LUND UNIVERSITY

Implementation of a Real-Time Kernel

Andersson, Leif

1993

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Andersson, L. (1993). Implementation of a Real-Time Kernel. (Technical Reports TFRT-7511). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/845c23bf-8de9-4695-a0c3-405056946ba0

ISSN 0280-5316
ISRN LUTFD2/TFRT--7511--SE

Implementation of a
Real-Time Kernel

Leif Andersson

Department of Automatic Control
Lund Institute of Technology
November 1993

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

Internal Report

Date of issue

November 1993

Document Number

ISRN LUTFD2/TFRT--7511--SE

Author(s)
Leif Andersson

Supervisor

Sponsoring organisation

Title and subtitle
Implementation of a Real-Time Kernel

Abstract

tation is in Modula-2 for MS-DOS machines.

The complete implementation of a Real-Time Kernel is described, including all source code. The implemen-

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 30

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

1. Introduction

This report describes the Real Time Kernel used at the Department of Automatic
Control, Lund Institute of Technology, both for courses in Real Time Programming
and as a tool for control experiments as part of the research of the department.
The report is organized as follows: After a section about background and history
follows a short section giving an overview of the kernel together with some tim-
ing information. The internal operation of the various parts are then described,
starting with the data structures. The later sections of the report describe the
hardware interaction, such as clock, keyboard, etc.

2. Background and History

Our department started to use computers in control loops in the early seventies.
At that time the computer was a PDP-15 with an RSX-15 operating system. In
the late seventies we got a number of PDP-11/03:s and could start experimenting
with real time software in high level languages. We ported Concurrent Pascal by
Brinch Hansen to this computer and tried to implement a real time kernel in this
language. A more complete kernel was written in Pascal with a small nucleus in
assembler, and it was used for about five years in project courses. This kernel
was ported to IBM-PC clones with Modula-2 as the implementation language. It
is this implementation that is described here, although work is in progress to port
the kernel to more modern hardware.

It is quite possible to buy commercially available Real-Time kernels or operating
systems. The reason we find it worth while write a kernel from scratch, is that we
want to be able to discuss it freely with the students. With commercially available
kernels it is often not possible to see the source code, much less show it to other
people.

3. Hardware and Software

The kernel described here has been implemented and used on IBM-PC clones with
286-processors and math coprocessors, and also on more modern 486-processors.
The kernel is implemented in Modula-2, using a compiler from Logitech. The only
place where the code is compiler-specific is in the lowest level routines, where we
have used special constructs of the Logitech Modula to insert machine code directly
in the Modula source. The alternative to using this feature would have been to
write the lowest level routines in assembly code.

4. Kernel Overview

Many different concurrency models have been proposed in literature. Among these
are the Rendez-Vous model of Ada, the Message Passing model, Semaphores,
Monitors etc. We did not want to specify a particular model, rather find and
implement a minimal set of basic building blocks such that any concurrency model
could be efficiently implemented on top of this base.

One fundamental property of a Real Time Program is that it contains parallel
processes. Thus there needs to be a possibility to transfer control between differ-
ent threads or coroutines (The author of this report does not know the difference,
if any, between these terms). The other fundamental property is that the system
can handle external signals, interrupts. The basis for our implementations is the
merge of these two properties, i. e. the possibility to transfer control between

coroutines as the result of an interrupt. It should be noted that since the ap-
plication we have in mind is high-level implementation of control systems, these
coroutines will be using floating point computation. It is our impression that few
of the commercially available systems takes this into account.

In Modula-2 the required building blocks already exists to a certain extent. There
is a TRANSFER call that transfers control from one coroutine to another. There is
also an IOTRANSFER call that converts the current process to a interrupt handler
process and makes a transfer to another coroutine while waiting for the interrupt.
This method means that the handler is a proper process with its own stack context,.
The disadvantageis that two full context switches are required for every interrupt,
which is fairly inefficient.

Therefore we decided that our kernel should use a more efficient mechanism to
handle interrupts. Here we let procedures handle interrupts. The advantage of
using procedures instead of coroutines, is that the procedure has no context, so
neither context restore at entry nor context save at exit is necessary. This means
that it is sufficient to save and restore those registers that the interrupt procedure
will use. In our current implementation, we let the interrupt procedure live in
the stack of the currently executing process, but to use a separate interrupt stack
only costs a few instructions, and is worthwhile if we need many small tasks (with
small stacks) and/or interrupt handlers that needs lots of stack (not likely).

The scheduler and its queues

All the work of the Real Time Kernel is organized around its two main queues,
the Time Queue and the Ready Queue. The former contains processes that have
suspended themselves waiting for a specific (future) time instant. The latter
contains processes that are ready to run, but compete for the CPU resource. The
scheduling policy we have chosen is a strict priority scheme with round robin
scheduling among processes of equal priority. Since we keep the Ready Queue
sorted in priority order at all times, scheduling is simply achieved by letting the
first process in this queue run.

To ensure proper operation of the kernel its important that all queue manipula-
tions are done with interrupts disabled. To make sure that the kernel alwaysis in
a consistent state, it is only possible to move a process from one queue to another,
not to remove it from one queue without inserting it anywhere else.

The basic scheduling primitives in Modula-2 are: MovePriority, which removes
a process from its current queue and inserts it in priority order in another (or the
same) queue, and Schedule, which makes the first process in the ready queue
be the running process, subject to interrupt rules described below. There are also
some auxiliary routines to disable and enable interrupts.

Time is handled by a clock interrupt driver that is part of the kernel. The driver
maintains the Clock Queue and moves processes to the ready queue when appro-
priate. The basic primitive is a WaitUntil procedure that suspends the calling
process until a specified time in the future, unlike most kernels, which have a
delay statement as the base. It is of course simple to write a delay function given
WaitUntil and a function that returns the current time, but if a delay statement
is the basic primitive then an extra process is needed to wait for a specified time
in the future.

Other Primitives

The Semaphore is a simple device used for signaling. It can also be used for data
protection, but in our case we chose to implement the more powerful Monitor for
this purpose.

A Monitor is an abstract data type with some data and procedures to manipulate
this data. The important property is that all Monitor procedures call special

2

primitives on entry and exit so that at most one process at a time can access the
Monitor data.

An Event is a signaling device without memory, i. e. all processes waiting for an
event will be released when the event occurs, but if no processes are waiting, the
event signaling is a null operation.

Messages and Message passing of various kinds are also important primitives, but
in our case we have implemented them on top of the other primitives mentioned
here, and they are not described in this report.

Monitor Timing

The times required for the Kernel itself and for some important kernel operations
are shown in table 1. The columns are explained below.

Tick As will be explained later, the kernel itself determines a suitable basic tick
time based on the speed of the hardware. This column shows the result.

Kernel This is the load the kernel itself puts on the machine. It consists of the
clock interrupt every tick.

Cyclic This is the time to switch to a cyclic process, increment a counter in this
process, and switch back.

Semaphore This is the time to switch to a process waiting for a semaphore,
increment a counter in the process, and wait for the semaphore again.

