 2Po → 2s23d 2D.
Large discrepancies are also observed between the MCDHF/RCI
and MCHF-BP results, as well as between the MCHF-BP and CIV3
results for these transitions. Experimental data are, therefore, crucial
for validating the aforementioned theoretical results. On the contrary,
for the majority of the strong transitions with A > 106 s−1, there is
a very good agreement between the MCDHF/RCI results and those
from the two previous calculations, with the relative differences being
less than 5 per cent.

4.3 C III

The average relative discrepancy between the computed excitation
energies, shown in Table A1, and the NIST recommended values
is 0.041 per cent. The complete transition data, for all computed
E1 transitions in C III, can be found in Table A4. Out of the 1668
transitions with A ≥ 100 s−1, 91.7 per cent (98.4 per cent) of them
have dT values less than 5 per cent (20 per cent). Further, the mean
dT for all transitions with A ≥ 100 s−1 is 1.8 per cent with σ = 0.05.

The lifetimes of the 2s2p 1Po
1, 2p2 {1S0, 1D2}, and 2s3s 1S0 states

were measured by Reistad et al. (1986) using the beam-foil technique,
and the oscillator strengths for the 2s2p 1Po

1 → 2s2 1S0 and the
2p2 {1S0,

1 D2} → 2s2p 1Po
1 transitions were also provided. Table A6

gives the comparisons between the observed and computed oscillator
strengths and lifetimes in C III. Looking at the table, we see an excel-
lent agreement between the present calculations and those from the
MCHF-BP calculations (Tachiev & Fischer 1999) with the relative
difference being less than 0.7 per cent. In all cases, the computed
oscillator strengths and lifetimes agree with experiment within the
experimental errors. The exceptions are the oscillator strength of the
2p2 1S0 → 2s2p 1Po

1 transition and the lifetime of the 2p2 1S0 state,
for which the computed values slightly differ from the observations.

In Table A9, the computed line strengths and transition rates are
compared with values from the MCHF-BP calculations by Tachiev &
Fischer (1999) and the GRASP calculations by Aggarwal & Keenan
(2015). For the majority of the transitions, there is an excellent
agreement between the MCDHF/RCI and MCHF-BP values with the
relative differences being less than 1 per cent. Only 4 out of 60 tran-
sitions display discrepancies that are greater than 20 per cent. These
large discrepancies are observed for the IC transitions, for example,
2s3d 3D2 → 2s2p 1Po

1 and 2s3d 3D2 → 2s2p 1Po
1, for which the dT

is relatively large. The discrepancies between the MCDHF/RCI and
GRASP values are overall large; this is due to the fact that limited
electron correlations were included in their calculations. Based on
the excellent agreement between the MCDHF/RCI and MCHF-
BP results as well as with experiment, we believe that the present
transition rates together with the MCHF-BP transition data are more
reliable than the ones provided by Aggarwal & Keenan (2015).

4.4 C IV

The mean relative discrepancy between the computed excitation
energies, given in Table A1, and the NIST values is 0.0044 per cent.
Out of the presented 366 transitions with A ≥ 100 s−1 shown in
Table A5, only two of them have dT values greater than 5 per cent;
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Table 3. The 14 permitted C I lines used as abundance diagnostics in Amarsi et al. (2019). Shown
are the upper and lower configurations, oscillator strengths obtained from the present calculations,
and oscillator strengths from NIST; the latter being based on the calculations from CIV3 (Hibbert
et al. 1993). The estimated uncertainties dT of the oscillator strengths are given as percentages in
parentheses. The final two columns show the abundances derived in Amarsi et al. (2019), and the
post-corrected values derived here based on the formula �log εC

line = −�log gfline.

log gf

Upper Lower λair(nm) NIST
MCDHF/RCI(dT, per

cent) log εA19
C log εL20

C

2p4p 1D2 2p3s 1Po
1 505.217 −1.30 −1.36(0.8) 8.41 8.47

2p4p 1P1 2p3s 1Po
1 538.034 −1.62 −1.71(1.4) 8.43 8.52

2p4d 1Po
1 2p3p 1P1 658.761 −1.00 −1.05(0.2) 8.33 8.38

2p4d 3Fo
2 2p3p 3D1 711.148 −1.08 −1.24(0.9) 8.31 8.47

2p4d 3Fo
4 2p3p 3D3 711.318 −0.77 −0.94(1.5) 8.41 8.58

2p3p 3D1 2p3s 3Po
2 1075.40 −1.61 −1.62(1.3) 8.49 8.50

2p3d 3Fo
2 2p3p 3D2 1177.75 −0.52 −0.46(0.9) 8.46 8.40

2p3d 3Po
1 2p3p 3P0 1254.95 −0.57 −0.65(3.3) 8.51 8.59

2p3d 3Po
0 2p3p 3P1 1256.21 −0.52 −0.61(3.3) 8.51 8.60

2p3d 3Po
1 2p3p 3P1 1256.90 −0.60 −0.70(3.2) 8.46 8.56

2p3d 3Po
2 2p3p 3P1 1258.16 −0.54 −0.61(3.4) 8.46 8.53

2p3d 1Po
1 2p3p 1S0 2102.31 −0.40 −0.39(0.5) 8.47 8.46

2p4p 1D2 2p3d 1Fo
3 3085.46 +0.10 +0.07(0.2) 8.41 8.44

2p4d 1Do
2 2p4p 1P1 3406.58 +0.44 +0.45(3.1) 8.47 8.46

94.0 per cent of them with dT being less than 1 per cent. The mean dT
for all transitions with A ≥ 100 s−1 is 0.28 per cent with σ = 0.0059.

For C IV, there are a number of measurements of transition proper-
ties. The transition rates of the 2p 2Po

1/2,3/2 → 2s 2S1/2 transitions
were measured by Knystautas et al. (1971) using the beam-foil
technique. By using the same technique, the lifetimes for a number
of excited states were measured in four different experimental works
(Donnelly et al. 1978; Buchet-Poulizac & Buchet 1973; Jacques et al.
1980; Peach, Saraph & Seaton 1988). In Table A6, we compare
the theoretical results, from present calculations and MCHF-BP
calculations, with the NIST recommended values and observed
values. The transition rates of the 2p 2Po

1/2,3/2 → 2s 2S1/2 transitions
from this work agree perfectly with the values from the MCHF-
BP calculations by Fischer et al. (1998), while they are slightly
smaller than the NIST data and the values by Knystautas et al.
(1971). A comparison of the lifetimes of the {3s, 4s, 2p, 3p, 4p,
3d, 4d, 5d} states is made with other theoretical results, that is, from
the MCHF-BP calculations and the Model Potential method. The
agreements between these different theoretical results are better than
1 per cent for all these states. Furthermore, the agreement between
the computed values and those from observations is also very good
except for the 3s 2S1/2 level, for which the MCDHF/RCI calculations
give a slightly smaller lifetime of 0.2350 ns than the observed value
of 0.25 ± 0.01 ns.

In Table A10, the computed line strengths and transition rates are
compared with available values from the MCHF-BP calculations by
Fischer et al. (1998). There is an excellent agreement between the
two methods with the relative differences being less than 1 per cent
for all transitions.

5 R E - A NA LY S I S O F T H E SO L A R C A R B O N
A BU N DA N C E

One can also attempt to verify the present atomic data empirically,
in an astrophysical context. To demonstrate this, a solar carbon
abundance analysis was carried out, based on permitted C I lines.
Larger errors in the atomic data usually impart a larger dispersion

in the line-by-line abundance results, as well as trends in the results
with respect to the line parameters.

The solar carbon abundance analysis recently presented in Amarsi
et al. (2019) was taken as the starting point. Their analysis is based
on equivalent widths measured in the solar disc-centre intensity, for
14 permitted C I lines in the optical and near-infrared, as well as a
single forbidden [C I] line at 872.7 nm. Their analysis draws on a 3D
hydrodynamic model solar atmosphere and 3D non-LTE radiative
transfer, that reflects the current state-of-the-art in stellar elemental
abundance determinations (e.g. Asplund et al. 2009). For the 14
permitted C I lines, the authors adopted transition probabilities from
NIST, that are based on those of Hibbert et al. (1993) but normalized
to a different scale (Haris & Kramida 2017), corresponding to
differences of the order ±0.01 dex.

Here, we post-correct the solar carbon abundances inferred in
Amarsi et al. (2019) from the 14 permitted C I lines, using the new
atomic data derived in the present study (see Table 3). To first order,
for a given spectral line, the change in the inferred abundances
are related to the difference in the adopted transition probabilities
simply as � log εline

C = −� log gf line. We briefly note that second-
order effects on the inferred abundances, propagated forward from
changes to the non-LTE statistical equilibrium when adopting the
full set of new log gf data in the non-LTE model atom, were also
tested; these were found to be negligible.

The results of this post-correction are illustrated in Fig. 4. We find
that the dispersion in the line-by-line abundance results are similar
when using the new and the old sets of log gf data. We also find that the
trends in the results with respect to the line parameters are of similar
gradients. This is consistent with the finding in Section 4.1, that the
precision of this new, much larger atomic data set is comparable to
that of Hibbert et al. (1993).

This new analysis implies a solar carbon abundance of 8.50 dex,
which is 0.06 dex larger than that inferred in Amarsi et al. (2019) from
C I lines, and 0.07 dex larger than the current standard value from
Asplund et al. (2009) that is based on C I lines as well as on molecular
diagnostics. This increase in the mean abundance is due to 12 of the
14 permitted C I lines having lower oscillator strengths in the present
calculations, compared to the NIST data set. Six of the lines give
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Figure 4. Inferred solar carbon abundances. Black points (A19) are the 3D
non-LTE results of Amarsi et al. (2019) for 14 permitted C I lines. Blue
points (L20) are these same results but post-corrected using the new log gf
data. Error bars reflect ±5 per cent uncertainties in the measured equivalent
widths as stipulated by those authors. The four lines between 1254 and
1259 nm discussed in the text have been highlighted in red. The unweighted
means μ (including all 14 lines) and the standard deviations of the samples
σ are stated in each panel.

results that are larger than the mean (log ε ≥ 8.51); included in this
set are all four of the lines between 1254 and 1259 nm, which give
rise to values of between 8.53 and 8.60 dex. These four lines have the
same upper level configuration, 2p3d 3Po, and a closer inspection of
the LS-composition reveals that these states are strongly mixed (of the
order of 26 per cent) with 2s2p3 3Po states, which are less accurately
described in the present calculations. As a consequence, as shown in
Table 3, these transitions appear to be associated with slightly larger
uncertainties dT than most of the other lines. Omitting these four
lines, or adopting NIST oscillator strengths for them, would reduce
the mean abundance from 8.50 to 8.47 dex.

Given that the scatter and trends in the results do not support
one set of data over the other, we refrain from advocating a
higher solar carbon abundance at this point. Nevertheless, this quite
drastic change in the resulting solar carbon abundance highlights the
importance of having accurate atomic data for abundance analyses.
This is especially relevant in the context of the solar modelling
problem, wherein standard models of the solar interior, adopting
the solar chemical composition of Asplund et al. (2009), fail to
reproduce key empirical constraints, including the depth of the
convection zone and interior sound speed that are precisely inferred
from helioseismic observations (Basu & Antia 2008; Zhang, Li &
Christensen-Dalsgaard 2019). Extra opacity in the solar interior near
the boundary of the convection zone would resolve the problem
(Bailey et al. 2015). Carbon contributes about 5 per cent of the
opacity in this region (Blancard, Cossé & Faussurier 2012), so a
higher carbon abundance would help alleviate the problem, albeit
only very slightly.

6 C O N C L U S I O N S

In this work, energy levels and transition data of E1 transitions are
computed for C I–IV using the MCDHF and RCI methods. Special
attention is paid to the computation of transition data involving
high Rydberg states by employing an alternative orbital optimization
approach.

The accuracy of the predicted excitation energies is evaluated
by comparing with experimental data provided by the NIST data
base. The average relative differences of the computed energy levels
compared with the NIST data are 0.41 per cent, 0.081 per cent,
0.041 per cent, and 0.0044 per cent, respectively, for C I–IV. The
accuracy of the transition data is evaluated based on the relative
differences of the computed transition rates in the length and
velocity gauges, which is given by the quantity dT, and by extensive
comparisons with previous theoretical and experimental results. For
most of the strong transitions in C I–IV, the dT values are less
than 5 per cent. The mean dT for all presented E1 transitions are
8.05 per cent (σ = 0.12), 7.20 per cent (σ = 0.13), 1.77 per cent (σ
= 0.050), and 0.28 per cent (σ = 0.0059), respectively, for C I–IV.
Particularly, for strong transitions with A > 106 s−1, the mean dT is
1.68 per cent (σ = 0.020), 1.53 per cent (σ = 0.023), 0.297 per cent
(σ = 0.010), and 0.205 per cent (σ = 0.0041), respectively, for
C I–IV. By employing alternative optimization schemes of the radial
orbitals, the uncertainties dT of the computed transition data for
transitions involving high Rydberg states are significantly reduced.
The agreement between computed transition properties, for example,
line strengths, transition rates, and lifetimes, and experimental values
is overall good. The exception is the weak transitions, e.g. the IC
transitions, for which the strong cancellation effects are important;
however, these effects cannot be properly considered in the present
calculations. The present calculations are extended to high Rydberg
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states that are not covered by previous accurate calculations and this
is of special importance in various astrophysical applications.

The accurate and extensive sets of atomic data for C I–IV are
publicly available for use by the astronomy community. These data
should be useful for opacity calculations and for models of stellar
structures and interiors. They should also be useful to non-LTE
spectroscopic analyses of both early- and late-type stars.
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energy levels (in cm−1), and lifetimes (in s; given in length (τ l) and
velocity (τ v) gauges) for C I–IV.
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APPENDIX A : ADDITIONA L TABLES

Table A1. Wavefunction composition (up to three LS components with a contribution > 0.02 of the total wavefunction) in LS-coupling, energy levels (in
cm−1), and lifetimes (in s; given in length (τ l) and velocity (τv) gauges) for C I–IV. Energy levels are given relative to the ground state and compared with
NIST data (Kramida et al. 2019). The full table is available online.

Species No. State LS-composition ERCI ENIST τ l τv

C I 1 2s22p2(3
2P) 3P0 0.88 + 0.03 2s22p 2P 7p 3P 0 0

C I 2 2s22p2(3
2P) 3P1 0.88 + 0.03 2s22p 2P 7p 3P 16 16

C I 3 2s22p2(3
2P) 3P2 0.88 + 0.03 2s22p 2P 7p 3P 43 43

C I 4 2s22p2(1
2D) 1D2 0.85 + 0.05 2s22p 2P 7p 1D + 0.03 2s22p 2P 3p 1D 10 275 10 193

C I 5 2s22p2(1
0S) 1S0 0.78 + 0.06 2s22p 2P 7p 1S + 0.06 2p4(1

0S) 1S 21 775 21 648
C I 6 2s 2S 2p3(4

3S) 5S◦
2 0.93 + 0.04 2s 2S 2p2(3

2P) 4P 7p 5S◦ 33 859 33 735 3.00E-02 1.26E-02
C I 7 2s22p 2P 3s 3P◦

0 0.91 + 0.04 2p3(2
1P) 2P 3s 3P◦ 60 114 60 333 3.00E-09 3.04E-09

C I 8 2s22p 2P 3s 3P◦
1 0.91 + 0.04 2p3(2

1P) 2P 3s 3P◦ 60 133 60 353 3.00E-09 3.04E-09
C I 9 2s22p 2P 3s 3P◦

2 0.91 + 0.04 2p3(2
1P) 2P 3s 3P◦ 60 174 60 393 3.00E-09 3.04E-09

C I 10 2s22p 2P 3s 1P◦
1 0.92 + 0.04 2p3(2

1P) 2P 3s 1P◦ 61 750 61 982 2.78E-09 2.83E-09
– – – – – – – –

Table A2. Electric dipole transition data for C I from present calculations. Upper and lower states, wavenumber, �E, wavelength,
λ, line strength, S, weighted oscillator strength, gf, transition probability, A, together with the relative difference between two
gauges of A values, dT, provided by the present MCDHF/RCI calculations are shown in the table. Wavelength and wavenumber
values are from the NIST data base (Kramida et al. 2019) when available. Wavelengths and wavenumbers marked with ∗ are from
the present calculations. Only the first 10 rows are shown; the full table is available online.

Upper Lower �E(cm−1) λ (Å) S (au of a2
0e2) gf A (s−1) dT

2s22p5d 3Do
2 2s22p2 3P1 86373 1157.769 1.025E-01 2.679E−02 2.647E + 07 0.004

2s22p5d 3Do
1 2s22p2 3P0 86362 1157.909 8.568E-02 2.240E−02 3.689E + 07 0.003

2s22p5d 3Do
3 2s22p2 3P2 86354 1158.018 3.197E-01 8.358E−02 5.897E + 07 0.003

2s22p6s 3Po
2 2s22p2 3P1 86352 1158.038 1.273E-01 3.328E−02 3.287E + 07 0.002

2s22p5d 3Do
1 2s22p2 3P1 86346 1158.130 4.687E-02 1.225E−02 2.017E + 07 0.002

2s22p5d 3Do
2 2s22p2 3P2 86346 1158.131 1.049E-01 2.742E−02 2.708E + 07 0.000

2s22p6s 3Po
1 2s22p2 3P0 86331 1158.324 2.442E-02 6.380E−03 1.050E + 07 0.001

2s22p6s 3Po
2 2s22p2 3P2 86325 1158.400 2.619E-02 6.844E−03 6.756E + 06 0.001

2s22p5d 3Do
1 2s22p2 3P2 86319 1158.492 1.367E-03 3.571E−04 5.875E + 05 0.002

2s22p6s 3Po
1 2s22p2 3P1 86315 1158.544 6.630E-03 1.732E−03 2.849E + 06 0.004

– – – – – – – –
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Table A3. Electric dipole transition data for C II from present calculations. Upper and lower states, wavenumber, �E, wavelength,
λ, line strength, S, weighted oscillator strength, gf, transition probability, A, together with the relative difference between two gauges
of A values, dT, provided by the present MCDHF/RCI calculations are shown in the table. Wavelength and wavenumber values are
from the NIST data base (Kramida et al. 2019) when available. Only the first 10 rows are shown; the full table is available online.

Upper Lower �E (cm−1) λ (Å) S (au of a2
0e2) gf A (s−1) dT

2s2p3p 2D3/2 2s22p 2Po
1/2 188581 530.275 8.159E-02 4.673E−02 2.771E + 08 0.015

2s2p3p 2D5/2 2s22p 2Po
3/2 188551 530.359 1.515E-01 8.678E−02 3.430E + 08 0.015

2s2p3p 2D3/2 2s22p 2Po
3/2 188517 530.454 1.661E-02 9.511E−03 5.636E + 07 0.015

2s27d 2D3/2 2s22p 2Po
1/2 187353 533.752 1.094E-01 6.223E−02 3.637E + 08 0.007

2s27d 2D5/2 2s22p 2Po
3/2 187289 533.933 1.943E-01 1.104E−01 4.300E + 08 0.007

2s27d 2D3/2 2s22p 2Po
3/2 187289 533.933 2.205E-02 1.254E−02 7.321E + 07 0.007

2s2p3p 4P3/2 2s22p 2Po
1/2 186443 536.355 1.779E-07 1.007E−07 5.830E + 02 0.017

2s2p3p 4P1/2 2s22p 2Po
1/2 186427 536.402 6.007E-07 3.400E−07 3.936E + 03 0.039

2s2p3p 4P5/2 2s22p 2Po
3/2 186402 536.473 1.227E-05 6.942E−06 2.678E + 04 0.020

2s2p3p 4P3/2 2s22p 2Po
3/2 186380 536.537 1.327E-06 7.506E−07 4.343E + 03 0.027

– – – – – – – –

Table A4. Electric dipole transition data for C III from present calculations. Upper and lower states, wavenumber, �E, wavelength,
λ, line strength, S, weighted oscillator strength, gf, transition probability, A, together with the relative difference between two
gauges of A values, dT, provided by the present MCDHF/RCI calculations are shown in the table. Wavelength and wavenumber
values are from the NIST data base (Kramida et al. 2019) when available. Wavelengths and wavenumbers marked with ∗ are from
the present calculations. Only the first 10 rows are shown; the full table is available online.

Upper Lower �E (cm−1) λ (Å) S (au of a2
0e2) gf A (s−1) dT

2s7p 3Po
1 2s2 1S0 365034∗ 273.947∗ 7.670E-07 8.505E−07 2.520E + 04 0.005

2s7p 1Po
1 2s2 1S0 364896 274.051 1.043E-02 1.156E−02 3.423E + 08 0.010

2s6p 1Po
1 2s2 1S0 357109 280.026 1.593E-02 1.728E−02 4.901E + 08 0.001

2s6p 3Po
1 2s2 1S0 357050 280.073 5.265E-06 5.711E−06 1.619E + 05 0.004

2p3d 1Po
1 2s2 1S0 346712 288.423 9.317E-04 9.818E−04 2.627E + 07 0.003

2s5p 3Po
1 2s2 1S0 344236 290.498 3.900E-07 4.079E−07 1.075E + 04 0.018

2s5p 1Po
1 2s2 1S0 343258 291.326 4.551E-02 4.747E−02 1.244E + 09 0.000

2p3d 3Po
1 2s2 1S0 340127 294.007 7.645E-07 7.903E−07 2.035E + 04 0.005

2p3d 3Do
1 2s2 1S0 337655 296.159 7.267E-07 7.458E−07 1.893E + 04 0.005

2s4p 1Po
1 2s2 1S0 322404 310.170 3.480E-02 3.409E−02 7.884E + 08 0.000

– – – – – – – –

Table A5. Electric dipole transition data for C IV from present calculations. Upper and lower states, wavenumber, �E, wavelength,
λ, line strength, S, weighted oscillator strength, gf, transition probability, A, together with the relative difference between two
gauges of A values, dT, provided by the present MCDHF/RCI calculations are shown in the table. Wavelength and wavenumber
values are from the NIST data base (Kramida et al. 2019). Only the first 10 rows are shown; the full table is available online.

Upper Lower �E (cm−1) λ (Å) S (au of a2
0e2) gf A (s−1) dT

8p 2Po
3/2 2s 2S1/2 492479 203.054 5.029E-03 7.523E−03 3.043E + 08 0.004

8p 2Po
1/2 2s 2S1/2 492477 203.055 2.517E-03 3.766E−03 3.046E + 08 0.004

7p 2Po
3/2 2s 2S1/2 483950 206.633 7.885E-03 1.159E−02 4.527E + 08 0.001

7p 2Po
1/2 2s 2S1/2 483948 206.634 3.946E-03 5.801E−03 4.532E + 08 0.001

6p 2Po
3/2 2s 2S1/2 470778 212.414 1.349E-02 1.930E−02 7.132E + 08 0.000

6p 2Po
1/2 2s 2S1/2 470775 212.416 6.753E-03 9.657E−03 7.139E + 08 0.000

5p 2Po
3/2 2s 2S1/2 448862 222.785 2.644E-02 3.604E−02 1.211E + 09 0.000

5p 2Po
1/2 2s 2S1/2 448855 222.789 1.323E-02 1.804E−02 1.212E + 09 0.000

8d 2D3/2 2p 2Po
1/2 428244 233.511 1.264E-02 1.644E−02 5.027E + 08 0.002

8d 2D5/2 2p 2Po
3/2 428136 233.570 2.275E-02 2.958E−02 6.028E + 08 0.002

– – – – – – – –
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Table A6. Comparison of relative line strengths (S), weighted oscillator strengths (gf), and lifetimes (τ ), or transition probabilities (A), with other theoretical
work and experimental results for C I–IV. The present values from the MCDHF/RCI calculations are given in the Babushkin(length) gauge. The values in the
parentheses are the relative differences between the length and velocity gauges. The references for the experiments are shown in the last column. Note that the
sums of the line strengths S have been normalized to 100 for each multiplet in C I.

C I

Transition array Mult. Ju − Jl S (au of a2
0e2)

MCDHF/RCI CIV3(a) Expt. Expt.

2s22p3p − 2s22p3s 3D − 3Po 3 − 2 46.67(1.3 per cent) 46.72 46.3 ± 1.8 (b)

2 − 1 25.29(1.2 per cent) 25.43 25.5 ± 1.2 (b)

1 − 0 11.25(1.2 per cent) 11.29 11.8 ± 0.5 (b)

2 − 2 8.047(1.3 per cent) 7.898 7.67 ± 0.38 (b)

1 − 1 8.213(1.3 per cent) 8.153 8.42 ± 0.46 (b)

2s22p3p − 2s22p3s 3P − 3Po 2 − 2 42.15(0.2 per cent) 41.92 40.6 ± 0.9 (b) 41.3(d)

1 − 1 7.812(0.3 per cent) 7.873 7.98 ± 0.23 (b) 8.1 (d)

1 − 2 15.07(0.2 per cent) 14.79 15.1 ± 0.4 (b) 15.1(d)

0 − 1 11.11(0.2 per cent) 11.11 11.3 ± 0.3 (b) 11.6(d)

2 − 1 13.41(0.2 per cent) 13.67 14.0 ± 0.35 (b) 13.0(d)

1 − 0 10.44(0.2 per cent) 10.64 10.9 ± 0.3 (b) 10.9(d)

2s22p3p − 2s22p3s 3S − 3Po 1 − 2 51.96(0.3 per cent) 51.43 52.4 ± 1.1 (b)

1 − 1 35.49(0.2 per cent) 35.80 34.8 ± 0.9 (b)

1 − 0 12.54(0.2 per cent) 12.77 12.8 ± 0.38 (b)

2s22p3d − 2s22p3p 3Po − 3S 2 − 1 57.27(3.0 per cent) 56.85 59.0 ± 3.2 (c)

1 − 1 32.30(2.9 per cent) 32.56 32.1 ± 4.1 (c)

0 − 1 10.43(2.9 per cent) 10.59 8.9 ± 2.1 (c)

2s22p3d − 2s22p3p 3Po − 3P 2 − 2 42.67(3.3 per cent) 42.63 43.5 ± 0.4 (c)

1 − 1 9.465(3.2 per cent) 9.669 10.2 ± 0.6 (c)

1 − 2 13.91(3.3 per cent) 13.84 14.9 ± 0.8 (c)

0 − 1 11.57(3.3 per cent) 11.69 11.2 ± 0.5 (c)

2 − 1 11.72(3.4 per cent) 11.47 10.2 ± 0.5 (c)

1 − 0 10.66(3.3 per cent) 10.70 10.0 ± 0.4 (c)

2s22p4s − 2s22p3p 3Po − 3P 2 − 2 62.05(5.7 per cent) 50.76 51.2 ± 5.0 (c)

1 − 1 9.312(7.1 per cent) 8.778 8.4 ± 1.6 (c)

1 − 2 13.79(7.0 per cent) 14.08 14.3 ± 2.0 (c)

0 − 1 7.335(8.7 per cent) 9.670 10.2 ± 1.5 (c)

2 − 1 3.113(11.9 per cent) 8.440 10.1 ± 2.0 (c)

1 − 0 4.397(10.3 per cent) 8.271 5.8 ± 1.0 (c)

2s22p3d − 2s22p3p 3Do − 3P 3 − 2 47.89(1.2 per cent) 46.50 45.5 ± 2.0 (c) 45.1(d)

2 − 1 26.70(1.2 per cent) 26.59 27.5 ± 1.2 (c) 24.2(d)

1 − 0 9.708(1.2 per cent) 11.11 11.0 ± 0.6 (c) 13.6(d)

2 − 2 8.170(0.9 per cent) 7.559 7.5 ± 0.4 (c) 8.0 (d)

1 − 1 7.100(1.1 per cent) 7.792 8.1 ± 0.5 (c) 9.1 (d)

2s22p4s − 2s22p3p 3Po − 3D 2 − 3 44.42(3.2 per cent) 44.77 44.5 ± 2.0 (c)

1 − 2 23.65(3.1 per cent) 24.14 24.8 ± 1.2 (c)

0 − 1 11.10(3.0 per cent) 11.24 11.5 ± 0.6 (c)

2 − 2 9.145(2.6 per cent) 9.424 8.4 ± 0.6 (c)

1 − 1 9.301(2.7 per cent) 9.071 9.5 ± 0.5 (c)

2 − 1 2.373(1.4 per cent) 1.356 1.3 ± 0.2 (c)

2s22p3d − 2s22p3p 3Do − 3D 3 − 3 50.31(1.5 per cent) 49.19 50.0 ± 5.0 (c)

2 − 2 25.28(1.6 per cent) 25.72 25.4 ± 2.2 (c)

1 − 1 11.50(1.7 per cent) 12.68 12.3 ± 0.7 (c)

2 − 3 8.250(0.9 per cent) 7.291 6.6 ± 0.6 (c)

1 − 2 4.043(1.8 per cent) 4.621 4.7 ± 0.5 (c)

2s22p3d − 2s22p3p 3Fo − 3D 4 − 3 43.41(0.4 per cent) 43.53 44.9 ± 2.0 (c)

3 − 2 30.86(0.4 per cent) 30.92 30.0 ± 1.5 (c)

2 − 1 20.77(0.3 per cent) 21.09 20.4 ± 1.0 (c)

3 − 3 1.961(1.2 per cent) 1.743 1.9 ± 0.2 (c)

2 − 2 2.999(0.9 per cent) 2.722 2.7 ± 0.2 (c)

C II

Configuration Term J τ (ns) Ref.

MCDHF/RCI MCHF-BP(e) Expt.

2s2p2 2S 1/2 0.4497 (0.7 per cent) 0.4523 0.44 ± 0.02 (f)
2s23s 2S 1/2 2.292 (0.6 per cent) 2.266 2.4 ± 0.3 (f)
2s24s 2S 1/2 2.017 (0.1 per cent) 1.9 ± 0.1 (f)
2s25s 2S 1/2 3.774 (0.1 per cent) 3.7 ± 0.2 (f)
2s2p2 2Po 1/2 0.2446(0.3 per cent) 0.2445 0.25 ± 0.01 (f)

3/2 0.2445(0.3 per cent) 0.2449 0.25 ± 0.01 (f)
2s23p 2Po 1/2 9.265(0.7 per cent) 8.973 8.9 ± 0.4 (f)

3/2 9.255(0.7 per cent) 8.963 8.9 ± 0.4 (f)
2s24p 2Po 1/2 3.838(1.3 per cent) 3.8 ± 0.2 (f)

3/2 3.854(1.3 per cent) 3.8 ± 0.2 (f)
2p3 2Po 1/2 0.4998(0.8 per cent) 0.4966 0.48 ± 0.02 (f)
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Table A6 – continued

C I

Transition array Mult. Ju − Jl S (au of a2
0e2)

MCDHF/RCI CIV3(a) Expt. Expt.

3/2 0.4981(0.8 per cent) 0.4944 0.48 ± 0.02 (f)
2s25p 2Po 1/2 5.044(0.2 per cent) 5.2 ± 0.3 (f)

3/2 5.099(0.2 per cent) 5.2 ± 0.3 (f)
2s23d 2D 3/2 0.3490(0.2 per cent) 0.3493 0.34 ± 0.01 (f)

5/2 0.3491(0.2 per cent) 0.3494 0.34 ± 0.01 (f)
2s24d 2D 3/2 0.7299(0.2 per cent) 0.75 ± 0.03 (f)

5/2 0.7304(0.2 per cent) 0.75 ± 0.03 (f)

Configuration Term J τ (ms) Ref.

MCDHF/RCI MCHF-BP(e) Expt.

2s2p2 4P 1/2 8.151 (47.6 per cent) 7.654 7.95 ± 0.07 (g)
3/2 106.1 (68.5 per cent) 96.93 104.1 ± 0.5 (g)
5/2 22.66 (48.0 per cent) 22.34 22.05 ± 0.07 (g)

C III

Transition array Mult. Ju − Jl gf Ref.

MCDHF/RCI MCHF-BP(h) Expt.

2s2p - 2s2 1Po − 1S 1−0 0.7592(0.1 per cent) 0.7583 0.75 ± 0.03 (f)
2p2 - 2s2p 1S − 1Po 0−1 0.1623(<0.05 per cent) 0.1622 0.152 ± 0.009 (f)
2p2 - 2s2p 1D − 1Po 2−1 0.1815(0.5 per cent) 0.1819 0.183 ± 0.005 (f)

Configuration Term J τ (ns) Ref.

MCDHF/RCI MCHF-BP(h) Expt.

2s2p 1Po 1 0.5638(0.1 per cent) ns 0.5651 0.57 ± 0.02 (f)
2p2 1S 0 0.4766(<0.05 per cent) ns 0.4764 0.51 ± 0.01 (f)
2p2 1D 2 7.240(0.5 per cent) ns 7.191 7.2 ± 0.2 (f)
2s3s 1S 0 1.164(<0.05 per cent) ns 1.171 1.17 ± 0.05 (f)

C IV

Transition array Mult. Ju − Jl A(108s−1) Ref.

MCDHF/RCI MCHF-BP(j) NIST Expt.

2p-2s 2Po − 2S 1/2 − 1/2 2.632(<0.05 per cent) 2.6320 2.65 2.72 ± 0.07 (k)
2p-2s 2Po − 2S 3/2 − 1/2 2.646(<0.05 per cent) 2.6459 2.64 2.71 ± 0.07 (k)

Configuration Term J τ (ns) Ref.

MCDHF/RCI MCHF-BP(j) Model Potential(o) Expt.

3s 2S 1/2 0.2350(<0.05 per cent) 0.2350 0.236 0.25 ± 0.1 (l)
4s 2S 1/2 0.3755(<0.05 per cent) 0.3747 0.377 0.34 ± 0.035 (m)
2p 2Po 1/2 3.799 (<0.05 per cent) 3.799 3.79 3.7 ± 0.1 (k)

3/2 3.779 (<0.05 per cent) 3.779 3.79
3p 2Po 1/2 0.2146(<0.05 per cent) 0.2142 0.216 0.226 ± 0.03 (n)

3/2 0.2149(<0.05 per cent) 0.2145 0.216
4p 2Po 1/2 0.3435(<0.05 per cent) 0.344 0.32 ± 0.03 (m)

3/2 0.3440(<0.05 per cent) 0.344
3d 2D 3/2 0.05717(<0.05 per cent) 0.05716 0.0572 0.0575 ± 0.006 (n)

5/2 0.05719(<0.05 per cent) 0.05719 0.0572
4d 2D 3/2 0.1312 (<0.05 per cent) 0.130 0.14 ± 0.015 (m)

5/2 0.1313 (<0.05 per cent) 0.130
5d 2D 3/2 0.2511 (<0.05 per cent) 0.251 0.23 ± 0.023 (m)

5/2 0.2512 (<0.05 per cent) 0.251

Notes: (a) Hibbert et al. (1993); (b)Musielok et al. (1997); (c)Bacawski et al. (2001); (d)Golly et al. (2003); (e)Tachiev & Fischer (2000); (f)Reistad et al. (1986); (g)Träbert et al. (1999);
(h)Tachiev & Fischer (1999); (j)Fischer et al. (1998); (k)Knystautas et al. (1971); (l)Donnelly et al. (1978); (m)Buchet-Poulizac & Buchet (1973); (n)Jacques et al. (1980); and (o)Peach
et al. (1988).
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Theoretical transition data in C I–IV 3795

Table A7. Comparison of line strengths (S) and transition rates (A) with other theoretical results for C I. The present values from the MCDHF/RCI calculations
are given in the Babushkin(length) gauge. The wavenumber �E and wavelength λ values are taken from the NIST data base. The estimated uncertainties dT of
the transition rates are given as percentages in parentheses.

Transition array Mult. Ju − Jl �E λ MCDHF/RCI Spline FCS(a) MCHF-BP(b)

(cm−1) (Å) S (au of a2
0e2) A (s−1) S (au of a2

0e2) A (s−1) S (au of a2
0e2) A (s−1)

2s22p3d − 2s22p2 3Fo − 3P 3 − 2 78172 1279.228 5.79E−02 7.92E + 06(0.1 per cent) 4.52E−02 6.24E + 06 8.20E−02 1.14E + 07
2 − 2 78155 1279.498 1.27E−02 2.43E + 06(0.3 per cent) 9.62E−03 1.86E + 06 1.16E−02 2.25E + 06
2 − 1 78182 1279.056 1.08E−02 2.07E + 06(0.1 per cent) 8.95E−03 1.73E + 06 2.08E−02 4.04E + 06

2s22p4d − 2s22p2 3Fo − 3P 3 - 2 83717 1194.488 4.48E−02 7.52E + 06(0.1 per cent) 3.99E−02 6.77E + 06
2 − 2 83709 1194.614 1.59E−03 3.74E + 05(0.5 per cent) 1.44E−03 3.42E + 05
2 − 1 83736 1194.229 1.97E−02 4.64E + 06(0.2 per cent) 1.73E−02 4.10E + 06

2s22p5d − 2s22p2 3Fo − 3P 3 − 2 86283 1158.966 4.17E−02 7.67E + 06(0.3 per cent) 3.88E−02 7.21E + 06
2 − 2 86274 1159.094 1.38E−03 3.55E + 05(0.3 per cent) 1.36E−03 3.54E + 05
2 − 1 86301 1158.731 2.20E−02 5.66E + 06(0.3 per cent) 1.96E−02 5.11E + 06

2s22p3s − 2s22p2 3Po − 3P 2 − 2 60349 1657.008 2.84E + 00 2.50E + 08(1.2 per cent) 2.69E + 00 2.41E + 08 2.93E + 00 2.61E + 08
1 − 2 60309 1658.121 9.46E−01 1.39E + 08(1.2 per cent) 8.95E−01 1.33E + 08 9.75E−01 1.45E + 08
2 − 1 60376 1656.267 9.47E−01 8.35E + 07(1.2 per cent) 8.97E−01 8.05E + 07 9.78E−01 8.73E + 07
1 − 1 60336 1657.379 5.67E−01 8.32E + 07(1.2 per cent) 5.37E−01 8.01E + 07 5.84E−01 8.67E + 07
0 − 1 60317 1657.907 7.57E−01 3.33E + 08(1.2 per cent) 7.17E−01 3.20E + 08 7.80E−01 3.47E + 08
1 − 0 60352 1656.928 7.57E−01 1.11E + 08(1.2 per cent) 7.17E−01 1.07E + 08 7.81E−01 1.16E + 08

2s22p3s − 2s22p2 1Po − 3P 1 − 2 61938 1614.507 1.80E−04 2.86E + 04(1.6 per cent) 2.72E−04 4.40E + 04 1.85E−04 2.97E + 04
1 − 1 61965 1613.803 1.65E−04 2.61E + 04(1.0 per cent) 1.62E−04 2.62E + 04 1.74E−04 2.81E + 04
1 − 0 61981 1613.376 2.21E−04 3.51E + 04(1.1 per cent) 2.34E−04 3.79E + 04 2.26E−04 3.65E + 04

2s2p3 − 2s22p2 3Do − 3P 3 − 2 64043 1561.437 1.53E + 00 1.22E + 08(2.3 per cent) 1.42E + 00 1.14E + 08 1.54E + 00 1.19E + 08
2 − 2 64046 1561.366 2.72E−01 3.03E + 07(2.1 per cent) 2.52E−01 2.84E + 07 2.75E−01 2.96E + 07
1 − 2 64047 1561.339 1.81E−02 3.35E + 06(2.0 per cent) 1.67E−02 3.14E + 06 1.83E−02 3.28E + 06
2 − 1 64073 1560.708 8.22E−01 9.14E + 07(2.2 per cent) 7.60E−01 8.59E + 07 8.28E−01 8.91E + 07
1 − 1 64074 1560.681 2.73E−01 5.06E + 07(2.1 per cent) 2.53E−01 4.76E + 07 2.76E−01 4.94E + 07
1 − 0 64090 1560.282 3.65E−01 6.78E + 07(2.1 per cent) 3.38E−01 6.37E + 07 3.68E−01 6.61E + 07

2s2p3 − 2s22p2 3Po − 3P 2 − 2 75212 1329.562 7.98E−01 1.42E + 08(3.1 per cent) 7.44E−01 1.35E + 08 9.54E−01 1.66E + 08
1 − 2 75210 1329.600 2.69E−01 7.95E + 07(3.1 per cent) 2.51E−01 7.57E + 07 3.20E−01 9.28E + 07
2 − 1 75239 1329.085 2.58E−01 4.58E + 07(3.1 per cent) 2.40E−01 4.34E + 07 3.12E−01 5.44E + 07
1 − 1 75237 1329.123 1.64E−01 4.85E + 07(3.1 per cent) 1.53E−01 4.63E + 07 1.93E−01 5.60E + 07
0 − 1 75238 1329.100 2.17E−01 1.93E + 08(3.1 per cent) 2.04E−01 1.85E + 08 2.57E−01 2.24E + 08
1 − 0 75254 1328.833 2.13E−01 6.30E + 07(3.1 per cent) 1.99E−01 6.00E + 07 2.54E−01 7.37E + 07

2s22p3d − 2s22p2 1Do − 3P 2 − 2 77636 1288.055 4.63E−04 8.69E + 04(1.4 per cent) 4.27E−04 8.10E + 04 3.51E−04 6.68E + 04
2 − 1 77663 1287.608 8.40E−04 1.58E + 05(1.2 per cent) 7.68E−04 1.46E + 05 7.84E−04 1.49E + 05

2s22p4s − 2s22p2 3Po − 3P 2 − 2 78104 1280.333 3.23E−01 6.17E + 07(0.7 per cent) 3.21E−01 6.21E + 07 3.30E−01 6.40E + 07
1 − 2 78073 1280.847 1.13E−01 3.59E + 07(0.5 per cent) 1.10E−01 3.55E + 07 1.13E−01 3.63E + 07
2 − 1 78131 1279.890 1.96E−01 3.76E + 07(0.5 per cent) 1.81E−01 3.50E + 07 1.77E−01 3.44E + 07
1 − 1 78100 1280.404 5.55E−02 1.77E + 07(0.6 per cent) 5.57E−02 1.79E + 07 5.83E−02 1.88E + 07
0 − 1 78088 1280.597 9.23E−02 8.82E + 07(0.5 per cent) 8.91E−02 8.61E + 07 9.14E−02 8.84E + 07
1 − 0 78116 1280.135 1.16E−01 3.71E + 07(0.5 per cent) 1.11E−01 3.57E + 07 1.10E−01 3.56E + 07

2s22p3d − 2s22p2 3Do − 3P 3 − 2 78274 1277.550 1.68E + 00 2.31E + 08(0.2 per cent) 1.61E + 00 2.23E + 08 1.64E + 00 2.28E + 08
2 − 2 78264 1277.723 3.44E−01 6.61E + 07(0.1 per cent) 3.22E−01 6.26E + 07 3.24E−01 6.32E + 07
1 − 2 78250 1277.954 1.47E−02 4.70E + 06(<0.05 per cent) 1.72E−02 5.58E + 06 1.84E−02 5.95E + 06
2 − 1 78291 1277.282 8.75E−01 1.68E + 08(0.2 per cent) 8.42E−01 1.64E + 08 8.73E−01 1.70E + 08
1 − 1 78277 1277.513 2.43E−01 7.80E + 07(0.1 per cent) 2.66E−01 8.61E + 07 2.85E−01 9.26E + 07
1 − 0 78293 1277.245 3.42E−01 1.10E + 08(0.2 per cent) 3.59E−01 1.17E + 08 3.88E−01 1.26E + 08

2s22p4s − 2s22p2 1Po − 3P 1 − 2 78296 1277.190 1.14E−02 3.64E + 06(0.4 per cent) 6.78E−03 2.20E + 06 5.59E−03 1.82E + 06
1 − 1 78323 1276.750 7.84E−02 2.52E + 07(0.2 per cent) 3.90E−02 1.27E + 07 2.89E−02 9.41E + 06
1 − 0 78340 1276.482 5.97E−02 1.92E + 07(0.1 per cent) 2.48E−02 8.05E + 06 1.55E−02 5.05E + 06

2s22p3d − 2s22p2 1Fo − 3P 3 − 2 78486 1274.109 1.00E−02 1.39E + 06(0.1 per cent) 1.18E−02 1.65E + 06 8.60E−03 1.21E + 06
2s22p3d − 2s22p2 1Po − 3P 1 − 2 78687 1270.844 1.77E−06 5.75E + 02(0.4 per cent) 3.03E−07 9.97E + 01 1.28E−05 4.23E + 03

1 − 1 78714 1270.408 6.02E−04 1.96E + 05(0.3 per cent) 5.66E−04 1.87E + 05 6.50E−04 2.15E + 05
1 − 0 78731 1270.143 1.65E−03 5.39E + 05(0.1 per cent) 1.61E−03 5.32E + 05 1.38E−03 4.55E + 05

2s22p3d − 2s22p2 3Po − 3P 2 − 2 79267 1261.552 8.17E−01 1.66E + 08(2.1 per cent) 8.13E−01 1.67E + 08 6.65E−01 1.35E + 08
1 − 2 79275 1261.425 2.74E−01 9.26E + 07(2.1 per cent) 2.72E−01 9.31E + 07 2.23E−01 7.55E + 07
2 − 1 79294 1261.122 2.54E−01 5.15E + 07(2.1 per cent) 2.52E−01 5.19E + 07 1.98E−01 4.02E + 07
1 − 1 79302 1260.996 1.69E−01 5.72E + 07(2.1 per cent) 1.68E−01 5.75E + 07 1.39E−01 4.70E + 07
0 − 1 79306 1260.926 2.20E−01 2.24E + 08(2.1 per cent) 2.18E−01 2.24E + 08 1.79E−01 1.82E + 08
1 − 0 79318 1260.735 2.12E−01 7.19E + 07(2.1 per cent) 2.11E−01 7.23E + 07 1.69E−01 5.73E + 07

2s22p3d − 2s22p2 3Fo − 1D 2 − 2 68006 1470.449 4.71E−04 5.91E + 04(1.4 per cent) 4.22E−04 5.36E + 04
3 − 2 68022 1470.094 1.52E−02 1.36E + 06(0.2 per cent) 1.55E−02 1.41E + 06

