
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Reinforcement Learning for Active Visual Perception

Pirinen, Aleksis

2021

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Pirinen, A. (2021). Reinforcement Learning for Active Visual Perception. [Doctoral Thesis (compilation),
Mathematics (Faculty of Engineering)]. Lund University / Centre for Mathematical Sciences /LTH.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/6065e35e-b97b-44b8-97b0-a04fe3862a13

Reinforcement Learning for Active Visual Perception

Reinforcement Learning for
Active Visual Perception

by Aleksis Pirinen

Thesis for the degree of Doctor of Philosophy
Thesis advisors: Prof. Cristian Sminchisescu, Dr. Carl Olsson

Faculty opponent:
Prof. Hedvig Kjellström, KTH Royal Institute of Technology, Stockholm

To be presented, with the permission of the Faculty of Engineering at Lund University, for public criticism in
lecture hall MH:Hörmander at the Centre for Mathematical Sciences, Sölvegatan 18, Lund, on Thursday, the

10th of June 2021 at 13:15.

D
O
K
U
M
EN

TD
A
TA

BL
A
D
en

lS
IS
61

41
21

Organization

LUND UNIVERSITY

Centre for Mathematical Sciences
Box 118
SE–221 00 LUND
Sweden

Author(s)

Aleksis Pirinen

Document name

DOCTORATE THESIS IN MATHEMATICAL
SCIENCES

Date of disputation

2021­06­10
Sponsoring organization

Title and subtitle

Reinforcement Learning for Active Visual Perception

Abstract

Visual perception refers to automatically recognizing, detecting, or otherwise sensing the content of an image,
video or scene. The most common contemporary approach to tackle a visual perception task is by training a deep
neural network on a pre­existing dataset which provides examples of task success and failure, respectively. Despite
remarkable recent progress across a wide range of vision tasks, many standard methodologies are static in that
they lack mechanisms for adapting to any particular settings or constraints of the task at hand. The ability to
adapt is desirable in many practical scenarios, since the operating regime often differs from the training setup.
For example, a robot which has learnt to recognize a static set of training images may perform poorly in real­
world settings, where it may view objects from unusual angles or explore poorly illuminated environments. The
robot should then ideally be able to actively position itself to observe the scene from viewpoints where it is more
confident, or refine its perception with only a limited amount of training data for its present operating conditions.

In this thesis we demonstrate how reinforcement learning (RL) can be integrated with three fundamental visual
perception tasks – object detection, human pose estimation, and semantic segmentation – in order to make the
resulting pipelines more adaptive, accurate and/or faster. In the first part we provide object detectors with the
capacity to actively select what parts of a given image to analyze and when to terminate the detection process.
Several ideas are proposed and empirically evaluated, such as explicitly including the speed­accuracy trade­off in
the training process, which makes it possible to specify this trade­off during inference. In the second part we
consider active multi­view 3d human pose estimation in complex scenarios with multiple people. We explore this
in two different contexts: i) active triangulation, which requires carefully observing each body joint from multiple
viewpoints, and ii) active viewpoint selection for monocular 3d estimators, which requires considering which
viewpoints yield accurate fused estimates when combined. In both settings the viewpoint selection systems face
several challenges, such as partial observability resulting e.g. from occlusions. We show that RL­based methods
outperform heuristic ones in accuracy, with negligible computational overhead. Finally, the thesis concludes with
establishing a framework for embodied visual active learning in the context of semantic segmentation, where an
agent should explore a 3d environment and actively query annotations to refine its visual perception. Our empirical
results suggest that reinforcement learning can be successfully applied within this framework as well.

Key words

computer vision, reinforcement learning, deep learning, active vision, object detection, human pose estimation,
semantic segmentation

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

1404­0034
ISBN

978­91­7895­795­8 (print)
978­91­7895­796­5 (pdf)

Recipient’s notes Number of pages

219
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above­mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above­mentioned dissertation.

Signature Date 2021­04­29

Reinforcement Learning for
Active Visual Perception

by Aleksis Pirinen

Thesis for the degree of Doctor of Philosophy
Thesis advisors: Prof. Cristian Sminchisescu, Dr. Carl Olsson

Faculty opponent:
Prof. Hedvig Kjellström, KTH Royal Institute of Technology, Stockholm

To be presented, with the permission of the Faculty of Engineering at Lund University, for public criticism in
lecture hall MH:Hörmander at the Centre for Mathematical Sciences, Sölvegatan 18, Lund, on Thursday, the

10th of June 2021 at 13:15.

.

Funding information: The thesis work was financially supported by the European Research Coun­
cil Consolidator grant SEED, CNCS­UEFISCDI PN­III­P4­ID­PCE­2016­0535 and PCCF­2016­
0180, and the EU Horizon 2020 Grant DE­ENIGMA.

© Aleksis Pirinen 2021

Faculty of Engineering, Centre for Mathematical Sciences
Doctoral Thesis in Mathematical Sciences 2021:2
LUTFMA­1071­2021
ISBN: 978­91­7895­795­8 (print)
ISBN: 978­91­7895­796­5 (pdf)
ISSN: 1404­0034

Printed in Sweden by Media­Tryck, Lund University, Lund 2021

403.96 | 421.21 | 350.00

The first value is the average of the monthly measurements of
atmospheric carbon dioxide concentration (in ppm) at Mauna

Loa in May 2015, the year in which I began my doctoral studies.

The second value is the atmospheric carbon dioxide
concentration (in ppm) measured at Mauna Loa on the third of

April 2021, the month in which I submitted this thesis for printing.

The third value is the upper limit of atmospheric carbon
dioxide concentration (in ppm) considered ’safe’.

It was breached in 1988.

Abstract

Visual perception refers to automatically recognizing, detecting, or otherwise sensing the
content of an image, video or scene. The most common contemporary approach to tackle
a visual perception task is by training a deep neural network on a pre­existing dataset which
provides examples of task success and failure, respectively. Despite remarkable recent pro­
gress across a wide range of vision tasks, many standard methodologies are static in that they
lack mechanisms for adapting to any particular settings or constraints of the task at hand.
The ability to adapt is desirable in many practical scenarios, since the operating regime of­
ten differs from the training setup. For example, a robot which has learnt to recognize a
static set of training images may perform poorly in real­world settings, where it may view
objects from unusual angles or explore poorly illuminated environments. The robot should
then ideally be able to actively position itself to observe the scene from viewpoints where it
is more confident, or refine its perception with only a limited amount of training data for
its present operating conditions.

In this thesis we demonstrate how reinforcement learning (RL) can be integrated with
three fundamental visual perception tasks – object detection, human pose estimation, and
semantic segmentation – in order to make the resulting pipelines more adaptive, accurate
and/or faster. In the first part we provide object detectors with the capacity to actively
select what parts of a given image to analyze and when to terminate the detection process.
Several ideas are proposed and empirically evaluated, such as explicitly including the speed­
accuracy trade­off in the training process, which makes it possible to specify this trade­off
during inference. In the second part we consider active multi­view 3d human pose estima­
tion in complex scenarios with multiple people. We explore this in two different contexts:
i) active triangulation, which requires carefully observing each body joint from multiple
viewpoints, and ii) active viewpoint selection for monocular 3d estimators, which requires
considering which viewpoints yield accurate fused estimates when combined. In both set­
tings the viewpoint selection systems face several challenges, such as partial observability
resulting e.g. from occlusions. We show that RL­based methods outperform heuristic ones
in accuracy, with negligible computational overhead. Finally, the thesis concludes with
establishing a framework for embodied visual active learning in the context of semantic
segmentation, where an agent should explore a 3d environment and actively query an­
notations to refine its visual perception. Our empirical results suggest that reinforcement
learning can be successfully applied within this framework as well.

ix

Popular Summary

Visually unimpaired people often take the ability to perceive the world with their eyes for
granted. When visiting a house for the first time we can recognize the size and layout of
the hallway, where to put our shoes, where pets and other people in the room are, and so
on. We can also make predictions and decisions based on the visual input we receive. A
core challenge of computer vision and artificial intelligence is to develop machines capable
of the same thing – perceiving the world around them and acting rationally based on what
they observe. In this thesis we study different types of artificial visual perception systems,
which can be used for example to automatically detect objects in images or understand
human poses and motion in videos.

Today’s visual perception systems are typically powered by so called deep neural net­
works, which are inspired by the human brain with its neurons and complex web of connec­
tions. While deep networks yield remarkable results in many applications, they are often
computationally expensive and time­consuming to use. This can be especially problematic
in real­time scenarios such as video surveillance, or in robotics where an agent may have to
quickly explore a large and unknown environment. Also, to make a deep network function
properly it is first trained on large amounts of data, typically annotated images. Annotation
is a tedious process that costs time and money, as it involves humans describing what the
data contains, for example by drawing object boundaries in images. Finally, even when a
perception system has been trained it may work poorly in circumstances that differ from
the training data. For example, if the perception system is mostly trained on images that
depict objects from the front it may fail to recognize them from the side.

In this thesis we study and develop active methods for visual perception. By focusing a
pre­trained perception model on the most relevant aspects of a scene or an image, computa­
tional costs can be reduced and/or conditions where the model is inaccurate can be avoided.
We also show how similar ideas can be applied when training perception systems, which
reduces the effort associated with data annotation. The active visual perception methods
we develop are based on reinforcement learning, a trial­and­error approach for discovering
desirable behaviour by means of a reward function. For illustration, consider a self­driving
car that should drive from a start location to a given destination within a specific time limit.
In practice there may exist several paths between the two locations, such as when driving

xi

in a large city. A simple¹ reward function for this task is the negative distance between the
destination and the location of the car when the time is over. This implies that the max­
imum reward is obtained when the car reaches its goal on time. Note that the reward does
not specify how the car should drive, only what its objective is. Thus the car has to try many
different strategies to figure out what works and what does not. Reinforcement learning is
suitable in scenarios like this, where an agent may have to perform several actions until it
knows whether or not it has succeeded.

This thesis explores active visual perception in three different settings. In the first two
we propose methods that actively select what parts of a given input or set of inputs to analyze
(from which viewpoints to observe a scene, and where to look in an image, respectively)
so that a pre­trained perception system performs well, and/or to reduce the amount of
computation that is required. In the third setup we develop and study agents which are
tasked to refine a given perception model by actively exploring a given scene, such as a
floor plan of a house. As these agents move around the scene they are allowed to ask for
annotations (training data), which are then used to refine their perception models. The
crux is that the agents are allowed to request only a limited amount of training data, so
they should be careful regarding which data they select for training. We show in each
setting that active visual perception methods trained with reinforcement learning match or
outperform alternative approaches, typically at the same or lower computational costs.

¹The author of this thesis recommends providing also a negative reward for collisions.

xii

Populärvetenskaplig sammanfattning

De av oss som inte lider av någon synskada tar ofta förmågan att se vår omgivning för
given. När vi besöker ett hus för första gången kan vi med synen uppfatta hallens storlek
och utformning, var vi kan ställa våra skor, var i hallen som husdjur och andra människor
befinner sig, och så vidare. Baserat på vad vi ser kan vi dessutom förutsäga saker och ta
relevanta beslut. En av de stora utmaningarna och förhoppningarna inom datorseende och
artificiell intelligens är att utveckla maskiner som kan göra samma sak – att se världen
omkring dem och agera rationellt baserat på vad de ser. Förmågan att se kallas ofta i mer
tekniska sammanhang för visuell perception. I denna avhandling studerar vi olika typer av
system för artificiell visuell perception, vilka kan användas exempelvis till att automatiskt
detektera objekt i bilder eller förstå människors hållningar (poser) och rörelser i videor.

Dagens visuella perceptionssystem drivs oftast av så kallade djupa neuronnät, vilka är
inspirerade av den mänskliga hjärnan med sina neuroner och neuronsammankopplingar.
Djupa neuronnät ger idag utmärkta resultat i många tillämpningar, men de är ofta be­
räkningsmässigt dyra och tidskrävande att använda. Detta kan bli särskilt problematiskt i
sammanhang som kräver effektiv bearbetning av data (exempelvis videoövervakning), eller
inom robotik där en agent snabbt kan behöva utforska en stor och okänd omgivning. För
att få ett djupt neuronnät att fungera som det ska behöver det dessutom tränas på stora
mängder data, vanligen annoterade bilder. Annotering är en mödosam process som kostar
både tid och pengar, eftersom den involverar människor som beskriver vad bilderna före­
ställer, exempelvis genom rita konturer kring olika objekt för att markera var i bilden de är
och vilken form de har. Ett ytterligare problem är att när ett perceptionssystem väl har trä­
nats kan det fungera betydligt sämre om det används under omständigheter som skiljer sig
från träningsdatan. Exempelvis kan ett perceptionssystem som mestadels tränats på bilder
av objekt framifrån misslyckas att känna igen dem från sidan.

I denna avhandling studerar och utvecklar vi aktiva metoder för visuell perception. Ge­
nom att fokusera en redan tränad perceptionsmodell på de mest relevanta aspekterna av en
scen eller bild kan man minska mängden beräkningar som behöver göras och/eller undvika
omständigheter där modellen ger opålitliga resultat. Vi visar även hur liknande idéer kan ap­
pliceras när man tränar ett perceptionssystem, vilket kan reducera mängden dataannotering
som krävs. Våra aktiva visuella perceptionsmodeller baseras på förstärkningsinlärning, ett
slags prova­och­se­metod för att upptäcka önskvärt beteende baserat på en given belönings­

xiii

signal. För att illustrera detta koncept kan man föreställa sig exempelvis en självkörande bil
vars uppgift är att köra från en startposition till en given målposition inom en viss tidsram.
I praktiken kan det finnas flera vägar mellan de två platserna, till exempel om bilen navige­
rar i en större stad. En enkel² belöningssignal för denna uppgift är den negativa distansen
mellan målpositionen och bilens position när tiden är över. Detta innebär att den maximala
belöningen erhålls när bilen når sitt mål i tid. Notera att belöningssignalen inte specificerar
hur bilen bör köra, bara vad dess ultimata uppgift är (i det här fallet att nå målpositionen
inom en viss tid). Således måste bilen utforska flera olika strategier för att lista ut vad som
fungerar och vad som inte gör det. Förstärkningsinlärning lämpar sig väl i den här typen av
situationer, det vill säga när en agent behöver utföra flera olika handlingar innan den vet
om den lyckats eller inte.

Denna avhandling utforskar aktiv visuell perception i tre olika kontexter. I de första
två utvecklar vi metoder som aktivt väljer vilka delar av en insignal eller uppsättning insig­
naler som ska analyseras (från vilka vyer en scen ska betraktas, respektive var man ska titta
i en given bild) för att ett på förhand tränat perceptionssystem ska ge mer pålitliga resultat
och/eller för att minska mängden utförda bräkningar. I den tredje kontexten utvecklar och
studerar vi agenter vars uppgift är att förbättra en given perceptionsmodell genom att aktivt
gå runt och utforska en scen, såsom ett våningsplan i ett hus. Under tiden som agenterna
utforskar scenen har de också möjlighet att be om annoteringar (träningsdata), vilka sedan
används till att förbättra deras perceptionsmodeller. Kruxet är att agenterna bara tillåts be
om en begränsad mängd träningsdata, så de bör vara selektiva angående vilken träningsdata
de väljer. Vi visar i samtliga kontexter att aktiva visuella perceptionsmetoder som tränats
med förstärkningsinlärning matchar eller förbättrar alternativa metoder, och dessutom of­
tast till samma eller lägre beräkningsmässiga kostnader.

²Författaren till denna avhandling rekommenderar att man även ger en negativ belöning för kollisioner.

xiv

List of Publications

This thesis is based on the following publications:

• S. Mathe, A. Pirinen, C. Sminchisescu, “Reinforcement Learning for Visual Object
Detection”, Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016.

• A. Pirinen, C. Sminchisescu, “Deep Reinforcement Learning of Region Proposal
Networks for Object Detection”, Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, USA, 2018.

• A. Pirinen,¹ E. Gärtner,¹ C. Sminchisescu, “Domes to Drones: Self­Supervised Act­
ive Triangulation for 3D Human Pose Reconstruction”,Neural Information Processing
Systems (NeurIPS), Vancouver, Canada, 2019.

• E. Gärtner,¹ A. Pirinen,¹ C. Sminchisescu, “Deep Reinforcement Learning for Act­
ive Human Pose Estimation”, Association for the Advancement of Artificial Intelligence
(AAAI), New York, USA, 2020.

• D. Nilsson, A. Pirinen, E. Gärtner, C. Sminchisescu, “Embodied Visual Active
Learning for Semantic Segmentation”, Association for the Advancement of Artificial
Intelligence (AAAI), Virtual conference, 2021.

The author also contributed to the following publications:

• A. Pirinen, B. Ames, “Exact Clustering of Weighted Graphs via Semidefinite Pro­
gramming”, Journal of Machine Learning Research (JMLR), 2019.

• M. Priisalu, C. Paduraru, A. Pirinen, C. Sminchisescu, “Semantic Synthesis of Ped­
estrian Locomotion”, Asian Conference on Computer Vision (ACCV), Virtual confer­
ence, 2020.

All papers are reproduced with permission of their respective publishers.

¹Equal contribution.

xv

Acknowledgements

It has been nearly six years since I began as a PhD student. Those six years could have been
five, had I not been blessed with my daughter Juni towards the end of my doctoral studies.
Thank you, Juni, for being my main daytime companion (sorry Yoshi!) during parental
leave in the early days of the pandemic. Thank you also for giving me a research idea one of
those nights when we were both awake – this idea later made its way into one of the papers
of this thesis. Most of all however, I want to thank you for all those times you have made
me not think about research because I’ve been too busy observing you exploring the world.