The lines for the 486, with attributes "cache” and "no cache" respectively, also
needs some explanation. Our 486-machines have an external 256 KB cache mem-
ory that can be switched on and off. Since the test program consists of loops of
rather small pieces of code, it will all fit in the cache memory. A production pro-
gram is larger, and will therefore not be entirely in the cache. A fair assumption
is therefore that the practical times will be between the two values in the table.

5. The data structures

The basic data structures of the Kernel are the Process Records and queues (dou-
bly linked lists) of such Process Records. The process record contains info that
the kernel needs to keep separate for each process. Typical examples are process
priority and stack address.

The kernel itself has two such queues, the Ready Queue and the Clock Queue.
The Ready Queue contains processes that are either running or waiting for the
CPU. It is always maintained in priority order so that the process that is first
in the queue is the one to run. The Clock Queue contains processes that have
suspended themselves waiting for a specific time instant in the future. This queue
is maintained in time order so that only the first entry in the queue needs to be
checked at each clock tick.

Computer Type Tick | Kernel % | Cyclic Semaphore
286, 8 MHz 10 ms 2% 1 ms 1 ms
486, 50 MHz, cache 1 ms 3% 75 us 75 us
486, 50 MHz, no cache | 1ms 6% 200 us 200 us

Table 1. Timing for the kernel and some operations.

Other queues will be created and maintained by other modules. A typical example
is that each semaphore has a queue of waiting processes.

The queues are created and manipulated by a module called KernelTypes. The
reason to have a separate module for this instead of including it in the Nucleus is
that many primitives need special entries in these data structures. It will lead to
a simplification in maintenance when a primitive is added if we have a separate
module.

The actual data for the kernel is declared in the module Nucleus. This module
also contains the procedure Schedule, which uses the Ready Queue to ascertain
that the process with the highest priority will get the CPU.

The definition modules for KernelTypes and Nucleus follow here for reference
in the following sections. The implementation modules will come later.

DEFINITION MODULE KernelTypes;
This is the definition of a process record. The reason for separating it from Nucleus,
is that many primitives needs some space in this record. It is system and compiler
dependent. This version is for IBM-PC.

FROM SYSTEM IMPORT ADDRESS;

CONST
FPsize = 47;
NameLen = 19;

TYPE
KernelName = ARRAY [0..NameLen] OF CHAR;
Time = RECORD hi, lo: CARDINAL; END;
PROCESS = ADDRESS;
ProcessRef = POINTER TO ProcessRec;
Queue = POINTER TO QueueRec;

QueueRec = RECORD
succ, pred . ProcessRef;
priority : CARDINAL;
nextTime : Time;
priorityQueue : Queue;
timeQueue : Queue;
name : KernelName;

END;

ProcessRec = RECORD
head : QueueRec;

Nucleus

procv : PROCESS;

timer : CARDINAL; For time slice.
FParea : ARRAY [0..FPsize] OF CARDINAL;
Kernel

processNr : CARDINAL;
assignedPriority : CARDINAL;
stack : ADDRESS;
stackSize : CARDINAL;
Monitors
runningIn : ADDRESS;
blockedBy : ADDRESS;

END;

PROCEDURE InitProcessRec(VAR r: ProcessRef);
PROCEDURE InitQueueRec(VAR q: Queue);

PROCEDURE NewQueue(VAR q : Queue);
Creates a new process queue. The queue head is given a priority lower than any proper
process and a NextTime as far away as possible in the future.

PROCEDURE SetKernelName (VAR kn: KernelName;
name: ARRAY OF CHAR);
Assigns name to kn. If name is too long it is silently truncated.

PROCEDURE MovePriority(P : ProcessRef; q : Queue);
Removes P from its queue and then inserts processrecord P in queue Q according to
priority.

PROCEDURE MoveTime(P : ProcessRef; q : Queue);
Removes P from its queue and then inserts processrecord P in queue (in time order.

PROCEDURE CompareTime (VAR t1, t2: Time): INTEGER;
See Kernel

PROCEDURE IncTime(VAR t: Time; c: CARDINAL);
See Kernel

END KernelTypes.

DEFINITION MODULE Nucleus;
This is the innermost module of a Real Time Kernel.

FROM KernelTypes IMPORT
ProcessRef, Queue, Time;

VAR
Now: Time;
Running: ProcessRef;
ReadyQueue : Queue;
TimeQueue : Queue;

PROCEDURE Init;
Initialization. Should only be called by Kernel.

PROCEDURE Schedule;
Makes the top of the ReadyQueue the running process.

PROCEDURE SetEveryTick(TP: PROC);
Sets a procedure to be called every clock tick.

END Nucleus.

6. Semaphores

The Semaphore is the simplest of the Real-Time synchronization primitives. It is
described fairly well by its definition module.

Definition Module

DEFINITION MODULE Semaphores;
Semaphores for the Real Time Kernel. Note that Kernel.init must be called before
any of these procedures.

TYPE Semaphore;

PROCEDURE InitSem(VAR sem: Semaphore; InitVal: INTEGER;
name: ARRAY OF CHAR);
Initializes the semaphore sem to InitVal. name is for debugging purposes.

PROCEDURE Wait(sem: Semaphore);
If the value of the semaphore Sem > 0 then decrement it, else block the calling process.
If more than one process is waiting, then queue them first in priority and then in FIFO
order.

PROCEDURE Signal(sem: Semaphore);
If there is one or more processes waiting, then unblock the first one in the queue, else
increment the semaphore.

END Semaphores.

Implementation Module

The data structures for a semaphore contains the semaphore integer and a queue
that can hold the processes blocked by the semaphore.

IMPLEMENTATION MODULE Semaphores;

FROM Coroutines IMPORT Disable, Reenable, InterruptMask;
FROM Storage IMPORT ALLOCATE;
IMPORT Nucleus;
FROM Nucleus IMPORT
ReadyQueue, Running, Schedule;
FROM KernelTypes IMPORT
NewQueue, MovePriority, ProcessRef, Queue;

TYPE
Semaphore = POINTER TO SemaphoreRec;
SemaphoreRec = RECORD
counter: INTEGER;
waiting: Queue;
END;

The initialization of a semaphore consists of allocating the necessary data struc-
tures and setting the semaphore integer to its proper value.

PROCEDURE InitSem(VAR sem: Semaphore; InitVal: INTEGER;
name: ARRAY OF CHAR);
BEGIN
NEW (sem) ;
WITH sem™ DO
counter := InitVal;
NewQueue(waiting) ;
END;
END InitSem;

The main semaphore procedures, Wait and Signal, both follow a similar pattern.
All queue manipulations must be done with the interrupts disabled, and therefore
the first and last statements are Disable() and Enable() respectively.

The Wait procedure decrements the semaphore integer if possible, otherwise
blocks the running process by moving its process record into the semaphore’s
waiting queue and calling Schedule. The call to Schedule is really where Real-
Time Programming differs most from sequential programming, because this is
the point where a process switch takes place. This means that the CPU does not
immediately return from the same invocation of Schedule, but rather picks up
some other execution thread.