2s22p3s − 2s22p2 3Po − 1D 1 − 2 50160 1993.620 1.04E−03 8.67E + 04(1.4 per cent) 9.65E−04 8.18E + 04
2 − 2 50200 1992.012 1.97E−05 9.90E + 02(3.2 per cent) 1.50E−05 7.66E + 02

2s22p3s − 2s22p2 1Po − 1D 1 − 2 51789 1930.905 3.59E + 00 3.30E + 08(1.5 per cent) 3.62E + 00 3.37E + 08
2s2p3 − 2s22p2 3Do − 1D 3 − 2 53894 1855.483 9.91E−06 4.71E + 02(24.2 per cent) 6.60E−06 3.01E + 02
2s2p3 − 2s22p2 3Po − 1D 1 − 2 65061 1537.011 8.58E−06 1.65E + 03(1.7 per cent) 8.59E−08 1.60E + 01

2 − 2 65063 1536.960 2.51E−05 2.89E + 03(6.9 per cent) 7.15E−06 8.02E + 02
2s22p3d − 2s22p2 1Do − 1D 2 − 2 67487 1481.763 3.03E−01 3.72E + 07(1.2 per cent) 2.77E−01 3.45E + 07
2s22p4s − 2s22p2 3Po − 1D 1 − 2 67924 1472.231 4.55E−03 9.48E + 05(1.6 per cent) 3.68E−03 7.77E + 05

2 − 2 67955 1471.552 2.02E−04 2.53E + 04(1.0 per cent) 1.77E−04 2.25E + 04
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Table A7 – continued

Transition array Mult. Ju − Jl �E λ MCDHF/RCI Spline FCS(a) MCHF-BP(b)

(cm−1) (Å) S (au of a2
0e2) A (s−1) S (au of a2

0e2) A (s−1) S (au of a2
0e2) A (s−1)

2s22p3d − 2s22p2 3Do − 1D 3 − 2 68125 1467.877 7.46E−03 6.72E + 05(0.2 per cent) 5.35E−03 4.88E + 05
2 − 2 68114 1468.106 5.36E−05 6.76E + 03(2.9 per cent) 7.36E−05 9.40E + 03
1 − 2 68100 1468.410 4.59E−02 9.64E + 06(2.2 per cent) 1.13E−02 2.40E + 06

2s22p4s − 2s22p2 1Po − 1D 1 − 2 68147 1467.402 2.36E−01 4.97E + 07(2.0 per cent) 2.57E−01 5.48E + 07
2s22p3d − 2s22p2 1Fo − 1D 3 − 2 68336 1463.336 1.99E + 00 1.81E + 08(0.3 per cent) 1.94E + 00 1.78E + 08
2s22p3d − 2s22p2 1Po − 1D 1 − 2 68538 1459.031 2.18E−01 4.66E + 07(0.1 per cent) 2.51E−01 5.44E + 07
2s22p3d − 2s22p2 3Po − 1D 2 − 2 69118 1446.797 1.83E−05 2.46E + 03(5.2 per cent) 3.09E−05 4.13E + 03

1 − 2 69126 1446.630 4.50E−06 1.01E + 03(5.4 per cent) 2.65E−06 5.92E + 02
2s22p3s − 2s22p2 3Po − 1S 1 − 0 38704 2583.670 1.61E−04 6.13E + 03(5.2 per cent) 1.48E−04 5.72E + 03
2s22p3s − 2s22p2 1Po − 1S 1 − 0 40333 2479.310 6.69E−01 2.89E + 07(3.7 per cent) 6.31E−01 2.76E + 07
2s2p3 − 2s22p2 3Po − 1S 1 − 0 53605 1865.464 6.83E−06 7.36E + 02(23.2 per cent) 2.71E−06 2.83E + 02
2s22p4s − 2s22p2 3Po − 1S 1 − 0 56468 1770.891 9.52E−05 1.13E + 04(6.6 per cent) 8.80E−05 1.06E + 04
2s22p3d − 2s22p2 3Do − 1S 1 − 0 56645 1765.366 1.32E−02 1.59E + 06(2.9 per cent) 6.33E−03 7.72E + 05
2s22p4s − 2s22p2 1Po − 1S 1 − 0 56692 1763.909 1.72E−02 2.07E + 06(5.0 per cent) 1.99E−02 2.43E + 06
2s22p3d − 2s22p2 1Po − 1S 1 − 0 57083 1751.827 7.32E−01 9.00E + 07(<0.05 per cent) 6.67E−01 8.33E + 07
2s22p3d − 2s22p2 3Po − 1S 1 − 0 57670 1733.980 4.99E−05 6.48E + 03(8.1 per cent) 1.18E−04 1.53E + 04
2s22p4d − 2s22p2 1Do − 3P 2 − 2 83454 1198.262 3.73E−04 8.70E + 04(0.8 per cent) 2.87E−04 6.75E + 04

2 − 1 83481 1197.875 1.03E−03 2.39E + 05(0.8 per cent) 8.64E−04 2.04E + 05
2s22p5s − 2s22p2 3Po − 3P 2 − 2 83747 1194.063 1.18E−01 2.78E + 07(0.9 per cent) 1.25E−01 2.98E + 07

1 − 2 83704 1194.686 4.34E−02 1.70E + 07(0.8 per cent) 4.47E−02 1.77E + 07
2 − 1 83774 1193.678 1.17E−01 2.75E + 07(0.6 per cent) 1.07E−01 2.54E + 07
1 − 1 83731 1194.301 1.95E−02 7.67E + 06(0.9 per cent) 2.10E−02 8.34E + 06
0 − 1 83723 1194.405 3.64E−02 4.29E + 07(0.7 per cent) 3.70E−02 4.40E + 07
1 − 0 83747 1194.066 4.98E−02 1.95E + 07(0.7 per cent) 4.90E−02 1.94E + 07

2s22p4d − 2s22p2 3Do − 3P 3 − 2 83805 1193.240 6.80E−01 1.15E + 08(0.1 per cent) 6.52E−01 1.11E + 08
2 − 2 83794 1193.393 1.57E−01 3.70E + 07(0.1 per cent) 1.45E−01 3.46E + 07
1 − 2 83776 1193.649 5.60E−03 2.20E + 06(0.1 per cent) 5.67E−03 2.25E + 06
2 − 1 83821 1193.009 3.37E−01 7.95E + 07(<0.05 per cent) 3.31E−01 7.90E + 07
1 − 1 83803 1193.264 1.10E−01 4.31E + 07(<0.05 per cent) 1.08E−01 4.29E + 07
1 − 0 83820 1193.030 1.65E−01 6.50E + 07(0.1 per cent) 1.61E−01 6.39E + 07

2s22p5s − 2s22p2 1Po − 3P 1 − 2 83833 1192.835 6.48E−03 2.55E + 06(0.5 per cent) 5.50E−03 2.19E + 06
1 − 1 83860 1192.451 2.38E−02 9.38E + 06(0.3 per cent) 1.91E−02 7.61E + 06
1 − 0 83877 1192.218 7.36E−03 2.90E + 06(0.3 per cent) 5.39E−03 2.15E + 06

2s22p4d − 2s22p2 1Fo − 3P 3 − 2 83903 1191.841 1.54E−02 2.61E + 06(0.1 per cent) 1.70E−02 2.90E + 06
2s22p4d − 2s22p2 1Po − 3P 1 − 2 83988 1190.636 3.47E−05 1.37E + 04(0.3 per cent) 3.15E−05 1.26E + 04

1 − 1 84015 1190.253 1.25E−03 4.93E + 05(0.1 per cent) 1.20E−03 4.79E + 05
1 − 0 84032 1190.021 2.39E−03 9.48E + 05(<0.05 per cent) 2.26E−03 9.05E + 05

2s22p4d − 2s22p2 3Po − 3P 2 − 2 84059 1189.631 2.38E−01 5.68E + 07(1.0 per cent) 2.19E−01 5.28E + 07
1 − 2 84072 1189.447 8.04E−02 3.20E + 07(1.0 per cent) 7.37E−02 2.96E + 07
2 − 1 84086 1189.249 5.07E−02 1.21E + 07(1.1 per cent) 4.53E−02 1.09E + 07
1 − 1 84099 1189.065 5.43E−02 2.16E + 07(1.0 per cent) 5.01E−02 2.02E + 07
0 − 1 84104 1188.993 6.52E−02 7.79E + 07(1.0 per cent) 5.96E−02 7.19E + 07
1 − 0 84116 1188.833 5.35E−02 2.13E + 07(1.1 per cent) 4.86E−02 1.96E + 07

2s22p5d − 2s22p2 1Do − 3P 2 − 2 86141 1160.876 6.52E−04 1.67E + 05(<0.05 per cent) 4.58E−04 1.19E + 05
2 − 1 86168 1160.513 1.50E−03 3.86E + 05(0.8 per cent) 1.26E−03 3.27E + 05

2s22p6s − 2s22p2 3Po − 3P 2 − 2 86325 1158.400 2.62E−02 6.76E + 06(0.1 per cent) 3.15E−02 8.19E + 06
1 − 2 86288 1158.907 1.78E−02 7.62E + 06(0.2 per cent) 1.93E−02 8.36E + 06
2 − 1 86352 1158.038 1.27E−01 3.29E + 07(0.2 per cent) 1.19E−01 3.10E + 07
1 − 1 86315 1158.544 6.63E−03 2.85E + 06(0.4 per cent) 7.73E−03 3.36E + 06
0 − 1 86305 1158.674 1.57E−02 2.02E + 07(0.3 per cent) 1.68E−02 2.19E + 07
1 − 0 86331 1158.324 2.44E−02 1.05E + 07(0.1 per cent) 2.50E−02 1.09E + 07

2s22p5d − 2s22p2 3Do − 3P 3 − 2 86354 1158.018 3.20E−01 5.90E + 07(0.3 per cent) 2.99E−01 5.56E + 07
2 − 2 86346 1158.131 1.05E−01 2.71E + 07(<0.05 per cent) 9.90E−02 2.58E + 07
1 − 2 86319 1158.492 1.37E−03 5.88E + 05(0.2 per cent) 1.45E−03 6.29E + 05
2 − 1 86373 1157.769 1.03E−01 2.65E + 07(0.4 per cent) 1.00E−01 2.62E + 07
1 − 1 86346 1158.130 4.69E−02 2.02E + 07(0.2 per cent) 4.55E−02 1.98E + 07
1 − 0 86362 1157.909 8.57E−02 3.69E + 07(0.3 per cent) 8.08E−02 3.51E + 07

Notes: (a) Zatsarinny & Fischer (2002); and (b)Fischer (2006).
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Table A8. Comparison of line strengths (S) and transition rates (A) with other theoretical results for C II. The present values from the MCDHF/RCI calculations
are given in the Babushkin(length) gauge. The wavenumber �E and wavelength λ values are taken from the NIST data base. The estimated uncertainties dT of
the transition rates are given as percentages in parentheses.

Transition array Mult. Ju − Jl �E λ MCDHF/RCI MCHF-BP(a) CIV3(b)

(cm−1) (Å) S (au of a2
0e2) A (s−1) S (au of a2

0e2) A (s−1) A (s−1)

2s2p2 − 2s22p 2D − 2Po 5/2 − 3/2 74866 1335.708 2.03E + 00 2.89E + 08(0.2 per cent) 2.03E + 00 2.90E + 08 2.89E + 08
3/2 − 3/2 74869 1335.663 2.24E−01 4.79E + 07(<0.05 per cent) 2.24E−01 4.80E + 07 4.79E + 07
3/2 − 1/2 74932 1334.532 1.13E + 00 2.42E + 08(0.1 per cent) 1.13E + 00 2.43E + 08 2.42E + 08

2s2p2 − 2s22p 2S − 2Po 1/2 − 3/2 96430 1037.018 1.62E + 00 1.48E + 09(0.7 per cent) 1.61E + 00 1.47E + 09 1.47E + 09
1/2 − 1/2 96493 1036.337 8.18E−01 7.48E + 08(0.6 per cent) 8.11E−01 7.43E + 08 7.46E + 08

2s2p2 − 2s22p 2P − 2Po 1/2 − 3/2 110560 904.480 9.96E−01 1.37E + 09(0.3 per cent) 9.96E−01 1.37E + 09 1.36E + 09
3/2 − 3/2 110602 904.142 4.95E + 00 3.41E + 09(0.4 per cent) 4.94E + 00 3.41E + 09 3.38E + 09
1/2 − 1/2 110624 903.962 1.97E + 00 2.72E + 09(0.4 per cent) 1.97E + 00 2.72E + 09 2.69E + 09
3/2 − 1/2 110665 903.623 9.88E−01 6.82E + 08(0.4 per cent) 9.87E−01 6.82E + 08 6.76E + 08

2s23s − 2s22p 2S − 2Po 1/2 − 3/2 116474 858.559 1.81E−01 2.89E + 08(0.6 per cent) 1.83E−01 2.93E + 08 2.83E + 08
1/2 − 1/2 116537 858.092 9.19E−02 1.47E + 08(0.6 per cent) 9.28E−02 1.49E + 08 1.44E + 08

2s23d − 2s22p 2D − 2Po 3/2 − 3/2 145485 687.352 3.03E−01 4.71E + 08(0.2 per cent) 3.02E−01 4.70E + 08 4.60E + 08
5/2 − 3/2 145487 687.345 2.72E + 00 2.82E + 09(0.2 per cent) 2.71E + 00 2.82E + 09 2.76E + 09
3/2 − 1/2 145549 687.053 1.51E + 00 2.35E + 09(0.2 per cent) 1.51E + 00 2.35E + 09 2.30E + 09

2s23p − 2s2p2 2Po − 4P 3/2 − 5/2 88681 1127.626 6.13E−07 2.16E + 02(2.0 per cent) 5.04E−07 1.79E + 02 1.80E + 02
2p3 − 2s2p2 4So − 4P 3/2 − 5/2 98973 1010.371 3.45E + 00 1.70E + 09(0.4 per cent) 3.44E + 00 1.70E + 09 1.71E + 09

3/2 − 3/2 99001 1010.083 2.30E + 00 1.13E + 09(0.4 per cent) 2.30E + 00 1.13E + 09 1.14E + 09
3/2 − 1/2 99023 1009.858 1.15E + 00 5.67E + 08(0.4 per cent) 1.15E + 00 5.67E + 08 5.69E + 08

2p3 − 2s2p2 2Do − 4P 5/2 − 5/2 107407 931.030 4.41E−06 1.86E + 03(21.1 per cent) 3.52E−06 1.48E + 03 1.50E + 03
3/2 − 3/2 107441 930.740 1.04E−06 6.59E + 02(22.2 per cent) 8.44E−07 5.33E + 02 5.39E + 02

2s23s − 2s2p2 4Po − 4P 3/2 − 5/2 123937 806.861 6.36E−01 6.13E + 08(0.4 per cent) 3.93E−01 3.79E + 08
1/2 − 3/2 123941 806.830 5.88E−01 1.13E + 09(0.4 per cent) 3.64E−01 7.02E + 08
1/2 − 1/2 123963 806.687 1.18E−01 2.27E + 08(0.4 per cent) 7.27E−02 1.40E + 08
3/2 − 3/2 123965 806.677 1.88E−01 1.81E + 08(0.4 per cent) 1.16E−01 1.12E + 08
5/2 − 5/2 123982 806.568 1.48E + 00 9.53E + 08(0.4 per cent) 9.16E−01 5.90E + 08
3/2 − 1/2 123987 806.533 5.88E−01 5.67E + 08(0.4 per cent) 3.63E−01 3.51E + 08
5/2 − 3/2 124010 806.384 6.35E−01 4.09E + 08(0.4 per cent) 3.92E−01 2.53E + 08

2p3 − 2s2p2 2Po − 4P 3/2 − 5/2 125924 794.125 2.69E−05 2.72E + 04(3.2 per cent) 7.77E−06 7.83E + 03 1.72E + 02
1/2 − 3/2 125953 793.947 4.39E−06 8.88E + 03(0.3 per cent) 3.80E−06 7.65E + 03 1.88E + 02
3/2 − 3/2 125953 793.947 1.60E−06 1.62E + 03(8.6 per cent) 8.35E−06 8.42E + 03 1.57E + 03
1/2 − 1/2 125975 793.808 1.51E−06 3.06E + 03(10.2 per cent) 1.73E−06 3.50E + 03 2.04E + 01
3/2 − 1/2 125975 793.808 1.44E−05 1.46E + 04(2.7 per cent) 2.48E−05 2.50E + 04 6.67E + 02

2s23p − 2s2p2 2Po − 2D 1/2 − 3/2 56791 1760.819 2.23E−01 4.09E + 07(1.6 per cent) 2.20E−01 4.08E + 07 4.37E + 07
3/2 − 3/2 56802 1760.473 4.45E−02 4.09E + 06(1.6 per cent) 4.40E−02 4.07E + 06 4.37E + 06
3/2 − 5/2 56805 1760.395 4.01E−01 3.68E + 07(1.6 per cent) 3.96E−01 3.67E + 07 3.94E + 07

2p3 − 2s2p2 2Do − 2D 5/2 − 3/2 75528 1323.995 2.27E−01 3.33E + 07(0.2 per cent) 2.25E−01 3.28E + 07 3.50E + 07
5/2 − 5/2 75531 1323.951 3.16E + 00 4.63E + 08(0.1 per cent) 3.13E + 00 4.56E + 08 4.88E + 08
3/2 − 3/2 75534 1323.906 2.03E + 00 4.45E + 08(0.1 per cent) 2.01E + 00 4.39E + 08 4.69E + 08
3/2 − 5/2 75536 1323.862 2.30E−01 5.05E + 07(<0.05 per cent) 2.27E−01 4.96E + 07 5.31E + 07

2s23s − 2s2p2 4Po − 2D 1/2 − 3/2 92034 1086.549 1.55E−05 1.21E + 04(1.0 per cent) 2.45E−05 1.93E + 04
3/2 − 3/2 92058 1086.270 1.50E−05 5.88E + 03(1.4 per cent) 2.13E−05 8.39E + 03
3/2 − 5/2 92060 1086.241 9.46E−05 3.71E + 04(0.9 per cent) 1.50E−04 5.93E + 04
5/2 − 5/2 92105 1085.710 3.20E−06 8.38E + 02(3.6 per cent) 2.45E−06 6.45E + 02

2p3 − 2s2p2 2Po − 2D 1/2 − 3/2 94045 1063.313 1.97E + 00 1.65E + 09(0.9 per cent) 1.73E + 00 1.45E + 09 1.63E + 09
3/2 − 3/2 94045 1063.313 3.97E−01 1.66E + 08(0.9 per cent) 3.44E−01 1.44E + 08 1.64E + 08
3/2 − 5/2 94048 1063.284 3.55E + 00 1.49E + 09(0.8 per cent) 3.11E + 00 1.30E + 09 1.46E + 09

2s23p − 2s2p2 2Po − 2S 1/2 − 1/2 35230 2838.439 7.05E−01 3.06E + 07(0.1 per cent) 7.44E−01 3.27E + 07 3.32E + 07
3/2 − 1/2 35241 2837.541 1.41E + 00 3.06E + 07(0.1 per cent) 1.49E + 00 3.28E + 07 3.32E + 07

2p3 − 2s2p2 2Do − 2S 3/2 − 1/2 53972 1852.780 1.78E−05 1.43E + 03(1.8 per cent) 1.55E−05 1.23E + 03 1.46E + 03
2p3 − 2s2p2 2Po − 2S 1/2 − 1/2 72484 1379.603 1.55E−05 5.92E + 03(59.0 per cent) 1.02E−01 3.87E + 07 2.50E + 04

3/2 − 1/2 72484 1379.603 1.78E−04 3.39E + 04(31.6 per cent) 2.13E−01 4.05E + 07 6.94E + 04
2s23p − 2s2p2 2Po − 2P 1/2 − 3/2 21058 4748.606 2.62E−03 2.37E + 04(5.9 per cent) 2.46E−03 2.31E + 04 2.52E + 04

3/2 − 3/2 21069 4746.093 1.35E−02 6.12E + 04(5.6 per cent) 1.26E−02 5.92E + 04 6.53E + 04
1/2 − 1/2 21100 4739.292 6.33E−03 5.76E + 04(5.2 per cent) 5.75E−03 5.42E + 04 6.12E + 04
3/2 − 1/2 21111 4736.789 1.87E−03 8.54E + 03(6.5 per cent) 1.90E−03 8.96E + 03 9.23E + 03

2p3 − 2s2p2 2Do − 2P 5/2 − 3/2 39796 2512.814 2.68E + 00 5.73E + 07(2.7 per cent) 2.64E + 00 5.62E + 07 6.20E + 07
3/2 − 3/2 39801 2512.491 2.95E−01 9.45E + 06(2.6 per cent) 2.90E−01 9.28E + 06 1.02E + 07
3/2 − 1/2 39842 2509.881 1.49E + 00 4.81E + 07(2.6 per cent) 1.47E + 00 4.72E + 07 5.21E + 07

2s23s − 2s2p2 4Po − 2P 1/2 − 3/2 56301 1776.149 4.38E−06 7.80E + 02(0.4 per cent) 9.53E−06 1.71E + 03
3/2 − 3/2 56325 1775.405 5.90E−05 5.25E + 03(0.4 per cent) 1.53E−04 1.37E + 04
1/2 − 1/2 56342 1774.845 4.89E−06 8.72E + 02(0.5 per cent) 1.55E−05 2.78E + 03
3/2 − 1/2 56366 1774.102 1.29E−05 1.15E + 03(0.3 per cent) 3.19E−05 2.88E + 03

2p3 − 2s2p2 2Po − 2P 1/2 − 3/2 58312 1714.890 5.79E−01 1.14E + 08(0.3 per cent) 8.67E−01 1.71E + 08 1.12E + 08
3/2 − 3/2 58312 1714.890 2.91E + 00 2.88E + 08(0.3 per cent) 4.36E + 00 4.31E + 08 2.83E + 08
1/2 − 1/2 58354 1713.674 1.16E + 00 2.30E + 08(0.3 per cent) 1.74E + 00 3.44E + 08 2.26E + 08
3/2 − 1/2 58354 1713.674 5.79E−01 5.74E + 07(0.3 per cent) 8.70E−01 8.62E + 07 5.63E + 07

2s23p − 2s23s 2Po − 2S 1/2 − 1/2 15186 6584.700 1.03E + 01 3.64E + 07(0.2 per cent) 1.03E + 01 3.78E + 07 3.70E + 07
3/2 − 1/2 15197 6579.869 2.06E + 01 3.65E + 07(0.3 per cent) 2.06E + 01 3.79E + 07 3.71E + 07
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Table A8 – continued

Transition array Mult. Ju − Jl �E λ MCDHF/RCI MCHF-BP(a) CIV3(b)

(cm−1) (Å) S (au of a2
0e2) A (s−1) S (au of a2

0e2) A (s−1) A (s−1)

2p3 − 2s23s 2Po − 2S 1/2 − 1/2 52440 1906.916 2.19E−02 3.19E + 06(0.1 per cent) 6.60E−02 9.58E + 06 3.35E + 06
3/2 − 1/2 52440 1906.916 4.31E−02 3.15E + 06(0.1 per cent) 1.30E−01 9.45E + 06 3.32E + 06

2s23d − 2s23p 2D − 2Po 3/2 − 3/2 13813 7239.164 5.20E + 00 6.94E + 06(0.6 per cent) 5.21E + 00 6.73E + 06 7.09E + 06
5/2 − 3/2 13815 7238.415 4.68E + 01 4.17E + 07(0.6 per cent) 4.69E + 01 4.04E + 07 4.25E + 07
3/2 − 1/2 13824 7233.325 2.60E + 01 3.48E + 07(0.6 per cent) 2.60E + 01 3.37E + 07 3.55E + 07

2p3 − 2s23d 2Po − 2D 1/2 − 3/2 23429 4268.202 9.99E−05 1.30E + 03(27.0 per cent) 3.11E−01 3.99E + 06 4.08E + 04
3/2 − 5/2 23427 4268.462 1.15E−04 7.49E + 02(32.7 per cent) 5.57E−01 3.58E + 06 3.33E + 04

Notes: (a) Tachiev & Fischer (2000); and (b)Corrégé & Hibbert (2004).

Table A9. Comparison of line strengths (S) and transition rates (A) with other theoretical results for C III. The present values from the MCDHF/RCI calculations
are given in the Babushkin(length) gauge. The wavenumber �E and wavelength λ values are taken from the NIST data base. The estimated uncertainties dT of
the transition rates are given as percentages in parentheses.

Transition array Mult. Ju − Jl �E λ MCDHF/RCI MCHF-BP(a) GRASP(b)

(cm−1) (Å) S (au of a2
0e2) A (s−1) S (au of a2

0e2) A (s−1) S (au of a2
0e2) A (s−1)

2s2p − 2s2 1Po − 1S 1 − 0 102352 977.020 2.44E + 00 1.77E + 09(0.1 per cent) 2.44E + 00 1.77E + 09 2.38E + 00 2.15E + 09
2s3p − 2s2 1Po − 1S 1 − 0 258931 386.203 3.06E−01 3.59E + 09(<0.05 per cent) 3.06E−01 3.59E + 09 2.70E−01 3.16E + 09
2s3p − 2s2 3Po − 1S 1 − 0 259711 385.043 4.29E−05 5.08E + 05(0.5 per cent) 4.37E−05 5.18E + 05 1.17E−02 1.36E + 08
2p2 − 2s2p 3P − 3Po 1 − 2 85007 1176.370 1.32E + 00 5.48E + 08(<0.05 per cent) 1.32E + 00 5.50E + 08 1.33E + 00 5.95E + 08

0 − 1 85034 1175.987 1.05E + 00 1.32E + 09(0.1 per cent) 1.05E + 00 1.32E + 09 1.07E + 00 1.43E + 09
2 − 2 85054 1175.711 3.95E + 00 9.89E + 08(0.1 per cent) 3.95E + 00 9.91E + 08 4.00E + 00 1.07E + 09
1 − 1 85063 1175.590 7.90E−01 3.30E + 08(0.1 per cent) 7.89E−01 3.31E + 08 8.00E−01 3.58E + 08
1 − 0 85087 1175.263 1.05E + 00 4.40E + 08(0.1 per cent) 1.05E + 00 4.41E + 08 1.07E + 00 4.78E + 08
2 − 1 85111 1174.933 1.32E + 00 3.30E + 08(0.1 per cent) 1.32E + 00 3.31E + 08 1.33E + 00 3.59E + 08

2p2 − 2s2p 1D − 3Po 2 − 2 93429 1070.331 9.42E−05 3.13E + 04(5.3 per cent) 9.51E−05 3.17E + 04 3.74E−05 1.51E + 04
2 − 1 93485 1069.686 1.36E−05 4.52E + 03(7.8 per cent) 1.49E−05 4.97E + 03 3.37E−06 1.37E + 03

2p2 − 2s2p 1S − 3Po 0 − 1 130129 768.467 4.58E−07 2.06E + 03(17.8 per cent) 4.71E−07 2.12E + 03 2.01E−07 1.14E + 03
2s3s-2s2p 3S − 3Po 1 − 2 185765 538.312 4.73E−01 2.05E + 09(0.1 per cent) 4.73E−01 2.05E + 09 5.03E−01 2.11E + 09

1 − 1 185822 538.149 2.83E−01 1.23E + 09(0.1 per cent) 2.84E−01 1.23E + 09 3.01E−01 1.27E + 09
1 − 0 185845 538.080 9.43E−02 4.09E + 08(0.1 per cent) 9.45E−02 4.10E + 08 1.00E−01 4.22E + 08

2s3s-2s2p 1S − 3Po 0 − 1 194779 513.401 1.45E−08 2.17E + 02(25.2 per cent) 1.76E−08 2.64E + 02 2.46E−08 3.60E + 02
2s3d-2s2p 3D − 3Po 1 − 2 217563 459.635 4.24E−02 2.95E + 08(<0.05 per cent) 4.24E−02 2.95E + 08 4.24E−02 2.88E + 08

2 − 2 217564 459.633 6.36E−01 2.65E + 09(<0.05 per cent) 6.36E−01 2.66E + 09 6.36E−01 2.60E + 09
3 − 2 217567 459.627 3.56E + 00 1.06E + 10(<0.05 per cent) 3.56E + 00 1.06E + 10 3.56E + 00 1.04E + 10
1 − 1 217620 459.516 6.36E−01 4.43E + 09(<0.05 per cent) 6.36E−01 4.43E + 09 6.36E−01 4.33E + 09
2 − 1 217621 459.514 1.91E + 00 7.96E + 09(<0.05 per cent) 1.91E + 00 7.97E + 09 1.91E + 00 7.79E + 09
1 − 0 217643 459.466 8.47E−01 5.90E + 09(<0.05 per cent) 8.47E−01 5.91E + 09 8.48E−01 5.77E + 09

2s3d-2s2p 1D − 3Po 2 − 1 224092 446.245 4.65E−07 2.12E + 03(0.3 per cent) 2.80E−07 1.28E + 03 2.48E−07 1.14E + 03
2p2 − 2s2p 3P − 1Po 0 − 1 35073 2851.142 2.69E−06 2.36E + 02(37.5 per cent) 2.99E−06 2.65E + 02 1.85E−06 1.02E + 02

2 − 1 35149 2844.953 7.79E−05 1.37E + 03(8.2 per cent) 8.02E−05 1.43E + 03 2.85E−05 3.15E + 02
2p2 − 2s2p 1D − 1Po 2 − 1 43524 2297.578 4.11E + 00 1.38E + 08(0.5 per cent) 4.11E + 00 1.39E + 08 4.18E + 00 1.34E + 08
2p2 − 2s2p 1S − 1Po 0 − 1 80167 1247.383 1.99E + 00 2.10E + 09(<0.05 per cent) 1.99E + 00 2.10E + 09 2.24E + 00 2.69E + 09
2s3s-2s2p 3S − 1Po 1 − 1 135860 736.047 4.69E−07 7.92E + 02(5.0 per cent) 5.42E−07 9.17E + 02 3.76E−07 5.18E + 02
2s3s-2s2p 1S − 1Po 0 − 1 144818 690.521 1.40E−01 8.59E + 08(0.1 per cent) 1.39E−01 8.54E + 08 1.77E−01 9.10E + 08
2s3d-2s2p 3D − 1Po 1 − 1 167658 596.449 5.91E−07 1.88E + 03(6.5 per cent) 7.50E−07 2.39E + 03 4.14E−07 1.12E + 03

2 − 1 167659 596.446 9.30E−07 1.77E + 03(6.2 per cent) 4.89E−07 9.34E + 02 3.79E−07 6.15E + 02
2s3d-2s2p 1D − 1Po 2 − 1 174130 574.281 2.93E + 00 6.25E + 09(<0.05 per cent) 2.92E + 00 6.25E + 09 3.37E + 00 6.40E + 09
2s3p − 2p2 1Po − 3P 1 − 2 121429 823.525 1.05E−05 1.27E + 04(0.3 per cent) 1.07E−05 1.29E + 04 7.12E−06 7.96E + 03

1 − 1 121476 823.202 1.76E−07 2.12E + 02(1.0 per cent) 8.87E−08 1.07E + 02 1.41E−05 1.58E + 04
2s3p − 2p2 3Po − 3P 1 − 2 122209 818.269 7.20E−04 8.84E + 05(0.2 per cent) 7.05E−04 8.65E + 05 6.36E−04 7.10E + 05

2 − 2 122222 818.181 2.17E−03 1.60E + 06(0.2 per cent) 2.15E−03 1.58E + 06 1.91E−03 1.28E + 06
0 − 1 122251 817.988 5.76E−04 2.13E + 06(0.2 per cent) 5.65E−04 2.08E + 06 5.08E−04 1.70E + 06
1 − 1 122256 817.950 4.29E−04 5.27E + 05(0.2 per cent) 4.26E−04 5.23E + 05 3.63E−04 4.06E + 05
2 − 1 122269 817.863 7.30E−04 5.39E + 05(0.3 per cent) 7.20E−04 5.31E + 05 6.43E−04 4.31E + 05
1 − 0 122285 817.758 5.78E−04 7.12E + 05(0.2 per cent) 5.69E−04 7.00E + 05 4.86E−04 5.44E + 05

2s3p − 2p2 1Po − 1D 1 − 2 113055 884.524 3.77E−01 3.66E + 08(<0.05 per cent) 3.69E−01 3.59E + 08 7.16E−01 5.67E + 08
2s3p − 2p2 3Po − 1D 1 − 2 113835 878.464 6.05E−05 6.00E + 04(0.1 per cent) 6.32E−05 6.27E + 04 3.07E−02 2.43E + 07
2s3p − 2p2 1Po − 1S 1 − 0 76411 1308.705 7.24E−02 2.16E + 07(0.1 per cent) 7.20E−02 2.15E + 07 1.54E−01 2.79E + 07
2s3p − 2p2 3Po − 1S 1 − 0 77191 1295.482 1.04E−05 3.19E + 03(0.2 per cent) 1.05E−05 3.23E + 03 6.65E−03 1.20E + 06
2s3p-2s3s 1Po − 3S 1 − 1 20718 4826.653 1.65E−03 9.96E + 03(1.7 per cent) 1.69E−03 1.02E + 04 4.51E−01 3.08E + 06
2s3p-2s3s 3Po − 3S 0 − 1 21492 4652.775 3.57E + 00 7.20E + 07(<0.05 per cent) 3.57E + 00 7.19E + 07 3.65E + 00 7.44E + 07

1 − 1 21498 4651.548 1.07E + 01 7.20E + 07(<0.05 per cent) 1.07E + 01 7.20E + 07 1.05E + 01 7.14E + 07
2 − 1 21511 4648.720 1.78E + 01 7.22E + 07(<0.05 per cent) 1.78E + 01 7.21E + 07 1.83E + 01 7.46E + 07

2s3p-2s3s 1Po − 1S 1 − 0 11761 8502.657 9.25E + 00 1.02E + 07(<0.05 per cent) 9.25E + 00 1.02E + 07 8.59E + 00 1.02E + 07
2s3p-2s3s 3Po − 1S 1 − 0 12540 7973.871 1.42E−03 1.89E + 03(2.6 per cent) 1.45E−03 1.92E + 03 3.69E−01 4.33E + 05
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Table A9 – continued

Transition array Mult. Ju − Jl �E λ MCDHF/RCI MCHF-BP(a) GRASP(b)

(cm−1) (Å) S (au of a2
0e2) A (s−1) S (au of a2

0e2) A (s−1) S (au of a2
0e2) A (s−1)

2s3d-2s3p 3D − 1Po 1 − 1 11079 9025.645 6.66E−04 6.10E + 02(1.6 per cent) 6.87E−04 6.35E + 02 1.86E−01 1.44E + 05
2 − 1 11080 9024.749 2.12E−03 1.17E + 03(1.4 per cent) 2.23E−03 1.24E + 03 5.55E−01 2.58E + 05

2s3d-2s3p 1D − 1Po 2 − 1 17551 5697.496 1.94E + 01 4.26E + 07(<0.05 per cent) 1.94E + 01 4.28E + 07 1.88E + 01 5.15E + 07
2s3d-2s3p 3D − 3Po 1 − 2 10286 9721.451 2.94E−01 2.16E + 05(<0.05 per cent) 2.94E−01 2.18E + 05 3.00E−01 2.35E + 05

2 − 2 10287 9720.412 4.40E + 00 1.95E + 06(<0.05 per cent) 4.41E + 00 1.97E + 06 4.51E + 00 2.11E + 06
3 − 2 10290 9717.757 2.47E + 01 7.79E + 06(<0.05 per cent) 2.47E + 01 7.87E + 06 2.52E + 01 8.46E + 06
1 − 1 10299 9709.105 4.40E + 00 3.25E + 06(<0.05 per cent) 4.41E + 00 3.29E + 06 4.32E + 00 3.39E + 06
2 − 1 10300 9708.069 1.32E + 01 5.86E + 06(<0.05 per cent) 1.32E + 01 5.92E + 06 1.30E + 01 6.10E + 06
1 − 0 10305 9703.764 5.87E + 00 4.35E + 06(<0.05 per cent) 5.88E + 00 4.39E + 06 6.01E + 00 4.72E + 06

2s3d-2s3p 1D − 3Po 2 − 1 16771 5962.446 3.11E−03 5.97E + 03(0.4 per cent) 3.23E−03 6.24E + 03 8.04E−01 2.22E + 06

Notes: (a) Tachiev & Fischer (1999); and (b)Aggarwal & Keenan (2015).

Table A10. Comparison of line strengths (S) and transition rates (A) with other theoretical results for C IV. The present values from the MCDHF/RCI calculations
are given in the Babushkin (length) gauge. The wavenumber �E and wavelength λ values are taken from the NIST data base. The estimated uncertainties dT of
the transition rates are given as percentages in parentheses.

Transition array Mult. Ju − Jl �E λ MCDHF/RCI MCHF-BP(a)

(cm−1) (Å) S (au of a2
0e2) A (s−1) S (au of a2

0e2) A (s−1)

2p-2s 2Po − 2S 1/2 − 1/2 64484 1550.772 9.68E−01 2.63E + 08(<0.05 per cent) 9.68E−01 2.63E + 08
3/2 − 1/2 64591 1548.187 1.94E + 00 2.65E + 08(<0.05 per cent) 1.94E + 00 2.65E + 08

3p-2s 2Po − 2S 1/2 − 1/2 320050 312.451 1.39E−01 4.63E + 09(<0.05 per cent) 1.40E−01 4.64E + 09
3/2 − 1/2 320081 312.420 2.78E−01 4.62E + 09(<0.05 per cent) 2.79E−01 4.63E + 09

3s-2p 2S − 2Po 1/2 − 3/2 238257 419.714 2.07E−01 2.84E + 09(<0.05 per cent) 2.07E−01 2.84E + 09
1/2 − 1/2 238365 419.525 1.03E−01 1.42E + 09(<0.05 per cent) 1.03E−01 1.42E + 09

3d-2p 2D − 2Po 3/2 − 3/2 260288 384.190 3.26E−01 2.91E + 09(<0.05 per cent) 3.26E−01 2.91E + 09
5/2 − 3/2 260298 384.174 2.94E + 00 1.75E + 10(<0.05 per cent) 2.94E + 00 1.75E + 10
3/2 − 1/2 260395 384.031 1.63E + 00 1.46E + 10(<0.05 per cent) 1.63E + 00 1.46E + 10

4s-2p 2S − 2Po 1/2 − 3/2 336756 296.951 2.74E−02 1.06E + 09(<0.05 per cent) 2.75E−02 1.06E + 09
1/2 − 1/2 336864 296.856 1.37E−02 5.30E + 08(<0.05 per cent) 1.38E−02 5.32E + 08

3p-3s 2Po − 2S 1/2 − 1/2 17201 5813.582 6.10E + 00 3.15E + 07(<0.05 per cent) 6.11E + 00 3.15E + 07
3/2 − 1/2 17232 5802.921 1.22E + 01 3.17E + 07(<0.05 per cent) 1.22E + 01 3.16E + 07

3d-3p 2D − 2Po 3/2 − 3/2 4798 20841.583 1.71E + 00 9.54E + 04(<0.05 per cent) 1.71E + 00 9.51E + 04
5/2 − 3/2 4808 20796.074 1.54E + 01 5.76E + 05(<0.05 per cent) 1.54E + 01 5.74E + 05
3/2 − 1/2 4829 20705.220 8.54E + 00 4.87E + 05(<0.05 per cent) 8.54E + 00 4.85E + 05

4s-3p 2S − 2Po 1/2 − 3/2 81266 1230.521 1.32E + 00 7.16E + 08(<0.05 per cent) 1.31E + 00 7.14E + 08
1/2 − 1/2 81298 1230.043 6.57E−01 3.58E + 08(<0.05 per cent) 6.57E−01 3.57E + 08

Note: (a) Fischer et al. (1998).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT

MultiConfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) calculations were performed for 28
and 78 states in neutral and singly ionized aluminium, respectively. In Al i, the configurations of interest are 3s2nl for n = 3, 4, 5 with
l = 0 to 4, as well as 3s3p2 and 3s26l for l = 0, 1, 2. In Al ii, in addition to the ground configuration 3s2, the studied configurations
are 3snl with n = 3 to 6 and l = 0 to 5, 3p2, 3s7s, 3s7p, and 3p3d. Valence and core-valence electron correlation effects are
systematically accounted for through large configuration state function (CSF) expansions. Calculated excitation energies are found to
be in excellent agreement with experimental data from the National Institute of Standards and Technology (NIST) database. Lifetimes
and transition data for radiative electric dipole (E1) transitions are given and compared with results from previous calculations and
available measurements for both Al i and Al ii. The computed lifetimes of Al i are in very good agreement with the measured lifetimes
in high-precision laser spectroscopy experiments. The present calculations provide a substantial amount of updated atomic data,
including transition data in the infrared region. This is particularly important since the new generation of telescopes are designed for
this region. There is a significant improvement in accuracy, in particular for the more complex system of neutral Al i. The complete
tables of transition data are available at the CDS.

Key words. atomic data

1. Introduction

Aluminium is an important element in astrophysics. In newly
born stars the galactic [Al/H] abundance ratio and the [Al/Mg]
ratio are found to be increased in comparison to early
stars (Clayton 2003). The aluminium abundance and its anti-
correlation with that of magnesium is the best tool to determine
which generation a globular cluster star belongs to. The abun-
dance variations of different elements and the relative numbers
of first- and second-generation stars can be used to determine
the nature of polluting stars, the timescale of the star forma-
tion episodes, and the initial mass function of the stellar cluster
(Carretta et al. 2010). The aluminium abundance is of impor-
tance for other types and groups of stars as well. A large num-
ber of spectral lines of neutral and singly ionized aluminium
are observed in the solar spectrum and in many stellar spectra.
Aluminium is one of the interesting elements for chemical anal-
ysis of the Milky Way, and one example is the Gaia-ESO Sur-
vey1; medium- and high-resolution spectra from more than 105

stars are analysed to provide public catalogues with astrophys-
ical parameters. As part of this survey, Smiljanic et al. (2014)
analysed high-resolution UVES2 spectra of FGK-type stars and
derived abundances for 24 elements, including aluminium.

? The data are only available available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/qcat?J/A+A/621/A16
1 http://casu.ast.cam.ac.uk/surveys-projects/ges
2 http://www.eso.org/sci/facilities/paranal/
instruments/uves.html

In addition, aluminium abundances have been determined in
local disk and halo stars by Gehren et al. (2004), Reddy et al.
(2006), Mishenina et al. (2008), Adibekyan et al. (2012), and
Bensby et al. (2014). However, chemical evolution models still
have problems reproducing the observed behaviour of the alu-
minium abundance in relation to abundances of other ele-
ments. Such examples are the observed trends of the aluminium
abundances in relation to metallicity [Fe/H], which are not
well reproduced at the surfaces of stars, for example giants
and dwarfs (Smiljanic et al. 2016). In light of the above issues,
Smiljanic et al. (2016) redetermined aluminium abundances
within the Gaia-ESO Survey. Furthermore, strong deviations
from local thermodynamic equilibrium (LTE) are found to sig-
nificantly affect the inferred aluminium abundances in metal
poor stars, which was highlighted in the work by Gehren et al.
(2006). Nordlander & Lind (2017) presented a non-local ther-
modynamic equilibrium (NLTE) modelling of aluminium and
provided abundance corrections for lines in the optical and near-
infrared regions.

Correct deduction of aluminium abundances and chemical
evolution modelling is thus necessary to put together a complete
picture of the stellar and Galactic evolution. Obtaining the spec-
troscopic reference data to achieve this goal is demanding. A
significant amount of experimental research has been conducted
to probe the spectra of Al ii and Al i and to facilitate the analy-
sis of the astrophysical observations. Even so, some laboratory
measurements still lack reliability and in many cases, especially
when going to higher excitation energies, only theoretical values
of transition properties exist. Accurate computed atomic data are
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therefore essential to make abundance analyses in the Sun and
other stars possible.

For the singly ionized Al ii, there are a number of mea-
surements of transition properties. The radiative lifetime of the
3s3p 3Po

1 level was measured by Johnson et al. (1986) using
an ion storage technique and the transition rate value for the
inter-combination 3s3p 3Po

1 → 3s2 1S0 transition was provided.
Träbert et al. (1999) measured lifetimes in an ion storage ring
and the result for the lifetime of the 3s3p 3Po

1 level is in excel-
lent agreement with the value measured by Johnson et al. (1986).
Using the beam-foil technique, Andersen et al. (1971) mea-
sured lifetimes for the 3snf 3F series with n = 4−7, although
these measurements are associated with significant uncertain-
ties. By using the same technique, the lifetime of the sin-
glet 3s3p 1Po

1 level was measured in four different experimental
works (Kernahan et al. 1979; Head et al. 1976; Berry et al. 1970;
Smith 1970), which are in very good agreement.

In the case of neutral Al i, several measurements have
also been performed. Following a sequence of earlier works
(Jönsson & Lundberg 1983; Jönsson et al. 1984), Buurman et al.
(1986) used laser spectroscopy to obtain experimental values
for the oscillator strengths of the lowest part of the spec-
trum. A few years later, Buurman & Dönszelmann (1990) rede-
termined the lifetime of the 3s24p 2P level and separated the
different fine-structure components. Using similar laser tech-
niques, Davidson et al. (1990) measured the natural lifetimes of
the 3s2nd 2D Rydberg series and obtained oscillator strengths
for transitions to the ground state. In a more recent work,
Vujnović et al. (2002) used the hollow cathode discharge method
to measure relative intensities of spectral lines of both neutral
and singly ionized aluminium. Absolute transition probabilities
were evaluated based on available results from previous studies,
such as the ones mentioned above.

Al ii is a nominal two-electron system and the lower part of
its spectrum is strongly influenced by the interaction between
the 3s3d 1D and 3p2 1D configuration states. Contrary to neu-
tral Mg i where no level is classified as 3p2 1D, in Al ii the
3p2 configuration dominates the lowest 1D term and yields a
well-localized state below the 3s3d 1D term. The interactions
between the 3snd 1D Rydberg series and the 3p2 1D perturber
were investigated by Tayal & Hibbert (1984). Going slightly fur-
ther up, the spectrum of Al ii is governed by the strong mixing
of the 3snf 3F Rydberg series with the 3p3d 3F term. Despite
the widespread mixing, 3p3d 3F is also localized, between
the 3s6f 3F and 3s7f 3F states. The configuration interaction
between doubly excited states (e.g. the 3p2 1D and 3p3d 3F
states) and singly excited 3snl 1,3L states was thoroughly inves-
tigated by Chang & Wang (1987). However, the extreme mix-
ing of the 3p3d 3F term in the 3snf 3F series and its effect on
the computation of transition properties was first investigated
by Weiss (1974). Although the work by Chang & Wang (1987)
was more of a qualitative nature, computed transition data were
provided based on configuration interaction (CI) calculations.
Using the B-spline configuration interaction (BSCI) method,
Chang & Fang (1995) also predicted transition properties and
lifetimes of Al ii excited states.