There are many more people without which this thesis would not have been what it is.
I would like to thank my supervisor Cristian Sminchisescu for encouraging me to pursue
this interesting line of research. Thank you for all valuable input and feedback and for
all the ideas you have suggested to and investigated with me during these years. I’m also
grateful for having been given opportunities to visit conferences and other places where the
latest research is discussed.

I want to further thank the other people in Cristian’s group in Lund. David, for being
my steady office partner over the last years and for collaborating on interesting research.
Maria, for being my fellow traveller and office mate that summer in California, for dis­
cussions about linguistic and cultural differences between Estonia and Finland, and for
rewarding research discussions. Erik, for the endless amount of internal laughs around
deadlines (I’m pretty sure you’re reading this acknowledgements page after NIPS). Martin,
for open­hearted existential conversations as well as research­related discussions, and for
being a terrific guide during our train trip to Zurich. Henning, for many discussions about
the future and GANs. Ted, for being a great project supervisor in that spatial statistics
course I once took, and – last but certainly not least – for putting Veberöd on the map.
I’m not sure the world needs another superhero movie, but the next one should definitely
star Attention Aleksis, Deep Dave, Generative Gärtner, Hyper Henning, Multi­Modal Maria,
Multi­Modal Martin and Time­Invariant Ted.

A big thank you also to the rest of my colleagues at the Centre for Mathematical Sci­
ences. Particular shout­outs go to Carl Olsson for being my co­supervisor, Carl­Gustav
Werner for leaving a late Friday night dinner to assist with reluctant computers a few hours
before a deadline, Lena Lööf for consistently excellent practical advice, Patrik Persson for
his drone control mastery, and Tomas Persson for bröling at Stortorget. Looking abroad, I

xvii

am also grateful for the valuable input and support provided by Stefan Mathe, Alin Popa,
Andrei Zanfir, Mihai Zanfir and Elisabeta Oneata.

I would next like to thank my parents for encouraging me to work hard while at the
same time not pressuring me into a pre­specified direction. I always appreciated that free­
dom and will strive to give Juni the same feeling as she grows up. To my sister Karolina,
thank you for being there for me throughout my childhood (and to Magnus, thank you for
being there for my sister today). I would also like to mention Erik, Monty, Robin, Marielle
and Angelos, close friends who in their respective ways have contributed to bringing this
thesis to fruition. I’m further grateful for and happy to be part of my dear ’Skåne family’
– cheers, Annicka, Gert, Jonna, Emmie and Rikard! Finally, a big, warm and loving thank
you to you, Jonna, for all your love and support, for listening deeply and advising wisely,
and for being kind­hearted to friend and stranger alike. I look forward to many more ad­
ventures with our little quartet.

Översättning av första och sista stycket:

Det har gått nästan sex år sedan jag började som doktorand. Dessa sex år kunde ha varit fem,
om det inte var för att min dotter Juni gjorde entré mot slutet av mina studier. Tack, Juni, för
att du var min närmaste dagtidskompanjon (ledsen Yoshi!) under min föräldraledighet i början
av pandemin. Jag vill även tacka dig för att du gav mig en forskningsidé en av de där många
nätterna då vi båda var vakna – denna idé hittade sig till slut in i en av artiklarna i denna
avhandling. Mest av allt vill jag dock tacka dig för alla de gånger du fått mig att inte tänka på
forskning, eftersom jag varit alltför upptagen med att observera ditt utforskande av världen.

Härnäst vill jag tacka mina föräldrar för att de uppmuntrade mig att jobba hårt men sam­
tidigt inte pressade mig i någon förutbestämd riktning. Jag uppskattade alltid denna frihet och
kommer sträva mot att Juni också ska få känna så när hon växer upp. Kiitos teille molemmille!
Till min syster Karolina, tack för att du fanns där för mig genom hela min barndom (och till
Magnus, tack för att du finns där för min syster idag). Jag vill även nämna Erik, Monty, Robin,
Marielle och Angelos, nära vänner som på olika vis har bidragit till att denna avhandling nu har
skickats till tryck. Vidare är jag glad och tacksam för att jag får vara en del av min kära ’Skåne­
familj’ – skål, Annicka, Gert, Jonna, Emmie och Rikard! Till sist, ett stort, varmt och hjärtligt
tack till dig, Jonna, för all kärlek och allt stöd, för ditt djupa lyssnande och kloka rådgivande,
och för att du alltid bemöter såväl vänner som främlingar med en sån värme. Jag ser fram emot
många nya äventyr med vår lilla kvartett.

xviii

Contents

Abstract ix

Popular Summary xi

Populärvetenskaplig sammanfattning xiii

List of Publications xv

Acknowledgements xvii

1 Overview and Preliminaries 1
1 Introduction . 3
2 Computer Vision and Machine Learning Concepts 5

2.1 Images and Cameras . 5
2.2 Training, Testing and Validation Sets 8
2.3 Linear Classification with Support Vector Machines 8
2.4 Basics of Deep Learning . 10
2.5 Basics of Reinforcement Learning 22

3 Visual Perception Tasks Studied in this Thesis 30
3.1 Object Detection . 30
3.2 Human Pose Estimation . 35
3.3 Semantic Segmentation . 39

4 Summary of Contributions and Ideas for Future Work 40
4.1 Overview of Scientific Papers 43

2 Scientific Publications 51

Paper I: Reinforcement Learning for Visual Object Detection 53
1 Introduction . 56
2 Related Work . 56
3 Problem Formulation . 58

3.1 Sequential Detection Model . 58
3.2 Model Structure . 59
3.3 Stochastic Policy . 61
3.4 Inference and Learning . 64

xix

4 Experiments and Results . 66
4.1 Experimental Procedure . 66
4.2 Computational Efficiency and Accuracy 67
4.3 Qualitative Analysis . 68

5 Conclusions . 68
A Supplementary Material . 75

A.1 Useful Identities . 75
A.2 Model Equations . 76
A.3 Gradient Derivations . 77

Paper II:DeepReinforcement Learning of RegionProposalNetworks forObject
Detection 83
1 Introduction . 86
2 Related Work . 86
3 Two­Step Proposal­based Detection . 87
4 Sequential Region Proposal Network 88

4.1 States and Actions . 89
4.2 Contextual Class Probability Adjustment 90

5 Training . 91
5.1 Reward Signal . 91
5.2 Objective Function . 93
5.3 Joint Training of Policy and Detector 93

6 Experiments . 94
6.1 Results on MS COCO . 94
6.2 Results on PASCAL VOC . 96
6.3 Additional Results . 97

7 Conclusions . 99
A Supplementary Material . 105

Paper III: Domes to Drones: Self­Supervised Active Triangulation for 3D Hu­
man Pose Reconstruction 113
1 Introduction . 116
2 Related Work . 116
3 Human Pose Reconstruction from Active Triangulation 117
4 Active Triangulation Agent . 119

4.1 State­Action Representation . 119
4.2 Reward Signal for Self­Supervised Active Triangulation 120

5 Experiments . 121
5.1 Main Results . 122
5.2 Ablation Studies . 124
5.3 From Domes to Drones . 125

6 Conclusions . 125

xx

A Supplementary Material . 133
A.1 Model Architecture . 133
A.2 Matching Multiple People . 134
A.3 Reprojection Errors onto OpenPose 2d Estimates 135
A.4 Additional Dataset Insights . 136

Paper IV: Deep Reinforcement Learning for Active Human Pose Estimation 139
1 Introduction . 142
2 Related Work . 143
3 Active Human Pose Estimation . 144

3.1 Active Pose Estimation Setup 144
3.2 Detection and Matching of Multiple People 145

4 Deep Reinforcement Learning Model 146
4.1 Overview of the Pose­DRL Agent 146
4.2 State­Action Representation . 147
4.3 Reward Signal for Policy Gradient Objective 149
4.4 Active Pose Estimation of Multiple People 150

5 Experiments . 150
5.1 Quantitative Results . 152
5.2 Ablation Studies . 154

6 Conclusions . 155
A Supplementary Material . 161

A.1 Model Architecture . 161
A.2 Additional Insights and Details 161
A.3 Handling Missed Detections or Matchings 162
A.4 Additional Visualizations of Pose­DRL 163
A.5 Using Pose­DRL in the Wild 163

Paper V: Embodied Visual Active Learning for Semantic Segmentation 169
1 Introduction . 172
2 Related Work . 173
3 Embodied Visual Active Learning . 175

3.1 Methods for the Proposed Task 176
3.2 Semantic Segmentation Network 177
3.3 Reinforcement Learning Agent 178

4 Experiments . 180
4.1 Main Results . 181
4.2 Ablation Studies of the RL­agent 183
4.3 Analysis of Annotation Strategies 183
4.4 Pre­training the Segmentation Network 185

5 Conclusions . 185
A Supplementary Material . 195

xxi

A.1 Model Architectures . 195
A.2 Pseudo Code . 195
A.3 Additional Variants of Bounce 195

xxii

Chapter 1

Overview and Preliminaries

1 Introduction

Many autonomous systems rely on being able to ’see’ the world. For instance, a self­driving
vehicle should be able to accurately detect both static and dynamic objects, such as lane
markings and other cars, respectively. Interactions between objects should also be recog­
nized and predicted to enable safety­critical behavior, e.g. predicting that a pedestrian may
suddenly show up from behind an occluding bus. In the field of computer vision the abil­
ity to see is more formally called visual perception. Nowadays, visual perception systems
are most commonly based on deep neural networks, which are expressive computational
models that can produce representations suitable for prediction and decision making.

Impressive recent progress has been made across a plethora of visual perception tasks
and applications. However, many of the notable breakthroughs have required large­scale
annotated datasets for training the deep neural network­based perception models. Since
data annotation is often expensive, the size and variability of many contemporary data­
sets are limited and hence these do not capture all aspects of the rich, noisy and high­
dimensional world for which they are proxies. These practically unavoidable limitations of
existing datasets are problematic because many standard approaches for visual perception
lack mechanisms for adapting to unusual or entirely novel circumstances. Returning to the
example of the self­driving vehicle, it would be useful for the underlying visual perception
system to be able to refine itself if new data becomes available for its present operating
conditions, and/or finely inspect only those parts of the environment which are deemed
relevant for decision making. The latter may involve selectively analyzing only the parts of
the input stream where the visual perception system is sufficiently confident, to avoid mak­
ing decisions based on unreliable perception. Note that such a selective processing also has
the potential to reduce computational costs and could thus enable faster decision making.

Motivated by the above, in this thesis we present active approaches for three differ­
ent core visual perception tasks: object detection, human pose estimation, and semantic
segmentation – see Figure 1.1. The active framings of all tasks are studied in a reinforce­
ment learning (RL) setting. At a high level, RL can be seen as an interaction between an
agent and an environment in which the agent takes actions based on what it perceives in
the environment and where the state of the environment is subsequently updated. The
environment may also provide feedback in terms of rewards, but this feedback is typically
delayed with respect to the actions taken by the agent. Thus one of the challenges in RL
is to adequately assign credit to actions in order to improve the behavior of the agent (the
behavior is assessed by the cumulative reward that the agent obtains during its interaction
with an environment). At the same time, being able to learn from delayed rewards is one
of the strengths of RL, since one avoids having to manually specify for each state which
action is most appropriate.

In the first parts of the thesis we explore how to effectively deploy a given pre­trained
perception system, with the goal of reducing computational costs and/or enabling the per­
ception system to focus on those parts where it is most confident. In the last part we study

3

TERMINATE
SEARCH

FIXATE NEXT
LOCATION (F)

?
?

?

?
?

?

TERMINATE
VIEWPOINT
SELECTION

F

S

SHIP

PERSON

SHIP

? ?

? ?

?

IF YES, REFINE
PERCEPTION

…

REQUEST
ANNOTATION?

Figure 1.1: In this thesis we have developed reinforcement learning methods (agents) to tackle
three different visual perception tasks. Left: Active object detection. Given an image, an agent
sequentially fixates different image locations where it detects objects locally, until it automatically
terminates search. In this example the ship is detected in the first fixation and the person is detected
in the next one. The agent then keeps selecting whether to fixate or terminate search (here it seems
reasonable to terminate). Image obtained from [1]. Middle: Active human pose estimation, here
3d reconstruction via active triangulation. Given a set of several viewpoints, an agent sequentially
inspects different views where it estimates 2d or 3d poses of all people in the scene, until it terminates
viewpoint selection. In this example the person is first observed from the side­back, then from the
side­front, and the body parts that are observed from both views are reconstructed (blue). The agent
should then select the next viewpoint(s) so as to also reconstruct the head and legs. Images obtained
from [2]. Right: Embodied visual active learning, where an agent is tasked to actively explore a
3d environment and selectively request annotations for a limited number of informative views to
improve its visual perception. We study the task in the context of semantic segmentation, where the
agent may propagate labels in its local neighborhood to further bootstrap from its limited annotated
training data. The images corresponding to two different viewpoints were obtained from [3].

how an embodied agent operating in a novel 3d environment can efficiently train or refine
its perception, assuming it receives only a limited amount of annotated data. This annot­
ated data is adaptively queried by the agent as it actively explores the environment, and the
visual perception system is continually refined as the agent obtains more data.

Common for all setups considered in this thesis is that the proposed active visual percep­
tion agents are informed by the visual perception models which they are trying to improve
(either it in terms of active sensor positioning or perception refinement). These agents are
thus in principle able to adapt to any inherent limits or weaknesses of their underlying
perception models. In each task we show through thorough experimental evaluation that
active visual perception methods trained with reinforcement learning match or outperform
hand­engineered or exhaustive counterparts in task accuracy, often while only negligibly
increasing – and sometimes even lowering – computational costs.

This introductory chapter is organized as follows. Section 2 introduces the basic con­

4

cepts from computer vision and machine learning that are needed to understand the sci­
entific papers in the latter part of the thesis. Specifically, this section mainly revolves around
what images are and how they are captured with a pinhole camera, as well as the basics of
deep learning and reinforcement learning. In Section 3 we explain the different visual per­
ception tasks studied in the thesis (object detection, human pose estimation, and semantic
segmentation). Finally, in Section 4 we summarize the main contributions of this thesis,
state limits and assumptions, suggest ideas for future work, and provide an overview of the
scientific papers that constitute the latter part of this thesis.

2 Computer Vision and Machine Learning Concepts

This section contains a summary of key computer vision and machine learning concepts
that are relevant for understanding the scientific papers in the latter part of this thesis.

2.1 Images and Cameras

Computer vision revolves around the processing, analysis and understanding of images
and videos. A grayscale image is an H × W matrix, where the (i, j):th entry contains
the image intensity at the (i, j):th pixel of the image, and H and W denote respectively
the image height and width. A common set of values for the intensities are the integers
{0, 1, . . . , 255}, where 0 and 255 correspond to black and white, respectively. An RGB
image is an H×W ×3 tensor, where the three channels encode respectively the intensities
of red, green and blue color. Any color that is visible for the human eye can be described by
specifying the intensities of these three colors. Finally, an RGBD image is an H ×W × 4
tensor, where the first three channels correspond to an RGB image, and the fourth channel
encodes depth (distances to all that is observed in 3d space, see Figure 1.2) at each pixel.
RGBD images are less commonly used; in this thesis, the concept of image depth is used
only in Paper V. We next explain the basics of the pinhole camera model, which is the most
common model of how an observation of a 3d scene is transformed into an image.

2.1.1 The Pinhole Camera Model

Since the pinhole camera model is assumed throughout this thesis, we now explain the key
characteristics of such a camera. See Figure 1.2 for an overview. For simplicity, we consider
an idealized model and omit explaining common imperfections such as radial distortion
from camera lenses (refer e.g. to [4] for a more complete description).

Coordinate systems. To describe the configuration of a camera in 3d space, one defines the
rotation and translation of the camera centerC relative to a given global coordinate system.
Assume that the camera coordinate system is obtained by first rotating the global coordin­
ate system with the matrix R and then translating with the vector s, and let the point X
have coordinates (u, v, w) in the global coordinate system. Then the coordinates of X in

5

[𝑹, 𝒕]𝑿

𝒙´

𝑿

K

𝑲

𝑷

𝒙

𝑥
𝑦

(0,0,1)

𝑑

𝑧

𝒆𝑢

𝒆𝑣
𝒆𝑤

Figure 1.2: Basics of the pinhole camera model. The unit axes eu, ev and ew of the global co­
ordinate system are shown on the left. The x­, y­ and z­axis of the camera coordinate system are
also shown; unless otherwise specified coordinates refer to this system. A camera in (0, 0, 0) points
along the z­axis and projects observations onto the image plane, which is parallel to the xy­plane
and shown on the left side of the camera. A point X with global coordinates (u, v, w) is projected
along the blue line onto the image plane. The image plane is typically thought of as being posi­
tioned at z = 1 instead, and we will do so as well. Thus the projection point to the left corresponds
to x′ = (x′, y′, 1) in the image plane. By augmenting X into X = (u, v, w, 1), the projection
into x′ can be expressed as a multiplication with [R, t], where R ∈ R3×3 and −R⊤t ∈ R3×1

are respectively the rotation and translation of the camera coordinate system relative to the global
coordinate system. Specifically, given R and t, there exists λ ≠ 0 such that λx′ = [R, t]X . This
is because [R, t]X results in a change of coordinates from the global to the camera coordinate sys­
tem, and [R, t]X together with the camera center span a straight line in this system. Thus, scaling
[R, t]X with a particular λ results in x′ (without the change of coordinates, such a scaling yields a
point on the dashed turquoise line). The camera is described by the camera matrix P = K[R, t],
where K is used to transform the image plane into an image with H×W pixels, shown as the grid
on the right. The pixel x corresponding to the image point x′ is given by x = Kx′. Images typ­
ically have either three (RGB) or four (RGBD) channels. The depth d of the point X is visualized
in the figure; it is the shortest distance from X to the image plane.

the camera coordinate system are given by Xcam = R(X − s). Now override notation¹
and set X = (u, v, w, 1). Then the relation between Xcam and X can be expressed as
Xcam = [R,−Rs]X . Introducing t = −Rs we thus have Xcam = [R, t]X , which is
the standard way of expressing the relation between Xcam and X .