PROCEDURE Wait(sem: Semaphore);
VAR
oldDisable: InterruptMask;

BEGIN
oldDisable := Disable();
WITH sem™ DO

IF counter > 0 THEN
DEC(counter) ;

ELSE
MovePriority(Running, waiting);
Schedule;

END;

END;
Reenable(oldDisable);
END Wait;

The Signal procedure checks if any process is waiting. If so, the waiting process
is moved to the Ready Queue, and Schedule is called. If no processes are waiting
the only action is to increment the semaphore integer.

PROCEDURE Signal(sem: Semaphore);
VAR
oldDisable: InterruptMask;

BEGIN
oldDisable := Disable();
WITH sem™ DO
IF ProcessRef (waiting) <> waiting”.succ THEN
MovePriority(waiting~.succ, ReadyQueue);
Schedule;
ELSE
INC(counter) ;
END;
END;
Reenable(oldDisable);
END Signal;

END Semaphores.

7. Events

An event is another simple synchronization primitive, that can be used to let
a collection of processes wait for a specific event. When that event occurs all
waiting processes are made runnable. In the definition module they are called
“Free Events” because the module Monitors, described later, contains a different
but related type of events.

DEFINITION MODULE Events;
Free events for the Real Time Kernel

TYPE
Event;

PROCEDURE InitEvent (VAR ev: Event; name: ARRAY OF CHAR);
Initialize the event ev. name is for debugging purposes.

PROCEDURE Await(ev: Event);
Blocks the current process and places it in the queue associated with ev.

PROCEDURE Cause(ev: Event);
All processes that are waiting in the event queue associated with ev are unblocked. If
no processes are waiting, it is a null operation.

END Events.

The data structures are simple. They are put in a separate module named
EventInternal so that it may be possible to access them from special debug-
ging modules separate from the Events module itself.

DEFINITION MODULE EventInternal;
FROM KernelTypes IMPORT Queue;

TYPE
Event = POINTER TO EventRec;
EventRec = RECORD
waiting ¢ Queue;
Debug
next . Event;
END;

VAR
Initialized : BOOLEAN;
EventList : Event;

END EventInternal.

The main procedures, Await and Cause are quite similar to the corresponding
code in Semaphores, with the difference that no integer value is involved.

IMPLEMENTATION MODULE Events;

FROM Coroutines IMPORT Disable, Reenable, InterruptMask;
FROM Storage IMPORT ALLOCATE;
FROM KernelTypes IMPORT
ProcessRef, Queue, NewQueue, MovePriority, SetKernelName;
IMPORT Kernel;
FROM Nucleus IMPORT Running, ReadyQueue, Schedule;
IMPORT EventInternal;
FROM EventInternal IMPORT EventList;

TYPE
Event = EventInternal.Event;
EventRec = EventlInternal.EventRec;

PROCEDURE InitEvent (VAR ev: Event; name: ARRAY OF CHAR);
BEGIN (* InitEvent x*)
NEW(ev) ;
WITH ev™ DO
NewQueue(waiting) ;
next := EventList;
EventList := ev;
SetKernelName(waiting~.name,name);
END (* WITH *)
END InitEvent;

PROCEDURE Await(ev: Event);

VAR oldDisable: InterruptMask;

BEGIN
oldDisable := Disable();
MovePriority(Running, ev”.waiting);

Schedule;
Reenable(oldDisable);
END Await;

PROCEDURE Cause(ev: Event);

VAR
oldDisable: InterruptMask;
BEGIN
oldDisable := Disable();
LOOP
IF ProcessRef(ev”.waiting) = ev”.waiting~.succ THEN
EXIT
ELSE
MovePriority(ev“.waiting‘.succ, ReadyQueue) ;
END;
END (% LOOP *);
Schedule;
Reenable(oldDisable);
END Cause;

BEGIN (* Events *)
EventList := NIL;
END Events.

8. Monitors

Monitors are used to protect critical regions and guarantee mutual exclusion.
They should really be part of a language so that the compiler could automatically
insert the lock and unlock code in all procedures accessing the data structure.
Since no such language is available to us, we must instead rely on programmer
discipline, and simplify the use as much as possible.

Our implementation consists of a data type MonitorGate with the operations
EnterMonitor and LeaveMonitor. The MonitorGate must then be associated
with, or included in, the shared data type, and all procedures operating on it must
have EnterMonitor as the first and LeaveMonitor as the last statement.

Monitors can also have MonitorEvent variables associated, similar to the Events
described above. The difference is that an Await on a MonitorEvent will also
perform an implicit LeaveMonitor. Typcally these events will be used in a
producer/consumer situation where the consumer will call Await if the buffer is
empty, and the producer will call Cause every time it enters data into the buffer.

The priority changes mentioned in the definition module will be further explained
later in this section.

Monitors Definition Module

DEFINITION MODULE Monitors;

TYPE MonitorGate;
TYPE MonitorEvent;

PROCEDURE Init;
Initializes the Monitors module.

PROCEDURE InitMonitor (VAR mon: MonitorGate;
name: ARRAY OF CHAR);

Initializes the monitor guarded by mon. name is for debugging purposes.

Without priority inheritance

With priority inheritance

C tries to enter monitor

A low priority executing
B medium priority B executing inside monitor

C high priority O suspended by other task
Figure 1. Priority inversion when two processes contend for the same monitor.

PROCEDURE EnterMonitor(mon: MonitorGate);

Try to enter the monitor mon. If no other process is within mon then mark the
monitor as busy and continue. If the monitor is busy, then block the calling
process in a priority queue AND raise the priority of the blocking process to the
priority of the blocked process.

PROCEDURE LeaveMonitor(mon: MonitorGate);

Leave the monitor mon. If the priority was raised then lower it to the original
value. If there is one or more processes waiting, then unblock the first one in
the queue, else mark the monitor as not busy.

PROCEDURE InitEvent(VAR ev: MonitorEvent; mon: MonitorGate;
name: ARRAY OF CHAR);

Initialize the event ev and associate it with the monitor mon. name is for
debugging purposes.

PROCEDURE Await(ev: MonitorEvent);

Blocks the current process and places it in the queue associated with ev. Also
performs an implicit LeaveMonitor (mon).

PROCEDURE Cause(ev: MonitorEvent);

All processes that are waiting in the event queue associated with ev are moved
to the monitor queue associated with mon. If no processes are waiting, it is a
null operation.

END Monitors.

Priority Inversion Problem

A possible problem with monitors in general is that a low priority process could
unvoluntarily lock out a high priority process for a long time, because another
process of intermediate priority prevents the low priority process from finishing
its work inside the monitor. In order to prevent this problem, priority inversion,
we have implemented a priority inheritance scheme. It means that a process that
wants to enter a locked monitor will raise the priority of the locking process to its
own priority for the duration of the monitor operation. Figure 1 describes this in
some detail.

10

Monitor Data Structures

The data structures are again put into a separate module for debugging reasons.
The records contain the expected queues of blocked processes, and also the vari-
ables blocking and priorityDiff. These variables are used to to implement
the priority inheritance mentioned above. The variable blocking will contain a
reference to the process holding the monitor. priorityDiff will indicate how
much the priority of the blocking process has been raised. The sections marked
(* Debug *) contain the name of the monitor, and also a singly linked list of all
monitors so that debugging software may find them.

