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ABSTRACT

Spectral analysis encompasses several powerful signal processing methods. The
papers in this thesis present methods for finding good spectral representations,
and methods both for stationary and non-stationary signals are considered.
Stationary methods can be used for real-time evaluation, analysing shorter
segments of an incoming signal, while non-stationary methods can be used to
analyse the instantaneous frequencies of fully recorded signals. All the presented
methods aim to produce spectral representations that have high resolution and
are easy to interpret. Such representations allow for detection of individual signal
components in multi-component signals, as well as separation of close signal
components. This makes feature extraction in the spectral representation
possible, relevant features include the frequency or instantaneous frequency of
components, the number of components in the signal, and the time duration of
the components. Two methods that extract some of these features automatically
for two types of signals are presented in this thesis. One adapted to signals with
two longer duration frequency modulated components that detects the
instantaneous frequencies and cross-terms in the Wigner-Ville distribution, the
other for signals with an unknown number of short duration oscillations that
detects the instantaneous frequencies in a reassigned spectrogram. This thesis
also presents two multitaper methods that reduce the influence of noise on the
spectral representations. One is designed for stationary signals and the other for
non-stationary signals with multiple short duration oscillations. Applications for
the methods presented in this thesis include several within medicine, e.g.
diagnosis from analysis of heart rate variability, improved ultrasound resolution,
and interpretation of brain activity from the electroencephalogram.

Keywords: Instantaneous frequency, Multitaper, Signal resolution, Reassignment
method, Time-frequency analysis
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POPULÄRVETENSKAPLIG SAMMANFATTNING

Att vi i en nära framtid kommer kunna styra tekniska prylar med tankekraft och
använda våra mobiler för att själva ställa medicinska diagnoser känns kanske mest
som en dröm, men med nya metoder för signalbehandling är det en möjlighet. Vi
måste komma ihåg att vi idag är vana vid röststyrning av våra mobiltelefoner och
att robotdammsugare städar i våra hem, något som verkade vara avlägsen science
fiktion för bara några årtionden sedan. Dagens vanliga mobiltelefoner är flera mil-
joner gånger snabbare än de mest avancerade datorerna på 1960-talet och denna
tekniska revolution har utökat möjligheterna för signalbehandling.

Min forskning fokuserar på att få information från signaler med hjälp av spektra-
lanalys. Det är enkelt att tänka på ljud, som musik och fågelsång men också putt-
randet från kaffebryggaren, som signaler, men mycket mer kan klassas som signa-
ler. Allt som varierar över tid eller över ett avstånd kan anses vara en signal, det
betyder att till exempel mätningar av temperatur och hjärtslag är signaler. Dessa är
också bra exempel på att signaler ofta är stokastiska. Alltså att även om det finns en
struktur som signalen följer, som att dagens temperatur liknar gårdagens och att
hjärtslag generellt ser likadana ut för alla människor, så finns det en slumpmässig-
het. Dagens temperatur kan inte förutspås exakt med gårdagens och hjärtslag kan
till exempel ta olika lång tid och vara olika starka. En av förutsättningarna i min
forskning är alltså att metoderna ska fungera trots att signalerna är stokastiska.

Hur en signal varierar kan beskrivas med dess frekvenser. Spektralanalys är den
del inom signalbehandling som med olika metoder undersöker vilka frekvenser
signaler innehåller, och ofta hur frekvenserna varierar med tid eller avstånd. Att
på ett säkert sätt kunna ta fram en signals frekvenser är inte alltid lätt, men det
kan ge mycket information om signalen och kanske viktigast, information om
den eller det som orsakat signalen. Frekvenserna i en fågelsång kan avslöja vilken
fågelart som sjunger, vissa ändringar i hjärtrytmen indikerar sjukdomstillstånd,
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Populärvetenskaplig sammanfattning

och en förändring i kaffebryggarens normala puttrande kan berätta att apparaten
är på väg att gå sönder.

En signal är ofta inte strikt bara en signal, utan en summa av flera olika
komponenter. Tänk själv på hur mycket ljud vi hör hela tiden, när vi lyssnar på
något specifikt kan vi också höra trafik, maskinsurr, djur, andra människor eller
något annat i bakgrunden, vi kallar sådana störningar för brus. Det är därför
viktigt att kunna detektera och klassificera olika komponenter i en signal. I den
här avhandlingen presenteras två metoder som automatiskt detekterar
signalkomponenter. Metoderna är anpassade för olika typer av signaler och
situationer. Den ena används för signaler med två komponenter i en brusig
omgivning och detekterar komponenterna för att sedan ge en så optimal
visualisering av signalernas frekvenser som möjligt. Den andra hittar alla korta,
plötsliga signalkomponenter i en längre signal med okänt många komponenter i
en brusig omgivning, vilket används för att separera komponenter som uppmäts
nära i tid.

Då störningar i signaler är ett stort problem i många applikationer för spektrala-
nalys, är det viktigt med metoder som minskar störningarnas inverkan. Den här
avhandlingen presenterar två metoder som gör just det. Den ena är designad för
signaler vars frekvenser inte varierar över tid eller plats och kombinerar bra brus-
reducering med en effektiv implementering. Den andra metoden fokuserar på att
minska brusets påverkan för signaler som har väldigt mycket brus och flera korta,
plötsliga signalkomponenter.

Dessa metoder kräver vissa strukturer på signalerna för att kunna användas, men
eftersom dessa olika strukturer är vanligt förekommande kan metoderna
användas inom flera applikationer. I avhandlingen finns exempel på flera
medicinska tillämpningar, bland annat en som analyserar variationer i hjärtrytm.
Variationer i ens hjärtrytm är normalt och det kan vara svårt att identifiera dåliga
variationer, samt exakt vad de betyder. En annan tillämpning ligger inom analys
av hjärnsignaler. Vi mäter gärna hjärnsignaler utanpå huvudet, vilket medför att
signalerna är väldigt brusiga och svårtydda. Men det är just med bättre metoder
för att analysera de här signalerna som det blir möjligt att identifiera sjukdomar
både tidigt och med god säkerhet, samt att tyda avsikter från hjärnsignaler som
kommer ge oss möjligheten att styra saker med tankekraft.
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POPULAR SUMMARY

It might seem like wishful thinking that we in the near future will be able to
control technical devices with our minds, or that we will be able to make reliable
diagnoses using our own mobile phones. With new methods in signal processing
this will however soon be our reality. We are already used to voice commands on
our mobile phones and robot vacuum cleaners in our homes, which would have
seemed like pure science fiction only a few decades ago. Today’s standard mobile
phone is several million times faster than the most advanced computers of the
1960’s, and this technological revolution has greatly expanded the possibilities for
signal processing.

My research is focused on gaining information from signals using spectral analysis.
It is easy to think of sounds, like music and bird song but also the rumbling and
gurgling sounds of a kettle or coffee maker, as signals. However, everything that
varies over time or space can be defined as a signal. So, for instance a series of
temperature measurements or heartbeats, are signals. These are also good examples
of stochastic signals, which means that they have some structure but also random
properties. Today’s temperature will be similar to yesterday’s but not the same,
and we can easily recognise a heartbeat, but a heartbeat will vary in length and
strength. In my field of research, we need good methods to analyse signals even
when they are stochastic, and this is where spectral analysis comes in.

How a signal varies can be described by its frequencies. Spectral analysis is a field
within signal processing focused on finding what frequencies signals have, and
typically how these frequencies vary with time or space. It is not always easy to
accurately extract a signal’s frequencies, but they can provide much information
about the signal, and perhaps most importantly, about the person, animal or object
that made the signal. The frequencies in bird songs can tell us what type of bird is
singing, certain changes in the heart rate can indicate illness, and a change in the
sound from your kettle or coffee maker can tell if it is about to break.
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Popular summary

A signal is often not just one signal, but a sum of several components. Consider
the everyday background sounds when you listen for something specific but also
hear traffic, machines humming, animals, people, or something else. We call
these disturbances noise. It is therefore important to be able to detect and classify
different components in signals, separating the noise from the components that
we are interested in. This thesis presents two methods for automatic component
detection, and the methods are adapted for different types of signals and
situations. The first is used on signals with two components in a noisy
environment, it detects the two components and then calculates an optimal
visual representation of the frequencies of those components. The second
method finds short, sudden components in a longer noisy signal, where the
number of components initially is unknown. This method is used to separate
components that have been measured close together in time.

Disturbances in signals is a large problem for many applications of spectral analysis,
so methods to lessen the effects of noise are very important. The first method
is designed for signals with frequencies that do not vary over the measurement
time or space, and it combines good noise reduction capabilities with an efficient
implementation. The second method focuses on minimising the effect of noise
when there is much of it, in signals with several short and sudden components.

All these methods need the signals to have certain qualities to work well, but these
qualities are general and common, which means that the methods can be used in
many applications. This thesis includes examples of several medical applications,
including one that analyses variation in heart rate. Some variation in heart rate is
normal and it can be difficult to detect bad variations and find out what they are
indicators of. Another application is within analysis of brain signals. We typically
prefer to measure brain signals on the outside the head, but this also makes the
signals noisy and hard to interpret. With methods that give good and reliable
analysis of these signals, we will be able to detect diseases at an earlier stage, and we
will be able to interpret intentions from the brain signals giving us the possibility
to control technical devices with our minds.
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Introduction to Spectral Analysis
and Signal Processing

The arts and sciences are avatars of human creativity.
— Mae Jemison

The focus of this thesis is spectral analysis of signals based on mathematical models
and statistical analysis. The original research is presented in four papers, covering
different methods and signals. While the papers consider different signals and
applications, they all describe methods aimed to extract information from signals
from either a pure frequency or a joint time-frequency representation. There is also
an overarching focus on methods that have easily interpreted results, this can be
intuitive visual representations or the automatic detection of key features. This first
chapter provides a background to the concepts developed further by the papers.

1 THE IDEA OF SPECTRAL ANALYSIS

Spectral analysis allows us to study the frequency content of signals. While the
frequency or possibly several frequencies of a signal can be observed as the period
of oscillations in the time domain of signals (if indeed the signal has oscillations),
a transformation to the frequency domain makes analysis easier. Spectral analysis
of signals not dependent on time, but instead spatial variables, is also possible but
not a focus in this thesis. Methods for spectral analysis started emerging during
the first half of the 1800s, most notable is perhaps the Fourier transform

𝛸(𝑓) = ∫𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡, (1)
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Introduction to Spectral Analysis and Signal Processing

which is a linear transform, with the inverse

𝑥(𝑡) = ∫𝛸(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓. (2)

The Fourier transform holds for almost all real- and complex-valued functions
𝑥(𝑡), even if they are not continuous in 𝑡 or if ∫|𝑥(𝑡)|𝑑𝑡 is not bounded. The
exact definition for a set of functions for which the Fourier transform holds and
accompanying proofs are outside the scope of this thesis, it is however important
to note that the Fourier transform holds also for functions that are not Riemann
or Lebesgue integrable, as such functions will be handled in this thesis.

The theoretical concept of the spectral density

𝑆X(𝑓) = ∫𝑟X(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏, (3)

is the Fourier transform of the theoretical covariance function, 𝑟X(𝜏), of a (wide-
sense) stationary stochastic process, X(𝑡). For now we will be content to know
that a stochastic process is a random function for which the fixed outcomes, or
realisations, have some characteristics in common. For stationary processes these
characteristics are also unchanging over time.

Two signals with interesting spectral densities and covariance functions are the
random harmonic oscillation with a deterministic frequency, and the white noise
process. As stochastic processes these are well defined by their corresponding
covariance function and spectral density, which is demonstrated in Figure 1. Two
realisations of each process, Figures 1(a)–(b), might hint at similarities between
the realisations, but it is much easier to see these similarities in the covariance
function and spectral density, Figure 1(c)–(f ).

The covariance function describes dependencies within a process and in the
stationary case it is a function of time lag, i.e. differences in time within the
process. An intuitive understanding of this can be gained by studying the
difference between the covariance function of a random harmonic oscillation
and a white noise process. After observing a harmonic oscillation for a short time
it is easy to know how it will progress, it will continue to oscillate with a given
period, 1/𝑓0, this is also what the covariance function, Figure 1(c), tells us.
Similar observation of white noise will not make it easier to predict how the
realisation will progress, the covariance function, Figure 1(d), is thus zero except
for the variance that indicates how large variations can be expected.
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1. The idea of spectral analysis

Figure 1: (a) Two realisations of a harmonic sinusoidal oscillation, (b) two realisations
of white noise, (c) the covariance function of a random harmonic oscillation, (d) the
covariance function of white noise, (e) the spectral density a random harmonic oscillation,
(f ) the spectral density of white noise.

The spectral density, being the Fourier transformation of the covariance function,
also relates to the dependencies within a process, it describes how much of each
possible frequency a process has. The spectral density of the random harmonic
oscillation, Figure 1(e), is zero except for at the frequency of the oscillation. The
lack of dependencies of the white noise is translated into a spectral density that has
equal power for all frequencies, Figure 1(f ), as white noise can change both very
slow and very fast, and everything in between.

5
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It is important to note that the spectral density and covariance function are
theoretical concepts that typically cannot be obtained from one finite realisation.
Likewise, it is usually not possible to recreate a specific realisation from the
spectral density or covariance function of the stochastic process, because of the
random elements. However, both the spectral density and covariance function
describe characteristics that are useful to know about a signal, and thus we are
interested in estimating them. In this thesis, the spectral density is of most
interest. For a stationary signal, a spectral density estimate, or frequency
spectrum, can be defined

�̂�X(𝑓) = 𝑆ℎ𝑥 (𝑓) = ∣∫𝑥(𝑡)ℎ∗(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡∣
2
, (4)

where 𝑥(𝑡) is the signal and ℎ(𝑡) is a window function. The choice of window is
important but for now the simple rectangular window, ℎ(𝑡) = 𝑎ℎ, will be used. If
we assume that the signal is sampled, i.e. discrete time increments are used, and
that the window is unit energy, then this spectral density estimate is the periodo-
gram.

To obtain the frequency spectrum, the squared Fourier transform of the signal is
used. It would be possible to examine only the Fourier transform of the signal,
however it will be complex-valued, have negative values and contain information
about phase, which would not make for an intuitive spectral density estimate. By
using the squared absolute value of the Fourier transform, the estimate will show
what frequencies, and how much of them, that particular signal has. The spectrum
is thus a frequency representation of the signal.

If a process is non-stationary, its covariance function will vary with time and must
be described by two variables. We call this the instantaneous correlation function
𝑟X(𝑡, 𝜏), the Fourier transform of this and thus the non-stationary equivalent of
the spectral density might be called the Wigner spectrum. This Wigner spectrum
has some properties that most likely deviates from our expectations coming from
the frequency spectrum, this will be discussed in Section 4.4 and instead we will
introduce the short-time Fourier transform of a signal

𝐹ℎ𝑥 (𝑡, 𝑓) = ∫𝑥(𝑠)ℎ∗(𝑠 − 𝑡)𝑒−𝑖2𝜋𝑓𝑠𝑑𝑠. (5)

This makes it possible to estimate several frequency spectra by dividing the signal
into shorter segments that are determined by the window function. The squared
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absolute value of the short-time Fourier transform gives the spectrogram

𝑆ℎ𝑥 (𝑡, 𝑓) = ∣∫𝑥(𝑠)ℎ∗(𝑠 − 𝑡)𝑒−𝑖2𝜋𝑓𝑠𝑑𝑠∣
2
. (6)

The choice of window function is again important, and it is often best not to
choose a rectangular window for the spectrogram. Not only the shape of the
window function is important now however, it is also important to chose a
suitable length. This will be discussed in Section 4.3, and for now we will assume
that a suitable window function is used.

Much like the frequency spectrum, the spectrogram will describe what frequencies
the signal has, but it will also be possible to see how these change with time as the
spectrogram is a function of both time and frequency. This type of joint time-
frequency (TF) representation is very intuitive as it will be real-valued and positive,
it can be interpreted as describing the amount of each frequency at any given time
of the signal (if such an interpretation can be accepted). While the short-time
Fourier transform, like the Fourier transform, is injective, the spectrogram is not
and some information about the signal is lost. It should be noted that several
invertible transforms used for spectral analysis do exist, including wavelet based
methods [1–3], the empirical mode decomposition [4], and analysis based on the
Fourier transform [5, 6].

To demonstrate the performance of the frequency spectrum and the spectrogram,
let us again consider a harmonic oscillation

𝑥1(𝑡) = 𝑎1 cos (2𝜋𝑓0𝑡) , 0 ≤ 𝑡 < 250, (7)

with some amplitude 𝑎1 and frequency 𝑓0 = 0.1, that has been observed during
0 ≤ 𝑡 < 250. The amplitude and frequency of the oscillations are easy to observe
even in its time representation, shown in Figure 2(a). If we multiply this oscillation
with an envelope function we can get an oscillating transient

𝑥2(𝑡) = 𝑎2 cos (2𝜋𝑓0𝑡) 𝑒−
(𝑡−𝑡0)

2

2𝜎2 , 0 ≤ 𝑡 < 250, (8)

with some amplitude 𝑎2 ≠ 𝑎1 and a time centre of the envelope 𝑡0 = 125. The
frequency of the oscillation is the same, 𝑓0 = 0.1, and the observation time is also
unchanged. The envelope has two parameters, 𝑡0 is the time where the envelope
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has its centre and 𝜎 determines the scaling, i.e. length of the envelope. This non-
stationary signal is shown in Figure 2(b).

The frequency spectrum of the harmonic oscillation, Figure 2(c), deviates from
the spectral density of such a process in two ways. First, the peak is not perfectly
narrow, instead it has some slight width and some smaller peaks beside the large
peak. This is due to the signal being observed for a finite amount of time, thus there
will be some uncertainty in the frequency information. Another interpretation is
that we measure the frequencies of the signal starting and stopping to oscillate.
Secondly, the signal is described to have finite energy, seen as the peak almost
reaching 1. This is only true if the signal exists for a finite amount of time and is
not assumed to continue to oscillate indefinitely, otherwise it would have infinite
energy. Because of this, it is sometimes preferred to talk about power instead of
energy, but in this thesis all simulated and measured signals are assumed to have
finite energy.

The transient will not have a theoretical spectral density, as it is a non-stationary
signal. Its frequency representation in Figure 2(d) shows a bell shape centred at
the frequency of the oscillation. The bell shape comes from the frequency
representation of the envelope function, and the centre frequency is due to the
harmonic oscillation. This representation might be desirable, but in some
applications it might be more interesting for a frequency spectrum to show only
one peak at the oscillation frequency, and then the width of the bell shaped peak
can be interpreted as uncertainty.

The spectrograms of the harmonic oscillation and transient, their 2D projections
visualised in Figures 2(e)–(f ) respectively, shows the distribution of signal energy
over time and frequency. In the figures, light yellow represents a high energy con-
centration and dark blue a low concentration. The spectrogram of the harmonic
oscillation shows uncertainty in frequency much like the frequency spectrum, as
the energy is not only located exactly along 𝑓0 = 0.1. The spectrogram also shows
some uncertainty in time, seen as the low energy concentration at the start and
end. The spectrogram of the transient is a circle with increasing energy concen-
tration towards its centre, this is just the 3D bell shape as seen from above (com-
pared to the side view in the frequency spectrum). The centre of the circle is the
intersection of the time centre of the envelope 𝑡0 = 125 and the frequency of the
oscillation 𝑓0 = 0.1.
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Figure 2: (a) The harmonic oscillation in Eq. (7), (b) the transient in Eq. (8), (c) frequency
spectrum of the harmonic oscillation in Eq. (7), (d) frequency spectrum of the transient
in Eq. (8), (e) spectrogram of the harmonic oscillation in Eq. (7), (f ) spectrogram of the
transient in Eq. (8).

Spectral analysis can thus be used as a tool for extracting interesting information
that is not easily found in the time domain. While it is easy to find good
frequency and TF representations of the harmonic oscillation and the transient,
these simple examples have also highlighted some of the difficulties with spectral
analysis. We can see that even for the most simple signal, a harmonic oscillation,
the spectral density estimate is not without bias. When the signal instead is a
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sum of several harmonic oscillations and includes some disturbance, the
presented frequency spectrum might not be a good enough spectral density
estimate. The spectrogram is generally regarded as a good TF representation, it is
fast to compute and easy to interpret, but its greatest weakness is the relatively
high uncertainty in time and frequency. For a signal with two transients that
have similar oscillation frequencies and time centres, the spectrogram will not
show two high energy circles but instead one single, more irregular, high energy
shape. Because different applications have very different needs, there exist many
different frequency and TF representations, with current research still improving
on these methods to find representations that are faster, work for complex signals
structures, and are more robust to disturbances.

2 STOCHASTIC SIGNALS

The definition of a signal can be ambiguous, while we made the distinction
between the stochastic process and its realisations in the previous section, we will
let a signal be either a theoretical model or measured/simulated data. It is
sometimes customary to separate signal from noise, defining a signal as some
ordered waveform and noise as something disordered, this thesis will not make
such a separation. Instead, ordered waveforms within a possibly noisy signal will
be referred to as signal components, three such ordered waveforms of special
interest are the stationary oscillation

𝑥𝑜𝑠𝑐(𝑡) = 𝑒𝑖2𝜋𝑓𝑘𝑡, 𝑡, 𝑓𝑘 ∈ ℝ, (9)

the non-stationary FM chirp

𝑥𝑐ℎ𝑖𝑟𝑝(𝑡) = 𝑒𝑖2𝜋𝑓𝑘(𝑡)𝑡, 𝑡, 𝑓𝑘(𝑡) ∈ ℝ, (10)

and the non-stationary oscillating transient

𝑥𝐺(𝑡) = 𝑒−
(𝑡−𝑡𝑘)

2

2𝜎2 𝑒𝑖2𝜋𝑓𝑘𝑡, 𝑡, 𝑡𝑘, 𝑓𝑘 ∈ ℝ, 𝜎 ∈ ℝ>0. (11)

These signals, being complex-valued, defined for all real values of time and
frequency and expressed with simple mathematical expressions, are obviously
theoretical models. Linear combinations of these components and noise are
assumed to adequately model signals that we can measure in the real world, and
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simulations from these models are used to assess the performance of proposed
spectral analysis methods. While the signals Eqs. (9)–(11) are expressed in their
complex-valued form, their real-valued counterparts are also of interest.

The spectral analysis methods presented in this thesis will all require some
assumptions on the signals for the respective methods to work well. Such
assumptions can be stationarity or the signal being a linear combination of only
one or two of the signal component types Eqs. (9)–(11). The methods will not
assume specific frequencies, 𝑓𝑘 and 𝑓𝑘(𝑡), or time centres, 𝑡𝑘, but these will be
kept deterministic when simulating signals, as this gives the ability to construct
difficult situations for which the methods can be evaluated. The stochastic
parameters are instead the phase shift of an oscillation

𝑒𝑖2𝜋𝜙𝑘 , 𝜙𝑘 ∈ 𝒰(0, 1), (12)

and the added noise, usually white Gaussian noise, which is best described in
discrete time

𝜖𝑤(𝑛) ∈ 𝒩(0, 𝜎2𝑤), 𝑛 ∈ ℤ, 𝜎𝑤 ∈ ℝ>0. (13)

Complex-valued white Gaussian noise is constructed by simulating from the nor-
mal distribution and multiplying with the imaginary unit. Letting the phase shift
and noise be stochastic parameters allows us to test if the spectral analysis meth-
ods are robust to different phase shifts and noise realisations. As the phase is not
shown in the frequency or TF representations and the noise is random disturb-
ance, it is more difficult to do controlled evaluations of their effect on the spectral
analysis.