From the image plane to images. The main characteristic of a pinhole camera is that
3d points are projected onto the image plane of the camera along rays that intersect in the
camera centerC. This implies that objects further away appear smaller in the image, just as
they would for the human eye. While the physical image plane resides behind the camera
center inside the camera, for practical reasons it is instead imagined as residing in front of
the camera, centered at (0, 0, 1) in the camera coordinate system. This is possible because

¹This is a simplified description. More formally, the pinhole camera model is framed in the context of
projective geometry (see e.g. [4]), a topic which we omit in this brief overview.

6

any point along the straight line between C and Xcam is equivalent in the sense that the
camera cannot differentiate between them (they all project to the same point in the physical
image plane). Thus, given the rotation matrix R and translation t of the camera, a given
pointX as seen on the image plane is given by first computingXcam = [R, t]X , then di­
viding the result by the third coordinate of Xcam. The resulting point x′ has z­coordinate
1 and hence lies on the image plane. Thus the following relation holds between x′ and
X : There exists λ ̸= 0 such that λx′ = [R, t]X , where it specifically holds that λ is the
reciprocal of the third coordinate of Xcam = [R, t]X .

The final component of the basic pinhole camera model is the 3× 3 matrix K which
describes the inner parameters of the camera. At a high level, K is used to go from the
image plane to actual images consisting of pixels. Specifically,

K =

fx s cx
0 fy cy
0 0 1

 , (1.1)

where fx and fy define the focal lengths (typically fx = fy), s is the skew (typically s = 0)
and (cx, cy) is the focal point. The focal lengths define the scale relationship between image
coordinates and pixels, while the focal point essentially dictates where the origin of the
image plane ends up in the actual image (it dictates precisely this when s = 0).

The relation between a point x′ on the image plane and the location x of the corres­
ponding pixel in an image is given by x = Kx′. Given K, R and t, the camera is fully
described by its camera matrix P = K[R, t]. A direct relation between the 3d point X
and pixel location x is thus λx = PX . In practice, since x ∈ R3 while the pixels are in
{1, . . . , H}×{1, . . . ,W}, the pixel associated to x is given by first computing x = PX ,
then x̂ = x[1:2]/x[3], and finally rounding the entries of x̂ to their closest integers.

2.1.2 Image Preprocessing

The visual perception systems used to understand and analyze images typically benefit from
slightly preprocessing² the images beforehand. One of the most common approaches is
a per­image [−1, 1]­normalization, which means that the intensity in each image voxel
(i, j, c) is transformed from the interval {0, . . . , 255} to the [−1, 1]­range. Specifically,
assume u ∈ {0, . . . , 255}. Then ũ ∈ [−1, 1] is computed as

ũ =
2u− 255

255
. (1.2)

Another intensity normalization approach involves a whole set of images. It works by com­
puting the average intensities of the red, green and blue channels, and their standard devi­
ations. Before feeding an image to the perception system the channel means are subtracted

²We here do not consider preprocessing for enhancing the visual quality of images (e.g. denoising) and
assume instead that such steps have already been performed if deemed beneficial or necessary.

7

and then divided by the respective standard deviations. Thus for the red color channel, the
following operation is performed:

Ĩi,j,r =
Ii,j,r − rmean

rstd
, (1.3)

where i, j, r refer to the (i, j):th pixel of the red color channel, rmean is the average intensity
of red, and rstd is the corresponding standard deviation. Analogues of (1.3) are performed
for the blue and green channels as well.

2.2 Training, Testing and Validation Sets

In this section we briefly mention the important machine learning concepts of training,
testing and validation sets, respectively denoted Dtrain, Dtest and Dval. Unless otherwise
specified D refers to Dtrain throughout this introductory chapter of the thesis.

A parametric machine learning model has a set of parameters which are to be learnt
from data. This is typically done by specifying a loss function which describes what the
goal or task of the model is (see more in Section 2.4.3). This loss is then minimized on a
training dataset D = {(x1, y1), . . . , (xD, yD)}, where x is the i:th input (e.g. an image
or a feature vector), and yi is the i:th target (essentially a description of that xi depicts,
e.g. a class label). The loss minimization process is called model training. The purpose
of training is typically not only to yield a model which is accurate on the training set, but
one which performs well also on unseen data – the model is then said to generalize well.
Therefore, to assess machine learning models they are commonly evaluated on one or several
test sets Dtest, which contain examples (i.e. inputs xi and corresponding targets yi) that
the model has not seen before.

The validation set Dval is used during model development, mainly to tune the hyper­
parameters of the model. Hyperparameters relate to those settings of the model or model
training which are not learnt by minimizing a loss function as for standard parameters. In­
stead one typically tries several configurations of the hyperparameters, trains the model for
each, and evaluates which configuration yields the best performance onDval. Moreover, it
is common to use the validation set to ensure that the model does not overfit to the train­
ing data (an overfit model generalizes poorly to unseen data). This is done by occasionally
evaluating the model on the validation set during training, and early stopping the training
procedure once (if) the model performance begins to deteriorate on the validation set.

2.3 Linear Classification with Support Vector Machines

Before diving into nonlinear classification and prediction based on deep learning in Sec­
tion 2.4, we here briefly describe the support vector machine (SVM) [5], a linear classifier
that is used in Paper I. As we use the SVM for binary classification we explain that case in
this section. Therefore consider a datasetD = {(x1, y1), . . . , (xD, yD)}, wherexi ∈ Rm

is the i:th feature vector and yi ∈ {−1,+1} is the i:th class label. For example, D could

8

𝒘T𝒙 + 𝑏 = 0

𝒘T𝒙 + 𝑏 = −1

𝒘T𝒙 + 𝑏 = 1

𝑥1

𝑥2

𝑥1

𝑥2

Figure 1.3: Left: Hard­margin SVM for binary linear classification. The two classes (blue circles
and red crosses, respectively) are linearly separable. The line w⊤x+b = 0 separates the classes with
maximum margin (the margin is half the distance between the dashed lines). Right: Soft­margin
SVM for binary linear classification. This form of SVM allows the classes to be linearly inseparable
by introducing a slack variable εi ≥ 0 for each data point (xi, yi). The optimization problem
(see (1.6)) then balances between separating the classes and avoiding excessive values for the slack
variables. In the example shown, all blue circles above or on the line w⊤x + b = 1 and all red
crosses below or on the line w⊤x+ b = −1 have slack variables equal to 0. We also show bounds
on the slack variables which are associated with the three data points that do not fall within the
respective margins. Note that one of these is still correctly classified, while two are not.

be a dataset consisting of D images of faces and non­faces, including a label for each image,
with yi = +1 and yi = −1 corresponding to a face and non­face, respectively.

To the left in Figure 1.3 we show an example dataset D with feature vectors in R2.
Each blue point (circles) represents a data point (xi, yi) with yi = +1, and each red
point (crosses) represents a data point (xj , yj) with yj = −1. As is seen in the figure, a
straight line w⊤x + b = 0 which perfectly separates the data can be drawn; we therefore
say that the data is linearly separable. Every linearly separable dataset has a linear classifier
with maximum margin. This is illustrated in the figure, where the line w⊤x + b = 0 is
surrounded on both sides by the two dashed lines w⊤x + b = ±1. The margin is half
the distance between the dashed lines, and the line w⊤x+ b = 0 in the figure is an SVM
for binary linear classification. A point is classified as belonging to the class labeled +1 if
w⊤x + b > 0 and as belonging to the class labeled −1 otherwise. Points that lie on any
of the dashed lines are called support vectors. Let us now consider how to find the weights
w ∈ Rm and bias b ∈ R that maximizes the margin.

To figure out what optimization problem we should solve, first note that according to
the projection formula the margin which we want to maximize is given by

1

2

∥∥∥∥w⊤(x+ − x−)

∥w∥2
w

∥∥∥∥ , (1.4)

9

where x+ and x− are support vectors with labels +1 and −1, respectively. Hence they
satisfy w⊤x+ + b = 1 and w⊤x− + b = −1, respectively, which implies that w⊤(x+−
x−) = w⊤x++b−(w⊤x−+b) = 1−(−1) = 2. Thus (1.4) simplifies to 1/∥w∥, which
is our maximization objective. Our constrains are that (w⊤xi + b)yi ≥ 1 should hold
for each i ∈ {1, . . . , D}. In summary, written as a constrained minimization problem, we
have the following:

min
w,b

1

2
∥w∥2

subject to (w⊤xi + b)yi ≥ 1 for each i ∈ {1, . . . , D}.
(1.5)

This is a quadratic program with linear inequality constraints and hence a global optimum
can be found (see e.g. [6]).

Soft­margin support vector machines. To the right in Figure 1.3 we show a case where
a linear classifier cannot perfectly separate the data. This is a common situation in prac­
tice. To handle such a situation (and/or to reduce overfitting), we can slightly modify the
optimization program (1.5) into:

min
w,b,ε

1

2
∥w∥2 + C

D∑
i=1

εi

subject to (w⊤xi + b)yi ≥ 1− εi and εi ≥ 0 for each i ∈ {1, . . . , D},
(1.6)

where C ≥ 0 is a hyperparameter and εi is called the i:th slack variable. Note that we have
added a third optimization variable ε = [ε1, . . . , εD]⊤ in (1.6), and that C = 0 makes
(1.6) equivalent to (1.5). Like (1.5), the problem (1.6) is a quadratic program with linear
inequality constraints and thus a global optimum can be found in this case as well.

2.4 Basics of Deep Learning

All the visual perception systems we study and develop in this thesis are to a significant
extent based on deep neural networks, the parameters of which are tuned using deep learning.
In this section we give an overview of the deep learning concepts and algorithms that are
most important for the papers in the thesis – for a more detailed overview, see e.g. [7].

A deep neural network can be seen as a sequence of layers which sequentially process
inputs and produce outputs. Each element of an input tensor (e.g. vector or matrix)
is called a neuron. Neural networks can be broadly categorized as either feedforward or
recurrent. The k:th layer in an L­layer feedforward network is typically of the form

xk = fk
(
gk
(
xk−1;W k, bk

))
, (1.7)

where xk−1 and xk are respectively the input and output of the layer, gk is a linear op­
eration with learnable weights W k and biases bk, and fk is the layer’s activation function,

10

which is typically nonlinear (two subsequent linear layers without a nonlinearity between
them can be rewritten as a single linear layer). The input and output of theL­layer network
are x0 and xL, respectively. Recall that we in Section 2.3 used xi and yi to denote the
i:th training sample, while (1.7) overrides that notation so that superscripts instead point
to specific layers of a neural network. However, often when we refer to a layer we do not
need to refer to the specific layer index k and instead let y = xk, x = xk−1, W = W k,
b = bk, g = gk and f = fk.

A recurrent layer differs from a feedforward one in that its present computation depends
on computations performed at earlier time steps. Specifically, in its most basic form a
recurrent layer is given by

yt = f
(
g
(
xt,yt−1;W , b,WR, bR

))
, (1.8)

where t denotes the time step (indexes for example frames in a video) and WR and bR are
the weights and biases associated with the output yt−1 of the previous time step.

The remainder of this subchapter is organized as follows. In Section 2.4.1 and 2.4.2
we describe the main network types, layers and activation functions we have used in this
thesis. Section 2.4.3 explains how deep learning is used to train neural networks. Finally,
in Section 2.4.4 we briefly describe some of the most common techniques for improving
neural network training.

2.4.1 Feedforward Networks

To explain the basics of feedforward networks we will consider them in the context of image
classification. Given an image and a set C ofC object categories (such as ’human’ or ’zebra’),
including a background category which means it is none of the C− 1 other categories, the
task of image classification is to predict which category is depicted in the image. An image
may of course contain several objects, but for simplicity we assume each image contains
one (or zero, in the case of background) instances of some of the C − 1 object categories.
Each category can be uniquely associated with an integer in the set {1, . . . , C}; we let C
be associated with the background label. The task is thus equivalent to predicting which
integer c ∈ {1, . . . , C} the image is associated with, which can be formulated as predicting
which integer c is the most likely to be associated with the image. In practice this task can
be solved by designing a system which outputs a C­dimensional probability vector for each
image, where the predicted class is set to the index of the largest value in the vector.

The type of model we now consider for going from an image to such a probability
vector is a feedforward network, the most common of which is arguably the convolutional
neural network (CNN) [8]. In CNNs, the first part of the processing is convolutional, where
increasingly sophisticated features are produced layer after layer. Then follows a series of
fully connected (FC) layers, and finally a softmax layer is used to output a probability vector
over the various object categories. An overview of such a network is given in Figure 1.4.

11

ACTIVATION
FUNCTION......

𝑊𝑘
′

𝐻𝑘
′

ℎ𝑘

𝑤𝑘

𝐶
𝑘

𝒌:TH FILTER BANK

𝑊𝑘−1

𝐻𝑘−1

...

𝑪𝒌 CONVOLUTIONS WITH OUTPUT 𝒌 − 𝟏
MAX- OR AVG-POOLING

OUTPUT 𝒌

𝑠𝑘
ℎ

𝑠𝑘
𝑤 𝑠𝑘

𝑤

𝑠𝑘
ℎ 𝟐

𝟐
𝟐

𝟐

𝑊𝑘

𝐻𝑘

...

OUTPUT 0 (IMAGE)
OUTPUT 1 OUTPUT 2 OUTPUT 𝑲

...

OUTPUT
𝑲

...

OUTPUT
𝑲+ 𝟏

... ...

...
OUTPUT
𝑳 − 𝟏

OUTPUT 𝑳
(PREDICTION)

𝑊𝑘−1

𝐻𝑘−1

𝒌:TH CONVOLUTIONAL LAYER

RESHAPE

Figure 1.4: Overview of image classification with a basic convolutional neural network. Top: An
image is processed by L layers to predict a distribution over object categories. The image is first
processed by K convolutional layers. The K:th output is then column­stacked to a vector, which is
subsequently processed by L−K − 1 fully connected (FC) layers. Each layer typically concludes
with an element­wise nonlinear activation function. The L:th layer is a softmax function which
produces a probability distribution over the object categories. Bottom: A convolutional layer, the
specification of which consists of the number of filters Ck, their widths wk and heights hk, the
horizontal and vertical strides swk and shk , and what padding to use. Each of the Ck filters have
the same depth Ck−1 as the input of the layer. The Ck independent convolutions with the input
volume are then applied; each produces a channel of the output (indicated with the different colors).
Sometimes other operations are performed prior to obtaining the k:th output, the most common
of which are max­ and average­pooling. A typical such operation uses a 2× 2 sliding window with
stride 2 in both directions so as to downsample the size by a factor of 2. Technically, the pooling
operation is itself a layer, but here it is for convenience shown inside the k:th convolutional layer.

Common for convolutional and FC layers is the use of activation functions. These
are typically nonlinear functions and are applied element­wise on a data structure. We will
often use act denote a generic activation function. The most common ones are the sigmoid,
hyperbolic tangent, and rectified linear unit, which are respectively given by

σ(x) =
1

1 + exp(−x)
, (1.9)

tanh(x) =
exp(2x)− 1

exp(2x) + 1
, (1.10)

ReLU(x) = max(0, x). (1.11)

Fully connected layers. A fully connected (FC) layer has the form

y = act (Wx+ b) , (1.12)

wherex ∈ Rm and y ∈ Rn are respectively the input and output of the layer,W ∈ Rn×m

is the weight matrix, and b ∈ Rn is the bias. Figure 1.4 shows an example FC layer between

12

𝑝
𝑤
=
1

𝑝ℎ = 1

𝑿

𝒀
𝑿

𝑿𝟎

𝒀

Figure 1.5: Illustrations of how a single 3 × 3 filter W c of a convolutional layer operates on a
7×7×Cx input X to generate the c:th channel Y c of the output Y . Only the spatial dimensions
of X are shown; refer to Figure 1.4 to see how the operations look in three dimensions. Activation
functions and biases are not shown to avoid visual clutter. Both examples illustrate how the first
(yellow), second (blue) and last (red) element of Y are computed given X . Left: No horizontal nor
vertical padding (ph = pw = 0). The strides are equal with sh = sw = 1. According to (1.13), the
output size is (7− 3 + 2 · 0)/1 + 1 = 5 in both directions. Right: Equal padding ph = pw = 1,
and thus the convolution operates on the zero­padded version X0 of X . The strides are equal with
sh = sw = 3. According to (1.13), the output size is (7− 3 + 2 · 1)/3 + 1 = 3 in both directions.
Note that the max­ and average­pooling operations look conceptually similar to these visualizations.

outputs K and K + 1, and these correspond respectively to x and y in (1.12). FC layers
are also known as dense layers, which refers to the large amount of learnable parameters of
this type of layer; there are (m+ 1)n parameters in total.