DEFINITION MODULE MonitorInternal;
FROM KernelTypes IMPORT Queue, ProcessRef, KernelName;

TYPE
MonitorGate = POINTER TO MonitorRec;
MonitorEvent = POINTER TO EventRec;
MonitorRec = RECORD
waiting : Queue;
blocking : ProcessRef;

priorityDiff : CARDINAL;
(* Debug *)
next : MonitorGate;

name : KernelName;
events : MonitorEvent;
END;

EventRec = RECORD
evMon : MonitorGate;

waiting : Queue;
(* Debug *)
next : MonitorEvent;
name : KernelName;
END;
VAR
monitorList : MonitorGate;

END MonitorInternal.

Monitor Implementation

The code for priority inheritance takes up a large part of the routines EnterMon-
itor, LeaveMonitor and Cause. It has been marked specially in the code to be
easily recognized. The reader may notice that apart from the priority inheritance
the code is very similar to Wait and Signal of Semaphores.

IMPLEMENTATION MODULE Monitors;

FROM Coroutines IMPORT Disable, Reenable, InterruptMask;
FROM Storage IMPORT ALLOCATE;
FROM KernelTypes IMPORT

ProcessRef, Queue, NewQueue, MovePriority, SetKernelName;
IMPORT Kernel;
FROM Nucleus IMPORT Running, ReadyQueue, TimeQueue,

Schedule;

FROM Console IMPORT Trap;
IMPORT MonitorInternal;
FROM MonitorInternal IMPORT MonitorRec, EventRec, monitorList;

11

TYPE
MonitorGate = MonitorInternal.MonitorGate;
MonitorEvent = MonitorInternal.MonitorEvent;

VAR
Initialized : BOOLEAN;

PROCEDURE EnterMonitor

(mon : MonitorGate) ;
VAR
oldDisable : InterruptMask;
runningPriority,
blockingPriority : CARDINAL;
blockingQueue ! Queue;
BEGIN
oldDisable := Disable();
WITH mon~ DO

IF blocking NIL THEN
blocking := Running;

ELSE
MovePriority(Running,waiting);
runningPriority := Running~”.head.priority;

blockingPriority := blocking”.head.priority;
IF runningPriority < blockingPriority THEN

blocking”.head.priority := runningPriority;
priorityDiff := priorityDiff + blockingPriority
- runningPriority;

blockingQueue := blocking”.head.priorityQueue;
IF blockingQueue <> NIL THEN
MovePriority(blocking, blockingQueue);
END;
END;
Schedule;
END (x IF #);
END;
Reenable(oldDisable) ;
END EnterMonitor;

PROCEDURE LeaveMonitor (mon: MonitorGate);

VAR
oldDisable : InterruptMask;
blockingQueue 1 Queue;
BEGIN
oldDisable := Disable();
WITH mon~ DO

IF blocking <> Running THEN
Trap("Strange error in Monitors");

END;

IF priorityDiff <> 0 THEN
INC(Running”.head.priority, priorityDiff);
blockingQueue := blocking”.head.priorityQueue;
IF blockingQueue <> NIL THEN

MovePriority(blocking, blockingQueue);

END;
priorityDiff := 0;

END;

IF ProcessRef(waiting) <> waiting~.succ THEN
blocking := waiting~.succ;
MovePriority(blocking, ReadyQueue);

ELSE

blocking := NIL;

12

ooooOobogoooaon

ODoOOoOOoOooo

END;
Schedule;
END (* WITH *);
Reenable(oldDisable);
END LeaveMonitor;

PROCEDURE Await(ev: MonitorEvent);

VAR
oldDisable : InterruptMask;

BEGIN
oldDisable := Disable();
MovePriority(Running, ev”.waiting);
LeaveMonitor(ev~.evMon);
Reenable(oldDisable);

END Await;

PROCEDURE Cause(ev: MonitorEvent);
VAR

oldDisable : InterruptMask;

pt : ProcessRef;

runningPriority, ptPriority: CARDINAL;
BEGIN

oldDisable := Disable();

LOOP
pt := ev”.waiting”.succ;
IF ProcessRef (ev”.waiting) = pt THEN
EXTT
ELSE

MovePriority(pt, ev™.evMon".waiting);
ptPriority := pt~.head.priority;
runningPriority := Running~.head.priority;
IF ptPriority < runningPriority THEN
Running”.head.priority := ptPriority;
ev”.evMon”.priorityDiff :=
runningPriority - ptPriority;
END;
END;
END (* LOOP #*);
Reenable(oldDisable);
END Cause;

PROCEDURE Init;
BEGIN
IF NOT Initialized THEN
Initialized := TRUE;
Kernel.Init;
END (% IF #);
END Init;

PROCEDURE InitMonitor (

VAR mon : MonitorGate;
name : ARRAY OF CHAR);
VAR
oldDisable : InterruptMask;
BEGIN
IF NOT Initialized THEN
Init;
END IF ;
NEW (mon) ;
WITH mon™ DO
NewQueue (waiting) ;

oooooono

13

blocking := NIL;

priorityDiff := 0;

events := NIL;

SetKernelName (waiting”.name,name);
END (* WITH #);

(* Debug setup *)
0ldDisable := Disable();

mon”.next := monitorList;
monitorList := mon;
Reenable(oldDisable) ;

END InitMonitor;

PROCEDURE InitEvent

(VAR ev : MonitorEvent;
mon : MonitorGate;
name : ARRAY OF CHAR);

VAR
oldDisable : InterruptMask;
BEGIN (* InitEvent =)
NEW (ev) ;
WITH ev™ DO
evMon := mon;
NewQueue(waiting);
SetKernelName (waiting~.name, name);
END;

(* Debug setup *)

oldDisable := Disable();

ev™.next := mon~.events;

mon”.events := ev;

Reenable(oldDisable) ;
END InitEvent;

BEGIN (* Monitors *)
Initialized := FALSE;
monitorList NIL;

END Monitors.

9. Kernel

The Kernel module itself contains mainly primitives for process creation and de-
struction, and for time handling. An interesting feature is that the internal tick
time is determined automatically based on the speed of the hardware. All time
specifications are given in milliseconds, and as such independent of the internal
tick time.

The main time-handling primitive is WaitUntil, which waits until a specified time
into the future, rather than the possibly more common Delay-for-x-milliseconds.
The reason is that in e.g. a regulator implementation we want to maintain a
fixed sampling rate even if the computation time is a considerable, and possibly
varying part of the sampling interval. Another possible way to achieve this goal
would be to have a primitive for periodic rescheduling, but it has not yet been
implemented.

Kernel Definition Module
DEFINITION MODULE Kernel;
A Real Time Kernel.

14

IMPORT KernelTypes;

TYPE
Time = KernelTypes.Time;

CONST
MaxPriority = MAX(CARDINAL);
PROCEDURE Init;
Initializes the kernel and makes a process of the main program.