3 FUNDAMENTAL IDEAS AND LIMITATIONS OF SPECTRAL ANALYSIS

There are numerous frequency and joint TF representations, all designed for dif-
ferent signals and applications. However, there are some fundamental ideas and
limitations that are interesting to consider for a general representation. To define
some of these properties we let 𝑥(𝑡) be the signal in time domain and 𝛸(𝑓) the
signal in frequency domain, i.e. the Fourier transform of the signal, according to
Eqs. (1)–(2). The ideal frequency representation is denoted 𝑆𝑥(𝑓), interpreted as
the energy per unit frequency at frequency 𝑓, and the ideal TF representation is
denoted 𝛲𝑥(𝑡, 𝑓), interpreted as the energy per unit time and frequency at time 𝑡
and frequency 𝑓.
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3.1 SHIfTS, ScALINg AND SuppORT

To enable analysis of a wide variety of signals, we want changes in parameters of
the signal to result in changes that correspond to those parameters in the frequency
and TF representations. For the Fourier transform of a signal it holds that

𝛸(𝑓 − 𝑓0) = ∫𝑥(𝑡)𝑒𝑖2𝜋𝑓0𝑡𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡,

𝑥(𝑡 − 𝑡0) = ∫𝛸(𝑓)𝑒−𝑖2𝜋𝑡0𝑓𝑒𝑖2𝜋𝑓𝑡𝑑𝑓.
(14)

For a frequency representation, such time and frequency shift invariance gives

𝛸(𝑓) → 𝛸(𝑓 − 𝑓0)⟹ 𝑆𝑥(𝑓) → 𝑆𝑥(𝑓 − 𝑓0), (15)

and for a TF representation

𝑥(𝑡) → 𝑥(𝑡 − 𝑡0)⟹ 𝛲𝑥(𝑡, 𝑓) → 𝛲𝑥(𝑡 − 𝑡0, 𝑓),
𝛸(𝑓) → 𝛸(𝑓 − 𝑓0)⟹ 𝛲𝑥(𝑡, 𝑓) → 𝛲𝑥(𝑡, 𝑓 − 𝑓0),

𝑥(𝑡) → 𝑒𝑖2𝜋𝑓0𝑡𝑥(𝑡 − 𝑡0)⟹ 𝛲𝑥(𝑡, 𝑓) → 𝛲𝑥(𝑡 − 𝑡0, 𝑓 − 𝑓0).
(16)

Thus, the shape of the energy distribution in the representations should ideally not
be changed when a signal is shifted in time and/or frequency.

Linear scaling of a signal also scales the Fourier transform

𝑥(𝑡) → 𝑥(𝛼𝑡)⟹ 𝛸(𝑓) → 1
𝛼𝛸(𝑓/𝛼), 𝛼 ∈ ℝ>𝟘, (17)

i.e. a signal that is compressed in time will have a Fourier transform that is expan-
ded, and vice versa. Thus we want a frequency representation to satisfy

𝑥(𝑡) → 𝑥(𝛼𝑡)⟹ 𝑆𝑥(𝑓) → 𝛽𝑆𝑥(𝑓/𝛼), (18)

and a TF representation to satisfy

𝑥(𝑡) → 𝑥(𝛼𝑡)⟹ 𝛲𝑥(𝑡, 𝑓) → 𝛽𝛲𝑥(𝛼𝑡, 𝑓/𝛼), (19)

where the factor 𝛽 could be 1/𝛼2 but will depend on representation. The more
interesting property is that the linear scaling in time and frequency shows in the
representations.
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Considering a signal that has energy in some time duration and frequency band-
width, it seems natural that we want the frequency and TF representations to be
zero outside that time duration and frequency bandwidth. If we let the time dur-
ation be (𝑡1, 𝑡2) and frequency bandwidth be (𝑓1, 𝑓2) then we define weak finite
support

𝛸(𝑓) = 0, ∀ 𝑓 ∉ (𝑓1, 𝑓2)⟹ 𝑆𝑥(𝑓) = 0, ∀ 𝑓 ∉ (𝑓1, 𝑓2), (20)

for a frequency representation and

𝑥(𝑡) = 0, ∀ 𝑡 ∉ (𝑡1, 𝑡2)⟹ 𝛲𝑥(𝑡, 𝑓) = 0, ∀ 𝑡 ∉ (𝑡1, 𝑡2),
𝛸(𝑓) = 0, ∀ 𝑓 ∉ (𝑓1, 𝑓2)⟹ 𝛲𝑥(𝑡, 𝑓) = 0, ∀ 𝑓 ∉ (𝑓1, 𝑓2).,

(21)

for a TF representation. If we want the representations to be zero when the signal
is zero, then we must define strong finite support. Strong finite support is fulfilled
for a frequency representation if it for any given 𝑓1 holds that

𝛸(𝑓1) = 0⟹ 𝑆𝑥(𝑓1) = 0, (22)

and for a TF representation if it for any given 𝑡1 and 𝑓1 holds that

𝑥(𝑡1) = 0⟹ 𝛲𝑥(𝑡1, 𝑓) = 0,
𝛸(𝑓1) = 0⟹ 𝛲𝑥(𝑡, 𝑓1) = 0.

(23)

Strong finite support implies weak finite support, but not the other way around.
Many popular TF representations do not have strong finite support because it
requires other sacrifices, it is however helpful when analysing multi-component
signals, as strong finite support makes it easier to identify individual components.

3.2 TOTAL ENERgy AND MARgINALS

The total energy of a signal is

𝛦𝑡𝑜𝑡 = ∫|𝑥(𝑡)|2𝑑𝑡 = ∫|𝛸(𝑓)|2𝑑𝑓, (24)

which is known as Parseval’s relation. Thus, |𝑥(𝑡)|2 and |𝛸(𝑓)|2 can be
interpreted as the energy per unit time at time 𝑡 and the energy per unit
frequency at frequency 𝑓 respectively, making them time and frequency
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representations of the signal. Assuming that 𝛲𝑥(𝑡, 𝑓) indeed is a distribution of
the signal energy over time and frequency, this gives the idea that it is possible to
get two so called marginals

𝛲𝑥(𝑡) = ∫𝛲𝑥(𝑡, 𝑓)𝑑𝑓,

𝛲𝑥(𝑓) = ∫𝛲𝑥(𝑡, 𝑓)𝑑𝑡.
(25)

We chose to make a distinction between the notation of 𝛲𝑥(𝑓) and 𝑆𝑥(𝑓) because
typically a frequency representation is not calculated from the marginal of a TF
representation.

Ideally the marginals should then accurately describe the energy per unit time and
per unit frequency respectively. This would mean that

𝛲𝑥(𝑡) = ∫𝛲𝑥(𝑡, 𝑓)𝑑𝑓 = |𝑥(𝑡)|2,

𝛲𝑥(𝑓) = ∫𝛲𝑥(𝑡, 𝑓)𝑑𝑡 = |𝛸(𝑓)|2.
(26)

A TF representation for which this holds is said to fulfil the marginal conditions.
However, it is possible for a TF representation to not fulfil this but still satisfy the
total energy requirement

𝛦𝑡𝑜𝑡 =∬𝛲𝑥(𝑡, 𝑓)𝑑𝑓𝑑𝑡. (27)

There exist no marginal conditions for frequency representation, but the total en-
ergy requirement would be

𝛦𝑡𝑜𝑡 = ∫𝑆𝑥(𝑓)𝑑𝑓. (28)

It is worth noting that many popular TF representations do not fulfil the
marginal conditions or the total energy requirement, and while it is important to
be aware of this, they can still be good analysis methods for non-stationary and
multi-component signals. It is also possible to calculate the marginals for all TF
representations, but the marginals might not have the expected properties.
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Figure 3: (a) A harmonic oscillation, (b) a chirp, (c) a frequency representation of the
harmonic oscillation with dB scale on the y-axis, (d) a TF representation of the chirp.

3.3 BIAS AND uNcERTAINTy

A signal cannot have both finite duration and limited bandwidth. Thus, no
simulated or measured signals will be band-limited, and this affects any
frequency and TF representation. Figure 3 gives examples of this effect for a
stationary harmonic oscillation with frequency 0.1, shown in (a), and a
non-stationary chirp with frequencies between 0.1 and 0.25, shown in (b). The
frequency representation of the harmonic oscillation in Figure 3(c) shows a peak
or main lobe at frequency 0.1, but also multiple smaller oscillations or side lobes
for the other frequencies. The plot is shown in dB scale on the y-axis to
emphasise the side lobes, their amplitudes are very small, but the frequency
representation is never zero for this signal. The same type of side lobes can be
seen in the TF representation of the chirp in Figure 3(d) as the smaller ridges in
yellow and light blue. The effect of the side lobes is not seen as clearly in this plot
because the amplitude is scaled linearly.
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The side lobes are also referred to as spectral leakage, referring to how signal energy
leaks from the frequency of an oscillation to all other frequencies. How large
this bias will be is decided by the choice of method to calculate the frequency
or TF representation. However, assuming that the duration of the signal is kept
constant and no additional information is used, decreasing the amplitude of the
side lobes will increase the width of the main lobe, and thus lower the resolution
of the representation. Low resolution is a problem especially for multi-component
signals, as the main lobes of close components will merge together. High spectral
leakage is however also a problem for multi-component signals, as components
with smaller amplitudes will not be visible. Therefore, resolution and spectral
leakage always need to be balanced.

For stationary signals, the width of the main lobe can also be decreased by having a
longer signal. This is because increasing the time duration of a signal with constant
frequencies is the same as increasing the energy spread in time domain, and if the
energy spread increases in the time domain it decreases in the frequency domain.
This relationship is perhaps most interesting for non-stationary signals, which can
have components that are shorter than the signal.

The relationship between the energy spread in the time respective frequency do-
main comes from that 𝑥(𝑡) and 𝛸(𝑓) are Fourier transform pairs, and is visual-
ised for some Gaussian functions in Figure 4. The total energy of a signal is given
by Eq. (24), and thus |𝑥(𝑡)|2 and |𝛸(𝑓)|2 are distributions of the signal energy.
Considering |𝑥(𝑡)|2 and |𝛸(𝑓)|2 as distributions means that we can calculate the
variances

Δ𝑡2 = ∫(𝑡 − 𝜇𝑡)
2 |𝑥(𝑡)|2𝑑𝑡,

Δ𝑓2 = ∫(𝑓 − 𝜇𝑓)
2
|𝛸(𝑓)|2𝑑𝑓,

(29)

where 𝜇𝑡 and 𝜇𝑓 are the expected values. It is now interesting to consider the
Heisenberg uncertainty principle for energy and time

Δ𝛦Δ𝑡 ≥ ℏ2, (30)

where Δ𝛦 is the uncertainty in energy and ℏ is the reduced Planck’s constant.
Then, from the relationship of the energy of a photon and the frequency of that
light

Δ𝛦 = 2𝜋ℏΔ𝑓, (31)
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Figure 4: Illustration of the energy spread in the time and frequency domains, using three
Gaussian functions and their Fourier transforms, which are also Gaussian functions.

we get the uncertainty principle for time and frequency

Δ𝑡Δ𝑓 ≥ 1
4𝜋, (32)

which holds when using the Fourier transform. The uncertainty principle can
also be calculated using the Cauchy–Schwarz inequality [5]. According to the
uncertainty principle, both standard deviations cannot be arbitrarily small, and
this limits the TF resolution. The lower bound of the inequality is reached by unit
energy Gaussian waveforms

𝑥𝐺(𝑡) =
1

√𝜎√𝜋
𝑒−

(𝑡−𝑡0)
2

2𝜎2 𝑒𝑖2𝜋(𝑓0𝑡+𝜙), (33)

indicating that they have an optimal energy spread in time and frequency, which
made Gabor call this waveform the elementary signal [5].
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3.4 THE INSTANTANEOuS fREquENcy

A complex-valued signal with one component can be written

𝑥(𝑡) = 𝛢(𝑡)𝑒𝑖𝜙(𝑡), (34)

where𝛢(𝑡) is the amplitude function and 𝜙(𝑡) the phase function. If we let 𝜙(𝑡) =
2𝜋𝑓(𝑡)𝑡, the signal is a general AM-FM chirp, from which all the signals described
by Eqs. (9)–(11) can be formed. The frequency of this chirp will, barring a few
exceptions, vary over time, it is thus interesting to know the frequency at any
given time. That is, we want to know the instantaneous frequency (IF).

To derive a mathematical expression of the IF, we consider the expected value of
the frequency for the chirp in Eq. (34)

E[𝑓] = ∫𝑓 |𝛸(𝑓)|2𝑑𝑓 =∭𝑓 𝑥∗(𝑡)𝑥(𝑠) 𝑒𝑖2𝜋(𝑡−𝑠)𝑓𝑑𝑓𝑑𝑠𝑑𝑡

= 1
𝑖2𝜋∭𝑥∗(𝑡)𝑥(𝑠) 𝜕𝜕𝑡𝑒

𝑖2𝜋(𝑡−𝑠)𝑓𝑑𝑓𝑑𝑠𝑑𝑡.
(35)

Now, since
𝛿(𝑡 − 𝑠) = ∫𝑒𝑖2𝜋(𝑡−𝑠)𝑓𝑑𝑓, (36)

where 𝛿(𝑡) is the Dirac impulse, we can simplify

E[𝑓] = 1
𝑖2𝜋∬𝑥∗(𝑡)𝑥(𝑠) 𝜕𝜕𝑡𝛿(𝑡 − 𝑠)𝑑𝑠𝑑𝑡. (37)

To further simplify, we can use

∫𝑥(𝑠) 𝜕𝜕𝑡𝛿(𝑡 − 𝑠) 𝑑𝑠 =
𝑑
𝑑𝑡𝑥(𝑡), (38)

and thus, using Eq. (34)

E[𝑓] = 1
𝑖2𝜋 ∫𝑥∗(𝑡) 𝑑𝑑𝑡𝑥(𝑡)𝑑𝑡 =

1
2𝜋 ∫𝑥∗(𝑡) (𝜙′(𝑡) − 𝑖𝛢

′(𝑡)
𝛢(𝑡) ) 𝑥(𝑡)𝑑𝑡

= 1
2𝜋 ∫|𝑥(𝑡)|2 (𝜙′(𝑡) − 𝑖𝛢

′(𝑡)
𝛢(𝑡) ) 𝑑𝑡.

(39)

If we assume that 𝑓(𝑡) is real-valued, and we should, it is easy to see that the second
term has to be zero, as that term is imaginary. This means that

E[𝑓] = 1
2𝜋 ∫𝜙′(𝑡)|𝑥(𝑡)|2𝑑𝑡. (40)
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Figure 5: Illustration of the IF of the two-component signal Eq. (42), (a) the IF calculated
from the derivative of the phase function, (b) and (c) intuitive representations of the IF.

Thus, the expected value of the frequency is given by integrating, over time, the
product of the derivative of the phase function and the energy density. The deriv-
ative of the phase function must therefore be the instantaneous value of the fre-
quency, i.e. the IF is

𝑓(𝑡) = 𝜙
′(𝑡)
2𝜋 . (41)

However, this result only holds for complex-valued signals with one component.
To fix one of these problems we can define a complex-valued signal for every
real-valued signal, this is done by utilising a property in the frequency domain of
complex-valued signals, which will be explained further in Section 4.4. It is more
challenging to calculate the IF of multi-component signals. Figure 5 illustrates
this for the simple two-component signal

𝑥2(𝑡) = 𝑒𝑖2𝜋0.15𝑡 + 1.5𝑒𝑖2𝜋0.3𝑡. (42)

Figure 5(a) shows the derivative of the phase function of the signal, and it does not
show the two frequencies that we expect, instead the IF oscillates between 0.15 and
0.3. According to the intuitive understanding of the IF, Figure 5(b) and (c) would
be much better representations, and thus a frequency respective TF representation
that we would like to obtain for the signal.
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4 WELL-KNOWN SPECTRAL REPRESENTATIONS

In order to calculate frequency and TF representations, one needs to consider
sampled signals. That is signals that are not a function of the continuous time
𝑡 ∈ ℝ, but the discrete time 𝑛 ∈ ℤ. When sampling a signal, the sampling
frequency, 𝑓𝑠, becomes important as it defines the range of frequencies the sampled
signal can have. However, in this thesis it will always be assumed that the sampling
frequency is sufficiently high and if nothing else is stated it is assumed that 𝑓𝑠 = 1,
so that −1/2 < 𝑓 ≤ 1/2.

Because of different traditions some spectral representations are defined in discrete
time and others in continuous time, this section will therefore mix continuous
and discrete time. Any application of the discussed methods of course requires
a discrete implementation, which typically involves the discrete or fast Fourier
transform. The discrete Fourier transform is defined

𝛸(𝑓) =
𝛮−1
∑
𝑛=0
𝑥 ( 𝑛𝑓𝑠

) 𝑒−𝑖2𝜋𝑓
𝑛
𝑓𝑠 , 𝑓 = 𝑘𝑓𝑠𝛮 , 𝑘 = 0, 1, … ,𝛮 − 1, (43)

and the fast Fourier transform is an implementation that allows for faster calcula-
tions, 𝒪(𝑛 log 𝑛). With this formulation only positive frequencies, 0 ≤ 𝑓 < 𝑓𝑠,
are obtained, however for 𝑓𝑠/2 < 𝑓 < 𝑓𝑠 we get the same values as we would have
got for−𝑓𝑠/2 < 𝑓 < 0. Thus, the negative frequencies can be obtained by appro-
priately shifting 𝛸(𝑓) for the higher values of 𝑓.

4.1 THE pERIODOgRAM

The periodogram was given its name by Arthur Schuster already in 1898 [7], and it
has been frequently used since the modern invention of the fast Fourier transform
by James W. Cooley and John W. Tukey in 1965 [8]. The windowed periodogram
is defined as

𝑆𝛲(𝑓) =
1
𝛮 ∣

𝛮−1
∑
𝑛=0
𝑥(𝑛)ℎ(𝑛)𝑒−𝑖2𝜋𝑓𝑛∣

2

, (44)

thus from the discrete-time Fourier transform for a finite number of samples, 𝛮,
with the signal, 𝑥(𝑛), and a window function, ℎ(𝑛). Classically ℎ(𝑛) is the
rectangular window, otherwise 𝑆𝛲(𝑓) is also called the modified periodogram.
The choice of window function affects the resolution and spectral leakage of the
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Figure 6: Illustration of the periodogram of a two-component signal with white Gaussian
noise, (a) calculated with a rectangular window, (b) calculated with a Slepian window.

periodogram, which can be seen for two examples, the rectangular window and a
Slepian window, in Figure 6. The rectangular window in Figure 6(a) gives
narrow main lobes for the components, but large spectral leakage is seen in the
high energy around the two peaks, this contrast with the Slepian window
in Figure 6(b) where the main lobes are wider but the spectral leakage is
considerably lower. This trade-off between resolution and spectral leakage is not
unique for the periodogram and makes the choice of window function for the
Fourier transform very important.

If we assume that 𝑥(𝑛) is stationary, real-valued and has a zero mean, then if a
rectangular window is used, we can reformulate the periodogram

𝑆𝛲(𝑓) =
1
𝛮

𝛮−1
∑
𝑛=0

𝛮−1
∑
𝑚=0

𝑥(𝑛)𝑥(𝑚)𝑒−𝑖2𝜋𝑓(𝑚−𝑛)

=
𝛮−1
∑

𝜏=−(𝛮−1)

1
𝛮

𝛮−1−|𝜏|
∑
𝑛=0

𝑥(𝑛)𝑥(𝑛 + |𝜏|)𝑒−𝑖2𝜋𝑓𝜏

=
𝛮−1
∑

𝜏=−(𝛮−1)
�̂�X(𝜏)𝑒−𝑖2𝜋𝑓𝜏,

(45)
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where �̂�X(𝜏) is an estimate of the covariance function of the process from which
𝑥(𝑛) is a realisation. Thus, the expected value

E[𝑆𝛲(𝑓)] =
𝛮−1
∑

𝜏=−(𝛮−1)
E[�̂�X(𝜏)]𝑒−𝑖2𝜋𝑓𝜏

→
∞
∑
𝜏=−∞

𝑟X(𝜏)𝑒−𝑖2𝜋𝑓𝜏 = 𝑆X(𝑓), if𝛮→ ∞,
(46)

where 𝑆X(𝑓) is the spectral density of the process from which 𝑥(𝑛) is a realisation.
This is a great result, however unfortunately very long signals are usually not at
hand, and therefore it is interesting to also consider the variance of the periodo-
gram. If we let 𝑥(𝑛) be white Gaussian noise, then it can be shown that

Var[𝑆𝛲(𝑓)] ≈ 𝜎4𝑤 , (47)

where 𝜎2𝑤 is the variance of the noise [9]. This shows not only that the variance
is large, but also that it does not decrease if 𝛮 → ∞, which means that the peri-
odogram is not a consistent estimator of the spectral density. Therefore, the peri-
odogram should only be used for signals with high SNR and preferably only sig-
nals with many samples. If the SNR is low, other methods, more robust to noise,
should be considered.

4.2 THE WELcH METHOD

One way to reduce the variance of the periodogram is to average several
periodograms, which was first suggested by Bartlett in 1948 [10]. However, in
order to average spectral estimates in this way, the signal has to be divided into
shorter segments, which reduces the resolution of the final estimate. This result
follows from the same reasoning leading to the uncertainty principle in Eq. (32),
though for time-limited and discrete signals. To mitigate this loss in resolution,
Peter D. Welch proposed the weighted overlap segmented averaging algorithm in
1967 [11], which is now commonly referred to as the Welch method.

If we let the signal 𝑥(𝑛) be divided into segments that are 𝛮ℎ samples long, and
let𝛮ℎ − 𝐿 be the overlap in samples, then the Welch method can be defined

𝑆𝑊(𝑓) =
1
𝛫

𝛫
∑
𝑘=1
∣
𝛮ℎ−1
∑
𝑛=0

𝑥(𝑛 + (𝑘 − 1)𝐿)ℎ(𝑛)𝑒−𝑖2𝜋𝑓𝑛∣
2

, (48)

22



4. Well-known spectral representations

Figure 7: Illustration the Welch method of two signals with the same two oscillating
components but different realisations of white Gaussian noise, (a) no overlap and 𝛫 = 3,
(b) 50% overlap and 𝛫 = 5. All estimations are calculated using a Slepian window of
length𝛮ℎ = 𝛮/3.

where 𝛫 is the number of windows. If we assume that 𝑥(𝑛) is white Gaussian
noise with variance 𝜎2𝑤, then the variance of the Welch method can be calculated

Var[𝑆𝑊(𝑓)] =
1
𝛫2

𝛫
∑
𝑗=1

𝛫
∑
𝑘=1

Cov[𝑆𝑗(𝑓), 𝑆𝑘(𝑓)], (49)

where 𝑆𝑗(𝑓) and 𝑆𝑘(𝑓) are the (modified) periodograms calculated from the 𝛮ℎ
long segments of 𝑥(𝑛). If 𝑆𝑗(𝑓) and 𝑆𝑘(𝑓) are uncorrelated when 𝑗 ≠ 𝑘, then

Var[𝑆𝑊(𝑓)] =
1
𝛫2

𝛫
∑
𝑘=1

Var[𝑆𝑘(𝑓)] ≈
𝜎4𝑤
𝛫 , (50)

and thus, compared to the periodogram, the variance is approximately reduced
by a factor equal to the number of windows. Figure 7 shows the Welch spectral
estimate for two signals with the same components but different white Gaussian
noise, one in blue and the other in orange. The two estimations in Figure 7(b),
where 𝛫 = 5, are more similar compared to the estimations in Figure 7(a), where
𝛫 = 3, illustrating how the increase in 𝛫 lowers the variance introduced by the
noise.
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Because of the nature of white Gaussian noise, if there is no overlap between the
signal segments, the spectral estimates, 𝑆𝑗(𝑓) and 𝑆𝑘(𝑓) 𝑗 ≠ 𝑘, will be
uncorrelated. However, if the segments overlap, then it cannot be certain that
the estimates are uncorrelated. Even so, we want sufficient overlap to reduce the
loss of resolution. If the length of the segments are shortened from 𝛮 to
𝛮ℎ = 𝛮/𝛭, and the same window function is used, then the main lobe width
increases with at factor 𝛭. It is therefore important to balance the trade-off in
variance reduction and resolution loss. Figure 7 shows that if we allow for 50%
overlap, compared to no overlap, then we can increase the number of windows
significantly and reduce variance, but the resolution is kept the same. The
optimal overlap will depend on the window function, as the window function
will determine the weight of each sample in 𝑥(𝑛) and thus affect the covariance
between the spectral estimates of overlapping sections.