Despite the large number of measured spectral lines in Al i,
the 3s3p2 2D state could not be experimentally identified and for
a long time theoretical calculations had been trying to localize it
and predict whether it lies above or below the first-ionization
limit. Al i is a system with three valence electrons, and the
correlation effects are even stronger than in the singly ionized
Al ii. Especially strong is the two-electron interaction of 3s3d 1D
with 3p2 1D, which becomes evident between the 3s23d 2D and

3s3p2 2D states. The 3s3p2 2D state is strongly coupled to the
3s23d 2D state, but it is also smeared out over the entire discrete
part of the 3s2nd 2D series and contributes to a significant mix-
ing of all those states (Weiss 1974). Asking for the position of
the 3s3p2 2D level is thus meaningless since it does not corre-
spond to any single spectral line (Lin 1974; Trefftz 1988). Due
to this strong two-electron interaction, the line strength of one
of the 2D states involved in a transition appears to be enhanced,
while the line strength of the other 2D state is suppressed. This
makes the computation of transition properties in Al i far from
trivial (Froese Fischer et al. 2006). More theoretical studies on
the system of neutral aluminium were conducted by Taylor et al.
(1988) and Theodosiou (1992).

In view of the great astrophysical interest for accurate
atomic data, close coupling (CC) calculations were carried
out for the systems of Al ii and Al i by Butler et al. (1993)
and Mendoza et al. (1995), respectively, as part of the Opac-
ity Project. These extended spectrum calculations produced
transition data in the infrared region (IR), which had been
scarce until then. However, the neglected relativistic effects and
the insufficient amount of correlation included in the calcula-
tions constitute limiting factors to the accuracy of the results.
Later on, Froese Fischer et al. (2006) performed MultiConfig-
uration Hartree-Fock (MCHF) calculations and used the Breit-
Pauli (BP) approximation to also capture relativistic effects for
Mg- and Al-like sequences. Focusing more on correlation, rel-
ativistic effects were kept to lower order. Even so, in Al i,
correlation in the core and core-valence effects were not included
due to limited computational resources. The latest compila-
tion of Al ii and Al i transition probabilities was made available
by Kelleher & Podobedova (2008a). Wiese & Martin (1980) had
earlier updated the first critical compilation of atomic data by
Wiese et al. (1969).

Although for the past decades a considerable amount of
research has been conducted for the systems of Al ii and Al i,
there is still a need for extended and accurate theoretical tran-
sition data. The present study is motivated by such a need. To
obtain energy separations and transition data, the fully relativis-
tic MultiConfiguration Dirac-Hartree-Fock (MCDHF) scheme
has been employed. Valence and core-valence electron correla-
tion is included in the computations of both systems. Spectrum
calculations have been performed to include the first 28 and 78
lowest states in neutral and singly ionized aluminium, respec-
tively. Transition data corresponding to IR lines have also been
produced. The excellent description of energy separations is an
indication of highly accurate computed atomic properties, which
can be used to improve the interpretation of abundances in stars.

2. Theory

2.1. MultiConfiguration Dirac-Hartree-Fock approach

The wave functions describing the states of the atom, referred to
as atomic state functions (ASFs), are obtained by applying the
MCDHF approach (Grant 2007; Froese Fischer et al. 2016). In
the MCDHF method, the ASFs are approximate eigenfunctions
of the Dirac-Coulomb Hamiltonian given by

HDC =

N∑
i=1

[c αi · pi + (βi − 1)c2 + Vnuc(ri)] +

N∑
i< j

1
ri j
, (1)

where Vnuc(ri) is the potential from an extended nuclear charge
distribution, α and β are the 4 × 4 Dirac matrices, c the speed
of light in atomic units, and p ≡ −i∇ the electron momentum
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operator. An ASF Ψ(γPJMJ) is given as an expansion over NCSF
configuration state functions (CSFs), Φ(γiPJMJ), characterized
by total angular momentum J and parity P:

Ψ(γPJMJ) =

NCSF∑
i=1

ciΦ(γiPJMJ). (2)

The CSFs are anti-symmetrized many-electron functions built
from products of one-electron Dirac orbitals and are eigen-
functions of the parity operator P, the total angular momen-
tum operator J2 and its projection on the z-axis Jz (Grant 2007;
Froese Fischer et al. 2016). In the expression above, γi repre-
sents the configuration, coupling, and other quantum numbers
necessary to uniquely describe the CSFs.

The radial parts of the Dirac orbitals together with the mixing
coefficients ci are obtained in a self-consistent field (SCF) pro-
cedure. The set of SCF equations to be iteratively solved results
from applying the variational principle on a weighted energy
functional of all the studied states according to the extended opti-
mal level (EOL) scheme (Dyall et al. 1989). The angular inte-
grations needed for the construction of the energy functional are
based on the second quantization method in the coupled tensorial
form (Gaigalas et al. 1997, 2001).

The transverse photon (Breit) interaction and the leading
quantum electrodynamic (QED) corrections (vacuum polar-
ization and self-energy) can be accounted for in subse-
quent relativistic configuration interaction (RCI) calculations
(McKenzie et al. 1980). In the RCI calculations, the Dirac
orbitals from the previous step are fixed and only the mixing
coefficients of the CSFs are determined by diagonalizing the
Hamiltonian matrix. All calculations were performed using the
relativistic atomic structure package GRASP2K (Jönsson et al.
2013).

In the MCDHF relativistic calculations, the wave functions
are expansions over j j-coupled CSFs. To identify the computed
states and adapt the labelling conventions followed by the exper-
imentalists, the ASFs are transformed from j j-coupling to a
basis of LS J-coupled CSFs. In the GRASP2K code this is done
using the methods developed by Gaigalas et al. (2003, 2004,
2017).

2.2. Transition parameters

In addition to excitation energies, lifetimes τ and transition
parameters, such as emission transition rates A and weighted
oscillator strengths g f , were also computed. The transition
parameters between two states γ′P′J′ and γPJ are expressed in
terms of reduced matrix elements of the transition operator T
(Grant 1974):

〈Ψ(γPJ)||T||Ψ(γ′P′J′)〉 =
∑
k,l

ckc′l〈Φ(γkPJ)||T||Φ(γ′lP′J′)〉. (3)

For electric multipole transitions, there are two forms of the
transition operator: the length, which in fully relativistic calcu-
lations is equivalent to the Babushkin gauge, and the velocity
form, which is equivalent to the Coulomb gauge. The transi-
tions are governed by the outer part of the wave functions. The
length form is more sensitive to this part of the wave func-
tions and it is generally considered to be the preferred form.
Regardless, the agreement between the values of these two dif-
ferent forms can be used to indicate the accuracy of the wave
functions (Froese Fischer 2009; Ekman et al. 2014). This is par-
ticularly useful when no experimental measurements are avail-
able. The transitions can be organized in groups determined, for

instance, by the magnitude of the transition rate value. A statis-
tical analysis of the uncertainties of the transitions can then be
performed. For each group of transitions the average uncertainty
of the length form of the computed transition rates is given by

〈dT 〉 =
1
N

N∑
i=1

|Ai
l − Ai

υ|

max(Ai
l, A

i
υ)
, (4)

where Al and Aυ are respectively the transition rates in length
and velocity form for a transition i and N is the number of the
transitions belonging to a group. In this work, we only computed
transition parameters for the electric dipole (E1) transitions. The
electric quadrupole (E2) and magnetic multipole (Mk) transi-
tions are much weaker and therefore less likely to be observed.

3. Calculations

3.1. Al I

In neutral aluminium, calculations were performed in the EOL
scheme (Dyall et al. 1989) for 28 targeted states. These states
belong to the 3s2ns configurations with n = 4, 5, 6, the 3s2nd
configurations with n = 3, ..., 6, and the 3s3p2 and 3s25g con-
figurations, characterized by even parity, and on the other hand
the 3s2np configurations with n = 3, .., 6 and the 3s24f and 3s25f
configurations, characterized by odd parity. These configurations
define what is known as the multireference (MR). From initial
calculations and analysis of the eigenvector compositions, we
deduced that all 3p2nl configurations, in addition to the targeted
3s2nl, give considerable contributions to the total wave func-
tions and should be included in the MR. Following the active
set (AS) approach (Olsen et al. 1988; Sturesson et al. 2007), the
CSF expansions (see Eq. (2)) were obtained by allowing single
and restricted double (SD) substitutions of electrons from the
reference (MR) orbitals to an AS of correlation orbitals. The AS
is systematically increased by adding layers of orbitals to effec-
tively build nearly complete wave functions. This is achieved
by keeping track of the convergence of the computed excitation
energies, and of the other physical quantities of interest, such as
the transition parameters here.

As a first step an MCDHF calculation was performed for
the orbitals that are part of the MR. States with both even
and odd parity were simultaneously optimized. Following this
step, we continued to optimize six layers of correlation orbitals
based on valence (VV) substitutions. The VV expansions were
obtained by allowing SD substitutions from the three outer
valence orbitals in the MR, with the restriction that there will
be at most one substitution from orbitals with n = 3. In this
manner, the correlation orbitals will occupy the space between
the inner n = 3 valence orbitals and the outer orbitals involved
in the higher Rydberg states (see Fig. 1). These orbitals have
been shown to be of crucial importance for the transition prob-
abilities, which are weighted towards this part of the space
(Pehlivan Rhodin et al. 2017; Pehlivan Rhodin 2018). The six
correlation layers correspond to the 12s, 12p, 12d, 11f, 11g, and
10h set of orbitals.

Each MCDHF calculation was followed by an RCI calcu-
lation for an extended expansion, obtained by single, double,
and triple (SDT) substitutions from the valence orbitals. As a
final step, an RCI calculation was performed for the largest
SDT valence expansion augmented by a core-valence (CV)
expansion. The CV expansion was obtained by allowing SD
substitutions from the valence orbitals and the 2p6 core, with
the restriction that there will be at most one substitution from
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Fig. 1. Al i Dirac-Fock radial orbitals for the p symmetry, as a function
of
√

r. The 2p orbital is part of the core and the orbitals from n = 3
to n = 6 are part of the valence electron cloud. These orbitals occupy
different regions in space and the overlap between some of the Rydberg
states is minor.

2p6. All the RCI calculations included the Breit interaction and
the leading QED effects. Accounting for CV correlation does
not lower the total energies significantly, but it can have large
effects on the energy separations and thus we considered it cru-
cial. Core-valence correlation is also important for transition
properties (Hibbert 1989). Core-core (CC) correlation, obtained
by allowing double excitations from the core, is known to be
less important and has not been considered in the present work.
The number of CSFs in the final even and odd state expan-
sions, accounting for both VV and CV electron correlation, were
4 362 628 and 2 889 385, respectively, distributed over the differ-
ent J symmetries.

3.2. Al II

In the singly ionized aluminium, the calculations were more
extended, including 78 targeted states. These states belong to
the 3s2 ground configuration, and to the 3p2; the 3sns config-
urations with n = 4, ..., 7; the 3snd with n = 3, ..., 6; and the
3s5g and 3s6g configurations, characterized by even parity, and
on the other hand, the 3snp configurations with n = 3, ..., 7; the
3snf with n = 4, 5, 6; and the 3s6h and 3p3d configurations,
characterized by odd parity. These configurations define the mul-
tireference (MR). In the computations of Al ii, the EOL scheme
was applied and the CSF expansions were obtained following
the active set (AS) approach, accounting for VV and CV corre-
lation. Al ii is less complex and the CSF expansions generated
from (SD) substitutions are not as large as those in Al i. Hence,
we can afford both 2s and 2p orbitals to account for CV cor-
relation. The 1s core orbital remained closed and, as it was for
Al i, core-core correlation was neglected. The MCDHF calcula-
tions were performed in a similar way to the calculations in Al i,
yet no particular restrictions were imposed on the VV substitu-
tions. We optimized six correlation layers corresponding to the
13s, 13p, 12d, 12f, 12g, 8h, and 7i set of orbitals. Each MCDHF
calculation was followed by an RCI calculation. Finally, an RCI
calculation was performed for the largest SD valence expansion
augmented by the CV expansion. The number of CSFs in the
final even and odd state expansions, accounting for both VV and
CV electron correlation, were 911 795 and 1 269 797, respec-
tively, distributed over the different J symmetries.

4. Results

4.1. Al I

In Table 1 the computed excitation energies, based on VV cor-
relation, are given as a function of the increasing active set of
orbitals. After adding the n = 11 correlation layer, we note
that the energy values for all 28 targeted states have converged.
For comparison, in the second last column the observed ener-
gies from the National Institute of Standards and Technology
(NIST) Atomic Spectra Database (Kramida et al. 2018) are dis-
played. All energies but those belonging to the 3s3p2 configura-
tion are already in good agreement with the NIST recommended
values. The relative differences between theory and experiment
for all three levels of the quartet 3s3p2 4P state is 3.1%, while
the mean relative difference for the rest of the states is less than
0.2%. In the third last column, the computed excitation energies
after accounting for CV correlation are displayed. When taking
into account CV effects the agreement with the observed val-
ues is better overall. Most importantly, for the 3s3p2 4P levels
the relative differences between observed and computed values
decrease to less than 0.6%. The likelihood that the 1s22s22p6

core overlaps with the 3s3p2 cloud of electrons is much less than
that for 3s2nl. Consequently, when CV correlation is taken into
account the lowering of the 3s3p2 energy levels is much smaller
than for levels belonging to any 3s2nl configuration. Thus, the
adjustments to the separation energies will be minor between
the ground state 3s23p and 3s2nl levels, but significant between
the 3s23p and 3s3p2 levels. In the last column of Table 1 the dif-
ferences ∆E = Eobs − Etheor, between the final (CV) computed
and the observed energies, are also displayed. In principle, there
are two groups of values; the one consisting of the 3s2nd con-
figurations exhibits the smallest absolute discrepancies from the
observed energies. For the rest, the absolute discrepancies are
somewhat larger.

In the calculations, the labelling of the eigenstates is deter-
mined by the CSF with the largest coefficient in the expansion
of Eq. (2). When the same label is assigned to different eigen-
states, a detailed analysis can be performed by displaying their
LS -compositions. In Table 1, we note that two of the states have
been assigned the same label, i.e. 3s24d 2D, and thus the sub-
scripts a and b are used to distinguish them. In Table 2, we give
the LS -composition of all computed 3s2nd 2D states, includ-
ing the three most dominant CSFs. The 3s24d 2D term appears
twice as the CSF with the largest LS -composition. Moreover, the
admixture of the 3s3p2 2D in the four lowest 3s2nd 2D states is
rather strong and adds up to 65%. That being so, the 3s3p2 2D
does not exist in the calculated spectrum as a localized state.
For comparison, in the last column of Table 2 the labelling of
the observed 3s2nd 2D states is also given. In the observed con-
figurations presented by NIST (Kramida et al. 2018), the second
highest 3s2nd 2D term has not been given any specific label and
it is therefore designated as y 2D. The higher 2D terms are des-
ignated as 3s24d, 3s25d, and so on.

In Table 3, the current results for the lowest excitation ener-
gies are compared with the values from the MCHF-BP calcu-
lations by Froese Fischer et al. (2006). The latter calculations
are extended up to levels corresponding to the doublet 3s24p 2P
state. The differences ∆E between observed and computed ener-
gies are given in the last two columns for the different com-
putational approaches. As can be seen, when using the current
MCDHF and RCI method the agreement with the observed ener-
gies is substantially improved for all levels and in particular, for
those belonging to the quartet 3s3p2 4P state. In the MCHF-
BP calculations, core-valence correlation was neglected. As
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Table 1. Computed excitation energies in cm−1 for the 28 lowest states in Al i.

VV
Pos. Conf. LS J n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 CV Eobs

a ∆E

1 3s2 3p 2Po
1/2 0 0 0 0 0 0 0 0 0

2 2Po
3/2 108 108 108 108 108 108 104 112 8

3 3s2 4s 2S1/2 25 318 25 377 25 416 25 419 25 427 25 429 25 196 25 348 152
4 3s 3p2 4P1/2 27 788 27 966 28 073 28 085 28 109 28 111 28 863 29 020 157
5 4P3/2 27 833 28 011 28 118 28 130 28 154 28 156 28 907 29 067 160
6 4P5/2 27 906 28 085 28 191 28 204 28 227 28 230 28 981 29 143 162
7 3s2 3d 2D3/2 32 211 32 077 32 135 32 139 32 150 32 150 32 414 32 435 21
8 2D5/2 32 212 32 079 32 137 32 141 32 152 32 152 32 416 32 437 21
9 3s2 4p 2Po

1/2 32 770 32 879 32 935 32 937 32 946 32 949 32 801 32 950 149
10 2Po

3/2 32 786 32 894 32 951 32 952 32 962 32 964 32 814 32 966 152
11 3s2 5s 2S1/2 37 493 37 637 37 693 37 694 37 704 37 706 37 512 37 689 177
12 3s2 4d 2D3/2 a 38 733 38 659 38 711 38 707 38 717 38 718 38 951 38 929 −22
13 2D5/2 a 38 736 38 664 38 717 38 712 38 722 38 724 38 957 38 934 −23
14 3s2 5p 2Po

1/2 40 038 40 187 40 252 40 249 40 259 40 262 40 101 40 272 171
15 2Po

3/2 40 043 40 193 40 258 40 255 40 265 40 268 40 106 40 278 172
16 3s2 4f 2Fo

5/2 41 050 41 209 41 282 41 287 41 297 41 300 41 163 41 319 156
17 2Fo

7/2 41 050 41 209 41 282 41 287 41 297 41 300 41 163 41 319 156
18 3s2 6s 2S1/2 41 897 42 069 42 133 42 135 42 144 42 143 41 964 42 144 180
19 3s2 4d 2D3/2 b 42 105 42 071 42 121 42 108 42 119 42 121 42 232 42 234 2
20 2D5/2 b 42 109 42 075 42 126 42 112 42 123 42 125 42 237 42 238 1
21 3s2 6p 2Po

1/2 43 076 43 246 43 316 43 311 43 321 43 324 43 160 43 335 175
22 2Po

3/2 43 079 43 249 43 318 43 313 43 324 43 326 43 162 43 338 176
23 3s2 5f 2Fo

5/2 43 549 43 721 43 795 43 801 43 811 43 813 43 660 43 831 171
24 2Fo

7/2 43 549 43 721 43 795 43 801 43 811 43 813 43 660 43 831 171
25 3s2 5g 2G7/2 43 576 43 763 43 838 43 845 43 856 43 859 43 687 43 876 189
26 2G9/2 43 576 43 763 43 838 43 845 43 856 43 859 43 687 43 876 189
27 3s2 5d 2D3/2 44 034 44 059 44 115 44 096 44 106 44 109 44 126 44 166 40
28 2D5/2 44 036 44 062 44 117 44 099 44 109 44 111 44 129 44 169 40

Notes. The energies are given as a function of the increasing active set of orbitals, accounting for VV correlation, where n indicates the maximum
principle quantum number of the orbitals included in the active set. In Col. 10, the final energy values are displayed after accounting for CV
correlation. The differences ∆E between the final computations and the observed values are shown in the last column. The sequence and labelling
of the configurations and LS J-levels are in accordance with the final (CV) computed energies. The 3s24d 2D term is assigned twice throughout
the calculations (see also Table 2) and the subscripts a and b are used to distinguish them. See text for details.
References. (a)NIST Atomic Spectra Database 2018 (Kramida et al. 2018).

Table 2. LS -composition of the computed states belonging to the strongly mixed 3s2nd Rydberg series in Al i.

Pos. Conf. LS J LS -composition Label used in NIST(1)

7,8 3s2 3d 2D3/2,5/2 0.67 + 0.19 3s 3p2 2D + 0.04 3s2 4d 2D 3s2 3d 2D3/2,5/2
12,13 3s2 4d 2D3/2,5/2 a 0.41 + 0.22 3s2 3d 2D + 0.21 3s 3p2 2D 3s2 nd y 2D3/2,5/2
19,20 3s2 4d 2D3/2,5/2 b 0.44 + 0.25 3s2 5d 2D + 0.15 3s 3p2 2D 3s2 4d 2D3/2,5/2
27,28 3s2 5d 2D3/2,5/2 0.58 + 0.19 3s2 6d 2D + 0.10 3s 3p2 2D 3s2 5d 2D3/2,5/2

Notes. The three most dominant LS -components are displayed. The first percentage value corresponds to the assigned configuration and term. In
all these cases, the percentages for the two different LS J-levels are the same and are therefore given in the same line. In the last column we provide
the labelling of the corresponding observed terms as given in the NIST Database. The first column refers to the positions according to Table 1.
References. (1)Kramida et al. (2018).

mentioned above and also acknowledged by Froese Fischer et al.
(2006), capturing such correlation effects is crucial for 3s-hole
states, such as states with significant 3s3p2 composition. Fur-
thermore, the ∆EMCHF−BP values do not always have the same
sign, while the ∆ERCI differences are consistently positive. This
is particularly important when calculating transition properties.

On average, properties for transitions between two levels for
which the differences ∆EMCHF−BP have opposite signs are esti-
mated less accurately.

The complete transition data tables, for all computed E1
transitions in Al i, can be found at the CDS. In the CDS table,
the transition energies, wavelengths and the length form of the
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Table 3. Observed and computed excitation energies in cm−1 for the 10 and 20 lowest states in Al i and Al ii, respectively.

Pos. Conf. LS J Eobs
a ERCI

b ∆ERCI
b ∆EMCHF−BP

c

Al i
1 3s2 3p 2Po

1/2 0 0 0 0
2 2Po

3/2 112 104 8 22
3 3s2 4s 2S1/2 25 348 25 196 152 −235
4 3s 3p2 4P1/2 29 020 28 863 157 940
5 4P3/2 29 067 28 907 160 949
6 4P5/2 29 143 28 981 162 964
7 3s2 3d 2D3/2 32 435 32 414 21 250
8 2D5/2 32 437 32 416 21 251
9 3s2 4p 2Po

1/2 32 950 32 801 149 −98
10 2Po

3/2 32 966 32 814 152 −94
Al ii

1 3s2 1S0 0 0 0 0
2 3s 3p 3Po

0 37 393 37 445 −52 9
3 3Po

1 37 454 37 503 −49 8
4 3Po

2 37 578 37 626 −48 6
5 1Po

1 59 852 59 982 −130 −177
6 3p2 1D2 85 481 85 692 −211 −305
7 3s 4s 3S1 91 275 91 425 −150 −376
8 3p2 3P0 94 085 94 211 −126 −107
9 3P1 94 147 94 264 −117 −111
10 3P2 94 269 94 375 −106 −113
11 3s 4s 1S0 95 351 95 543 −192 −400
12 3s 3d 3D2 95 549 95 791 −242 −527
13 3D1 95 551 95 794 −243 −527
14 3D3 95 551 95 804 −253 −529
15 3s 4p 3Po

0 105 428 105 582 −154 −357
16 3Po

1 105 442 105 594 −152 −360
17 3Po

2 105 471 105 623 −152 −363
18 1Po

1 106 921 107 132 −211 −365
19 3s 3d 1D2 110 090 110 330 −240 −475
20 3p2 1S0 111 637 112 086 −449 −445

Notes. In the last two columns, the difference ∆E between observed and computed energies is compared for the current RCI and previous
MCHF-BP calculations.
References. (a)Kramida et al. (2018); (b)present calculations; (c)Froese Fischer et al. (2006).

Table 4. Statistical analysis of the uncertainties of the computed transi-
tion rates in Al i and Al ii.

Alow
RCI Ahigh

RCI No.Trans. 〈dT 〉 Q3 Max

Al i
1 1.00E+05 31 0.62 0.83 0.98
2 1.00E+05 1.00E+06 25 0.29 0.37 0.81
3 1.00E+06 1.00E+07 24 0.055 0.076 0.15
4 1.00E+07 20 0.043 0.073 0.14

Al ii
1 1.00E+05 109 0.07 0.11 0.61
2 1.00E+05 1.00E+06 81 0.09 0.11 0.67
3 1.00E+06 1.00E+07 99 0.043 0.036 0.39
4 1.00E+07 141 0.011 0.009 0.12

Notes. The transition rates are arranged in four groups and in Col. 4, the
number of transitions belonging to each group is given. In the last three
columns, the average value, the value Q3 containing 75% of the lowest
computed dT values, and the maximum value are given for each group
of transitions. All transition rates are given in s−1.

transition rates A, and weighted oscillator strengths g f are given.
Based on the agreement between the length and velocity forms
of the computed transition rates ARCI, a statistical analysis of the
uncertainties can be preformed. The transitions were arranged in
four groups based on the magnitude of the ARCI values. The first
two groups contain all the weak transitions with transition rates
up to A = 106 s−1, while the next two groups contain the strong
transitions with A > 106 s−1. In Table 4, the average value of the
uncertainties 〈dT 〉 (see Eq. (4)) is given for each group of transi-
tions. To better understand how the individual uncertainties dT
are distributed, the maximum value and the value Q3 contain-
ing 75% of the lowest computed dT values (third quartile) are
also given in Table 4. When examining the predicted uncertain-
ties of the individual groups, we deduce that for all the strong
transitions dT always remains below 15%. Most of the strong
transitions are associated with small uncertainties, which justi-
fies the low average values. Contrary to the strong transitions, the
weaker transitions are associated with considerably larger uncer-
tainties. This is even more pronounced for the first group of tran-
sitions where A is less than 105 s−1. The weak E1 transitions are
challenging, and therefore interesting, from a theoretical point
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Table 5. Comparison between computed and observed transition rates A in s−1 for selected transitions in Al i.

Upper Lower ARCI
a AMCHF−BP

b ACC
c Aobs

d,e, f Aobs
g

3s2 4s 2S1/2 3s2 3p 2Po
1/2 4.966E+07 5.098E+07 4.93E+07d C 4.70E+07B

3s2 3p 2Po
3/2 9.884E+07 10.15E+07 9.80E+07d C 9.90E+07B

3s2 5s 2S1/2 3s2 3p 2Po
1/2 1.277E+07 1.33E+07d C 1.42E+07C+

3s2 3p 2Po
3/2 2.534E+07 2.64E+07d C 2.84E+07C+

3s2 5s 2S1/2 3s2 4p 2Po
1/2 3.815E+06 3.00E+06D

3s2 4p 2Po
3/2 7.599E+06 6.00E+06D

3s2 4p 2Po
1/2 3s2 4s 2S1/2 1.580E+07 1.507E+07 1.69E+07e C+ 1.60E+07A

3s2 4p 2Po
3/2 3s2 4s 2S1/2 1.587E+07 1.514E+07 1.69E+07e C+ 1.50E+07B

3s2 3d 2D3/2 3s2 3p 2Po
1/2 6.542E+07 5.651E+07 6.30E+07d C 5.90E+07C+

3s2 3p 2Po
3/2 1.321E+07 1.140E+07 (1.20)E+07

3s2 3d 2D5/2 3s2 3p 2Po
3/2 7.877E+07 6.806E+07 7.40E+07d C 7.10E+07A

3s2 4d 2D3/2 a 3s2 3p 2Po
1/2 1.722E+07 1.92E+07 f C+

2.30E+07d C

3s2 3p 2Po
3/2 3.293E+06 5.99E+06 3.80E+06 f C+

4.40E+06d C

3s2 4d 2D5/2 a 3s2 3p 2Po
3/2 2.010E+07 3.60E+07 2.30E+07 f

2.80E+07d C

3s2 4d 2D3/2 b 3s2 3p 2Po
1/2 7.128E+07 7.61E+07 7.20E+07d C

5.26E+07 f

3s2 3p 2Po
3/2 1.386E+07 1.51E+07 1.40E+07d C

1.05E+07 f A

3s2 4d 2D5/2 b 3s2 3p 2Po
3/2 8.412E+07 9.07E+07 8.60E+07d C

6.31E+07 f

3s2 5d 2D3/2 3s2 3p 2Po
1/2 8.204E+07 6.60E+07d C

5.76E+07 f

3s2 3p 2Po
3/2 1.596E+07 1.26E+07 1.30E+07d C

1.15E+07 f

3s2 5d 2D5/2 3s2 3p 2Po
3/2 9.706E+07 7.58E+07 7.90E+07d C

6.91E+07 f

Notes. The present values from the RCI calculations are given in Col. 3. In the next two columns, theoretical values from former MCHF-BP and
close coupling (CC) calculations are displayed. The CC values complement the MCHF-BP values, which are restricted to transitions between
levels in the lower part of the Al i spectrum. All theoretical transition rates are presented in length form. The last two columns contain the results
from experimental observations. The experimental results go along with a letter grade, whenever accessible, which indicates the accuracy level.
The correspondence between the accuracy ratings and the estimated relative uncertainty of the experimental results is A ≤ 3%, B ≤ 10%, C+ ≤

15%, C ≤ 25%, D+ ≤ 30%, D ≤ 50%.
References. (a)Present calculations; (b)Froese Fischer et al. (2006); (c)Mendoza et al. (1995); (d)Wiese & Martin (1980); (e)Buurman et al. (1986);
( f )Davidson et al. (1990); (g)Vujnović et al. (2002).

of view, although they are less likely to be observed. The com-
putation of transition properties in the system of Al i is overall
far from trivial due to the extreme mixing of the 3s2nd 2D series.
Transitions involving any 2D state as upper or lower level appear
to be associated with large uncertainties. However, the predicted
energy separations are in excellent agreement with observations,
meaning that the LS -composition of the 3s2nd 2D states is well
described. This should serve as a quality indicator of the com-
puted transition data.

Transition rates Aobs evaluated from experimental measure-
ments are compared with the current RCI theoretical values (see
Table 5) and with values from the MCHF-BP calculations by
Froese Fischer et al. (2006) and the close coupling (CC) cal-
culations by Mendoza et al. (1995). Even though the measure-
ments by Davidson et al. (1990) are more recent than the com-
piled values by Wiese & Martin (1980), the latter seem to be in

better overall agreement with the transition rates predicted by
the RCI calculations. In all cases the ARCI values fall into the
range of the estimated uncertainties by Wiese & Martin (1980).
The only exceptions are the transitions with 3s24d 2D3/2,5/2 a as
upper levels, for which the ARCI values agree better with the
ones suggested by Davidson et al. (1990). Although the eval-
uated transition rates by Vujnović et al. (2002) slightly differ
from the other observations, they are still in fairly good agree-
ment with the present work. For the 3s24p 2Po

3/2 → 3s24s 2S1/2

and 3s23d 2D5/2 → 3s23p 2Po
3/2 transitions, the values by

Vujnović et al. (2002) are better reproduced by the AMCHF−BP
results, yet not enough correlation is included in the calcu-
lations by Froese Fischer et al. (2006) and the transition rates
predicted by the RCI calculations should be considered more
accurate. Whenever values from the close coupling (CC)
calculations are presented to complement the MCHF-BP
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Table 6. Comparison between computed and observed lifetimes τ in seconds for the 26 lowest excited states in Al i.

RCIa MCHF-BPb Expt.c,d,e
Pos. Conf. LS J τl τυ τl τobs

1 3s2 4s 2S1/2 6.734E-09 6.745E-09 6.558E-09 6.85(6)E-09c

2 3s 3p2 4P1/2 1.652E-03 1.182E-03 4.950E-03
3 4P3/2 6.702E-03 6.911E-03 13.24E-03
4 4P5/2 2.604E-03 3.681E-03 9.486E-03
5 3s2 3d 2D3/2 1.272E-08 1.372E-08 1.472E-08 1.40(2)E-08c

6 2D5/2 1.270E-08 1.371E-08 1.469E-08 1.40(2)E-08c

7 3s2 4p 2Po
1/2 6.329E-08 6.357E-08 6.621E-08 6.05(9)E-08e

8 2Po
3/2 6.300E-08 6.328E-08 6.590E-08 6.5 (2) E-08e

9 3s2 5s 2S1/2 2.019E-08 2.027E-08 1.98(5)E-08c

10 3s2 4d 2D3/2 a 3.117E-08 2.919E-08 2.95(7)E-08c

11 2D5/2 a 3.158E-08 2.953E-08 2.95(7)E-08c

12 3s2 5p 2Po
1/2 2.448E-07 2.532E-07 2.75(8)E-07c

13 2Po
3/2 2.429E-07 2.512E-07 2.75(8)E-07c

14 3s2 4f 2Fo
5/2 6.041E-08 6.162E-08

15 2Fo
7/2 6.041E-08 6.160E-08

16 3s2 6s 2S1/2 4.812E-08 4.885E-08
17 3s2 4d 2D3/2 b 1.136E-08 1.083E-08 1.32(3)E-08d

18 2D5/2 b 1.150E-08 1.093E-08 1.32(3)E-08d

19 3s2 6p 2Po
1/2 4.886E-07 6.952E-07

20 2Po
3/2 4.845E-07 6.882E-07

21 3s2 5f 2Fo
7/2 1.176E-07 1.172E-07

22 2Fo
5/2 1.175E-07 1.172E-07

23 3s2 5g 2G7/2 2.301E-07 2.315E-07
24 2G9/2 2.301E-07 2.315E-07
25 3s2 5d 2D3/2 1.011E-08 9.855E-09 14.0(2)E-09d

26 2D5/2 1.020E-08 9.921E-09 14.0(2)E-09d

Notes. For the current RCI calculations both length τl and velocity τυ forms are displayed. In Col. 6, the predicted lifetimes from MCHF-
BP calculations are given in length form. The last column contains available lifetimes from experimental measurements together with their
uncertainties.
References. (a)Present calculations; (b)Froese Fischer et al. (2006); (c)Buurman et al. (1986); (d)Davidson et al. (1990); (e)Buurman & Dönszelmann
(1990).

results, the ARCI values appear to be in better agree-
ment with the experimental values. Exceptionally, for the
3s25d 2D3/2,5/2 → 3s23p 2Po

3/2 transitions, the ACC values by
Mendoza et al. (1995) approach the corresponding experimen-
tal values more closely. Even so, the ARCI values are still
within the given experimental uncertainties. One should bear
in mind that according to the estimation of uncertainties by
Kelleher & Podobedova (2008b) the ACC values carry relative
uncertainties up to 30%. On the contrary, based on the agree-
ment between length and velocity forms, the estimated uncer-
tainties of the current RCI calculations for the above-mentioned
transitions are of the order of 3% percent. Therefore, we suggest
that the current transition rates are used as a reference.

From the computed E1 transition rates, the lifetimes of the
excited states are estimated. Transition data for transitions other
than E1 have not been computed in this work since the contribu-
tions to the lifetimes from magnetic or higher electric multipoles
are expected to be negligible. In Table 6 the currently computed
lifetimes are given in both length τl and velocity τυ forms. The
agreement between these two forms probes the level of accu-
racy of the calculations. Because of the poor agreement between
the length and velocity form of the quartet 3s3p2 4P and doublet
3s26p 2P states, the average relative difference appears overall to

be ∼8%. The differences between the length and velocity gauges
of the quartet 3s3p2 4P states are of the order of 25% on aver-
age. These long-lived states are associated with weak transitions
and computations involving such transitions are, as mentioned
above, rather challenging. In addition, we note that the relative
differences corresponding to the 3s26p 2P states exceed 40%.
As the computations involve Rydberg series, states between the
lowest and highest computed levels might not occupy the same
region in space. Nevertheless, these states are part of the same
multireference (MR). The highest computed levels correspond
to configurations with orbitals up to n = 6, such as 3s26p. To
obtain a better description of these levels it is probably necessary
to perform initial calculations including in the MR 3s2nl config-
urations with n = 7 and perhaps even n = 8. This would lead to
a more complete and balanced orbital set (Pehlivan Rhodin et al.
2017). When excluding the above-mentioned states, the mean
relative difference between τl and τυ is ∼3%, which is
satisfactory.

In Table 6, the lifetimes from the current RCI calcula-
tions are compared with results from the MCHF-BP calcula-
tions by Froese Fischer et al. (2006) and observations. Only for
the 3s24p 2P state are separated observed values of the lifetimes
given for the two fine-structure components. For the rest of the
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measured lifetimes, a single value for the two fine-structure lev-
els is provided. As can be seen, the overall agreement between
the theoretical and the measured lifetimes τobs is rather good.
However, the measured lifetimes are better represented by the
current RCI results than by the MCHF-BP values. For most of
the states, the differences between the RCI and MCHF-BP val-
ues are small, except for the levels of the quartet 3s3p2 4P state.
For these long-lived states, no experimental lifetimes exist for
comparison.

4.2. Al II

In Table A.1, the computed excitation energies, based on VV
correlation, are given as a function of the increasing active set
of orbitals. When adding the n = 12 correlation layer, the values
for all computed energy separations have converged. The agree-
ment with the NIST observed energies (Kramida et al. 2018) is,
at this point, fairly good. The mean relative difference between
theory and experiment is of the order of 1.2%. However, when
accounting for CV correlation, the agreement with the observed
values is significantly improved, resulting in a mean relative dif-
ference being less than 0.2%. Accounting for CV effects also
results in a labelling of the eigenstates that matches observations.
For instance, when only VV correlation is taken into account,
the 3F triplet with the highest energy is labelled as a 3s6f level.
After taking CV effects into account, the eigenstates of this
triplet are assigned the 3p3d configuration, now the one with
the largest expansion coefficient, which agrees with observa-
tions. There are no experimental excitation energies for the sin-
glet and triplet 3s6h 1,3H terms. In the last column of Table A.1,
the differences ∆E between computed and observed energies
are displayed. All ∆E values maintain the same sign, being
negative.

In Table 3, a comparison between the present computed exci-
tation energies and those from the MCHF-BP calculations by
Froese Fischer et al. (2006) is also performed for Al ii. The latter
spectrum calculations are extended up to levels corresponding to
the singlet 3p2 1S state and all types of correlation, i.e. VV, CV,
and CC, were accounted for. Both computational approaches are
highly accurate, yet the majority of the levels is better repre-
sented by the current RCI results. The average relative differ-
ence for the RCI values is ∼0.2% and for the MCHF-BP ∼0.3%.
Moreover, the ∆EMCHF−BP values do not always maintain the
same sign, while the ∆ERCI values do. Hence, in general, the
MCHF-BP calculations do not predict the transition energies as
precisely as the present RCI method.

For all computed E1 transitions in Al ii, transition data tables
can also be found at the CDS. In Table 4, a statistical analy-
sis of the uncertainties to the computed transition rates ARCI is
performed in a similar way to that for Al i. The transitions are
also arranged here in four groups. Following the conclusions
by Pehlivan Rhodin et al. (2017) and Pehlivan Rhodin (2018),
the transitions involving any of the 3s7p 1,3P states have been
excluded from this analysis. The discrepancies between the
length and velocity forms for transitions including the 3s7p 1,3P
states are consistently large, and thus the computed transition
rates are not trustworthy. We note that overall the average uncer-
tainty, as well as the value that includes 75% of the data, appear
to be smaller, for each group of transitions, than the predicted
values in Al i. Nevertheless, the maximum values of the uncer-
tainties for the last two groups are larger in comparison to Al i.
This is due to some transitions involving 3p3d 3F as the upper
level. The strong mixing between the 3p3d 3F and the 3s6f 3F
levels results in strong cancellation effects. Such effects often

hamper the accuracy of the computed transition data and result
in large discrepancies between the length and velocity forms.

In Table 7, current RCI theoretical transition rates are
compared with the values from the MCHF-BP calculations
by Froese Fischer et al. (2006) and, whenever available, results
from the B-spline configuration interaction (BSCI) calcula-
tions by Chang & Fang (1995). For the majority of the tran-
sitions, there is an excellent agreement between the RCI
and MCHF-BP values with the relative difference being less
than 1%. Some of the largest discrepancies are observed
for the 3s3d, 3p2 1D → 3s3p 1,3Po transitions. According to
Froese Fischer et al. (2006), correlation is extremely important
for transitions from such 1D states. In the MCHF-BP calcula-
tions, all three types of correlation, i.e. VV, CV, and CC, have
been accounted for; however, the CSF expansions obtained from
SD-substitutions are not as large as in the present calculations
and the LS -composition of the configurations might not be pre-
dicted as accurately. Hence, the evaluation of line strengths for
transitions involving 1D states and in turn the computation of
transition rates involving these states will be affected. Com-
puted transition rates using the BSCI approach are provided
for transitions that involve only singlet states. The BSCI cal-
culations do not account for the relativistic interaction and no
separate values are given for the different fine-structure com-
ponents of triplet states. For the 3p2 1D → 3s3p 1Po transition,
the discrepancy between the RCI and BSCI values is also quite
large. On the other hand, for the 3s3d 1D → 3s3p 1Po transi-
tion, the BSCI result is in perfect agreement with the present
ARCI value. The agreement between the current RCI and BSCI
transition rates exhibits a broad variation. The advantage of the
BSCI approach is that it takes into account the effect of the
positive-energy continuum orbitals in an explicit manner. Never-
theless, the parametrized model potential that is being used in the
work by Chang & Fang (1995) is not sufficient to describe states
that are strongly mixed. Finally, we note the discrepancy for the
3s4p 1Po → 3s2 1S0 transition, which is quite large between the
RCI and MCHF-BP values and inexplicably large between the
RCI and BSCI values.

In singly ionized aluminium, measurements of transition
properties are available only for a few transitions. In Table 7,
the available experimental results are compared with the the-
oretical results from the current RCI calculations, and with
the former calculations by Froese Fischer et al. (2006) and
Chang & Fang (1995). Transition rates have been experimen-
tally observed for the 3s3p 1,3Po

1 → 3s2 1S0 transitions in the
works by Kernahan et al. (1979), Smith (1970), Berry et al.
(1970) and Head et al. (1976), and by Träbert et al. (1999) and
Johnson et al. (1986), respectively. In Table 7, the average value
of these works is displayed. The agreement with the current
RCI results is fairly good. Nonetheless, the averaged Aobs by
Träbert et al. (1999) and Johnson et al. (1986) is in better agree-
ment with the value by Froese Fischer et al. (2006). Additionally,
Vujnović et al. (2002) provided experimental transition rates for
the 3p2 1D2 → 3s3p 1P1 and 3p2 1D2 → 3s3p 3P1,2 transitions
by measuring relative intensities of spectral lines. These experi-
mental results, however, differ from the theoretical values.

In the last portion of Table 7, current rates for transitions
between states with higher energies are compared with the
results from the close coupling (CC) calculations by Butler et al.
(1993) and the early results from the configuration interaction
(CI) calculations by Chang & Wang (1987). The results from the
latter two calculations are found to be in very good agreement.
Furthermore, the agreement between the RCI results and
those from the CC and CI calculations is also very good
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Table 7. Comparison between computed and observed transition rates A in s−1 for selected transitions in Al ii.

Upper Lower ARCI
a Atheor

b,c Atheor
e, f Aobs

d,h,g

3s3p 3Po
1 3s2 1S0 3.054E+03 3.277E+03b 3.30E+03h

3s3p 1Po
1 3s2 1S0 1.404E+09 1.400E+09b 1.486E+09 f 1.45E+09g

3s4s 3S1 3s3p 3Po
0 8.612E+07 8.572E+07b

3s3p 3Po
1 2.555E+08 2.547E+08b

3s3p 3Po
2 4.173E+08 4.162E+08b

3s4s 1S0 3s3p 1Po
1 3.422E+08 3.455E+08b 3.408E+08 f

3p2 1D2 3s3p 1Po
1 2.523E+05 3.804E+05b 3.980E+05 f 1.84E+04d

3s3p 3Po
1 1.790E+04 2.016E+04b 0.19E+04d

3s3p 3Po
2 2.827E+04 3.141E+04b 0.30E+04d

3p2 3P0 3s3p 3Po
1 1.236E+09 1.235E+09b

3p2 3P1 3s3p 3Po
0 4.148E+08 4.144E+08b

3s3p 3Po
1 3.058E+08 3.062E+08b

3s3p 3Po
2 5.170E+08 5.167E+08b

3p2 3P2 3s3p 3Po
1 3.145E+08 3.144E+08b

3s3p 3Po
2 9.264E+08 9.272E+08b

3p2 1S0 3s3p 1Po
1 1.020E+09 6.738E+08b

3s3p 3Po
1 5.021E+08 3.399E+07b

3s3d 3D2 3s3p 3Po
1 8.977E+08 9.072E+08b

3s3p 3Po
2 3.019E+08 3.046E+08b

3s3d 3D3 3s3p 3Po
2 1.197E+09 1.208E+09b

3s3d 1D2 3s3p 1Po
1 1.388E+09 1.429E+09b 1.388E+09 f

3s4p 3Po
0 3s4s 3S1 5.639E+07 5.705E+07b

3s3d 3D1 1.556E+07 1.520E+07b

3s4p 3Po
1 3s4s 3S1 5.649E+07 5.724E+07b

3s3d 3D1 3.905E+06 3.816E+06b

3s3d 3D2 1.172E+07 1.146E+07b

3s4p 3Po
2 3s4s 3S1 5.683E+07 5.762E+07b

3s3d 3D1 1.568E+05 1.541E+05b

3s3d 3D2 2.361E+06 2.312E+06b

3s3d 3D3 1.319E+07 1.294E+07b

3s4p 1Po
1 3s2 1S0 1.527E+06 0.981E+06b 5.079E+06 f

3p2 1D2 5.835E+07 5.897E+07b 6.307E+07 f

3s4s 1S0 3.109E+07 2.965E+07b 3.111E+07 f

3p3d 3Fo
2 3s3d 3D1 2.956E+08 2.07E+08c 2.14E+08e

3p3d 3Fo
3 3s3d 3D2 3.174E+08 2.19E+08c 2.25E+08e

3p3d 3Fo
4 3s3d 3D3 3.794E+08 2.47E+08c 2.54E+08e

3s4f 3Fo
2 3s3d 3D1 1.981E+08 1.97E+08c 1.98E+08e

3s4f 3Fo
3 3s3d 3D2 2.096E+08 2.09E+08c 2.07E+08e

3s4f 3Fo
4 3s3d 3D3 2.360E+08 2.35E+08c 2.33E+08e

3s5f 3Fo
2 3s3d 3D1 2.801E+07 2.40E+07c 2.50E+07e

3s5f 3Fo
4 3s3d 3D3 3.438E+07 2.85E+07c 2.90E+07e

3s6f 3Fo
2 3s3d 3D1 1.957E+07 2.90E+07c 3.10E+07e

3s4d 3D1 1.116E+07 1.07E+07c 1.00E+07e

3s6f 3Fo
3 3s3d 3D2 1.910E+07 3.07E+07c 3.30E+07e

3s4d 3D2 1.200E+07 1.14E+07c 1.10E+07e

3s6f 3Fo
4 3s3d 3D3 1.920E+07 3.46E+07c 3.70E+07e

3s4d 3D3 1.367E+07 1.28E+07c 1.20E+07e

Notes. The present values from the RCI calculations are given in Col. 3. In the next two columns, theoretical values from former MCHF-BP, close
coupling (CC), configuration interaction (CI), and B-spline configuration interaction (BSCI) calculations are given. The last column contains the
results from experimental observations. All theoretical transition rates are presented in length form.
References. (a)Present calculations; (b)Froese Fischer et al. (2006); (c)Butler et al. (1993); (d)Vujnović et al. (2002); (e)Chang & Wang (1987);
( f )Chang & Fang (1995); (g)Kernahan et al. (1979), Smith (1970), Berry et al. (1970), Head et al. (1976); (h)Träbert et al. (1999), Johnson et al.
(1986).

for the 3s4f 3F → 3s3d 3D transitions and fairly good for
the 3s5f 3F → 3s3d 3D transitions. On the other hand, for
the 3p3d, 3s6f 3F → 3s3d 3D transitions, the observed discrep-
ancy between the current RCI values and those from the two pre-

vious calculations is substantial. This outcome indicates that the
calculations by Butler et al. (1993) and Chang & Wang (1987)
are insufficient to properly account for correlation and further
emphasizes the quality of the present work.
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In the same way as for Al i, the lifetimes of Al ii excited
states were also estimated based on the computed E1 transitions.
In Table A.2, both length τl and velocity τυ forms of the cur-
rently computed lifetimes are displayed. As already mentioned,
the agreement between these two forms serves as an indica-
tion of the quality of the results. The average relative difference
between the two forms is ∼2%. The largest discrepancies are
observed between the length and velocity gauges of the singlet
3p2 1D state, and between the singlet and triplet 3s7p 1,3P states.
The highest computed levels in the calculations of Al ii corre-
spond to configuration states with orbitals up to n = 7, such
as 3s7p. Similarly to the conclusions for the lifetimes of Al i,
better agreement between the length and velocity forms of the
3s7p 1,3P states could probably be obtained by including 3snl
configurations with n > 7 in the MR.