Convolutional layers. While FC layers are typically used as vector­to­vector transforma­
tions, convolutional layers operate in the matrix­to­matrix and tensor­to­tensor (also called
volume­to­volume) regimes. A schematic explanation is provided in Figure 1.5. With in­
put volume X ∈ RHx×Wx×Cx it holds that the spatial dimensions Hy and Wy of the
output volume Y ∈ RHy×Wy×Cy of a convolutional layer are given by

Hy =

⌊
Hx − h+ 2ph

sh

⌋
+ 1,

Wy =

⌊
Wx − w + 2pw

sw

⌋
+ 1,

(1.13)

where h and w denote respectively the height and width of the convolutional filter, ph
and pw denote respectively the amount of vertical and horizontal padding, and sh and sw
denote respectively the vertical and horizontal stride (cf. Figure 1.5). The (a, b, c):th entry
of the output Y is given by

Y (a, b, c) = act

bc +
∑
i,j,k

W c(i, j, k)X0 (i+ sh(a− 1), j + sw(b− 1), k)

 ,

(1.14)

13

where bc and W c ∈ Rh×w×Cx are respectively the bias and weight filter for the c:th
channel of Y , and X0 ∈ R(Hx+2ph)×(Wx+2pw)×Cx is the zero­padded version of X .
Specifically, the (a, b, c):th entry of X0 is given by

X0(a, b, c) =

{
X(a− ph, b− pw, c) if a ∈ (ph,Hx + ph], b ∈ (pw,Wx + pw]

0 else.
(1.15)

A convolutional layer can be compactly expressed as

Y = act (W ∗X +B) , (1.16)

where W contains all weight filters and B all biases. Note that all values in the c:th chan­
nel of B are equal to bc. The total number of learnable parameters in a convolutional layer
is (hwCx + 1)Cy, which is typically much smaller than in a fully connected layer.

Max­ and average­pooling layers. It is common to apply some form of pooling after
some of the convolutional layers of a CNN. The most common pooling layers are max­
and average­pooling, which like convolutions are applied in a sliding window fashion, al­
though different from convolutional layers they do not have learnable parameters. With
notation analogous to that of (1.14), the max­ and average­pooling layers are respectively
given by

Y (a, b, c) = max
1≤i≤h,
1≤j≤w

X0 (i+ sh(a− 1), j + sw(b− 1), c) (1.17)

and

Y (a, b, c) =
1

hw

h∑
i=1

w∑
j=1

X0 (i+ sh(a− 1), j + sw(b− 1), c) , (1.18)

where h and w denote respectively the height and width of the pooling kernel. Note that
while a convolutional layer operates in all three dimensions of the input volume to produce
a single output channel, a pooling layer operates independently on each channel of the in­
put to produce the output (thus Y always has the same number of channels as X).

Softmax layer. Recall how in the beginning of this section we mentioned that the out­
put of an image classification system should be a probability vector. The most common
way to achieve this is by letting the final layer of the neural network be a softmax layer,
which is defined as follows given x ∈ Rm:

softmax(x) =
[exp(x1), . . . , exp(xm)]⊤∑m

i=1 exp(xi)
. (1.19)

Thus the softmax layer yields an m­dimensional probability vector, since each element is
in the range (0, 1) and the elements sum to 1. It does not contain learnable parameters.

14

2.4.2 Recurrent Networks

We now have a basic understanding of feedforward networks, more specifically convolu­
tional neural networks (CNNs). However, there exist several problems which require the
processing of not only a single image (frame), but a whole series of connected frames which
depend on each other. This is the case in for example video classification, where the task
is to predict what a given video depicts (which could be various actions such as ’woman
playing a guitar’, ’dog running’, and so on). In some cases it may be sufficient to only
look at a single frame to predict what a video depicts, but often one has to observe a larger
sequence to be successful. For example, it may be difficult to distinguish walking from
running given only a single image. The feedforward CNN we described in the previous
section is not able to meaningfully process such sequential data, but there exist several
other model types which can be used, such as recurrent neural networks (RNNs) [9, 10],
3d CNNs [11, 12], or transformers [13, 14]. Some methodologies proposed in this thesis rely
on RNNs, so we next give a brief overview of such networks.

Vanilla recurrent layer. Recall from (1.12) that a fully connected layer has the form y =
act(Wx + b). In sequential processing we add a subscript t to denote which time step
we are considering. The fully connected layer then becomes yt = act(Wxt + b). A
straightforward way to make such a layer recurrent is to let yt depend also on the output
yt−1 from the previous time step, i.e. yt = act(W xyxt+bxy+W yyyt−1+byy). Note
that the sum of the two biases bxy and byy can be replaced by a single one, so we instead
expresses this layer as

yt = act(W xyxt +W yyyt−1 + by). (1.20)

It is good practice to let the activation function output bounded values so that the re­
currence does not cause a numerical explosion; a common choice in RNNs is the tanh
activation. While the vanilla recurrent layer (1.20) works for sequential tasks in which se­
quences consist of a few time steps, there exist more robust variants which are better suited
for longer­horizon setups. We next detail the two most popular such variants.

Long short­term memory (LSTM). The LSTM [9] is the most famous and most widely
used recurrent module. The equations for an LSTM are provided below:

f t = σ(W xfxt +W hfht−1 + bf), (1.21)
it = σ(W xixt +W hiht−1 + bi), (1.22)
c̃t = tanh(W xcxt +W hcht−1 + bc), (1.23)
ct = f t ⊙ ct−1 + it ⊙ c̃t, (1.24)
ot = σ(W xoxt +W hoht−1 + bo), (1.25)
ht = ot ⊙ tanh(ct). (1.26)

15

The ct­variable is the main carrier and accumulator of temporal information and is called
the cell state. In each time step it is updated according to (1.24), which combines past in­
formation f t⊙ ct−1 and new information it⊙ c̃t. The weightings of the two are given by
the forget and input gates f and i, which are respectively given in (1.21) and (1.22). These
weights are multiplied element­wise, denoted by the ⊙ operator. Note that the new in­
formation c̃t given in (1.23) is computed in a way that looks similar to the vanilla recurrent
layer (1.20). Finally, despite its name, the hidden state ht is the variable which is output
from the LSTM and can be fed to subsequent layers of the network. The hidden state is
obtained by feeding ct through a tanh activation and then weighting the result according
to the output gate defined in (1.25). Note that the forget, input and output gates provide
weights in the (0, 1)­range due to the sigmoids.

Gated recurrent unit (GRU). The GRU [10] is quite similar to the LSTM but has a some­
what simpler form:

zt = σ(W xzxt +W hzht−1 + bz), (1.27)
rt = σ(W xrxt +W hrht−1 + br), (1.28)

h̃t = tanh(W xhxt +W hh(rt ⊙ ht−1) + bh), (1.29)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (1.30)

Different from the LSTM it does not track two recurrent variables and instead only keeps
track of the single recurrent variable ht. Also, there are only two gating variables: zt is the
update gate and determines how much of the old and new information to use, respectively,
while rt is the reset gate and is used to weigh the importance of old information ht−1

within the new information h̃t.

Convolutional recurrent layers. In the above we have provided fully connected for­
mulations of recurrent layers, i.e. the operations are based on dense matrix multiplica­
tions. However, it is also possible to use convolutional implementations [15], which may
be more suitable for spatio­temporal processing. For example, the convolutional GRU
(conv­GRU), is given by the following equations:

Zt = σ(W xz ∗Xt +W hz ∗Ht−1 +Bz), (1.31)
Rt = σ(W xr ∗Xt +W hr ∗Ht−1 +Br), (1.32)

H̃t = tanh(W xh ∗Xt +W hh ∗ (Rt ⊙Ht−1) +Bh), (1.33)

Ht = (1−Zt)⊙Ht−1 +Zt ⊙ H̃t. (1.34)

2.4.3 Training Neural Networks

When a neural network is constructed its parameters are typically initialized in some heur­
istic manner. For example, one can set each initial weight and bias to an independent

16

sample from the N (0, 1)­distribution (more sophisticated initialization techniques exist
and are used in this thesis, such as Xavier initialization [16]). In this section we briefly ex­
plain, again in the context of image classification, the key steps and components involved
when training a neural network so that it may perform well on a given task. We focus the
presentation on how to train feedforward networks – the training of recurrent networks
is performed in essentially the same way, but requires some additional considerations (see
e.g. Chapter 10.2.2 in [7]). In the image classification setting we are given a training
dataset D = {(X1,y1), . . . , (XD,yD)}, where Xi ∈ RH×W×3 is the i:th image and
yi ∈ {0, 1}C is the ground truth onehot vector corresponding to Xi (recall that C = |C|
denotes the number of object categories, including background). An important concept
as we proceed is that of minibatches, or batches for short. A random minibatch B ⊂ D
of size |B| = B is given by B = {(Xi1 ,yi1), . . . , (XiB ,yiB)}, where the index set
{i1, . . . , iB} is a uniform random subset of the full index set {1, . . . , D}.

Loss functions. Given a basic understanding of the main building blocks of feedforward
CNNs (cf. Section 2.4.1), let us now consider how one can tune their parameters to make
them accurate at a given task. With the running example of image classification in mind,
we want to be able to adjust the various parameters of the network (i.e. the weights and
biases of the convolutional and fully connected layers) so that the final softmax layer pro­
duces reasonable probability distributions. For example, given an image of a dog, we want
the CNN to produce a vector which has high probability for the entry corresponding to
’dog’, and low for the others.

To achieve this we first need to define an appropriate loss function (or cost function)
which aligns with the desired behavior of the network. The foundational loss function for
image classification is the cross­entropy. Letting θ denote all learnable parameters of the
neural network, this loss is given by

L (θ;D) = − 1

D

D∑
i=1

C∑
j=1

[
yij log ŷ

i
j(θ) + (1− yij) log

(
1− ŷij(θ)

)]
. (1.35)

Here yij is the j:th component of the i:th ground truth vector yi in D, and ŷij(θ) is the
j:th component of the i:th probability vector ŷi(θ) produced by the neural network based
on input Xi in D. The dependence of ŷi on θ will henceforth not be explicitly expressed
to avoid clutter. Since in the image classification setup each yi is a onehot vector – that is,
a single element is equal to one and the rest are equal to zero – (1.35) simplifies to

L (θ;D) = − 1

D

D∑
i=1

log(ŷici), (1.36)

where ŷici is the predicted probability that Xi depicts category ci, when ci is the correct
category. Thus minimizing the cross­entropy loss (1.36) is equivalent to maximizing the

17

average of the correct­class probability estimates, so this loss aligns well with the desired
behavior of the network.

Another common loss function is the L2­loss, or mean squared error, which is given by

L (θ;D) = − 1

2D

D∑
i=1

(
yi − ŷi

)⊤ (
yi − ŷi

)
= − 1

2D

D∑
i=1

n∑
j=1

(
yij − ŷij

)2
. (1.37)

The L2­loss is not suitable when the task is to predict a probability vector from a given
input, but is instead commonly used in regression tasks, where yi, ŷi ∈ Rn.

When minimizing a neural network loss one typically resorts to a first­order optimiza­
tion method based on some form of gradient descent. An example of a gradient descent­
based update rule for θ is θ ← θ−α∇θL(θ;D), where α > 0 is the learning rate. Other
step directions than −∇θL(θ;D) are possible (and used in this thesis), some of which
are described in Section 2.4.4. For more in­depth overviews of first­order optimization
methods and parameter update rules, refer e.g. to [7, 17].

Note that the cross­entropy and L2­losses over a dataset D can be written as averages
of losses of individual data points, i.e.

L (θ;D) = 1

D

D∑
i=1

L
(
θ; di

)
, (1.38)

where di = (Xi,yi) is the i:th element of D. The property (1.38), which in general holds
for loss functions in deep learning, together with the linearity of the gradient give that

∇θL (θ;D) =
1

D

D∑
i=1

∇θL
(
θ; di

)
. (1.39)

Thus the gradient of the full loss is given by simply averaging the gradients of the losses over
the individual data points di. However, instead of computing the full average one typically
resorts to stochastic gradient descent (SGD) which approximates this average over a random
minibatch B ⊂ D of size B < D as

∇θL (θ;D) =
1

D

D∑
i=1

∇θL
(
θ; di

)
≈ 1

B

B∑
i=1

∇θL
(
θ; bi

)
, (1.40)

where bi is the i:th element of B. The approximation (1.40) becomes more accurate as
B increases towards D, but typically B ≪ D. In practice one typically partitions D as
D = B1 ∪ · · · ∪ BM and performs parameter updates based on each Bi; this is called an
epoch of D. After an epoch a new random partition is computed and the process repeats
until training finishes. The number of training iterations is often set based on early stopping
on a separate validation set Dval (cf. Section 2.2).

18

There are two main reasons why SGD is preferred over using full gradient steps in the
context of deep learning. First, SGD requires significantly less computation per parameter
update. In contrast, for large D each update based on a full gradient step (1.39) is associ­
ated with a heavy computational footprint. Second, full gradient steps cannot be used in
cases where a dataset D does not exist a priori, i.e. where data is continually received in an
online setting. This is the case for example in reinforcement learning (see Section 2.5), a
methodology which is used extensively in the papers of this thesis.

Backpropagation. So far we have covered the basics of neural networks, their inputs and
outputs, and provided some of the basic components used to train such networks, i.e. loss
functions and stochastic gradient descent. We will now look at how to efficiently compute
an individual gradient ∇θL(θ;Xi,yi), which we will write simply as ∇θL(θ;X,y) to
avoid clutter with superscripts. To see why it is not obvious how to efficiently compute this
gradient we consider the cross­entropy loss in (1.36) and expand it over all the layers:

∇θL(θ;X,y) = −∇θ log(ŷc) = −∇θ log([f
L ◦ fL−1 ◦ · · · ◦ f1(X)]c), (1.41)

where each fk corresponds to fk ◦ gk in (1.7), i.e. we override notation to avoid having to
explicitly reference for each layer both the activation function f and the linear operator g.
Each layer fk is as usual parametrized by its weights and biases W k and bk, respectively.
Finally, [fL ◦ fL−1 ◦ · · · ◦ f1(X)]c denotes the c:th component of the output of the
network, where c is the index of the object category depicted in the image X .

Given the expanded expression (1.41), we note that we need to find the gradient of a
composition of several functions. The resulting algorithm for computing gradients such as
(1.41) is called backpropagation [18]. It begins by computing the gradients at the loss layer,
then gradually propagates gradients backwards (hence the name of the algorithm) all the
way back to the input layer using the chain rule. Backpropagation is conceptually illus­
trated in Figure 1.6 for a fully connected and convolutional layer, respectively. Details of
the algorithm are given e.g. in [7], where backpropagation through time (BPTT), a variant
that is used for recurrent neural networks, is also explained.

Automatic differentiation. Modern deep learning libraries (such as Tensorflow [19] and
Caffe [20], the two libraries used in this thesis) include automatic differentiation function­
alities. This means that the one implementing a neural network only has to specify the
structure of the network (i.e. what its layers, inputs and outputs are), the loss function(s),
as well as what optimizer to use. The loss minimization is then performed by calling the
built­in optimizer, which automatically performs the backpropagation steps.

Automatic differentiation works due to the compositional nature of neural networks –
by specifying for each layer type its forward and backward (gradient) computation, back­
propagation can sequentially update all parameters given any composition of such layers.
The popular automatic differentiation libraries contain a wide range of common layers,

19

ෝ𝒚

ℒ

𝒚

𝛿ℒ/𝛿ෝ𝒚

𝛿ෝ𝒚/𝛿𝒙𝐿−1
𝛿ෝ𝒚/𝛿𝒃𝐿
𝛿ෝ𝒚/𝛿𝑾𝐿

𝛿𝒙𝐿−1/𝛿𝒙𝐿−2
𝛿𝒙𝐿−1/𝛿𝒃𝐿−1
𝛿𝒙𝐿−1/𝛿𝑾𝐿−1

𝒙𝐿−1
𝒙𝐿−𝟐

𝒙𝐿−2

𝟏 (all-ones)

෥𝒙𝐿−1

𝑓𝐿−1

𝒙𝐿−1

𝑿

𝒀

Figure 1.6: Conceptual explanations of backpropagation for fully connected (left) and convolu­
tional (right) layers. In these examples, the solid blue and dashed red neurons indicate respectively
computational dependence during the forward and backward passes (the set of neurons on which
the computation depends is also indicated with the corresponding color). Note that the nature
of this dependence looks symmetrical in both directions; e.g. in the convolutional layer the for­
ward and backward passes are both implemented as convolutions. We now provide more details
for the backward pass of the fully connected graph to the left. Beginning at the loss L, partial de­
rivatives are sequentially computed from right to left using the chain rule. Details of what occurs
between xL−2 and xL−1 is shown within the dotted region. Let us now look at how to obtain
∂L/∂xL−2, ∂L/∂WL−1 and ∂L/∂bL−1, by considering one element of each. To avoid clutter,
let x = xL−2, z = xL−1, W = WL−1, b = bL−1, and f = fL−1. Finally, let z̃ denote the
input to the activation function f , i.e. z = f(z̃). From the chain rule we have that ∂L/∂xi =∑

j(∂L/∂zj)(∂zj/∂xi), where ∂L/∂zj has already been computed (as it is closer to the loss
layer). Meanwhile, ∂zj/∂xi = wjif

′(z̃j). Thus ∂L/∂xi =
∑

j(∂L/∂zj)wjif
′(z̃j). Next,

∂L/∂wij =
∑

k(∂L/∂zk)(∂zk/∂wij), where ∂zk/∂wij = xjf
′(z̃i) if k = i and ∂zk/∂wij =

0 if k ̸= i. Thus ∂L/∂wij = (∂L/∂zi)xjf
′(z̃i). Finally, ∂L/∂bi =

∑
j(∂L/∂zj)(∂zj/∂bi),

where ∂zj/∂bi = f ′(z̃i) if j = i and ∂xj/∂bi = 0 if j ̸= i. Thus ∂L/∂bi = (∂L/∂zi)f ′(z̃i).

including their gradients, as well as options for the users to specify those computations for
layers that are not already included in the respective libraries.