4.3 THE SpEcTROgRAM

One of the most well-known and widely used TF representations is the
spectrogram, though the name might differ in some fields, e.g. the sonogram,
spectrograph or waterfall plot. In 1946, Dennis Gabor argued for the necessity in
mathematics to describe signals as a joint function of time and frequency, instead
of only considering frequency in an infinite interval of time like the Fourier
transform. Through this reasoning that frequencies must be allowed to change
with time, not only in reality but also in mathematics, he presented the Gabor
transform [5], which today is considered a special case of the short-time Fourier
transform (STFT) [12]. The STFT uses a window function ℎ(𝑡) to divide the
signal 𝑥(𝑡) (real- or complex-valued) into smaller segments, for which the Fourier
transform is calculated

𝐹ℎ𝑥 (𝑡, 𝑓) = ∫𝑥(𝑠)ℎ∗(𝑠 − 𝑡)𝑒−𝑖2𝜋𝑓𝑠𝑑𝑠. (51)

This is not unlike the approach of the Welch method, however instead of averaging
Fourier transforms they should be thought of as stacked to create a time dimension.
However, unlike the Welch method, the overlap is generally very large. In this
thesis a sliding Fourier transform is always used, i.e. maximum overlap is used
and there is no downsampling in time. The spectrogram is defined as

𝑆ℎ𝑥 (𝑡, 𝑓) = ∣𝐹ℎ𝑥 (𝑡, 𝑓)∣
2
, (52)

24



4. Well-known spectral representations

Figure 8: The spectrogram of a multi-component signal, with increasing length of the
window function so that (a) has the shortest window and (d) the longest.

which makes it a non-negative distribution of the signal energy. For the Gabor
transform, a Gaussian window function is used, which is why the spectrogram
with a Gaussian window is also called the Gabor spectrogram.

The spectrogram has two major advantages. First, it is very easy to interpret,
there are even people who can ”read” the spectrogram of speech [13], and the
spectrogram of audio signals is closely linked to how the cochlea of the inner ear
of humans encode audio [14]. The spectrogram of multi-component signals has
little interaction, i.e. artefacts, between signal components, thus almost
achieving strong finite support. Second, it has a computationally efficient
implementation due to the fast Fourier transform.

The main drawback of the spectrogram is the resolution. There is a trade-off
between the resolution in time and frequency, which is determined by the length
of the window function. This is demonstrated by Figure 8, where the window
length is increased from (a) to (d). The shortest window in (a) gives very poor
frequency resolution, in (b) the window length is optimal for the two transient
components, the change of the frequencies in the chirp is perhaps best seen in (c)
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but the transients are smeared in time, and in (d) the time resolution is very
poor. Similar to the previously discussed frequency representations, the shape of
the window function also affect the width of the main lobe and the height of the
side lobes. The choice of window function can therefore determine if close
components are resolved and if weak components are hidden by the spectral
leakage of stronger components.

4.4 THE WIgNER DISTRIBuTIONS

In 1932, Eugene Wigner presented what we today call the Wigner distribution
(WD). Originally it was presented in the field of quantum mechanics as a joint
distribution of time and momentum [15]. This was not the only joint
distribution developed around this time, but since the 1980’s it has been the most
influential in spectral analysis and signal processing [16–19]. The WD relates to
the instantaneous correlation function 𝑟X(𝑡, 𝜏) of a non-stationary processes X(𝑡)

𝑟X(𝑡, 𝜏) = E [X (𝑡 + 𝜏
2)X∗ (𝑡 − 𝜏

2)] . (53)

From the realisation 𝑥(𝑡) of that process, we can get an estimate of 𝑟X(𝑡, 𝜏)

𝛫𝑥(𝑡, 𝜏) = 𝑥 (𝑡 + 𝜏
2) 𝑥∗ (𝑡 − 𝜏

2) , (54)

and the WD is the calculated as

𝑊𝑥(𝑡, 𝑓) = ∫𝛫𝑥(𝑡, 𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏. (55)

Thus, the WD is the Fourier transform of the estimated instantaneous correlation
function, linking it to the spectral density estimates of stationary stochastic pro-
cesses. For most mono-component signals with no noise, AM-FM chirps where
the FM is linear, the WD gives exactly the IF of the signal, and the TF concentra-
tion is good. However, for multi-component signals, 𝛫𝑥(𝑡, 𝜏) will include cross-
correlations between signal components, resulting in interference, called artefacts
or cross-terms, between signal components in the WD. The WD is also cumber-
some to compute as 𝛫𝑥(𝑡, 𝜏) is a 2D function.

The cross-terms are especially troublesome for real-valued signals, as their Fourier
transform includes negative frequencies and the cross-terms will appear between
the positive and negative frequency components. This can be seen in Figure 9(a)
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4. Well-known spectral representations

Figure 9: The WD and WVD of two multi-component signals, a two-component and
a three-component, (a) the WD of the two-component signal (b) the WD of the three-
component signal, (c) the WVD of the two-component signal, (d) the WVD of the three-
component signal.

and (b). This problem can be solved by using complex-valued signals, which do
not have negative frequency components. The version of WD that requires a
complex-valued signal is called the Wigner-Ville distribution (WVD), and it was
Jean-André Ville who first introduced the WD in the context of signal processing
in 1948 [20]. The improvement gained from using complex-valued signals can be
seen in Figure 9(c) and (d).

The three-component signal in Figure 9 is the same as in Figure 8, and the
two-component signal has the same transient components as that signal.
Comparing the WD, WVD and spectrogram, it is clear that the WD and WVD
have much better TF resolution, the energy localisation around the components
is very high. However, the WVD and WD especially are not easy to interpret.
The cross-terms, located midway between all signal components, can have twice
the amplitude of the signal components and while it is easy to determine the
cross-term in Figure 9(c), it is much harder when the number of components
increase, as seen in Figure 9(d).
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In order for the WVD to be useful in application, there needs to be a way to make
a complex-valued signal that corresponds to a real-valued signal. Therefore, we
define the analytical signal

𝑧(𝑡) = 𝑥𝑟(𝑡) + 𝑥𝑖(𝑡), (56)

where 𝑥𝑟(𝑡) is the real-valued signal, and 𝑥𝑖(𝑡) is an imaginary part that needs to
be defined. The Fourier transform of the real-valued signal is symmetric so that

𝛸𝑟(𝑓) = 𝛸𝑟(−𝑓), (57)

and thus the real-valued signal contains more information of the frequency than
is needed. We can then choose to subtract that information so that

𝛧(𝑓) = 0, 𝑓 < 0, (58)

which gives

𝑧(𝑡) = 2∫
∞

0
𝛸(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓 = 𝑥(𝑡) + 𝑖 ( 1𝜋𝑡 ∗ 𝑥(𝑡)) . (59)

4.5 SMOOTHED WIgNER-VILLE DISTRIBuTIONS

The WVD is sometimes difficult to interpret, but the TF concentration is very
good, it is time and frequency shift invariant, and fulfils the marginal conditions. It
is therefore not surprising that many methods have been developed with the aim to
suppress the cross-terms, thus improving the readability, while trying to maintain
good TF concentration. In 1966, Leon Cohen set up a framework for such TF
representations, known as Cohen’s class, the quadratic class or the bilinear class.
Cohen also showed that some already existing representations, such as the Page and
Margenau-Hill distributions [21, 22], could be described in this framework [23].

The quadratic class can be described by first defining a kernel

Ψ(𝑡, 𝑓) =∬𝜓(𝜈, 𝜏)𝑒−𝑖2𝜋(𝑓𝜏−𝜈𝑡)𝑑𝜏𝑑𝜈 = ∫𝐺(𝑡, 𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏, (60)
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Figure 10: Two smoothed WVD of a multi-component signal, (a) smoothing only in
frequency (b) smoothing only in time.

and then filtering the WVD with that kernel

𝑊𝑄
𝑥 (𝑡, 𝑓) = 𝑊𝑥(𝑡, 𝑓) ∗𝑡 ∗𝑓Ψ(𝑡, 𝑓)

=∭𝛫𝑥(𝑠, 𝜏)𝜓(𝜈, 𝜏)𝑒−𝑖2𝜋(𝜈𝑠+𝑓𝜏−𝜈𝑡)𝑑𝑠𝑑𝜏𝑑𝜈

=∬𝛫𝑥(𝑠, 𝜏)𝐺(𝑡 − 𝑠, 𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝑠𝑑𝜏.

(61)

The kernels Ψ(𝑡, 𝑓), 𝜓(𝜈, 𝜏), and 𝐺(𝑡, 𝜏), all give equal quadratic distributions,
they are just defined on different domains, the time-frequency, ambiguity, and
time-lag domain respectively. There is also a Doppler-frequency domain, and all
four domains are connected with the Fourier transform. Filtering with a kernel
causes smoothing in time and/or frequency, depending on the design of the kernel,
which is why the resulting TF representations can be thought of as smoothed
WVDs.

It is possible to design kernels to have certain properties and be adapted to
specific types of signals. This area of research, to improve on the flaws of the
WVD, was very popular during the 1980’s and 1990’s, and there are now many
well-known quadratic distributions. These include the Choi-Williams [24],
Rihaczek [25], Zhao-Atlas-Marks [26], signal adaptive kernels [27, 28], and
many more [29, 30]. Most kernels aim at achieving good energy localisation of
signal components and suppression of cross-terms, but there is a trade-off
between the two, and kernels can be designed to keep some cross-term to gain
better resolution. This is demonstrated in Figure 10 where the kernel in (a)
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smooths in frequency, only removing cross-terms that are between components
along the time axis, and the kernel in (b) smooths in time, only removing
cross-terms that are between components along the frequency axis. In
Figure 10(a) the time resolution is high, the transients are well separated, but
there is a loss in frequency resolution, i.e. the components are wide in frequency.
For Figure 10(b) the frequency resolution is high, the chirp is narrow when the
frequency is only slowly increasing, but the time resolution is reduced and the
transients are drawn together. A kernel that smooths only in frequency is called
Doppler-independent, and a kernel that smooths only in time is called
lag-independent.

The spectrogram is also part of the quadratic class, which can be shown if we
rewrite the spectrogram

𝑆ℎ𝑥 (𝑡, 𝑓) = ∣∫𝑥(𝑠)ℎ∗(𝑠 − 𝑡)𝑒−𝑖2𝜋𝑓𝑠𝑑𝑠∣
2

=∬𝑥(𝑠)ℎ∗(𝑠 − 𝑡)𝑥∗(𝑢)ℎ(𝑢 − 𝑡)𝑒−𝑖2𝜋𝑓(𝑠−𝑢)𝑑𝑠𝑑𝑢.
(62)

If we let 𝑠 = 𝑤 + 𝜏/2 and 𝑢 = 𝑤 − 𝜏/2, we can write

𝑆ℎ𝑥 (𝑡, 𝑓) =∬𝛫𝑥(𝑤, 𝜏)ℎ∗ (𝑤 + 𝜏
2 − 𝑡) ℎ (𝑤 − 𝜏

2 − 𝑡) 𝑒−𝑖2𝜋𝑓𝜏𝑑𝑤𝑑𝜏 (63)

and thus the time-lag kernel for the spectrogram is

𝐺(𝑡, 𝜏) = ℎ∗(−𝑡 + 𝜏
2)ℎ(−𝑡 − 𝜏

2). (64)

5 THE REASSIGNMENT METHOD

Accurately estimating the IF of non-stationary multi-component signals is
challenging, the WVD has good resolution but can be very difficult to interpret,
the spectrogram is easy to interpret but the resolution is not great. In 1976
Kodera, de Villedary and Gendrin presented a technique to improve the energy
localisation of the spectrogram [31]. However, this technique failed to gain
interest until Francois Auger and Patrick Flandrin reintroduced it as the
reassignment method in 1995 [32]. This method uses the phase information,
present in the Fourier transform of a signal but discarded when calculating the
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5. The reassignment method

spectrogram, to move signal energy closer to the IFs of a signal. The resulting TF
representation is called the reassigned spectrogram.

The reassigned spectrogram of a signal 𝑥(𝑡) is defined

𝑅𝑆𝑥(𝑡, 𝑓) =∬𝑆𝑥(𝑠, 𝜉)𝛿 (𝑡 − �̂�(𝑠, 𝜉), 𝑓 − �̂�(𝑠, 𝜉)) 𝑑𝑠𝑑𝜉, (65)

where 𝑆𝑥(𝑡, 𝑓) is the spectrogram of the signal, �̂�(𝑡, 𝑓) and �̂�(𝑡, 𝑓) the reassignment
coordinates, and 𝛿(𝑡, 𝑓) the 2D Dirac impulse

∬𝑓(𝑡, 𝑓)𝛿(𝑡 − 𝑡0, 𝑓 − 𝑓0)𝑑𝑡𝑑𝑓 = 𝑓(𝑡0, 𝑓0). (66)

To calculate the reassigned spectrogram, we first need to calculate the
spectrogram and the reassignment coordinates. When they are known, the
instantaneous signal energy for every location (𝑡, 𝑓) in 𝑆𝑥(𝑡, 𝑓) is mapped to new
locations (�̂�(𝑡, 𝑓), �̂�(𝑡, 𝑓)). If the reassignment coordinates have been successfully
calculated, the new locations will be the exact IFs of the signal. If many locations
(𝑡, 𝑓) map to the same (�̂�(𝑡, 𝑓), �̂�(𝑡, 𝑓)), the energy is added.

The traditional reassignment coordinates from [32] are calculated for a general
smoothed WVD

�̂�𝑥(𝑡, 𝑓) = 𝑡 −
∬𝑠Ψ(𝑠, 𝜉)𝑊𝑥(𝑡 − 𝑠, 𝑓 − 𝜉)𝑑𝑠𝑑𝜉
∬Ψ(𝑠, 𝜉)𝑊𝑥(𝑡 − 𝑠, 𝑓 − 𝜉)𝑑𝑠𝑑𝜉

,

�̂�𝑥(𝑡, 𝑓) = 𝑓 −
1
2𝜋
∬𝜉Ψ(𝑠, 𝜉)𝑊𝑥(𝑡 − 𝑠, 𝑓 − 𝜉)𝑑𝑠𝑑𝜉
∬Ψ(𝑠, 𝜉)𝑊𝑥(𝑡 − 𝑠, 𝑓 − 𝜉)𝑑𝑠𝑑𝜉

,
(67)

and for the spectrogram these can be calculated with the more efficient

�̂�(𝑡, 𝑓) = 𝑡 + ℜ(𝐹
𝑡ℎ
𝑥 (𝑡, 𝑓)
𝐹ℎ𝑥 (𝑡, 𝑓)

) ,

�̂�(𝑡, 𝑓) = 𝑓 − 1
2𝜋ℑ (

𝐹
𝑑ℎ
𝑑𝑡
𝑥 (𝑡, 𝑓)
𝐹ℎ𝑥 (𝑡, 𝑓)

) .
(68)

Here 𝐹ℎ(𝑡, 𝑓), 𝐹𝑡ℎ(𝑡, 𝑓), and 𝐹 𝑑ℎ
𝑑𝑡 (𝑡, 𝑓) are the STFTs of the signal 𝑥(𝑡) and the

windows ℎ(𝑡), 𝑡 ⋅ ℎ(𝑡), and 𝑑ℎ(𝑡)/𝑑𝑡 respectively. This traditional reassignment
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Figure 11: Illustration of the reassignment method for a signal with four components, (a)
the spectrogram with a matched window, (b) the traditional reassigned spectrogram, (c)
the scaled reassigned spectrogram with a matched window, (d) closer look at the transient
components in the scaled reassigned spectrogram with a matched window.

works very well for longer duration chirps, especially if the FM is linear, however
it does not work well for short duration chirps, that is transients. This is
demonstrated in Figures 11(a) and (b), where the signal has two close transient
components and two long chirps, one with linear FM and the other with
non-linear FM. The traditional reassigned spectrogram in Figure 11(b) improves
the energy localisation of the longer duration chirps, compared to the
spectrogram in (a), and even though there is some interaction between the two
chirps the reassigned spectrogram gives good estimates of their IFs. However, the
transients are not resolved by the spectrogram or the traditional reassigned
spectrogram. The traditional reassigned spectrogram instead reassigns the energy
to a line going through the IFs of the transients, which is consistent with this
method assuming longer duration signal components.
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5. The reassignment method

The reassignment method was adapted for transients that have a Gaussian envelope
by Maria Sandsten and Johan Brynolfsson in 2015 [33], and extended to transients
with any envelope in 2018 by Sandsten, Brynolfsson and Reinhold [34]. This
method requires that the spectrogram is calculated with a window that matches
the envelope of the transient, i.e. the window function must have the same shape
and length as the envelope. The reassignment coordinates are also scaled

�̂�(𝑡, 𝑓) = 𝑡 + 𝑐𝑡ℜ(
𝐹𝑡ℎ(𝑡, 𝑓)
𝐹ℎ(𝑡, 𝑓) ) ,

�̂�(𝑡, 𝑓) = 𝑓 − 1
2𝜋𝑐𝑓ℑ (

𝐹 𝑑ℎ
𝑑𝑡 (𝑡, 𝑓)
𝐹ℎ(𝑡, 𝑓) ) ,

(69)

where 𝑐𝑡 = 𝑐𝑓 = 2 gives reassignment to the IF of a transient when the window
is matched. If the window does not match the envelope the energy will be more
scattered around the IF, reducing how much the reassignment improves on the
spectrogram.

The scaled matched window reassignment method works well for transients, but
not long duration chirps, which is demonstrated by Figures 11(c) and (d). The
scaled reassignment using a matched window in (c) can resolve the two close
transients that are merged together in the spectrogram, and (d) provides a closer
look at the transient components. Almost all energy from the transients is
reassigned to the IF of each transient, i.e. the time centre of the envelope and the
frequency of the oscillation remembered from Eq. (11). The long duration chirps
are almost not visible in Figure 11(c), their energy has been reassigned to several
points along the IFs of the chirps. The energy is however much more scattered
compared to Figure 11(b) and the energy is mostly concentrated around the start
and endpoints of the long chirps.

Given that the transient envelope needs to be known, the scaled matched window
reassignment should be considered a semi-parametric method. The spectrogram,
WVD, and traditional reassignment are all non-parametric methods. However,
the spectrogram used in Figure 11(a) is calculated with the window that matches
the transient envelopes, this choice of window function greatly affects the spec-
trogram’s ability to resolve the transient components, and the matched window is
optimal. If the matched window is not know it can be estimated using the prop-
erties of the scaled reassigned spectrogram [35].
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Figure 12: Illustration of the reassignment method for a signal with four components and
white Gaussian noise, (a) the spectrogram with a matched window, (b) the traditional
reassigned spectrogram, (c) the scaled reassigned spectrogram with a matched window,
(d) closer look at the transient components in the scaled reassigned spectrogram with a
matched window.

There are many advantages to using the traditional and scaled matched window
reassignments as they greatly improve the energy localisation around the IFs of
signal components. For their respective signal types their representations almost
have strong finite support, which makes them easy to interpret. Because the
reassignment coordinates can be calculated using only two additional STFTs
compared to the spectrogram, they also have a fast implementation. The major
disadvantage of the reassignment methods, is that they only have a consistent
performance for moderately high SNR. The reassignment coordinates are noise
sensitive. The signal used for Figure 11 has no noise.

Figure 12 shows the spectrogram, the traditional reassigned spectrogram, and the
scaled matched window reassigned spectrogram for a signal with noise and
relatively low SNR. The signal has the same signal components as the one used
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6. Multitaper spectral analysis

for Figure 11. The performance of the reassignment methods deteriorates
significantly with the added noise as seen in Figures 12(b), (c) and (d). Signal
energy is still reassigned to locations around the IFs of the signal, but the
reassignment is not as accurate and the representations are harder to interpret.
While the scaled reassigned spectrogram with a matched window resolves the
two transients in Figures 12(c) and (d), they are hard to identify as (the only)
two transient components. In this thesis Paper D presents a method that
automatically identifies transient components from the scaled matched window
reassigned spectrogram, when the signals have an unknown number of (only)
transients components and noise. Paper B presents a method to reduce the
effects of noise on the scaled reassigned spectrogram.

There exist other methods related to the two presented reassignment techniques.
The synchrosqueezing transform introduced first in the wavelet-framework [3],
then related to the empirical mode decomposition [4, 36], and later defined in
a Fourier-framework [6, 37]. This transform reassigns signal energy but
only in the frequency dimension, it is designed for signals with longer
duration components, like the traditional reassigned spectrogram. The
Levenberg-Marquardt reassignment is based on the traditional reassigned
spectrogram and the Levenberg-Marquardt algorithm [38–40] and has a
recursive implementation [41]. This method allows the user to choose if they
want weak or strong energy localisation, where strong localisations gives the
normal reassignment results.

6 MULTITAPER SPECTRAL ANALYSIS

When averaging spectral representations with the aim to reduce the variance of
the final representation, the requirement is that the initial spectral representations
are almost uncorrelated. With the Welch method, this is achieved by using
different segments of the signal when calculating the spectral estimates, and with
a clever choice of window some overlap between the segments is possible.
Overlap between signal segments allows for longer segments and thus the
possibility for better resolution in frequency, while keeping the variance
reduction almost constant. It would therefore be desirable to have 100% overlap
if the spectral representations could still be made almost uncorrelated.
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Figure 13: Illustration of the first five DPSS, 𝛣 = 0.035 and 𝛮 = 200, in time and
frequency domain.

6.1 THE THOMSON MuLTITApER METHOD AND THE DPSS

David Thomson presented the idea of using multiple windows, or multitapers, to
get several approximately uncorrelated spectral estimates from the same stationary
signal in 1982 [42]. Today, we call this the Thomson multitaper method or the
Thomson spectral estimate, and it is calculated according to

𝑆𝛵(𝑓) =
1
𝛫

𝛫
∑
𝑘=1
𝑆𝑘(𝑓) =

1
𝛫

𝛫
∑
𝑘=1
∣
𝛮−1
∑
𝑛=0
𝑥(𝑛)ℎ𝑘(𝑛)𝑒−𝑖2𝜋𝑓𝑛∣

2

, (70)

where 𝛫 is the number of windows,𝛮 is the number of samples in the stationary
signal 𝑥(𝑛), and ℎ𝑘, (𝑛) is the 𝑘th window function. Thomson suggested that the
spectral estimates 𝑆𝑘(𝑓) are different enough to the reduce the variance of 𝑆𝛵(𝑓),
if the 𝑆𝑘(𝑓) are uncorrelated for white noise in a frequency band 𝛣.

The window functions that Thomson proposed to use for his method are the
discrete prolate spheroidal sequences (DPSS), also called the Slepian functions.
These functions were proposed and thoroughly investigated by Slepian, Pollak,
and Landau in the 1960s and 1970s [43–47]. The DPSS are orthogonal, and the
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Figure 14: Illustration of the resolution gained by the Thomson multitaper method of
two signals with the same two oscillating components but different realisations of white
Gaussian noise, (a) the Thomson multitaper method, DPSS obtained according to Eq. (71)
with𝛫 = 5 and𝛮 = 200, (b) the Welch method with 5windows and 50% overlap, DPSS
obtained according to Eq. (71) with 𝛫 = 1 and𝛮 = 66.

time-limited windows that are most localised in the frequency domain. The
width of the spectral main lobe, 𝛣, and duration of the window, 𝛮, decide how
many windows, 𝛫, that should be used for the Thomson multitaper method.
Thus, there is still a trade-off between the duration of the signal, the resolution in
frequency, and the variance reduction

𝛫 ≈ 𝛮𝛣 − 2. (71)

The main lobe width is the same frequency band for which 𝑆𝑘(𝑓) are uncorrelated
for white noise. The first five DPSS, 𝛣 = 0.035 and 𝛮 = 200, are illustrated
in Figure 13, where the characteristic square main lobes can be noted. Both the
time and spectral DPSS windows are orthogonal [47], thus all window functions
are different both in time and frequency domain, which results in most DPSS not
looking like what we typically expect from a window function.