In Table A.2, the lifetimes from the current RCI calculations
are compared with results from previous MCHF-BP and BSCI
calculations by Froese Fischer et al. (2006) and Chang & Fang
(1995), respectively. Except for the lifetimes of the triplet
3s3p 3Po

1 and singlet 3p2 1D2 states, the agreement between the
RCI and MCHF-BP calculations is very good. Furthermore, the
overall agreement between the RCI and BSCI calculations is suf-
ficiently good. Despite the poor agreement between the RCI and
BSCI values for the 3p2 1D2 and 3s7p 1,3P states, for the rest of
the states the discrepancies are small. The BSCI results are more
extended. However, no separate values are provided for the dif-
ferent LS J-components of the triplet states and the average life-
time is presented for them instead.

In Table A.2, the theoretical lifetimes are also com-
pared with available measurements. The measured lifetime of
the 3s3p 3Po

1 state by Träbert et al. (1999) and Johnson et al.
(1986) agrees remarkably well with the calculated value by
Froese Fischer et al. (2006). The agreement with the current
results is fairly good too. The lifetime of the 3s3p 1Po

1 state mea-
sured by Kernahan et al. (1979), Head et al. (1976), Berry et al.
(1970), and Smith (1970) is well represented by all theoretical
values. On the other hand, the results from the measurements of
the 3snf 3F states by Andersen et al. (1971) differ substantially
from the theoretical RCI values. For the 3snf 3F Rydberg series,
only theoretical lifetimes using the current MCDHF and RCI
approach are available. Given the large uncertainties associated
with early beam-foil measurements, the discrepancies between
theoretical and experimental values are in some way expected.
The only exception is the lifetime of the 3s5f 3F state, which
is in rather good agreement with the RCI values. In the experi-
ments by Andersen et al. (1971) the different fine-structure com-
ponents have not been separated and a single value is provided
for all three different LS J-levels.

5. Summary and conclusions

In the present work, updated and extended transition data and
lifetimes are made available for both Al i and Al ii. The compu-
tations of transition properties in these two systems are challeng-
ing mainly due to the strong two-electron interaction between the
3s3d 1D and 3p2 1D states, which dominates the lowest part of
their spectra. Thus, some of the states are strongly mixed and
highly correlated wave functions are needed to accurately pre-
dict their LS -composition. We are confident that in this work
enough correlation has been included to affirm the reliability
of the results. The predicted excitation energies are in excel-
lent agreement with the experimental data provided by the NIST
database, which is a good indicator of the quality of the produced
transition data and lifetimes.

We have performed an extensive comparison of the com-
puted transition rates and lifetimes with the most recent
theoretical and experimental results. There is a significant
improvement in accuracy, in particular for the more complex
system of neutral Al i. The computed lifetimes of Al i are in very
good agreement with the measured lifetimes in high-precision
laser spectroscopy experiments. The same holds for the mea-
sured lifetimes of Al ii in ion storage rings. The present calcula-
tions are extended to higher energies and many of the computed
transitions fall in the infrared spectral region. The new genera-
tion of telescopes are designed for this region and these transi-
tion data are of high importance. The objective of this work is
to make available atomic data that could be used to improve the
interpretation of abundances in stars. Lists of trustworthy ele-
mental abundances will permit the tracing of stellar evolution,
as well as the formation and chemical evolution of the Milky
Way.

The agreement between the length and velocity gauges of
the transition operator serves as a criterion for the quality of
the transition data and for the lifetimes. For most of the strong
transitions in both Al i and Al ii, the agreement between the
two gauges is very good. For transitions involving states with
the highest n quantum number for the s and p symmetries,
we observe that the agreement between the length and veloc-
ity forms is not as good. This becomes more evident when esti-
mating lifetimes of excited levels that are associated with those
transitions.
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Appendix A: Additional tables

Table A.1. Computed excitation energies in cm−1 for the 78 lowest states in Al ii.

VV
Pos. Conf. LS J n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 CV Eobs

a ∆E

1 3s2 1S0 0 0 0 0 0 0 0 0 0
2 3s 3p 3Po

0 36 227 36 280 36 298 36 318 36 332 36 335 37 445 37 393 −52
3 3Po

1 36 286 36 339 36 357 36 377 36 391 36 394 37 503 37 454 −49
4 3Po

2 36 405 36 459 36 477 36 496 36 511 36 514 37 626 37 578 −48
5 1Po

1 59 810 59 698 59 617 59 619 59 606 59 602 59 982 59 852 −130
6 3p2 1D2 83 542 83 596 83 620 83 641 83 657 83 660 85 692 85 481 −211
7 3s 4s 3S1 89 965 90 028 90 059 90 082 90 099 90 102 91 425 91 275 −150
8 3p2 3P0 92 679 92 709 92 716 92 736 92 750 92 752 94 211 94 085 −126
9 3P1 92 739 92 769 92 776 92 795 92 809 92 812 94 264 94 147 −117
10 3P2 92 855 92 885 92 892 92 912 92 926 92 928 94 375 94 269 −106
11 3s 4s 1S0 94 003 94 057 94 084 94 101 94 111 94 114 95 543 95 351 −192
12 3s 3d 3D2 94 262 94 243 94 241 94 262 94 278 94 280 95 791 95 549 −242
13 3D1 94 261 94 243 94 242 94 263 94 279 94 281 95 794 95 551 −243
14 3D3 94 263 94 242 94 239 94 261 94 276 94 279 95 804 95 551 −253
15 3s 4p 3Po

0 103 935 104 003 104 030 104 053 104 070 104 073 105 582 105 428 −154
16 3Po

1 103 948 104 017 104 044 104 067 104 084 104 087 105 594 105 442 −152
17 3Po

2 103 976 104 045 104 073 104 095 104 112 104 115 105 623 105 471 −152
18 1Po

1 105 597 105 643 105 655 105 673 105 683 105 685 107 132 106 921 −211
19 3s 3d 1D2 109 010 108 919 108 897 108 910 108 918 108 918 110 330 110 090 −240
20 3p2 1S0 111 100 110 804 110 659 110 643 110 618 110 608 112 086 111 637 −449
21 3s 5s 3S1 118 564 118 632 118 661 118 685 118 702 118 705 120 259 120 093 −166
22 1S 0 119 807 119 878 119 908 119 931 119 946 119 948 121 544 121 367 −177
23 3s 4d 3D2 120 013 120 034 120 045 120 068 120 085 120 088 121 684 121 484 −200
24 3D1 120 013 120 034 120 046 120 068 120 085 120 088 121 685 121 484 −201
25 3D3 120 014 120 034 120 045 120 068 120 084 120 087 121 688 121 484 −204
26 3s 4f 3Fo

2 121 657 121 739 121 772 121 797 121 815 121 818 123 606 123 418 −188
27 3Fo

3 121 659 121 742 121 775 121 799 121 817 121 820 123 608 123 420 −188
28 3Fo

4 121 663 121 745 121 778 121 802 121 820 121 824 123 612 123 423 −189
29 1Fo

3 121 735 121 818 121 852 121 876 121 894 121 898 123 657 123 471 −186
30 3s 4d 1D2 123 606 123 489 123 461 123 473 123 482 123 483 125 049 124 794 −255
31 3s 5p 3Po

0 124 108 124 185 124 212 124 236 124 254 124 257 125 869 125 703 −166
32 3Po

1 124 114 124 190 124 218 124 242 124 259 124 262 125 874 125 709 −165
33 3Po

2 124 126 124 203 124 231 124 254 124 272 124 275 125 887 125 722 −165
34 1Po

1 124 302 124 375 124 401 124 424 124 440 124 443 126 078 125 869 −209
35 3s 6s 3S1 130 615 130 689 130 716 130 740 130 758 130 761 132 386 132 216 −170

Notes. The energies are given as a function of the increasing active set of orbitals, accounting for VV correlation, where n indicates the maximum
principle quantum number of the orbitals included in the active set. In Col. 10, the final energy values are displayed after accounting for CV
correlation. The differences ∆E between the final computations and the observed values are shown in the last column. The sequence and naming
of the configurations and LS J-levels are in accordance with the final (CV) computed energies. The levels of the singlet and triplet 3s6h 1,3H and
the 3p3d 1D level have not yet been observed, and so the ∆E values are not available.
References. (a)NIST Atomic Spectra Database 2018 (Kramida et al. 2018).
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Table A.1. continued.

VV
Pos. Conf. LS J n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 CV Eobs

a ∆E

36 1S0 131 160 131 237 131 268 131 291 131 308 131 311 132 953 132 779 −174
37 3s 5d 3D2 131 265 131 307 131 326 131 348 131 365 131 368 133 013 132 823 −190
38 3D1 131 265 131 307 131 327 131 348 131 365 131 368 133 013 132 823 −190
39 3D3 131 266 131 307 131 326 131 347 131 365 131 368 133 017 132 823 −194
40 3s 5f 3Fo

2 131 641 131 712 131 745 131 769 131 787 131 790 133 639 133 438 −201
41 3Fo

3 131 647 131 718 131 751 131 776 131 794 131 797 133 644 133 443 −201
42 3Fo

4 131 655 131 727 131 760 131 785 131 803 131 806 133 654 133 450 −204
43 1Fo

3 131 968 132 048 132 082 132 106 132 124 132 128 133 866 133 682 −184
44 3s 5d 1D2 132 490 132 447 132 445 132 460 132 474 132 476 134 143 133 916 −227
45 3s 5g 3G3 132 487 132 577 132 611 132 636 132 654 132 657 134 359 134 184 −175
46 3G4 132 487 132 577 132 611 132 636 132 654 132 658 134 360 134 184 −176
47 3G5 132 487 132 577 132 611 132 636 132 654 132 657 134 360 134 184 −176
48 1G4 132 487 132 577 132 611 132 636 132 654 132 658 134 360 134 184 −176
49 3s 6p 1Po

1 133 288 133 366 133 387 133 411 133 428 133 431 135 132 134 919 −213
50 3Po

0 133 378 133 459 133 485 133 509 133 526 133 530 135 183 135 012 −171
51 3Po

1 133 381 133 462 133 488 133 512 133 530 133 533 135 186 135 016 −170
52 3Po

2 133 388 133 468 133 494 133 518 133 536 133 539 135 192 135 022 −170
53 3s 7s 3S1 136 870 136 949 136 975 136 999 137 014 137 017 138 675 138 500 −175
54 3s 6f 3Fo

2 136 665 136 628 136 655 136 678 136 695 136 698 138 810 138 521 −289
55 3Fo

3 136 684 136 649 136 677 136 699 136 717 136 720 138 829 138 539 −290
56 3Fo

4 136 709 136 677 136 704 136 727 136 745 136 748 138 862 138 562 −300
57 3s 7s 1S0 137 154 137 236 137 267 137 291 137 307 137 311 138 974 138 801 −173
58 3s 6d 3D2 137 217 137 273 137 297 137 314 137 331 137 333 139 005 138 815 −190
59 3D1 137 217 137 273 137 297 137 314 137 331 137 333 139 005 138 815 −190
60 3D3 137 218 137 273 137 297 137 314 137 331 137 333 139 010 138 815 −195
61 3s 6f 1Fo

3 137 562 137 625 137 657 137 681 137 699 137 702 139 437 139 245 −192
62 3s 6d 1D2 137 753 137 754 137 767 137 786 137 801 137 803 139 497 139 289 −208
63 3s 6g 3G3 137 898 137 988 138 022 138 046 138 065 138 067 139 766 139 591 −175
64 3G4 137 898 137 988 138 022 138 046 138 065 138 068 139 766 139 591 −175
65 3G5 137 898 137 988 138 022 138 046 138 065 138 067 139 766 139 591 −175
66 1G4 137 898 137 988 138 022 138 047 138 065 138 068 139 766 139 591 −175
67 3s 6h 3Ho

4 137 965 138 043 138 079 138 103 138 121 138 125 139 817
68 3Ho

5 137 965 138 043 138 079 138 103 138 121 138 125 139 817
69 1Ho

5 137 965 138 043 138 079 138 103 138 121 138 125 139 817
70 3Ho

6 137 965 138 043 138 079 138 103 138 121 138 125 139 817
71 3s 7p 1Po

1 138 286 138 364 138 360 138 384 138 401 138 402 140 148 139 919 −229
72 3Po

0 138 439 138 522 138 545 138 569 138 587 138 589 140 266 140 090 −176
73 3Po

1 138 441 138 524 138 547 138 571 138 589 138 591 140 268 140 092 −176
74 3Po

2 138 445 138 529 138 552 138 575 138 593 138 595 140 272 140 096 −176
75 3p 3d 3Fo

2 136 665 136 628 136 655 136 678 136 695 139 291 141 615 141 085 −531
76 3Fo

3 136 684 136 649 136 677 136 699 136 717 139 311 141 665 141 110 −555
77 3Fo

4 136 709 136 677 136 704 136 727 136 745 139 338 141 768 141 143 −625
78 3p 3d 1Do

2 140 333 140 372 140 385 140 408 140 425 140 428 142 964
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Table A.2. Comparison between computed and observed lifetimes τ in seconds for 75 excited states in Al ii.

RCIa MCHF-BPb BSCIc Expt.d,e, f
Pos. Conf. LS J τl τυ τl τobs

1 3s3p 3Po
1 3.274E-04 2.965E-04 3.051E-04 3.02 (2) E-04e

2 1Po
1 7.120E-10 7.089E-10 7.141E-10 6.70 E-10 6.90(13)E-10d

3 3p2 1D2 3.351E-06 2.630E-06 2.270E-06 2.51 E-06
4 3s4s 3S1 1.318E-09 1.325E-09 1.322E-09 1.32 E-09
5 3p2 3P0 8.091E-10 8.032E-10 8.098E-10
6 3P1 8.081E-10 8.023E-10 8.082E-10
7 3P2 8.059E-10 8.000E-10 8.054E-10
8 3s4s 1S0 2.921E-09 2.922E-09 2.893E-09 2.93 E-09
9 3s3d 3D2 8.337E-10 8.346E-10 8.252E-10 8.00 E-10
10 3D1 8.319E-10 8.328E-10 8.233E-10 8.00 E-10
11 3D3 8.358E-10 8.357E-10 8.277E-10 8.00 E-10
12 3s4p 3Po

0 1.390E-08 1.394E-08 1.384E-08 1.403E-08
13 3Po

1 1.386E-08 1.391E-08 1.379E-08 1.403E-08
14 3Po

2 1.379E-08 1.384E-08 1.369E-08 1.403E-08
15 1Po

1 1.099E-08 1.113E-08 1.116E-08 1.007E-08
16 3s3d 1D2 7.204E-10 7.192E-10 6.994E-10 7.20 E-10
17 3p2 1S0 9.804E-10 9.758E-10 9.720E-10 9.50 E-10
18 3s5s 3S1 2.767E-09 2.785E-09 2.78 E-09
19 1S0 4.059E-09 4.055E-09 4.33 E-09
20 3s4d 3D2 3.862E-09 3.872E-09 3.71 E-09
21 3D1 3.850E-09 3.860E-09 3.71 E-09
22 3D3 3.880E-09 3.889E-09 3.71 E-09
23 3s4f 3Fo

2 4.235E-09 4.254E-09 6.4 (5)E-09 f

24 3Fo
3 4.230E-09 4.248E-09 6.4 (5)E-09 f

25 3Fo
4 4.230E-09 4.256E-09 6.4 (5)E-09 f

26 1Fo
3 3.428E-09 3.438E-09

27 3s4d 1D2 1.366E-09 1.368E-09 1.31 E-09
28 3s5p 3Po

0 4.903E-08 4.941E-08 4.928E-08
29 3Po

1 4.862E-08 4.899E-08 4.928E-08
30 3Po

2 4.850E-08 4.903E-08 4.928E-08
31 1Po

1 1.315E-08 1.377E-08 1.263E-08
32 3s6s 3S1 5.196E-09 5.242E-09 5.19 E-09
33 1S0 7.265E-09 7.254E-09 7.61 E-09
34 3s5d 3D2 1.077E-08 1.081E-08 1.03 E-08
35 3D1 1.073E-08 1.077E-08 1.03 E-08

Notes. For the current RCI calculations length τl and velocity τυ forms are both displayed. In Cols. 6 and 7, the predicted lifetimes from MCHF-
BP and BSCI calculations are, respectively, given in length form. The last column contains available lifetimes from experimental measurements,
together with their uncertainties.
References. (a)Present calculations; (b)Froese Fischer et al. (2006); (c)Chang & Fang (1995); (d)Kernahan et al. (1979), Smith (1970), Berry et al.
(1970), Head et al. (1976); (e)Träbert et al. (1999), Johnson et al. (1986); ( f )Andersen et al. (1971).
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Table A.2. continued.

RCIa MCHF-BPb BSCIc Expt.d,e, f
Pos. Conf. LS J τl τυ τl τobs

36 3D3 1.085E-08 1.090E-08 1.03 E-08
37 3s5f 3Fo

2 1.337E-08 1.356E-08 1.4 (2)E-08 f

38 3Fo
3 1.328E-08 1.348E-08 1.4 (2)E-08 f

39 3Fo
4 1.320E-08 1.345E-08 1.4 (2)E-08 f

40 1Fo
3 5.981E-09 6.015E-09

41 3s5d 1D2 3.523E-09 3.525E-09 3.37 E-09
42 3s5g 3G3 1.389E-08 1.390E-08
43 3G4 1.389E-08 1.389E-08
44 3G5 1.389E-08 1.390E-08
45 1G4 1.383E-08 1.384E-08
46 3s6p 1Po

1 1.322E-08 1.425E-08 1.211E-08
47 3Po

0 1.147E-07 1.171E-07 1.105E-07
48 3Po

1 1.097E-07 1.122E-07 1.105E-07
49 3Po

2 1.137E-07 1.173E-07 1.105E-07
50 3s7s 3S1 9.039E-09 9.167E-09 8.78 E-09
51 3s6f 3Fo

2 2.041E-08 2.051E-08 1.5 (1)E-08 f

52 3Fo
3 2.111E-08 2.125E-08 1.5 (1)E-08 f

53 3Fo
4 2.222E-08 2.236E-08 1.5 (1)E-08 f

54 3s7s 1S0 1.174E-08 1.170E-08
55 3s6d 3D2 2.386E-08 2.399E-08 2.234E-08
56 3D1 2.376E-08 2.391E-08 2.234E-08
57 3D3 2.423E-08 2.445E-08 2.234E-08
58 3s6f 1Fo

3 9.655E-09 9.720E-09
59 3s6d 1D2 7.546E-09 7.518E-09 7.46 E-09
60 3s6g 3G3 2.415E-08 2.417E-08
61 3G4 2.412E-08 2.413E-08
62 3G5 2.417E-08 2.415E-08
63 1G4 2.373E-08 2.375E-08
64 3s6h 3Ho

4 3.753E-08 3.759E-08
65 3Ho

5 3.753E-08 3.759E-08
66 1Ho

5 3.753E-08 3.759E-08
67 1Ho

6 3.753E-08 3.759E-08
68 3s7p 1Po

1 1.238E-08 1.450E-08 1.081E-08
69 3Po

0 1.904E-07 2.090E-07 1.608E-07
70 3Po

1 1.897E-07 2.078E-07 1.608E-07
71 3Po

2 1.865E-07 2.148E-07 1.608E-07
72 3p3d 3Fo

2 2.769E-09 2.735E-09 3.5 (3)E-09 f

73 3Fo
3 2.736E-09 2.701E-09 3.5 (3)E-09 f

74 3Fo
4 2.586E-09 2.539E-09 3.5 (3)E-09 f

75 1Do
2 8.207E-10 8.198E-10
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ABSTRACT

Aims. The Landé g-factor is an important parameter in astrophysical spectropolarimetry, used to characterize the response of a line to
a given value of the magnetic field. The purpose of this paper is to present accurate Landé g-factors for states in B II, C I−IV, Al I−II,
Si I−IV, P II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II.
Methods. The multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods, which are implemented in
the general-purpose relativistic atomic structure package GRASP2K, are employed in the present work to compute the Landé g-factors
for states in B II, C I−IV, Al I−II, Si I−IV, P II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II. The accuracy of the wave functions
for the states, and thus the accuracy of the resulting Landé g-factors, is evaluated by comparing the computed excitation energies and
energy separations with the National Institute of Standards and Technology (NIST) recommended data.
Results. All excitation energies are in very good agreement with the NIST values except for Ti II, which has an average difference of
1.06%. The average uncertainty of the energy separations is well below 1% except for the even states of Al I; odd states of Si I, Ca
I, Ti II, Zr III; and even states of Sn II for which the relative differences range between 1% and 2%. Comparisons of the computed
Landé g-factors are made with available NIST data and experimental values. Analysing the LS -composition of the wave functions,
we quantify the departures from LS -coupling and summarize the states for which there is a difference of more than 10% between the
computed Landé g-factor and the Landé g-factor in pure LS -coupling. Finally, we compare the computed Landé g-factors with values
from the Kurucz database.

Key words. atomic data – magnetic fields

1. Introduction

Magnetic fields play a fundamental role in astrophysical
systems, and thus in the evolution of the Universe. Measurement
of the polarization of light as a function of wavelength, known
as spectropolarimetry, is the most powerful tool for the accu-
rate determination of magnetic fields in astrophysics. Highly
accurate atomic data (e.g. excitation energies, transition rates,
oscillator strengths, and Landé g-factors) are essential for
interpreting and modelling the spectropolarimetric observations
(Judge 2017). The need for atomic data have increased tremen-
dously over the last 20 years with the development of new instru-
mentation like the Daniel K. Inouye Solar Telescope (DKIST,
formerly ATST; Keil et al. 2009). The next generation ground-
based solar telescopes will also offer spectropolarimetric capa-

? Tables 5–23 are only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/639/A25

bilities covering a broad wavelength range from the visible
into the near-infrared, the latter of which is largely unexplored
spectroscopically.

When an atom or ion is placed in a magnetic field, level
splitting occurs that breaks the degeneracy of the energy lev-
els for the different magnetic quantum numbers. This splitting,
known as the Zeeman effect, is caused by the interaction between
the magnetic moment of the atom and an external magnetic
field (Cowan 1981) and is expressed in terms of the Landé
g-factor. Accordingly, the effective Landé g-factor of a spec-
tral line, which can be expressed in terms of the Landé g-
factors of the lower and upper levels, is an important parame-
ter in astrophysical spectropolarimetry used to characterize the
response of the line to a given value of the magnetic field
(Landi Degl’Innocenti 1982; Landi Degl’Innocenti & Landolfi
2004). The effective Landé g-factor, g, and the second order
effective Landé g-factor, G, are respectively related to the cir-
cular and the linear polarization of a spectral line produced by
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the Zeeman effect (Landi Degl’Innocenti & Landolfi 2004). For
this reason, detailed investigations of the magnetic fields require
knowledge of accurate Landé g-factors.

There are a number of measurements of Landé g-factors. In
the first half of 20th century massive efforts were made by atomic
physicists to establish the energy level structures of atoms and
ions from the observed spectral lines. The experimental Landé
g-factors were derived from the analysis of Zeeman patterns in
individual spectral lines produced in the magnetic fields. These
g-factors were collected and made available in the critical compi-
lation by Moore (1949). However, there was a surprising scarcity
of reliable data on observed Zeeman patterns among the spectra
of the light elements. For example, among the elements studied
in this work, the observed g-factors compiled in Moore (1949)
are available only for a few states in Ca I and Ti II, which reveals
a glaring need of further observations. Later on, Lott et al. (1966)
studied the Zeeman effect using strong pulsed magnetic fields
and derived the g-factors for a number of states in B I, C I, C III,
O II, O III, Mg I, Mg II, Si I, Si III, Si IV, Ca II, and Cu II. Li
(1972) measured the Zeeman effect of P II using the electrode-
less discharge tubes operated in a field of 32 215 G. The Landé
g-factor of the Sn II 5s5p2 4P1/2 level was measured by
David et al. (1980) by direct magnetic resonance. As of today
there are, to the knowledge of the authors, no experimental
efforts to cover the needs of Landé g-factors, and thus they have
to be calculated.

If there are no experimental or calculated data available, the
Landé g-factors in pure LS -coupling are sometimes used (see
Sect. 2). While in many cases this is a good approximation, there
are many cases where this fails, thus giving erroneous polariza-
tion profiles. One example is the Fe I transition 3d74p 5Fo

1 –
3d75s 5Fe

1 at 7389.398 Å, where the circular polarization is pro-
duced by the Zeeman effect due to the non-zero experimental
Landé g-factor value, which is instead missing under the LS -
coupling scheme because of the zero Landé g-factor (Li et al.
2017). More accurate values of the Landé g-factors are obtained
in the intermediate coupling approximation, as described in
Sect. 2 below. Using the Cowan code in the intermediate cou-
pling approximation, Biémont et al. (2010) calculated Landé
g-factors for elements along the sixth row of the periodic table.
These data were collected in the DESIRE database1. In this
context we should also mention the MCHF/MCDHF database
of Froese Fischer for which the Landé g-factors are provided
for a few collections2. Fully relativistic calculations of Landé
g-factors were pioneered by Cheng & Childs (1985) for states of
the 4fN6s2 configurations in rare-earth elements. More recently
relativistic g-factor calculations have been performed for states
in Ne I and Ne II (Fischer et al. 2004) and Si IX (Brage et al.
2000). A full set of g-factors was also calculated for the n =
2 states in beryllium-, boron-, carbon-, and nitrogen-like ions
(Verdebout et al. 2014).

The purpose of the present work is to compute accurate
Landé g-factors for states in B II, C I−IV, Al I−II, Si I−IV, P
II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II within the
fully relativistic scheme. Looking at the ions and states studied
in this work, the National Institute of Standards and Technology
(NIST) database (Kramida et al. 2019) reports Landé g-factors
for only 3 out of 100 states for C I, 76 out of 106 for P II, 15
out of 99 for Ti II, and 1 out of 22 for Sn II (see Table 1 for a
summary).

1 http://hosting.umons.ac.be/html/agif/databases/
desire.html
2 https://nlte.nist.gov/MCHF/

2. Theory

We start the theory section with a brief discussion of the Breit–
Pauli and intermediate coupling approximations, which provide
the necessary background for understanding the validity and
limitations of the often used pure LS -coupling approximation
of the Landé g-factors. The Breit–Pauli and intermediate cou-
pling approximations also provide the theoretical background for
the labelling and description of states by the LS -composition,
for example as done in the NIST Atomic Spectra Database
(Kramida et al. 2019). After this brief discussion we present the
fully relativistic theory and show how it links to the Breit–Pauli
and intermediate coupling approximations.

2.1. Multiconfiguration wave functions

In the non-relativistic multiconfiguration Hartree–Fock (MCHF)
approach the wave function Ψ for a state labelled γLS, where L
and S are the total orbital and spin angular quantum numbers
and γ represents the configuration and other quantum numbers
needed to specify the state, is expanded in terms of configuration
state functions (CSFs) with the same LS term:

Ψ(γLS ) =
∑

j

c jΦ(γ jLS ). (1)

The CSFs are constructed from products of one-electron spin
orbitals. The radial orbitals and the expansion coefficients of
the CSFs are determined by iteratively solving a set of cou-
pled differential equation resulting from the stationary condi-
tion of the energy functional of the non-relativistic Hamiltonian
(Fischer et al. 2016). Once radial orbitals have been obtained,
Breit–Pauli configuration interaction (CI) calculations can be
performed where the wave function is expanded in LS J-coupled
CSFs:

Ψ(γLS J) =
∑

j

c jΦ(γ jL jS jJ). (2)

In the CI calculation the expansion coefficients, c j, are obtained
by diagonalizing the Hamiltonian interaction matrix with respect
to the Breit–Pauli operators. This is the intermediate coupling or
LS J approximation. If the interaction matrix is ordered accord-
ing to LS terms the interaction has a block structure. Diago-
nal blocks represent interaction within CSFs of a given LS and
off-diagonal blocks between CSFs of different LS terms. If off-
diagonal interactions occur for a specific J we say that the LS
terms interact and as a result of this interaction the terms mix in
the wave function expansion.

In the fully relativistic multiconfiguration Dirac-Hartree-
Fock (MCDHF) approach the wave function Ψ for a state
labelled γJ is expanded in terms of j j-coupled CSFs:

Ψ(γJ) =
∑

j

c jΦ(γ jJ). (3)

The CSFs, Ψ(γJ), are constructed from products of relativistic
one-electron spin orbitals. The radial orbitals and the expansion
coefficients of the CSFs are determined by iteratively solving a
set of coupled differential equations resulting from the stationary
condition of energy functional of the relativistic Dirac-Coulomb
Hamiltonian (Grant 2007; Fischer et al. 2016). Once the radial
orbitals have been obtained, relativistic configuration interaction
(RCI) calculations can be performed where the Breit interac-
tion and quantum electrodynamic (QED) effects can be added to
the Hamiltonian. Relativistic wave functions are given in terms
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Table 1. Summary of ions, the number of computed energy levels Ncal−levels, and the number of Landé g-factors in NIST NNIST−gJ .

Ions Ncal−levels NNIST−gJ Ions Ncal−levels NNIST−gJ Ions Ncal−levels NNIST−gJ

B II 100 0 Si I 168 0 Ar IV 103 0
C I 100 3 Si II 56 0 Ca I 45 0
C II 69 0 Si III 106 0 Ti II 99 15
C III 114 0 Si IV 45 0 Zr III 88 0
C IV 53 0 P II 106 76 Sn II 22 1
Al I 28 0 S II 134 0
Al II 78 0 Cl III 87 0

of j j-coupled CSFs. In order to have a labelling that is consis-
tent with the one from the intermediate coupling approximation,
CSFs are transformed from j j-coupling to LS J-coupling using
the methods developed by Gaigalas et al. (2003, 2017).

2.2. Zeeman effect

The Zeeman effect is caused by the interaction between the mag-
netic moment of the atom and an external magnetic field. The
operator representing the interaction is given by

HM = −µ · B, (4)

where µ is the magnetic moment of the electrons and B is the
magnetic field. If the external magnetic field is weak such that
the magnetic interaction energy is small compared to the fine
structure separations, the interaction can be treated in first-order
perturbation theory with the wave functions from the Breit–Pauli
approximation or from the fully relativistic theory as zero-order
functions.

In the Breit–Pauli approximation the magnetic moment can
be written as

µ = −µB(L + gsS), (5)

where µB is the Bohr magneton and gs ≈ 2.00160 is the g-
factor of the electron spin corrected for QED effects. Using the
Wigner–Eckart theorem to relate the matrix elements of L + gsS
with the matrix element of J, it can be shown that the magnetic
moment is proportional to J, i.e.

µB(L + gsS) = µBgγJJ, (6)

where the factor of proportionality, gγJ , is the Landé g-factor.
Choosing the direction of the external field as the z-direction the
operator for the interaction can, using tensor-operator notation,
be written as

HM = µB

(
L(1)

0 + gsS(1)
0

)
B = µBgγJJ(1)

0 B. (7)

Inserting the wave function expansion from Eq. (2) and com-
puting the reduced matrix elements of the interaction gives the
Landé g-factor in intermediate coupling, i.e.

gγJ =
∑
i, j

cic j
〈γiLiS iJ‖L(1) + gsS(1)‖γ jL jS jJ〉

√
J(J + 1)(2J + 1)

· (8)

The matrix elements between the LS J-coupled CSFs can be
analytically evaluated to give

〈γLS J‖L(1) + gsS(1)‖γ′L′S ′J〉
√

J(J + 1)(2J + 1)
= δγγ′δLL′δS S ′gJ(LS ), (9)

where

gJ(LS ) = 1 + (gs − 1)
J(J + 1) + S (S + 1) − L(L + 1)

2J(J + 1)
(10)

is the Landé g-factor in pure LS -coupling (Cowan 1981). Sum-
ming up the contributions from the different LS terms, we have

gγJ =
∑
LS

w(LS )gJ(LS ), (11)

where w(LS ) is the accumulated squared expansion coefficients
for the CSFs with the specified LS term (Jönsson & Gustafsson
2002). The set of w(LS ) determine the LS J-composition of the
wave function. The Landé g-factor in intermediate coupling thus
provides a valuable probe of the coupling conditions in the atom
(Fawcett 1990). To summarize, the full sum in Eq. (11) gives the
Landé g-factor, gγJ , in the intermediate coupling approximation.
Truncating the sum to a single dominating LS term, often the
one used to label the state, gives the Landé g-factor, gJ(LS ), in
pure LS -coupling.

In the relativistic theory the interaction between the magnetic
moment of the atom and an external field can be written as

HM =
1
2

N · B, (12)

where

N(1)
q = −

N∑
j=1

i

√
8π
3

r jα j · Y
(0)
1q (r̂ j) (13)

is an operator of the same tensorial form as the magnetic dipole
hyperfine operator (Cheng & Childs 1985). Just as in the Breit–
Pauli approximation, we express the operator HM in terms of J
and the Landé g-factor, i.e.

HM =
1
2

N(1)
0 B = µBgγJJ(1)

0 B. (14)

Inserting the wave function expansion from Eq. (3) and evaluat-
ing the matrix elements of the interaction gives

gγJ =
∑
i, j

cic j
1

2µB

〈γiJ‖N(1)‖γ jJ〉
√

J(J + 1)(2J + 1)
· (15)

In the relativistic Dirac theory the electron g-factor is exactly 2.
The QED corrections to this factor lead to a correction of the
Landé g-factor. Defining the operator ∆N by

∆N(1)
q =

N∑
j=1

gs − 2
2

β jΣq j, (16)

the correction to the Landé g-factor is given by

∆gγJ =
∑
i, j

cic j
(gs − 2)

2
〈γiJ‖∆N(1)‖γ jJ〉
√

J(J + 1)(2J + 1)
· (17)
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3. Computational scheme

The accuracy of the computed Landé g-factors depends on the
quality of the wave functions. From Eq. (11) we see that the
g-factors require the mixing of LS -terms in the wave func-
tions to be accurately determined (Fischer et al. 2004). This in
turn depends on the CSFs expansions, what electron correlation
effects are captured, and how well the resulting wave functions
reproduce measured energy separations. For the studied atoms
and ions the CSF expansions, aimed at producing accurate ener-
gies, are based on the multireference-single-double (MR-SD)
approach (Fischer et al. 2016). In the MR-SD approach, the CSF
expansions are obtained first by defining a set of important con-
figurations referred to as the MR and then by allowing SD sub-
stitutions, according to some rules, of the orbitals in the MR
configurations to orbitals in an active set (AS) (see Olsen et al.
1988; Sturesson et al. 2007; Fischer et al. 2016). Depending on
the rules, substitutions for the CSF expansion will account for
valence–valence (VV), core–valence (CV), and core–core (CC)
electron correlation effects. The CSF expansions are systemati-
cally enlarged by increasing the active set along with the MR. A
number of studies show that expansions accounting for VV and
CV effects and based on reasonably large MR and active orbital
sets often are sufficient for reproducing energy separations with
high accuracy (Jönsson et al. 2017). The Breit interaction and
leading QED effects (e.g. vacuum polarization and self-energy)
can be accounted for in the following RCI calculations.

The computational schemes, as well as the evaluation of the
wave functions and atomic data for each atomic system, are
described in detail in Wang et al. (2018) (for B II), Papoulia et al.
(2019a) (for C III-IV), Papoulia et al. (2019b) (for Al I−II),
Pehlivan Rhodin et al. (2019) (for Si I−II), Atalay et al. (2019)
(for Si III-IV), Rynkun et al. (2019a) (for P II), Rynkun et al.
(2019b) (for S II, Cl III and Ar IV), and Rynkun et al. (2020) (for
Zr III). The corresponding manuscripts of C I-C IV by Li et al.,
Ti II by Li et al., and Sn II by Atalay et al. (in prep.). The ions, as
well as the details of the computational schemes and correlation
effects (e.g. targeted configuration states, MR for RCI calcula-
tions, definition of core orbitals, correlation model for final RCI
calculations, AS, and the number of generated CSFs) are sum-
marized in Table 2.

All calculations of the wave functions were done using the
MCDHF and RCI programs (Grant 2007; Fischer et al. 2016),
which are parts of general relativistic atomic structure package
GRASP2K (Jönsson et al. 2013; Fischer et al. 2019). The eval-
uation of the Landé g-factors was then done with the HFSZEE-
MAN programs (Andersson & Jönsson 2008; Li et al. 2020).

4. Evaluation of data

The accuracy of the Landé g-factors is to a large extent deter-
mined by the accuracy of the energy separations. In this section
we evaluate the accuracy of the calculated energy levels by com-
paring them with the NIST recommended data. We then present
the results for the Landé g-factors, gγJ , and compare them with
the Landé g-factors in pure LS -coupling, gJ(LS ). Finally, we
compare the Landé g-factors with values from Kurucz’s atomic
database (Kurucz 2017).

4.1. Energy levels

The computed excitation energies and wave function composi-
tion in LS -coupling of the targeted atomic states in the B II,
C I−IV, Al I−II, Si I−IV, P II, S II, Cl III, Ar IV, Ca I, Ti II,

Zr III, and Sn II ions are displayed in Tables 5−23, respectively,
and are available at the CDS. In the calculations the labelling of
the eigenstates is determined by the LS J-coupled CSF with the
largest coefficient in the expansion resulting from the transfor-
mation from j j-coupling to LS J-coupling using the methods by
Gaigalas et al. (2017).

One of the quality indicators of calculations is the ability
to reproduce the energy structure. Therefore, the accuracy of
the wave functions from the calculations can be evaluated by
comparing the calculated energy levels with data from the NIST
database (Kramida et al. 2019). Here we define the average per-
centage difference between the present calculations and NIST
as “Av. accuracy” to indicate the accuracy of the calculations.
In Table 3 a summary of the Av. accuracy is presented for the
targeted atoms and ions. As seen from Table 3, all energies are
in very good agreement with the NIST recommended values. In
particular, the Av. accuracy values are less than 0.1%; they are
0.089%, 0.088%, 0.044%, 0.004%, 0.05%, and 0.09%, respec-
tively, for the Be II, C II−IV, Si III, and Si IV ions. The Av.
accuracy values are less than 0.68% for C I, Al I−II, Si I−II,
P II, S II, Cl III, Ar IV, Ca I, Zr III, and Sn II. For Ti II the aver-
age difference is larger, about 1.06%. The excellent agreement
of the excitation energies with the NIST recommended values
allows us to infer that the corresponding wave functions are very
accurate (see the references given in Sect. 3 for each atom or ion
for more details on how to estimate the accuracy.)

As we have already discussed, the Landé g-factor depends
on the mixing of different LS terms, which in turn depends
on the separation of these terms. The accuracy of the energy
separation of the terms is thus a more proper measure of the
accuracy of the Landé g-factors than the excitation energies.
To evaluate the accuracy of the energy separation of the terms,
we define a new average accuracy parameter dES by (i) clas-
sifying the states into different blocks by J-values and parity,
one for each symmetry block; (ii) computing the energy sepa-
ration relative to the lowest state of each block, ES = Ei − Emin,
where Ei is the excitation energy and Emin is the lowest energy
of each block; (iii) computing the relative difference with the
NIST values, dES =

|ES−ES−NIST |

ES
, where ES−NIST is the energy

separation from the NIST database; and (iv) averaging the differ-
ence, dES =

∑
dES

NES
, where NES is the number of the energy sepa-

rations. The results are shown in Table 4 for even and odd states.
Generally, the uncertainties of the energy separations are larger
than those of the excitation energies, especially when the energy
separations are very small. However, for most of the levels, dES
is well below 1%. For a few levels for which ES is small, dES
is higher than 5% and these data have been excluded to obtain
the average difference values shown in Table 4 (one level for C I,
one for C III, one for Si I, one for Si II, one for Si III, one for Ar
IV, one for Ca I, and five levels for Ti II). Table 4 shows that the
average uncertainty dES is well below 1%, except for even states
of Al I; odd states of Si I, Ca I, Ti II, Zr III; and even states of
Sn II. For these levels the relative difference is between 1% and
2%. The good agreement of the energy separations of the terms
with the NIST data confirms the reliable values of the mixing
between the relativistic CSFs, which is a good indicator of the
quality of the produced Landé g-factors.

4.2. Landé g-factors

Tables 5−23 display the Landé g-factors, gγJ , for the lowest
states (shown in Table 1) in the B II, C I−IV, Al I−II, Si I−IV, P II,
S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II ions, respectively.
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Table 2. Summary of the computational schemes of B II, C I−IV, Al I−II, Si I−IV, P II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II.