PROCEDURE CreateProcess(processa: PROC; memReq: CARDINAL;
name: ARRAY OF CHAR);

Makes a process of the procedure processa. memReq is the number of bytes
needed for local variables, stack and heap. Typical numbers are in the range
1000..10000. name is the name of the process for debugging purposes.

PROCEDURE Terminate;
Terminates the calling process.
PROCEDURE SetPriority(priority: CARDINAL);

The priority of the calling process is set to priority. High numbers mean
low priority. Use numbers in the range 10..1000. Numbers higher than 1000
will cause an error halt. Numbers less than 10 may conflict with predefined
internal priorities.

PROCEDURE Tick(): CARDINAL;

A suitable tick interval is automatically determined based on the speed of the
machine we run on. Returns this tick time, in milliseconds.

PROCEDURE CurrentTime(VAR t: Time);
Returns current time.

PROCEDURE IncTime(VAR t : Time; c¢: CARDINAL);
Increments the value of t with ¢ milliseconds.

PROCEDURE CompareTime(VAR t1, t2 : Time): INTEGER;

This procedure compares two time-variables. Returns -1 if t1 < t2. Returns 0
if t1 = t2. Returns +1if t1 > t2. The VAR-declaration is for efficiency only;
the actual parameters are not touched.

PROCEDURE WaitUntil(t: Time);

Delays the calling process until the system time >= t.
PROCEDURE WaitTime(t: CARDINAL);

Delays the calling process for t milliseconds.
END Kernel.

Kernel Implementation Module

The implementation module for the kernel is fairly straightforward. It contains
very little data of its own, since most of that is in the module KernelTypes.

15

IMPLEMENTATION MODULE Kernel;

FROM SYSTEM IMPORT ADDRESS, NEWPROCESS;
FROM Coroutines IMPORT Disable, Reenable, InterruptMask;
FROM Storage IMPORT ALLOCATE, DEALLOCATE;
FROM Console IMPORT Trap;
IMPORT Nucleus;
FROM Nucleus IMPORT
Running, ReadyQueue, TimeQueue, Schedule, Now;
IMPORT KernelTypes;
FROM KernelTypes IMPORT
ProcessRef, Queue, InitProcessRec, SetKernelName,
NewQueue, MovePriority, MoveTime;
IMPORT FindTick;

CONST
IdleArea = 1000;

VAR
Initialized : BOOLEAN;
NProc : INTEGER;
Terminated : Queue;

PROCEDURE CreateProcess(processa: PROC; memReq: CARDINAL;
name: ARRAY OF CHAR);
VAR
child : ProcessRef;
Addr : ADDRESS;
BEGIN
IF NOT Imnitialized THEN
Init;
END;
NEW(child);
InitProcessRec(child);
NProc := NProc + 1;
WITH child™ DO
head.priority := 1

assignedPriority := 1;
processNr := NProc;
SetKernelName(head.name, name);

(* GetName (ProcessName) ; *)
stackSize := memReq;

ALLOCATE(stack, stackSize);
NEWPROCESS (processa, stack, stackSize, procv);
END;
MovePriority(child, ReadyQueue);
Schedule;
END CreateProcess;

PROCEDURE Terminate;

BEGIN
MovePriority(Running, Terminated);
Schedule;
Trap(’Kernel -- Terminated process reincarnated’);

END Terminate;

PROCEDURE SetPriority(priority : CARDINAL);

BEGIN
Running~.assignedPriority := priority;
IF priority < Running”.head.priority THEN
Running”.head.priority := priority;

ELSIF ADDRESS(Running”.runningIn) = NIL THEN

16

Running”.head.priority := priority;
MovePriority(Running, ReadyQueue);
Schedule;
END (* IF *);
END SetPriority;

PROCEDURE Tick(): CARDINAL;
BEGIN

RETURN FindTick.Tick;
END Tick;

PROCEDURE CurrentTime(VAR t: Time);

VAR
oldDisable : InterruptMask;
BEGIN
oldDisable := Disable();
t := Now;
Reenable(oldDisable);

END CurrentTime;

PROCEDURE IncTime(VAR t : Time; c: CARDINAL);
BEGIN

KernelTypes.IncTime(t,c);
END IncTime;

PROCEDURE CompareTime (VAR t1, t2 : Time): INTEGER;
BEGIN

RETURN KernelTypes.CompareTime(tl, t2);
END CompareTime;

PROCEDURE WaitUntil(t: Time);

BEGIN
Running”.head.nextTime:=t;
MoveTime (Running,TimeQueue) ;
Schedule;

END WaitUntil;

PROCEDURE WaitTime(t: CARDINAL);
VAR
next : Time;
BEGIN
CurrentTime(next);
IncTime(next,t);
WaitUntil(next);
END WaitTime;

PROCEDURE 1Idle;
VAR
P : ProcessRef;
Q : Queue;

BEGIN
SetPriority(MaxPriority - 1);
NewQueue(Q) ;

WHILE TRUE DO
(* Check for terminated processes *)
IF ProcessRef (Terminated) <> Terminated~.succ THEN
P := Terminated~”.succ;
MovePriority(P, Q);
Q" .succ := ProcessRef(Q);
Q" .pred := ProcessRef(Q);

ELSE
P := NIL;

END;

IF P <> NIL THEN
DEALLOCATE(P~ .stack, P~ .stackSize);
DISPOSE(P) ;

END (% IF *);

END;
END Idle;

PROCEDURE Init;
BEGIN
IF NOT Initialized THEN
Initialized := TRUE;
Nucleus.Init;
NewQueue (Terminated) ;
CreateProcess(Idle, IdleArea, ’Idle’);
END (x IF *);
END Init;

BEGIN (* Kernel x)
Initialized := FALSE;
NProc := 1;

END Kernel.

10. KernelTypes Implementation

The implementation module for KernelTypes is mostly an exercise in program-
ming of doubly linked lists, and thus fairly repetitive in nature. Since the queues
are the basis for the preemptive scheduling and also for the mutual exclusion, all
queue handling is done with interrupts disabled.

There are also a couple of routines for time handling, but they are here because
time handling is among the machine dependent primitives and they should be
collected in as few places as possible.

IMPLEMENTATION MODULE KernelTypes;

FROM Coroutines IMPORT Disable, Reenable, InterruptMask;
FROM Storage IMPORT ALLOCATE;

CONST TimeSlice = 1000;

PROCEDURE InitQueueRec
(VAR q : Queue);
BEGIN InitQueueRec
WITH q~ DO
succ := ProcessRef(q);
pred := ProcessRef(q);
priority := 0;
nextTime.hi :=
nextTime.lo :
priorityQueue
timeQueue := NIL;
END (* WITH *);
END InitQueueRec;

t
oo

PROCEDURE InitProcessRec
(VAR r : ProcessRef);

18

BEGIN
WITH r~ DO
head.succ
head.pred

= r;
= r;

head.priority := 0;

head.nextTime.hi := 0;
head.nextTime.lo := 0;
head.name := ’’;
head.priorityQueue := NIL;
head.timeQueue := NIL;

(* Nucleus *)

procv :=
timer :

(* Kernel
processNr

NIL;
0;

*)
= 0;

assignedPriority := 0;

stack :=
stackSize

(* Monito

runningIn :
blockedBy :