Figure 14(a) shows the Thomson spectral estimate of a two-component signal with
white Gaussian noise using the DPSS in Figure 13. Comparing Figure 14(a) with
the Welch spectral estimate in Figure 14(b), both with approximately the same
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variance reduction, we can see the gain in frequency resolution from the Thomson
multitaper method. The downside of the Thomson method, compared to the
Welch method, is that the multiple DPSS windows needs to be calculated and
stored, the Welch method only requires one window and a shift parameter to be
calculated and stored, which makes it more efficient. The Welch method also has
a more natural connection to real-time applications, since the whole signal does
not need to be measured before analysis starts. Paper A in this thesis presents a
spectral estimator for stationary signals that combine some of the ideas from both
the Welch and Thomson spectral estimator.

6.2 TIME-fREquENcy MuLTITApER METHODS AND THE HERMITE fuNcTIONS

Inspired by the Thomson multitaper method, multitaper TF methods began to
emerge in the 1990’s and several methods have been proposed since then [48–57].
The most common approach of is to calculate the average or weighted sum of
spectrograms, the multitaper spectrogram

𝑆𝛭𝛵(𝑡, 𝑓) =
𝛫
∑
𝑘=1
𝛼𝑘𝑆𝑘(𝑡, 𝑓) =

𝛫
∑
𝑘=1
𝛼𝑘 ∣∫𝑥(𝑠)ℎ∗𝑘(𝑠 − 𝑡)𝑒−𝑖2𝜋𝑓𝑠𝑑𝑠∣

2
, (72)

where the window functions ℎ𝑘(𝑡) are orthogonal, and 𝛼𝑘 are weights. The
connection between the spectrogram and the smoothed WVD should now be
remembered. By decomposing a kernel, Eq. (60), into its eigenfunctions it is
possible to decompose a smoothed WVD into a multitaper spectrogram. This
decomposition approach can be used to achieve more efficient calculations of
smoothed WVD by using the eigenvectors as window functions for the
multitaper spectrogram [58,59].

Other sets of window functions can be found by considering the region in the
TF plane where we want high localisation. For a square area (−𝛵, 𝛵) × (−𝛣, 𝛣),
where 𝛵 is the time duration and 𝛣 the frequency bandwidth, the DPSS are
good localisers, being eigenvectors of the operator defining the square
area. However, the DPSS inherently treat the time and frequency domain
separately and they depend on both 𝛵 and 𝛣. This makes the DPSS difficult to
calculate and generally not considered optimal for the joint TF domain. The
Hermite functions are eigenvectors of the operator defining the circular region
{(𝑡, 𝑓) ∈ ℝ2; 𝑡2 + 𝑓2 ≤ 𝑅2}. They do not depend on the size of the region, i.e.
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Figure 15: Illustration of the first five Hermite functions in the time and frequency
domain.

the radius 𝑅, treat the time and frequency domain jointly, and are easy to
calculate [60, 61]. Because of their easy calculation and good localisation
properties, many TF multitaper methods use the Hermite functions [49–55].

The Hermite functions, also called Hermite-Gaussian functions, are calculated
form the physicist’s Hermite polynomials

𝛨𝑘(𝑡) = (−1)𝑘𝑒𝑡
2 𝑑𝑘
𝑑𝑡𝑘 𝑒

−𝑡2 , 𝑡 ∈ ℝ, 𝑘 ∈ ℤ≥0, (73)

and the square root of their weight function

𝑤1/2(𝑡) = 𝑒−
𝑡2
2 , 𝑡 ∈ ℝ. (74)

By allowing a scaling in the duration of the polynomials and weight function we
can expand from a circular region to a more general elliptical shape. The ortho-
gonal Hermite functions are then

ℎ𝑘(𝑡) = 𝛨𝑘 (
𝑡
𝜎) 𝑒

− 𝑡2
2𝜎2 , 𝑡 ∈ ℝ, 𝑘 ∈ ℤ≥0, 𝜎 ∈ ℝ≥0. (75)
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Figure 16: Illustration of how the multitaper spectrogram with Hermite window functions
goes towards a constant spectral estimate for simulated white noise, when the number of
windows increase, (a) 𝛫 = 1, (b) 𝛫 = 2, (c) 𝛫 = 3, (d) 𝛫 = 5.

The first five scaled Hermite functions are shown in Figure 15, and note that the
0th order window is the Gaussian function, which we should remember gives
the optimal energy spread in time and frequency. The time representation of the
Hermite functions expands with increased 𝜎, while the main lobe in the frequency
representation becomes narrower.

Just as with the DPSS, most of these windows do not look like what we
expect from window functions, but this is necessary for them to give almost
uncorrelated spectral estimates of white noise. Figure 16 shows the spectrogram
and three multitaper spectrograms of simulated white noise, all the spectrograms
use Hermite window functions. White noise is a stationary process and should
have a constant spectral density, therefore we expect the multitaper spectrogram
of simulated white noise to go towards a constant level when we increase the
number of windows. We can see that this is achieved when using the Hermite
window functions in Figure 16.
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7 MEASURING PERFORMANCE

The different frequency and TF representations discussed in Sections 4–6 all have
different advantages and disadvantages. So, how do we compare them, measure
their performance, and choose which one to use? One way is to go back to the
fundamental ideas for spectral analysis presented in Section 3, but it is also possible
that some of these theoretical ideas are unimportant in some applications.

The WVD fulfils many of the presented ideas in Section 3. It is time and
frequency shift invariant, scale invariant, it has weak finite support, and satisfies
the marginal and energy conditions. For mono-component signals the WVD
also has a very high energy localisation. But the WVD has a high variance, it is
greatly affected by noise, it is cumbersome to compute, and the cross-terms for
multi-component signals affects readability. The spectrogram is time and
frequency shift invariant, scale invariant, if the window function is unit energy it
fulfils the energy condition, but not generally the marginals, nor does it
technically have finite support. However, the spectrogram is fast to compute, has
low variance and is easy to interpret even for many multi-component signals.
Which of these qualities is most important, and what trade-offs are best, depend
on the application. There is thus a need for different performance measures.

It is common to evaluate different representations with the help of simulated
signals. With simulated signals it is possible to know and control the IFs of the
signal components, the number of components, the type of noise, the SNR, and
any other features of interest. If the signal components are easily identified in the
representation, the bias and variance of any relevant estimate can be calculated.
It is possible to see how noise robust the representation is by changing the SNR,
and the resolution can be evaluated by moving signal components closer
together. However, this type of evaluation can only be done on simulated or
measured signals where the features are known beforehand, and it requires some
method for extracting the relevant estimates.

There are some ways to measure performance even if the signal features of interest
are unknown. One approach is to measure the energy concentration in the rep-
resentation. The Rényi entropy, named after Alfréd Rényi [62], is a generalised
measure of entropy. In information theory, entropy is a measure of uncertainty
in a random variable, and in the context of TF representations, it can be used to
measure how localised the energy is [63–65]. If energy is localised around the IFs
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in a signal it is easier to extract signal features. The Rényi entropy gives a low value
if the energy is localised, and is calculated according to

𝑅𝛦𝛼 =
1

1 − 𝛼 log2∬( 𝛲(𝑡, 𝑓)
∫∫𝛲(𝑡, 𝑓)𝑑𝑡 𝑑𝑓)

𝛼
𝑑𝑡 𝑑𝑓, (76)

where 𝛲(𝑡, 𝑓) is the TF representation, and 𝛼 = 3 is an appropriate choice [64].
It is also possible to calculate the Rényi entropy locally in a selected area of the
TF representation. This is usually preferable because the Rényi entropy favours
peaky representations, which means that if a signal contains both strong and weak
components, a low Rényi entropy calculated over the whole representation might
only optimise localisation for the strong component(s).

The Rényi entropy is generally not a good measure for signals with close or
overlapping components, since it will be minimised when the resolution is low,
and the components form one peak or ridge. For such signals, a resolution
measure might be more appropriate. Considering TF representations and
starting with the WVD of a signal with at least two components, there are a few
things of interest to achieve good resolution. The cross-term(s) need(s) to be
sufficiently suppressed, the main lobes of the signal components need to be
narrow, and the side lobes low. It might not however be very important that the
representation fulfils the marginal conditions, the energy condition, or that it has
finite support. One such resolution measure is presented by Boashash and Sucic
in [66], the measure balances the importance of suppressing cross-terms,
suppressing side lobes, and having high and narrow main lobes. This also means
that the signal components, cross-terms, and side lobes need to be identified
before the measure is used. Paper C presents a method that automatically
identifies the signal components, so that the resolution measure can be
calculated.

8 APPLICATIONS

Despite that the Fourier transform calculates frequencies from an infinite time in-
terval, and thus the mathematical interpretation must be that frequencies are time
independent, most signals are by nature non-stationary. This contradiction was
understood even in the early days of Fourier analysis, and captured wonderfully
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by John Carson commenting on the (frequency) spectrum of a FM chirp in 1922
[67]:

The foregong solutions, tho unquestionably mathematically correct, are
somewhat difficult to reconcile with our physical intuitions, and our
physical concepts of such ”variable-frequency” mechanisms as, for
example, the siren.

Many signals are however almost stationary if the duration is sufficient short, e.g.
human speech is assumed to be stationary in 20 ms intervals. This means that there
are still many applications for stationary spectral methods, like the one presented in
Paper A. Short-term stationarity in signals means that stationary spectral methods
can be used for effective real-time applications. Such applications can be in digital
communication [68], or continuous monitoring, e.g. in medicine, of seismic data,
or machine and structural health [69–71].

The multitaper reassignment method in Paper B aims to reduce the variance of TF
representations of noisy signals while having a high energy localisation at the IFs of
transient components. The paper incudes an example of the method’s performance
on electroencephalography (EEG) data, which is very noisy when recorded non-
invasively from electrodes on the scalp. The EEG is a very popular method for
measuring the electric activity of the brain, and it offers a high resolution in time
[72, 73]. Recordings of EEG are used for medical diagnosis, e.g. epilepsy, stroke,
and depression, but can also be used to decode mental state information [74].
Decoding of mental states and brain mapping involve finding what areas of the
brain that are involved in certain tasks and understanding the brain activity related
to that task, e.g. the task can be wanting to lift ones arm or remembering an image.
This is a difficult and time consuming problem however, as the brain activity of the
same task can be very different for any two people. But with successful decoding
of mental states, it is possible to construct a brain-computer interface (BCI), i.e. a
direct communication pathway between a brain and an external device. BCIs are
mainly used to assist people with severe motor impairment, but can also be used
for smart hearing aids, gaming devices, and medical diagnosis [75].

Paper C presents a feature extraction method that is used on heart rate variability
(HRV) data. The HRV is obtained from the electrocardiogram (ECG), which
records the electrical activity of the heart using electrodes on the skin. The ECG

43



Introduction to Spectral Analysis and Signal Processing

will show the heart beats and by measuring the time between every two
consecutive heart beats, we get the HRV. The time between heart beats will vary,
so the HRV will not be a constant signal, but will vary with time. The HRV has
two main components, the low frequency oscillations, which is associated with
changes in blood pressure, and the respiratory sinus arrhythmia, which is in a
higher frequency band and relates to the breathing. The method presented in
Paper C identifies these two components in the TF representation. The low
frequency component is fairly stationary, but the frequency of the respiratory
sinus arrhythmia will change with the breathing, it will follow the breathing
rhythm as well as typically increase during inhales and decrease during
exhales [76]. The HRV, and mainly the respiratory component, is a good
indicator of compromised health and unhealthy stress [76–78].

Estimating very short transients in the TF domain is more challenging than es-
timating longer signals, simply because the short duration implies less informa-
tion about the component and more uncertainty in the frequencies obtained from
the Fourier transform. Extracting features from short transients are of interest in
a number of fields, including seizure detection, seismic wave detection, and vibra-
tion signal characterisation [79–81], but also ultrasound and biosonar analysis. In
Paper D, the scaled reassigned spectrogram is used so that the TF representations
have high energy localisation around transient components, and a method for de-
tecting and classifying individual transients, in the presence of noise, is presented.
The method is tested on biosonar signals and ultrasound pulse echoes both in Pa-
per D, and more extensively on biosonar in [82] and on ultrasound in an ongoing
project led by Josefin Starkhammar.

In biosonar analysis, recent research has shown that the echolocation clicks used
by beluga whales (Delphinapterus leucas) and bottlenose dolphins (Tursiops
truncatus) contain two close transients. This was first seen in off-axis angles
where the transients become more separated in time [83, 84], but with the high
resolution scaled reassigned spectrogram and the automatic detection and
identification method of Paper D, analysis on a large number of clicks from
bottlenose dolphins shows two transients also in on-axis recordings. These results
are used to further understand how dolphins produce their echolocation clicks
and how their acoustic field is affected by the structures in the head of
dolphins [82].
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The ability of ultrasound machines to detect small objects depend largely on the
length of the pulses the machine, or transducer, sends out. A short pulse means
that the recorded pulse echoes from reflections on the edges of small objects will
overlap less in time compared to when a longer pulse is used [85]. It does however
require more expensive hardware to produce the short pulses. Therefore, software
improvements that can resolve heavily overlapping pulse echoes are of interest, and
the combination of the scaled reassigned spectrogram and the transient detection
method from Paper D are well suited for this. Ultrasound has many medical uses,
it is non-invasive and fast to use, many will probably know of ultrasound images
of fetuses and unborn children, but it can also be used to get images of other parts
of the body, e.g. blood-vessels where clots can be detected, and it is used to guide
the administration of regional anaesthesia and pain relief [86].
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The first two papers in this thesis present methods to reduce the variance of spectral
representations, the first for generic stationary signals using a time-shifted optimal
window, and the second for the reassigned spectrogram of transients. The last
two papers present automatic methods for detecting signal components, the first
adapted for the Wigner-Ville distribution of long duration FM signals, and the
second adapted for the reassigned spectrogram of transients. This chapter provides
a brief overview of these papers and their presented key concepts, followed by a
list detailing my contributions as author.

PAPER A: EffIcIENT THOMSON SpEcTRAL ESTIMATOR wITH TIME-SHIfTED
WINDOwS

This paper presents a spectral estimation method that is a hybrid between the
Welch method and the Thomson multitaper method. By defining a bandwidth
for the main lobe of the window and a bias constraint, a single window function
is calculated as a weighted sum of the discrete prolate spheroidal sequences. This
single window is shifted in time to create a set of windows, and both the weights
for the sum and the time shifts are optimised to minimise the variance of white
noise. The paper presents a 5-step procedure for the window estimation. This
approach combines the computational efficiency of the Welch estimator and the
ability to explicitly define a frequency resolution, which is associated with the
Thomson method. The minimisation problem is not convex and search for a
global minimum can be costly, therefore the paper also presents a convex
approximation of the minimisation problem. The spectral estimators for the
convex and non-convex minimisation are evaluated and compared to the Welch
and Thomson spectral estimators.
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PAPER B: MuLTITApER REASSIgNMENT fOR OScILLATINg TRANSIENTS wITH
GAuSSIAN ENvELOpES

This paper presents a multitaper reassigned spectrogram for transients with a
Gaussian envelope. This method makes the reassignment more robust to noise,
introducing the ability to balance the resolution and variance of the scaled
reassigned spectrogram. The Hermite functions are used as window functions,
and the paper presents new reassignment coordinates that reassign all signal
energy of one transient to its instantaneous frequency for all the window
functions. These new reassignment coordinates are then combined, rather than
averaging the reassigned spectrograms, to produce a multitaper reassigned
spectrogram. The correlation between the reassignment coordinates for white
noise and different windows is evaluated, to ensure that the multitaper method
reduces the variance. The method is evaluated for simulated signals with two
transient components that are either separated or overlapping, and the signals are
disturbed by either white Gaussian noise or pink noise.

PAPER C: OpTIMAL TIME-FREquENcy DISTRIBuTIONS uSINg A NOvEL SIgNAL
ADApTIvE METHOD fOR AuTOMATIc COMpONENT DETEcTION

This paper presents a method for automatic detection of the signal components
in the Wigner-Ville distributions of signals with two long duration chirps. The
cross-term, side lobes and other features are also identified with this method. The
novel automatic detection improves on a previously existing method, and it is used
with a normalised instantaneous resolution performance measure to optimise the
modified B-distribution. The modified B-distribution is a smoothed Wigner-Ville
distribution. The motivation for a new detection method is to improve the ability
to detect components when they have unequal amplitudes and when one or both
have non-linear FM. The performance of the novel automatic detection method
is evaluated for different parameter choices in the two-component signal and for
different levels of smoothing of the Wigner-Ville distribution.

PAPER D: OBjEcTIvE DETEcTION AND TIME-FREquENcy LOcALIZATION Of
COMpONENTS wITHIN TRANSIENT SIgNALS

This paper presents a method that automatically detects transient components in
the scaled reassigned spectrogram of signals with an unknown number of
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transients. The scaled reassigned spectrogram is used with a matched window,
which resolves close transient components, and the proposed detection algorithm
detects the individual components and provides their instantaneous frequencies.
The novel automatic detection method also estimates how many transient
components a signal has. Evaluation is mainly done on simulated signals with
white Gaussian noise and varying SNR to determine the resolution and if the
method is noise robust. But the evaluation also includes recorded data from
ultrasound pulse-echoes and marine biosonar.
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AUTHOR CONTRIBUTIONS

PAPER A: EffIcIENT THOMSON SpEcTRAL ESTIMATOR wITH TIME-SHIfTED
WINDOwS

I calculated the minimization problem and defined the convex approximation. I
developed the procedure and evaluated both methods. We collaborated on the
writing.

PAPER B: MuLTITApER REASSIgNMENT fOR OScILLATINg TRANSIENTS wITH
GAuSSIAN ENvELOpES

It was a joint idea. I derived the new reassignment coordinates, and we collabor-
ated on the method for combining the reassignment coordinates. I did the simu-
lations and evaluation. We collaborated on the writing.

PAPER C: OpTIMAL TIME-FREquENcy DISTRIBuTIONS uSINg A NOvEL SIgNAL
ADApTIvE METHOD fOR AuTOMATIc COMpONENT DETEcTION

I had the idea for the automatic detection algorithm, developed the algorithm and
did the evaluation. We collaborated on the writing.

PAPER D: OBjEcTIvE DETEcTION AND TIME-FREquENcy LOcALIZATION Of
COMpONENTS wITHIN TRANSIENT SIgNALS

It was a joint idea. I developed the detection algorithm and did the evaluation
on the simulated signals, excluding the noise robust testing. I helped in collecting
the ultrasound data and did the evaluation on that data. We collaborated on the
writing.
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Efficient Thomson Spectral Estimator
with Time-Shifted Windows

Isabella Reinhold and Maria Sandsten
Mathematical Statistics, Centre for Mathematical Sciences, Lund University,

Sweden.

ABSTRACT

In this paper, optimal spectral analysis window shapes, using weighted discrete
prolate spheroidal sequences as basis functions, are proposed. These windows are
not typically positive or even. The windows are time-shifted, combining the
computational efficiency of the Welch method and the appealing property of
predefined frequency resolution of the Thomson spectral estimator. The
parameters of the optimal windows are found by minimising the resulting
spectral covariances and optimising the window overlap, for the predetermined
frequency resolution and number of windows. The windows are found to have
low side lobes, giving small spectral leakage, and the final spectral estimate gives
close to optimal variance reduction, i.e. the covariance between different
sub-spectra is very small.

Keywords: DPSS, Slepian functions, Spectral leakage, Variance, Welch method
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1 INTRODUCTION

The Welch method [1] is well known and used as spectral estimator in many
different applications [2–4]. The spectral estimate has low variance as the
time-shifted windows result in almost orthogonal sub-spectra that are averaged
for the final estimate. Partly overlapping and smooth windows, such as the
commonly used Hanning window, are more beneficial than non-overlapping
rectangular windows [5, 6]. From frequency resolution and leakage viewpoint,
different window shapes have been thoroughly investigated and compared [7, 8]
and for a predefined frequency resolution, the discrete prolate spheroidal
sequences (DPSS) are the most optimal from leakage viewpoint [9]. Multitaper
estimators [10], which uses all data samples (100% overlap) for all the windowed
periodograms, are also popular choices for spectral estimation. The properties of
the different windows give uncorrelated periodograms and thereby reduced
variance.

Optimising variance, resolution and leakage is often of great interest, where
window shapes with certain properties are chosen followed by optimisation of
the overlap and minimising the overall variance [11, 12]. It has been shown that
the Thomson multitaper estimator, based on the DPSS, outperforms the Welch
method in terms of bias and variance [13]. However, the Welch method is more
efficient in real-time applications, with less computations and less memory
allocation, as the windowed sequences require shorter discrete Fourier
transforms and less storage [11]. The appealing Thomson multitaper property of
predefined resolution was used to optimise a time-shifted window shape of the
Welch estimator in [14], but the resulting windows did not fulfil the property of
window orthogonality and well suppressed side lobes.

This paper proposes using the DPSS as basis functions to estimate an optimal
analysis window shape for a predefined frequency resolution and a fixed number of
time-shifted windows. The window shape is optimal in the sense that it minimises
the variance of white Gaussian noise, under the constraint of well suppressed side
lobes, i.e. low spectral leakage. A procedure to find the optimal overlap and
corresponding window shapes is also proposed. The windows are not restricted to
be positive or even.
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2 THOMSON ESTIMATOR WITH WELCH WINDOW STRUCTURE

Given the discrete-time zero-mean stationary stochastic process, 𝑥(𝑛), with
spectral density, 𝑆𝑥(𝑓), the spectrum can be estimated from the 𝛮 samples
x = [𝑥(0) … 𝑥(𝛮 − 1)]𝛵, (𝛵 denotes transpose), using the Welch method

�̂�𝑥(𝑓) =
1
𝛫

𝛫
∑
𝑘=1
∣
𝛮𝑔−1

∑
𝑛=0

𝑥(𝑛 + (𝑘 − 1)𝐿)𝑔(𝑛)𝑒−𝑖2𝜋𝑓𝑛∣
2

, (1)

where 𝛫 is the number of windows, 𝐿 is the time-shift in samples,
g = [𝑔(0) … 𝑔(𝛮𝑔 − 1)]𝛵 is the window function and the length of the window
is the largest integer 𝛮𝑔 ≤ 𝛮 − 𝐿(𝛫 − 1). Another way of estimating the
spectrum is instead to consider the set of time-shifted windows

h𝑘 = [0 … 0⏟
(𝑘−1)𝐿

g
𝛮−((𝑘−1)𝐿+𝛮𝑔)
⏞0 … 0 ]𝛵, 𝑘 = 1 … 𝛫. (2)

These time-shifted windows make it possible to formulate a Thomson estimator

�̂�𝑥(𝑓) =
1
𝛫

𝛫
∑
𝑘=1
∣
𝛮−1
∑
𝑛=0
𝑥(𝑛)ℎ𝑘(𝑛)𝑒−𝑖2𝜋𝑓𝑛∣

2

. (3)

This paper proposes that for some given frequency resolution, indicated by 𝛣, set
a number of overlapping windows 𝛫, appropriate for the application, and then
optimise the shape of the single window function g and its length 𝛮𝑔 to reduce
the (co)variance and leakage.

3 AN OPTIMAL TIME-SHIFTED WINDOW

The approach in this paper is to combine a set of 𝛭 basis functions
q𝑚 = [𝑞𝑚(0) … 𝑞𝑚(𝛮𝑔 − 1)]𝛵, 𝑚 = 1…𝛭, to express the single window

g =
𝛭
∑
𝑚=1
𝛼𝑚q𝑚 = Q𝜶, (4)

where 𝜶 = [𝛼1 𝛼2 … 𝛼𝛭]𝛵, is the scaling vector and Q = [q1 q2 … q𝛭] is the
matrix including the basis functions as column vectors.
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Figure 1: Optimal time-shifted windows h𝑘 for the frequency band 𝛣 = 0.108, when
𝛮 = 256 and 𝛫 = 10; (a) time-shifted windows using𝛭 = 4 DPSS basis functions; (b)
window spectrum of each single window g.