Configurations MR-RCI Core orbitals Correlation AS NNCFs

B II (1), Nlevels = 100

2s2,2p2, 2s2,2p2, 1s VV + CV {11s,11p,11d,11f, e: 777 325
{2s,2p}nl (n ≤ 6, l ≤ 5) {2s,2p}nl (n ≤ 6, l ≤ 5) + CC (1s) 11g,11h,11i,11k} o: 800 410

C I, Nlevels = 100

2s2p3 2s2p3 1s VV + CV (1s) {11s,10p,10d,9f, e: 14 941 842
2s22p{n1s,n2p,n3d,4f} 2s22p{n1s,n2p,n3d,4f} 7g,6h} o: 15 572 953
(3 ≤ n1 ≤ 6, 2 ≤ n2 ≤ 5, 3 ≤ n3 ≤ 5) (3 ≤ n1 ≤ 6, 2 ≤ n2 ≤ 6, 3 ≤ n3 ≤ 5)

2p3{n1s,n2p,n3d}
(3 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 5, 3 ≤ n3 ≤ 6)
2s2p2{3s,3p,4p,6p,6d,7s}
2s2p{n1s,n2p,n3d,4f}6d
(3 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 5, 3 ≤ n3 ≤ 5)

C II, Nlevels = 69

2s2nl(n ≤ 6, l ≤ 4) 2s2p2, 2s2{n1s,n2p,n3d,n4f,n5g} 1s VV + CV (1s) {13s,13p,13d,13f, e: 6 623 511
2s27l(l ≤ 3) (3 ≤ n1 ≤ 7, 2 ≤ n2 ≤ 8, 3 ≤ n3 ≤ 7 10g,8h} o: 4 768 481
2s2p2, 2p3, 4 ≤ n4 ≤ 7, 5 ≤ n5 ≤ 6)
2s2p3s, 2s2p3p 2p3, 2p2{n1s,n2p,n3d,n4f,n5g}

(3 ≤ n1 ≤ 7, 4 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 7
4 ≤ n4 ≤ 7, 5 ≤ n5 ≤ 6)
2s2p{3s,4s,8s,3p,3d,4d,5d,6d,8d}
2s3s{3p,8p}

C III (2), Nlevels = 114

2snl(n ≤ 7, l ≤ 4) 2snl (n ≤ 7, l ≤ 4) 1s VV + CV (1s) {12s,12p,12d,12f, e: 1 578 620
2p2, 2p{3s,3p,3d} 2p2, 2p{3s,3p,3d} 11g,8h} o: 1 274 147

C IV (2), Nlevels = 53

1s2nl (n ≤ 8, l ≤ 4) 1s2nl (n ≤ 8, l ≤ 4) 1s CV + CC (1s) {14s,14p,14d,12f,12g, e: 1 077 872
1s26h 1s26h 8h,7i} o: 1 287 706

Al I (3), Nlevels = 28

3s3p2, 3s2{n1s,n2p,n3d,n4f,5g} 3s3p2, {3s2,3p2}{n1s,n2p,n3d,n4f,5g} 1s,2s,2p VV + CV (2p) {12s,12p,12d,11f, e: 4 362 628
(4 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 6, 3 ≤ n3 ≤ 6, (4 ≤ n1 ≤ 6, 3 ≤ n2 ≤ 6, 3 ≤ n3 ≤ 6, 11g,10h} o: 2 889 385
4 ≤ n4 ≤ 5) 4 ≤ n4 ≤ 5)

Al II (3), Nlevels = 78

3s2, 3p2, 3s6h, 3p3d 3s2, 3p2, 3s6h, 3p3d 1s,2s,2p VV + CV (2s,2p) {13s,13p,12d,12f,12g, e: 911 795
3s{n1s,n2p,n3d,n4f} 3s{n1s,n2p,n3d,n4f} 8h,7i} o: 1 269 797
(4 ≤ n1 ≤ 7, 3 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 6, (4 ≤ n1 ≤ 7, 3 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 6,
4 ≤ n4 ≤ 6) 4 ≤ n4 ≤ 6)

Si I (4), Nlevels = 168

3s23p2, 3s3p3, 3s23p5g 3s23p2, 3s3p3, 3p4, 3s23p5g, 3s3p23d, 1s,2s,2p VV + CV (2s,2p) {13s,12p,12d,11f,10g, e: 8 789 575
3s23p{n1s,n2p,n3d,n4f} 3p37d, 3s3p7d2, 3s23p3d, 3p35g, 9h,7i} for VV o: 9 097 389
(4 ≤ n1 ≤ 8, 4 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 6, {3s23p,3p3,3s3p3d}{n1s,n2p,n3d,n4f} {9p,7d,6f,5g} for CV
4 ≤ n4 ≤ 6) (4 ≤ n1 ≤ 8, 4 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 6

4 ≤ n4 ≤ 6), 3s3p3d5g

Si II (4), Nlevels = 56

3s3p2, 3s3p3d, 3s3p4s, 3s2{5g,6g} 3s3p2, 3s3p3d, 3s3p4s, 3s2{5g,6g} 1s,2s,2p VV + CV (2s,2p) {13s,12p,12d,11f,10g, e: 5 267 943
3s2{n1s,n2p,n3d,n4f} 3s2{n1s,n2p,n3d,n4f4} 9h,7i} for VV o: 6 582 233
(4 ≤ n1 ≤ 8, 3 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 7, (4 ≤ n1 ≤ 8, 3 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 7, {9p,7d,6f,5g} for CV
4 ≤ n4 ≤ 7) 4 ≤ n4 ≤ 7)

Si III (5), Nlevels = 106

3s2, 3p2, 3p4s, 3p4p, 3s2, 3p2, 3p4s, 3p4p, 1s,2s,2p VV + CV (2s,2p) {13s,13p,12d,12f,12g, e:1 401 150
3s{n1s,n2p,n3d,n4f,n5g} 3s{n1s,n2p,n3d,n4f,n5g} 9h} o: 1 760 209
(4 ≤ n1 ≤ 7, 3 ≤ n2 ≤ 7, 3 ≤ n3 ≤ 7, (4 ≤ n1 ≤ 9, 3 ≤ n2 ≤ 9, 3 ≤ n3 ≤ 8,
4 ≤ n4 ≤ 7, 5 ≤ n5 ≤ 7) 4 ≤ n4 ≤ 8, 5 ≤ n5 ≤ 8)
3pnd (3 ≤ n2 ≤ 4) 3pnd (3 ≤ n2 ≤ 4)

Si IV (5), Nlevels = 45

2s22p6nl (n ≤ 7, l ≤ 6) 2s22p6nl (n ≤ 9, l ≤ 6) 1s,2s,2p CV + CC (2s,2p) {13s,13p,13d,12f,12g, e: 995 020
12h,12i} o: 993 501

Notes. Nlevels is the number of the targeted levels computed in this work. Configuration denotes the targeted configuration states. MR-RCI denotes
multireference for relativistic configuration interaction calculations. Core orbitals denotes core orbitals defined in the calculations. Correlation
denotes correlation effects included in the calculation. The orbitals included in the CV and CC correlation effects are shown in parentheses and
the remaining core orbitals define an inactive closed core. AS denotes active set of orbitals; NCSFs is the number of generated configuration state
functions for the relativistic configuration interaction calculations.
References. (1) Wang et al. (2018); (2) Papoulia et al. (2019a); (3) Papoulia et al. (2019b); (4) Pehlivan Rhodin et al. (2019); (5) Atalay et al.
(2019); (6) Rynkun et al. (2019a); (7) Rynkun et al. (2019b); (8) Rynkun et al. (2020).
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Table 2. continued.

Configurations MR-RCI Core orbitals Correlation AS NNCFs

P II (6), Nlevels = 106

3s23p2, 3s3p23d, 3s3p3, 3s23p2, 3s3p23d, 3s3p3, 3s23d2, 3p4, 1s,2s,2p VV + CV (2p) {12s,11p,11d,10f,9g, e: 5 954 032
3s23p{n1s,n2p,n3d,n4f} 3s23d7d, 3s3p27d, 3s3p24p, 3p37d, 7h,7i} o: 4 815 663
(4 ≤ n1 ≤ 6, 4 ≤ n2 ≤ 6, 3 ≤ n3 ≤ 5, 3s23p{n1s,n2p,n3d,n4f}
4 ≤ n4 ≤ 5) (4 ≤ n1 ≤ 7, 4 ≤ n2 ≤ 6, 3 ≤ n3 ≤ 7,

4 ≤ n4 ≤ 5)
3p3{n1s,n2p,n3d,n4f} (4 ≤ n1 ≤ 7,
4 ≤ n2 ≤ 6, 3 ≤ n3 ≤ 7, 4 ≤ n4 ≤ 5)

S II (7), Nlevels = 134

3s3p4, 3s23p3, 3s3p33d 3s3p4, 3s23p3, 3s3p33d, 3p5 1s,2s,2p VV + CV (2p) {9s,9p,9d,8f,8g,8h,8i} e: 6 220 422
3s23p2{n1s,n2p,n3d,n4f} 3s23p2{n1s,n2p,n3d,n4f} {6s,6p,5d,5f} for S
(4 ≤ n1 ≤ 5, 4 ≤ n2 ≤ 5 (4 ≤ n1 ≤ 5, 4 ≤ n2 ≤ 5 from 2p
3 ≤ n3 ≤ 4, n4 = 4) 3 ≤ n3 ≤ 5, n4 = 4)

3p4{3d,4s,4p,4d,4f,5s,5p}
3s3p23d{3d,4s,4p,4d,4f,5s,5p}
Cl III (7), Nlevels = 87

3s3p4, 3s23p3, 3s3p33d, 3p5 3s3p4, 3s23p3, 3s3p33d, 3p5 1s,2s,2p VV + CV (2p) {9s,9p,9d,8f,8g,8h,8i} e: 6 466 816
3s23p2{3d,4s,4p,4d} 3p4{3d,4p}, 3s3p34s, 3s3p23d2 {6s,6p,5d,5f} for S o: 4 111 005

3s3p23d{4s,4p,4d}, 3s23p3d2 from 2p

Ar IV (7), Nlevels = 103

3s3p4, 3s23p3, 3s3p33d, 3p5 3s3p4, 3s23p3, 3s3p33d, 3p5 1s,2s,2p VV + CV (2p) {9s,9p,9d,8f,8g,8h,8i} e: 4 946 496
3s23p2{3d,4s,4p} 3s23p2{3d,4s,4p,4d,4f}, 3p43d {7s,6p,6d,6f,5g} for S o: 7 329 546

3s3p23d{3d,4s,4p}, 3s3d24s, 3s23d3 from 2p
3s23p3d2, 3s3p34s, 3p44p, 3p33d2

Ca I, Nlevels = 45

4s2, 4p2, 3d{4s,4p}, 4s2, 4p2, 3d2 1s,2s,2p, VV + CV {10s, 10p, 8d, 8f, 8g, 6h} e: 2 916 533
4s{4p,4d,4f,5s,5p,6s,6p} 4s{5s,6s,4p,5p,6p,4d,5d,4f} 3s,3p + CC (3s,3p) {10s,10p,8d} for CC o: 3 021 057

4p{5p,7p,4d,5d}
3d{4s,5s,4p,5p,4d,5d}

Ti II, Nlevels = 99

3d2{4s,4p}, 3d3, 3d4s2 3d2{4s,4p,4d}, 3d3, 3d{4s2,4p2,4d2} 1s,2s,2p, VV + CV {8s,8p,8d,8f,8g,8h,7i} e: 14 089 101
3d4s4p 3d4s{4p,4d,5s}, 4s2{4p,4d}, 4s{4p2,4d2} 3s,3p + CC (3s,3p) {8s,8p,8d} for CC o: 15 573 967

4s4p4d, 3d4s5p, 3d4p4d, 4p4d2

3p4{3d44s,3d5,3d34s2,3d44p,3d34s4p}

Zr III (8), Nlevels = 88

4d2, 5s2, 5p2, 5s5p, 4d2, 5s2, 5p2, 5p5d, 5s{5p,5d}, 1s,2s,2p,3s, VV + CV {11s,11p,10d,9f,7g,7h} e: 14 255 953
4d{4f,5s,5p,5d,6s,6p} 4d{4f,5s,5p,5d,6s,6p,6d} 3p,4s,4p + CC (4s,4p) o: 16 514 844

Sn II, Nlevels = 22

5s2{4f,5p,5d,6s,6p,6d,7s,7p}, 5s2{4f,5p,5d,6s,6p,6d,7s,7p, 1s,2s,2p,3s, VV + CV (4s, {14s,14p,13d,10f,10g, e: 1 329 994
5s5p2 7d,8s,8p}, 5s5p2 3p,4s,4p,4d 4p,4d) 8h,8i} o: 674 998

Table 3. Comparison of computed energy levels in the present work with data from the NIST database.

Ions Av. accuracy (%) Ions Av. accuracy (%) Ions Av. accuracy (%)

B II 0.089 Si I 0.25 Ar IV 0.21
C I 0.26 Si II 0.16 Ca I 0.68
C II 0.088 Si III 0.05 Ti II 1.06
C III 0.044 Si IV 0.09 Zr III 0.57
C IV 0.0044 P II 0.19 Sn II 0.22
Al I 0.60 S II 0.22
Al II 0.17 Cl III 0.18

In Table A.1, the computed gγJ values are compared with
the available experimental values for C I (Lott et al. 1966), C III
(Lott et al. 1966), P II (Li 1972), Si I (Lott et al. 1966), Si III
(Lott et al. 1966), Si IV (Lott et al. 1966), Ti II (Moore 1949),
and Sn II (David et al. 1980). The corresponding gJ(LS ) values
are also displayed in the third column for a comparison. From

Eq. (11) it is clear that there is a significant change in gγJ only
when there is a strong mixing between terms with greatly dif-
ferent gJ(LS ) values. For C I, C III, Si I, Si III, Si IV, and Sn II
the relative differences between gγJ and gJ(LS ) are rather small,
within 0.7%, meaning that the mixing between terms is either
small or occurs between terms with nearly the same gJ(LS ),
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Table 4. Comparison of computed energy separations with NIST data.

Ions dES (%) Ions dES (%) Ions dES (%)

Even Odd Even Odd Even Odd

B II 0.24 0.28 Si I 0.35 1.37 (∗) Ar IV 0.41 (∗) 0.23
C I 0.42 0.95 (∗) Si II 0.30 (∗) 0.24 Ca I 1.94 1.29 (∗)

C II 0.23 0.49 Si III 0.18 (∗) 0.89 (∗) Ti II 1.81 (∗) 1.55 (∗)

C III 0.059 (∗) 0.14 Si IV 0.062 0.050 Zr III 0.89 1.01
C IV 0.0051 0.0043 P II 0.23 0.82 Sn II 1.17 0.22
Al I 1.47 0.46 S II 0.82 0.45
Al II 0.24 0.47 Cl III 0.44 0.31

Notes. (∗)The values are obtained by excluding the levels with dES higher than 5%.

which will not change gγJ appreciably (Fischer et al. 2004). The
experimental values for the C and Si ions, displayed in the last
column, are obtained from observations of atomic Zeeman pat-
terns using strong pulsed magnetic fields (Lott et al. 1966). For
most of the levels the computed and the experimental gγJ-values
agree within the experimental errors, i.e. 1%−3% for C I, C III,
Si I, and Si III, and a factor of two higher for Si IV due to the
broad spectra lines. The good agreement between theory and
experiment, and with the gJ(LS ), indicates that these states of C
I, C III, Si I, Si III, and Si IV are well described in LS -coupling.
One exception is level 7 of Si IV for which the LS -composition
(see Table 15) is dominated by one term, giving gγJ = 0.66583
in close agreement with the value gJ(LS ) = 0.66667 in pure LS -
coupling. These values differ by more than 8% from the mea-
sured value gγJ = 0.72. Since there is excellent agreement with
the NIST recommended data, for the excitation energies and for
energy separations, we are confident in our value and suggest a
re-measurement for this level.

Some states of P II are strongly mixed in LS -coupling.
Out of the 76 levels in P II for which experimental Landé g-
factors are available, 23 levels have relative differences between
gγJ and gJ(LS ) greater than 3%. We especially note a 44%
difference for levels 27 and 50, a 30% difference for levels
29 and 54, a 29% difference for level 94, and a 22% differ-
ence for level 57. The departure from LS -coupling is quanti-
fied in Table 16, for example level 27, labelled 3D◦1, has the
composition 45% 3s2 3p 2P 3d 3D◦1, 26% 3s2 3p 2P 3d 3P◦, and
8% 3s 2S 3p3(2

3D) 3D◦. The gJ(LS ) of 3D1 has the relatively
small value of 0.50000, whereas the value for 3P1 is 1.50000, and
so the mixing results in an appreciable increase in the smaller
value. The experimental Landé g-factors of P II are from mea-
surements of the Zeeman effect using the electrodeless discharge
tubes operated in a given magnetic field (Li 1972). Comparisons
between the computed gγJ and measured values show that there
is a good agreement for most of the levels within the experimen-
tal uncertainties of 0.01 (0.02 for most of the gγJ values of 3p5d
levels), except for levels 27 and 29 for which the relative differ-
ence is about 5%, and for levels 49 and 51 for which the relative
difference is about 4%.

For Ti II there are 15 levels for which experimental data are
available. Of these 15 levels, 7 have relative differences between
gγJ and gJ(LS ) greater than 1%, especially 18% for level 18 and
23% for level 57. From the LS -percentage composition shown
in Table 21, level 18 has the composition 61% 3d3(2

3P) 2P1/2,
26% 3d2(3

2P) 3P 4s 2P1/2, and 3% 3d2(3
2P) 3P 4s 4P1/2. The gJ(LS )

for 2P1/2 has a relatively small value of 0.66607, whereas the
value for 4P1/2 is 2.63809 and the mixing results in a 17%

increase in the smaller value. Level 57 has the composition
of 51% 3d2(1

2D) 1D 4p 2D◦3/2, 29% 3d2(1
2D) 1D 4p 2P◦, and

5% 3d2(3
2P) 3P 4p 2D◦. The gJ(LS ) for 2D3/2 has a relatively

small value of 0.8, whereas the value for 2P3/2 is 1.33333, and
the mixing results in an appreciable change in the 3d24p 2D◦3/2
value to 0.98131. Compared with the NIST recommended Landé
g-factors of Ti II (Corliss & Sugar 1979; Sugar & Corliss 1985;
Saloman 2012), levels 18, 45, 56, and 57 have relative dif-
ferences of 15%, 15%, 5%, and 23%, respectively. The sug-
gested LS -percentage compositions are from the calculations
of Huldt et al. (1982). The experimental g-values were deter-
mined by Catalán from the Zeeman patterns observed by King
and Babcock and quoted by Russell (1927). They were pub-
lished by Moore (1949). For level 18, NIST gives similar val-
ues of the leading compositions with present calculation, 62%
3d3(2

3P) 2P1/2 and 24% 3d2(3
2P) 3P 4s 2P1/2, but not for that of

3d2(3
2P) 3P 4s 4P1/2, which mainly contributes to the changes

in gγJ . The same happens for level 45. The labelling of level
56 identifies the dominant component of the composition with
94% 3d2(3

2P) 3P 4p 2S◦1/2, which indicates a good description in
LS -coupling. The weak mixing results in gγJ = 1.99657 in rel-
ative to gJ(LS ) = 2.00000. However, NIST suggests 99% 2S◦1/2,
but gives an even larger gγJ value of 2.09. For level 57, NIST
suggests 48% 3d2(1

2D) 1D 4p 2D◦3/2 and 36% 3d2(1
2D) 1D 4p 2P◦

and gγJ = 1.21 in relative to the computed value gγJ = 0.98131.
As stated in Russell (1927), due to the limitations inher-
ent in old laboratory analyses, very few patterns have been
resolved which resulted in large uncertainties of the observed
g-values. It is highly desirable to redo the measurements by
using the current high-resolution instruments and techniques.
For level 3 of Sn II, LS -coupling is a good approximation
and the computed gγJ = 2.65984 agrees well with the measured
value of 2.66085 within the experimental uncertainty of 5%
(David et al. 1980).

In Fig. 1, we compare the computed gγJ values with gJ(LS ),
and with available results in Kurucz’s atomic database (Kurucz
2017) for all the atoms and ions presented in this work. The good
agreement between gγJ and gJ(LS ) in B II, C II, C III, C IV, Al
I, Al II, Si II, Si III, Si IV, and Ca I, indicates that these atoms
and ions are well described in LS-coupling approximation. For
some states of the rest of the atom and ions, the strong mixing of
LS -terms results in large differences between gγJ and gJ(LS ) by
>10%. Kurucz’s atomic data (Kurucz 2017), which are widely
adopted by the solar scientists for the spectropolarimetric mod-
elling, are either taken from the experimental results or, when
no experimental values are available, from semi-empirical val-
ues. From Fig. 1 we see that there is good agreement between
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Fig. 1. Comparison of computed Landé g-factors, gγJ , in the present work with values in LS -coupling, gJ(LS ) (red cross sign) and with Kurucz’s
data (black plus sign). Differences ((gother-gγJ)/gγJ) are given in percentage. The dashed lines indicate the −10% and 10% deviations.

the computed gγJ values and Kurucz’s data, except for a num-
ber of energy levels in C III, Si I, Ti II, and Zr III with relative
differences >10%. In Table A.2, we display all these states with
a relative difference between gγJ and gJ(LS ) of more than 10%.
Additionally, we present the gγJ values in the last column for
comparison. Except for the levels of P II and level 18 and 57 of Ti
II, for which the Kurucz’s data are from experimental results (see
discussion above), the others are semi-empirical determinations
of the Landé g-factor in intermediate coupling. The computed
gγJ using the fully relativistic MCDHF approach differ from
the semi-empirical values by more than 10% for several cases,
e.g. level 82 of C I; levels 40, 41, 68, 83, 138, and 144 of Si
I; level 87 of S II; levels 18 and 22 of Cl III; and levels 18

and 101 of Ar IV. The data for Sn II are absent in Kurucz’s
database.

5. Summary

In the present work Landé g-factors are computed for the B
II, C I−IV, Al I−II, Si I−IV, P II, S II, Cl III, Ar IV, Ca
I, Ti II, Zr III, and Sn II ions, all of which are of astro-
physical interest. The MCDHF and RCI methods, which are
implemented in the general-purpose relativistic atomic structure
package GRASP2K, are used in the present work. The accuracy
of the present calculations is validated by extensive comparisons
of the excitation energies and energy separations with the NIST
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recommended data. All excitation energies are in good agree-
ment with the NIST values. The Av. accuracy values are within
0.1%, 0.089%, 0.088%, 0.044%, 0.004%, 0.05%, and 0.09%,
respectively, for the Be II, C II−IV, Si III, and Si IV ions, and
are less than 0.68% for the C I, Al I−II, Si I−II, P II, S II, Cl III,
Ar IV, Ca I, Zr III, and Sn II ions. For Ti II, the average difference
is about 1.06%.

The Landé g-factor depends on the mixing of LS terms, which
in turn, depends on the separation of these terms. The accuracy
of the energy separations in each symmetry block is thus a more
proper measure of the accuracy of the Landé g-factors than the
excitation energies. The average accuracy of the energy separa-
tions is well below 1% except for even states of Al I; odd states of
Si I, Ca I, Ti II, Zr III; and even states of Sn II, all of which show
a relative difference of between 1% and 2%.

The computed gγJ values are compared with available exper-
imental values, and with the values in pure LS -coupling. The
differences with the values in LS -coupling are explained by
analysing wave function LS -compositions. The observed and
theoretical g-values differ by a small percentage in some cases,
which may be due to the limitations in old laboratory analyses.
It is highly recommended to redo the measurements for these
cases. We summarize the levels with a difference of more than
10% between the gγJ and gJ(LS ) values, and make a compar-
ison with the semi-empirical values from the Kurucz’s data-
base. The present calculations provide a substantial amount of
critically evaluated Landé g-factors that are useful for modelling
and diagnostics of astrophysical plasmas.
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Appendix A: Additional tables

Table A.1. Comparison of computed Landé g-factors, gγJ , with their
LS -coupling values gJ(LS ) and experimental values (Exp.).

No. State gJ(LS ) gγJ Exp.

C I (1)

2 2p2(3
2P) 3P1 1.50000 1.50109 1.5010623(50)

3 2p2(3
2P) 3P2 1.50000 1.50107 1.5010469(50)

10 2p 2P 3s 1P◦1 1.00000 1.00007 0.97

C III (1)

5 2s 2S 2p 1P◦1 1.00000 0.99990 1.01
9 2p2(1

2D)1D2 1.00000 0.99991 1.01

P II (2)(3)

7 3s 2S 3p3(2
3D) 3D◦1 0.50000 0.49910 0.504

8 3s 2S 3p3(2
3D) 3D◦2 1.16667 1.16713 1.16

9 3s 2S 3p3(2
3D) 3D◦3 1.33333 1.33399 1.329

10 3s 2S 3p3(2
1P) 3P◦2 1.50000 1.48750 1.486

11 3s 2S 3p3(2
1P) 3P◦1 1.50000 1.50077 1.5

13 3s2 3p 2P 3d 1D◦2 1.00000 1.01330 1.014
15 3s2 3p 2P 4s 3P◦1 1.50000 1.49450 1.495
16 3s2 3p 2P 4s 3P◦2 1.50000 1.50106 1.499
17 3s2 3p 2P 3d 3F◦2 0.66667 0.66594 0.666
18 3s2 3p 2P 3d 3F◦3 1.08333 1.08347 1.083
19 3s2 3p 2P 3d 3F◦4 1.25000 1.25051 1.25
20 3s2 3p 2P 4s 1P◦1 1.00000 1.00644 1.006
21 3s2 3p 2P 4p 1P1 1.00000 0.99420 0.998
22 3s2 3p 2P 4p 3D1 0.50000 0.50942 0.511
23 3s2 3p 2P 3d 1P◦1 1.00000 0.99699 1
24 3s2 3p 2P 4p 3D2 1.16667 1.16808 1.166
25 3s2 3p 2P 4p 3D3 1.33333 1.33404 1.334
26 3s2 3p 2P 3d 3P◦2 1.50000 1.37568 1.408
27 3s2 3p 2P 3d 3D◦1 0.50000 0.89293 0.94
28 3s2 3p 2P 3d 3D◦3 1.33333 1.33335 1.326
29 3s2 3p 2P 3d 3P◦1 1.50000 1.11039 1.05
31 3s2 3p 2P 3d 3D◦2 1.16667 1.29222 1.26
33 3s2 3p 2P 4p 3P1 1.50000 1.53101 1.525
34 3s2 3p 2P 4p 3P2 1.50000 1.49802 1.499
35 3s2 3p 2P 4p 3S1 2.00000 1.96742 1.968
36 3s2 3p 2P 3d 1F◦3 1.00000 1.00063 1.004
37 3s2 3p 2P 4p 1D2 1.00000 1.00189 1.002
40 3s 2S 3p3(2

3D) 1D◦2 1.00000 1.00010 0.998
41 3s 2S 3p3(2

1P) 1P◦1 1.00000 1.00064 0.99
43 3s2 3p 2P 5s 3P◦1 1.50000 1.46648 1.465
44 3s2 3p 2P 5s 3P◦2 1.50000 1.50104 1.497
45 3s2 3p 2P 5s 1P◦1 1.00000 1.03443 1.036
46 3s2 3p 2P 4d 3F◦2 0.66667 0.66790 0.664
47 3s2 3p 2P 4d 3F◦3 1.08333 1.08425 1.081
48 3s2 3p 2P 4d 3F◦4 1.25000 1.25053 1.25
49 3s2 3p 2P 4d 3P◦2 1.50000 1.33882 1.278
50 3s2 3p 2P 4d 3D◦1 0.50000 0.89316 0.87
51 3s2 3p 2P 4d 1D◦2 1.00000 1.05416 1.098
52 3s2 3p 2P 4d 3D◦3 1.33333 1.33185 1.33
54 3s2 3p 2P 4d 3P◦1 1.50000 1.10772 1.129
55 3s2 3p 2P 4d 3D◦2 1.16667 1.27311 1.284
56 3s2 3p 2P 5p 1P1 1.00000 0.94599 0.94
57 3s2 3p 2P 5p 3D1 0.50000 0.63857 0.62
58 3s2 3p 2P 5p 3D2 1.16667 1.18244 1.187
59 3s2 3p 2P 5p 3D3 1.33333 1.33383 1.34
61 3s2 3p 2P 5p 3P1 1.50000 1.46729 1.473
62 3s2 3p 2P 4d 1F◦3 1.00000 1.00138 1
63 3s2 3p 2P 5p 3P2 1.50000 1.47622 1.47
64 3s2 3p 2P 5p 3S1 2.00000 1.95020 1.96
65 3s2 3p 2P 4f 1F3 1.00000 1.02861 1.02
66 3s2 3p 2P 4f 3F2 0.66667 0.69005 0.674
67 3s2 3p 2P 4f 3F3 1.08333 1.02328 1.03
68 3s2 3p 2P 4f 3F4 1.25000 1.21827 1.22
69 3s2 3p 2P 5p 1D2 1.00000 1.00737 1.005

Table A.1. continued.

No. State gJ(LS ) gγJ Exp.

70 3s2 3p 2P 4f 3G3 0.75000 0.79709 0.79
71 3s2 3p 2P 4f 3G4 1.05000 1.07055 1.06
72 3s2 3p 2P 4f 3G5 1.20000 1.20042 1.2
73 3s2 3p 2P 4d 1P◦1 1.00000 0.99914 0.999
74 3s2 3p 2P 4f 1G4 1.00000 1.01177 1.01
75 3s2 3p 2P 4f 3D3 1.33333 1.31820 1.32
76 3s2 3p 2P 4f 3D2 1.16667 1.06628 1.063
77 3s2 3p 2P 4f 3D1 0.50000 0.49893 0.5
78 3s2 3p 2P 4f 1D2 1.00000 1.07863 1.083
81 3s2 3p 2P 6s 3P◦1 1.50000 1.41849 1.42
85 3s2 3p 2P 6s 3P◦2 1.50000 1.50082 1.5
87 3s2 3p 2P 6s 1P◦1 1.00000 1.08220 1.08
89 3s2 3p 2P 5d 3F◦2 0.66667 0.68597 0.69
90 3s2 3p 2P 5d 3F◦3 1.08333 1.09022 1.08
91 3s2 3p 2P 5d 3F◦4 1.25000 1.25053 1.25
93 3s2 3p 2P 5d 1D◦2 1.00000 1.13551 1.12
94 3s2 3p 2P 5d 3D◦1 0.50000 0.70581 0.69
95 3s2 3p 2P 5d 3D◦2 1.16667 1.17731 1.18
96 3s2 3p 2P 5d 3D◦3 1.33333 1.32274 1.33
97 3s2 3p 2P 5d 3P◦2 1.50000 1.33546 1.34
98 3s2 3p 2P 5d 3P◦1 1.50000 1.29786 1.3
101 3s2 3p 2P 5d 1F◦3 1.00000 1.00454 1.01

Si I (1)

2 3p2(3
2P) 3P1 1.50000 1.50110 1.52

3 3p2(3
2P) 3P2 1.50000 1.50095 1.50

4 3p2(1
2D) 1D2 1.00000 1.00009 1.01

8 3p 2P 4s 3P◦1 1.50000 1.49593 1.52
9 3p 2P 4s 3P◦2 1.50000 1.50110 1.49
10 3p 2P 4s 1P◦1 1.00000 1.00509 0.99
15 3p 2P 3d 1D◦2 1.00000 1.00005 1.02
32 3p 2P 3d 1P◦1 1.00000 0.99476 1.00

Si III (1)

5 3s 3p 1P◦1 1.00000 0.99995 0.98
6 3p2 1D2 1.00000 1.00010 0.98
13 3s 4s 3S1 2.00000 2.00221 2.00
16 3s 3d 1D2 1.00000 0.99996 0.99
18 3s 4p 3P◦1 1.50000 1.50050 1.55
19 3s 4p 3P◦2 1.50000 1.50109 1.49
20 3s 4p 1P◦1 1.00000 1.00054 1.01
27 3s 4d 1D2 1.00000 1.00000 1.00

Si IV (1)

6 4s 2S1/2 2.00000 2.00225 1.98
7 4p 2P◦1/2 0.670000 0.66583 0.72
8 4p 2P◦3/2 1.33000 1.33405 1.34
9 4d 2D5/2 1.20000 1.20043 1.16
15 5p 2P◦3/2 1.33000 1.33407 1.34

Ti II (4)

11 3d2(1
2D) 1D 4s 2D3/2 0.800000 0.80900 0.80

15 3d3(4
3P) 4P1/2 2.66667 2.58681 2.63

16 3d3(4
3P) 4P3/2 1.73333 1.70373 1.74

18 3d3(2
3P) 2P1/2 0.666667 0.78123 0.66

19 3d2(3
2P) 3P 4s 4P1/2 2.66667 2.63809 2.60

21 3d3(2
3P) 2P3/2 1.33333 1.35842 1.33

29 3d2(3
2P) 3P 4s 2P1/2 0.666667 0.66607 0.66

30 3d2(3
2P) 3P 4s 2P3/2 1.33333 1.33324 1.33

45 3d2(3
2F) 3F 4p 2D◦3/2 0.800000 0.80021 0.92

46 3d2(3
2F) 3F 4p 2D◦5/2 1.20000 1.19159 1.20

48 3d2(3
2F) 3F 4p 4D◦1/2 0.000000 1.02735E-04 0.00

49 3d2(3
2F) 3F 4p 4D◦3/2 1.20000 1.18881 1.20

50 3d2(3
2F) 3F 4p 4D◦5/2 1.37143 1.36075 1.37

56 3d2(3
2P) 3P 4p 2S◦1/2 2.00000 1.99657 2.09

57 3d2(1
2D) 1D 4p 2D◦3/2 0.800000 0.98131 1.21

Sn II (5)

3 5s 5p2 4P1/2 2.66667 2.65984 2.6609

References. (1) Lott et al. (1966); (2) Li (1972); (3) Martin et al.
(1985); (4) Moore (1949); (5) David et al. (1980).
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Table A.2. Summary of levels with a relative difference ≥10% with
respect to gJ(LS ).

No. State gJ(LS ) gγJ Kurucz

C I

60 2p 2P 4d 3D◦1 0.50000 0.55335 0.527
69 2p 2P 4f 3G3 0.75000 0.83619 0.808
82 2p 2P 5p 3D1 0.50000 0.55210 0.610
92 2p 2P 5d 3F◦2 0.66667 0.75711 0.733
96 2p 2P 5d 3D◦1 0.50000 0.59981 0.604
97 2p 2P 6s 3P◦2 1.50000 1.31673 1.342
99 2p 2P 5d 3D◦2 1.16667 1.28419 1.277

Si I

40 3p 2P 4d 1D◦2a 1.00000 1.23605 1.093
41 3p 2P 4d 1D◦2b 1.00000 1.26057 1.403
45 3p 2P 5p 3D1 0.50000 0.66751 0.698
58 3p 2P 4f 3F2 0.66667 0.76027 0.755
59 3p 2P 4f 3G3a 0.75000 0.89982 0.910
63 3p 2P 4f 3G3b 0.75000 0.88920 0.881
68 3p 2P 4d 3D◦1 0.50000 0.62064 0.554
81 3p 2P 6p 3D1a 0.50000 0.75851 0.696
83 3p 2P 6p 3D1b 0.50000 1.10995 1.363
96 3p 2P 5f 3F2a 0.66667 0.81795 0.814
97 3p 2P 5f 3G3 0.75000 0.92167 0.873
99 3p 2P 5g 3G◦3a 0.75000 0.89339 0.894
111 3p 2P 5f 3F2b 0.66667 0.91694 0.923
116 3p 2P 5g 3G◦3b 0.75000 0.89222 0.891
131 3p 2P 7p 3D1 0.50000 0.69044 0.672
134 3p 2P 6d 3F◦2a 0.66667 0.88297 0.866
137 3p 2P 6d 3F◦2b 0.66667 0.82644 0.855
138 3p 2P 7p 1P1 1.00000 1.14422 1.299
144 3p 2P 6f 3G3 0.75000 0.83711 1.147
147 3p 2P 6f 3F2a 0.66667 0.85004 0.850
152 3p 2P 6d 1F◦3 1.00000 1.10913 1.031
157 3p 2P 6f 3F2b 0.66667 0.88535 0.892

P II

27 3s2 3p 2P 3d 3D◦1 0.50000 0.89293 0.940
29 3s2 3p 2P 3d 3P◦1 1.50000 1.11039 1.050
31 3s2 3p 2P 3d 3D◦2 1.16667 1.29222 1.260
49 3s2 3p 2P 4d 3P◦2 1.50000 1.33882 1.278
50 3s2 3p 2P 4d 3D◦1 0.50000 0.89316 0.870
54 3s2 3p 2P 4d 3P◦1 1.50000 1.10772 1.129
57 3s2 3p 2P 5p 3D1 0.50000 0.63857 0.620
93 3s2 3p 2P 5d 1D◦2 1.00000 1.13551 1.120
94 3s2 3p 2P 5d 3D◦1 0.50000 0.70581 0.690
97 3s2 3p 2P 5d 3P◦2 1.50000 1.33546 1.340
98 3s2 3p 2P 5d 3P◦1 1.50000 1.29786 1.300

S II

87 3s2 3p2(1
0S ) 1S 4p 2P◦1/2 0.66667 0.84052 0.945

102 3s 2S 3p4(3
2P) 2P3/2 1.33333 1.15616

104 3s2 3p2(3
2P) 3P 4f 4D◦7/2 1.42857 1.23570 1.281

106 3s2 3p2(3
2P) 3P 4d 2D3/2 0.80000 0.97639 0.887

107 3s2 3p2(3
2P) 3P 4f 2D◦5/2 1.20000 0.94834 0.930

108 3s2 3p2(3
2P) 3P 4f 4G◦7/2 0.98413 1.14087 1.109

111 3s2 3p2(3
2P) 3P 4f 4D◦3/2 1.20000 0.92391 0.919

114 3s2 3p2(3
2P) 3P 4f 2D◦3/2 0.80000 0.99823 1.005

118 3s2 3p2(3
2P) 3P 4f 4F◦3/2 0.40000 0.47703 0.475

Cl III

18 3s2 3p2(3
2P) 3P 3d 4D5/2 1.37143 1.17635 1.359

22 3s2 3p2(1
2D) 1D 3d 2F5/2 0.85714 1.05128 0.873

Ar IV

18 3s2 3p2(1
2D) 1D 3d 2F5/2 0.85714 1.02081 0.861

22 3s2 3p2(3
2P) 3P 3d 4D5/2 1.37143 1.20618 1.184

101 3s 2S 3p3(2
1P) 3P 3d 2D◦5/2 1.20000 1.34088 1.202

Ca I

13 3s2 3p6 3d 2D 4p 3F◦2 0.66667 0.74211 0.754

Ti II
18 3d3(2

3P) 2P1/2 0.66667 0.78123 0.660
57 3d2(1

2D) 1D 4p 2D◦3/2 0.80000 0.98131 1.210

Table A.2. continued.

No. State gJ(LS ) gγJ Kurucz

59 3d2(1
2D) 1D 4p 2P◦3/2 1.33333 1.19437 1.200

81 3d 2D 4s 3D 4p 4F◦3/2 0.40000 0.54562 0.462
83 3d 2D 4s 3D 4p 4F◦5/2 1.02857 1.13809 1.078
84 3d 2D 4s 3D 4p 4D◦3/2 1.20000 1.05899 1.140

Zr III

16 4d 2D 5p 3F◦2 0.66667 0.77976 0.807
34 4d 2D 5d 3G3a 0.75000 1.01649 0.925
35 4d 2D 5d 3G3b 0.75000 1.05195 1.146
36 4d 2D 6s 3D1 0.50000 0.63883 0.630
39 4d 2D 5d 1P1 1.00000 0.89734 0.887
48 4d 2D 5d 1D2 1.00000 1.13456 1.110
50 4d 2D 5d 3P2 1.50000 1.35112 1.373
55 4d 2D 6p 3D◦2 1.16667 0.92822 1.034
76 4d 2D 4f 3D◦1 0.50000 0.59790 0.605
77 4d 2D 4f 3D◦3 1.33333 1.17260 1.175
79 4d 2D 4f 1F◦3 1.00000 1.13107 1.126

Sn II

13 5s 5p2 2S1/2 2.00000 1.36349
14 5s 5p2 2P1/2 0.66667 1.31877

Notes. Kurucz’s data (Kurucz 2017) are shown in the last column for
comparision.

A25, page 11 of 11167





Paper V

D. T. Yordanov, L. V. Rodriguez, D. L. Balabanski, J. Bieroń, M. L. Bissell, K. Blaum,
B. Cheal, J. Ekman, G. Gaigalas, R. F. Garcia Ruiz, G. Georgiev, W. Gins, M. R.
Godefroid, C. Gorges, Z. Harman, H. Heylen, P. Jönsson, A. Kanellakopoulos, S.
Kaufmann, C. H. Keitel, V. Lagaki, S. Lechner, B. Maaß, S. MalbrunotEttenauer,
W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, N. S. Oreshkina, A. Pa
poulia, P. Pyykkö, P.G. Reinhard, S. Sailer, R. Sánchez, S. Schiffmann, S. Schmidt,
L. Wehner, C. Wraith, L. Xie, Z. Xu, and X. Yang
Structural trends in atomic nuclei from laser spectroscopy of tin
Communications Physics, 2020, 3(1), 107
Copyright 2020 The Authors.





ARTICLE

Structural trends in atomic nuclei from laser
spectroscopy of tin
Deyan T. Yordanov 1,2✉, Liss V. Rodríguez1,3, Dimiter L. Balabanski 4, Jacek Bieroń 5, Mark L. Bissell6,

Klaus Blaum 3, Bradley Cheal7, Jörgen Ekman8, Gediminas Gaigalas 9, Ronald F. Garcia Ruiz 2,24,

Georgi Georgiev 10, Wouter Gins11,25, Michel R. Godefroid12, Christian Gorges13,26, Zoltán Harman3,

Hanne Heylen2,3, Per Jönsson8, Anastasios Kanellakopoulos 11, Simon Kaufmann13, Christoph H. Keitel 3,

Varvara Lagaki2,14, Simon Lechner2,15, Bernhard Maaß13, Stephan Malbrunot-Ettenauer2, Witold Nazarewicz 16,

Rainer Neugart3,17, Gerda Neyens2,11, Wilfried Nörtershäuser 13, Natalia S. Oreshkina 3, Asimina Papoulia 8,18,

Pekka Pyykkö 19, Paul-Gerhard Reinhard20, Stefan Sailer21, Rodolfo Sánchez 22, Sacha Schiffmann12,18,

Stefan Schmidt13, Laura Wehner17, Calvin Wraith7, Liang Xie6, Zhengyu Xu11,27 & Xiaofei Yang 11,23

Tin is the chemical element with the largest number of stable isotopes. Its complete proton

shell, comparable with the closed electron shells in the chemically inert noble gases, is not a

mere precursor to extended stability; since the protons carry the nuclear charge, their spatial

arrangement also drives the nuclear electromagnetism. We report high-precision measure-

ments of the electromagnetic moments and isomeric differences in charge radii between the

lowest 1/2+, 3/2+, and 11/2− states in 117–131Sn, obtained by collinear laser spectroscopy.

Supported by state-of-the-art atomic-structure calculations, the data accurately show a

considerable attenuation of the quadrupole moments in the closed-shell tin isotopes relative

to those of cadmium, with two protons less. Linear and quadratic mass-dependent trends are

observed. While microscopic density functional theory explains the global behaviour of the

measured quantities, interpretation of the local patterns demands higher-fidelity modelling.
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Nuclear science greatly relies on observations, not only in
naturally-occurring, but also in laboratory-synthesized
nuclides, which represent the majority of approximately

3000 species discovered to date1. Either type can be studied by
laser spectroscopy, a non-destructive experimental technique
probing the hyperfine splitting of atomic energy levels induced by
the nuclear electromagnetism. An electric quadrupole moment,
for instance, reflects an anisotropic (deformed) charge distribu-
tion within the nucleus2. Appreciable nuclear deformation is
primarily found in species with open shells for both protons and
neutrons3,4. The tin isotopes, with their proton core complete
(spherical), may still acquire quadrupole moments through the
geometry of valence neutron orbitals. Those can be discussed in
terms of schematic theoretical descriptions such as the seniority
or generalized-seniority models5,6, which explain the striking
regularities previously observed, e.g., the nearly-constant energy
of excited states and simple patterns exhibited by other quan-
tities7–9. When looking into details, however, deviations from
regular behavior are revealed as fingerprints of the underlying
nucleonic shell structure and many-body correlations10–13.

Here we study the odd-mass isotopes 117–131Sn. An 11/2− state
with an unpaired neutron confined by the rules of quantum
mechanics to the unique-parity h11/2 orbital is present in each
case. The remaining valence orbitals in the neutron shell have the
opposite parity and considerably lower angular momenta, which
results in isomerism (metastability of an excited nuclear state).
Quadrupole moments in the closed-shell tin isotopes are found
at variance with those in the cadmium isotopes having two
protons less. Differences in radii between nuclear ground and
isomeric states, on the other hand, are shown to remain sur-
prisingly similar. Calculations in the framework of nuclear den-
sity functional theory with recently optimized input describe the
global behavior of the experimental observables. Interpretation of
the local patterns, however, calls for a dedicated microscopic
modeling.

Results and discussion
Measurements. Short-lived nuclei, naturally occurring only in
astrophysical phenomena such as supernovae explosions14, are
synthesized on Earth using particle accelerators. The tin isotopes
for this study were produced at the CERN-ISOLDE laboratory15

by uranium fission using fast protons traveling with more than
90% of the speed of light. Prior conversion to neutrons increased
the fission purity16. Tin atoms were laser ionized, accelerated to
an energy of 40 or 50 keV to form a continuous beam of fast-
traveling ions, and mass separated. Typically, each 100-ms seg-
ment of the beam was compressed into an ion bunch with a
temporal width of less than 10 μs using a linear Paul trap17.
Individual bunches were subsequently released, re-accelerated,
and guided with a dedicated set of electrostatic optics into a
volume of vaporized sodium for neutralization. Narrow-
bandwidth continuous-wave laser light was introduced along
the axis of ion/atom propagation. The atomic-beam energy and
the associated Doppler-shifted laser frequency were defined at the
sodium charge-exchange cell, whose electrostatic potential was
scanned in search of resonant atomic-beam fluorescence. The
latter was collected by telescopes of aspheric lenses and imaged
onto the photocathodes of photomultiplier tubes for single-
photon counting. The measurements were correlated with the
timing structure of the atomic beam, which allowed substantial
background suppression and high sensitivity. A sketch of the
experimental arrangement is shown in Fig. 1a.

Laser excitation of tin atoms was performed using the two
complementary transitions in Fig. 1b to resolve the nuclear
properties, as described in “Methods”. The laser system comprised

a diode-pumped solid-state laser, a tunable laser using either dye or
titanium–sapphire as the active medium, and a second-harmonic-
generation cavity. Two nuclear states were detected for each odd-
mass isotope in the range 117–131Sn, as shown in Fig. 2. The
hyperfine structure is characterized by a sizeable quadrupole
splitting in the 5p6s 1Po

1 state and a large magnetic splitting in the
5p6s 3Po

1 state. The two are correlated through the nuclear
electromagnetic properties and are thus fitted simultaneously. All
results are shown in Table 1. The magnetic moments therein
incorporate the latest computation of the absolute shielding
constant in tin18. The accuracy of quadrupole moments is ensured
by the theoretical work outlined in the following.

Atomic structure calculations. The fully relativistic multi-
configuration Dirac–Hartree–Fock (MCDHF) method was
employed to calculate the magnetic dipole hyperfine-structure
constants and electric-field gradients in the 5p6s 1Po

1 and 5p6s 3Po
1

states of tin (see “Methods” for the definition of these quantities).
Three independent series of large-scale calculations were per-
formed, adopting different computational strategies and correla-
tion models using the General Relativistic Atomic Structure
Package computer codes GRASP2K19 and GRASP201820, based
on the same relativistic MCDHF theory and methodology21,22.
Classes of electron excitations adopting different multireference
spaces and active orbital sets were investigated in detail to clarify
the role of electron correlation in the relevant matrix elements. A
combined effort was put in assessing the reliability of the resulting
ab initio electronic factors involved in M1 and E2 hyperfine
interactions for both levels (Papoulia, A. & Schiffman, S. et al.
mansuscript in preparation). The quadrupole moments from this
work are obtained with the electric-field gradient 706(50) MHz/b
in the singlet state, which is the mean value resulting from the
aforementioned calculations. With regard to the dipole hyperfine
constants in the triplet state, cross-checking calculations were
performed using the configuration interaction Dirac–Fock–Sturm
(CI-DFS) method23. The hyperfine anomaly (see “Methods”) was
estimated in separate multireference calculations for each isotope
using a Fermi charge distribution with adopted root mean square
radius and a parametrized squared harmonic-oscillator wave
function of the last unpaired neutron as magnetization distribu-
tion24. It reaches a maximum at 119gΔ131m= 0.05% due to the
limited overlap between the 3s and 1h nuclear wave functions and
partly due to the increase in the charge radius between the two
isotopes. The anomaly between positive-parity states was found to
be negligible with respect to the experimental precision.