END WITH ;
END InitProce

PROCEDURE SetKe
VAR kn: Kerne

NIL;
= 0;

rs *)
NIL;
NIL;

ssRec;

rnelName (
1Name;

name: ARRAY OF CHAR);

VAR i, 11: CARD
BEGIN

INAL; c: CHAR;

11 := HIGH(name);

IF NameLen <
i = 0;

LOOP
¢ := namelil;
kn[i] := c¢;
IF (c = 0C) OR (i >»= 11) THEN EXIT END;
INC(i);
END;

11 THEN 11 := Namelen;

END SetKernelName;

PROCEDURE NewQueue(VAR q: Queue);

BEGIN
NEW(Q) ;
InitQueueRec(q);
q~.priority := MAX(CARDINAL);
q~ .nextTime.lo := MAX (CARDINAL) ;

q~.nextTime.h
END NewQueue;

PROCEDURE MovePriority(P :

i := MAX(CARDINAL);

END;

ProcessRef; q :

Queue) ;

Removes P from its queue and then inserts processrecord P in queue Q according to

priority.

VAR
oldDisable
r

Pri
BEGIN

: InterruptMask;
: ProcessRef;
: CARDINAL;

IF q <> NIL THEN

oldDisable

:= Disable();

19

(* Remove P from old queue *)
P~ .head.pred”.head.succ := P~.head.succ;
P~ .head.succ”.head.pred := P".head.pred;

(* Find P’s place in the new queue *)
Pri := P~ .head.priority;

r := q".succ;

WHILE Pri >= r~.head.priority DO
r := r~.head.succ;

END;

(* Insert P in the new queue *)

P~ .head.succ := r;

P~ .head.pred := r~.head.pred;

r~.head.pred”.head.succ := P;

r~.head.pred := P;
P~ .head.priorityQueue := q;
P~ .head.timeQueue := NIL;

(* Give P maximum time *)

P~ .timer := TimeSlice;
Reenable(oldDisable) ;
END IF ;

END MovePriority;

PROCEDURE MoveTime(P : ProcessRef; q : Queue);
Removes P from its queue and then inserts processrecord P in queue Q in time order.

VAR
oldDisable : InterruptMask;
r : ProcessRef;
T : Time;

BEGIN MoveTime
oldDisable := Disable();

Remove P from old queue
P~ .head.pred”.head.succ
P~ .head.succ”.head.pred :

P~ .head.succ;
P~ .head.pred;

Find P’s place in the new queue

T := P".head.nextTime;

r := q".succ;

WHILE CompareTime(T, r~.head.nextTime) >= 0 DO
r := r~.head.succ;

END;

Insert P in the new queue

P~ .head.succ := r;

P~ .head.pred := r~.head.pred;
r~.head.pred”.head.succ := P;
r~.head.pred := P;

P~ .head.priorityQueue := NIL;

P~ .head.timeQueue := q;

Give P maximum time
P~ .timer := TimeSlice;

Reenable(oldDisable);
END MoveTime;

PROCEDURE CompareTime (VAR t1, t2: Time): INTEGER;
BEGIN

20

IF ti1.hi < t2.hi THEN RETURN -1
ELSIF t1.hi = t2.hi THEN
IF t1.lo < t2.1o THEN RETURN -1
ELSIF t1.10o = t2.lo THEN RETURN 0
ELSE
RETURN 1
END;
ELSE
RETURN 1
END;
END CompareTime;

PROCEDURE IncTime(VAR t: Time; <¢: CARDINAL);
VAR P: CARDINAL;
BEGIN
WITH t DO
P:=MAX(CARDINAL) - lo;
IF P >= ¢ THEN
INC(lo,c);
ELSE
lo:=c-P - 1;
INC(hi);
END;
END;
END IncTime;

END KernelTypes.

11. FindTick—Finding a Suitable Tick Time

The Kernel described in this report runs on machines of very different speeds.
A quick measurement indicated a speed ratio of 30 between the slowest and the
fastest machine. It is therefore reasonable to have different basic tick times for the
different machines, but we don’t want to force the operator to enter it manually
every time the kernel starts. The module FindTick performs some typical floating
point calculations in a loop, and based on the time for this the Kernel tick time
is determined. FindTick is run only once, when the kernel is started, when the
program is still in DOS mode, and the only item exported is the cardinal variable
tick.

DEFINITION MODULE FindTick;

This module performs some computation and times them to find a suitable tick time
for the machine we run on.

VAR Tick: CARDINAL;
END FindTick.

IMPLEMENTATION MODULE FindTick;
FROM SYSTEM IMPORT DOSCALL;

CONST MAXTICK = 100.0; MINTICK = 1.0;
The maximum and minimum tick times in milliseconds

PROCEDURE GetTime(VAR hour, minute, second, csec: CARDINAL);
Returns the DOS calendar time in hours, minutes, seconds and centiseconds

VAR hourminute,seccsec: CARDINAL;
BEGIN
DOSCALL(2CH, hourminute, seccsec);
hour:=hourminute DIV 256;
minute := hourminute MOD 256;

21

second := seccsec DIV 256;
csec := seccsec MOD 256;
END GetTime;

PROCEDURE Compute(turns: CARDINAL);
The inner computing loops. Performs some simple multiplications and additions.

VAR
res,x,r,s,t,u: REAL;
i,j: CARDINAL;
BEGIN
r:=6.37; s:= ~8.93; t:=24.17; u:=3.48;
res:=rxs+t*u;
FOR i:=1 TO turns DO
FOR j:=1 TO 25 DO
X:=r*st+t*u;
IF ABS(1.0 - x/res) > 0.0001 THEN
HALT;
END;
END;
END;
END Compute;

PROCEDURE TimeIt(turns: CARDINAL): CARDINAL;
Returns the time in milliseconds for Compute.

VAR hl, h2, mi, m2, si, s2, csl, cs2: CARDINAL;
BEGIN

GetTime(hl, mi1, si1, csl);

Compute(turns) ;

GetTime(h2, m2, s2, cs2);

m2 := m2 + 60*x(h2 - hl);

s2:=82 + 60*x(m2 - m1);

cs2 := cs2 + 100%(s2 - s1) - csi;

RETURN 10%*cs2;
END Timelt;

CONST
factor = 2.1544347; third root of 10
span = 1.46780; sixth root of 10

VAR
turns, time, exponent: CARDINAL;
rtime, rtick, magnitude: REAL;

BEGIN

turns:=100;

LOOP
time := TimeIt(turns);
IF (turns >= 64000) OR (time >= 500) THEN EXIT END;
turns := 2*turns;

END;

rtime := FLOAT(time)/FLOAT(turns);

rtick:=MAXTICK; magnitude := MAXTICK; exponent:=0;
LOOP
IF (rtick * span > rtime) AND
(rtick/span < rtime) THEN
EXIT;
END;
rtick := rtick/factor;
IF exponent MOD 3 = 0 THEN magnitude := magnitude/10.0; END;
INC(exponent) ;

22

IF rtick < MINTICK*span THEN EXIT END;
END;
Tick:=TRUNC(FLOAT(TRUNC(rtick/magnitude+0.5))*magnitude) ;
END FindTick.