2.4.4 Common Techniques for Improving Neural Network Training

A typical problem when naively training neural networks is that they tend to overfit to the
training data, since the number of learnable parameters is typically very large in relation
to the size of the training dataset. In practice this means that the network obtains high
accuracy in training but that the accuracy drops severely when testing the network on un­
seen data (i.e. it generalizes poorly). Another issue may be the training stability itself. For
example, a too large learning rate, possible coupled with inappropriate gradient step direc­
tions, may result in highly suboptimal network parameters. Fortunately, several techniques
exist to improve the way in which neural networks learn. We here consider a few of the
most commonly used such techniques – with a sole focus on those which are used in this
thesis – which often enable the trained networks to generalize better to unseen data.

20

Weight decay. Overfitting is typically associated with with large network weights, so a
basic strategy to avoid overfitting, known as weight decay or L2­regularization, is to en­
courage smaller weights. Specifically, weight decay introduces the augmented loss function

Lλ (θ;D) = L (θ;D) + λ∥θ̃∥2, (1.42)

where λ ≥ 0 is a hyperparameter (a larger λ implies smaller network weights and hence
stronger regularization), and θ̃ denotes all network parameters except the biases.

Dropout. Another common regularization technique is dropout [21]. It is most commonly
applied to fully connected layers and is therefore explained for them. During training, a
uniform random subset of the connection weights in a layer are set to zero (both in the
forward and backward pass). The subset of weights that are set to zero differs in each min­
ibatch. Intuitively and empirically, using dropout yields more robust connection weights,
since the neurons tend to develop less co­dependence. The fraction p of neurons dropped
is a hyperparameter, which is commonly set to 0.5.

Residual blocks. We here briefly mention residual blocks [22], which are used in many
contemporary state­of­the­art deep neural networks. To explain these, consider a stack of
feedforward layers H(x), where x denotes the input to the first layer in the stack (the stack
may consist of a single layer). Assuming that H(x) and x have the same dimension, then
H(x) = F (x) + x with F (x) = H(x)− x. A residual block alters the neural network
design by replacing a layer stack H(x) with F (x) + x. In terms of network implementa­
tion, this simply means feeding an (intermediate) input x both to a learnable layer stack F
and to an identity mapping, then adding the results. The feeding of x through an identity
mapping is called a shortcut (or skip) connection, and the sum F (x) + x is a residual
block. A neural network which includes residual blocks is called a residual network. Such
networks are often easier to optimize than counterparts without residual blocks, which is
especially the case for very deep networks consisting of tens or hundreds of layers.

Momentum. One of the most common modifications to the standard SGD update rule
θ ← θ − α∇θL(θ;B), with B a minibatch of a dataset D, is:

m← βm+ (1− β)∇θL(θ;B),
θ ← θ − αm.

(1.43)

Here β ∈ [0, 1) is a hyperparameter (setting β = 0 corresponds to the standard SGD
update rule, and a common choice when using momentum is β = 0.9). The momentum
vector m can either be initialized as all­zeros or be set equal to the first gradient. The ef­
fect of the momentum update rule (1.43) is that the updates to the parameters θ are based
on an exponential moving average of earlier gradient estimates, as opposed to being based
only on the current one. This typically results in less fluctuating updates and faster learning.

21

Adaptive Moment Estimation (Adam). Another widely used modification to standard
SGD is Adam [23]. This update rule is defined as follows:

m← β1m+ (1− β1)∇θL(θ;B),
v ← β2v + (1− β2)∇θL(θ;B)⊙∇θL(θ;B),

mcorr ← m

1− βt
1

,

vcorr ← v

1− βt
2

,

θ ← θ − α
mcorr

√
vcorr + ε

.

(1.44)

Here m and v are exponential moving averages of the first (mean) and second (non­
centered variance) moments of the gradient ∇θL(θ;B), respectively. In addition to the
learning rate α there are three hyperparameters to set in Adam: β1, β2 ∈ [0, 1) and ε ≥ 0
(typical values are β1 = 0.9, β2 = 0.999 and ε = 10−8), where ε is added in the de­
nominator of the parameter update to improve numerical stability. Both m and v are
corrected in each training iteration (indexed by t ∈ {1, 2, . . . }) by dividing with 1 − βt

1

and 1 − βt
2, respectively, prior to performing the update of θ. Note that βt

1 and βt
2 here

refer respectively to β1 and β2 to the power of t. Finally, note that the update rule for θ is
to be interpreted element­wise in (1.44), i.e. the square root, addition of ε and division are
all applied on a per­element basis.

Data augmentation. The above mentioned techniques either alter the neural network
structure, loss function, or parameter update rule. A complementary option is to modify
the training data such that when trained on, the neural network is more likely to generalize
better. This procedure is called data augmentation, examples of which include adding to
the training set left­right flipped, randomly cropped, and/or color distorted versions of the
images in the original training set. Data augmentation is thus a bootstrapping process by
which the neural network obtains more data to train on ’for free’.

2.5 Basics of Reinforcement Learning

In this section we give an overview of the reinforcement learning (RL) concepts and al­
gorithms that are fundamental to the papers in the thesis. There are several variants of RL,
mainly differentiated by whether the learning is value­based or policy­based. The papers
in this thesis rely on the latter, so the key focus will be on explaining the pre­requisites of
policy­based RL (but see e.g. [24] for a more comprehensive coverage). In Section 2.5.1
we introduce the main terminology and concepts of RL, while Section 2.5.2 focuses on the
formulations that are most relevant for this thesis.

22

2.5.1 Reinforcement Learning Terminology and Concepts

The image and video classification problems that were used to explain the core deep learning
concepts in Section 2.4 are examples of supervised and passive learning problems. They are
supervised in the sense that the training involves a labeled datasetD of inputs and expected
outputs. The expected outputs are often well­defined and can be provided by humans that
annotate the data beforehand. The problems are passive in that they involve perception
systems which only have to observe inputs and predict associated outputs – the systems
cannot affect any parts of the input themselves. Thus the methodologies discussed so far
are useful for learning to perceive an environment.

To make a system act rationally in relation to its perceived observations involves several
additional challenges. Consider for example a self­driving car that should navigate from a
start to a goal location in an urban scene. Let us for simplicity assume that the car has a
single forward mounted RGB camera for observing its surroundings and that it has three
discrete actions it can take: drive a step in the left, forward or right direction (where the
left and right steps correspond to first rotating the car to the left or right and then moving
forward in the new direction). It does not seem suitable to frame the training of this car
in a fully supervised framework, as it would rarely make sense or be practical to label each
possible RGB image that the car can see with a ’correct’ action to take. Nor is the prob­
lem passive – it is active in the sense that the actions taken by the car in the current step
affect what it sees in the next step. We will later consider how these types of problems can
be tackled with reinforcement learning, which is one of the main approaches for training
agents to act rationally in a given environment. First we must however introduce some
fundamental reinforcement learning terminology.

States, actions and environment dynamics. The core framework in which reinforcement
learning (RL) is studied is called a Markov decision process (MDP), which provides a prac­
tical formalism for describing the interaction process of an agent within an environment.
Another key concept is the policy distribution which dictates how an agent acts in an envir­
onment. The goal of RL is to learn a policy that successfully solves a given task (or set of
tasks) in an environment.

As the name suggests, in MDPs one assumes that the decision making and state trans­
itions have the Markov property, i.e. that the immediate future depends only on the current
state and action. Given a policy π, the evolution of an MDP can be illustrated as follows:

s0
π(∗|s0)−−−−→ a0

p(∗,∗|s0,a0)−−−−−−−→ r1, s1
π(∗|s1)−−−−→ a1

p(∗,∗|s1,a1)−−−−−−−→ . . .
p(∗,∗|sT−1,aT−1)−−−−−−−−−−−→ rT , sT

(1.45)
Here s0 is an initial state which is sampled at the beginning of the process from an initial
state distribution ρ0; π is the given policy distribution which samples an action at given a
state st; p is a transition probability distribution (also called the environment dynamics),
which samples a next state st+1 and reward rt+1 given that action at is taken in state st;

23

and T is the length of the interaction trajectory. In general T may be infinite, but for the
purposes of this thesis we can assume T is finite. We let

τ = (s0, a0, r1, s1, a1, r2, s2, . . . , aT−1, rT , sT) (1.46)

denote the trajectory induced by starting in s0 and then following the policy π and trans­
ition distribution p. Such a trajectory is also called an episode.

Formally, a Markov decision process is a tuple ⟨S,A,R, p, ρ0, γ⟩, where S is a set of
states, A is a set of actions, R ⊂ R is a set of rewards, p : S × A × S × R → [0,∞) is
a transition probability distribution, ρ0 : S → [0,∞) is an initial state distribution³ and
γ ∈ [0, 1] is a discount factor. As illustrated in (1.45), taking action at−1 in state st−1

yields an associated immediate reward rt by sampling from p (it also yields a next state st).
In many cases the reward rt is deterministic given st−1, at−1 and st. In such cases it is
more common to refer to a reward function, e.g. r : S × A × S → R. Note that it is
not only the immediate reward rt that reflects the quality of action at−1, as at−1 indirectly
affects all future states and actions, and thus rewards. Hence a more central concept is the
discounted cumulative reward Rt that follows after at−1, which is given by:

Rt =

T∑
t′=t

γt
′−trt. (1.47)

It is common to let γ ∈ [0, 1), which means that future rewards have a relatively smaller
impact on Rt than more recent ones.

Two additional important concepts within MDPs are the state value function V π and
the state­action value functionQπ, which are defined recursively as follows for discrete state­
action­reward spaces:

V π(s) =
∑
a

π(a|s)
∑
r′,s′

p(r′, s′|s, a)
[
r′ + γV π(s′)

]
, (1.48)

Qπ(s, a) =
∑
r′,s′

p(r′, s′|s, a)

[
r′ + γ

∑
a′

π(a′|s′)Qπ(s′, a′)

]
. (1.49)

The state value function V π is the expected cumulative reward from state s onwards, as­
suming one acts according to the policy π. The state­action value function Qπ is seemingly
very similar to V π; the only difference is that Qπ also has the action a taken in state s
as an additional input. Specifically, Qπ is the expected cumulative reward from state s
onwards, assuming that the first action taken is a and that one thereafter acts according
to the policy π. In Section 2.5.2 we will explain how the discounted cumulative reward
(1.47), value function (1.48) and/or state­value function (1.49) can be used to learn a policy
π that operates desirably in an environment, but let us first return to the example of the

³If S is finite, the range of ρ0 is [0, 1]. If S, A and R are finite, the range of p is [0, 1].

24

self­driving car to see why a deep neural network can be useful for representing the policy π.

Deep networks as policy distributions. Recall that we are considering a self­driving car
which has a single forward mounted RGB camera for observing its surroundings and that it
has three discrete actions: drive a step in the left, forward or right direction. Let the imme­
diate reward rt be deterministic and such that rt = 0.1 if the car moves closer to the goal,
rt = 10 if it reaches the goal, and rt = −0.1 otherwise. Finally, let γ = 0.95. The defined
reward and γ imply that the agent receives a higher cumulative reward if it quickly moves
from the start to the goal location. It would in principle be possible to omit the rt = ±0.1
rewards, since the discount factor γ < 1 still ensures that the highest cumulative reward is
maximized by reaching the goal as fast as possible. In practice it is however common to use
a denser reward (in this case keeping the rt = ±0.1 rewards), since a sparse reward often
makes the learning problem harder.

Given the states, actions and rewards as defined above, it follows that S is the set of all
possible images that the forward mounted camera can observe,A = {left, forward, right},
andR = {−0.1, 0.1, 10}. Since each state s ∈ S is high­dimensional (an image), it makes
sense to let the driving policy π be a deep neural network parametrized by θ. The depend­
ence of π on θ is denoted πθ. Similar to how we in Section 2.4 used a softmax layer at the
end of the network to produce a distribution over object categories, we can now apply a
softmax to produce an action distribution over the three movement actions.

We will next explain how one can learn the parameters θ of a deep policy network πθ so
as to make the policy successful at a given task. This learning process is called policy­based
reinforcement learning, since the parameters of the policy are directly updated based on
the rewards obtained during the interaction with an environment. A high­level comparison
between supervised learning and policy­based reinforcement learning is given in Figure 1.7.

2.5.2 Policy Gradients

Let πθ denote a deep policy network. Our goal in this section is to establish a framework
that allows us to tune the parameters θ of the network such that the policy becomes success­
ful at solving a given task in an environment (where the level of success is measured using a
reward function). In doing this, we want to rely as much as possible on the already existing
methodology that we described for training neural networks, mainly backpropagation.

If we are given a dataset D = {(s1, a1), . . . , (sN , aN)} of state­action pairs, where
the ground truth action (i.e. the action that is considered most suitable) is given in each
pair, then we can train the policy πθ in a standard supervised manner as explained in
Section 2.4.3. This is called behavioral cloning. Providing such a dataset D is possible
sometimes, but often it is difficult or impossible to know which is the correct action to take
(or there may be multiple candidate actions that appear optimal), so providing a sufficiently
large­scale dataset is often very difficult. Because of this, behavioral cloning typically suffers
from compounding errors, which is a test time phenomenon by which the agent becomes

25

𝑎0

𝜋𝜽

𝑠0

𝑟1 + 𝛾𝑅2

𝑎1

𝜋𝜽

𝑟2 + 𝛾𝑅3

𝑎𝑇−1

𝑟𝑇

𝜋𝜽

𝑅1 𝑅2 𝑅𝑇

𝑠1 𝑠𝑇−1
𝑝

𝑎0 𝑎1

𝑝

ෝ𝒚1

𝑓𝜽

𝒙1

ෝ𝒚2

𝑓𝜽

ෝ𝒚𝑇

𝑓𝜽

ℒ𝑇

𝒙2 𝒙𝑇

ℒ2ℒ1

ෝ𝒚1

𝑓𝜽

𝒙1

ෝ𝒚2

𝑓𝜽

ෝ𝒚𝑇

𝑓𝜽

ℒ𝑇

𝒙2 𝒙𝑇

ℒ2ℒ1

Figure 1.7: Comparisons between non­temporally dependent supervised learning (e.g. image clas­
sification), temporally dependent supervised learning (e.g. video classification), and policy­based
reinforcement learning. Left and middle: A neural network fθ with input xt outputs a prediction
ŷt = fθ(xt)with associated lossLt, which is used to update the parameters θ via backpropagation.
Note that an output prediction ŷt does not affect the subsequent frame xt+1, and the losses can
be independently computed. Right: Policy­based reinforcement learning (RL). In RL, the current
state st depends on both the previous state st−1 and action at−1. More specifically, st is obtained
by sampling from the state transition distribution, i.e. st ∼ p(∗|st−1, at−1). A policy network πθ

with input st then outputs a distribution from which an action at can be sampled as at ∼ πθ(∗|st).
The concept of a loss function in RL differs significantly from the supervised scenarios in that it is
based on a reward function. To obtain the loss at the t:th step, all future rewards must be a available
(although there exist methods which can circumvent this requirement). Once the discounted sum
of present and future rewards Rt has been computed it is multiplied with log πθ and the sign is
flipped, which provides the loss for updating θ via backpropagation.

increasingly uncertain about what to do as it experiences states it has not seen during train­
ing. This can become a vicious cycle in which the agent traverses further and further away
from states it is familiar with, and hence acts increasingly poorly.

Behavioral cloning is perhaps the most simple instantiation of a broader set of tech­
niques which are commonly known as imitation learning. Another line of imitation learn­
ing methods (e.g. DAgger [25]) assume that one is given access to an expert, which for each
state – not just those that exist in a pre­specified dataset D – suggests an action to take.
Such methods suffer to a much smaller extent from the compounding error issue, since the
agent can in principle explore the whole state space and obtain feedback for the actions it
tries, and thus the states encountered at test time are more likely to be similar to those seen
during training. The exploration can be done for example randomly, or by sampling from
the current policy distribution πθ.

The issue with this type of approach is that an interactive expert is quite rarely available
in practice. Therefore, in policy­based reinforcement learning (RL) one replaces the expert
with a reward function, as described earlier. While intuitively a reward function sounds
like a reasonable replacement, a new issue arises – the supervised setting is no longer valid,
since one does not have access to ground truth actions for each state. However, cumulative
rewards can be used as a form of replacement for such ground truths. To arrive at a suitable
optimization objective which is based on cumulative rewards, we will first consider what
is the density of a given trajectory τ = (s0, a0, r1, s1, a1, . . . , aT−1, rT , sT), cf. (1.46).

26

This density is given by

ρ0(s0)

T−1∏
t=0

πθ(at|st)p(rt+1, st+1|st, at) =: qθ(τ). (1.50)

Given (1.50) we now define our optimization objective to be the expected cumulative reward
when the initial state s0 is sampled from ρ0 and assuming one thereafter follows the policy
πθ and transition dynamics p, i.e.

J(θ) = Eqθ {R0} = Eqθ

{
T−1∑
t=0

γtrt+1

}
. (1.51)

Note that maximizing (1.51) only involves tuning the policy parameters θ; one has no
control over ρ0 nor p. To maximize (1.51) we need to find an appropriate expression for
∇θJ(θ), which requires a few tricks.

From an algorithmic standpoint we cannot compute gradients of exact expectations.
Therefore we will first perform some manipulations to (1.51) in order to move the gradient
operator∇θ inside the expectation, which will allow us to compute sample­based estimates
of the gradient. For this we use the log­derivative trick:

∇θEgθ{h(x)} = ∇θ

∫
gθ(x)h(x)dx =

∫
gθ(x)

gθ(x)
∇θgθ(x)h(x)dx

=

∫
gθ(x)∇θ log gθ(x)h(x)dx = Egθ{∇θ log gθ(x)h(x)}.