The DPSS [9] are used as basis functions since they are all orthogonal and localised
to have maximum power inside a predefined frequency band. The spectral leakage
is determined by the corresponding eigenvalue, thus making it easy to define a
tolerated leakage 𝜖𝛵 = 1− 𝜆𝑖 and at the same time determine the number of basis
functions𝛭, i.e. all eigenvectors with corresponding 𝜆𝑚 ≥ 1 − 𝜖𝛵, 𝑚 = 1…𝛭.

The resulting shapes of the windows g are typically not positive or even. Figure 1(a)
shows an example of this when 𝛣 = 0.108, 𝛮 = 256 and 𝛫 = 10. The windows
are a sum of 𝛭 = 4 DPSS, the tolerated leakage is 𝜖𝛵 = 0.0005, the overlap
70% and 𝜶 = [0.87 0.28 − 0.17 − 0.36]𝛵. Figure 1(b) shows the spectrum of
the window g. The dashed vertical lines marks the frequency band |𝑓| = 𝛣/2 =
0.054, and it can be noted that for |𝑓| > 𝛣/2 the spectrum is very low, the first
side lobe is only -47 dB high.

An optimal spectral estimator should minimise the variance of a white Gaussian
noise process,𝒩(0, 1),

Var �̂�𝑤(𝑓) =
1
𝛫2

𝛫
∑
𝑘1=1

𝛫
∑
𝑘2=1

|h𝛵𝑘1h𝑘2|
2, (5)
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3. An optimal time-shifted window

under the constraint of zero bias,

E[�̂�𝑤(𝑓)] =
1
𝛫

𝛫
∑
𝑘=1

h𝛵𝑘 h𝑘 = 1, (6)

[10]. As the DPSS windows are orthonormal, i.e., Q𝛵Q = I, where I is the
identity matrix, the zero bias constraint is simplified to

E[�̂�𝑤(𝑓)] = g𝛵g = 𝜶𝛵Q𝛵Q𝜶 = 𝜶𝛵𝜶 = 1. (7)

Thus the minimisation problem that needs to be solved is

arg min
|𝜶|2=1

Var �̂�𝑤(𝑓), (8)

which will give the scaling vector 𝜶 to construct the single window function g.
However, the shape of g is dependent on the window length, and thus the win-
dow overlap, a procedure to find both the optimal window shape and overlap is
presented next.

3.1 PROcEDuRE

This procedure finds the optimal shape of the window g and the optimal over-
lap for the set of time-shifted windows h𝑘, assuming there is a predetermined fre-
quency band 𝛣 and number of windows 𝛫.

1. Decide a range of overlaps to be evaluated.

2. Find the number of DPSS basis functions which fulfil
𝜆𝑚 ≥ 1 − 0.0005, 𝑚 = 1…𝛭.

3. Solve the minimisation problem Eq. (8) for all considered overlaps and
calculate the minimum variances given by the obtained 𝜶s.

4. Find the smallest minimum variance 𝜂. Consider all, though possible just
one, of the 𝜶 that give variances smaller than 𝜂 + 0.00052, choose among
them the 𝜶 that corresponds to the smallest overlap.

5. From the chosen 𝜶 and corresponding overlap, construct the time-shifted
windows h𝑘.
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The tolerated leakage

𝜖𝛵 = 1 − 𝛲𝛣 = 1 −∫
𝛣/2

−𝛣/2
𝑆ℎ(𝑓)𝑑𝑓 ≤ 0.0005, (9)

used in step 2, is chosen as the first sidelobe of the Hanning window spectrum
is found slightly below -30 dB. In step 4 a deviation from the smallest minimum
variance is allowed to balance the variance minimisation and the increased com-
putational complexity of larger overlaps.

4 VARIANCE MINIMISATION

When solving the minimisation problem Eq. (8) it is of interest to consider the
overlaps of the time-shifted windows. Lets define the lower and upper parts of the
window vector g

g𝑙𝑘 = [𝑔(𝑘𝐿) … 𝑔(𝛮𝑔 − 1)]𝛵, (10)

g𝑢𝑘 = [𝑔(0) … 𝑔(𝛮𝑔 − 1 − 𝑘𝐿)]𝛵. (11)

They can be used to rewrite the expression Eq. (5) into

min Var �̂�𝑤(𝑓) =min 1𝛫|g
𝛵g|2 +

𝛫𝐶
∑
𝑘=1
𝑤𝑘|g𝛵𝑙𝑘g𝑢𝑘|

2

=min Var0 �̂�𝑤(𝑓) + Cov �̂�𝑤(𝑓),
(12)

where the number of different overlaps is 𝛫𝐶 < 𝛮𝑔/𝐿 < 𝛫 and 𝑤𝑘 = 2 (𝛫−𝑘)𝛫2 .
However, the first term Var0 is always 1/𝛫 as |g𝛵g|2 = 1, therefore only the
covariance terms needs to be minimised. Using that

g𝑙𝑘 = Q𝑙𝑘𝜶, (13)
g𝑢𝑘 = Q𝑢𝑘𝜶, (14)

where Q𝑙𝑘 and Q𝑢𝑘 are the corresponding lower and upper part of the DPSS basis
functions matrix Q respectively, the minimisation problem Eq. (8) can then be
reformulated as

arg min
|𝜶|2=1

Var �̂�𝑤(𝑓) = arg min
|𝜶|2=1

𝛫𝐶
∑
𝑘=1
𝑤𝑘|𝜶𝛵Q𝛵

𝑙𝑘Q𝑢𝑘𝜶|
2. (15)
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4. Variance minimisation

The DPSS are either even or odd sequences, 𝑞𝑚(𝛮𝑔−1−𝑛) = (−1)(𝑚−1)𝑞𝑚(𝑛) [9],
giving the following relationship

Q𝑙𝑘 = I𝑝Q𝑢𝑘I𝑐𝑠, (16)

where I𝑐𝑠 is the (𝛭×𝛭) diagonal signature matrix with elements (−1)(𝑚−1), and
I𝑝 is the (𝛮𝑔 − 1 − |𝑘𝐿| × 𝛮𝑔 − 1 − |𝑘𝐿|) diagonal exchange matrix. Thus the
product

A𝑘 = Q𝛵
𝑙𝑘Q𝑢𝑘 = I𝑐𝑠Q

𝛵
𝑢𝑘I𝑝Q𝑢𝑘 (17)

is a (𝛭 ×𝛭) non-symmetric matrix. The minimisation problem can be solved
using iterative optimisation methods for non-linear problems, but since the prob-
lem is non-convex, these methods can be costly. However, both 𝛭 and 𝛫𝐶 are
assumed to always be rather small, which still make these optimisation methods
a valid choice. The time-shifted windows resulting from solving Eq. (15) will be
referred to as the iterative optimal time-shifted windows (I-OTSW).

4.1 AppROxIMATION

In order to achieve more computational efficiency a simplification of the minim-
isation problem Eq. (15) with an analytical solution is also proposed. The time-
shifted windows resulting from solving this problem will be called the approxim-
ative optimal time-shifted windows (A-OTSW).

The original minimisation problem is a sum of non-negative numbers

min Var �̂�𝑤(𝑓) = arg min
|𝜶|2=1

𝛫𝑐
∑
𝑘=1
𝑤𝑘|𝜶𝛵A𝑘𝜶|2

= arg min
|𝜶|2=1

𝛫𝑐
∑
𝑘=1
𝑤𝑘𝜶𝛵A𝑘𝜶𝜶𝛵A𝛵𝑘𝜶,

(18)

and a reasonable simplification is to instead consider the much simpler, although
similar problem

arg min
|𝜶|2=1

𝛫𝑐
∑
𝑘=1
𝑤𝑘𝜶𝛵A𝑘A𝛵𝑘𝜶. (19)

This is also a sum of non-negative numbers, since the matrix product A𝑘A
𝛵
𝑘 is

Hermitian and positive semi-definite. The solution to this new problem is found
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by finding the right-singular vector of the (𝛫𝑐𝛭×𝛭) block matrix

[
𝑤1A1A𝛵1
⋮

𝑤𝛫𝑐A𝛫𝑐A
𝛵
𝛫𝑐

] , (20)

corresponding to the smallest singular value.

At first glance it might seem tempting to first minimise the problem in Eq. (19) to
get a solution 𝜶0, and then use that to solve arg min|𝜶|2=1∑

𝛫𝑐
𝑘=1 𝑤𝑘𝜶𝛵A𝑘𝜶0𝜶𝛵0A𝛵𝑘𝜶.

However, since 𝜶0 is a singular vector of the block matrix Eq. (20), the rank of
the new block matrix, with rows 𝑤𝑘A𝑘𝜶0𝜶𝛵0A𝛵𝑘 , is reduced and the solution will
always be 𝜶 = 𝛼1 = 1.

5 EVALUATION

The proposed I-OTSW and A-OTSW estimators are evaluated with the usual
Hanning window (Welch) and the first DPSS window (STSW) as Welch
estimators and also to the Thomson multitaper estimator (Thomson). All
windows are optimised or normalised to fulfil the zero bias condition Eq. (7).
The evaluation is done for 𝛮 = 256 and a range of different frequency bands
according to Table 1 and overlap between 30% - 75%, for the I-OTSW,
A-OTSW and STSW. The Nelder-Mead simplex method of Matlab (fminsearch)
with a set of random initial values is used for the I-OTSW estimator. The
iterative search is repeated for reliable convergence. The Welch estimator is used
with 50% overlap and the Thomson estimator with𝛮𝛣− 3 multitapers [10].

Table 1: Range of frequency bands and corresponding number of windows for the
I-OTSW and A-OTSW estimators.

𝛣 𝛫

[0.040, 0.052] 4
[0.056, 0.072] 6
[0.076, 0.088] 8
[0.092, 0.108] 10
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5. Evaluation

Figure 2: Evaluation results for𝛮 = 256, different frequency bands 𝛣 and corresponding
𝛫 according to Table 1; (a) minimum covariances; (b) spectral leakage in dB; (c) optimal
overlap; (d) number of DPSS basis functions.

The results of the evaluation are shown in Figure 2, (a) shows the minimum
covariances for the STSW, I-OTSW and A-OTSW estimators, which shows
how close to the smallest possible variance 1/𝛫 the methods reach. The
covariances for the Welch estimator are much larger than for the other methods,
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Figure 3: Example of spectral estimates of low-pass filtered white Gaussian noise with
cut-off frequency 𝑓 = 0.2.

around 0.01 for all 𝛫. The Thomson estimator has covariance zero, however the
minimum covariances for the I-OTSW and A-OTSW estimators are consistently
very low and close to zero. Figure 2(b) shows that the leakage is low for both the
I-OTSW and A-OTSW estimators, often under -40 dB, and (c) shows that the
overlap is mostly 55% for the A-OTSW and slightly higher for the I-OTSW.
This means that most often 𝛫𝐶 = 2 and 𝛫𝐶 ≤ 4, indicating low complexity
computations. In Figure 2(d) it can be seen that for the I-OTSW and A-OTSW
estimators most often 𝛭 = 2, 3, also indicating low complexity calculations,
this is compared to the Thomson estimator that uses 7 − 25 basis functions.

5.1 LOw-pASS fILTERED NOISE ExAMpLE

Low-pass filtered white Gaussian noise, 𝒩(0, 1), is used to visualise the
performance of the estimators on spectra with large dynamics. The spectral
estimations of a filtered noise realisation, cut-off frequency 𝑓 = 0.2 and
𝛮 = 256, are shown in Figure 3. It can be seen that, the Welch estimator has
the most narrow main lobe, with the I-OTSW, A-OTSW and STSW estimators
almost as narrow. However, the I-OTSW, A-OTSW and Thomson estimators
have the lowest first side lobes. In this example 𝛣 = 0.04, 𝛫 = 4 and the
optimal overlaps presented in Figure 2(c) are used.
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6 CONCLUSION

Two methods, I-OTSW and A-OTSW, for finding the optimal shape of a time-
shifted window have been presented. The window function, typically not posit-
ive or even, is a weighted sum of the DPSS, where the number of basis functions
is determined by a tolerated leakage and the weights are optimised to minimise
the variance of a white Gaussian noise process. Using a novel procedure to de-
termine the optimal overlap of the time-shifted windows, the resulting optimal
spectral estimators are shown to give close to optimal variance reduction and low
leakage, (side lobes -40 dB). Both methods outperform the usual Welch method,
using common windows, with regards to variance and leakage. Since the methods
use few DPSS, low overlap and time-shifted windows, they are more computa-
tionally efficient than the Thomson estimator. The methods however still have
the appealing quality of a predetermined frequency resolution, usually associated
with the Thomson estimator. It is also shown that the two novel methods per-
form very similar to each other, making the simplified A-OTSW estimator highly
beneficial.
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ABSTRACT

Finding objective methods for assessing the performance of time-frequency
distributions (TFD) of measured multi-component signals is not trivial. An
optimal TFD should have well resolved signal components (auto-terms) and
well suppressed cross-terms. This paper presents a novel signal adaptive method,
which is shown to have better performance than the existing method, of
automatically detecting the signal components for TFD time instants of
two-component signals. The method can be used together with a performance
measure to receive automatic and objective performance measures for different
TFDs, which allows for an optimal TFD to be obtained. The new method is
especially useful for signals including auto-terms of unequal amplitudes and
non-linear frequency modulation. The method is evaluated and compared to
the existing method, for finding the optimal parameters of the modified
B-distribution. The performance is also shown for an example set of Heart Rate
Variability (HRV) signals.

Keywords: Detection, Heart Rate Variability, Multi-component signal, Perform-
ance measure, Time-frequency
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1 INTRODUCTION

There are many types of non-stationary signals, most of which are
multi-component. These signals need to be visualised in time and frequency
simultaneously to characterise their time-varying nature. To do this the
distribution of the signal energy over the time-frequency plane, i.e. the
time-frequency distribution (TFD), can be studied.

The Wigner-Ville distribution (WVD) is a common TFD. For mono-component,
linear frequency modulated (FM) signals the WVD gives exactly the instantaneous
frequency (IF) making it the optimal TFD for such signals. The problem with the
WVD occurs when dealing with multi-component signals or signals disturbed by
noise. For such a signal the WVD is not always zero when the signal has no power
for a given time-frequency instant. These contributions are called cross-terms and
can have twice the amplitude of the signal components. This makes it difficult to
distinguish the actual signal components, also called auto-terms, from the cross-
terms [1].

There exist many TFDs which aim to suppress cross-terms by means of filtering
the WVD with a kernel, such as Choi-Williams, Zhao-Atlas-Marks [1] and mod-
ified B-distribution [2]. However suppression of the cross-terms can also result
in loss of resolution of the signal components. Finding good representations of
multi-component signals is a complex problem and is still a large field of research
[3, 4]. When looking at different TFDs for multi-component signals it might be
possible to say that some plots look cleaner and thus better. However, assessing
the performance based only on this visual comparison is very subjective and find-
ing the optimal parameter for a specific kernel would be very tiresome if not im-
possible. Not many methods exist, for assessing which TFD is the best for a given
signal, especially when dealing with measured signals.

A quantitative performance measure for TFDs of two-component signals, called
normalised instantaneous resolution (NIR) performance measure, was presented
in [5]. The NIR performance measure makes it possible to compare different
TFDs and optimise kernel parameters which control the tradeoff between signal
component resolution and cross-term suppression. The NIR performance
measure can be used for simulated as well as measured signals and was recently
used in [6, 7] to find optimal TFDs for different multi-component signals.
However, the measure relies on parameters connected to correct detection of the
signal components for each time instant of the TFD, and the method used for
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automatic detection of auto-terms is the one presented in [8]. One restriction
of this method is the requirement that the amplitudes of the two signal
components are (approximately) equal, which is an assumption that limits the
use of the method. The method also fails when signal components are close to
each other or has components with non-linear FM law [9], which is a well
known restriction of many methods [3]. These restrictions in the detection
method narrows the use of the NIR performance measure as the choice of
analysed kernel parameters needs to be made with care. This limits the use of the
performance measure for automatic optimisation of signal adaptive kernels,
compared to other methods such as [10]. A large number of methods for
identification of signal components exist, e.g. [11–13], who require that
cross-terms are well suppressed and locates the maximum peaks as signal
components. Other methods such as [14] which uses a method called non-linear
squeezing time-frequency transform exist as well. However, these methods
require already optimised or semi-optimised TFDs or are more complex and
computationally heavy.

This paper presents a new signal adaptive method for automatically detecting
signal components in two-component signals which outperforms the method
in [8]. The new method is not limited by requiring that the signal components
have equal amplitudes. Additionally, the method succeeds in detecting
components with non-linear FM laws. Further, the new algorithm overcomes
one of the main drawbacks when the estimated parameters are used in the NIR
performance measure, as it successfully identifies auto-terms for a larger interval
of kernel parameters, allowing for a more objective kernel optimisation. It is also
feasible that for two-component signals the new automatic detection method
can be used to find the direction of the auto-terms which is used to create an
adaptive directional kernel [15, 16]. This kernel smooths at each point in the
time-frequency domain based on the direction of the energy distribution of the
signal.

To illustrate the use of the new signal adaptive automatic detection method
together with the NIR performance measure, this paper shows how the optimal
kernel parameters for the modified B-distribution [2] of an example set of
Heart Rate Variability (HRV) signals with a non-linear component can be
obtained. HRV, which is the variation of inter-heartbeat intervals, is measured
non-invasively using ECG. It provides information on the autonomic regulation
of the cardiovascular system. This means that the HRV is a sensitive indicator of
compromised health [17, 18]. The HRV has a non-stationary nature, however
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only recently methods which do not assume stationarity have been evaluated for
HRV [19, 20]. It is common to study HRV during treadmill running [21, 22],
making the need for methods of studying HRV in time and frequency
concurrently even more important.

The paper is organised as follows. Section 2 provides an introduction to the ba-
sics of time-frequency analysis. Section 3 shortly presents the NIR performance
measure which will be used and details the new signal adaptive method for auto-
matic detection of the signal components. In Section 4 the performance of the
new automatic detection method is evaluated and compared to the performance
of the method in [8]. The basis for the evaluation is simulated signals and an ex-
ample set of HRV signals. The optimal modified B-distributions of the example
HRV signals are presented in Section 5. Sections 6 and 7 finish the paper with
discussion and conclusions.

2 TIME-FREQUENCY METHODS

The Wigner-Ville distribution (WVD),

𝑊𝑧(𝑡, 𝑓) = ∫
∞

−∞
𝑧 (𝑡 + 𝜏

2) 𝑧∗ (𝑡 − 𝜏
2) 𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏, (1)

where ∗ represents the complex conjugate, is a TFD defined using an analytic
signal, 𝑧(𝑡). The analytic signal is defined such that 𝛧(𝑓) = 0 if 𝑓 < 0, where
𝛧(𝑓) = ℱ{𝑧(𝑡)}, is the Fourier transform of the signal. The quadratic class of
TFDs, a subclass of TFDs where the signal kernel is of quadratic form, can be
written as

𝜌𝑧(𝑡, 𝑓) = ∫
∞

−∞
∫
∞

−∞
𝐺(𝑡 − 𝑢, 𝜏)𝑧 (𝑢 + 𝜏

2) 𝑧∗ (𝑢 − 𝜏
2) 𝑒−𝑖2𝜋𝑓𝜏𝑑𝑢𝑑𝜏, (2)

where the time-lag kernel 𝐺(𝑡, 𝜏) is specific for each different quadratic TFD. The
convolution of the kernel in Eq. (2) is (in most cases) equal to a 2D filtering of
the TFD and is used to suppress cross-terms. The design of the kernels is usually
done in the ambiguity (doppler-lag) domain, where auto- and cross-terms are
more easily differentiable [1].
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2.1 SEpARABLE AND LAg-INDEpENDENT kERNELS

One simple, yet useful, class of kernels is the separable kernels. With the separable
kernel the TFD can be written

𝜌𝑧(𝑡, 𝑓) = 𝑔1(𝑡) ∗𝑡 𝑊𝑧(𝑡, 𝑓) ∗𝑓 𝐺2(𝑓). (3)

The convolutions in time and frequency can now be made in either order which
simplifies the calculations. It also means that the design of the kernel will be
greatly simplified, the 2D filtering operation is replaced by two consecutive 1D
filtering operations. A special case of the separable kernel is the lag-independent
(LID) kernel. It is obtained by setting

𝐺2(𝑓) = 𝛿(𝑓), (4)

which means that the kernel only will depend on time 𝑡. The calculations for the
TFD then only require one convolution, in the time direction only

𝜌𝑧(𝑡, 𝑓) = 𝑔1(𝑡) ∗𝑡 𝑊𝑧(𝑡, 𝑓). (5)

Since the LID kernel only applies one 1D filtering, the resulting TFD will be
smoothed in the time direction only. This property makes the LID kernel
suitable for slowly varying frequency modulated signals or other signals where
cross-terms exist mainly some frequency distance from the auto-terms and single
auto-terms do not vary much in frequency. LID-TFDs have been shown to
have better performance in characterising HRV signals, compared to other
time-frequency methods [23]. The LID kernel can have different distributions,
one is the modified B-distribution (MBD), which has been shown to be suitable
for HRV signals [24]. The MBD kernel is defined as

𝑔MBD(𝑡) =
cosh−2𝛽(𝑡)

∫∞−∞ cosh−2𝛽(𝜉)𝑑𝜉
, (6)

where 𝛽 is the scaling parameter which determines the trade-off between
resolution of signal components and cross-term suppression. The MBD,
designed specifically for multi-component IF estimation, is almost
cross-term free and has high resolution of signal components in the time-
frequency plane [2].
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3 PERFORMANCE MEASURE AND A NOVEL SIGNAL ADAPTIVE
METHOD FOR AUTOMATIC DETECTION OF AUTO-TERMS

The NIR performance measure, which combines the concepts of high energy
concentration around the IF laws and clearly resolved signal components is
presented in [5]. The measure doesn’t take into account some properties usually
demanded for TFDs, which impose strict constraints on the TFD design, such
as satisfying the marginals [1]. Instead it focuses on resolution of signal
components and suppression of cross-terms and sidelobes, which are important
for practical use. The measure is defined as

𝛲(𝑡) = 1 − 1
3 (
𝛢𝑆(𝑡)
𝛢𝛭(𝑡)

+ 1
2
𝛢𝛸(𝑡)
𝛢𝛭(𝑡)

+ (1 − 𝐷(𝑡))) , 0 ≤ 𝛲(𝑡) ≤ 1, (7)

where 𝛢𝑆(𝑡) is the average absolute amplitude of the largest sidelobes, 𝛢𝛭(𝑡) the
average amplitude of the auto-terms (mainlobes), 𝛢𝛸(𝑡) the absolute amplitude
of the cross-term and 𝐷(𝑡) a measure of the separation of the signal components’
mainlobes. It is defined as

𝐷(𝑡) =
(𝑓2(𝑡) − 𝑉2(𝑡)

2 ) − (𝑓1(𝑡) −
𝑉1(𝑡)
2 )

𝑓2(𝑡) − 𝑓1(𝑡)
, (8)

where 𝑓1(𝑡) and 𝑓2(𝑡) are the centres of the mainlobes and 𝑉1(𝑡) and 𝑉2(𝑡) are the
instantaneous bandwidths of the auto-terms, calculated at √2/2 of the height of
the mainlobe.

For this measure a value close to 1 is a good performance. The performance
measure is calculated for a time instant (slice) of the TFD. If 𝛲(𝑡) is calculated
for several time instants, an estimate of the performance for the whole TFD can
be formed [5]. This measure works well for signals with both linear and
non-linear FM components [8, 9]. The only restriction is that the signal should
have only two components where the performance measure is calculated.