Experimental trends. The data on quadrupole moments and
differences in mean square charge radii between nuclear ground
and isomeric states are compared in Fig. 3 with values measured
in the cadmium isotones25–27. A number of key observations are
worth being pointed out: (i) There is a significant attenuation of
the quadrupole moments of tin (Z= 50) with respect to cadmium
(Z= 48). Note that the observed charge (proton) quadrupole
moment originates from the nuclear response to an odd
neutron in a d3/2 or an h11/2 single-particle state. (ii) The fitted
trends in Fig. 3a, b cross each other close to zero, i.e., the h11/2
orbital is half full5,6 for both tin and cadmium at N= 73, as is d3/2
at N= 75. (iii) The quadrupole moments of tin in the 11/2− states
are by a factor of about two larger in magnitude than those in the
3/2+ states. This is consistent with a stronger quadrupole polar-
ization exerted by unique-parity h11/2 nucleons. (iv) All trends are
remarkably smooth, often near linear, at most quadratic. (v) The
quadrupole moments of the 11/2− states in tin exhibit a quadratic
behavior with changing neutron number, strikingly different from
the linear trend observed along the cadmium chain. (vi) The
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pattern is unexpectedly reversed for the 3/2+ states whose
quadrupole moments change linearly for tin and quadratically for
cadmium. (vii) Re-evaluated values for 113,115,119Sn28 in Fig. 3a, b
are consistent with the trends defined by the heavier isotopes.
These are independently calibrated to experimental γ-decay rates,
thus showing consistency between nuclear data and atomic the-
ory. (viii) The measured mean square charge-radii changes in
Fig. 3c are fairly similar for tin and cadmium. All these features
are discussed in the following.

Nuclear structure calculations. The theoretical analysis at the
level of nuclear density functional theory29 (DFT) employs the
standard Skyrme functional SV-min30 and the recently opti-
mized Fayans functional Fy(Δr, HFB)31, the latter containing
gradient terms in surface and pairing energies32,33. Both models
are optimized to the same large set of basic ground-state nuclear
data30. In addition, Fy(Δr, HFB) accommodates the isotopic

shifts of charge radii in the calcium chain, a feature which could
only be achieved by invoking the Fayans gradient terms31,34. The
calculations for the charge radius, which is an isotropic obser-
vable, were done in spherical approximation with pairing han-
dled at Hartree–Fock–Bogoliubov (HFB) level. The odd nucleons
were treated within the blocking ansatz35. In principle, the odd
nucleon polarizes the nucleus and so perturbs the spherical
shape. The impact of this polarization effect on charge radii and
correlations beyond mean field are small for heavier spherical
species as the tin isotopes36,37. To check the uncertainty from the
spherical mean-field approximation, we performed more elabo-
rate blocked HFB calculations allowing axial deformations and
spin polarization for the case of the SV-min model. In this
variant, each magnetic sub-state produces a slightly different
radius whose average is very close to the spherical result. This
supports our spherical calculations and the variance of charge
radii within a jm shell delivers an estimate of their theoretical
uncertainties.
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Fig. 1 Experimental arrangement and level scheme in the neutral atom of Sn. a From left to right: linear Paul trap for ion-beam bunching; continuous-
wave laser beams; electrostatic elements: deflector, quadrupole triplet, cylinder lens; alkali-vapor cell; optical detection: fused-silica aspheric lenses,
photomultiplier tubes. b Partial energy level scheme of neutral tin indicating the studied excitations and the subsequent fluorescence used for detection.
The shaded areas indicate the groups of 5p2 and 5p6s levels.
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Figure 4a shows the quadrupole moments of 11/2− states in
tin and cadmium which were obtained by blocking the m= 11/2
magnetic substate of the h11/2 orbital in calculations that
break spherical symmetry. It is satisfactory to see that the
general experimental pattern in Fig. 3a is reproduced. Namely,
the quadrupole moments exhibit a smooth increase as a function
of the neutron number, with the quadrupole moments of tin
being reduced in magnitude relative to cadmium. The enhanced
quadrupole correlations in cadmium stem from the enhanced
polarizability through the two g9/2 proton holes38,39. Indeed,
in the nuclear shell model40 and in nuclear DFT41, deformation
is primarily driven by the isoscalar neutron–proton (quadru-
pole) interaction, acting against the sphericity-favoring mono-
pole force, which includes the isovector pairing interaction.
According to the seniority coupling scheme5–7, the spectro-
scopic quadrupole moment should vanish at mid-shell. In SV-
min, the neutron h11/2 shell becomes half-filled at N= 75, as
seen in Fig. 4a. Experimentally, the zero crossover point is
at N= 73, which suggests that the single-particle energy of the
h11/2 shell is perhaps not optimal in our model. This nicely
demonstrates that the present high-precision data on quadru-
pole moments deliver extremely sensitive criteria for probing the
shell structure of a model.

Theoretical values for the isomeric charge-radii shifts of the
odd-mass tin isotopes are displayed in Fig. 4b, c. The error bars
on the SV-min results indicate the estimated uncertainty of
the spherical approach as compared to calculations allowing
shape deformation as well as spin polarization and subsequent
angular momentum projection, as explained above. We expect
similar uncertainty for the Fy(Δr, HFB) model. One finds an
acceptable agreement for the charge radii difference between
the 11/2− and the 3/2+ states, with a preference towards the
Fy(Δr, HFB) description, especially when considering the
theoretical uncertainty. This is not the case for the radii

changes between the 11/2− and the 1/2+ states, since the
experimental data approach the upper end of theoretical results
in Fig. 4b. A word of caution is in order here: the 1/2+ state is
particularly prone to a dynamical coupling with low-energy
quadrupole vibrations which is expected to enhance the charge
radius.

The trends of quadrupole moments, linear vs. quadratic, are
different for cadmium and tin owing to a significant configuration
dependence. The latter does not cause a substantial deviation
between the corresponding mean square charge-radii changes.
The future theoretical analysis would need to address these
features in greater detail together with variations of the magnetic
moments shown in Fig. 5. Any connection with the quadrupole
moments of the lowest 2+ states in the even–even isotopes42,43

should also be examined.

Perspective. Complex systems often display regular patterns.
Atomic nuclei, composite structures consisting of hundreds of
nucleons, are no exception; they often behave as ordered systems
obeying elementary rules5. The reason for such simplicities is the
presence of many-body symmetries resulting in a collective
nucleonic motion. A challenge for the modern microscopic the-
ory is to explain the origin of underlying symmetries.

In this work, we showed that electromagnetic properties of tin
nuclei evolve from one isotope to another in a simple way: along a
line or parabola. The microscopic mechanisms behind the
observed behavior are rooted in many-body polarization effects.
While the general trends are explained by theory, the regularities
seen at high experimental resolution provide a strong motivation
for further theoretical developments.

Similar effects are expected to be common for nuclei whose
valence nucleons move in a unique-parity shell. Dedicated studies
would be required to refine the systematics in lead and mercury
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isotopes44, which are the closest analogues of tin and cadmium in
terms of nuclear structure. While initial assessments could be made
by in-source measurements45,46, the high-resolution spectroscopic
techniques employed here, in combination with advanced atomic
calculations, will be essential for developing further understanding
of complex nuclear systems.

Methods
Hyperfine structure. The electromagnetic interaction of the nucleus with the
electron environment in an atom causes splitting of the energy levels which is about
a millionth of the fine-structure splitting, hence the term hyperfine structure. The
energy shift of the individual hyperfine components equals

EF � EJ ¼ A
k
2
þ B

3kðkþ 1Þ � 4IðI þ 1ÞJðJ þ 1Þ
8Ið2I � 1ÞJð2J � 1Þ ;

where A= μB0/(IJ) is proportional to the nuclear magnetic moment μ and the
average magnetic-flux density at the origin B0, B= eQVJJ is proportional to the
nuclear quadrupole moment Q and the average electric-field gradient at the
origin VJJ, F= I+ J is the total angular momentum of the atom, and k= F(F+ 1)
− I(I+ 1)− J(J+ 1). The hyperfine-structure splitting is determined by the A and
B parameters whose values are obtained from the experiment. The decay rate per

atom, commonly referred to as Racah intensities47, is given by

R
n
¼ γ

3τ
ð2J1 þ 1Þð2F1 þ 1Þð2F2 þ 1Þ

ð2I þ 1Þð2J2 þ 1Þ
J2 F2 I

F1 J1 1

� �2

;

where τ is the lifetime of the excited atomic state and γ is the ratio between the
induced and spontaneous emission coefficients, which incorporates the laser
intensity and the spectral lineshape.

Hyperfine anomaly. The A hyperfine constant is influenced by the extended
nuclear magnetization, known as Bohr–Weisskopf effect, and the extended nuclear
charge distribution, known as Breit–Rosenthal–Crawford–Schawlow correction.
Both contribute to the hyperfine anomaly:

1Δ2 ¼ A1

A2

I1
I2

μ2
μ1

� 1:

Following justification by atomic calculations, the anomaly is neglected in
our analysis. However, its estimated contribution to the 11/2− magnetic moments
is predicted to be on the level of the experimental precision and it is therefore
incorporated into the final uncertainties quoted in Table 1, as further discussed.
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Fig. 6 Fitted fluorescence spectra of 109,117–131Sn. The common frequency scales are relative to the fine-structure splittings in the transitions 5p2 3P0 !
5p6s 3Po1 and 5p2 1S0 ! 5p6s 1Po1 . Positive- and negative-parity states are represented by dashed and solid lines, respectively. Solid lines in the right column
also show the sum fit function. 119Sn is studied from a mass marker to observe only the stable 1/2+ g.s., and after target irradiation to detect the radioactive
11/2− state. Spectra of the stable g.s. in 115,117Sn (similar to 119Sn g.s.) are not shown. 133Sn, used together with 109Sn for calibration of the B-ratio, will be
published elsewhere.
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Isomer shifts. A change in the nuclear mean square charge radius between a
nuclear ground state and an isomer results in a common energy displacement of all
levels in a given hyperfine multiplet. The combined effect in a transition between
two atomic levels is manifested in spectra from laser spectroscopy as an apparent
“isomer shift”. For example, in Fig. 6, this causes the pattern of peaks associated
with the 11/2− state in the right column to “walk” towards higher frequencies in
the heavier isotopes. The isomer (frequency) shift is a product of the electronic
factor, related to a change in the total electronic charge density at the site of the
nucleus, and a change in the nuclear mean square charge radius:

δν ¼ Fλδhr2i:

Distinction should be made between Fλ and the total angular-momentum
quantum number F introduced earlier. The effect from a change in the nuclear
mass is negligible.

Fitting of multiple spectra. Routines for fitting multiple spectra were developed
in the ROOT data analysis framework48, making use of the WrappedMultiTF1
class for enveloping individual fit functions under a common χ2. Spectra of the
stable 1/2+ ground states in 115,117,119Sn, free of quadrupole splitting, were used
to determine the proportionality of A factors between the singlet and the triplet
state. With this condition applied to the spectra of 109Sn and 133Sn, which are
unperturbed by the presence of an isomer, one obtained the ratio of B factors.
Individual masses were used for ground and isomeric states49. The isomer shifts
were constrained to one another by a King plot50 of data on the even–even
isotopes. The three aforementioned ratios are presented in Table 1. Voigt line-
shapes were used with a predominant Lorentzian component emerging from the
fits. Resolved lines were fitted with free intensities. The heights of overlapping
lines were locked to each other, or to other resolved lines when available, by
using the Racah intensities. As constrained above, the fits fully determine the
nuclear spins.

Nuclear properties. Using frequency ratios from the nuclear magnetic resonance
of the 1/2+ states in 115,117,119Sn51, and the latest evaluation of the magnetic
moment of 119Sn18 with an adopted uncertainty of 0.01%52, one arrives at a
high-precision magnetic moment for each of the three isotopes, as given in
Table 1. These in combination with their corresponding A factors in the triplet

state are used to determine the ratio AIµN/(hµ)= 2396.6(7) MHz through a
weighted mean, which is then used to extract magnetic moments for the rest of
the isotopes. A small hyperfine-anomaly contribution of 0.05% (see the main
text) is added in quadrature to the uncertainties of the 11/2− magnetic moments.
The quadrupole moments are determined in the singlet state with the electric-
field gradient B/(hQ)= 706(50) MHz/b from this work. Using the B ratio
reported in Table 1, the electric-field gradient in the triplet state is found to be
−173(17) MHz/b. Both are substantially stronger in comparison with semi-
empirical estimates adopted in former studies53–55. This has had an impact on
the results of a recent phenomenological analysis56. Mean square charge-radii
changes are extracted in the triplet state with the field shift δν/δ〈r2〉= 0.274(57)
MHz/μb37.

Data availability
The authors declare that the data supporting this study are published within the paper as
histograms in Fig. 6.
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4Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, ul. prof. Stanisława Łojasiewicza 11, Kraków, Poland
5Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio av. 3, LT-10222, Vilnius, Lithuania
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Large-scale ab initio calculations of the electronic contribution to the electric quadrupole hyperfine constant
B were performed for the 5s25p6s 1,3Po

1 excited states of neutral tin. To probe the sensitivity of B to different
electron correlation effects, three sets of variational multiconfiguration Dirac-Hartree-Fock and relativistic
configuration interaction calculations employing different strategies were carried out. In addition, a fourth set of
calculations was based on the configuration interaction Dirac-Fock-Sturm theory. For the 5s25p6s 1Po

1 state, the
final value of B/Q = 703(50) MHz/b differs by 0.4% from the one recently used by Yordanov et al. [Commun.
Phys. 3, 107 (2020)] to extract the nuclear quadrupole moments Q for tin isotopes in the range 117−131Sn from
collinear laser spectroscopy measurements. Efforts were made to provide a realistic theoretical uncertainty for
the final B/Q value of the 5s25p6s 1Po

1 state based on statistical principles and on correlation with the electronic
contribution to the magnetic dipole hyperfine constant A.

DOI: 10.1103/PhysRevA.103.022815

I. INTRODUCTION

The uninterrupted developments of computational method-
ologies [1–3], together with the growing computational
resources at the disposal of atomic physicists, have increased
tremendously the accuracy of atomic structure calculations
in the past decades [4–11]. Theoretical predictions of atomic
properties have, therefore, become efficient tools to support
the corresponding experimental measurements. This is ex-
emplified by the recent precision measurements of hyperfine
structures [12–15]. In atoms, the hyperfine structure splittings
are, to the lowest orders, described by the magnetic dipole
(M1) and electric quadrupole (E2) hyperfine coupling con-
stants A and B, respectively. The A constant arises from the
interaction of the nuclear magnetic dipole moment μI , with
the magnetic field generated by the electrons at the site of the
nucleus. At the same time, the B constant is the result of the
interaction between the nuclear electric quadrupole moment
Q and the electric field gradient (EFG), which reflects the
electronic charge distribution in the vicinity of the nucleus.

*These authors contributed equally to this work.
†asimina.papoulia@mau.se
‡saschiff@ulb.ac.be
§natalia.oreshkina@mpi-hd.mpg.de

The quadrupole moments Q are important characteristics
of nuclei that provide a measure of the deviation of the nu-
clear charge distribution from a spherical shape. In general,
they can be determined from nuclear, atomic, molecular, or
solid-state spectroscopies, such as high-resolution laser spec-
troscopy [12], muonic or pionic x-ray spectroscopy [16], nu-
clear magnetic resonance (NMR) [17,18], nuclear quadrupole
resonance (NQR) [19,20], Mössbauer measurements [21,22],
or perturbed angular correlation (PAC) of nuclei passing thin
foils [23,24]. Most of these techniques require to evaluate
the electronic contribution B/Q to the E2 hyperfine constant.
The accuracy of the extracted Q values is, therefore, strongly
affected by the uncertainties in the calculations of this elec-
tronic property. Three compilations of available Q values are
provided by Raghavan [25], Stone [26], and Pyykkö [27].

In this work, we focus on tin, with an atomic number
Z = 50. All proton shells at this magic number are closed,
but the incomplete neutron shells can still induce a Q with
quadratic dependence on the neutron number N , which will
not become magic until the 132Sn isotope, with N = 82 and
nuclear spin I = 0. The nuclear trends of the Q moments
among 8 isotopes in the range 117−131Sn, which is below the
doubly magic isotope, have just recently been published by
Yordanov et al. [12]. The Q(Sn) values given in Ref. [12] were
based on measured atomic hyperfine structures for odd-N
isotopes. More specifically, they were obtained by combining
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the measured B constant in the [Pd]5s25p6s 1Po
1 state1 of the

neutral atom (Sn I), for each isotope, with the calculated
electronic contribution B/Q. The B/Q value resulted from
the three independent multiconfiguration Dirac-Hartree-Fock
(MCDHF) and relativistic configuration interaction (RCI) cal-
culations [28,29] reported in this work. The relative accuracy
of the calculated B/Q is of the order of 7%, while the accuracy
of the measured B constants varies, depending on the isotope,
between 1.5% for 131Sn and 33% for 125Sn, as also reflected in
Table 1 of Ref. [12]. As a result, the accuracy of the evaluated
Q(Sn) values ranges between 7% and 34%.

In Ref. [12], the focus was on the description of the
experimental methods and the interpretation of the nuclear
physics results. The aim of this work is to provide the details
of the employed MCDHF-RCI computational methodolo-
gies for evaluating the electronic contribution B/Q for the
5s25p6s 1,3Po

1 excited states in Sn I. Additionally, the inferred
B/Q values from averaging the individual results of the three
independent series of MCDHF-RCI calculations are validated
by a fourth set of calculations, based on the configuration
interaction Dirac-Fock-Sturmian (CI-DFS) theory [30–34].
After taking into account the results from this new set of
calculations, the final B/Q value for the 1Po

1 state is slightly
shifted from 706(50) MHz/b in Ref. [12]2 to 703(50) MHz/b
in this work. Aside from the E2 hyperfine electronic contribu-
tions, the electronic parts AI/μI of the M1 hyperfine constants
were also calculated for the same 1,3Po

1 states. The correlation
between the M1 and E2 hyperfine structures was used as a tool
to evaluate the theoretical uncertainty of the B/Q value for the
1Po

1 state.
Due to the sensitivity of the hyperfine electronic factors to

different electron correlation effects, one must often perform
more than one set of calculations, which follow different
computational strategies and correlation models, to be in a
position to evaluate the accuracy of the results [35]. That being
the case, a detailed description of the employed computational
strategies is deemed necessary to better understand the contri-
butions from the different correlation effects in systems with
similar electronic structure and to, eventually, advance the
current computational methods and computer codes.

In Sec. II, the underlying theories of the MCDHF-RCI and
CI-DFS methods are briefly described. In the same section,
the forms of the M1 and E2 hyperfine interaction operators
that are used to compute the electronic contributions to the
hyperfine structure constants A and B are given. In Sec. III, the
computational details and results from the four independent
sets of calculations are discussed. These results are combined
in Sec. IV to provide the final B/Q value for the 1Po

1 state and
its associated theoretical uncertainty. The resulting B/Q value
is, then, used in Sec. V to reextract the nuclear quadrupole mo-
ment Q of the 119Sn isotope. Finally, our concluding remarks
are presented in Sec. VI.

1[Pd] is used, for brevity, to indicate the 46-electron palladiumlike
core and will be omitted in the following.

2Although the electronic contribution B/Q is proportional to the
computed EFG value (see also Sec. II C), one should note that, in
Ref. [12], the quantities EFG and B/Q are used interchangeably.

II. THEORY

A. MCDHF-RCI multiconfiguration methods

The principles of the MCDHF-RCI method are fully dis-
cussed in, e.g., the book by Grant [28] and the review article
by Froese Fischer et al. [29]. With this section, we provide the
reader with a short introduction of the main concepts, as im-
plemented in the GRASP2K [36] and GRASP2018 [1] computer
packages that were used to perform the calculations presented
in Sec. III A.

In the relativistic framework, the MCDHF method de-
scribes an atomic state function (ASF), �(γ�JM ), as
an expansion over a set of j j-coupled relativistic CSFs,
�μ(γμ�JM ), characterized by the parity �, the total elec-
tronic angular momentum J , and the projection quantum
numbers M, i.e.,

�(γ� JM ) =
NCSFs∑
μ=1

cμ�μ(γμ� JM ), (1)

where
NCSFs∑
μ=1

c2
μ = 1.

The CSFs are antisymmetrized many-electron functions built
from one-electron Dirac orbitals. In the expression above,
γμ represents the configuration, the angular momentum cou-
pling tree, and other quantum numbers that are necessary to
uniquely describe each CSF.

In the MCDHF method, the radial parts of the Dirac
orbitals and the mixing coefficients cμ are computed in a self-
consistent field (SCF) procedure. The SCF radial equations
to be iteratively solved are derived from the application of
the variational principle on a weighted Dirac-Coulomb en-
ergy functional of the targeted atomic states according to the
extended optimal level scheme (EOL) [37]. The angular inte-
grations needed for the construction of the energy functional
are based on the second quantization formalism in the coupled
tensorial form [38,39].

The MCDHF calculations provide the one-electron orbital
basis, which, in the subsequent relativistic configuration in-
teraction (RCI) calculations, is used to determine the final
wave functions �(γ�JM ) by diagonalizing the interaction
matrix. At this RCI step, the transverse photon interaction,
which reduces to the Breit interaction at the low-frequency
limit, and the leading quantum electrodynamic (QED) cor-
rections are added to the Dirac-Coulomb Hamiltonian (see
Refs. [40,41] for more details). In the RCI calculations, the
atomic-state expansions are usually augmented by CSFs that
capture additional electron correlation effects.

B. CI-DFS method

The detailed description of the CI-DFS method can be
found in Refs. [30–34]. We highlight hereafter the most im-
portant underlying theoretical background.

Dirac-Fock-Sturm orbitals of a general type ϕ j can be
obtained as the solutions of the following eigenvalue problem:

(hD − ε) ϕ j = λ j W (r) ϕ j, (2)
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where hD is the one-electron Dirac Hamiltonian, W (r) is a
weight function, ε is a reference energy, and λ j is the eigen-
value. Following Refs. [30,31], we adopt the weight function

W (r) =
[

1 − exp[−(βr)2]

(βr)2

]
, (3)

where the parameter β is chosen to speed up the convergence
of the Sturmian series. The set of Sturmian eigenfunctions
forms a discrete and complete orthonormalized basis set of
one-electron wave functions with weight W (r), which are
used as virtual orbitals in subsequent calculations.

The next step is the construction of an orthonormalized
set of one-electron wave functions from the solutions of the
DF equations in the DFS orbital basis. One-electron wave
functions that were previously obtained using the DF method
stay intact, whereas the virtual Sturmian orbitals are modified
to be eigenfunctions of the DF operator and they can, thus, be
used for the construction of determinants in the configuration
interaction (CI) method.

C. Hyperfine structure

The hyperfine structure contribution to the Hamiltonian is
represented by a multipole expansion

Hhfs =
∑
k�1

T(k) · M(k), (4)

where T(k) and M(k) are spherical tensor operators of rank k
in the electronic and nuclear spaces, respectively. The k = 1
and 2 terms represent the M1 and E2 interactions. In the fully
relativistic approach, the electronic contributions are obtained
from the expectation values of the irreducible spherical tensor
operators [42,43]

T(1) = −iα
Ne∑
j=1

(α j · l j C(1)( j))
1

r2
j

(5)

and

T(2) = −
Ne∑
j=1

C(2)( j)
1

r3
j

, (6)

where l is the electronic orbital angular momentum and
C(1) and C(2) are the renormalized spherical harmonics of rank
1 and 2, respectively.

The hyperfine structure splitting for a state J is normally
expressed in terms of the A and B hyperfine constants, respec-
tively, given by

A = μI

I

1√
J (J + 1)(2J + 1)

〈�||T(1)||�〉 (7)

and

B = 2Q

√
J (2J − 1)

(J + 1)(2J + 1)(2J + 3)
〈�||T(2)||�〉 (8)

In the equations above, we adopted the definition of the
reduced matrix element, which is compatible with the Wigner-
Eckart theorem of Edmonds [44], as used in most of the

atomic physics textbooks. For later use, we introduce the Ael

and Bel electronic factors of the hyperfine constants, i.e.,

Ael = AI/μI [MHz/μN], (9)

Bel = B/Q [MHz/b], (10)

assuming that A and B are expressed in MHz, μI in nuclear
magnetons (μN) and Q in barns (b). Given the electronic
factors, the hyperfine constants A and B can easily be eval-
uated for a given isotope characterized by the (μI , I , Q) set of
nuclear parameters.

Due to the extended magnetic and charge distributions
of the nucleus, respectively, resulting in the Bohr-Weisskopf
(BW) and the Breit-Rosenthal-Crawford-Schawlow (BR) cor-
rections, the quantity Ael is not purely electronic. A change
in these nuclear structure properties for different isotopes
contributes to the hyperfine anomaly, which is particularly
important for extracting magnetic dipole moments from ex-
perimental measurements [45]. However, the BW effect was
estimated, in the CI-DFS calculations, to be <0.1% for both
considered states (see also Sec. III B). Additionally, as shown
in Ref. [12], the hyperfine anomaly along the tin isotope se-
quence remains small. An analogous effect takes place when
computing the quantity Bel and it was also estimated to be
<0.1% for the states in question (see Sec. III B for details).
In all four independent sets of calculations presented in this
work, the BR correction was included by using the Fermi
model approximation for the nuclear charge distribution. It
should be mentioned that the Bel factor is proportional to the
EFG, also denoted q. Expressing the latter in a−3

0 and Bel in
MHz/b, the conversion factor should be

Bel[MHz/b] = 234.9646 q
[
a−3

0

]
(11)

where the latter is often given in theoretical works [46].

III. CALCULATIONS

In this section, we report the computational details of the
three independent sets of MCDHF-RCI calculations and the
fourth set of CI-DFS calculations that were carried out. The
respective values of the computed isotope-independent hyper-
fine structure constants Ael and Bel are, then, presented and an-
alyzed. Experimental data (see, e.g., Ref. [12]) and state com-
positions indicate that the hyperfine structure in Sn I is charac-
terized by a substantial E2 splitting in the 1Po

1 state and a large
M1 splitting in the 3Po

1 state. For this reason, in what follows,
we only display the Ael[3Po

1] and Bel[1Po
1] values. Nonetheless,

the computed Ael[1Po
1] and Bel[3Po

1] values are still used (see
Sec. III A 4) for evaluating the ratios of the Ael and Bel factors
between the two states and for further comparing with the
corresponding experimental values deduced in Ref. [12].

A. MCDHF-RCI calculations

The accuracy of the MCDHF-RCI multiconfiguration cal-
culations relies on how the atomic-state expansions of Eq. (1)
are built. A first approximation of the atomic states is obtained
by performing an MCDHF calculation on expansions that
are built from one, or more, reference configurations. These
configurations are associated with the targeted atomic states
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TABLE I. The sequence of layers of correlation orbitals optimized in the S-MR3-MCDHF and S-MR4-MCDHF calculations. The former
optimization scheme is based on S substitutions from the MR3 set of reference configurations, i.e., {5s25p6s, 5s25p5d, 5s5p3}, whereas the
latter scheme also includes the 5s25p7s configuration in the so-called MR4 multireference. When all four configurations are included in the
MR, the 7s orbital is part of the spectroscopic orbitals and it is, thus, placed in parentheses in row 3, which displays the i = 2 correlation orbital
layer. In columns 3 and 4, the numbers of generated CSFs, NCSFs, are, respectively, given for each of the two different optimization schemes.
Columns 5 and 6 display the number of CSFs for the subsequent RCI calculations when additional VV correlations have been accounted for
by D substitutions from the valence orbitals.

NCSFs NCSFs, RCI

i Layers of correlation orbitals MR3 MR4 MR3 MR4

None (MR) 9 11
1 6p, 4 f 2097 2479 2570 3093
2 (7s,) 7p, 6d , 5 f 4349 4820 6574 7295
3 8s, 8p, 7d , 6 f , 5g 7054 7886 13 195 14 789
4 9s, 9p, 8d , 7 f , 6g 9759 10 952 21 904 24 689
5 10s, 10p, 9d , 8 f , 7g, 6h 12 563 14 120 34 056 38 498
6 11s, 11p, 10d , 9 f , 8g, 7h 15 367 17 288 49 038 55 551
7 12s, 12p, 11d , 10 f , 9g, 8h, 7i 18 242 20 529 68 286 77 435
8 13s, 13p, 12d , 11 f , 10g, 9h, 8i 21 117 23 770 91 108 103 403

and can be merged with important closely degenerate con-
figurations, forming the multi-reference (MR) space. When
only one configuration is considered, the latter reduces to
a single-reference (SR) space. Applying the rules for cou-
pling angular momenta, the reference configurations produce
a number of CSFs that account for the major electron correla-
tion effects or else what is known as static correlation [29].
The spectroscopic (occupied) orbitals that take part in this
initial calculation are kept frozen in all following MCDHF
and RCI calculations.

The initial approximation of the wave functions is im-
proved by gradually augmenting the atomic-state expansions
with CSFs that interact, i.e., have nonzero matrix elements,
with the ones that are generated by the reference configura-
tions. These CSFs are, due to the one- and two-body character
of the Hamiltonian, obtained from configurations generated
by allowing single (S) and, possibly, double (D) substitutions
from orbitals of the configurations in the MR to an active
set (AS) of correlation orbitals. The AS is systematically
increased by introducing, at each step, a layer of correlation
orbitals consisting of at most one orbital per angular sym-
metry. The correlation orbital layers in the AS are optimized
in successive MCDHF calculations, in which the previously
generated orbitals are kept frozen. It should, therefore, be
highlighted that the correlation orbitals of the MCDHF-RCI
methods differ from the virtual orbitals of the CI-DFS method
in that the former orbitals are variationally optimized through
the MCDHF procedure, while the latter orbitals are generated
according to Eq. (2).

The CSFs can, based on the nature of the SD substitutions,
be classified into CSFs that capture valence-valence (VV),
core-valence (CV), and core-core (CC) electron correlation
effects [[47], p.71]. The radial orbital basis is obtained by
performing MCDHF calculations, where all, or some, of these
classes of CSFs are taken into account. Additional electron
correlation effects, captured by CSFs formed from higher-
order substitutions, i.e., triple (T), quadruple (Q), etc., can be
considered in the subsequent RCI calculations. In general, the
selection of the CSFs that take part in the MCDHF and RCI

calculations depends on the shell structure of the atom at hand
and the atomic properties under investigation.

The computations of the hyperfine factors Ael and Bel are
usually challenging due to their high sensitivity to differ-
ent electron correlation effects. To investigate and assess the
role of the separate electron correlation contributions, three
alternative MCDHF-RCI computational approaches were em-
ployed in this work. Below, we describe the three independent
multiconfiguration calculations and present their individual
results.

1. S-MR-MCDHF calculations

In this first computational approach, the MCDHF cal-
culations were performed with CSF expansions that were
produced by allowing S substitutions from an MR set of
configurations. Due to the one-body nature of the hyperfine
operators (5) and (6), the S substitutions play an important role
in the calculations of hyperfine structures. This also agrees
with the perturbative analysis conducted, e.g., in Ref. [48].
CSFs generated by S substitutions interact with at least one
of the CSFs built from the MR configurations. By using
more than one reference configuration, the current computa-
tional strategy further takes into account important D and T
substitutions from the targeted 5s25p6s configuration. The T
substitutions are quite crucial. The latter may be decomposed
into D substitutions followed by S substitutions. CSFs built
from configurations that differ by T substitutions from the
targeted configuration, thus, interact through the one-body
hyperfine operators with the energetically important CSFs
generated by D substitutions.

Two separate S-MR-MCDHF calculations were per-
formed, using different MR spaces, which are, respectively,
denoted MR3 and MR4. Aside from the 5s25p6s configu-
ration of the targeted states, the MR3 set incorporates the
5s25p5d and 5s5p3 configurations. The 5s5p3 configuration
was found to strongly influence the odd levels of Sn I due to its
large mixing [49]. The MR4 set further includes the 5s25p7s
configuration accounting for the LS-term dependence [47],
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FIG. 1. The convergence patterns of the electronic hyperfine factors Ael[3Po
1](in MHz/μN ) and Bel[3Po

1] (in MHz/b) as functions of the
correlation orbital layers. The radial orbital basis was obtained by applying two different optimization schemes with respect to the selected MR
spaces. The purple dashed lines connect the values resulting from the S-MR3-MCDHF optimization, where three reference configurations are
included in the MR, and the black solid lines link the resulting values from the S-MR4-MCDHF optimization, where the MR was extended to
include four reference configurations. Both sets of values are the results from the RCI calculations that followed the orbital optimization step.
For further details, see text in Sec. III A 1.

i.e., the difference between the 6s orbital of the 5s25p6s 3Po
1

and 5s25p6s 1Po
1 states. The calculations are performed in

the EOL scheme for the average of the configuration states
included in the MR.

In both S-MR-MCDHF calculations, all spectroscopic
orbitals were opened for S substitutions. The layers of
correlation orbitals that were progressively added to the
AS are shown in column 2 of Table I. In total, eight
correlation orbital layers were built, corresponding to the
13s13p12d11 f 10g9h8i set of orbitals. For every additional
correlation orbital layer i, the resulting numbers of CSFs,
NCSFs, in the MR3 and MR4 optimization schemes are, re-
spectively, given in columns 3 and 4 of Table I. As seen in
Table I, the configurations in each of the MR3 and MR4 sets
generate 9 and 11 CSFs.

The RCI calculations included CSFs that were produced
by allowing D substitutions from the valence orbitals of the
configurations in the MR. In this manner, VV electron corre-
lation effects were ultimately captured. D substitutions from
core orbitals were not considered to keep the number of CSFs
at a manageable level. The numbers of CSFs for the RCI
calculations are given in columns 5 and 6 of Table I.

The resulting values of the hyperfine electronic factors
Ael[ 3Po

1] and Bel[ 1Po
1] from applying the two different op-

timization schemes are shown in Fig. 1 with the labels
S-MR3-MCDHF+RCI and S-MR4-MCDHF+RCI, respec-
tively. As seen in Fig. 1, both computed electronic factors
are effectively converged. For the largest CSF expansions, the
variations between the S-MR3-MCDHF+RCI and S-MR4-
MCDHF+RCI results are insignificant. As the final results
of this first MCDHF-RCI computational approach, we take
the resulting values from the largest S-MR4-MCDHF+RCI
calculation, corresponding to expansions with 103 403 CSFs,
so that

Ael
[

3Po
1

] = 2180 MHz/μN; Bel
[

1Po
1

] = 622 MHz/b.

(12)

2. SrD-SR-MCDHF calculations

In the second computational approach, the MCDHF cal-
culations were performed in the EOL scheme for the average
of the 5s25p6s 1,3Po

1 states using CSF expansions that were
produced by S and restricted double (rD) substitutions from
the SR configuration of the targeted states, i.e., 5s25p6s.

More specifically, S substitutions from all spectroscopic
orbitals and D substitutions, restricted by the limitation of
leaving maximum one hole in core orbitals with n < 5, were
enabled. In this manner, the generated CSFs in the orbital
optimization phase also captured CV correlation effects. The
AS was systematically increased to include layers with one
additional correlation orbital of the s, p, d , f , and g angular
symmetries, respectively, apart from the very last, eighth,
layer, which only contained the s, p, d , and f symmetries.
The largest multiconfiguration expansions were then built on
the 14s13p12d11 f 11g set of orbitals. For every layer of corre-
lation orbitals that was added in the SrD orbital optimization
phase, the resulting values of the electronic factors Ael[3Po

1]
and Bel[1Po

1] are shown in Fig. 2 (magenta circles). We note
that, after adding the sixth layer of correlation orbitals, both
the Ael[3Po

1] and Bel[1Po
1] values were converged. For this rea-

son, the CSFs produced during this first phase by allowing
SrD substitutions to the seventh and eighth layers were not
considered in the subsequent RCI calculations.

The RCI calculations were performed in two phases,
which, respectively, allowed SD and SDT substitutions. In the
so-called SD and SDT phases, the multiconfiguration expan-
sions were obtained by systematically increasing the AS, the
maximum angular momentum quantum number l within the
AS, and the number of opened spectroscopic orbital shells.
The computed electronic factors Ael[3Po

1] and Bel[1Po
1] for the

different multiconfiguration expansions that were used in the
SD and SDT phases are given in Table II. The Ael[3Po

1] and
Bel[1Po

1] values are also plotted in Fig. 2 for both SD (green
squares) and SDT (blue triangles) approaches. The numbers
10–26 on the x axis of Fig. 2 are equivalent to the labels
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FIG. 2. The electronic hyperfine factors Ael[3Po
1] (in MHz/μN ) and Bel[1Po

1] (in MHz/b) based on three computational approaches: the SrD
(magenta circles), SD (green squares), and SDT (blue triangles). On the x axes, the number 0 indicates the DHF computation, the numbers
1–8 represent the consecutive layers of correlation orbitals developed in the SrD phase of the calculations, and the numbers 10–26 match the
labels of the multiconfiguration expansions presented in column 1 of Table II, corresponding to the calculations performed in the SD and SDT
phases. The red straight horizontal line on the left graph represents the experimental value Aexpt

el [ 3Po
1] = 2398 MHz/μN from Ref. [12]. See

also text in Sec. III A 2.

displayed in column 1 of Table II. For each calculation, col-
umn 2 of Table II provides the principal quantum number n of
the deepest orbital shell that was opened for substitutions, e.g.,
n � 4 involves substitutions from 4s, 4p, 4d, 5s, 5p, 6s,
and column 3 displays the AS of orbitals to which the substi-
tutions were allowed. As a reference, the Ael[3Po

1] and Bel[1Po
1]

values resulting from the sixth layer of the SrD phase are

presented in the second row of Table II, while the first row
displays the electronic factors from the DHF computation,
restricted to two CSFs.

After generating CSF expansions by allowing substitutions
from the n � 3 spectroscopic shells to the 12s11p10d9 f 10g
set of orbitals in the label 24 calculation, the electronic fac-
tors computed in the SD phase were ultimately converged.

TABLE II. The computed electronic factors Ael[ 3Po
1] (in MHz/μN ) and Bel[ 1Po

1] (in MHz/b) for various multiconfiguration expansions that
were used in the RCI phases following the SrD-SR-MCDHF calculations. In each RCI phase, the considered CSFs were, respectively, generated
based on SD (columns 4 and 6) and SDT (columns 5 and 7) substitutions from the opened spectroscopic shells displayed in column 2 to the AS
of correlation orbitals given in column 3. The first row contains the resulting Ael[ 3Po

1] and Bel[ 1Po
1] values from the DHF computation, where

only the CSFs of the two targeted states were considered, and the second row displays the converged results from the SrD orbital optimization
phase after the sixth correlation orbital layer was added. The labels given in column 1 correspond to the labels used on the horizontal axes of
Fig. 2.

Ael[ 3Po
1] (MHz/μN ) Bel[ 1Po

1] (MHz/b)

Label Open shells Active orbital set SD SDT SD SDT

0 Phase 1: DHF computation 1869 607
6 Phase 1: SrD correlation layer 6 2353 757
10 n � 5 8s7p 2329 2348 751 756
11 n � 4 7s6p5d4 f 2200 2268 727 753
12 n � 4 8s7p5d4 f 2192 2291 723 756
13 n � 4 8s7p5d4 f 5g 2180 2288 722 758
14 n � 4 9s8p 2335 2351 753 758
15 n � 4 9s8p5d 2266 2330 739 760
16 n � 4 9s8p5d4 f 2185 2297 722 759
17 n � 4 9s8p5d4 f 5g 2173 2295 720 760
18 n � 4 10s9p6d5 f 6g 2163 716
19 n � 4 11s10p7d6 f 7g 2156 714
20 n � 4 12s11p10d9 f 10g 2147 712
21 n � 3 9s8p5d4 f 5g 2170 719
22 n � 3 10s9p6d5 f 6g 2157 715
23 n � 3 11s10p7d6 f 7g 2129 709
24 n � 3 12s11p10d9 f 10g 2094 699
25 n � 3 13s12p11d10 f 11g 2093 699
26 n � 2 12s11p10d9 f 10g 2089 698

Expt. [12] 2398(2)
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Extending further the multiconfiguration expansions by either
adding one more layer of correlation orbitals (label 25 cal-
culation) or opening the n = 2 spectroscopic shells (label 26
calculation) has nearly no effect on the Ael[3Po

1] and Bel[1Po
1]

values (see columns 4 and 6 in Table II). The multiconfigu-
ration expansions used in the label 24 calculation of the SD
phase constituted the starting point for the RCI calculations
of the SDT phase, which followed a pattern similar to the SD
approach for generating the CSFs. Yet, the number of CSFs
produced by T substitutions grew very rapidly, and the limits
of the computational resources available to us were reached
after performing the label 17 calculation. It should be pointed
out that the latter calculation included 4 406 086 CSFs and
took 37 days of wall time on the computer cluster at our
disposal (6 × 96 CPU @ 2.4 GHz with 6 × 256 GB RAM).
For the next calculation, the label 18 calculation, 17 817 617
CSFs were generated, which exceeded the capacity of the
cluster. The Ael[3Po

1] and Bel[1Po
1] values computed in the SDT

phase were, thus, not fully converged.
The dependence of the resulting Ael[3Po

1] and Bel[1Po
1] val-

ues on CSF expansions formed from different classes of
electron substitutions is well illustrated in Fig. 2. We notice
that, in the SD phase, the values of the computed hyper-
fine factors decrease compared to the SrD results. On the
other hand, when T substitutions are also considered, the
values of the computed properties increase in relation to the
respective calculations of the SD phase. This behavior has
also been observed in many earlier calculations of hyperfine
structures [35,50–55]. When performing RCI calculations by
allowing D substitutions from core orbitals, CSFs that account
for CC correlation effects are included in the atomic-state
expansions. These CSFs have relatively large mixing coeffi-
cients due to their important contribution to the total energy
and, as a result, the mixing coefficients of CSFs describing
effects, such as spin and orbital polarization, that are more
important for hyperfine interactions take lower values. This is
eventually counterbalanced by the inclusion of CSFs gener-
ated from T substitutions.

Further, the comparison between the two graphs in
Fig. 2 illustrates the similar synchronous dependence of the
computed Ael[3Po

1] and Bel[1Po
1] values on the increasing multi-

configuration expansions in the SrD (magenta circles) and SD
(green squares) phases of the computations. This correlated
behavior between computed Ael and Bel hyperfine interac-
tion factors has also been observed in numerous previous
works [13,56–59]. The M1 and E2 hyperfine factors are ob-
tained by evaluating the expectation values of the operators
(5) and (6), respectively. These expectation values are ex-
pressed in terms of reduced matrix elements of the operators
above, involving radial integrals that have a common depen-
dence on the radial factor r−3. Although it is not directly
obvious from Eqs. (5) and (6), the common r−3 dependence
is explained by the different structures of the relevant one-
electron matrix elements in the nonrelativistic limit [[60],
Sec. 5.2]. For this reason, when, at each step of the compu-
tations, the same CSF expansions are considered, the values
of the Ael[3Po

1] and Bel[1Po
1] factors will most likely syn-

chronously oscillate (see also, e.g., the curves adip and bquad

in Fig. 8 of Ref. [48]).

In consideration of the foregoing, the relative shifts in the
Ael[3Po

1] and Bel[1Po
1] values induced by an additional MCDHF,

or RCI, calculation are expected to be proportional, i.e.,

�Ael/Ael ≈ �Bel/Bel. (13)

The equation above may be transformed into a relation in
which the computed Ael[3Po

1] and Bel[1Po
1] values are related

to the corresponding experimental Aexpt
el [3Po

1] and Bexpt
el [1Po

1]
values according to∣∣Ael − Aexpt

el

∣∣/Aexpt
el ≈ ∣∣Bel − Bexpt

el

∣∣/Bexpt
el . (14)

The latter equation can then be used to adjust the computed
Bel[1Po

1] factor by applying a semiempirical shift based on
the known error in the computed Ael[3Po

1] factor. Given
the experimental result Aexpt

el [3Po
1] = 2398 MHz/μN from

Ref. [12], Eq. (14) was used to adjust the resulting Bel[1Po
1]

values from all three phases of the calculations, i.e., SrD,
SD, and SDT. This leads to the following “shifted” values:
Bel(SrD)shifted = 759 MHz/b, Bel(SD)shifted = 800 MHz/b,
and Bel(SDT)shifted = 793 MHz/b.

Looking at Fig. 2 and Table II, one notices that the Bel[1Po
1]

value (in contrast to the Ael[3Po
1] value) is overall insensitive

to T substitutions. That being so, the result from the largest
completed calculation in the SDT phase, i.e., Bel[1Po

1] ≡
Bel(SDT) = 760 MHz/b, is considered reliable and taken into
account in the evaluation of the final Bel[1Po

1] result for the cur-
rent SrD-SR-MCDHF+RCI approach. By taking the average
of the above-mentioned four values, we ultimately arrive at

Bel
[

1Po
1

] = 778 MHz/b. (15)

3. SrD-MR-MCDHF calculations

In the third computational approach, the MCDHF calcu-
lations were performed in the EOL scheme for the average
of the 5s25p6s 1,3Po

1 states using CSF expansions produced
by allowing SrD substitutions from a set of MR config-
urations and are, therefore, denoted SrD-MR-MCDHF. By
allowing S and D substitutions from the MR space, important
T and Q substitutions from the targeted 5s25p6s configuration
were also taken into account. To determine the MR space,
a preliminary SD-SR-MCDHF calculation was carried out,
using CSFs that were formed by enabling SD substitutions
from the valence orbitals (n � 5) to a first layer of correla-
tion orbitals, i.e., 7s, 6p, 6d , and 4 f . After analyzing the
LS composition of the two targeted states (see Table III),
we defined an MR composed of the 5s25p6s, 5p36s, and
5s5p5d6s configurations. The MR was restricted to the three
leading configurations due to the limitations of our compu-
tational resources. This strategy for defining the reference
configurations differs from the one used in Sec. III A 1, thus
leading to different MR sets.