12. Nucleus Implementation

The Nucleus is the other machine-dependent module of the Real Time Kernel
Package. It contains code for three different functions: the transfer of control
between processes, the clock interrupt handling, and general initialization of the
entire kernel package.

There is also code in the Nucleus to save and restore the floating point registers.
These routines need be called only by Schedule, and therefore they don’t have to
be exported.

The clock interrupt handler checks the Clock Queue to determine if the first pro-
cess should be made ready to run, and if so moves it to the Ready Queue and
similarly checks the new first entry. The clock queue is always maintained in
time order, and therefore only the first entry needs be checked

There is also a procedure variable EveryTick, that gets called by the clock inter-
rupt handler. This variable is intended for low-level periodic tasks, such as the
handling of a mouse.

The initialization code creates a process record for the main program and en-
ters it in the Ready Queue. It also starts the real time clock via a call to the
ClockInterrupt module.

IMPLEMENTATION MODULE Nucleus;

IMPORT SYSTEM;
FROM SYSTEM IMPORT
ADDRESS, ADR, TRANSFER, SETREG, GETREG, DS, BX, CODE;
FROM Coroutines IMPORT Disable, Reenable, InterruptMask;
IMPORT Storage;
FROM Storage IMPORT ALLOCATE;
IMPORT KernelTypes;
FROM KernelTypes IMPORT
ProcessRef, Queue, InitProcessRec, Time, CompareTime,
NewQueue, MovePriority;
IMPORT FindTick;
IMPORT ClockInterrupts;
IMPORT Console;

CONST
MaxLevel = 7;
TimeSlice = 1000;

VAR
Initialized : BOOLEAN;
Tick : CARDINAL;
EveryTick : PROC;

(x$R—*) (*$S—+*) (*$T-*)

PROCEDURE Schedule;

VAR
oldRunning : ProcessRef;
oldDisable . InterruptMask;

23

BEGIN
oldDisable := Disable();
IF ReadyQueue”.succ <> Running THEN

Fsave;
oldRunning:=Running;
Running := ReadyQueue~”.succ;
TRANSFER (oldRunning” .procv, Running”.procv);
Frestore;
END;
Reenable(oldDisable);

END Schedule;

PROCEDURE Fsave;
Saves the floating point registers

VAR a: ADDRESS;
BEGIN
a:=ADR(Running~.FParea);
SETREG(DS, a.SEGMENT) ;
SETREG(BX,a.0FFSET) ;
(* FSAVE [BX] *) CODE(ODDH,037H);
END Fsave;

PROCEDURE Frestors;
Restores the floating point registers

VAR a: ADDRESS;
BEGIN
a:=ADR(Running~.FParea) ;
SETREG(DS,a.SEGMENT) ;
SETREG(BX,a.0FFSET) ;
(* FRSTOR [BX] =) CODE(ODDH,027H);
END Frestore;

PROCEDURE Clock;
The clock interrupt routine

VAR P: ProcessRef;
BEGIN
KernelTypes.IncTime (Now, Tick);
EveryTick;
LOOP
P:=TimeQueue”.succ;
IF CompareTime(P~.head.nextTime,Now) <= O THEN
MovePriority(P, ReadyQueue);
ELSE
EXIT;
END (* IF *);
END (% LOOP *);

DEC(Running~.timer);
IF Running~.timer <= O THEN
MovePriority(Running, ReadyQueue);
END (* IF %);
Schedule;
END Clock;

PROCEDURE Init;
BEGIN
IF NOT Initialized THEN
NEW(Running) ;
InitProcessRec(Running);
WITH Running~™ DO

24

assignedPriority := 0;

(* Procv := CurrentProcess(); *)
processNr := 1;
head.name := "Main";

END;

MovePriority(Running, ReadyQueue) ;
ClockInterrupts.Init(Clock,FLOAT(Tick)) ;

Initialized := TRUE;
END IF ;
END Init;

PROCEDURE SetEveryTick(TP: PROC);
BEGIN

EveryTick := TP;
END SetEveryTick;

PROCEDURE Dummy;
BEGIN
END Dummy;

BEGIN
Initialized := FALSE;
Now.hi := Q; Now.lo := 0;
Tick := FindTick.Tick;
NewQueue (ReadyQueue) ;

NewQueue (TimeQueue) ;
EveryTick := Dummy;
END Nucleus.

13. Clock interrupt driver

This module is on the lowest level of the Kernel package. Its purpose is to intercept
the hardware clock interrupts and connect them with the clock routine in the
Nucleus. The inner working of the module is described inside the implementation
module.

DEFINITION MODULE ClockInterrupts;

Low level clock interrupt driver.
PROCEDURE Init(P: PROC; tick: REAL);

Initialization procedure.
P the procedure to be called on each clock interrupt.

tick the clock interrupt period expressed in ms.

END ClockInterrupts.

IMPLEMENTATION MODULE ClockInterrupts;

The module ClockInterrupts uses the system clock of the computer to give interrupts
regularly. The system clock normally interrupts ca. 18 times/second (2% times/hour).
The hardware clock registers may be changed to interrupt at a higher rate, which is
utilized here. Furthermore, the clock interrupt vector is changed so that a procedure in
this module handles the interrupt. In order to maintain the system software clock on
time the interrupt routine maintains a counter so that the standard interrupt routine
may be called with the correct frequency. In order to call the standard interrupt
routine, the original interrupt vector must be copied to an auxiliary software vector.
An arbitrary choice of vector 229 has been made. If conflicts should arise, this number
appears in one and only one place, in the CONST section below.

25

FROM SYSTEM IMPORT CODE, ADDRESS, OUTBYTE, DISABLE, ENABLE;
FROM Devices IMPORT SavelnterruptVector, RestorelnterruptVector;
FROM RTSMain IMPORT InstallTermProc;

FROM FloatingUtilities IMPORT Round;

CONST
SavedClockVector = 229; Auxiliary software interrupt vector
BaseFrequency = 1193.18; Frequency driving the counter/timer

TCC = 043H; Timer/counter control word
TCO = 040H; Timer 0
ClockMode = 036H; Clock Mode 3, 16 bits, binary
VAR
period: CARDINAL; The value to set in the hardware counter/timer. Also used to

determine when to call the system clock interrupt routine.
Set once by Init procedure.
timer: CARDINAL; The counter for calling the system clock interrupt routine.
ClockProcedure: PROC; The procedure to call on each clock interrupt.

(*$0+*) (*$R-*) (*$S—*) (*§T-*)

PROCEDURE ClockInterrupt;
This is the Clock Interrupt Service Routine. Is job is to save the registers and call the
higher level clock interrupt handler. It also maintains a counter so that the original
Interrupt Service Routine is called at approximately the correct interval.