3.1 A NOvEL SIgNAL ADApTIvE METHOD fOR AuTOMATIc DETEcTION Of
AuTO-TERMS

In order to use the resolution performance measure on signals there is a need
for a signal adaptive method which automatically detects auto-, cross-terms and
sidelobes for a TFD time slice. Such a method for two-component signals is
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proposed by Sucic et al. [8]. However, the difficulty lies within detecting the
auto-terms and a restriction is the assumption that the signal components have
equal amplitudes. The algorithm for Sucic’s automatic detection of auto-terms
(ADAT) follows these steps:

1. Normalise the time slice such that the absolute maximum is equal to 1.

2. Determine the three largest maxima (peaks) of the slice.

3. The cross-term is located between the auto-terms, so initially set the middle
peak to be the cross-term and the remaining as auto-terms.

4. Make sure that the ratio between the amplitudes of remaining two peaks is
close to 1, and that the peak chosen as the cross-terms is close to the middle
point between the centres of the other two peaks. This checks whether the
assumption in the previous step is correct. If not, select the two largest
peaks of the slice as the auto-terms.

This method is simple and does in many cases successfully identify the
auto-terms. However, the requirement that the amplitudes of the two signal
components are (approximately) equal limits its use. Another drawback is that
the method has a degraded performance for signals containing components with
non-linear frequency modulated (FM) law [9]. The novel method presented here
does not require the signal component amplitudes to be equal, instead it relies
on sidelobes and noise peaks of restricted amplitudes. The steps of the novel
Reinhold’s ADAT algorithm are:

1. Normalise the time slice such that the absolute maximum is equal to 1.

2. Determine an amplitude threshold, 𝜆, for the auto-terms.

3. Determine between which frequencies all peaks above 𝜆 are located. This
is the estimated frequency distance between the auto-terms, Δ̂𝑓𝑎. Set 𝛿 ≈
Δ̂𝑓𝑎/2 as the minimum allowed frequency distance between the auto- and
cross-terms.

4. Identify the largest peaks above the threshold 𝜆, which are separated with at
least 𝛿. These are the only peaks which will be considered when identifying
auto-terms. Select the peaks furthest away from each other as the auto-
terms.
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Figure 1: Time slice of the WVD of a two-component linear FM signal, with IFs 0.15
and 0.22; (a) Potential auto-terms detected with Sucic’s ADAT, marked with circles; (b)
Detected auto-terms with Reinhold’s ADAT, the auto-terms are marked by circles and the
labels 𝑓1 and 𝑓2 respectively. The horizontal line shows the threshold 𝜆 and the dashed
lines are 𝛿 away from each identified auto-term.

The minimum distance 𝛿 is set as approximately half the estimated frequency dis-
tance between the auto-terms since theoretically within Δ𝑓𝑎 there should be three
peaks, the two auto-terms and the cross-term. It is reasonable to choose it as 𝛿 =
Δ̂𝑓𝑎/2 − 𝜖, where 𝜖 is a small error tolerance. This allows for some error in the
estimation of Δ𝑓𝑎 and small deviations of the placement of the cross-term.

The selection of the parameter 𝜆 could also be made automatically and should be
allowed to vary with each time slice for optimal results. This paper proposes to let
𝜆 = 𝑐𝛢2, where 𝛢2 is the amplitude of the second largest peak and 𝑐 is some scale
factor, 0 < 𝑐 < 1. This means that 𝜆 always will relate to the amplitudes of the
signal content. For simulations in this paper 𝜆 = 0.5𝛢2, if nothing else is stated.
Other choices of 𝑐 can be used and Section 4.1 will evaluate how robust the novel
ADAT is to different 𝜆s.

3.2 MOTIvATION fOR NEw AuTOMATIc DETEcTION METHOD

This section will motivate the need for a new ADAT by studying two example
time slices from TFDs of two-component signals. The examples demonstrate
situations when Sucic’s ADAT fails to correctly detect the auto-terms, whereas
Reinhold’s ADAT is successful. The first example is a time slice of a WVD of a
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Figure 2: Time slice of a LID-TFD of a two-component non-linear FM signal, with IFs
0.15 and 0.19; (a) Auto-terms detected by Sucic’s ADAT, marked by circles; (b) Auto-terms
detected by Reinhold’s ADAT, marked by circles and the labels 𝑓1 and 𝑓2 respectively. The
horizontal line shows the threshold 𝜆 and the dashed lines are 𝛿 away from each identified
auto-term.

signal with components of equal amplitude. Sucic’s ADAT initially identifies the
three largest peaks, if these peaks are close in amplitude, two of them are identified
as auto-terms. Figure 1(a) shows the identified three peaks. The ratio between any
two of these peaks is close to one and thus two of the three peaks are identified
as auto-terms, which two depend on implementation choices for the algorithm.
However since the first auto-term is not among these peaks Sucic’s ADAT fails to
correctly identify the auto-terms.

In this example only four peaks are above the threshold 𝜆, marked by a horizontal
line in Figure 1(b). The peaks of maximum distance are initially identified as the
auto-terms, which gives an estimate of Δ𝑓𝑎. Reinhold’s ADAT will then detect
three peaks above 𝜆 which are separated by at least 𝛿, the auto-terms and one of
the dual peaks of the cross-term. The distance between the dual peaks of the cross-
term is (much) smaller than 𝛿, hence only one of the peaks are detected. Of the
three detected peaks, the two at maximum distance are finally identified as the
auto-terms. These two are the actual auto-terms and they are marked in the figure
by the labels 𝑓1 and 𝑓2. The figure also shows, in dashed lines, 𝑓1 ± 𝛿 and 𝑓2 ± 𝛿.

The second example is a time slice from a LID-TFD of a signal with non-linear
FM law for one component, where the signal components have equal amplitude.
However, for some time slices of the TFD, there will be poor energy concentration
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around the non-linear component’s IF law, which will result in differences in the
amplitudes of the auto-terms. According to Sucic’s ADAT, after identification of
the three largest peaks, if the ratio between the two outer peaks is not close to one,
the two largest peaks are chosen as auto-terms. Figure 2(a) shows how these steps
identifies the wrong peaks as auto-terms.

Reinhold’s ADAT correctly identifies the auto-terms of this time slice, which is
shown in Figure 2(b). As seen in the figure, only three peaks are above the
threshold 𝜆, the outermost are the auto-terms and those are identified as
auto-terms. Figure 2(b) also shows 𝑓1 ± 𝛿 and 𝑓2 ± 𝛿.

3.3 SIgNALS wITH MORE THAN TwO cOMpONENTS

The purpose of the NIR performance measure is to resolve two components
which are close in frequency, however it can still be interesting to resolve close
components in a signal with more than two components. There are two kinds
of signals which are particularly interesting to consider, both has three
components, however one has only two components present in the signal at any
given time. For such a signal there is no theoretical problem using the ADAT
algorithms, since the signal’s TFD is analysed at each time instant. Therefore it
does not matter how long time duration signal components have or how many
signal components the signal has, as long as there are at maximum two for any
given time instant.

An example of the other type of three component signal is defined by

𝑠(𝑛) = cos (2𝜋 (0.15 + 0.04 ( 𝑛256)) 𝑛) + cos (2𝜋 (0.24 − 0.04 ( 𝑛256)) 𝑛)
+ cos(2𝜋0.3𝑛), 0 < 𝑛 ≤ 256, (9)

and shown in Figure 3, it has three components which are all present at the same
time. This signal presents a problem for both ADAT methods, since they are
designed to find only two auto-terms separated by some frequency distance in
each time instant, and both methods usually fail to identify the desired auto-terms
for such a signal.

However the NIR performance measure and ADAT algorithms can still be used
for such signals if only the possibly known frequency band containing the two
close components are considered. The ADAT methods will then only be applied
to that frequency band and this requires omitting parts of the TFD beforehand.
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Figure 3: MBD of the signal Eq. (9), which is a three component signal with two close
components and one further away.

Figure 4: Detection of auto-terms in the example three-component signal Eq. (9), when
only considering the frequency band 0 - 0.25 in the ADAT algorithms; (a) Sucic’s ADAT;
(b) Reinhold’s ADAT.

In this example the NIR performance is calculated in the frequency band 0 -
0.25. Figures 4(a) and (b) shows the detected auto-terms on top of the TFDs for
Sucic’s and Reinhold’s ADAT respectively. The methods perform similarly and
identifies the correct auto-terms for most time instants. The added disturbance
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of more cross-terms can decrease the performance of both ADAT algorithms and
some initial filtering with an appropriate kernel might be needed to suppress cross-
terms. An indication that filtering by a kernel is needed is if the auto-terms are
hard to distinguish by eye. The suggestion is then to apply a wide kernel to get a
TFD which closely resembles the WVD, keeping the resolution of the auto-terms,
but with cross-terms slightly suppressed. In this example a wide MBD-kernel
(𝛽 = 0.5) is used, the performance of both methods increase if the kernel is more
narrow. If the kernel is instead made more wide, the middle auto-term will be
very hard to distinguish from the cross-term which intercepts it.

4 DETECTION OF AUTO-TERMS

To compare the performance of Sucic’s and Reinhold’s ADAT, the rate of detection
for different two-component signals and TFDs have been studied. The rate of
detection is measured by checking if the detected auto-terms are close to the signal
component IFs in each time slice of the TFD. The detection for each time instant
can be either successful or unsuccessful. If the frequencies of both the detected
auto-terms vary no more than Δ𝑓𝑎/4 from the respective signal component IF,
the detection is called successful. Every successful detection yields a value 1 and
every unsuccessful a 0. The detection results for each time instant of the TFD is
then added together and the sum is divided by the number of time instants, this
gives a rate of detection in the interval [0, 1] for the whole signal.

In this section the rate of detection will be examined for signals with additive
Gaussian white noise, with signal-to-noise ratio (SNR) 5 dB. The rate of
detection for a given signal will vary with different noise simulations. Thus to
give an accurate description of the rate of detection, 500 different noise
simulations will be used to find the average rate of detection for a given signal
and kernel parameter. The lower bound of the one sided confidence interval
with 5% significance is also presented.

When computing the TFD of a (finite) signal, there will be some effects around
the edges, in time and frequency. In this section, the middle 2/3 time slices of the
TFD will be evaluated when calculating the rate of detection, where the initial
and end time slices are ignored. The simulated signals are 256 samples, which
gives 256 ⋅ 2/3 = 172 evaluated time instants for each TFD.
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Table 1: Setup parameters for calculation of rate of detection. Parameters 𝑎0, 𝑓0, 𝑓𝛪 and 𝑘
are the variable amplitude, starting frequency, frequency increase and factor for the signal
in Eq. (10). 𝛽 is the scaling parameter for the MBD kernel Eq. (6).

Setup 𝑎0 𝑓0 𝑓𝛪 𝑘 𝛽

1 [0.6, 1.4] 0.17 0.06 1 0.30
2 1.0 [0.16, 0.21] 0.04 1 0.50
3 1.0 0.19 0.07 3 [0.08, 0.20]

Three different setups of TFDs will be evaluated, the parameters for these are
shown in Table 1. The parameters refer to the general signal

𝑠(𝑛) = 𝑎0 cos(2𝜋0.15𝑛) + cos (2𝜋 (𝑓0 + 𝑓𝛪 ( 𝑛256)
𝑘) 𝑛) + 𝑒(𝑛), 0 < 𝑛 ≤ 256,

(10)

where 𝑒(𝑛) is stationary Gaussian white noise, and to the kernel parameter, 𝛽, of
the MBD kernel in Eq. (6).

The first setup calculates the rate of detection when the components have linear
FM laws. The amplitude of one of the components is varied, in accordance to
Table 1. The kernel parameter is chosen so that the cross-term and noise peaks
are slightly suppressed, whilst the signal components should be relatively
unaffected by the filtering. Figures 5(a) and 5(b) show two examples of the
evaluated MBDs of signals with the smallest (𝑎0 = 0.6) and largest (𝑎0 = 1.4)
component amplitudes. The results for Sucic’s and Renhold’s ADAT are
presented in Figure 6(a) and it can be seen that Reinhold’s ADAT performs
better than Sucic’s for all values of 𝑎0. In fact the lower bound of Reinhold’s
ADAT is in all cases higher than the average detection rate for Sucic’s.

Sucic’s ADAT performs poorly for low and high 𝑎0, i.e. when the difference in
amplitude of auto-terms is significant, which is in accordance of the results
presented in [9]. Especially notable is, that the rate of detection is as low as
around 0.50 for 𝑎0 = 0.6, this would make any evaluation of the performance
using Eq. (7) very unreliable. Reinhold’s ADAT however has a detection rate of
around 0.75 for the same amplitude, which although not perfect is considerably
better.
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Figure 5: Some MBDs of the signal in Eq. (10) with parameters according to the setups
in Table 1 evaluated when calculating the rate of detection. The figures show the part of
the distribution which is assessed; (a) Setup 1 with 𝑎0 = 0.6; (b) Setup 1 with 𝑎0 = 1.4;
(c) Setup 2 with 𝑓0 = 0.16; (d) Setup 2 with 𝑓0 = 0.21; (e) Setup 3 with 𝛽 = 0.08; (f )
Setup 3 with 𝛽 = 0.20.

The second setup, Table 1, varies the frequency distance of the two components
of the signal. The kernel parameter for this setup is chosen large so that much
of the cross-term and noise remains, making the auto-term detection difficult.
This setup will thus show how the two methods perform for quite challenging
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Figure 6: The average rate of detection for the ADAT algorithms according to the three
setups in Table 1. The lower bound is a one sided confidence interval with 5% significance.
The results are obtained from 500 simulations with different realisations of stationary
Gaussian white noise with SNR 5 dB; (a) Setup 1; (b) Setup 2; (c) Setup 3.

TFDs. Figures 5(c) and 5(d) show the MBD when the signal components are
closest together (𝑓0 = 0.16) and furthest apart (𝑓0 = 0.21). In Figure 6(b) it can
be seen that both ADAT methods have the highest rate of detection when the
signal components are furthest apart and the average detection rate is rather high.
However Reinhold’s ADAT still outperforms Sucic’s, again the lower bound for
Reinhold’s ADAT is higher than the average value for Sucic’s ADAT.

The third setup, Table 1, uses the same signal and instead varies the scaling
parameter 𝛽 of the MBD kernel, making this test different from the other two.
The signal has one component with a non-linear FM law. A MBD of the signal
with the smallest scaling parameter (𝛽 = 0.08) is shown in Figure 5(e), in this
TFD much of the noise and cross-term have been suppressed. Figure 5(f ) shows
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Figure 7: The average rate of detection for Reinhold’s ADAT according to the setups in
Table 1. The lower bound is a one sided confidence interval with 5% significance. The
results are obtained from 500 simulations with different realisations of stationary Gaussian
white noise with SNR 5 dB; (a) Setup 1 with 𝑎0 = 0.8; (b) Setup 2 with 𝑓0 = 0.16.

a MBD with the largest scaling parameter (𝛽 = 0.20), this TFD has some noise
peaks and quite high cross-terms. Figure 6(c) shows the resulting average rates of
detection for Sucic’s and Reinhold’s ADAT. It can be seen that the performance
of Sucic’s ADAT decreases when 𝛽 increases, however for Reinhold’s the average
rate of detection is 1 for all evaluated 𝛽. This suggests that Reinhold’s ADAT is
robust to different levels of filtering of the TFD.

4.1 ROBuSTNESS TO cHOIcES Of AMpLITuDE THRESHOLD

The amplitude threshold used for Reinhold’s ADAT in this paper is 𝜆 = 0.5𝛢2,
where 𝛢2 is the amplitude of the second largest peak. This section evaluates how
robust Reinhold’s ADAT is to other choices of 𝜆. Different thresholds are tested
by letting 𝜆 = 𝑐𝛢2, 0 < 𝑐 < 1, and letting the scale factor 𝑐 vary.

To evaluate the robustness, the average rate of detection is calculated for 500
simulations of the signal Eq. (10), using the first setup with 𝑎0 = 0.8 and the
second setup with 𝑓0 = 0.16, with Gaussian white noise, SNR 5 dB. The results
for the signal with different amplitudes of the signal components are shown in
Figure 7(a), all average detection rates are around 0.9 or higher, which can be
compared to the average detection rate for the same setup using Sucic’s ADAT
which is under 0.8.
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The results for the signal with close components and large kernel parameter are
shown in Figure 7(b). It can be seen that choosing 𝑐 = 0.3 gives the worst
performance for this signal, which is not surprising since there are much
high-amplitude disturbance in the signal and a low 𝜆 would allow such peaks to
be identified as auto-terms. The average rate of detection for Sucic’s ADAT of
the same signal is almost 0.95, which is higher than for Reinhold’s when 𝑐 = 0.3,
however for other choices of 𝑐 the performance of Reinhold’s ADAT is
equivalent or superior.

4.2 DETEcTION Of AuTO-TERMS ON REAL HRV DATA ExAMpLES

The strength of the NIR performance measure Eq. (7) is that it can be used to
asses the performance of different TFDs of measured signals [5]. However, for the
performance measure to be as accurate as possible, the signal adaptive method for
automatic detection of the auto-terms need to detect the correct IFs of the signal
for as many time instants of the TFD as possible. When using measured signals,
the signal IFs are unknown, which makes the rate of detection more difficult to
calculate. This section will instead show the detected auto-terms on top of the
TFDs.

The signals in this section is the Heart Rate Variability (HRV) signals from adult
humans which have been asked to breathe with the same frequency as a
metronome. The frequency of the metronome was increased non-linearly over
time, and thus the breathing frequency is increased non-linearly with time. This
gives a HRV signal with two components, one assumed stationary low frequency
(LF) and and one high frequency (HF) with non-linear FM law, approximately
following the breathing frequency.

Figure 8 shows the MBDs, 𝛽 = 0.08, of four HRV signals and the detected auto-
terms using Sucic’s and Reinhold’s ADAT. Figures 8(a), 8(c), 8(e) and 8(g) show
the detected auto-terms using Sucic’s ADAT. Figures 8(b), 8(d), 8(f ) and 8(h)
show the detected auto-terms using Reinhold’s ADAT.

As seen in Figures 8(a) and 8(b) both methods fail to identify the auto-terms
when the stationary signal component is corrupted by much noise, around 𝑡 ∈
[80, 120]. The noise peaks in this region have high amplitudes and are close to the
signal component in frequency, so identification is expected to be hard. However
Reinhold’s ADAT performs over all much better.
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In Figures 8(c) and 8(d) it can be seen that Sucic’s ADAT fails much more than
Reinhold’s. This is because the stationary signal components has a low
amplitude compared to the non-stationary component. Figure 8(e) shows that
Sucic’s ADAT detects the incorrect peaks as auto-terms when the (almost)
stationary signal component is noisy, at 𝑡 ∈ [100, 140]. Reinhold’s ADAT
however identifies the correct peaks as auto-terms, see Figure 8(f ), this is because
the noise peaks around the (almost) stationary signal component are close in
frequency to the actual IF of the component, the least distance allowed between
peaks, 𝛿, is large enough to avoid these peaks being identified as auto-terms.

The non-stationary signal component in Figures 8(g) and 8(h) seems to have
strong inner artifacts [1] at 𝑡 ∈ [30, 80], i.e. peaks due to the non-linear
frequency increase. This makes detection hard and both methods fail sometimes,
however over all the performance of Reinhold’s ADAT is much higher.

5 OPTIMAL PARAMETER ESTIMATION OF KERNELS FOR HRV
SIGNALS

A method for finding the optimal TFD for a given multi-component signal is
presented in [5]. The basic steps are to define a set of criteria for comparison of
TFDs, then define a quantitative measure for evaluating TFD performance based
on these criteria. This quantitative measure can be the NIR performance measure
Eq. (7). After choosing a measure the TFDs should be optimised to match the
comparison criteria as close as possible. When looking at the MBD this means
that one chooses an initial value of the kernel parameter 𝛽 and calculates the MBD
for this. Then the performance is calculated for each time instant within some
time interval of interest. The average of all instantaneous measures is the interval
performance measure of the MBD for the given 𝛽. This procedure is repeated for
an interval of 𝛽 with an appropriate length of the increments. The optimal kernel
parameter 𝛽 is the one which gives the best interval performance measure. Other
TFDs could be optimised in the same manner by comparing the NIR interval
performance measures while varying one or several parameters connected to the
relevant TFD.

When the optimal parameters has been found for several different TFDs, the
TFDs can be compared. The TFD with the maximum interval performance
measure is the optimal TFD for the given signal. In this section the optimal
MBDs, obtained by the above described method using the NIR performance
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Figure 8: Detection of auto-terms in measured HRV using Sucic’s and Reinhold’s ADAT;
(a) subject 1, Sucic’s ADAT; (b) subject 1, Reinhold’s ADAT; (c) subject 2, Sucic’s ADAT;
(d) subject 2, Reinhold’s ADAT; (e) subject 3, Sucic’s ADAT; (f ) subject 3, Reinhold’s
ADAT; (g) subject 4, Sucic’s ADAT; (h) subject 4, Reinhold’s ADAT.

measure, will be found for the four example HRV signals presented in the
previous section. The choice to optimise the MBD for the HRV signals is
because this TFD has been shown suitable for HRV signals [24].
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Table 2: The evaluated time intervals when finding the optimal MBDs for the HRV signals
of four subjects, together with the resulting optimal kernel parameters and the interval
performance measures.

Subject Time interval Optimal parameter Interval
performance measure

1 (0, 85] 𝛽 = 0.053 0.7860
2 (0, 120] 𝛽 = 0.056 0.8193
3 (25, 95] 𝛽 = 0.047 0.8035
4 (70, 170] 𝛽 = 0.061 0.8190

The interval performance measure is calculated for different time intervals for the
four HRV signals using the measure in Eq. (7). This gives an interval performance
measure [0, 1], where 1 is optimal performance. The time intervals are chosen such
that Reinhold’s ADAT detects the correct auto-terms for each time instant for all
the evaluated 𝛽. The time intervals for each subject is shown in Table 2, which
also shows the resulting optimal parameters and interval performance measure.
The optimal MBDs are shown in Figure 9.

Longer time intervals can be used when calculating the interval performance
measure with Reinhold’s ADAT compared to Sucic’s, since it correctly identifies
the auto-terms for more time instants and longer compact time intervals of the
HRV signals. The resulting performance measure will thus more accurately
describe the performance of the TFD, thus giving a more correct estimate of
which parameter and corresponding TFD is the optimal.

6 DISCUSSION

The novel Reinhold’s ADAT presented in this paper relies less on the amplitudes
of the auto-terms being equal compared to Sucic’s ADAT presented in [8]. For
Reinhold’s ADAT to succeed in each TFD slice, 𝜆 and 𝛿 need to fulfil the follow-
ing:

• Outer peaks which have a distance larger than 𝛿 to their closest auto-term
are smaller than 𝜆.

• Peaks with less distance than 𝛿 to their closest auto-term have smaller amp-
litudes than that auto-term.
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6. Discussion

Figure 9: Optimal MBD for four examples of HRV signals; (a) subject 1; (b) subject 2;
(c) subject 3; (d) subject 4.

• If the cross-term is the largest peak, the parameter 𝛿 is smaller than the
actual distance between the cross-term and auto-terms.

It is therefore important that 𝜆 and 𝛿 depend on the examined TFD time slice. It is
reasonable to choose 𝛿 = Δ̂𝑓𝑎/2−𝜖, where 𝜖 is a small error tolerance as discussed
in Section 3.1. This paper suggests choosing 𝜆 = 𝑐𝛢2 and Section 4.1 shows
that Reinhold’s ADAT is robust for such 𝜆s. The scale factor 𝑐 can be adapted
to increase performance if there exist some knowledge of the signal, such as the
relative amplitudes of the signal components or the abundance of noise peaks,
however 𝑐 = 0.5 is shown to give a good over all performance.