In the SrD-MR-MCDHF calculations, the 4d, 5s,
5p, 5d, and 6s spectroscopic orbitals were opened for
SD substitutions, with the restriction that there was at most
one substitution from the 4d core orbital. All other inner-core
subshells were kept closed. The polarization of the 4d orbital
was, thereby, taken into account together with VV correlation
effects. The AS was systematically increased to include layers
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TABLE III. The LS composition of the two targeted 5s25p6s 1,3Po
1 states after performing an initial SD-SR-MCDHF calculation. The

percentages of the four most dominant LS components are solely displayed. The first percentage value corresponds to the assigned configuration
and term.

Pos. Conf. LSJ LS composition

1 5s25p6s 3Po
1 0.761 + 0.186 5s25p6s 1Po + 0.016 5p36s 3Po + 0.010 5s5p5d6s 3Po

2 5s25p6s 1Po
1 0.761 + 0.185 5s25p6s 3Po + 0.017 5p36s 1Po + 0.009 5s5p5d6s 1Po

with one additional correlation orbital of the s, p, d , and
f symmetries. The effects of orbitals with higher angular
symmetries on the computation of hyperfine structures are
generally known to be small, justifying the choice of the
“f limit” [61]. Overall, nine correlation orbital layers were
built, corresponding to the 15s14p14d12 f set of orbitals.

Table IV displays the computed excitation energies E [3Po
1]

and E [1Po
1], energy separations �E = E [ 1Po

1] − E [ 3Po
1], hy-

perfine electronic factors Ael[ 3Po
1] and Bel[ 1Po

1], and numbers
of CSFs, NCSFs, as functions of the increasing AS of
correlation orbitals. The values associated with the initial MR
calculation that corresponds to 17 CSFs are given in the first
row of Table IV. After optimizing nine layers of correlation
orbitals, all computed properties were effectively converged.
One should note that the number of CSFs in the expansions of
the final SrD-MR-MCDHF calculation exceeded one million.
At this point, the predicted energy separation agrees with the
observed value to within 3%, which provides an initial as-
sessment of the computed hyperfine factors. The convergence
patterns of the computed Ael[ 3Po

1] and Bel[ 1Po
1] values with

respect to the increasing number of correlation orbital lay-
ers optimized in the SrD-MR-MCDHF calculations are also
graphically illustrated in Fig. 3.

As a final step, an RCI calculation was carried out using
the 15s14p14d12 f orbital set. For this RCI calculation, the
CSFs were produced by enabling S substitutions from all
spectroscopic orbitals, along with D substitutions from the

4p, 4d, 5s, 5p, 5d, and 6s orbitals, with the two following
restrictions: (1) at most one substitution from the 4p orbital
and (2) no simultaneous substitutions from the 4p and 4d
orbitals. Hence, CC correlation effects were solely captured
by the allowed D substitutions from the 4d orbital. Based on
preliminary RCI calculations that used a smaller orbital basis,
the polarization effect of the 4s core orbital was deduced to be
significant too. However, the capacity of the computer cluster
at our disposal did not allow us to include it. The SrD-MR-
MCDHF+RCI results are presented in the second last row
of Table IV and correspond to atomic-state expansions with
3 583 001 CSFs.

At each step of the calculations that followed this third
MCDHF-RCI computational approach, the atomic-state ex-
pansions were restricted to CSFs that interact with the ones
generated by the MR configurations. Indicatively, we mention
that the number of CSFs in the atomic-state expansions of the
final RCI calculation, initially, were 5 313 860. It has been
shown, in previous works, that such reduction of CSFs does
not bring any major losses in accuracy [64–66]. In any case,
the effect of limiting the number of CSFs to the “interacting”
ones was also evaluated in this work. It was deduced that
utilizing the full CSF space causes the Ael[ 3Po

1] and Bel[ 1Po
1]

values to rise by ∼7 MHz/μN and ∼1 MHz/b, respectively.
In addition, it was estimated that when orbitals of the g and h
angular symmetries are added to the orbital basis, the Ael[ 3Po

1]
value further increases by ∼3 MHz/μN, while the change in

TABLE IV. The convergence of the energies and hyperfine factors Ael (in MHz/μN) and Bel (in MHz/b) for the 1,3Po
1 states as the MR orbital

basis extends to include nine layers of correlation orbitals optimized in the SrD-MR-MCDHF calculations. The results after the subsequent RCI
calculations are also presented in the second last row. The computed excitation energies of the 3Po

1 and 1Po
1 states are, respectively, presented

(in cm−1) in columns 2 and 3, whereas the evaluated energy separations are displayed in column 4. For comparison, the observed energies are
shown in the last row. In each of the columns 5 and 6, the values of the Ael[3Po

1] and Bel[1Po
1] factors are given. The last column exhibits the

numbers of generated CSFs for every additional correlation orbital layer.

Energies (cm−1)

Correlation layer 3Po
1

1Po
1

1Po
1 − 3Po

1 Ael[3Po
1] Bel[1Po

1] NCSFs

None (MR) 33 301 38 002 4701 1869 613 17
1 34 327 38 990 4663 2044 586 16 593
2 34 789 39 323 4534 2055 586 57 086
3 34 644 39 154 4510 2092 587 122 610
4 34 587 39 072 4485 2109 591 212 946
5 34 544 39 020 4476 2120 596 328 094
6 34 529 39 004 4475 2117 590 468 054
7 34 521 38 993 4472 2121 593 632 826
8 34 519 38 987 4468 2119 590 822 410
9 34 517 38 984 4467 2120 592 1 036 806
+ RCI 34 374 38 938 4565 2169 716 3 583 001
Expt. [62,63] 34 914 39 257 4343
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FIG. 3. The convergence patterns of the electronic hyperfine factors Ael[3Po
1] (in MHz/μN) and Bel[3Po

1] (in MHz/b) with the increasing
number of correlation orbital layers optimized in the SrD-MR-MCDHF calculations. For the computational details, see text in Sec. III A 3.

the Bel[ 1Po
1] value is negligible. Considering the above correc-

tions to the final SrD-MR-MCDHF+RCI results, we finally
arrive at

Ael
[

3Po
1

] = 2179 MHz/μN; Bel
[

1Po
1

] = 717 MHz/b. (16)

4. Sensitivity to orbital bases and CSF expansions

As previously seen, different calculations based on the
same general method, i.e., the MCDHF-RCI, and performed
with the same program, the GRASP2018 computer pack-
age, lead to different results. The Ael[3Po

1] and Bel[1Po
1]

values obtained with the three approaches do agree within
approximately 10%. The differences in the S-MR-MCDHF,
SrD-SR-MCDHF, and SrD-MR-MCDHF approaches lie in
the choice of their respective orbital bases and CSF ex-
pansions, each with its benefits and drawbacks. In this
subsection, we investigate the sensitivity of the SrD-SR-
MCDHF and SrD-MR-MCDHF approaches by arbitrarily
interchanging their orbital bases and CSF expansions. In
addition to the Ael[3Po

1] and Bel[1Po
1] values, we also dis-

cuss the Ael[1Po
1]/Ael[3Po

1] and Bel[3Po
1]/Bel[1Po

1] ratios, as it
was recently done with the experimental results presented in
Ref. [12], to provide additional information about the sensi-
tivity of our calculations.

For each of the two above-mentioned methods, the final
results were obtained by performing RCI computations. These
results are shown in the first two rows of Table V using

the labels SrD-MR/SrD-MR and SrD-SR/SrD-SR, for the
SrD-MR-MCDHF and SrD-SR-MCDHF approaches, respec-
tively (the notation X/Y defines the orbital basis from X and
CSF expansion from Y). Two additional sets of computations
were performed: one combining the SrD-SR-MCDHF orbital
basis and the SrD-MR-MCDHF CSF space (see SrD-SR/SrD-
MR in Table V) and one combining the SrD-MR-MCDHF
orbital basis and the SrD-SR-MCDHF CSF space (see SrD-
MR/SR-SrD in Table V). Minor changes in the CSF spaces
were required. The SR active space was restricted to the
s, p, d , and f symmetries as the MR orbital basis is limited
to lmax = 3, and the SrD-MR-MCDHF CSF space was limited
to only six correlation layers.

Although far from being in perfect agreement, the results
presented in Table V are consistent. The effect of replacing
the orbital set, for a given CSF expansion, is surprisingly
small. Additionally, the Ael[1Po

1]/Ael[3Po
1] and Bel[3Po

1]/Bel[1Po
1]

values are also presented in Table V, where it is seen that
the former ratio is less stable than the latter. The computed
Ael[1Po

1]/Ael[3Po
1] values vary from 0.124 to 0.185, which cor-

responds to a deviation of 50% from the lowest value. By
considering a simple term mixing between the 3Po and 1Po

terms, it is shown in the Appendix that this sensitivity is
expected. Using the same model, one further explains the
steadier values of the Bel[3Po

1]/Bel[1Po
1] ratio. The computed

Bel[3Po
1]/Bel[1Po

1] values range from −0.240 to −0.270, which
is in very good agreement with the experimental value of

TABLE V. The electronic hyperfine factors Ael[3Po
1] (in MHz/μN) and Bel[1Po

1] (in MHz/μN) as well as the Ael[1Po
1]/Ael[3Po

1] and
Bel[3Po

1]/Bel[1Po
1] ratios, computed for six different combinations of orbital basis sets and CSF spaces. The SrD-SR-MCDHF and SrD-MR-

MCDHF computational approaches are compared by expanding the total wave function over the largest CSF expansion of the one method and
using the orbital basis of the other method. Adjustments were made in the CSF expansions due to the specific properties of the orbital bases
obtained in the two different approaches. For details, see text in Sec. III A 4.

Orb. basis CSF expansions Ael[3Po
1] Ael[1Po

1]/Ael[3Po
1] Bel[1Po

1] Bel[3Po
1]/Bel[1Po

1]

SrD-MR SrD-MR 2179 0.185 717 −0.240
SrD-SR SrD-SR 2295 0.124 760 −0.250
SrD-MR SrD-SR (spdf limit) 2303 0.126 739 −0.254
SrD-SR SrD-SR (spdf limit) 2297 0.126 722 −0.263
SrD-MR SrD-MR (6 layers) 2161 0.183 709 −0.243
SrD-SR SrD-MR (6 layers) 2168 0.158 718 −0.270
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TABLE VI. The numbers of CSFs and the resulting energy separations between the targeted 3Po
1 and 1Po

1 states for each virtual orbital layer
used in the CI-DFS calculations. Two approaches, the direct (full basis) and the one based on perturbation theory (PT), were implemented.
The numbers of additional determinants NDPT, built using PT, are displayed in parentheses. �E = E [ 1Po

1] − E [ 3Po
1] are the energy separations

in cm−1. The numbers of virtual orbital layers given in column 1 correspond to the labels used on the horizontal axes of Fig. 4, and column 2
displays the respective orbital basis sets. For details see Sec. III B.

Virtual Orbital Full basis Perturbation theory

layer basis set NCSFs �E (cm−1) NDPT NCSFs �E (cm−1)

1 6s5p4d 1 520 4 537 (1184) 886 4 538
2 6s5p5d4 f 39 021 4 868 (69 759) 23 504 4 868
3 7s6p5d4 f 80 018 4 930 (123 905) 47 828 4 930
4 7s6p6d5 f 198 543 4 880 (341 769) 119 338 4 880
5 8s7p6d5 f 282 859 4 888 (452 698) 169 363 5 102
6 8s7p7d6 f 482 408 4 859 (819 851) 289 765 5 069
7 9s8p7d6 f 610 043 4 858 (987 563) 365 491 5 279
8 9s8p8d7 f 890 616 4 842 (2 343 509) 534 785 5 268
9 10s9p8d7 f 1 061 570 4 848 (2 942 992) 636 212 5 495
10 10s9p9d8 f (4 691 292) 854 398 5 508
Expt. [62,63] 4 343 4 343

−0.25(2) [12]. On the other hand, the Ael[1Po
1]/Ael[3Po

1] values
(ranging from 0.124 to 0.185) do not agree with the experi-
mental result of 0.0517(2) [12].

B. CI-DFS calculations

In this last set of calculations, which is based on the CI-
DFS theory, we used for all Sturmian functions the same
reference energy, namely, the one of the hydrogenic 5s state.
Allowing SD substitutions from all spectroscopic orbitals with
n � 5, together with the 6s and 6p orbitals, to an increasing
AS of virtual orbitals results in a large number of configura-
tions and huge matrices for the numerical diagonalization. By
freezing the 1s, 2s, and 2p orbitals and by using perturbation
theory (PT) to build low-lying closed shells and highly excited
states, we were able to extend the one-electron basis to the
12s11p10d9 f set of orbitals. For the three smallest orbital
basis sets, T substitutions from the n = 4, 5 orbitals, in ad-
dition to the 6s and 6p orbitals, were included, although their
influence was smaller than the uncertainty level we aim at.

In the CI-DFS calculations of the hyperfine electronic
factors Ael, the nuclear dipole moment distribution, or else
Bohr-Weisskopf (BW) effect, was also taken into account.
This was done by multiplying the operator T(1) in Eq. (7) by
a nuclear distribution function FBW(r). In the homogeneous-
nuclear-current-distribution approximation, this function is
determined by the nuclear radius RN so that [67]

FBW(r) =
{

(r/RN )3, r � RN

1, r > RN .
(17)

The calculated BW correction was �0.001% and �0.1%, for
the 3Po

1 and 1Po
1 states, respectively. Analogously, a nuclear

quadrupole moment distribution function can be introduced
for the Bel property as a factor to the operator T(2) in Eq. (8).
For the shell model, i.e., assuming that the quadrupole distri-
bution is concentrated around the nuclear radius, this function

is given by [67]

FQ(r) =
{

(r/RN )5, r � RN

1, r > RN .
(18)

The latter effect is on the level of 0.1% for both considered
states, which is in good agreement with the estimations made
for the Cd ground state in [68].

For each virtual orbital layer that was used in the CI-DFS
calculations, the corresponding orbital basis set, numbers of
CSFs, and computed energy separations �E between the tar-
geted 3Po

1 and 1Po
1 states are listed in Table VI. One can see

that the resulting energy difference �E = E [ 1Po
1] − E [ 3Po

1]
from the direct (full basis) calculations is well converged, in
contrast to the PT calculations, where the �E value is not
saturated. In Fig. 4, the convergence patterns of the com-
puted Ael[ 3Po

1] and Bel[ 1Po
1] values are shown for both non-PT

(solid circles) and PT (empty circles) bases. It is seen in the
figure that the E2 hyperfine electronic factor Bel[ 1Po

1] is more
sensitive to variations of the orbital basis set, in comparison
to the M1 electronic factor Ael[ 3Po

1] and, for that reason, its
theoretical uncertainty is larger. In addition, we observe that
the results from the non-PT and PT calculations progressively
diverge as the number of virtual PT orbitals increases. That
being so, and taking also into account the weaker stability of
the PT energy separation value, the results from the perturba-
tive treatment can only be used for estimating the theoretical
error bars (see Sec. IV A), and not for extending the basis
further. The final results of the CI-DFS calculations based
on the largest non-PT orbital basis set, which corresponds to
1 061 570 CSFs, are

Ael
[

3Po
1

] = 2082 MHz/μN ; Bel
[

1Po
1

] = 693 MHz/b. (19)

IV. FINAL VALUE AND EVALUATION OF ACCURACY

In Secs. III A 1–III B, four different computational ap-
proaches for evaluating the electronic hyperfine factors Ael
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FIG. 4. The convergence of the electronic hyperfine factors Ael[ 3Po
1](in MHz/μN ) and Bel[ 1Po

1](in MHz/b) with the increasing number of
virtual orbital layers, optimized by employing the CI-DFS method. The solid black circles represent the results from the direct (full basis)
calculations, while the empty brown circles illustrate the values obtained using perturbation theory (PT). The numbers of virtual orbital layers
on the x axes are equivalent to the numbers given in column 1 of Table VI. See also text in Sec. III B.

and Bel of the 1,3Po
1 excited states in neutral tin were presented.

In this section, we solely focus on Bel[1Po
1] that can be used to

extract the quadrupole moments Q of tin isotopes for which
spectroscopic data are available. The Bel[1Po

1] values obtained
from the four independent sets of calculations are summarized
in Table VII. By taking their average, we ultimately arrive at
Bel[1Po

1] = 703 MHz/b.
As a crude estimate of the uncertainty of the con-

cluding Bel[1Po
1] value, we can consider the half-range

of the aforementioned individual results, i.e., 78 MHz/b.
Yet, if one wants to be in a position to discuss atomic,
or nuclear, properties and their underlying physics, a
rigorous assessment of the uncertainties of the com-
puted values is required. In recent years, atomic physi-
cists have been putting great efforts into providing reli-
able uncertainties on their theoretical results [6,35,69–71].
In line with these efforts, the following subsections take into
account a number of considerations to determine the accuracy
of the final Bel[1Po

1] value. Some of these considerations are
only applicable to one (or more) particular set(s) of calcula-
tions (see Sec. IV A), while others are analogously applied to
all four separate results (see Sec. IV B). Statistical principles
are implemented (see Sec. IV C), and former outcomes from
computations of electronic hyperfine factors, regarding atomic
states with electronic structure similar to the structure of the
5s25p6s 1,3Po

1 states in Sn I, are also used as an estimate of
the accuracy of the Bel[1Po

1] value deduced in this work (see
Sec. IV D).

TABLE VII. The resulting Bel[1Po
1] values (in MHz/b) from the

four independent sets of calculations presented in Secs. III A 1–III B.
The last row displays their average.

Methods Bel[1Po
1] (MHz/b)

S-MR-MCDHF+RCI 622
SrD-SR-MCDHF+RCI 778
SrD-MR-MCDHF+RCI 717
CI-DFS 693

Average 703

A. Model-specific uncertainties

In each of the four independent approaches that were dis-
cussed in the previous sections, the wave functions (radial
orbitals and configuration-mixing coefficients) that describe
the atomic states were obtained based on various approx-
imations with respect to the orbital basis and the list of
configuration states. In Sec. III A 4, the sensitivity of the SrD-
SR-MCDHF+RCI and SrD-MR-MCDHF+RCI results to the
orbital basis was investigated by combining the radial orbital
basis obtained in one of these two computational approaches
with the CSF expansions used in the RCI computations of
the other approach. As seen in Table V, these combinations
gave rise to Bel[1Po

1] values that range from 709 MHz to
760 MHz/b. The half-range of these values yields an uncer-
tainty of 26 Hz/b. Further, in the CI-DFS calculations, the
electronic hyperfine factors were computed using both non-PT
and PT orbital bases. The comparison between the non-PT
and PT results for different orbital basis sets suggests an un-
certainty of 70 MHz/b in the deduced Bel[1Po

1]. Lastly, in the
instance of the SrD-SR-MCHDF calculations, the outcome for
the Bel[1Po

1] value is the average of four separate values. One
can, thus, assume an error bar corresponding to the half-range
of these values, i.e., 20 MHz/b.

B. Difference between the theoretical Ael[3Po
1] and

experimental Aexpt
el [3Po

1] values

The deviation of the calculated M1 hyperfine constant from
the experimental value |Atheor − Aexpt | is often assumed to be
a measure of the overall accuracy of the hyperfine struc-
ture calculations [35,50,72]. In Sec. III A 2, the experimental
Aexpt

el [3Po
1] value was used to accordingly shift the result-

ing Bel[1Po
1] values from all three approximations, i.e., SrD,

SD, and SDT, that were used in the SrD-SR-MCDHF+RCI
calculations. Considering only the Bel[1Po

1] result from the
most extensive SDT calculation and evaluating the differ-
ence Bel(SDT) − Bel(SDT)shifted yields an error estimate of
32 MHz/b. When applying this shift to the final results of
the remaining calculations, we acquire three more error bars:
54 MHz/b from the S-MR-MCDHF calculations, 64 MHz/b
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from the SrD-MR-MCDHF calculations, and 91 MHz/b from
the CI-DFS calculations.

C. Statistical standard deviation

The individual results provided by the four independent
sets of calculations could be regarded as a statistical sample
and, in that case, the average value μ and the standard devia-
tion σ can be evaluated. For the {622, 693, 717, 778} set of
Bel[1Po

1] values, it is μ ± σ = 703 ± 56 MHz/b, which places
Bel[1Po

1] between 591 and 815 MHz/b within the 2σ condition
(95%). In this manner, we obtain another uncertainty estimate
equivalent to 56 MHz.

D. Zinc analogy

In a recent paper [35], the quadrupole moment Q(67Zn)
was evaluated based on 11 independent multiconfiguration
calculations of the EFG ∝ Bel for the 4s4p 3Po

1 and 4s4p 3Po
2

states in Zn I. The final accuracy of the calculated EFGs
was estimated using the scatter of the individual results of
these 11 calculations, resulting in a relative error of about
8%. The valence structure of the 4s4p 3Po

1,2 states in neutral
zinc is quite similar to the structure of the 5s25p6s 1,3Po

1 tin
states, which are of interest in this work; in both cases, there
are two electrons outside the closed shells, and the orbitals
of these valence electrons have similar angular symmetries.
Thereby, one expects that, for atomic calculations using sim-
ilar computational approaches, the relative error bars of the
computed hyperfine factors will be comparable. Adopting the
8% relative error bar, an uncertainty of 56 MHz/b is inferred
for the Bel[ 1Po

1] value deduced in this paper.

E. Final accuracy

The considerations above lead to diverse error bars, which,
according to the order of their appearance in the text, are (in
units of MHz/b): 78, 26, 70, 20, 32, 54, 64, 91, 56,
and 56. The largest of these uncertainties, i.e., 91 MHz/b,
places Bel[ 1Po

1] between 521 and 885 MHz/b within the
2σ condition, which is a rather conservative choice. On the
other hand, the smallest of all these error estimates, i.e.,
20 MHz/b, positions Bel[ 1Po

1] between 663 and 743 MHz/b
within the 2σ condition. This interval does not overlap with
all individual Bel[ 1Po

1] values resulting from the four inde-
pendent sets of calculations and, therefore, such an error bar
is not appropriate. Assuming that some of the obtained error
bars possibly overestimate the uncertainty in our concluding
Bel[ 1Po

1] value, and that a few others might underestimate it,
the rounded value of 50 MHz/b is a reasonable choice. The
final result of this paper, then, becomes

Bel
[

1Po
1

] = 703 ± 50 MHz/b, (20)

localizing Bel[ 1Po
1] between 603 and 803 MHz/b with 95%

confidence.
Recent calculations performed in [73] based on Fock-space

coupled-cluster theory resulted in a slightly smaller value of
Bel[ 1Po

1] = 645(58) MHz/b, lying within our error bars. The
only other available value is the one given by Eberz et al. [74],
i.e., Bel[ 1Po

1] = 593 MHz/b, which is approximately 15%
smaller than the result of this work. It is, therefore, seen that

the recent rigorous reinvestigations of the hyperfine electronic
factors of excited states in Sn I yield, independently of the
method used, Bel[ 1Po

1] values, which are larger than the ini-
tially computed value a few decades ago.

V. QUADRUPOLE MOMENTS

The computed Bel[ 1Po
1] value can be used to deduce the nu-

clear quadrupole moments Q(ASn) = B/Bel of the tin isotopes
for which the E2 hyperfine constant B was measured. The
Bel[ 1Po

1] value resulting from the present multiconfiguration
calculations was recently employed by Yordanov et al. [12]
to extract the nuclear quadrupole moments of odd-A tin iso-
topes. As mentioned in the Introduction, the final Bel ∝ EFG
value for the 5s25p6s 1Po

1 state has been slightly shifted from
706(50) MHz/b that was reported and used in Ref. [12] to
703(50) MHz/b in this paper. The Q values listed in the last
column of Table 1 in Ref. [12] should, therefore, be increased
by a tiny factor of 706/703.

For a few tin isotopes, more than one experimental value
of E2 hyperfine constants is available, allowing us to com-
pare the extracted quadrupole moments. The E2 hyperfine
constant B[1Po

1] for the I = 5/2 state of 109Sn was measured
independently in Refs. [12,74], and their results are, respec-
tively, B[1Po

1] = 212.0(27.0) MHz and B[1Po
1] = 154(5) MHz.

In Ref. [74], the computed Bel[1Po
1] = 593 MHz/b value is

also available, despite the fact that they used the data related to
the 3Po

1 state, i.e., B[3Po
1] = −43.0(12.0) MHz and Bel[3Po

1] =
−138 MHz/b, to extract the quadrupole moment Q(109Sn) =
310(100) mb. By combining the experimental B[1Po

1] result
of Ref. [12] with the presently computed Bel[1Po

1] = 703(50),
we obtain Q(109Sn) = 219(7)(16), which significantly differs
from the above-mentioned value of Q(109Sn) = 310(100) mb.
These two quadrupole moments merely overlap with each
other due to the large uncertainty of 100 mb in the latter value.
Further, the Bel[1Po

1] value given in Ref. [74] barely overlaps
with the present Bel[1Po

1] value, which strengthens the need to
improve the accuracy of the electronic hyperfine factors.

Finally, taking the 119Sn isotope as an example, we propose

Q(119Sn) = −0.176(4)(12) b, (21)

where (12) represents the theoretical uncertainty of 7% of
the Bel[1Po

1] deduced in this work and (4) represents the ex-
perimental uncertainty of the measured B[1Po

1] in Ref. [12].
We notice that the theoretical uncertainty suggested above is
about three times larger than the experimental uncertainty. In
the previous section, a number of considerations were taken
into account to provide a well-grounded estimate of the the-
oretical uncertainties in our final Bel[1Po

1] value. Nonetheless,
one should always remain cautious toward error estimates of
electronic hyperfine factors deduced from atomic calculations
and of the corresponding error bars in the evaluated nuclear
quadrupole moments Q. The element bismuth is a good ex-
ample of the difficulties in estimating such error bars. Table I
in Ref. [56] lists the proposed values of the nuclear quadrupole
moment Q for the 209Bi isotope. The error bars of several of
those values not only do not overlap, but they do not even
touch each other (to make all of the error bars overlap, the
relative uncertainties would have to exceed 50%). We should,
however, also note here that the valence structure of the tin
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atom is less complicated and less demanding computationally
than the valence structure of the bismuth atom, and we are
confident enough that the deduced error bars in this paper are
trustworthy.

VI. CONCLUSIONS

We presented the details of the theoretical calculations of
the isotope-independent E2 hyperfine factor Bel (∝ EFG),
which was recently used to extract nuclear quadrupole mo-
ments Q of tin isotopes [12]. Four independent computational
approaches were employed to finally provide the value of
Bel = 703(50) MHz/b for the 5s25p6s 1Po

1 excited state of
Sn I. Three of these approaches were based on the MCDHF-
RCI method as implemented in the GRASP packages, while the
fourth approach relied on the CI-DFS theory. The convergence
of the Bel[ 1Po

1] values was monitored as the CSF expansions
were enlarged by allowing single, double, and, depending on
the correlation model, also triple electron substitutions from
the reference configuration(s). Efforts were made to provide
a realistic theoretical uncertainty for the final Bel[ 1Po

1] value
by accounting for statistical principles, the correlation with
the isotope-independent M1 hyperfine factor Ael, and previous
calculations of electronic hyperfine factors on systems with
electronic structure similar to that of Sn I.

The deduced relative accuracy of the present atomic ab
initio calculations of the EFG is of the order of 7%, leading
to even larger uncertainties in the extracted Q(Sn) values due
to the uncertainty in the measured B. This level of accu-
racy is certainly inferior to the deduced Q(Sn) values from
the solid-state density functional calculations performed by
Barone et al. [75], which are about an order of magnitude
more accurate. In general, the accuracy of the atomic ab
initio calculations of EFGs strongly depends on the valence
structure of the atom, or ion, in question. We should note
that, in the extreme case of lithiumlike systems, the relative
uncertainties of the atomic calculations of hyperfine structures
can be limited to 0.001%–0.01% [58,59,76–81]. Even though
the tin atom is far more demanding computationally than
the lithiumlike systems, an atomic calculation of hyperfine
structures with lower uncertainty would be possible for singly
ionized tin, with one electron outside closed shells, and it
would be even more accurate, for triply ionized tin, which has
one electron outside the n < 5 core. Such calculations, as the
latter, would likely challenge the accuracy of the solid-state
methods. We hereby encourage experimentalists to consider
one, or both, of the above-mentioned ions.

Interestingly, we observe that all computed Ael[3Po
1]

values are smaller than the experimental Aexpt
el [3Po

1] =
2398 MHz/μN value, independently of the computational
method, or the correlation model. This could be explained by
the lack of variational freedom intrinsic to the layer-by-layer
optimization strategy, which hinders the contraction of spec-
troscopic orbitals when core-valence correlation is accounted
for. In the specific case of Sn I, the spectroscopic 4d soft shell,
i.e., lying between the core and the valence orbitals, is ex-
pected to be highly sensitive to core-valence correlation that
might not be effectively captured. Natural orbitals were re-
cently used, as an efficient tool to overcome the limitation of
the layer-by-layer optimization scheme, to estimate hyperfine

structure constants in Na I. Thanks to the radial reorganization
of the orbitals, the spectroscopic orbitals are ultimately con-
tracted, which affects both M1 and E2 electronic hyperfine
factors [72]. Further investigations on the usefulness of the
natural orbitals in the calculations of hyperfine structures are
in progress.
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APPENDIX: SENSITIVITY OF THE HYPERFINE FACTORS
AND STABILITY OF THE Bel RATIO

As shown in Table V, where the influence of the choice
of the CSF expansion and the orbital basis was investigated,
the Ael[ 1Po

1]/Ael[ 3Po
1] ratio displays a much higher sensitivity

in comparison to the Bel[ 3Po
1]/Bel[ 1Po

1] ratio. Also accord-
ing to Table V, the computed Ael[ 3Po

1] values range from
2161 to 2303 MHz/μN (6%–7%). Hence, the sensitivity of
the Ael[ 1Po

1]/Ael[ 3Po
1] ratio, which takes values from 0.124 to

0.185 (30%–50%), must arise from the computed Ael[ 1Po
1]

values.
The extreme sensitivity of Ael[ 1Po

1] to correlation models
is not really surprising if one performs calculations using
the quasirelativistic Hartree-Fock and Breit-Pauli [47] method
in the single-configuration approximation. In the Breit-Pauli
(BP) scheme, the low value of the ratio Ael[1Po

1]/Ael[3Po
1] can

indeed be understood. The Ael value of the pure 3Po
1, i.e.,

without considering any relativistic LS-term mixing, arises
from the addition of the three contributions [82] (orbital,
spin-dipole, and contact term), which interfere positively. On
the other hand, the Ael value of the pure 1Po

1 is only made
of a (larger) orbital contribution, the total spin value (S = 0)
forbidding the two other contributions. For J = 1, the two
singlet and triplet symmetries are mixed with relative phases
that result from the orthogonality constraints. The eigenvector
dominated by the triplet character has the same signs of both
components, which makes the Ael[3Po

1] value even larger than
the one of the pure triplet (increase of 40%). For the state
dominated by the singlet, strong cancellation occurs due to
the triplet contamination, reducing the Ael[1Po

1] value by 61%.
Strong cancellation in the estimation of a property usually
involves high uncertainty.

The “sharing rule” [83,84] that is used to quantify con-
figuration mixing from the measured isotope shifts can be
applied to the term-mixing analysis of the Bel. In the single-
configuration approximation, the ratio Bel[3Po

1]/Bel[1Po
1] is ex-

actly − 1
2 = −0.5, resulting from angular momentum algebra,

when using the same orbital sets for describing both levels.
Assuming a simple 3Po − 1Po mixing for J = 1, we have

�
(
“ 3Po

1 ”
) = a

∣∣3Po
1

〉 + b
∣∣1Po

1

〉
,

�
(
“ 1Po

1 ”
) = b

∣∣3Po
1

〉 − a
∣∣1Po

1

〉
, (A1)
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where | 1,3Po
1〉 are the two lowest J� = 1− states resulting from

pure LS terms and �(“ 1,3Po
1 ”) are the corresponding mixed

states. Using the analytical ratio Bel[1Po
1]/Bel[3Po

1] = −2, one
can estimate

Bel
[
“ 3Po

1 ”
] = Bel

[
3Po

1

]
(a2 − 2b2),

Bel
[
“ 1Po

1 ”
] = Bel

[
3Po

1

]
(b2 − 2a2), (A2)

from which we deduce

R = Bel
[
“ 3Po

1 ”
]
/Bel

[
“ 1Po

1 ”
] = a2 − 2b2

b2 − 2a2
. (A3)

Adopting for this ratio a reasonable guess that is guided
by the experimental result from Ref. [12] and that offers
numerical simplicity, R = − 1

4 , one gets the following
analytical eigenvector compositions:

�
(
“ 3Po

1 ”
) =

√
7

3

∣∣3Po
1

〉 +
√

2

3

∣∣1Po
1

〉
,

�
(
“ 1Po

1 ”
) =

√
2

3

∣∣3Po
1

〉 −
√

7

3

∣∣1Po
1

〉
. (A4)

In other terms, the ratio Bel[“ 3Po
1 ” ]/Bel[“ 1Po

1 ” ] only
reflects the singlet-triplet mixing in this simple model. We
should not be surprised by its relative stability when more
elaborate models are used. Extracting the 3Po character (a2)
from the lowest (“ 3Po

1 ” ) BP eigenvector obtained in a simple
MR model mixing the {5s25p6s, 5s5p5d6s, 5p36s} config-
urations, we get after renormalization a2 = 0.776 17 from
which we determine Bel[“ 3Po

1 ” ]/Bel[“ 1Po
1 ”] = −0.247

according to

Bel
[
“ 3Po

1 ”
]
/Bel

[
“ 3Po

1 ”
] = a2 − 2b2

b2 − 2a2
= −3a2 − 2

3a2 − 1
. (A5)

For the other BP eigenvector (“ 1Po
1 ” ), we have

a2 = 0.776 41 from which one confirms the ratio
Bel[“ 3Po

1 ” ]/Bel[“ 1Po
1 ” ] = −0.248. The latter value

is not too far from the above R = − 1
4 ratio value that

would be obtained from the hypothetical (a2 = 7
9 ; b2 = 2

9 )
singlet-triplet mixing, taking into account that (i) one trusts
the nonrelativistic ratio Bel[3Po

1]/Bel[1Po
1] = − 1

2 of the single-
configuration approximation, (ii) the BP eigenvector has to
be renormalized, and (iii) one assumes no contamination by
other LS symmetries ( 3Do

1,
5Po

1 , 5Do
1,

5F o
1 , 7Do

1, . . . ,
25X o

1 ).
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[59] J. Bieroń, P. Jönsson, and C. Froese Fischer, Phys. Rev. A 53,

2181 (1996).
[60] W. R. Johnson, Atomic Structure Theory: Lectures on Atomic

Physics (Springer, Berlin, 2007).
[61] D. Sundholm and J. Olsen, Phys. Rev. A 47, 2672 (1993).
[62] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team,

NIST Atomic Spectra Database (version 5.7.1) (online), Na-
tional Institute of Standards and Technology, Gaithersburg,
MD. Available at https://physics.nist.gov/asd.

[63] W. Brill, The Arc Spectrum of Tin, Ph.D. thesis, Purdue Uni-
versity, Lafayette, IN, 1964.

[64] T. Carette, C. Drag, O. Scharf, C. Blondel, C. Delsart, C. Froese
Fischer, and M. Godefroid, Phys. Rev. A 81, 042522 (2010).

[65] J. Li, P. Jönsson, M. Godefroid, C. Dong, and G. Gaigalas, Phys.
Rev. A 86, 052523 (2012).

[66] G. Gaigalas, P. Rynkun, L. Radžiūtė, D. Kato, M. Tanaka, and
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Atomic spectral lines from different isotopes display a small shift in energy, commonly referred to as the
line isotope shift. One of the components of the isotope shift is the field shift, which depends on the extent and
the shape of the nuclear charge density distribution. The purpose of this work is to investigate how sensitive
field shifts are with respect to variations in the nuclear size and shape and what information of nuclear charge
distributions can be extracted from measurements. Nuclear properties are obtained from nuclear density functional
theory calculations based on the Skyrme-Hartree-Fock-Bogoliubov approach. These results are combined with
multiconfiguration Dirac-Hartree-Fock methods to obtain realistic field shifts and it is seen that phenomena
such as nuclear deformation and variations in the diffuseness of nuclear charge distributions give measurable
contributions to the isotope shifts. Using a different approach, we demonstrate the possibility to extract information
concerning the nuclear charge densities from the observed field shifts. We deduce that combining methods used
in atomic and nuclear structure theory gives an improved description of field shifts and that extracting additional
nuclear information from measured isotope shifts is possible in the near future with improved experimental
methods.

DOI: 10.1103/PhysRevA.94.042502

I. INTRODUCTION

Information of nuclear sizes has grown rapidly during the
last decades. In the compilation by Angeli and Marinova
in 2013 [1], root-mean-square (rms) radii were reported for
more than 900 isotopes of which the majority are radioactive
systems. This development is a consequence of refined
experimental and theoretical methods, and a state-of-the-art
example is the frequency comb measurement of the hydrogen-
deuterium radius difference by Parthey et al. [2]. The plenitude
of available data has allowed for detailed investigations of
the evolution of nuclear radii for isotope sequences along
virtually the entire periodic table. These studies have revealed
unexpected trends, especially close to magic numbers, which
serve as benchmarks for nuclear structure calculations [3].

However, more detailed and model-independent experi-
mental information of nuclear charge distributions beyond the
rms radius is only available for stable or long-lived isotopes
from electron scattering experiments. On the theoretical side it
has been shown that isotope shifts in heavier systems depend
on the nuclear model used [4] and that the contribution from
nuclear deformation to the isotope shift in some cases is com-
parable to the uncertainty in recent dielectronic recombination
experiments [5,6].

Experimental techniques such as high-precision laser
measurements at the COLLAPS and CRIS experiments at
ISOLDE/CERN [7] and dielectronic recombination experi-
ments at the envisaged realization of CRYRING at GSI [8]
are constantly evolving. This justifies a more systematic
theoretical investigation of what information can be revealed
about nuclear charge distributions in exotic systems.

The main objective of this work is to study the effect
of realistic charge distributions, taken from nuclear density

*gillis.carlsson@matfys.lth.se

functional theory (DFT), on the isotope shift in heavier
atoms. In addition, a promising method for the extraction of
higher-order radial moments from experimental isotope shifts
is also presented and tested.

II. ISOTOPE SHIFTS

The atomic nucleus is ∼104 smaller than the size of the
atom. Even so, the finite mass and extended charge distribution
of the nucleus have a measurable effect on atomic spectra.
Spectral lines from different isotopes display a small shift
in energy referred to as the isotope shift (IS), which can
further be decomposed into a mass shift (MS) and a field
shift (FS) contribution. The difference in energy between the
corresponding atomic level i of two isotopes A and A′, the
level isotope shift, can thus be expressed as

δE
A,A′
i,IS = δE

A,A′
i,MS + δE

A,A′
i,FS = EA′

i − EA
i . (1)

For a particular atomic transition k between upper u and lower
l levels, the difference in energy for a pair of isotopes, namely,
the line frequency isotope shift, is consequently given by

δν
A,A′
k,IS = δν

A,A′
k,MS + δν

A,A′
k,FS = νA′

k − νA
k

= δE
A,A′
u,IS − δE

A,A′
l,IS

h
. (2)

The level mass shift contribution can be expressed as

δE
A,A′
i,MS =

(
M ′ − M

MM ′

)
Ki

MS, (3)

where M and M ′ are the atomic masses of the isotopes and
Ki

MS is the mass-independent mass shift parameter [9–11].
Although the computation of the mass shift parameters, and
hence the mass shift contribution to the isotope shift, represents
a challenging task, it is not the main focus of this work. Instead,

2469-9926/2016/94(4)/042502(14) 042502-1 ©2016 American Physical Society
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the focus here is on the extent and shape of nuclear charge
distributions which almost exclusively affect the field shift
described in detail below.

A. Field shift

The field shift arises from differences in the nuclear charge
density distribution between isotopes caused by the different
number of neutrons. Unlike pointlike charge distributions,
more realistic charge distributions alter the central field that
the atomic electrons experience, and hence the atomic level
and transition energies will be affected. Evidently, the field
shift effect is more pronounced for electrons moving in
s1/2 and p1/2 orbitals due to the nonzero probability of the
radial wave functions at the origin. Moreover, the nuclear
charge and extent, together with the contraction of the atomic
orbitals, increase with the proton number Z and thus the
contribution from the field shift to the isotope shift is found to
be dramatically larger in heavier systems.

1. Nonperturbative “exact” method

In atomic structure calculations, where the contribution
from the mass shift is neglected, the level field shift can be
computed according to Eq. (1) by performing separate calcu-
lations for two isotopes A and A′, with different parameter
sets describing the respective nuclear charge distributions.
This method is in general highly model dependent since
the description of the nucleus is normally restricted to an
approximate model. Moreover, this procedure is cumbersome
if calculations are to be performed for many isotope pairs and
in addition it may suffer from numerical instabilities since it
involves the substraction of large quantities (atomic binding
energies) to obtain a tiny quantity. Nevertheless, this strategy
constitutes an “exact” method for estimating the validity of
perturbative approaches and the resulting field shifts will be
denoted δνexact

k,VA below.

2. Perturbative method

To eliminate the disadvantages of the exact method de-
scribed above and allow for a more flexible analysis of the field
shift, an alternative approach based on perturbation theory may
be used. Within the framework of perturbation, the first-order
level field shift of level i can be written

δE
(1)A,A′
i,FS = −

∫
R3

[VA′(r) − VA(r)]ρe
i (r)d3r, (4)

where VA(r) and VA′(r) are the one-electron potentials arising
from the different nuclear charge distributions of the two
isotopes and ρe

i (r) is the electron density inside the nuclear
volume of the reference isotope A.

Following the work by Seltzer [12], Torbohm et al. [13],
and Blundell et al. [14] and assuming an extended spherical
symmetric nuclear charge distribution, it can be shown that the
electron density to a very good approximation can be expanded
around r = 0 as an even polynomial function keeping only the
first few terms:

ρe
i (r) ≈ bi(r) = bi,1 + bi,2r

2 + bi,3r
4 + bi,4r

6. (5)

Inserting the expression above in Eq. (4) and making
use of the Laplacian operator in spherical coordinates,

∇2r2N = 2N (2N + 1)r2N−2, Poisson’s equation ∇2VA(r) =
−4πρA(r), and finally Eq. (2), the first-order line frequency
field shift is given by [14,15]

δν
(1)A,A′
k,FS ≈ δν

A,A′
k,RFS =

4∑
N=1

Fk,Nδ〈r2N 〉A,A′
, (6)

where Fk,N are the so-called line electronic factors expressed
as

Fk,N = 2π

h

Z�bk,N

N (2N + 1)
, (7)

and

δ〈r2N 〉A,A′ = 〈r2N 〉A − 〈r2N 〉A′
(8)

are the differences of the nuclear radial moments, of order
2N , of the isotopes A and A′. The electronic factors are
proportional to the difference of the electronic density inside
the nucleus between the upper and lower atomic level, thus,
�bk,N = bu,N − bl,N .

The reformulated field shift (RFS) according to Eq. (6)
enables a more versatile analysis of field shifts. This is due to
the fact that the radial moments 〈r2N 〉 used in the expression
can be taken from any model, calculation, or experiment. In
addition, it is possible to analyze the contributions to the field
shift order by order. For example, keeping only the first term
in Eq. (6) we obtain

δν
(1)A,A′
i,FS ≈ 2π

3h
Z�ρe

i (0)δ〈r2〉A,A′
, (9)

which is a suitable approximation for lighter systems where
a constant electron density within the nucleus can be as-
sumed, ρe

i (r) ≈ bi,1 = ρe
i (0). For heavier systems, however,

the electron density varies inside the nuclear volume and
thus the N � 2 terms in Eq. (6) must also be considered
for an accurate description. Further on, by including these
higher-order contributions, the effect on the isotope shift due
to details in the nuclear charge distribution can be analyzed. As
we shall see, the reversed approach is also possible, namely,
to extract higher-order radial moments of the nuclear charge
distribution from observed isotope shifts.

B. Computational procedure

Solutions to the many-body Hamiltonian describing the
atom are obtained by performing calculations using the rela-
tivistic atomic structure package GRASP2K [16], which is based
on the multiconfiguration Dirac-Hartree-Fock (MCDHF) ap-
proach. In the MCDHF method, atomic state functions
�(γPJMJ ), which are approximate solutions to the Dirac-
Coulomb Hamiltonian, are expanded over configuration state
functions (CSFs), 	(γiPJMJ ), with appropriate total angular
momentum (J ) symmetry and parity P :

�(γPJMJ ) =
N∑

i=1

ci	(γiPJMJ ). (10)

In the expression above, γi represents the configuration,
coupling, and other quantum number necessary to uniquely
describe the state i, MJ is the projection of J on the z axis, and
ci are mixing coefficients fulfilling the condition

∑N
i=1 c2

i = 1.
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The CSFs are constructed from one-electron Dirac orbitals
that together with the mixing coefficents are obtained in
a relativistic self-consistent-field procedure by applying the
variational principle [17]. The transverse photon interaction
as well as leading quantum electrodynamic (QED) corrections
can be accounted for in subsequent relativistic configuration
interaction (RCI) calculations [18].

Once a set of ASFs is obtained, the computation of the
isotope shift parameters is carried out using the program
RIS4 [15], which represents an extension of the predecessor
RIS3 [19]. In RIS4 the polynomial expansion bi(r) given by
Eq. (5) is for each level fitted to the constructed electron density
ρe

i (r) using a least-squares method. Finally, by combining the
expansion coefficients bi,N from two or more levels, the line
electronic factors are computed for the reference isotope A

according to Eq. (7).

III. REALISTIC NUCLEAR CHARGE DISTRIBUTIONS

As seen above, the reformulated field shift depends on
the radial moments of the nuclear charge distribution. These
moments can be calculated from nuclear models that provide
accurate charge distributions. In this section, three such models
are compared.