(1.52)

Note that in the above we have assumed that gθ is differentiable whenever it is non­zero.
From (1.52) we conclude that

∇θEqθ {R0} = Eqθ {∇θ log qθ(τ)R0} . (1.53)

Next, from (1.50) it follows that

∇θ log qθ(τ) = ∇θ log

(
ρ(s0)

T−1∏
t=0

πθ(at|st)p(rt+1, st+1|st, at)

)

= ∇θ

(
log ρ0(s0) +

T−1∑
t=0

log πθ(at|st) +
T−1∑
t=0

log p(rt+1, st+1|st, at)

)

=

T−1∑
t=0

∇θ log πθ(at|st),

(1.54)

27

where the last equality follows from the fact that neither ρ0 nor p depend on the parameters
θ. Because of this it is common to trade rigor for convenience and write Eqθ as Eπθ

in this
context, which we will henceforth do as well. Combining (1.51), (1.53) and (1.54), we get

∇θJ(θ) = Eπθ

{(
T−1∑
t=0

∇θ log πθ(at|st)

)(
T−1∑
t=0

γtrt+1

)}
, (1.55)

which is equivalent to

∇θJ(θ) = Eπθ

{
T−1∑
t=0

∇θ log πθ(at|st)

(
T−1∑
t′=0

γt
′
rt′+1

)}
. (1.56)

The inner summation index in (1.56) starts at t′ = 0, while the policy πθ operating from
time step t has no effect on rewards for t′ < t. Therefore it is more common to use the
following gradient expression:

∇θJ(θ) = Eπθ

{
T−1∑
t=0

∇θ log πθ(at|st)

(
T−1∑
t′=t

γt
′−trt′+1

)}
. (1.57)

Now we are finally ready to express a sample­based estimate of ∇θJ(θ):

∇θJ(θ) ≈
1

M

M∑
i=1

T−1∑
t=0

∇θ log πθ(a
i
t|sit)

(
T−1∑
t′=t

γt
′−trit′+1

)
, (1.58)

where M denotes the number of trajectories used to estimate the exact gradient (1.57).
As already mentioned in Section 2.4.3, modern deep learning libraries do not require

gradient specifications, and in particular the gradient expression (1.58) does not have to be
provided in such libraries. Instead one determines the minibatch size B < M , runs B
trajectories following πθ with the current parameters θ, stores each ⟨sit, ait, Ri

t+1⟩­tuple
(where Ri

t+1 is computed at the end of the i:th trajectory, as it is not available before), and
finally the loss based on the current minibatch is given by

L(θ) = −J(θ) ≈ − 1

B

B∑
i=1

T−1∑
t=0

log πθ(a
i
t|sit)Ri

t+1. (1.59)

The above is a high­level description of REINFORCE [26], which is the main reinforce­
ment learning method used in the thesis.

Improvements upon standard policy gradients. The above derivation led us to the REIN­
FORCE method for estimating the policy gradient. It is intuitive and easy to implement,

28

but it has some drawbacks such as suffering from high variance (the variance typically in­
creases as the lengths of the agent­environment interaction trajectories increase). Another
issue is that it may lead to training instability, if large parameter updates that lead to poor
subsequent exploration are performed. This can happen because REINFORCE is an on­
policy algorithm, which means that the policy we want to optimize is also used for collecting
training data. Thus some configurations of the policy parameters may imply that the policy
collects poor training data. We however find that REINFORCE works well in most of the
settings considered in this thesis (Paper I ­ IV), which is mainly because the average lengths
of the trajectories are relatively short (typically less than about 15 actions).

However, due to the aforementioned issues, REINFORCE is often unsuitable for tasks
with long episodes, such as in Paper V where episodes consisting of more than 250 actions
are considered. Fortunately, there exist a myriad of other approaches for estimating the
policy gradient, many of which result in estimates of lower variance than REINFORCE.
In fact, the policy gradient theorem (see [24]) states that

∇θJ(θ) = Eπθ

{
T−1∑
t=0

∇θ log πθ(at|st)Qπθ(st, at)

}
, (1.60)

whereQπθ is the state­action value function defined in (1.49). Furthermore, it can be shown
that an action­independent baseline B(st) can be subtracted in (1.60). A common choice
for the baseline isB(st) = V πθ(st), where V πθ is the state value function defined in (1.48).
One then introduces the advantage functionAπθ(st, at) = Qπθ(st, at)−V πθ(at). As the
name suggests, it can be interpreted as a measure of how advantageous (or disadvantageous)
the action at is relative to the expected action from πθ in state st. Thus it holds that the
following is also an expression for the policy gradient:

∇θJ(θ) = Eπθ

{
T−1∑
t=0

∇θ log πθ(at|st)Aπθ(st, at)

}
. (1.61)

While the variance of (1.61) is lower than that of (1.60), there is in practice a higher bias
in (1.61) since one has to estimate V πθ(st), i.e. Vφ(st) ≈ V πθ(st). It is common to use a
deep neural network for Vφ, whose parameters are often partially shared with πθ.

In Paper V we resort to a popular method called proximal policy optimization (PPO)
[27]. At a high level, the algorithm revolves around a stable, lower­variance approximation
of (1.61). The first step is to replace the policy gradient expression (1.61) with⁴

J(θ) ≈ Eπθ

{
T−1∑
t=0

πθ(at|st)
πθold

(at|st)
Aφ(st, at)

}
= Eπθ

{
T−1∑
t=0

ηtθA
t
φ

}
, (1.62)

⁴We omit the gradient in the expression, since automatic differentiation libraries only require the specific­
ation of the objective, not its gradient. Furthermore, we write Aφ to indicate that we approximate Aπθ . For
details and derivation, see [28].

29

where θold are the parameters prior to the update, ηtθ = πθ(at|st)/πθold
(at|st), and

At
φ = Aφ(st, at). Next, (1.62) is replaced with a clipped surrogate objective:

Jclip(θ) = Eπθ

{
T−1∑
t=0

min
(
ηtθA

t
θ, clip

(
ηtθ, 1− ε, 1 + ε

)
At

φ

)}
, (1.63)

where ε > 0 is a hyperparameter, and clip(a, b, c) = min(max(a, b), c). Thus the clip­
function bounds the first argument between the latter two arguments (assuming b ≤ c).
At a high level, due to the outer min­operation and the inner clip­function, the expression
(1.63) ensures that the parameter updates are not too drastic, which makes the learning
process more stable.

3 Visual Perception Tasks Studied in this Thesis

In the thesis we develop active methods for three different visual perception tasks; see Fig­
ure 1.1 for an overview. This section contains a high­level description of each task.

3.1 Object Detection

Object detection is a core computer vision task which is intuitively simple to understand
(but convoluted to evaluate, as we will see in Section 3.1.1). See Figure 1.8 for a few ex­
amples of object detection. Given a set C ofC object categories (e.g. ’cat’, ’chair’, ’person’),
including a background category, the goal is to both localize and classify in a given image
each object instance among the object categories. Here localizing an object refers to draw­
ing a tight bounding box that contains the object (no boxes should be drawn around things
that are considered background), and classification refers to predicting for the content of
the bounding box a label among those in the set C.

For an object instance to be considered correctly detected, two things must hold simul­
taneously: i) it must be correctly classified, and ii) the predicted bounding box must overlap
sufficiently with the ground truth bounding box. As for ii), this overlap is measured by the
intersection­over­union (IoU) between the predicted bounding box and the ground truth
bounding box. As the name suggests, the IoU is defined as the ratio between the area of
the intersection and union of the two bounding boxes, respectively; see the two left­most
columns of Figure 1.9 for a conceptual explanation. The IoU ranges from 0 to 1 and a
common threshold for what is considered sufficient overlap is 0.5. Refer e.g. to the surveys
[29, 30, 31] for more in­depth coverages of the object detection task, including explanations
of several standard methodologies.

3.1.1 Evaluation Metrics

The standard evaluation protocol for object detectors revolves around computing on a test
set of images the average precision (AP) for each non­background class independently, then

30

DOG

CAR

CAR

PERSON PERSON

CAT

PERSON PERSON

PERSON

SOFA

Figure 1.8: Three examples of object detection. Left: The image contains only one object instance
(the blanket is considered background here), which is clearly and fully visible. The bounding box
quite tightly encloses the object and the predicted label ’dog’ is correct, so this is a successful example.
Middle: Three persons and three cars in a garage. All six objects are viewed in fairly poor lightning,
from a challenging perspective, and several of the objects are only partially visible, so this is quite
a difficult example. Two cars (blue) and two persons (yellow) are correctly detected. One of the
persons (green) is correctly localized, but the label ’cat’ is incorrect. Finally, one of the cars is not
detected at all. Right: Three persons and two sofas (one of which is barely visible). This example
is somewhat challenging since the lightning is quite poor. Two persons and one sofa are correctly
detected. The third person obtains a correct label, but the bounding box is too large, so it is an
incorrect detection. Finally, the barely visible sofa is not detected at all, but such difficult object
instances are often ignored when evaluating object detectors. The images were obtained from [1],
while the rectangles and label text were drawn by the author of this thesis.

averaging the individual AP­scores to obtain the mean average precision (mAP). In this
section we will therefore consider how the AP for a given object category with index c ∈
{1, . . . , C−1} is computed (we assume that the last index C corresponds to background).

Algorithm 1 contains details of how the AP is computed and Figure 1.9 shows a few
conceptual examples on single images. One begins by extracting for each detection in each
image the c:th probability score of the C­dimensional probability vector associated with
the detection. This probability score is called the confidence of the detection. Given the
confidences it is common to perform two preprocessing steps before the AP­computation
(i.e. before line 1 of Algorithm 1). Note that these two steps are not part of the evaluation
protocol, so they should be included in the overall detection system.

The first preprocessing step is called non­maximum suppression (NMS) and is used
to filter among highly overlapping detection bounding boxes.⁵ Specifically, one iterates
over each detection in descending order of confidence, and each other detection which
overlaps sufficiently (typically IoU at least 0.5) is discarded. If NMS is not performed
there is typically an increased risk that multiple detections overlap sufficiently with the
same ground truth instance, which reduces AP. After NMS, one also discards detections
for which the confidence is below a threshold (this is the second preprocessing step). The
reason for this is that each object instance of a category indexed by anything other than c
is considered background during the AP­computation of the c:th category, and thus one

⁵Typical object detectors propose several bounding boxes at various locations and of different scales and
aspect ratios (e.g. using a sliding windows approach), each of which is classified as an object or background.

31

Figure 1.9: Conceptual explanations of intersection­over­union (IoU), precision, recall, and average
precision (AP), assuming a single ground truth (GT) instance in the dataset. We also assume that
the IoU­threshold that determines if a GT is sufficiently overlapped is set to 0.5. Dashed and solid
rectangle borders indicate GT and detection boxes, respectively. See Algorithm 1 for details of how
AP is computed. Column 1: IoU < 0.5, so the detection is a false positive (FP). The extended recall
and precision envelope arrays are both equal to [0, 0], so AP = 0. Column 2: IoU ≥ 0.5, so the
detection is a true positive (TP). The extended recall and precision envelope arrays are equal to [0, 1]
and [1, 1], respectively, so AP = 1. Column 3: There are no detections, so AP = 0. Column 4:
There are two detections, but only one has IoU ≥ 0.5 with the GT, so we have one TP and one FP.
Assuming that the TP has the highest confidence, the extended recall and precision envelope arrays
are [0, 1, 1] and [1, 1, 0.5], respectively, and hence AP = (1− 0) · 1+ (1− 1) · 0.5 = 1. If instead
the FP has the highest confidence, the extended recall and precision envelope arrays are [0, 0, 1] and
[0.5, 0.5, 0.5], respectively, and hence AP = 0.5. Column 5: There are two detections, both with
IoU ≥ 0.5 with the GT. However, only the one with highest confidence is a TP; the other one is
an FP. The extended recall and precision envelope arrays are [0, 1, 1] and [1, 1, 0.5], respectively, so
AP = 1. This surprising result is mainly related to the simplified setting considered here – in real
scenarios with many images, detections and ground truths, duplicate detections typically reduce AP.

wants to discard detections of other object categories (providing detections of background
reduces AP). The collection of the M detections that remain after the preprocessing steps
is subsequently sorted in descending order of confidence.

The main procedure of the AP­computation is then performed (see lines 4 ­ 16 in
Algorithm 1). This process determines for each detection if it is a true positive (TP) or false
positive (FP). To do this for a given detection, one computes the IoU between the detection
and all ground truth bounding boxes (corresponding to the c:th category) in the image
associated with the detection. If the image contains at least one ground truth with which
the IoU exceeds the IoU­threshold, then the ground truth with which the IoU is highest is
inspected. If this ground truth has not yet been detected (i.e. not sufficiently overlapped)
by a detection with higher confidence, then the current detection is considered a TP and
otherwise it is an FP (thus each ground truth is only allowed to be detected once). If on
the other hand there is no ground truth with which the IoU exceeds the IoU­threshold, or
if the image has no ground truth at all, then the detection is considered an FP.

Once the above procedure is complete we know for each detection if it is a TP or FP.
This knowledge is represented by two binary arrays of length M . The i:th detection is a TP
if the i:th entry of the TP­array is equal to 1 and otherwise it is an FP. Given these arrays,
one computes the recall and precision arrays according to lines 17 ­ 19 of Algorithm 1.

32

Algorithm 1 Procedural code for computing average precision (AP) for a given object cat­
egory in the object detection task (array indexing begins at 1).

1: Input [0, 1]­bounded IoU threshold iou_thresh, list GTs of all K ground truth
bounding boxes in the dataset, and list BBs of all M detection bounding boxes sorted
in descending order of confidence for the given object category.

2: Initialize false and true positive arrays fps and tps of length M as all­zeros.
3: Initialize boolean array GT_dets of length K as all­zeros.
4: for d = 1, 2, . . . ,M do
5: Compute IoUs between BBs[d] and all ground truth bounding boxes in the im­

age associated with BBs[d]. Let iou_max denote the maximum such IoU, and
iou_idx be the argmax (indexing relative to the whole of GTs). If the image
associated with BBs[d] has no ground truths, set iou_max = -1.

6: if iou_max ≥ iou_thresh then
7: if GT_dets[iou_idx] == 0 then
8: tps[d] = 1
9: GT_dets[iou_idx] = 1

10: else
11: fps[d] = 1
12: end if
13: else
14: fps[d] = 1
15: end if
16: end for
17: Cumulatively sum up fps and tps: fps = cumsum(fps), tps = cumsum(tps).
18: Compute extended recall array rec = [0, tps / K].
19: Compute extended precision array prec = [0, tps / (tps + fps)].
20: Initialize precision envelope array prec_env = prec.
21: for i = M + 1,M, . . . , 2 do
22: prec_env[i - 1] = max(prec_env[i - 1], prec_env[i])
23: end for
24: Initialize AP = 0.
25: for i = 2, 3, . . . ,M + 1 do
26: AP = AP + (rec[i] - rec[i - 1]) * prec_env[i]
27: end for
28: return AP

Recall measures the fraction of ground truths that are detected, while precision measures
the fraction of detections that are true positives.

Intuitively, as more detections are provided, more ground truths are detected on av­
erage (assuming the detections are at different locations and of different scales and aspect

33

1 2 4 6 8 10 12 14 16 18 20
number of detections

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
prec
prec-env
rec

0.05 0.1 0.15 0.2 0.25 0.3
recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

0.1 0.2 0.3 0.4 0.5 0.6 0.7
recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

Figure 1.10: Left: Precision and recall versus number of detections in an artificial setting. The
true positive (TP) array of length 20, corresponding to 20 imagined detection boxes, was manually
generated by setting 6 of the 20 values to 1 and the rest to 0. The false positive (FP) array thus
consists of 14 ones and 6 zeros. Given the TP­ and FP­arrays, lines 17 ­ 23 of Algorithm 1 were
executed, assuming the dataset has 20 ground truth (GT) instances of the considered class. The first
entry of the respective arrays were discarded, as they correspond to the extensions on lines 18 ­ 19.
The non­decreasing red recall curve begins at 0.05, corresponding to 1 of 20 GTs being detected by
the first detection, and reaches a maximum value of 0.3 (6 of 20 GTs detected in total). Similarly,
the solid blue precision curve begins at 1 and decreases until the fifth detection (since the second,
third and fourth detections are FPs). At 20 detections the precision is 0.3, since 6/(6+14) = 0.3.
Finally, the dashed curve is the precision envelope, which is a tight non­increasing version of the
precision curve and is used to compute AP (see middle figure). Middle: Precision plotted against
recall for the setup described in the left figure. The AP is given by the shaded area under the precision
envelope (dashed curve). In this case the AP is 0.14. Right: Precision plotted against recall in a case
where 15 of 20 entries of the TP­array are equal to 1. As expected, AP increases significantly as the
number of TPs increases relative to the number of FPs. The AP is 0.62 in this example.

ratios within the images) and thus the values of the recall array are non­decreasing. Con­
versely, the entries of the precision array are typically (but not everywhere) non­increasing.
Specifically, each TP increases precision and each FP decreases it. An intuitive motivation
for why the precision array typically has a non­increasing trend is that for a well­performing
object detector, the detections with higher confidences are more likely to correspond to true
positives, compared to detections with lower confidences. Now recall that once a ground
truth is marked as detected, any detections of it which have lower or equal confidence are
considered false positives, and thus when the number of detections increases, the risk of
including false positives also increases.

After the recall and precision arrays have been obtained one computes the precision en­
velope array, which is the tightest non­increasing array whose entries are equal to or higher
than the corresponding entries in the original precision array. Finally, the AP is computed
according to lines 24 ­ 27 of Algorithm 1. Figure 1.10 shows examples of precision, re­
call and average precision. The AP is given by the area under the precision envelope in a
precision­recall plot (i.e. the areas of the shaded regions in the middle and right columns
of Figure 1.10).