Reinhold’s ADAT, as well as Sucic’s ADAT, is designed to find two auto-terms
some frequency distance apart in each time instant of a TFD. If a signal has more
than two components, Reinhold’s ADAT can be used with the NIR performance
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measure to get good resolution between two signal components which are close.
As discussed in Section 3.3, this requires cutting away the TFD which is outside
the relevant frequency bandwidth, i.e. where the two close components are. This
should be done before applying the ADAT algorithm and can be done manually,
however an automatic and adaptive method to select the bandwidth is suggested
for further research.

7 CONCLUSION

This paper presents a novel signal adaptive method for automatic detection of
auto-terms in time slices of TFDs for two-components signals. This method
performs better than the existing method for several types of signals and is less
dependent on signal components to have equal amplitudes. Since the new
method is shown to be more robust to the choice of kernel parameter, a larger
range of kernel parameters can be tested, lowering the risk of erroneous
conclusions to be drawn of the optimal TFD. This novel detection method can
successfully be used together with a performance measure for TFDs to find
optimal TFDs.
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ABSTRACT

An automatic component detection method for overlapping transient pulses in
multi-component signals is presented and evaluated. The recently proposed scaled
reassignment technique is shown to have the best achievable resolution for closely
located Gaussian shaped transient pulses, even in heavy disruptive noise. As a
result, the method automatically detects and counts the number of transients,
giving the center times and center frequencies of all components with considerable
accuracy. The presented method shows great potential for applications in several
acoustic research fields, where coinciding Gaussian shaped transients are analysed.
The performance is tested on measured data from a laboratory pulse-echo set-up
and from a dolphin echolocation signal measured simultaneously at two different
locations in the echolocation beam. Since the method requires little user input, it
should be easily employed in a variety of research projects.

Keywords: Component detection, Pulse-echo, Reassignment, Time-frequency
analysis
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1 INTRODUCTION

The time-frequency (TF) characterization of transient signals is of interest in
many different research areas, such as ultrasonic and marine biosonar signal
analysis as well as machine fault diagnosis and biomedical signal processing. In
these fields, the measurement signal is often of short duration, includes several
closely spaced or even coinciding components, and can be heavily disturbed by
noise [1–5]. Methods which are tailored to signals of this type are scarce and not
conclusively investigated, in comparison to methods for longer signals. This
paper thoroughly investigates a TF representation, optimal for transient signals,
and presents an automatic method for counting and characterizing the
individual components, in terms of TF localization, within a signal.

Transient signals are by nature harder to characterize, compared to longer
signals. The short, sometimes extremely short, duration of the pulses implies
that the uncertainty in frequency is high according to the Heisenberg
uncertainty principle [6]. Still, these signals are essential in fields such as
ultrasonic analysis where pulse reflections are located closely in the TF domain,
and for the ultrasonic biosonar analysis of several toothed whale species, where
the broadband signals (30–60 kHz) are only a few periods long [7, 8]. The sonar
beam of toothed whales contains signal components from various acoustic
propagation pathways inside the animals’ forehead. It is thought that these
pathways can be altered by the animal by for instance varying the grade of
inflation of airsacks around the sound generation mechanism or by altering the
shape of the melon, an anatomic structure thought to function as an acoustic
lens for the echolocation beam. However, to what extent the signal can be
controlled by the animal and what specific functions it serves, are not yet fully
understood [9, 10].

Methods in the quadratic class often aim for reaching the best possible TF
concentration, where one of the most known is the Choi-Williams distribution
(CWD) [6, 11], often applied for TF estimation of biomedical signals. For
broadband excitations where the multiple components appear very close in the
TF domain, the signals are increasingly difficult to analyze [12]. The TF
representations employed in previous studies of broadband echolocation signals
can often be used in the off-axis part of the echolocation beam where the
components are more separated in time. Along the beam axis, the time
and frequency information of possible individual components, are still
unknown since all previously used methods are unable to resolve these

138



1. Introduction

signal components [2], and the topic is currently a research field of great
importance [1, 13].

A technique to improve the localization of single TF components and enhance
the readability of the TF representation of multi-component signals was
introduced by [14] and later reintroduced by [15]. The method reassigns signal
energy to the center of gravity, giving higher energy concentration at the
instantaneous frequencies of the signal. A similar method, the synchrosqueezing
transform by [16], related to the empirical mode decomposition [17], reassigns
all energy in frequency at a certain time point. However these methods are
designed for longer chirps and constant frequency signals, and are based on the
assumption of a linear frequency modulation, essentially of infinite length, and
are hence not accurately applicable to transients signals. Methods exist that
convert the possible non-linear instantaneous frequency into a linear one and
in [18] a nonlinear squeezing transform, especially designed for weak signal
detection, is proposed. There exist many other methods for localizing and
counting signal components, e.g. [19–23], however these methods are also
developed for longer lasting signals.

Short transient signals can often be assumed to have a Gaussian like shape in
time, and modern algorithms that resolve the parameters of a Gaussian shaped
function in time have been described by [24] and [25]. However for components
that overlap heavily in time, TF based methods, such as Gabor and wavelet based
algorithms have been applied to a larger extent, for which the main aim is to
find the analysis window achieving the best TF resolution. Similarly the signal
adaptive Stockwell transform estimates the width of a Gaussian window function
using a concentration criterion [26]. The Gabor and Stockwell transforms are
widely used and adapted in many fields of research, e.g. estimating the direction of
arrival [27], automatically adapting the TF resolution of transients [28], detecting
epileptic seizures [29] or double-talk in acoustic echo cancellation [30].

A method tailored to very short transients, which goes beyond the lower bound of
the Gabor transform and the reassignment of longer lasting transients, is presented
in [31]. This reassignment technique, the scaled reassigned spectrogram, finds
the TF centers of individual signal components by utilizing that many transients
have a Gaussian like shape in time. The scaled reassigned spectrogram is a high
TF resolution method and is therefore well suited for detection and localization of
transient signal components, also when they are closely located in the TF domain.
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In literature numerous of peak detection algorithms for specific applications can
be found. Closest to our representations are image peak detection algorithms and
image thresholding methods, see overview in [32]. One of the more popular image
peak detection algorithms is presented in [33], which is developed for histogram-
based image data reduction. Other approaches use the wavelet transform [34].
However, to our knowledge there exist no researched methods for finding and
resolving the localization of time-frequency peaks.

In this paper we present a novel method for objective detection, counting and TF
localization of components within transient signals. We also present a thorough
evaluation of the novel method and the resolution of the suggested TF represent-
ation. Our method is unique in that it is developed for short transient signals, it
exploits the high resolution of the scaled reassigned spectrogram and can be ad-
apted to signals with heavy disruptive noise. The paper offers an comprehensive
evaluation of the method on simulated signals, and shows results for measured ul-
trasound pulse-echoes and marine biosonar signals. The results are of importance
especially to the acoustic research community.

2 THE ReSTS

In order to detect and localize individual transient pulses in a multi-component
signal, there is a need for a TF representation with appropriate resolution.
Figure 1 shows the time signal and a joint TF representation, the spectrogram, of
three different signals with decreasing time distance between the component TF
centers. For the first two signals, Figure 1(a) the spectrogram has adequate
resolution and separates the components, but for the second case, Figure 1(b),
the overlap in time is too large and as a result the spectrogram does not fully
resolve the two components. The spectrogram is computed using a Gaussian
window of the same length as the signal component and with step size one
sample. The matched window, with equal shape and length of the signal, gives
the optimal time-frequency concentration of the spectrogram.

However the components of the last example can be resolved using the
reassigned spectrogram for transient signals (ReSTS), proposed in [31] as the
scaled reassignment technique which is an adaptation of the reassigned
spectrogram [14, 15]. The ReSTS relies on the assumption of a Gaussian shaped
transient signal and can in theory give perfect TF localization if the time- and
frequency distances of several close transient components are large enough. The
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Figure 1: Illustration of a transient signal with two Gaussian pulses, each of approximate
length 0.6with varying TF centers (𝑡0, 𝑓0). The spectrogram is computed using a Gaussian
window of the same length as the signal component and with step size one sample; (a)
pulses overlapping somewhat in time but clearly separated in frequency, (𝑡1, 𝑡2) = (3, 3.5)
and (𝑓1, 𝑓2) = (5, 8.3); (b) pulses overlapping so much in time that the frequency
separation is not clear, (𝑡1, 𝑡2) = (3, 3.2) and (𝑓1, 𝑓2) = (5, 8.3).

ReSTS is obtained by first calculating the spectrogram of a signal 𝑥(𝑡) using a
desired time window ℎ(𝑡)

𝑆ℎ𝑥 (𝑡, 𝜔) = ∣𝐹ℎ𝑥 (𝑡, 𝜔)∣
2
= ∣∫𝑥(𝑠)ℎ∗(𝑠 − 𝑡)𝑒−𝑖𝜔𝑠𝑑𝑠∣

2
, (1)

where ∗ denotes complex conjugate, 𝜔 = 2𝜋𝑓 and the integral runs from −∞ to
∞. The signal energy is then reassigned by introducing the reassignment coordin-
ates �̂�𝑥(𝑡, 𝜔) and �̂�𝑥(𝑡, 𝜔) and the two-dimensional Dirac impulse,∬𝑓(𝑡, 𝜔)𝛿(𝑡−
𝑡0, 𝜔 − 𝜔0)𝑑𝑡𝑑𝜔 = 𝑓(𝑡0, 𝜔0). The ReSTS is then defined as

𝑅𝑒𝑆ℎ𝑥 (𝑡, 𝜔) =∬𝑆ℎ𝑥 (𝑠, 𝜉)𝛿 (𝑡 − �̂�𝑥(𝑠, 𝜉), 𝜔 − �̂�𝑥(𝑠, 𝜉)) 𝑑𝑠𝑑𝜉, (2)

and thus maps signal energy from a point (𝑡0, 𝜔0) to the point
(�̂�𝑥(𝑡0, 𝜔0), �̂�𝑥(𝑡0, 𝜔0)) in the spectrogram. The reassignment coordinates need to
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be calculated for each selection of signal and time window according to

�̂�𝑥(𝑡, 𝜔) = 𝑡 + 𝑐𝑡ℜ(
𝐹𝑡ℎ𝑥 (𝑡, 𝜔)
𝐹ℎ𝑥 (𝑡, 𝜔)

) ,

�̂�𝑥(𝑡, 𝜔) = 𝜔 − 𝑐𝜔ℑ (
𝐹𝑑ℎ/𝑑𝑡𝑥 (𝑡, 𝜔)
𝐹ℎ𝑥 (𝑡, 𝜔)

) ,
(3)

where ℜ and ℑ represents the real and imaginary parts and 𝐹ℎ𝑥 , 𝐹𝑡ℎ𝑥 and 𝐹𝑑ℎ/𝑑𝑡𝑥
are the short-time Fourier transforms (STFTs) with different time windows. The
included scaling factors 𝑐𝑡 and 𝑐𝜔 makes the ReSTS adaptable to transient signals,
and separates it from the normal reassigned spectrogram that have 𝑐𝑡 = 𝑐𝜔 = 1
[15, 31, 35].

Transient signals are often assumed to be Gaussian shaped in time, it is thus in-
teresting to consider the unit energy Gaussian function

𝑥𝐺(𝑡) = 𝜎−1/2𝜋−1/4𝑒−
𝑡2
2𝜎2 , (4)

and multi-component signals constructed by time, frequency and phase shifted
Gaussian shaped pulses

𝑥(𝑡) =
𝛫
∑
𝑘=1
𝑎𝑘𝑥𝐺(𝑡 − 𝑡𝑘)𝑒𝑖2𝜋𝑓𝑘𝑡𝑒𝑖2𝜋𝜙𝑘 , (5)

where 𝑎𝑘 is the amplitude, 𝑡𝑘 and 𝑓𝑘 = 𝜔𝑘/2𝜋 are the time and frequency centers
and 𝜙𝑘 ∈ [0 1) the phase shift.

Hansson-Sandsten and Brynolfsson [31] calculated the reassignment coordinates
for a Gaussian signal with time-frequency center at the origin, and a matching
Gaussian time window

�̂�𝑥𝐺(𝑡, 𝜔) = 𝑡 − 𝑐𝑡
𝑡
2 ,

�̂�𝑥𝐺(𝑡, 𝜔) = 𝜔 − 𝑐𝜔
𝜔
2 .

(6)

Perfect TF localization is then achieved when 𝑐𝑡 = 𝑐𝜔 = 2, thus giving the
reassignment coordinates (�̂�𝑥𝐺(𝑡, 𝜔), �̂�𝑥𝐺(𝑡, 𝜔)) = (0, 0), i.e. the correct
TF center. This result can easily be expanded to Gaussian signals with
other time-frequency centers since the spectrogram obeys time-frequency
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Figure 2: Illustration of the reassignment of signal energy and the resulting TF
representation, adapted for transient signals, for the signal in Figure 1. The spectrogram is
computed using a Gaussian window of the same length as the signal component and with
step size one sample. The signal has two transient pulses, each of approximate length 0.6,
which overlap heavily in time, (𝑡1, 𝑡2) = (3, 3.2) and (𝑓1, 𝑓2) = (5, 8.3), however when
the signal energy is reassigned to the center of mass, the ReSTS shows two clear peaks at
the correct TF centers.

shift-invariance and due to the linearity of the Fourier transform, the
reassignment coordinates are linear [35].

For multi-component signals [Eq. (5)], there will be some interaction between the
components after reassignment. However it is still possible for the ReSTS to show
clearly separated components, Figure 2, to be compared with the spectrogram in
Figure 1(c). The figure illustrates the reassignment of the signal energy to the new
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TF coordinates, according to Eq. (6) with 𝑐𝑡 = 𝑐𝜔 = 2, shown by the arrows in
the spectrogram contour plot to the TF centers of the two pulses. The resulting
ReSTS has two clear peaks at the correct TF centers of the pulses and very little
scattered signal energy.

3 AUTOMATIC COMPONENT DETECTION ALGORITHM

This section proposes an algorithm that automatically counts the number of sig-
nal components in the ReSTS. The algorithm will enable users to automatically
find the number of transient pulses in a signal and the individual TF locations of
the pulses. It will thus be possible to objectively and efficiently analyze transient
signals.

The ReSTS consists of high energy peaks in a low energy surrounding. Both signal
components and noise will form peaks after the reassignment, however peaks will
have higher amplitude, indicative of higher signal energy, if they are the result
of signal components compared to peaks originating from noise. The algorithm
therefore assumes that any local maxima is a peak, either from a signal components
or from noise, and that the amplitudes of the peaks will differ between signal
components and noise.

A pseudo code of the proposed algorithm is presented. It uses the discrete time and
discrete frequency ReSTS matrix, denoted 𝑅𝑒𝑆, as TF representation. The user
decides a maximum number of components for the signal, 𝛫𝑚𝑎𝑥, the guess can
be much larger than the expected number of components without compromising
the performance, however very large numbers would increase the computational
time. The user also sets an area around a local maximum, 2𝛿𝑡 wide in time and
2𝛿𝑓 wide in frequency, that will be assumed not to include more than one local
maximum. The choices of 𝛿𝑡 and 𝛿𝑓 depend on the resolution of the ReSTS which
will be evaluated in Section 4.1.

The constant 0 < 𝜌 ≤ 1 is set by the user and allows the algorithm to be used
for signals with relatively low SNR. Depending on the SNR, all noise peak amp-
litudes could be low and relatively constant or some noise peak amplitudes could
be rather high and close in amplitude to the signal peaks. A large 𝜌 assumes high
SNR, where signal and noise peak amplitudes are clearly separated, a small 𝜌 as-
sumes low SNR and allows the algorithm to find relatively smaller signal peaks.
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The output from the algorithm is the time locations 𝛵1, 𝛵2, … , 𝛵𝛫 and the corres-
ponding frequency locations, and 𝐹1, 𝐹2, … , 𝐹𝛫, of the estimated signal peaks.

Algorithm 1 Pseudo code

Input: 𝑅𝑒𝑆, 𝛫𝑚𝑎𝑥, 𝛿𝑡, 𝛿𝑓, 𝜌
Output: 𝛵1, 𝛵2, … , 𝛵𝛫, 𝐹1, 𝐹2, … , 𝐹𝛫
𝑅𝑒𝑆 ∶The ReSTS matrix
𝛫𝑚𝑎𝑥 ∶ Initial guess of maximum number of signal components
𝛿𝑡 ∶ Smallest time separation
𝛿𝑓 ∶ Smallest frequency separation
𝜌 ∶ Normalizing constant for the noise amplitudes
𝛵1, 𝛵2, … , 𝛵𝛫 ∶ Time centers of the signal components
𝐹1, 𝐹2, … , 𝐹𝛫 ∶ Frequency centers of the signal components

1: 𝛮 = 3𝛫𝑚𝑎𝑥
2: for i=1:N do
3: find coordinates of maximum in 𝑅𝑒𝑆, (𝛵(𝑖), 𝐹(𝑖))
4: save maximum amplitude in vector, 𝛢(𝑖)
5: define the rectangle area, 𝛣𝛵𝐹, with center (𝛵(𝑖), 𝐹(𝑖)) and area 2𝛿𝑡 ⋅ 2𝛿𝑓
6: set the area 𝛣𝛵𝐹 in 𝑅𝑒𝑆 to 0
7: end for
8: 𝛫 = 𝛫𝑚𝑎𝑥 + 1
9: repeat

10: 𝛫 = 𝛫− 1
11: Δ𝑛 = 𝜌 (𝛢(𝛫 + 1) − 𝛢(𝛮))
12: Δ𝑠 = 𝛢(1) − 𝛢(𝛫)
13: Δ = 𝛢(𝛫) − 𝛢(𝛫 + 1)
14: if Δ > Δ𝑠 then
15: peak 𝛫 is a signal component
16: else if Δ < Δ𝑛 then
17: peak 𝛫 is a noise component
18: else
19: if Δ/Δ𝑛 > Δ𝑠/Δ then
20: peak 𝛫 is a signal component
21: else
22: peak 𝛫 is a noise component
23: end if
24: end if
25: until peak K is a signal component
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The algorithm runs as described below:

• 𝛮 = 3𝛫𝑚𝑎𝑥 peaks are located to always include an adequate number of
noise peaks.

• The maximum peaks are estimated sequentially and the area of size 2𝛿𝑡 ⋅ 2𝛿𝑓
around the current maximum peak is set to zero. Then the next maximum
peak can be located. The identified local maxima of the ReSTS can be as-
sumed to be peaks because of the properties of the ReSTS, and due to the
structure of the algorithm, the𝛮 identified peaks are sorted with descend-
ing order of amplitude in all relevant vectors.

• The number of assumed signal peaks among the 𝛮 maximum peaks is set
to 𝛫 = 𝛫𝑚𝑎𝑥 + 1 and is then decreased with one for each iteration the
repeat loop. Δ𝑛 is the difference in amplitude of all known noise peaks,
normalized with the constant 𝜌. Δ𝑠 is the difference in amplitude of all
the possible signal peaks. Δ is the difference in amplitude of the smallest
possible signal peak and largest known noise peak.

• In each iteration of the repeat loop (line 9 – 25), it is determined if peak 𝛫
is a signal or noise component. If peak𝛫 is determined to be from a signal
component, all peaks with larger amplitude are assumed to also be signal
peaks and the algorithm has finished its search for signal peaks.

• Peak𝛫 will be determined to be from a signal or noise component depend-
ing on how much its amplitude deviates from the amplitude slope created
by the known noise peaks.

• If the test Δ > Δ𝑠 (line 14) is passed, peak 𝛫 should be a clear signal
component as its difference in amplitude to the largest noise peak is larger
than its difference in amplitude to the largest identified peak.

• If the test Δ < Δ𝑛 (line 16) is passed, peak 𝛫 should be a noise peak as Δ
will be relatively small.

• Note that both Δ > Δ𝑠 and Δ < Δ𝑛 can be true, then peak 𝛫 is assumed
to be from a signal component, however the SNR is probably very low for
such a signal.

• If none of the test Δ > Δ𝑠 and Δ < Δ𝑛 are true, then both Δ/Δ𝑛 ≥ 1
and Δ𝑠/Δ ≥ 1. The test Δ/Δ𝑛 > Δ𝑠/Δ (line 19) is true if Δ𝑠/Δ is closer
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to 1 compared to Δ/Δ𝑛. This means that the amplitude of peak 𝛫 deviates
from the amplitude slope of the noise peaks, and peak 𝛫 is assumed to be
a signal component.

4 RESOLUTION OF THE ReSTS

The proposed automatic component detection algorithm is designed to be used
with the ReSTS, which means that the TF resolution of the ReSTS is of
importance. In theory the ReSTS with Gaussian window can give perfect TF
localization to Gaussian signal components, however the resolution of
components in signals disrupted by noise needs to be evaluated in order for the
proposed algorithm to be usable in practice.

We consider the signal 𝑥(𝑡) in Eq. (5) that is a linear combination of Gaussian
pulses [Eq. (4)] and add white Gaussian noise. For such a signal with two com-
ponents, that have the same frequency centers and amplitudes, but different time
centers, the components can be moved closer together in time to examine when
different TF distributions no longer can resolve the components.

In this section the simulated signals have centre frequency 5 MHz, sampling
frequency 100 MHz and the scaling of the Gaussian pulses [Eq. (4)], 𝜎 = 0.5 𝜇s,
which gives an approximate signal length of 1.2 𝜇s, full width at half maximum,
or approximately 5 periods. The evaluated time distances range from to 0.5 𝜇s to
2.0 𝜇s, this means that the signal components will heavily overlap for some test
signals. White noise is additively disturbing the signals, with SNR = 5 dB,
defined as averaged total signal energy to variance of the noise.

Figure 3 shows a realization of the signal when (𝑡1, 𝑡2) = (4.00, 5.50) 𝜇s and it
can be seen that for this noisy signal, the overlap of the components is noticeable
in time, Figure 3(a), as well as in the spectrogram, Figure 3(b) and in the CWD
[11], Figure 3(c). However, in the ReSTS, Figure 3(d), the components are clearly
separated, showing the TF centers as clear peaks. Important to note is that the
scaling parameter for the CWD, 𝛼 = 0.2, is evaluated and chosen so that it bal-
ances the suppression of interference and loss of resolution.

The three different TF distributions, the spectrogram and the ReSTS with a
matched Gaussian window, 𝜎 = 0.50 𝜇s, and the CWD, are evaluated by
simulating 1000 realizations of each test signal with different time distances
between components. Each simulation has different noise disturbance
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Figure 3: Illustrations for a realization of the simulated signal of two Gaussian pulses with
scaling 𝜎 = 0.5 𝜇s, centre frequencies (𝑓1, 𝑓2) = 5 MHz of both components, centre
times (𝑡1, 𝑡2) = (4.00, 5.50) 𝜇s, sampled with frequency 100 MHz. A disturbance of
white Gaussian noise with SNR = 5 dB is added to the signal; (a) the time signal; (b) the
spectrogram; (c) the CWD; (d) the ReSTS.

realizations and phase shifts for both signal components. The TF distributions
are calculated for each realization and the maximum in an area around the true
TF center for both components are extracted to calculate the mean estimated TF
centers and mean peak amplitudes. These results are shown in Tables 1 and 2,
where the standard deviation (SD) of the estimated time and frequency centers
and coefficient of variation (CV) of the amplitudes are calculated to show the
spread of the estimates and peak amplitudes. An evaluation of the required
number of realizations was carried out and confirms stability of the estimates at
1000 realizations, as shown in Figure 4.

It can be seen that all three methods separate the signal components when time
distance between the components is 2.00 𝜇s, even though the CWD gives some
deviations in the time centers, see Table 1. When the time distance is 1.50 𝜇s the
spectrogram and the CWD are not able to give the correct time centers, while the
ReSTS gives a good estimate mean and low standard deviation. This means that
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Figure 4: The SD of detected centre times over number of realization of the simulated
signal of two Gaussian pulses with (𝑡1, 𝑡2) = (4.00, 5.00) 𝜇s and (𝑓1, 𝑓2) = 5MHz.

Table 1: Mean and standard deviation of the estimated time centers from 1000 simulations
of the signal [Eq. (5)] with white Gaussian noise, SNR = 5 dB and random phase for each
pulse.