A. Nuclear charge distribution models

The nuclear charge distribution can be approximated by an
analytical expression such as the Fermi distribution

ρ(r,θ ) = ρ0

1 + e
r−c(θ )

a

, (11)

where, if only axially symmetric quadrupole deformation is
considered, c(θ ) = c0[1 + β20Y20(θ )]. This modified Fermi
distribution has been used previously to investigate the
effect of deformation on atomic binding energies in Li-like
systems [5,20,21]. In these studies, nuclear deformation pa-
rameters extracted from highly accurate muonic atom studies
were used [22,23]. The value of ρ0 ≈ ρ(r = 0) is determined
by the normalization condition∫

ρ(r)d r = 1, (12)

and the parameter α is given by the relation

t = 4 ln(3)α, (13)

where t is the skin thickness of the distribution. The skin
thickness is defined as the interval where the density decreases
from 90% to 10% of ρ(0). The parameter c0 reflects the size
of the nucleus.

In the GRASP2K code [16], the explicit values for these
parameters are taken as [4] t = 2.3 fm, β20 = 0 and the
parameter c0 is chosen so that the rms radius of the nuclear
charge distribution becomes√

〈r2〉 = 0.836A
1
3 + 0.570 fm (A > 9), (14)

where A denotes the number of nucleons of the isotope.
Realistic nuclear charge distributions can also be obtained

from microscopic nuclear models based on effective interac-
tions. Such models have the advantage that the size, shape, and

diffuseness of the nuclear density is obtained by solving a self-
consistent set of Hartree-Fock-Bogoliubov (HFB) equations.

In this work, we adopt the effective Skyrme interaction [24]
and consider two different sets of Skyrme parameters called
SLY4 and UNEDF1. The parameters in both sets are adjusted
to fit experimental data in a broad range of nuclei. The SLY4
set was fitted with an emphasis on describing neutron-rich
nuclei [25], whereas the UNEDF1 set constitutes a more recent
parametrization fitted to reproduce both ground-state energies
as well as radii and single-particle energies [26]. In spherical
symmetry, the solutions to the HFB equations are provided
by the code HOSPHE (v2.00), which is a new version of the
program HOSPHE (v1.02) [27]. In the case of deformed nuclei,
we use the code HFBTHO (2.00d) [28], based on a cylindrically
deformed harmonic oscillator (HO) basis.

For spherical nuclei, we take into account the finite nature of
protons by folding the densities using the convolution formula

c(r) =
∫

d3r ′ρp(r ′)g(|r − r ′|), (15)

where ρp(r) is the initially calculated proton density and

g(r) = (r0
√

π )−3e−(r/r0)2
(16)

the proton form factor, assumed to be a Gaussian with r0 =√
2
3 r rms

p , where r rms
p is the proton rms radius [29]. Experiments

to determine the proton radius have resulted in different values
of r rms

p [30,31], and in this work we adopt the results based on
electron scattering measurements assuming r rms

p = 0.88 fm.
In Fig. 1, the theoretical rms radii are compared to

experimental data obtained from elastic electron scattering
experiments [32,33]. A total of 16 spherical isotopes of various
elements, O, S, Ca, Ni, Sn, and Pb, are used in the comparison.
As seen in this figure, both the nuclear models as well as the
empirical parametrization [Eq. (14)] are in good agreement
with the experimental data.

0 50 100 150 200
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0

1

2

3
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< 
r2 >1/

2  [f
m
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Experiment
Fermi distribution
SLY4
UNEDF1

FIG. 1. Rms radii of theoretical charge distributions compared to
experimental data. Two different Skyrme parameter sets, SLY4 and
UNEDF1, are used with moments calculated after taking into account
the finite proton size. The resulting

√
〈r2〉 values from the Fermi

distribution used in the GRASP2K code [Eq. (14)] are also included.
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FIG. 2. Discrepancy of (a) the rms radii
√

〈r2〉 and (b) the
4
√

〈r4〉 moment of the theoretical charge distributions compared to
experimental data. Isotopic sequences are connected with lines.

The discrepancy between the theoretical and the experimen-
tal

√
〈r2〉 values is shown in Fig. 2(a). As seen in this figure,

the more recent Skyrme parameters (UNEDF1) give the best
description of the data. The two microscopic models also stand
out as they are in general better at capturing the isotopic trends
giving flatter curves than the Fermi distribution.

For calculations of field shifts, the higher-order moments
may also play an important role and in Fig. 2(b) the discrepancy
in the prediction of the 4

√
〈r4〉 values is shown. This comparison

shows the same trend as for the
√

〈r2〉 values, namely, that
microscopic models capture the isotopic trends better while
the Fermi distribution in general does a good job for the
stable nuclei. One might consider using more refined empirical
expressions containing a dependence on the difference in
proton and neutron numbers, but since such an approach
would anyway not capture the important changes caused by
deformations, the best approach comes from using state-of-
the-art microscopic nuclear models.

In Table I, the standard deviations of the discrepancies
for the three models are compared. Considering the average
agreement, the Fermi distribution and the Skyrme-SLY4 give
similar results while the more recent UNEDF1 is significantly
better. In addition, the UNEDF1 set predicts the

√
〈r2〉 and

4
√

〈r4〉 moments with about the same precision, while the
precision deteriorates slightly for the two other models. This
agrees with the fact that the full density profiles also tend to
be better reproduced by UNEDF1. Higher-order moments are

TABLE I. Standard deviations of discrepancies in
√

〈r2〉 and
4
√

〈r4〉, calculated for the three theoretical models.

√
〈r2〉 4

√
〈r4〉

Fermi distribution 0.01660 0.01954
Skyrme-SLY4 0.01821 0.01905
Skyrme-UNEDF1 0.01271 0.01260

difficult to compare since more focus is then shifted towards
the surface and tail of the density where insufficient precision
in the data hampers a qualitative comparison. All in all,
the UNEDF1 parametrization describes the nuclear charge
distributions more accurately than both the Skyrme-SLY4
and Fermi distributions and therefore realistic nuclear radial
moments resulting from this interaction will be used in the
following in order to estimate the line field shifts.

B. Application to line field shifts

In this section, the atomic physics calculations for the
electron energies are combined with the use of the microscopic
nuclear models for the charge densities. As an example,
we consider the resonance transition 6s2 1S0 −→ 6s6p 1P o

1
observed in several neutral Ba isotopes. By comparing the
line field shift in the isotope series one may be able to draw
conclusions on the shape and size of the nuclear density
distributions. The most abundant barium isotope on Earth,
138Ba, is taken as a reference and the shifts in electron energies
are thus compared to the values for this isotope. This reference
isotope is spherical, while the other isotopes obtained by
removing or adding a couple of neutrons are predicted to have
more deformed shapes.

Figure 3 shows the calculated line field shifts for the Ba
isotope series compared to experimental isotope shifts [34],
where theoretical mass shift contributions have been sub-
tracted [35]. The calculations based on the Fermi distribution
show a linear dependence on the mass number A′ of the target
isotope and fail to capture the general trend. The microscopic
nuclear calculations capture both the right trend with neutron
number and in addition some of the odd-even staggering.
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UNEDF1
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FIG. 3. The absolute line field shift values are compared to the
available experimental data [34,35]. Nuclear radial moments resulted
from the realistic HFB calculations using the Skyrme-UNEDF1
interaction, as well as from the Fermi distribution, have been used.
All plotted values refer to the 6s2 1S0 −→ 6s6p 1P o

1 transition.
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IV. EFFECT OF REALISTIC CHARGE DISTRIBUTIONS
ON THE LINE FIELD SHIFTS

In order to investigate the resulting field shifts when
replacing the commonly adopted Fermi distribution with more
realistic nuclear models, we examine the differences in the
predicted field shifts for a variety of isotopes. For such analysis,
the Fermi distribution is fitted so that it has the same 〈r2〉 value
as computed from the realistic distributions. Then,

δνFermi = Fk,1δ〈r2〉realistic

+
4∑

N=2

Fk,Nδ〈r2N 〉Fermi. (17)

Thus, the correction when using realistic charge distributions
is given by

δνrealistic − δνFermi =
4∑

n=2

Fk,N [δ〈r2N 〉realistic − δ〈r2N 〉Fermi].

(18)

In the following two subsections, the size of this correction
term will be investigated for lithium-like and neutral systems.

A. Li-like systems

Isotope shifts in lithium-like systems have been studied
theoretically and experimentally in the past [5,6,36–38] and
are thus of particular interest. In Fig. 4, the magnitude of the
“correction term” δνrealistic − δνFermi for one of the resonance
transitions has been plotted as a function of the mass number
A′ of the target isotope for a wide range of Li-like systems. For
the spherical Sn, Pb, Er, and Lv nuclear systems the magnitude
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FIG. 4. The corrections δνrealistic − δνFermi to the line field shift
calculations as a function of the mass number A′ of the target isotope
for various Li-like systems. For the systems that contain deformed
isotopes, the magnitude of the quadrupole deformation parameter β20

of the target isotopes A′ is indicatively shown. The isotopes used as
reference are marked with triangles and all plotted values refer to the
1s2 2s 2S1/2 −→ 1s2 2p 2P o

1/2 resonance transition.

of the corrections increases with A′. Moreover, the absolute
magnitude of the δνrealistic − δνFermi term increases with the
difference between the neutron number �NA,A′

in the isotope
sequences of Sn and Pb. When more neutrons are added,
they alter the protons distribution, leading to changes in the
diffuseness. This effect is not included in the Fermi model
where a constant skin thickness t 
 2.3 fm is assumed and
may be a reason for the observed difference.

In the deformed Rb, Nd, and U systems, the corrections
depend on the size of the nuclei as well as the quadrupole
deformation parameter β20, which is assumed to be zero in
the spherical Fermi model. Hence, for large deformations the
corrections for the Rb and Nd isotope pairs are comparable to
the ones obtained for the spherical Sn and Pb isotope pairs. For
the heavier U isotopes, the corrections become significantly
large in spite of the small difference in deformation between
the reference and target isotopes.

In Fig. 5, the magnitude of the corrections has been
plotted as a function of the calculated deformation parameter
β20 corresponding to the isotope A′ for some Nd and U
isotope pairs. In both plots, the magnitude of the “correction
term” increases as the difference between the deformation
of reference and target isotope becomes large. The largest
corrections are obtained for the uranium isotope pairs 240,238U
and 220,238U. In this case, the correction amounts to ∼2.3%
and ∼2%, respectively.

The two-parameter Fermi model does not take into
account the effect of deformation. As a result, the effect of
realistic charge distributions on the field shifts is larger in
atomic systems with deformed nuclei. The correction term
δνrealistic − δνFermi can, however, be decomposed into two
parts and written as

δνrealistic − δνFermi = (
δνrealistic − δνdef

Fermi

)
+ (

δνdef
Fermi − δν

sph
Fermi

)
. (19)
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FIG. 5. The corrections δνrealistic − δνFermi to the line field shift
values as a function of the quadrupole deformation parameter β20 of
the target A′ isotope for various (a) Nd57+ and (b) U89+ isotope pairs.
In each case, the corresponding deformation of the reference isotope
A is indicated by a vertical line on the plots. All plotted values refer
to the same resonance transition as in Fig. 4.
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1/2 transition in Li-like 142,150Nd.

The δνdef
Fermi − δν

sph
Fermi part isolates the effect of deformation,

while the remaining δνrealistic − δνdef
Fermi part gives the

corrections due to “other effects,” such as density wiggles and
differences in diffuseness. In order to separately estimate the
effect of deformation in Li-like Nd, the deformed Fermi model
was used with β20 values obtained from the microscopic
nuclear calculations.

Isotope shift (IS) measurements have been performed for
the first two resonance transitions of the 142,150Nd57+ pair [37]
and the statistical uncertainty of the observed isotope shift for
the 1s2 2s 2S1/2 −→ 1s2 2p 2P o

1/2 transition is compared to the
magnitude of the “correction terms” in Fig. 6. As seen in the
figure, the effect of deformation is large enough to be detected
by the experiments and the correction due to “other effects” is
not negligible.

B. Neutral atoms

In this section, field shifts in neutral barium are in-
vestigated for the three well-known 6s2 1S0 −→ 6s6p 1,3P o

1
and 6s2 1S0 −→ 6p2 3P 1 transitions. Figure 7 illustrates
the dependence of the magnitude of the corrections on the
deformation parameter β20. The same trend is seen for the
three transitions. As already deduced for Nd57+ and U89+
(see Fig. 5) the magnitude of δνrealistic − δνFermi increases
as the difference between the deformation of reference and
target isotope becomes large. However, in neutral barium the
magnitude of the correction term δνrealistic − δνFermi is a factor
∼103 smaller.

In contrast to the IS measurements in Li-like systems,
a greater number of measurements has been performed in
neutral atomic systems. Furthermore, in such measurements
the accuracy provided is generally much higher. Following the
process described in the previous section, the correction term
is decomposed for the 6s2 1S0 −→ 6s6p 1P o

1 transition of
the 138,136Ba isotope pair. The isotope shift measurements of
the corresponding spectral lines [34] carries a statistical error,
which is in Fig. 8 compared to the magnitude of the correction
terms.
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FIG. 7. The corrections δνrealistic − δνFermi to the line field shift
calculations as a function of the quadrupole deformation parameter
β20 of the target A′ isotope for the neutral barium isotope pairs.

As seen in Fig. 8, the experimental uncertainty is remark-
ably small in comparison to the magnitude of the corrections.
However, in reality the experimental uncertainty of the field
shift is much larger since the theoretical mass shift contribution
is in this case associated with large uncertainties, which are
not reflected in this figure. The dominating corrections are
the “other effects” that arise from the differences between the
deformed Fermi distribution and the more realistic charge dis-
tributions obtained from the microscopic nuclear calculations.

The major improvement to the line field shift measurements
illustrated in Fig. 3 is clearly due to the choice of using realistic
rms radii. However, making in addition use of realistic higher-
order nuclear moments leads to a non-negligible improvement
in the description of the experimental data. According to
the current experimental precision in the measurement of
the isotope shifts in 136,138Ba and 150,142Nd57+, effects like
deformation captured by the higher nuclear moments could be
detected (see Figs. 6 and 8). As a result, information about such
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FIG. 8. Decomposition of expansion and correction terms of the
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1 transition in 138,136Ba I.
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a nuclear property could possibly be deduced from isotope shift
observations.

V. δ〈r4〉A,A′
EXTRACTION

The nuclear charge radius is one of the most obvious and
fundamental parameters, related to the size of the nucleus.
Considering isotope shift measurements, the charge radii of
an isotope sequence are typically determined in terms of the
differences in the second radial moment δ〈r2〉, between target
isotope A′ and reference isotope A. In contrast to light nuclei,
in heavy nuclear systems the contribution of the higher-order
radial moments to the line field shift can be significant and
above the observable limit (see Figs. 6 and 8). Moreover, in
highly charged heavy systems the contribution of the mass
shift effect becomes smaller. This suggests the possibility to
extract information about higher nuclear moments.

The reformulation of the field shift, combined with ex-
perimental isotope shift measurements, in principle enables
the extraction of differences in higher-order radial moments
δ〈r2N 〉, N = 2,3,4. Consequently, information about the nu-
clear shapes, deformations, density wiggles, and other nuclear
properties can be provided. The extraction of all four radial
moments requires four transitions k to be available. A system
of four equations is then solved for

δνk,RFS = Fk,1δ〈r2〉 + Fk,2δ〈r4〉
+Fk,3δ〈r6〉 + Fk,4δ〈r8〉, (20)

where k = 1,2,3,4. However, it is rare that observed isotope
shifts are available for four transitions and, in addition, such
systems of equations cannot be formed so that they give
trustworthy solutions for higher than second-order moments.

A. RFS expansion using orthogonal moments

As seen in Figs. 6 and 8, all four expansion terms do not
equally contribute to the final field shift value. Considering
in Fig. 9 the line field shift for the 208,200Pb pair, the
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FIG. 9.
∑

NFNδ〈r2N 〉/δν in percent (circles) compared to the cor-
responding expression for the rearranged summation (triangles). The
plot refers to the 208,200Pb pair and the 1s2 2s 2S1/2 −→ 1s2 2p 2P o

1/2

transition.

fourth-order radial moment adds ∼10% contribution, the
sixth moment ∼2%, and the last term, which contains the
eighth-order moment, contributes with much less. Thus, it is
fair to say that the major correction to the approximation that
assumes constant electron density ρe

i (r) ≈ ρe
i (0) comes from

the second expansion term, i.e., Fk,2δ〈r4〉, which takes into
account the differences between the 〈r4〉 moments. However,
the contribution from higher-order terms is not negligible.

In Eq. (20), the information about the nuclear charge
distribution is encoded in a set of nuclear radial moments.
These moments are not independent and a faster converging
series may be found by instead expanding in a set of
orthogonal polynomials (see Appendix). The convergence
of this rearranged summation compared with the original
summation is shown in Fig. 9. By taking into account only the
first term, the line field shift is already much closer to the final
value. The second term adds ∼3.5% contribution, the third
∼0.18%, while the last one adds ∼0.016%. Thus, accurate
enough field shift predictions can now be provided using only
the first two expansion terms containing the differences δ〈y1〉
and δ〈y2〉, which are in turn given as a function of the δ〈r2〉 and
δ〈r4〉 moments (see Appendix). Having only two unknowns
means that δ〈r2〉 and δ〈r4〉 can potentially be extracted from
knowledge of two observed line field shifts in an isotope pair.

B. Testing the method

After expanding in the orthonormal basis, for a pair of
isotopes A,A′, the reformulated line field shift can to a very
good approximation be expressed as

δνk,RFS ≈ ck,1δ〈y1〉 + ck,2δ〈y2〉, (21)

where the ck,1 and ck,2 coefficients are expressed in terms of
the Fk,N factors. In order to test the method, theoretical line
field shifts δνRFS were obtained using realistic nuclear radial
moments. These line field shifts refer to the 1s2 2s 2S1/2 −→
1s2 2p 2P o

1/2 and 1s2 2s 2S1/2 −→ 1s2 2p 2P o
3/2 transitions of

the uranium, lead, and neodymium isotope pairs studied in
Sec. IV. Using these calculated field shifts as “pseudoexperi-
mental” input data, the equations can be inverted and should
yield, if the method is flawless, extracted radial moments
which are identical to the realistic nuclear moments used in
the computation of the field shifts.

In all cases, the extracted δ〈r2〉 moments are almost
identical to the exact δ〈r2〉realistic moments. The difference is
less than 0.0002 fm2 for all lead and uranium isotopes, as
well as the neodymium isotopes that are close to spherical.
For the highly deformed neodymium isotopes, the difference
is slightly larger, of the order of ∼0.001 fm2, which still
represents a small discrepancy.

In Fig. 10, the extracted δ〈r4〉 values have been plotted
and compared to the δ〈r4〉realistic representing exact values.
The extracted δ〈r4〉original values using the first two terms
of the original summation δν

A,A′
k,RFS ≈ ∑2

N=1Fk,Nδ〈r2N 〉 are in
addition illustrated in the same figure. When the rearranged
summation is used, the extracted δ〈r4〉 moments are in good
agreement with the exact δ〈r4〉realistic moments, whereas the
δ〈r4〉 moments using the original, but truncated, summation
display an observable discrepancy from the exact values. All
in all, the expression using the rearranged summation for
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the reformulated field shift enables the determination of the
differences between r2 and r4 moments, much more accurately
than using the original expression.

C. Towards the extraction of δ〈r2〉 and δ〈r4〉 moments using
experimental data

In what follows, the major objective is to discuss how δ〈r2〉
and δ〈r4〉 moments can be extracted from experimental data
using the method tested above. From observed isotope shifts,
experimental field shift values can be obtained by estimating
and removing the mass shift contribution and residual effects
δνk,RES from for example QED and nuclear polarization (see,
e.g., [6]):

δν
expt
k,FS = δν

expt
k,IS − δνk,MS − δνk,RES. (22)

The effect from nuclear polarization is not estimated in
this work, but have been studied extensively in the past by
Plunien et al. [39–42]. For Li-like systems, the contribution is
comparable to the effect from deformation and must be taken
into account in real situations.

Without making use of RFS, the difference in 〈r2〉 moments
can now be extracted by performing variational calculations
where the rms radius of the reference isotope is estimated and
δ〈r2〉 is varied until agreement with experimental field shifts
is observed (see, for example, [37]):

δν
expt
k,FS = δνexact

k,VA. (23)

The difference in higher moments then follows from the model
used to mimic the nuclear charge distribution, for example the
Fermi distribution, and hence this method is highly model

TABLE II. The line frequency field shift values, resulting from
the variational calculations using GRASP2K and the reformulation of
the field shift, are respectively displayed for a few lead and uranium
isotope pair combinations. In the last column, the discrepancy
between δνexact

VA and δνRFS is computed. “Transition 1” refers to the
1s2 2s 2S1/2 −→ 1s2 2p 2P o

1/2 transition.

Transition 1 δνexact
VA (GHz) δνRFS (GHz) d (GHz)

208,192 51 303 50 563 740
208,200 28 938 28 546 392
208,210 −14 186 −14 021 −165
238,234 54 796 53 976 820
238,236 27 412 27 015 397

dependent. However, making use of the reformulation of field
shifts using an orthogonal moments basis, we instead use
experimental field shift values from two transitions and solve
the following equation system in order to extract the δ〈r2〉 and
δ〈r4〉 moments virtually model independent:

δν
expt
k,FS = ck,1δ〈y1〉 + ck,2δ〈y2〉 + dk. (24)

In the expression above, a term dk has been introduced which
represents the discrepancy between the “exact” variational
solution δνexact

k,VA, and the RFS solution δνk,RFS, assuming a
spherical Fermi nuclear charge distribution for the reference
and the target isotope. To examine the importance of the dk

term for the extraction of the radial moments, we used GRASP2K

and RIS4 to compute δνexact
k,VA and δνk,RFS for the resonance

transitions in several Li-like lead and uranium isotope pairs.
In the calculations, rms radii were taken from the compilation
by Angelis and Marinova [1] and the results are presented in
Tables II and III. As seen, an expected discrepancy between
the δνexact

VA and δνRFS values, i.e., the dk term, is observed for
both transitions. In our case, this discrepancy is mainly due
to QED effects included in the VA calculation that become
important in heavy nuclei and which are not included in the
perturbative approach. In addition, these QED contributions
(vacuum polarization and self-energy) depend on the nuclear
size [43] and hence the dk terms should be reevaluated when
the nuclear parameters of the isotopes are changed. Other
assumptions that have been made throughout the formulation
of the perturbative approach are expected to play a minor role.
Indicatively, for “transition 1” in the uranium isotope pairs
the magnitude of the discrepancy is of the order of ∼1.5%
of the δνexact

VA value, from which ∼0.1% is due to other than
QED effects. It is also seen that the dk terms for the two
transitions are slightly different, and it turns out that accurately
estimating this difference, rather than the magnitude of the

TABLE III. Same as Table II. “Transition 2” refers to the
1s2 2s 2S1/2 −→ 1s2 2p 2P o

3/2 transition.

Transition 2 δνexact
VA (GHz) δνRFS (GHz) d (GHz)

208,192 55 459 54 642 817
208,200 31 282 30 848 434
208,210 −15 336 −15 152 −184
238,234 61 189 60 277 912
238,236 30 610 30 169 441
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terms, is absolutely crucial in order to extract accurate δ〈r4〉
moments.

We are now ready to show that it is possible to extract δ〈r2〉
and δ〈r4〉 moments if accurate experimental field shifts are
available. This is due to the fact that the electronic factors ck

and the dk terms can be accurately estimated also when the
rms radii is not known for the reference and/or target isotope.
In these cases, we make instead a “qualified guess” for the rms
radii. The parametrization, given in Eq. (14), for the rms radius
of an isotope A constitutes an example of such a “qualified
guess” and will be used below.

1. Root-mean-square radii data available
for the reference isotopes

When radial moment differences are deduced from isotope
shift measurements, the nuclear parameters are usually known
for the reference isotope but not for the target isotope. We will
now demonstrate the procedure for how experimental δ〈r2〉
and δ〈r4〉 moments for the 238,234U isotope can be extracted
in such cases by considering the two resonance transitions in
Li-like uranium. In what follows, 238U is the reference isotope,
r tab
A denote a tabulated rms radius for isotope A taken from [1],

r
para
A denote a parametrized rms radius for isotope A using

Eq. (14), and spherical Fermi distributions with t = 2.30 fm
are used everywhere. Further on it is assumed that accurate
δν

expt
k,FS values are available:
(1) Two separate variational calculations are performed

using r tab
238 = 5.8571 fm and r

para
234 = 5.7216 fm, respectively.

(2) δνexact
k,VA is constructed using the level energies from the

r tab
238 and r

para
234 calculations in step 1.

(3) δνk,RFS is computed by using the electronic factors from
the r tab

238 calculation and the difference in radial moments as
predicted by two spherical Fermi distributions with r tab

238 and
r

para
234 , respectively.

(4) dk = δνexact
k,VA − δνk,RFS is computed.

(5) ck factors are computed using the electronic factors in
step 3 (see Appendix).

(6) δ〈y1〉 and δ〈y2〉 are extracted by solving Eq. (24).
(7) δ〈r2〉 and δ〈r4〉 are computed (see Appendix).
To quantitatively validate the method we replace δν

expt
k,FS

with “pseudoexperimental” field shifts constructed from two
separate variational calculations using r tab

238 and r tab
234 = 5.8291

fm, respectively. In addition, we repeat the procedure for
the 238,236U isotope pair using r

para
236 = 5.7363 fm and r tab

236 =
5.8431 fm. In Table IV, the extracted δ〈r2〉 and δ〈r4〉 moments

TABLE IV. Errors, in fm2 and fm4, when extracting the δ〈r2〉 and
δ〈r4〉 moments, for the 234,238U and 236,238U pairs. It is assumed that
the rms radii are unknown for the target isotopes. See text for details.

238,234 238,236

δ〈r2〉 −0.3282 −0.1642
δ〈r2〉expt −0.3272 −0.1638
Error 0.0010 0.0004
δ〈r4〉 −28.9026 −14.3453
δ〈r4〉expt −27.4419 −13.7693
Error 1.4607 0.5760

are compared to the experimental δ〈r2〉expt and δ〈r4〉expt

moments. As seen, the extracted δ〈r2〉 moments are almost
identical to the “experimental” values. In addition, the δ〈r4〉
moments are extracted with an accuracy of 5.3% and 4.2% for
the 234,238U and 236,238U pairs, respectively. The errors, which
are of systematical nature and remarkably small, arise from
estimating the d term using rms radii for the target isotopes
which differ by approximately 0.11 fm from the tabulated
values used to construct the “pseudoexperimental” field shifts.
However, after the extraction one obtains a better estimate for
the rms radii of the target isotopes that allows the method to
be iteratively improved.

2. Root-mean-square radii unknown for both target
and reference isotopes

Assuming that the rms radius value of the reference isotope
is also unknown, we again try to extract the δ〈r2〉 and δ〈r4〉
moments. A “qualified guess” for the rms radius of 238U is
then needed and we replace r tab

238 with r
para
238 = 5.7508 fm in the

procedure described above.
The results from the extraction of the δ〈r2〉 and δ〈r4〉

moments are presented in Table V. As seen, the δ〈r2〉 moment
is extracted almost as accurate as before (see Table IV). Further
on, the results from extracting the δ〈r4〉 moments display a
discrepancy of ∼10.3% and ∼6.5% from the exact values, for
the 234,238U and 236,238U pairs, respectively.

The nuclear parameters relevant to the reference isotope
have been modified here. Thus, the Fk factors have also
been reevaluated since they are always deduced for the
reference isotope. As a result, aside from the new radial
moments differences, the δνk,RFS field shifts are computed
based on updated sets of Fk,N factors. This explains the larger
discrepancy that is observed when extracting the δ〈r2〉 and
δ〈r4〉 moments in the latter case (see Table V). However, the
results are remarkably good given that the “qualified guess”
for the reference isotope is approximately 0.11 fm smaller than
the tabulated value used to construct the pseudoexperimental
field shifts.

D. Statistical errors when extracting
the δ〈r2〉 and δ〈r4〉 moments

Above, the δ〈r2〉 and δ〈r4〉 moments were extracted by
solving the matrix equation[

δν1,RFS

δν2,RFS

]
= C

[
δ〈y1〉
δ〈y2〉

]
. (25)

TABLE V. Same as Table IV. Here, it is assumed that rms radii
are unknown for both the reference and the target isotopes. See text
for details.

238,234 238,236

δ〈r2〉 −0.3287 −0.1640
δ〈r2〉expt −0.3272 −0.1638
Error 0.0015 0.0002
δ〈r4〉 −30.2665 −14.6612
δ〈r4〉expt −27.4419 −13.7693
Error 2.8246 0.8919
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In order to solve for y1 and y2, the matrix C must be invertible.
If the matrix determinant is zero, then the matrix is singular
and cannot be inverted. It is not rare that the determinant of
such matrix can be close to zero, but still nonzero. In this
case, the matrix is close to singular and as a result the values
of δ〈y1〉 and δ〈y2〉 will be hugely affected, even by a small
change in the field shifts δν1,RFS and δν2,RFS. Namely, the
extracted δ〈y1〉 and δ〈y2〉 values, and as a consequence the
δ〈r2〉 and δ〈r4〉 moments, will to a great degree be affected
by the uncertainties in the observed isotope shifts, making the
extraction of the radial nuclear moments with high accuracy
a difficult task. A C-matrix determinant equal to zero is
obtained if the two equations are linearly dependent. In such
case, it is not possible to extract two unknowns. Therefore, the
transitions considered should be as independent as possible in
terms of electronic factors.

The observed isotope shifts δν
expt
k,IS , and subsequently the ob-

served field shifts δν
expt
k,FS, are associated with uncertainties of a

certain magnitude. These uncertainties lead to statistical errors
in the extracted nuclear moments. In the next subsections, the
propagation of these errors is discussed and how they can be
minimized by selecting atomic transitions.

1. Statistical errors in relation to the atomic number

In Sec. V B, our method was tested by using δνRFS line
field shifts as pseudoexperimental data. In order to extend this
approach to consider uncertainties we assume uncorrelated
errors with an uncertainty ±ε, where ε = δνk,RFS × 10−m, in
the δνk,RFS values that are used for solving the matrix equation
[see Eq. (25)]. By varying m, the magnitude of the field shift
uncertainty changes. We can then investigate the effect these
uncertainties have on the extracted δ〈r2〉 and δ〈r4〉 values.

The extraction of the δ〈r2〉 and δ〈r4〉 moments was in
Sec. V B performed for several uranium, lead, and neodymium
isotope pairs (see Fig. 10). By making a reasonable choice of
m = 3 for the error ε in the δνk,RFS values relevant to these
isotope pairs, it is possible to estimate the magnitude of the
statistical errors in the extracted δ〈r2〉 and δ〈r4〉 moments.
The relative errors of the extracted values for one isotope pair
of each of the above elements are indicatively presented in
Table VI. The error in δ〈r2〉142,150 is approximately 72% of the
magnitude of the resulting value. Besides, the δ〈r4〉142,150 is
extracted with significantly greater error. However, the relative
error in both δ〈r2〉 and δ〈r4〉 demonstrates a considerable
decrease as the atomic number of the isotopes becomes larger.

TABLE VI. The relative error in the extraction of the δ〈r2〉 and
δ〈r4〉 moments for the 142,150Nd57+, 208,192Pb79+, and 238,236U89+ pairs.
The relative errors are presented as a function of the atomic number
of these three elements. The inaccuracy assumed in the δνk,RFS field
shift data is ±ε = δνk,RFS × 10−3.

142,150Nd 208,192Pb 238,236U
Z 60 82 92

�(δ〈r2〉)
|δ〈r2〉| 0.72 0.39 0.28

�(δ〈r4〉)
|δ〈r4〉| 13.84 5.54 3.65

So far, the extraction of the δ〈r2〉 and δ〈r4〉 moments
was performed by making use of δνk,RFS field shifts and
Fk,N line field shift factors that are attributed to the first
two resonance transitions, i.e., 1s2 2s 2S1/2 −→ 1s2 2p 2P o

1/2

and 1s2 2s 2S1/2 −→ 1s2 2p 2P o
3/2. For these two transitions

in lithium-like systems, the Fk,N factors, as well as the line
mass shift parameters �Kk,MS, can be determined with high
accuracy. Therefore, when we in practice attempt to extract the
δ〈r2〉 and δ〈r4〉 moments using actual experimental data, the
uncertainties in the δν

expt
k,FS values will normally be dominated

by the uncertainties in the δν
expt
k,IS measurements.

For the 142,150Nd57+ pair and the previously mentioned
transitions such measurements are available [37]. Taking into
account the uncertainties in the measured isotope shifts δν

expt
k,IS ,

the corresponding uncertainties in δν
expt
k,FS appear in the fourth

and third digits for each of the above transitions, respectively.
In this case, the choice of an error ±ε = δνk,RFS × 10−3 in
the calculated field shift values seems to be quite realistic.
However, according to Table VI the errors in the δ〈r2〉 and δ〈r4〉
values resulting from experimental uncertainties of this mag-
nitude for the neodymium pair are evidently extremely large.

We can therefore draw the conclusion that the extraction
of the δ〈r2〉142,150 and δ〈r4〉142,150 moments with satisfactory
accuracy is not likely to be a possibility at the moment. Varying
m we deduce that in order for the δ〈r2〉142,150 and δ〈r4〉142,150

to be determined with uncertainties of the order of � 1% and
� 14%, respectively, we should assume m � 5. In addition,
considering Table VI, a more precise extraction of the δ〈r2〉
and δ〈r4〉 moments should be possible for the lead and in
particular for the uranium isotope pairs.

2. Independent transitions

Considering the two resonance transitions that were used
above for extracting δ〈r2〉 and δ〈r4〉 moments, we note that
the same final state takes part in both. Therefore, these two
transitions are not entirely independent and the corresponding
Fk,N factors do not constitute the best possible set so that we
avoid matrix C being close to singular. As a consequence, the
uncertainties in the δ〈r2〉 and δ〈r4〉 values are relatively large.
In order to be able to accurately extract both δ〈r2〉 and δ〈r4〉
moments, the precision of the experimental methods must
therefore be improved substantially. Alternatively, a larger
number of transitions must be available. Using the GRASP2K

package, we can easily compute line field shift parameters for
more transitions and hence an extended set of δνk,RFS values
can be generated. The matrix equation will then be formed
using k > 2 equations, which need to be solved for the same
unknowns y1 and y2. Having more equations than number of
unknowns leads to a reduction of the statistical errors.

Choosing, for instance, to extract the δ〈r2〉 and δ〈r4〉
moments for the 238,236U pair, we solve a matrix equa-
tion that consists of 16 equations corresponding to 16
different transitions. These transitions involve the following
even 1s2 2s 2S1/2, 1s2 3s 2S1/2, 1s2 3d 2D3/2,5/2 and odd
1s2 2p 2P o

1/2,3/2, 1s2 3p 2P o
1/2,3/2 states in Li-like uranium. By

making the same choice of m = 3 for the error ε = δνk,RFS ×
10−m in the δνk,RFS values, we extract the δ〈r2〉 and δ〈r4〉 mo-
ments. The extracted δ〈r2〉 moment has exactly the same value
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TABLE VII. The relative error in the extraction of the δ〈r2〉 and
δ〈r4〉 moments for the 238,236U89+ pair, initially calculated when the
first two resonance transitions were studied, when all 16 theoretically
available transitions are used and when we finally choose one set of
as independent as possible transitions. The uncertainties assumed in
the δνk,RFS field shift data are, as in Table VI, ±ε = δνk,RFS × 10−3.

238,236U 2 res. All 16 2 ind.

�(δ〈r2〉)
|δ〈r2〉| 0.28 0.03 0.02

�(δ〈r4〉)
|δ〈r4〉| 3.65 0.38 0.30

as before, whereas the δ〈r4〉 value is also about the same, suf-
fering from approximately the same systematical errors. How-
ever, the statistical errors in the extraction of both δ〈r2〉 and
δ〈r4〉 have now been decreased significantly (see Table VII).

In practice, such large number of measured transitions is
not likely to be available. Trying all different combinations,
we realize that the error in the extraction of the δ〈r2〉 and δ〈r4〉
moments, by using a set of only two transitions, varies with
the choice of the transitions. For the 238,236U pair and ε =
δνk,RFS × 10−3 we get 0.0014 � �(δ〈r2〉)

|δ〈r2〉| � 80 and 0.0012 �
�(δ〈r4〉)
|δ〈r4〉| � 1100, for the relative errors in the extraction of the

δ〈r2〉 and δ〈r4〉 moments, respectively.
We therefore deduce that in order to limit the magnitude

of the statistical errors, it is more important to make a choice
of as independent as possible transitions that form the set
of equations solved, rather than increasing the number of
transitions. Based on this conclusion, instead of extracting
the δ〈r2〉 and δ〈r4〉 moments using the first two resonance
transitions, a set of two more independent transitions is
chosen. Thus, we attempt to extract the δ〈r2〉 and δ〈r4〉
moments for the 238,236U isotope pair, using the resonance
transition 1s2 2s 2S1/2 −→ 1s2 2p 2P o

1/2 combined with the
1s2 3p 2P o

1/2 −→ 1s2 3d 2D3/2 transition. The resulting rela-
tive errors for this combination of transitions are also displayed
in Table VII. As seen, the relative errors in the extraction
of both δ〈r2〉 and δ〈r4〉 moments are decreased when a
more optimal combination of 2 out of the total 16 available
transitions is chosen.

TABLE VIII. Same as Table IV. Here, the line field shift
factors Fk,N correspond to the 1s2 2s 2S1/2 −→ 1s2 2p 2P o

1/2 and
1s2 3p 2P 1/2 −→ 1s2 3d 2D3/2 transitions. Statistical errors are given
in the rightmost column assuming uncertainties in the “pseudoexper-
imental” field shifts according to ε = δνk,RFS × 10−3.

238,236

δ〈r2〉 −0.1646 ±0.0036
δ〈r2〉exact −0.1638
Error 0.0008

δ〈r4〉 −14.7283 ±3.5279
δ〈r4〉exact −13.7693
Error 0.9590
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FIG. 11. The relative error in the extraction of the δ〈r2〉 moment
as a function of m number in the assumed uncertainty ε = δνk,RFS ×
10−m of the field shift. For the extraction, the pair of 1s2 2s 2S1/2 −→
1s2 2p 2P o

1/2 and 1s2 3p 2P 1/2 −→ 1s2 3d 2D3/2 transitions in Li-like
238,236U has been used.

3. Errors in the extraction of δ〈r4〉238,236

Having ascertained that the “right” combination of tran-
sitions provides us with reasonably small statistical errors,
we can extract the δ〈r2〉 and δ〈r4〉 moments for the 238,236U
isotope pair using pseudoexperimental field shifts, as described
in Sec. V C 1, for this “optimal” pair of transitions. The
statistical uncertainties are estimated as ε = δνk,RFS × 10−m

with m = 3, which has been used so far for determining the
assumed uncertainty in the δνk,RFS values.

The extracted radial moments together with the resulting
errors are displayed in Table VIII. Comparing the respective
results of Table IV with the results in Table VIII, we deduce
that although in the latter case the systematical errors are larger
the statistical errors of the extracted δ〈r2〉 and δ〈r4〉 values are
significantly smaller. We see that now the relative statistical
errors are �(δ〈r2〉)

|δ〈r2〉| = 0.022 and �(δ〈r4〉)
|δ〈r4〉| = 0.24, respectively.

In Figs. 11 and 12, the relative errors in the extraction of
the δ〈r2〉 and δ〈r4〉 moments are illustrated as a function of
the m value. As seen, the results are rather sensitive to the
m value and the relative error increases dramatically as the
precision of the field shift values decreases. This is even more
pronounced for the errors in the extracted δ〈r4〉 moments.
Nevertheless, for m = 3 both δ〈r2〉 and δ〈r4〉 moments are
extracted with satisfactory accuracy. Thus, we deduce that
provided the current experimental precision in the isotope shift
measurements, an accurate enough extraction of the δ〈r2〉 and
δ〈r4〉 moments could be possible as long as the measured
transitions are sufficiently independent in terms of electronic
factors.

VI. SUMMARY AND CONCLUSIONS

Combining nuclear DFT-type models with MCHF calcu-
lations for atomic states it is possible to achieve a higher
precision in the predictions of atomic line field shifts. Changes
in the nuclear charge distribution caused by shell structure,
deformations, and variations in the diffuseness of the nuclei
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FIG. 12. Same as Fig. 11, but for the relative uncertainty in the
extraction of the δ〈r4〉 moment using the same pair of transitions.

are then automatically taken into account. In this work, it is
shown that capturing all these effects leads to an improved
description of experiments.

With the continuous advancement in experimental methods,
one may ask whether the improved precision and access to
several atomic transitions makes it possible to obtain more data
on the nuclear isotopes than just the δ〈r2〉 values commonly
extracted so far. By constructing a set of theoretical field shifts
we explore the possibility of extracting information about
the nucleus by inverting the first-order perturbation theory
equations for the field shifts. In this way, we demonstrate
that the electron states are sensitive not only to the δ〈r2〉
values but also to changes in 〈r4〉 values. This opens the
possibility for systematic tabulation of these higher-order
nuclear moments. Considering both statistical and systematical
errors in the extraction procedure we conclude that an increase
in experimental precision by one to two orders of magnitude or
access to data for more independent atomic transitions would
be essential. As a promising candidate for future experiments,
we suggest Li-like uranium where an increase in precision
with one order of magnitude along with access to at least two
independent transitions would allow accurate δ〈r4〉 values to
be extracted.
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APPENDIX: RFS EXPANSION IN ORTHONORMAL BASIS

The RFS is, for a certain transition, given by the expansion

4∑
N=1

FNδ〈r2N 〉 = F1δ〈r2〉 + F2δ〈r4〉 + F3δ〈r6〉 + F4δ〈r8〉,

where the line field shift factors FN play the role of expansion
coefficients. The set of r2N that forms the basis {r2,r4,r6,r8}
is not orthonormal. It is reasonable to assume that a rear-
rangement using an orthonormal basis should lead to faster
convergence. Here, we orthonormalize the initial basis with
respect to the scalar product:

〈u | v〉 =
∫

u ∗ v ∗ wr2dr,

where w is the weight function that approximates the nucleus.
Since the functions yN , forming the basis {y1,y2,y3,y4}, are
constructed to be orthogonal they will probe different aspects
of the nuclear charge distribution within the nuclear volume.
Thus, we expect that the expansion

4∑
N=1

cNδ〈yN 〉 = c1δ〈y1〉 + c2δ〈y2〉 + c3δ〈y3〉 + c4δ〈y4〉

will converge faster than
∑4

N=1FNδ〈r2N 〉 does. In the ex-
pression above, cN are the expansion coefficients. Assuming
that the nucleus can be approximated as a hard sphere, one
can use w = ρ0�(R − r) with R = 1.25A1/3. The value of ρ0

is determined by the normalization condition 4π
∫

ρ0r
2dr =

1. Following the Gram-Schmidt process [44], we
obtain

y1 = 3.46556

Ā2/3
r2,

y2 = −15.2051

Ā2/3
r2 + 12.5116

Ā4/3
r4,

y3 = 39.9503

Ā2/3
r2 − 80.3573

Ā4/3
r4 + 37.1429

Ā2
r6,

y4 = −82.4315

Ā2/3
r2 + 293.927

Ā4/3
r4 − 313.522

Ā2
r6 + 103.367

Ā8/3
r8,

where Ā is taken as the average of the mass numbers of the two
isotopes. The sum of the expansion terms has been rearranged
but

∑4
N=1FNδ〈r2N 〉 = ∑4

N=1cNδ〈yN 〉 must still hold. The cN

coefficients can be found by equating same order terms in the
above equation. Hence, the new coefficients are

c1 = 0.288554Ā2/3F1 + 0.350673Ā4/3F1

+ 0.448303Ā2F3 + 0.592709Ā8/3F4,

c2 = 0.0799258Ā4/3F2 + 0.172916Ā2F3 + 0.2972Ā8/3F4,

c3 = 0.026923Ā2F3 + 0.08166Ā8/3F4,

c4 = 0.00967424Ā8/3F4.

Now, the RFS is given by the summation

4∑
N=1

cNδ〈yN 〉

and the matching percentage to the final field shift after each
term has been added differs from the one when the original
summation is used.

As seen in Fig. 9, the orthogonal expansion converges
substantially faster than the original summation. In fact, only
the δ〈r2〉 and δ〈r4〉 moments need to be considered as long
as the sum is rearranged. Thus, for a pair of isotopes A,A′
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and a transition k, the RFS is to a very good approximation
expressed as

δν
A,A′
k,RFS ≈ ck,1δ〈y1〉 + ck,2δ〈y2〉.

In case the isotope shifts are known for two transitions, a
system of two equations can be formed, and the ck,1 and ck,2

constants can be evaluated using the expressions above. They
depend on the line field shift factors Fk,N that are different
for each transition and which are calculated for the reference
isotope A. Therefore, for two transitions, the problem takes
the form of a matrix equation[

δν
A,A′
1,RFS

δν
A,A′
2,RFS

]
≈

[
c1,1 c1,2

c2,1 c2,2

][
δ〈y1〉
δ〈y2〉

]
.

The unknown y1 and y2 can thus be solved according to[
δ〈y1〉
δ〈y2〉

]
≈ C−1

[
δν

A,A′
1,RFS

δν
A,A′
2,RFS

]
,

where C−1 is the inverse matrix of [c1,1 c1,2
c2,1 c2,2

]. The δ〈r2〉
and δ〈r4〉 moments are finally extracted by solving the
equations[

δ〈y1〉
δ〈y2〉

]
=

[
3.46556/Ā2/3 0

−15.2051/Ā2/3 12.5116/Ā4/3

][
δ〈r2〉
δ〈r4〉

]
.

This can be compared with the original summation, where if
the approximate relation

δν
A,A′
k,RFS ≈ Fk,1δ〈r2〉 + Fk,2δ〈r4〉

is assumed, the matrix equation to be solved is given by[
δν

A,A′
1,RFS

δν
A,A′
2,RFS

]
≈

[
F1,1 F1,2

F2,1 F2,2

][
δ〈r2〉
δ〈r4〉

]
.
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