In summary, AP can be interpreted as an overall assessment of how a detector performs

34

under different requirements on the recall of ground truth instances. Again, the stricter the
requirement regarding recall is, the lower the precision typically gets, and vice versa. This
is why one computes an average at different recall levels. It should be noted that AP and
mAP (the mean of the AP­values over the C − 1 non­background categories) are typically
multiplied with a factor 100 in the end, so that the values are reported in the range [0, 100].

3.2 Human Pose Estimation

Human pose estimation refers to recognizing the 2d or 3d articulated poses of people given
an image, or a set of images captured from multiple viewpoints, of the people. This means
predicting for each person the 2d or 3d locations of a pre­defined set of body joints (e.g.
head, neck, shoulders, knees, ankles), as well as grouping together which joints belong to the
same person. Body joints are sometimes referred to as parts or keypoints. The grouping of
joints refers to assigning to each estimated joint a unique identifier – this can be thought of
as ’person 1’, ’person 2’, and so on. Based on all joints with the same identifier, connections
are drawn according to a pre­defined set set of rules (e.g. connecting a head to a neck, or a
knee to an ankle); see the blue lines between joints in Figure 1.11. A connection between
two joints is called a limb and the full set of limbs is often referred to as a (pose) skeleton.
Note that an incorrect joint identifier may induce a highly inaccurate pose skeleton, as
conceptually illustrated in the bottom­left of Figure 1.11.

We next briefly describe the single­view 2d and 3d pose estimation tasks and thereafter
explain the corresponding multi­view settings (which are studied in Paper III ­ IV of this
thesis). For more extensive overviews, see for example the recent surveys [32, 33, 34]. The
survey [34] specifically covers the 3d human pose estimation task.

3.2.1 Estimating Human Poses from a Single Image

In this section we consider the case where we are given a single image of one or several people
for which we wish to estimate the 2d or 3d poses, see Figure 1.11. In 2d pose estimation the
task is to localize in the image each visible⁶ joint among a given set of joints. Meanwhile,
3d pose estimation requires the localization in 3d space of every joint, even those that are
not visible in the image. The 3d space in which the poses are to be reconstructed is induced
by the camera matrix P (cf. Section 2.1.1) corresponding to the image. More specifically,
once the 3d human poses have been estimated in the camera coordinate system, they can be
rotated and translated to the global coordinate system in which they can be compared with
ground truth poses (see Section 3.2.3). Note that, as mentioned above, both the 2d and
3d human pose estimation tasks also require correct groupings of joints into pose skeletons
(this step is trivial if one assumes that the image contains a single person, however).

The 3d pose estimation task is in general more difficult than the 2d counterpart for a few
key reasons, one of which is that the full 3d pose is to be estimated even when the person

⁶A joint is considered visible also if it is on the other side of the body and no other body parts occlude the
joint, e.g. a neck is considered visible even if only the throat is observed from the front.

35

Figure 1.11: Top: Single­view, single­person examples of 2d and 3d human pose estimation.
Columns 1 and 3: In 2d pose estimation the task is to localize each visible joint. Non­visibility
of joints can result from obstacles, people (others or self­induced), or if a person is not entirely
visible in the image. Column 2 and 4: In 3d pose estimation the task is to localize in 3d space every
joint, even those that are non­visible in the image. The ground planes do not have to be estim­
ated, but are added here for visualization purposes. Columns 2 and 4 correspond to the images in
columns 1 and 3, respectively. Bottom: Single­view, multi­person example of 2d and 3d human
pose estimation. Note the self­occlusion of one the arms of the man to the left (the occluded joints
are nevertheless estimated in 3d). In the multi­person setting there exist several possible joint pairs,
so this task further involves grouping joints into correct pairs. This has been indicated by using
three different colors for the joints, one for each person. For illustration, a dashed line has also been
drawn between the head of the woman in the middle and the neck of the man to the right, and vice
versa. This shows how the pose estimate may become highly inaccurate if any joint grouping fails.
The images on the top row depict the author of this thesis, while the image in the bottom row was
obtained from [2]. All drawings were made by the author of this thesis.

is partially non­visible in the image. Another reason is that 3d estimation is inherently
ill­posed in that it suffers from depth ambiguities – given a single image captured with
a pinhole camera (cf. Section 2.1.1), there are infinitely many 3d configurations which
result in the same 2d projection, since all points on the same ray from the camera center
project to the same point in the image plane. For this reason the 3d estimation task is
sometimes formulated in a simpler way, where providing pose estimates up to translation is
sufficient (during training and evaluation, the pose estimates are simply translated so that
they are centered around their respective ground truths). It should be noted that even if
the translation of the 3d body pose is accurate, there may still be multiple 3d configurations
which result in the same 2d projection. A further issue with 3d human pose estimation is
that it is much harder to acquire ground truth annotations than in the 2d case, especially

36

Instance

features 𝒖𝟏
𝟏

Appearance
models
𝒎𝟏, 𝒎𝟐,𝒎𝟑

𝒖𝟏
𝟐 𝒖𝟏

𝟑

Matching
algorithm

𝒎𝟏, 𝒖𝟏
𝟏

𝒎𝟐, 𝒖𝟏
𝟐

𝒎𝟑, 𝒖𝟏
𝟑

Appearance
models
𝒎𝟏, 𝒎𝟐,𝒎𝟑

Instance

features 𝒖𝟐
𝟏
𝒖𝟐
𝟐 𝒖𝟐

𝟑
𝒎𝟏, 𝒖𝟐

𝟐

𝒎𝟐, 𝒖𝟐
𝟏

𝒎𝟑, 𝒖𝟐
𝟑

Matching
algorithm

Figure 1.12: Accurately matching people across viewpoints is crucial for successful multi­view 3d
human pose estimation. In this thesis, deep instance features u1

i , . . . ,u
ni
i are computed for each

of the ni detected persons in the i:th view. Each uj
i is then compared to a set of given appearance

models m1, . . . ,ml for the l persons in the scene. Note that l may differ from ni, as some persons
may be non­visible in a view, or there may be additional incorrect detections. Next, the L2­distance
is computed between each pair, which yields a cost matrix that specifies each pairwise assignment
cost. Given this matrix, the Hungarian algorithm is used to produce the assignments. In the left
view all three people are correctly matched to their respective appearance models. In the right
view only one person is correctly matched to its appearance model. Hence two of the resulting 3d
poses will likely become inaccurate, while the third person may obtain an accurate 3d pose estimate.
Images obtained from [2]. All drawings were made by the author of this thesis.

in the wild. For this reason, many of the most popular datasets currently used are obtained
from in­lab motion capture systems such as [35, 2].

3.2.2 Estimating Human Poses from Multiple Images

Given access to several cameras with known camera matrices – or a moving camera observer
such as a drone – it is possible to combine 2d or 3d pose estimates from several viewpoints,
either to improve upon individual 3d estimates (Paper IV), or to transform 2d estimates
to 3d estimates via triangulation (Paper III). In both cases, being able to accurately match
people across viewpoints is crucial to enable the integration of pose estimates from different
viewpoints; see Figure 1.12.

The triangulation problem is explained in Figure 1.13. In this thesis we use a straight­
forward linear triangulation method (see details on p. 312 in [4]), which for each pair of
images containing a given joint can estimate the corresponding 3d joint when the cam­
era matrices are known. We then median­average over the 3d points observed from each
pair to produce the final 3d pose estimates. An alternative would be to jointly solve an
over­determined linear system, but such an approach is more sensitive to outliers.

37

𝑿

𝒙1 𝒙2

𝑷1 𝑷2

𝒙1
′

𝒙2
′

𝑿

𝒙1 𝒙3

𝑷1

𝑷3

𝒙1
′

𝒙3
′

𝒙2𝒙2
′

𝑷2

Figure 1.13: Conceptual illustration of the triangulation problem. Recall from Figure 1.2 that in an
ideal setting, given a point in an image taken with a known camera matrix, the line on which the
corresponding 3d point lies can be recovered. Thus, in an ideal setting, given a pair of image points
x1 and x2 in two different images captured with known camera matrices P 1 and P 2, it is possible
to find the corresponding 3d point X as the intersection between two lines in 3d space (green lines).
Note that a corresponding point x3 in a third image captured with the known camera matrix P 3

would also generate such a line that intersects the others in X . In practice however, due to noise,
distortions etcetera, the point X is not captured in the images as x1, x2 and x3, but instead as the
displaced projections x′

1, x′
2 and x′

3. The associated 3d lines are unlikely to intersect (red dotted
lines). Triangulation refers to the process of recovering an estimate X̂ of the true 3d point X , given
image points x′

1, . . . ,x
′
m captured with known camera matrices P 1, . . . ,Pm (m ≥ 2).

3.2.3 Evaluation Metrics

There exist a range of evaluation metrics for the 2d and 3d human pose estimation tasks;
see e.g. [32] for an overview of several of these. Below we list those metrics that are relevant
for the papers in the latter part of this thesis. Note that we exclusively develop and evaluate
3d estimation approaches and therefore only explain the evaluation of 3d pose estimates.

The main error metric used is the mean per­joint position error (MPJPE), which for a
single image of m (partially) visible people is computed as

MPJPE =
1

mn

m∑
i=1

n∑
j=1

∥∥∥X̂j
i −Xj

i

∥∥∥
2
, (1.64)

where n is the number of joints, Xj
i is the j:th ground truth 3d joint of the i:th person, and

X̂
j
i is the estimate of the j:th 3d joint of the i:th person. The assignment of pose estimates

to the respective persons is done by computing the distances between each pose estimate and
ground truth pose, followed by the Hungarian algorithm [36] to find the closest matches
(i.e. the pairs of pose estimates and ground truths which jointly yield the lowest average

38

error). If there are fewer pose estimates than ground truths, this can be penalized⁷ e.g.
by assigning all­zeros estimates to the corresponding persons (this will likely increase the
MPJPE). Similarly, if there are fewer ground truths than pose estimates, the additional pose
estimates can be penalized⁶ e.g. by assigning them to an artificial ground truth consisting
of all­zeros.

Another evaluation metric is the mean reprojection error (MRE) of 3d poses. For a
single image, this error is computed by projecting the 3d poses onto the image (using the
camera matrixP associated with the image), then computing the pixel displacements of the
estimated joints relative to a set of reference joints (either 2d estimates or ground truths),
and finally averaging over the visible joints. If x̂j

i ∈ R2 denotes the projection of the j:th
joint of the i:th person’s 3d pose estimate X̂i onto the image with given 2d reference joint
xj
i ∈ R2, then the MRE is given by

MRE =
1

m

m∑
i=1

1

ni

n∑
j=1

∥∥∥vj
i ⊙

(
x̂j
i − xj

i

)∥∥∥
2
, (1.65)

where m is the number of people for which 3d poses are reprojected, ni is the number
of visible reprojected joints of the i:th person, and vj

i ∈ {0, 1}2 is a binary array where
both entries are equal to 1 if the j:th joint of the i:th person is visible in the image, and
where both entries are otherwise equal to 0. Note that (1.65) depends on the image size;
a doubling of the size will double the error. However, this can in practice be remedied by
normalizing the MRE with the image size.

3.3 Semantic Segmentation

Semantic segmentation is a fundamental problem in computer vision, which shares some
similarities with the object detection task described in Section 3.1. Given a set C of C
semantic categories, which may include a generic background category, the task is to predict
a label for every pixel in a given image. In semantic segmentation separate labels are often
provided for non­objects such as ’wall’ and ’floor’, whereas these would be labeled simply as
’background’ in the object detection task. On the one hand, semantic segmentation is more
challenging than object detection, since it involves the prediction of free­form boundaries
around arbitrary objects and surfaces, as opposed to merely proposing rectangular boxes.
On the other hand, the semantic segmentation task does not involve separating different
instances of the same object category, which is required in object detection.

The output of a segmentation system is typically a tensor of size H ×W × C, where
H and W denote respectively the image height and width. Each spatial location (i, j) of
this tensor contains a predicted probability distribution over the semantic classes present
at pixel (i, j) in the image. The channels of the tensor are subsequently transformed into

⁷Another possiblity is to consider a different evaluation metric which more explicitly takes into account
the effects of too few or too many estimates, such as percentage of correct keypoints (PCK).

39

ground truth prediction intersection (background) union (background)

Figure 1.14: Conceptual illustration of semantic segmentation, including evaluation. Column 1:
Ground truth (GT) segmentation mask, where each grid cell corresponds to a pixel in the associ­
ated image. There are three semantic categories present in the image; their pixel segmentations are
shown in yellow, blue and red, respectively. White represents the background category. Column
2: Predicted segmentation mask. None of the three regions of the GT are perfectly predicted and
there is a fourth yellow region that is incorrectly predicted. The accuracy is the average number of
correctly classified pixels. Comparing the prediction and GT from top to bottom gives accuracy
(7 + 6 + 4 + 6 + 6 + 6 + 6)/49 ≈ 0.84. The mIoU is the mean IoU over the four categories
and is equal to (4/8+ 5/8+ 7/8+ 25/33)/4 ≈ 0.69 (order: yellow, blue, red, white). Note that
in practice the accuracy and mIoU are computed over a dataset of images, not only a single image.
Columns 3 ­ 4: The intersection and union, respectively, of background pixels in the GT and pre­
diction masks. White and gray correspond to background and non­background pixels, respectively.

binary masks, such that the c:th channel contains the predicted mask of the c:th object
category in the image. Specifically, to obtain the c:th binary mask the (i, j):th entry is set
to 1 precisely if c is the index of the largest value in the probability distribution over the
classes at pixel (i, j). For more details about semantic segmentation and an overview of
several proposed methodologies, refer e.g. to the recent survey [37].

3.3.1 Evaluation Metrics

The two main metrics used to evaluate semantic segmentation performance are accuracy and
mIoU, see Figure 1.14. The accuracy is the average number of correctly classified pixels in
the dataset. While conceptually simple to understand, the accuracy metric has a drawback
in that it favors the correct classification of larger regions (such as walls and floors) over
smaller ones. This issue is remedied by the mIoU score, which is the mean IoU over all
categories (this may or may not include background). For the c:th object category, the
IoU is computed by averaging the intersections­over­unions between predicted and ground
truth masks over all images in the dataset.

4 Summary of Contributions and Ideas for Future Work

The contributions of this thesis can be coarsely divided into three categories. In this section
we summarize these contributions, state assumptions and potential limitations, and outline
avenues for future work. It should be emphasized that while each contribution is associated

40

with a distinct visual perception task, they are not attached specifically to those in principle
– in each case, the core ideas and methodologies could be transferred to other domains.

In the first part (Paper I ­ II) we develop reinforcement learning­based search policies
for object detection, which are partly inspired by the ’saccade­and­fixate’ visual processing
routine of many biological systems, including humans. Our proposed visual search policies
sequentially inspect different parts of an input image, integrate information as they proceed,
and automatically terminate search once they consider the image to have been sufficiently
explored. This approach is considerably different from many established, typical detection
methods, where i) the search strategy is exhaustive, fixed by design, and independent of the
image content; ii) the detector response function is not harmonized or refined in connection
with the search strategy; and iii) responses are processed independently without context
accumulation as computation proceeds. While Paper I introduces the core ideas – including
a search strategy which is guided by previously explored image regions, and a mechanism for
adaptively determining the length of each search trajectory – Paper II extends and improves
upon this formulation in every respect. For example, the drl­RPN model we propose in
this paper can be adapted to a range of speed­accuracy trade­offs during inference (and is
generally faster than the model in the first paper) and shows accuracy improvements over
the popular Faster R­CNN detector [38].

Even though drl­RPN replaces the model introduced in Paper I, there are still ways in
which the ideas can be further refined and extended. The main limitation of the current
implementation is that it is somewhat slower than many established methods (e.g. Faster
R­CNN), since a larger number of image regions are inspected on average during the de­
tection process. More specifically, while drl­RPN provides a spatially compact set of image
regions at each fixated image location, these sets typically contain a large amount of regions
which correspond to various scales and aspect ratios of potential detections. The runtime
of the model could thus be improved by attaching a mechanism for reducing the number
of regions associated with each fixation. An ad­hoc mechanism for doing this is already
explored in the paper, but a more sophisticated approach would be to add a module which
predicts the approximate scales and aspect ratios of all objects in the vicinity of each fixated
image location. This would allow the model to omit regions associated with unlikely scales
and aspect ratios. Alternatively (or orthogonally), the processing speed could be increased
by modifying the architecture of drl­RPN so that more computation is shared among the
evaluated regions (see e.g. [39]).

It would also be interesting to attach drl­RPN to a moving observer, which would then
have the capability to not only decide which images to inspect, but also where to look in
each image. Ideally, the two types of decisions within this hierarchy should also be able
to guide one another, since this could potentially result in improved performance and/or
efficiency on the considered task. For example, the visual search process within the current
viewpoint could potentially be performed in fewer fixations if the context from neighboring
viewpoints is taken into account (e.g. the former views may have informed the agent that
it is in a kitchen, which would imply that its current view is unlikely to contain a sofa).

41

In the second part of the thesis (Paper III ­ IV) we shift focus from within­image to
between­image exploration. Specifically, this part examines and develops methods that act­
ively integrate information from multiple viewpoints in order to estimate the 3d articulated
poses of humans (the number of people does not need to be known a priori). This differs
significantly from most prior works in human pose estimation, which either work with a
single view or exhaustively scan a range of viewpoints to produce pose estimates. The pro­
posed reinforcement learning­based methods outperform comparable heuristic alternatives
significantly in task accuracy despite inspecting fewer views on average, yet compared to the
heuristic strategies they add only a negligible amount of processing time for the selection
of each viewpoint. To the best of our knowledge we were the first to introduce the concept
of active 3d human pose estimation.