BEGIN

(* PUSH AX *) CODE(050H);
(* PUSH CX *) CODE(051H);
(* PUSH DX #) CODE(052H);
(* PUSH BX *) CODE(053H);

(* PUSH SI) CODE(O056H);

(* PUSH DI *) CODE(Q57H);

(% PUSH DS *) CODE(O1EH);

(* PUSH ES *) CODE(O006H) ;
At this point all registers are saved. The purpose of the next statement is to increment
the counter, but also to set the Carry flag if the increment overflows. The carry is then
tested in the next CODE-statement. This is ugly programming, but it works provided
there is only MOV-instructions after the ADD-instruction in the Modula-statement. This
should be checked with each new version,

timer:=timer+period;

(* JNC L1 =*) CODE(073H, 004H);

(* INT SavedClockVector *) CODE(OCDH, SavedClockVector);
(% JMP L2 %) CODE(OEBH, 004H) ;

(* L1: SENDEQOI *) CODE(OBOH, 020H, OE6H, 020H);
(* L2: *)

All interrupt administration is done. Call the higher level interrupt routine and restore
the registers.

ClockProcedure;
(* POP ES *) CODE(QO7H);
€ POP DS *) CODE(Q1FH);
(* POP DI *) CODE(OSFH) ;
(* POP SI *) CODE(Q5EH) ;

(* POP BX *) CODE(OS5SBH);
(* POP DX *) CODE(QSAH);

(* POP CX %) CODE(O59H) ;
(* POP AX *) CODE(058H);
(* LEAVE *) CODE(OCSH);
(* IRET *) CODE(OCFH);

END ClockInterrupt;

26

PROCEDURE Init(P: PROC; tick: REAL);
VAR IV: ADDRESS; phigh, plow: CARDINAL;
BEGIN
InstallTermProc(Stop);
ClockProcedure:=P;
Compute the number of clock cycles between each interrupt. We need it in high-
byte/low-byte form.

period:=Round (tick * BaseFrequency);

plow:=period MOD 256;

phigh := period DIV 256;
Save the original clock interrupt vector and set the vector to the ClockInterrupt
procedure of this module. The rest of the initialization is done with interrupts off.

DISABLE;

SaveInterruptVector(8,IV);

RestoreInterruptVector (SavedClockVector,IV);

RestoreInterruptVector (8,ADDRESS (ClockInterrupt));
We reprogram the system timer/counter to give interrupts with the rate determined
by tick. The reason for the do-nothing Delay procedure is that things may
malfunction if two OUT-instructions are placed too close to each other.

OQUTBYTE(TCC,ClockMode); Delay;
OUTBYTE(TCO,plow); Delay;
OUTBYTE(TCO,phigh); Delay;
ENABLE;

END Init;

PROCEDURE Stop;
VAR IV: ADDRESS;
BEGIN
DISABLE;
Reset the clock interrupt vector

SaveInterruptVector (SavedClockVector,IV);
RestoreInterruptVector(8,IV);
Reset the system timer/counter to its normal value of 18 interrupts per second.

OUTBYTE(TCC,ClockMode); Delay;
OUTBYTE(TC0,Q); Delay;
OUTBYTE(TCO0,0); Delay;
ENABLE;

END Stop;

PROCEDURE Delay;
Does nothing

BEGIN

END Delay;

END ClockInterrupts.

14. Keyboard Interrupt Module

The main purpose of the Keyboard Interrupt Module is to act as an administrator.
The Keyboard interrupts once for each key press and once for each key release.
There is an interrupt routine inside the BIOS of the computer that normally han-
dles all these interrupts, decodes the key actions and makes the actual characters
available. The purpose of the interrupt handler in this module is to immediately
call the standard BIOS interrupt routine, and then on return determine if there
is really a character available. If so we call a user supplied Echo procedure to
handle the echo, collect characters into line buffers etc.

27

DEFINITION MODULE KBint;
Keyboard interrupt handler module.

TYPE EchoProc=PROCEDURE(CHAR) ;

PROCEDURE Init(ep: EchoProc);
Initialization procedure. The argument ep is the procedure to be called for each
keyboard event that means a keyboard character is available. The procedure should
handle the echo.

END KBint.

IMPLEMENTATION MODULE KBint;
FROM SYSTEM IMPORT CODE,SETREG,GETREG,SWI,AX,ADR,ADDRESS;
FROM Devices IMPORT SavelnterruptVector, RestorelnterruptVector;
FROM RTSMain IMPORT InstallTermProc;
FROM Kernel IMPORT SetPriority, CreateProcess;
FROM Semaphores IMPORT
Semaphore, InitSem, Wait, Signal;

CONST
KeyboardInterrupt=9;
MovedKeyboardInterrupt=0E€H;
VAR
vector: ADDRESS;
Echo: EchoProc;
kbsem: Semaphore;

(*$R—*) (*x$S-*) (*$T-*)

PROCEDURE KBintProc;
This is the Interrupt Driver. The basic principle is that for each interrupt we
immediately call the normal BIOS interrupt driver to let it do its job. The keyboard
makes an interrupt for each key press and each key release, and only some of them
mean that a character is available. We therefore check on return from the BIOS if a
character really is available.

BEGIN
Save some registers.
(* PUSHA *) CODE(060H) ;

Let the BIOS interrupt handler do its job.
SWI(MovedKeyboardInterrupt) ;
If there is no character, then exit
SETREG(AX, 100H) ;
SWI(16H);
(x JZ EXIT *) CODE(Q74H, O07H);
else save some more registers and signal the handler process
(*» PUSH ES *) CODE(O6H);
(+ PUSH DS #) CODE(1EH);
KBProc;
Restore registers and return.
(x POP DS *) CODE(1FH) ;
(* POP ES *) CODE(07H) ;
(*EXIT: POPA *) CODE(061H) ;
(* LEAVE #) CODE(OC9H) ;
(* IRET *) CODE(OCFH)
END KBintProc;

PROCEDURE KBProc;
BEGIN

Signal (kbsem) ;
END KBProc;

PROCEDURE KeyboardHandler;

28

This is the keyboard process. It has high priority, but spends almost all its time waiting
for the semaphore signalled by the interrutpt driver. It then calls the procedure variable
Echo and waits again.
VAR c: CHAR;
BEGIN
SetPriority(2);
LOOP
Wait (kbsem) ;
SETREG(AX,0);
SWI(16H);
GETREG(4X,c);
Echo(c);
END;
END KeyboardHandler;

PROCEDURE Init(ep: EchoProc);

BEGIN
InstallTermProc(Stop);
InitSem(kbsem,0, ’kbint.kbsem’) ;
CreateProcess (KeyboardHandler, 1000, *keyboardhandler’);
SaveInterruptVector (KeyboardInterrupt,vector);
RestoreInterruptVector (MovedKeyboardInterrupt,vector);
RestoreInterruptVector (KeyboardInterrupt, ADDRESS (KBintProc)) ;
Echo:=ep;

END Init;

PROCEDURE Stop;
This is the Termination procedure, i.e. it gets called when the program terrminates.
See the documentation for Devices.InstallTermProc. The calls to PutChar are just
debug printouts still left in.

BEGIN
PutChar(’A’); PutChar(’B’); PutChar(’C’);
RestoreInterruptVector (KeyboardInterrupt,vector) ;
PutChar(’D’); PutChar(’E’); PutChar(’F’);

END Stop;

END KBint.

29