Spectrogram CWD
Mean [𝜇s] SD [𝜇s] Mean [𝜇s] SD [𝜇s]

Test True (𝑡1, 𝑡2) �̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2
1 (4.00, 6.00) 𝜇s 4.00 5.99 0.03 0.03 4.07 5.93 0.05 0.06
2 (4.00, 5.50) 𝜇s 4.14 5.36 0.19 0.19 4.12 5.38 0.11 0.11
3 (4.00, 5.00) 𝜇s 4.30 4.69 0.27 0.27 4.22 4.77 0.24 0.24
4 (4.00, 4.50) 𝜇s 4.18 4.32 0.16 0.16 4.12 4.37 0.17 0.17

ReSTS
Mean [𝜇s] SD [𝜇s]

Test True (𝑡1, 𝑡2) �̂�1 �̂�2 �̂�1 �̂�2
1 (4.00, 6.00) 𝜇s 4.00 6.00 0.02 0.02
2 (4.00, 5.50) 𝜇s 4.00 5.49 0.04 0.04
3 (4.00, 5.00) 𝜇s 4.03 4.97 0.09 0.09
4 (4.00, 4.50) 𝜇s 4.12 4.37 0.14 0.14
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Table 2: Mean and coefficient of variation of the peak amplitudes from 1000 simulations
of the signal [Eq. (5)] with white Gaussian noise, SNR = 5 dB and random phase for each
pulse.

Spectrogram CWD
Mean CV Mean CV

Test 𝛢1 𝛢2 𝛢1 𝛢2 𝛢1 𝛢2 𝛢1 𝛢2
1 88.9 88.9 0.05 0.04 189 188 0.12 0.12
2 96.4 96.4 0.16 0.17 200 200 0.21 0.21
3 135 135 0.44 0.44 230 230 0.42 0.42
4 165 165 0.63 0.63 262 262 0.63 0.63

ReSTS
Mean CV

Test 𝛢1 𝛢2 𝛢1 𝛢2
1 30800 30600 0.35 0.34
2 10500 10600 0.31 0.31
3 3840 3840 0.48 0.45
4 12200 12900 1.12 1.14

for this type of signal with low SNR and random phase shifts, the spectrogram
does not succeed to resolve the Gaussian pulses that are 2𝜎 = 1.0 𝜇s apart, which
is the theoretical minimum time separation needed between two Gaussian pulses
for the peaks to be resolved [36]. It is notable that the ReSTS goes beyond the
resolution limit of the spectrogram, using the a priori information of a Gaussian
shaped transient pulse, and we see that the estimated time centers for the ReSTS
are still very good when (𝑡1, 𝑡2) = (4.00, 5.00) 𝜇s. It is not until the time distance
is 0.5 𝜇s that the estimates for the ReSTS becomes unreliable.

The signal peak amplitudes of the ReSTS are much higher compared to the other
TF distributions, Table 2. This clearly shows that the signal energy is more loc-
alized to the TF centers of each component in the ReSTS compared to both the
spectrogram and CWD. The peak amplitudes in the spectrogram and CWD in-
crease when the component separation decrease, and the energy from the com-
ponents combine. The amplitudes in the ReSTS first decrease because reassign-
ment to the correct mass centers becomes more difficult for closer components,
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and some energy is reassigned to positions in between the true TF centers. For
the smallest time distance, the ReSTS is unreliable and sometimes only gives one
strong peak, resulting in high mean amplitude but also very high coefficient of
variation.

The estimated frequency centers are not presented, as all methods have good es-
timations for these signals. This is expected, since the signal components have the
same frequency, and thus any smoothing of the TF distributions will be mainly
in the time domain.

4.1 GuIDANcE IN pARAMETER cHOIcES Of 𝛿𝑡 AND 𝛿𝑓
The proposed automatic component detection algorithm requires the user to
define the parameters 𝛿𝑡 and 𝛿𝑓, which are signal dependent. Finding theoretical
values for these parameters is an arduous task because of the interaction between
close signal components and noise in the ReSTS. Values can instead be found
experimentally and be translated to a general signal.

To achieve the best performance of the proposed automatic component detection
algorithm together with the ReSTS, the parameters 𝛿𝑡 and 𝛿𝑓 should be defined
equal to the time and frequency resolution of the ReSTS. The algorithm will then
be able to both resolve, and thus accurately detect, any two components which
are separated by at least 𝛿𝑡 and 𝛿𝑓. We are also interested in results that can be
applied to real, measured signals, therefore this section will experimentally find
the resolution of the ReSTS for noisy, transient signals.

According to the Heisenberg inequality, even the most optimal resolution need
to fulfill, 𝛿𝑡𝛿𝑓 ≥ 1/(4𝜋), where 𝛿𝑡 is the uncertainty in time, i.e. the length of
the pulse, and 𝛿𝑓 is the uncertainty in frequency. Two Gaussian pulses of equal
amplitude and time length, are separable if

𝛿𝑡[𝑠] = 2𝜎[𝑠], 𝛿𝑓[𝑠−1] = 1/(𝜋𝜎[𝑠]), (7)

where 𝜎 is the scaling parameter of the Gaussian [36]. This means that these
distances correspond to the best resolution the spectrogram can possibly achieve,
without reassignment.

Defining the signals as in Eq. (5) with two Gaussian pulse components and
changing the TF center of one component, the minimum time and frequency
distances needed to resolve two components for the ReSTS can be determined.
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Figure 5: Realizations of the test signals [Eq. (5)] with two Gaussian pulses and white
Gaussian noise, SNR = 5 dB, where 𝑓1 = 𝑓2 = 4.00 MHz and random phases of the
components. The time signal is shown to the left and the ReSTS is viewed to the right so
that the amplitude and time axis can be seen; (a) signal with (𝑡1, 𝑡2) = (3.00, 4.10) 𝜇s; (b)
signal with (𝑡1, 𝑡2) = (3.00, 4.00) 𝜇s; (c) signal with (𝑡1, 𝑡2) = (3.00, 3.90) 𝜇s; (d) signal
with (𝑡1, 𝑡2) = (3.00, 3.80) 𝜇s.

For the used test signals the Gaussian pulses have 𝜎 = 0.50 𝜇s, the sampling
frequency is 100 MHz and 0.01 𝜇s corresponds to 1 sample. The simulated
signals are disturbed by white Gaussian noise, SNR = 5 dB, which will give 𝛿𝑡
and 𝛿𝑓 that can be used when applying the automatic component detection
method on measured data, possibly also with severe disrupting noise.

The minimum required time separation is evaluated by keeping the frequency of
the two signal components constant and decreasing the time distance between
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Table 3: Mean and standard deviation of the estimated time centers and the mean and
coefficient variation of the peak amplitudes from 1000 simulations of the signal [Eq. (5)]
with 𝑓1 = 𝑓2 = 4.00 MHz, white Gaussian noise, SNR = 5 dB and random phase for
each pulse.

Mean [𝜇s] SD [𝜇s] Mean CV

True (𝑡1, 𝑡2) �̂�1 �̂�2 �̂�1 �̂�2 𝛢1 𝛢2 𝛢1 𝛢2
(3.00, 4.10) 𝜇s 3.02 4.08 0.08 0.08 6630 6630 0.42 0.43
(3.00, 4.00) 𝜇s 3.03 3.97 0.09 0.09 5910 5790 0.45 0.47
(3.00, 3.90) 𝜇s 3.04 3.85 0.11 0.11 5180 5160 0.53 0.56
(3.00, 3.80) 𝜇s 3.07 3.72 0.13 0.13 5390 5490 0.67 0.67

the TF centers of the components. Figure 5 shows realizations of the signals with
decreasing time separation of the TF centers, it shows the time signal (left) and
the ReSTS from the viewpoint so that only the time axis is seen (right). The figure
shows that the signal energy becomes more scattered, as it reassigns to locations
between the components, when the time distance decreases.

Table 3 shows the results of 1000 simulations of the test signals, with random noise
and phase shift of the components for each simulation. The table only shows
the estimated time centers and peak amplitudes, since the estimated frequency
centers are consistently reliable for all time distances. It can be seen that the mean
estimates differ at most 6 samples from the true positions, however when 𝑡2 =
3.90 𝜇s the mean of �̂�2 is closer to 3.80 𝜇s than the true value. Also when the time
distance is less than 1.0 𝜇s the coefficient variations of the peak amplitudes are
more than 50%, which indicates that the signal energy can be rather scattered, as
can be seen in Figure 5(c) and (d). It can therefore be safer to set 𝛿𝑡 corresponding
to 1.0 𝜇s even though the estimated time centers for the smaller time distances are
close to the truth. For the chosen signals of this experiment, 1.0 𝜇s corresponds
to 2𝜎, which then can be applied to a general Gaussian pulse, multi-component,
transient signal.

The required minimum frequency distance between two components is
examined by keeping the time centers of the two signal components constant
and decreasing the frequency distance between the TF centers of the
components. Again, 𝜎 = 0.50 𝜇s and the sampling frequency is 100 MHz. For
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Figure 6: Realizations of the test signals [Eq. (5)] with two Gaussian pulses and white
Gaussian noise, SNR = 5 dB, where 𝑡1 = 𝑡2 = 3.00 𝜇s and random phase of the
components. The time signal is shown to the left and the ReSTS is viewed so that the
amplitude and frequency axis (right) can be seen; (a) signal with (𝑓1, 𝑓2) = (4.00, 4.70)
MHz; (b) signal with (𝑓1, 𝑓2) = (4.00, 4.65)MHz; (c) signal with (𝑓1, 𝑓2) = (4.00, 4.60)
MHz; (d) signal with (𝑓1, 𝑓2) = (4.00, 4.55)MHz.

the calculated ReSTS matrices, the distance between two frequency values is
0.012MHz.

Figure 6 shows realizations of the simulated signals for each of the four chosen
frequency separations. The figure shows the time signal and the ReSTS, first the
time signal (left) and then ReSTS from the viewpoint so that only the frequency
axis is seen (right). It can be noted that the energy seem more scattered for smaller
frequency distances.
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Table 4: Mean and standard deviation of the estimated frequency centers and the mean
and coefficient variation of the peak amplitudes from 1000 simulations of the signal [Eq.
(5)] with 𝑡1 = 𝑡2 = 3.00, white Gaussian noise, SNR 5 = dB and random phase for each
pulse.

Mean [MHz] SD [MHz] Mean CV

True (𝑓1, 𝑓2) �̂�1 �̂�2 �̂�1 �̂�2 𝛢1 𝛢2 𝛢1 𝛢2
(4.00, 4.70) MHz 4.02 4.69 0.05 0.05 6670 6800 0.39 0.41
(4.00, 4.65) MHz 4.02 4.64 0.06 0.06 5860 5880 0.43 0.44
(4.00, 4.60) MHz 4.03 4.58 0.07 0.07 5360 5420 0.48 0.51
(4.00, 4.55) MHz 4.04 4.52 0.07 0.08 5390 5290 0.57 0.58

Table 4 shows the estimated frequency centers and peak amplitudes from 1000
simulations of the test signals, where the noise and phase shifts of the components
are random for each simulation. The estimated time centers were all consistent
and close to the true value 𝑡1 = 𝑡2 = 3.00 𝜇s. It can be seen that the estimated
frequency centers over all are reliable, the mean of the estimates deviates at most 4
samples from the true frequency centers. The standard deviations for the estimated
frequency centers are also rather low, however for 𝑓2 = 4.55MHz the mean of �̂�2
is almost 4.50MHz and already for 𝑓2 = 4.60 the coefficient variation is 50% for
one of the peaks. Thus, a reasonable choice for 𝛿𝑓 would be somewhere between
0.60 − 0.65MHz for this signal and to translate this to a general Gaussian pulse,
multi-component, transient signal, a reasonable choice is 1/(𝜋𝜎), for this signal
that is approximately 0.64MHz.

This evaluation is done with rather low SNR, and recommends to chose 𝛿𝑡 and
𝛿𝑓 according to Eq. (7). This applies for a general signal which can be considered
to consist of multiple, transient Gaussian pulses and is disrupted by noise. This
means that the proposed automatic component detection algorithm used with
the ReSTS can resolve transient signal components, which have the smallest
time and frequency distance required for two Gaussian pulses to be separable.
The parameters depend on the length of the Gaussian pulses in the signal and
have an inverse relation to each other, meaning that shorter pulses give a smaller
uncertainty in time but a larger uncertainty in frequency.
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Table 5: Time and frequency centers and amplitudes for the transient, multi-component
Gaussian signal [Eq. (5)], used for evaluating the performance of the proposed automatic
component detection algorithm.

𝑘 𝑡𝑘 [𝜇s] 𝑓𝑘 [MHz] 𝑎𝑘

1 3.0 2.0 1.0
2 5.0 5.0 0.6
3 3.0 8.0 0.8
4 7.0 2.0 0.6
5 7.0 8.0 0.4

5 PERFORMANCE OF THE AUTOMATIC COMPONENT DETECTION
ALGORITHM

Using the parameter choices found in the previous section, 𝛿𝑡 = 2𝜎 and
𝛿𝑓 = 1/(𝜋𝜎), the performance of the proposes automatic component detection
algorithm can now be evaluated. This is done using test signals [Eq. (5)] with
the different number of components, TF centers and amplitudes given in
Table 5. Two multi-component signals are used, one with two and one with five
components. The first two presented in Table 5 forms the two-component signal
and the five-component signal includes all five.

The test signals are evaluated with SNR = 5 dB and SNR = 15 dB, where 1000
simulations are done for each signal and SNR, with different noise realizations
(white Gaussian noise) and random phase shifts for the signal components. The
sampling frequency is 100MHz and the scaling of the Gaussian pulses 𝜎 = 0.5 𝜇s.
The automatic algorithm extracts𝛫𝑚𝑎𝑥 peaks of the ReSTS and determines which
peaks that are signal components.

For the evaluation a detection rate is calculated, giving a value 0 – 1. If the
algorithm finds the correct number of signal components, which all are close to
the true TF centers, then the detection is considered correct (1). In all other
cases the detection is incorrect (0). The correct and incorrect detections from the
1000 simulations are averaged to get the detection rate. Thus 1 means that
detection was correct for all 1000 simulations and 0 that detection was incorrect
for all simulations.
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Table 6: Detection rate of the automatic component detection algorithm for multi-
component, transient signals [Eq. (5)], disturbed by white noise and with parameters
according to Table 5. The detection rates are obtained from 1000 simulations with
different noise realizations and where the signal components have random phase shifts.
If all detections for all 1000 simulations are correct, the rate is 1.

Detection rate for

SNR [dB] 𝜌 2 components 5 components

15 2/3 1 1
5 2/3 1 0.94
5 1/3 1 0.98

Table 6 shows the resulting detection rates for six tests. For all tests with two signal
components, the maximum number of peaks parameter is chosen to 𝛫𝑚𝑎𝑥 = 5
and when the signal has five components 𝛫𝑚𝑎𝑥 = 8. An estimated TF center is
considered close enough to the true TF center if the time and frequency difference
is less than 𝛿𝑡 = 2𝜎 = 1 𝜇s and 𝛿𝑓 = 1/(𝜋𝜎) = 0.65MHz respectively.

It can be seen in Table 6 that for the signals with two components, the proposed
algorithm always detects the correct signal components. For the signals with five
components, the detection rate is 0.95 when the SNR is low, however the result
can be improved to 0.98 by lowering the normalization constant 𝜌. When the
SNR is higher, the algorithm correctly identifies all components even for the five
components signals.

The algorithm’s ability to cope with noise is exemplified in Figure 7 where 1000
realizations of each SNR level were simulated for the same two component
signal used in Table 6, which parameters are found in Table 5 and 𝜌=2/3. The
performance of the algorithm is immaculate down to 0 dB SNR, it still produces
reliable detections in the range of 0 to −5 dB, and the performance deteriorates
rather linearly from −5 dB to −12.5 dB. Considering the fact that a measured
signal with −5 dB SNR would be regarded as a low quality signal in most
applications, the algorithm can be described as rather robust to noise and
insensitive to noise over 0 dB.

Since there, to our knowledge, exist no other researched methods, the
performance of our algorithm can not be compared to other known methods.
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Figure 7: (a) Boxplot showing how the number of detected signal components for a
two component signal vary over different levels of SNR. (b) Probability of detecting two
components in a signal containing two components for different levels of SNR. Both plots
are generated from 1000 realizations.

However when considering the ReSTS matrix, two other, perhaps simpler,
approaches seem natural. The first approach is to calculate some threshold for
the noise peak amplitudes. The distribution of the (scaled reassigned) noise
peaks is unknown, however a threshold based on the Gaussian distribution
might be reasonable, or the universal threshold for noise reduction using discrete
wavelet transform [37]. The second approach is to look at the peaks sequentially
from the largest peak and continue until the peak amplitudes drop and then
level out, the peaks after the drop will then be assumed to be noise peaks.

We have implemented such schemes and evaluated the detection rate for the same
test signals used previously. The wavelet universal threshold has a detection rate
from 0.90 to 0.94 for the different cases. The Gaussian threshold only has detec-
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tion rates around 0.27 to 0.29, which is too low to be useful. The level out ap-
proach has a detection from 0.58 to 0.62 for the cases with two components and
0.53 to 0.55 for the cases with five components.

6 EXAMPLES ON MEASURED DATA

This section shows how the proposed automatic component detection algorithm
performs on real, measured signals, from two acoustic fields. Before using the
method on measured data, the time window length of the ReSTS needs to be
decided. The time window should have the same length as, e.g. time duration
of, the transient signal components. If the time duration is not known, an
appropriate length of the time window can be determined by evaluating the local
Rényi entropy of the ReSTS for different lengths of the time window [31].
When an appropriate length is used, the energy concentration will be high and
accordingly the Rényi entropy small. It is not essential that the length of the
time window exactly matches the duration of the transient signal components,
the ReSTS is stable for different window lengths.

6.1 ULTRASOuND puLSE-EcHO MEASuREMENTS

The automatic component detection algorithm was tested on real measurements
from a simple pulse-echo measurement set-up in water. A 2.1 MHz in-house
built transducer functioned as both sender and receiver. An ultrasonic pulse
was generated using a Panametrix Pulse/receiver Model 5072PR device
(Panametrics-NDT, Waltham, MA) and was measured at 100 MHz sampling
rate with a Textronix TDS 2002C oscilloscope (Techtronix, Inc., Beaverton,
OR). The reflective object was a Plexiglas phantom with the shape of a solid
stairway with step sizes ranging from 2 mm to 0.25 mm. A sketch of the
phantom can be seen in Figure 8.

Measurements were taken in each transition between two steps of the Plexiglas
phantom. This resulted in a total of four measured time signals containing two
echo components, one from each of the two adjacent steps. These components
thus had different relative time delays (two way travel times). The time plots in
Figure 9 show the measured reflections and the red circles indicate where our
method detected a signal component. The time separations of the detected
components correspond to an estimation of the step sizes of the Plexiglas
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2 mm 1 mm 0.5 mm 0.25 mm

Transducer positions
A. B. C. D.

Figure 8: Set-up for the pulse-echo measurement of two surfaces, separated by 2, 1, 0.5
or 0.25 mm (positions A–D).

phantom, which are shown in the figure and should be compared with the step
sizes in Figure 8.

The simple piezoceramic transducer with an approximate pulse length of 1 𝜇s,
full width at half maximum, can resolve surfaces separated by at least 1.5 mm.
Thus only for case A, exemplified in Figure 9(a), it is possible to detect the two
echoes visually. Our algorithm can for this transducer accurately estimate
distances between two surfaces if they are larger or equal to 0.67 mm. This
means that for cases A and B, Figure 9(a) and (b), the algorithm correctly
identifies the TF centers of the two pulses. For case C shown in Figure 9(c), the
pulses act more like one long pulse, not suited for the ReSTS, which is adapted
for short signals. Still, two components are detected, although the distance is not
correctly identified. For case D, Figure 9(d), only one component is detected,
which is expected.
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6. Examples on measured data

Figure 9: Time signals and peak detections from ReSTS, of pulse-echo measurements of
two surfaces that are separated by 2, 1, 0.5 or 0.25 mm (a) – (d). The red circles indicate
the detected time centers, obtained by the automatic detection method from the ReSTS.
The time separation between the pulse centers correspond to an estimation of the step
sizes of the Plexiglas phantom, Figure 8. The estimates are shown in red (above), the true
step sizes are shown in black (under).

For our algorithm, the parameters were set to 𝛿𝑡 = 2𝜎 = 0.9 𝜇s, 𝛿𝑓 = 1/(𝜋𝜎) =
0.7 MHz, 𝜌 = 1 and 𝛫𝑚𝑎𝑥 = 4. The length of the signal, and thus 𝜎, could be
estimated studying a single pulse using full width at half maximum. It is important
to note that while we choose to use 𝜎 = 0.45 𝜇s, equivalent results were obtained
for 𝜎 ∈ [0.38 0.65] 𝜇s. Thus for these signals our method is robust to choices of
𝜎.
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6.2 MARINE BIOSONAR SIgNALS

The usefulness of the developed automatic component detection algorithm is fur-
ther exemplified by applying it to recorded dolphin echolocation signals. Record-
ings were made from different parts of the echolocation beam main lobe. Details
regarding how these recordings were made are explained by [10].

Figure 10 left hand side, shows recordings from a bimodal transient signal, expec-
ted to contain more than one component. Figure 10 right hand side, shows re-
cordings from a unimodal transient signal, expected to contain only one compon-
ent. The algorithm outcome in Figure 10 (left) shows that it detects two signal
components separated in both time and frequency, while in Figure 10 (right) only
one component is detected.

For the ReSTS and the automatic component detection algorithm, 𝜎 = 6.4 𝜇s,
𝛫𝑚𝑎𝑥 = 3 and 𝜌 = 2/3 are used. This means that the resolution in time is
𝛿𝑡 = 2𝜎 = 13 𝜇s and in frequency 𝛿𝑓 = 1/(𝜋𝜎) = 53 kHz. However similar
results are obtained for 𝜎 ∈ [5 8] 𝜇s, so our method is robust to choices of 𝜎 for
these signals.

From a biosonar perspective, it is interesting to compare the signal component
time and frequency centers in Figure 10. Although such a comparison lies
outside the scope of this paper, it brings new information and insights to how
the different parts of the echolocation beam of bottle nose dolphins (Tursiops
truncatus) are generated in terms of suggested internal frequency filters, acoustic
reflection pathways and possibly multiple echolocation sources [9, 10, 38, 39].

7 CONCLUSION

In this paper an automatic component detection method for short,
multi-component transient signals has been proposed. The method combines a
novel detection algorithm with a high-resolution TF representation adapted for
short transient signals, ReSTS. As a result, the method automatically counts, the
beforehand unknown, number of transient components and estimates the TF
centers of individual components with great precision. The results are also easily
visualized by the ReSTS, showing the TF centers of individual components,
marked by the automatic algorithm.
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7. Conclusion

Figure 10: Two dolphin echolocation signals, to the left a bimodal, to the right a unimodal;
(a) time signal; (b) spectrogram; (c) ReSTS representation and detected signal TF centers;
(d) pulse detections.

Our proposed automatic component detection algorithm and TF representation
are useful for severely coinciding Gaussian shaped transients, where other com-
parable methods fail to resolve the components. The resolution of the suggested
TF representation is shown to be the best achievable for Gaussian shaped pulses.
In addition, the calculations of time and frequency centers of the components are
robust to noise. The method is easy to use since the algorithm requires very little
user input. The paper provides guidelines on how to choose the input parameters,
although the method is quite insensitive to parameter choices.
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This new method should be useful in several acoustic research fields, not the least
sonar and biosonar applications, or other fields where coinciding Gaussian
shaped transients are analyzed. In this paper the method shows promising results
on measured data, both from a laboratory pulse-echo set-up and a dolphin
echolocation signal measured simultaneously at two different locations in the
echolocation beam. The method resolves heavily overlapping pulses from
the pulse-echo signals and automatically detects the expected number of
components in the bimodal and unimodal echolocation signal.
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