A drawback of the current formulations is that they assume a scene can be synchron­
ously observed from a large set of viewpoints. This works given carefully constructed in­lab
setups wherein our active pose estimation systems can be applied for example to perform
pose and (offline) motion analysis, but a multi­camera pipeline is unlikely to be available in
most practical scenarios. It would however be possible to adapt our framework to operate
with a much smaller set of viewpoints, assuming those viewpoints are dynamic. This can
be achieved for example by mounting cameras to a few drones. One could even consider
working with a single moving observer, but this would require equipping the active pose
estimation systems with forward temporal models which estimate future poses for multiple
subsequent time steps, corresponding to future viewpoints. Otherwise the multi­view pose
fusion is unlikely to yield reliable estimates, unless the people in a scene move only mar­
ginally during the time it takes for the observer to move to a new viewpoint. It would
also be interesting to explore the active human pose estimation framework in a more free­
form setting (e.g. performing pose estimation using an embodied agent), instead of the
sphere­constrained setup we have considered so far.

The last part (Paper V) differs significantly from the previous ones in that it considers
the problem of how to efficiently train (or refine) a given perception system – here a se­
mantic segmentation network – as opposed to focusing or positioning a given pre­trained
perception model. Some elements of this are present also in Paper II, where the detector
head of drl­RPN is refined jointly with the search policy, but this is not the main contribu­
tion of that paper. In contrast, the formulation in Paper V is centered around the question
of where an embodied agent should navigate in a 3d environment, and for which views to
request annotations along its path, to optimally refine an underlying perception module.
Several methods are proposed and we show that a model based on reinforcement learning
is able to gather more informative training data compared to heuristic counterparts.

The main bottleneck of the reinforcement learning­based agent is its current train­
ing procedure, which is slow since it relies on the continual refinement of a segmentation
network in each episode, and further assumes the availability of ground truth semantic
segmentation masks for each viewpoint. Both issues are connected to the reward signal
by which the the agent’s annotated viewpoints are assessed by measuring the accuracy (or

42

mIoU) of the segmentation network before and after each annotated image is obtained,
which requires continual refinements within each episode. These problems could thus be
circumvented by modifying the reward signal such that it evaluates the annotated views in
a different way. For example, computing some form of diversity metric for the gathered
training set could potentially be used as a proxy to estimate how useful those images are
when training the segmentation system (in this case, a large diversity among annotated
views would be associated with a high reward).

Another avenue for feature work would be to examine the embodied visual active learn­
ing framework in a real robotics context. By default this would however require a human­
in­the­loop who provides segmentation masks for the images requested by the robot, which
is likely to be impractical in most cases. To avoid this, one could replace the human annot­
ator with a state­of­the­art semantic segmentation system for real images (assuming that the
segmentation system associated with the robot is bounded from above by that other seg­
mentation system in terms of maximum accuracy), and use the predictions of that system
as pseudo ground truth.

To summarize, in this thesis we develop active methods for three different visual per­
ception tasks. For the first two our focus is mainly on reducing computational costs and/or
improving perception accuracy, by actively selecting where to focus a pre­trained percep­
tion system (from which viewpoints to observe a scene, and where to look in an image,
respectively). In the last setup we study how an agent can actively explore a scene to refine
a given perception model while querying only a limited amount of annotation. In each
context considered in this thesis, the visual perception model which is to be favorably used
or improved – be it in terms of active sensor positioning or perception refinement – is part
of the agent’s state space. Thus the proposed active visual perception systems are in prin­
ciple able to adapt to any inherent limits or weaknesses of their underlying visual perception
models. We empirically show for each task that active visual perception methods trained
with reinforcement learning match or outperform established or heuristic approaches in
task accuracy, typically while using less or a negligible amount of additional computation.

4.1 Overview of Scientific Papers

This section contains a brief description of the five papers that constitute the latter part of
this thesis. For each paper a summary of contributions is provided.

Paper I: S. Mathe, A. Pirinen, C. Sminchisescu, “Reinforcement Learning for Visual Ob­
ject Detection”, Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016.

This paper proposes a reinforcement learning­based method for object detection that is
partly inspired by the ’saccade­and­fixate’ visual search routine of humans. At a high level,
our detection agent is given an image with a dense set of candidate region proposals and
the agent’s goal is to detect an instance of a given object category while examining (evalu­

43

ating) as few of these regions as possible. The agent achieves this by sequentially attending
different spatial locations in the image, where at each location only a relatively small set of
regions is investigated. The state space of the agent includes a history of earlier observed
image regions, which is used as a contextual cue for where to look next in the image. The
agent is additionally equipped with an action that lets it automatically terminate the de­
tection process. Our empirical results show that the proposed method yields only a small
drop in detection accuracy, while being up to two orders of magnitudes faster than sliding
windows­based methods.

Author contributions: SM and CS conceived the project. SM developed most of the
methodology, including all implementation, while AP and CS came with ideas and sug­
gestions for improvements. AP made some corrections to the mathematical derivation of
the model. SM did the experiments, which were independently validated by AP. SM and
CS wrote most of the paper, while AP took some part in the paper writing.

Paper II: A. Pirinen, C. Sminchisescu, “Deep Reinforcement Learning of Region Pro­
posal Networks for Object Detection”, Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, USA, 2018.

In this paper we propose drl­RPN, a deep reinforcement learning­based visual recogni­
tion model which consists of a sequential region proposal network (RPN) and an object
detector. The drl­RPN model is conceptually inspired by that in Paper I, but extends and
improves it along several dimensions. Specifically, different from the method in Paper I,
i) it seamlessly handles multiple object categories and instances per image; ii) it is entirely
deep and as such does not rely on hand­engineered feature design; iii) it jointly learns and
refines the search policy and detector parameters; iv) the search process can be adapted to
a range of exploration­accuracy trade­offs during inference; and v) it yields significantly
more accurate detection results and is much faster than the model in the first paper.

Author contributions: AP and CS conceived the project. AP developed the method­
ology with ideas and improvement suggestions from CS. AP implemented all code and
performed all experiments. AP wrote most of the paper with input from CS, while some
parts were written jointly with CS.

Paper III: A. Pirinen, E. Gärtner, C. Sminchisescu, “Domes to Drones: Self­Supervised
Active Triangulation for 3D Human Pose Reconstruction”, Neural Information Processing
Systems (NeurIPS), Vancouver, Canada, 2019.

This paper introduces ACTOR, a self­supervised deep reinforcement learning agent for
active triangulation of 2d human body joint detections into 3d pose estimates. ACTOR
operates on a spherical camera rig with a dense set of viewpoints, which can be seen as a

44

proxy for a moving observer such as a drone. Based on a random initial viewpoint of a
scene containing a variable number of people, the agent should sequentially inspect views
across the sphere and observe the people such that all body joints are detected from at least
two different viewpoints (the minimum requirement for performing triangulation into 3d).
The agent should achieve this while inspecting as few viewpoints as possible to avoid excess­
ive computation. Once done with the active triangulation in the current time step of the
multi­camera video stream, the agent proceeds to the next time step and repeats the process.
Temporal backups of previously triangulated body joints can further be used by the model
for those joints (if any) which are not adequately triangulated in the current time step. We
compare ACTOR to heuristic multi­view baselines and show that it produces significantly
more accurate 3d pose estimates using fewer viewpoints on average, yet it only negligibly
increases the time required per viewpoint selection.

Author contributions: AP, EG and CS conceived the project. AP and EG developed
the methodology with input from CS. AP and EG implemented all code and performed
all experiments together. AP wrote most of the paper together with EG and got feedback
from CS, while CS wrote some parts. Overall, AP and EG contributed equally to this paper.

Paper IV: E. Gärtner, A. Pirinen, C. Sminchisescu, “Deep Reinforcement Learning for
Active Human Pose Estimation”, Association for the Advancement of Artificial Intelligence
(AAAI), New York, USA, 2020.

The model proposed in this paper, Pose­DRL, shares similarities with ACTOR from Pa­
per III in that it is also a deep reinforcement learning­based active observer operating on
a camera dome. However, Pose­DRL differs from ACTOR in several respects. First, it
is equipped with a 3d monocular pose estimator which allows it to predict even occluded
joints. In particular, this enables Pose­DRL to predict 3d poses at each temporal step given
only a single view, which potentially makes it more adaptable to settings with a single but
moving observer. Second, Pose­DRL has an explicit mechanism which allows it to fully
automatically terminate viewpoint selection; it may even terminate after observing a single
view if it believes the view is good enough (ACTOR requires at least two views to perform
triangulation). Third, due to significantly different designs of reward functions, Pose­DRL
faces different challenges during viewpoint selection – while ACTOR requires each joint
to be visible in at least two different views, Pose­DRL must take into account which view­
points fuse into accurate 3d estimates when combined. As we demonstrate in the paper, this
often involves terminating viewpoint selection early to avoid views where the pose estimator
is inaccurate.

We develop two variants of Pose­DRL, one which simultaneously estimates the 3d poses
of all the variably many people in a scene, and one which focuses the active pose estimation
on a given target person (the target may nevertheless be present among other people who
then act as potential occlusions). Our empirical evaluations show that Pose­DRL signific­

45

antly outperforms heuristic multi­view baselines – even when observing fewer viewpoints
on average – while requiring virtually the same processing time per viewpoint selection.

Author contributions: CS came up with the core idea for this project, which AP refined
together with EG. AP and EG developed the methodology with input from CS. AP and
EG implemented all code and performed all experiments together. AP wrote most of the
paper together with EG and got feedback from CS, while CS wrote some parts. Overall,
AP and EG contributed equally to this paper.

Paper V: D. Nilsson, A. Pirinen, E. Gärtner, C. Sminchisescu, “Embodied Visual Active
Learning for Semantic Segmentation”, Association for the Advancement of Artificial Intelli­
gence (AAAI), Virtual conference, 2021.

Common for Paper I ­ IV is that they focus on the problem of positioning a sensor to
an image part or viewpoint where a given perception model is accurate and/or to avoid
redundant processing with that perception model. This paper instead studies the question
of which sensor viewpoints of an environment that annotations should be queried for, so as
to maximally improve the average accuracy of a given perception model for all viewpoints
in that environment. Specifically, we introduce the embodied visual active learning task,
where an agent should explore a 3d environment to improve its visual perception by actively
deciding for which views to request annotation. We propose and implement a variety of
methods, both learnt and pre­specified ones, in the context of semantic segmentation. The
agents aim to gather informative annotated views, use motion to explore and propagate an­
notations in the neighborhood of those views, and improve the underlying segmentation
network by online re­training. The learning­based method uses reinforcement learning
with a reward function that balances two competing objectives, where on the one hand
task accuracy should be high (which requires environment exploration) and on the other
hand the amount of annotated data should be as small as possible (since data annotation is
expensive). We extensively evaluate our proposed models in photorealistic 3d environments
and show that the learning­based model outperforms comparable pre­specified ones, even
when it requests fewer annotations on average.

Author contributions: DN and CS conceived the project. DN implemented the largest
part of the code base. AP and EG also implemented significant parts of the code. DN, AP
and EG continually proposed ideas and refined the methodologies over the course of the
project, with input and further ideas from CS. DN performed most of the experiments,
while AP and EG performed some of the experiments. DN, AP and EG jointly wrote most
of the paper with feedback from CS, while CS wrote some parts.

46

References

[1] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser­
man, “The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.”
http://www.pascal­network.org/challenges/VOC/voc2007/workshop/index.html.

[2] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and
Y. Sheikh, “Panoptic studio: A massively multiview system for social motion capture,”
in CVPR, 2015.

[3] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb­d data in indoor environ­
ments,” International Conference on 3D Vision, 2017.

[4] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge
university press, 2003.

[5] C. Cortes and V. Vapnik, “Support­vector networks,” Machine learning, vol. 20, no. 3,
1995.

[6] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[7] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT
press Cambridge, 2016.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient­based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, 1998.

[9] S. Hochreiter and J. Schmidhuber, “Long short­term memory,” Neural computation,
vol. 9, no. 8, 1997.

[10] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder­decoder for stat­
istical machine translation,” in EMNLP, 2014.

[11] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action
recognition,” PAMI, vol. 35, no. 1, 2012.

[12] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the
kinetics dataset,” in CVPR, 2017.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017.

47

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16
words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929,
2020.

[15] X. Shi, Z. Chen, H. Wang, D.­Y. Yeung, W.­K. Wong, and W.­c. Woo, “Convo­
lutional lstm network: A machine learning approach for precipitation nowcasting,”
NeurIPS, 2015.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks.,” in Aistats, 2010.

[17] A. Beck, First­order methods in optimization. SIAM, 2017.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
by error propagation,” tech. rep., California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

[19] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large­scale machine learning on het­
erogeneous distributed systems,” in USENIX Symposium on Operating Systems Design
and Implementation, 2016.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on Multimedia, 2014.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dro­
pout: a simple way to prevent neural networks from overfitting,” JMLR, vol. 15, no. 1,
2014.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

[24] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[25] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no­regret online learning,” in Aistats, 2011.

[26] R. J. Williams, “Simple statistical gradient­following algorithms for connectionist re­
inforcement learning,” Machine learning, vol. 8, no. 3­4, 1992.

48

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[28] S. M. Kakade and J. Langford, “Approximately optimal approximate reinforcement
learning,” in ICML, 2002.

[29] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,
Y. Song, S. Guadarrama, et al., “Speed/accuracy trade­offs for modern convolutional
object detectors,” in CVPR, 2017.

[30] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” arXiv
preprint arXiv:1905.05055, 2019.

[31] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep
learning for generic object detection: A survey,” IJCV, vol. 128, no. 2, 2020.

[32] C. Zheng, W. Wu, T. Yang, S. Zhu, C. Chen, R. Liu, J. Shen, N. Kehtarnavaz, and
M. Shah, “Deep learning­based human pose estimation: A survey,” arXiv preprint
arXiv:2012.13392, 2020.

[33] Y. Chen, Y. Tian, and M. He, “Monocular human pose estimation: A survey of deep
learning­based methods,” Computer Vision and Image Understanding, vol. 192, 2020.

[34] N. Sarafianos, B. Boteanu, B. Ionescu, and I. A. Kakadiaris, “3d human pose estima­
tion: A review of the literature and analysis of covariates,” Computer Vision and Image
Understanding, vol. 152, 2016.

[35] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments,”
PAMI, vol. 36, no. 7, 2014.

[36] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1­2, 1955.

[37] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos,
“Image segmentation using deep learning: A survey,” PAMI, 2021.

[38] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r­cnn: Towards real­time object de­
tection with region proposal networks,” in NeurIPS, 2015.

[39] J. Dai, Y. Li, K. He, and J. Sun, “R­fcn: Object detection via region­based fully
convolutional networks,” in NeurIPS, 2016.

49

Chapter 2

Scientific Publications

Paper I

Reinforcement Learning for Visual Object Detection

Stefan Mathe2,3 Aleksis Pirinen1 Cristian Sminchisescu1,2

1Centre for Mathematical Sciences, Lund University
2Institute of Mathematics of the Romanian Academy

3Department of Computer Science, University of Toronto

Abstract

One of the most widely used strategies for visual object detection is based on exhaustive spatial
hypothesis search. While methods like sliding windows have been successful and effective for many
years, they are still brute­force, independent of the image content and the visual category being
searched. In this paper we present principled sequential models that accumulate evidence collected
at a small set of image locations in order to detect visual objects effectively. By formulating sequential
search as reinforcement learning of the search policy (including the stopping condition), our fully
trainable model can explicitly balance for each class, specifically, the conflicting goals of exploration
– sampling more image regions for better accuracy –, and exploitation – stopping the search efficiently
when sufficiently confident about the target’s location. The methodology is general and applicable
to any detector response function. We report encouraging results on the PASCAL VOC 2012 object
detection test set, showing that the proposed methodology achieves almost two orders of magnitude
speedup over sliding window methods.

55

1 Introduction

Classically, detection has been formulated as the problem of maximizing a confidence func­
tion over a set of hypothesized target locations, where the confidence can be learned in a
fully supervised [1] or weakly supervised [2] setup. In the sliding window formulation, the
hypothesis set consists of a large set of rectangular windows, and the maximization problem
is solved by exhaustive search. Since this process is generally too expensive in practice, many
methods have been proposed to accelerate it, from methodologies that leverage properties
of the confidence function, to proposal methods or cascade techniques. All these methods
retain the exhaustive search property over the hypothesis space, aiming either to reduce the
number of hypotheses to start with, or search these efficiently.

In contrast, biological systems have a pattern of search that can be characterized as
‘saccade­and­fixate’ [3], where a small set of scene locations are investigated sequentially, in
order to accumulate sufficient evidence on the target location. Set aside efficiency (only a
few regions of an image are explored) and biological plausibility, it appears still interesting to
formally derive mathematical models that could optimally balance efficiency and accuracy,
by integrating evidence, sequentially, in a principled way. The challenge is to be able to
operate with delayed rewards, which rules out supervision at each step. At the same time,
one wants to avoid having to completely pre­specify the environment, which for visual
scenes would be impossible – given the complexity of images and visual object categories,
the models should be effectively trained.

By formulating sequential search as reinforcement learning of the category and the
image­dependent search policy, including the stopping conditions, in this work we develop
fully trainable methods that can explicitly balance the conflicting goals of exploration –
sampling more image regions for better accuracy –, and exploitation – stopping the search
efficiently when sufficiently confident in the target’s location. The methodology is general,
applicable to any detector response function, and can learn search strategies and stopping
conditions that are image and visual category specific. Two orders of magnitude speedups
over sliding window methods are achieved in the challenging PASCAL VOC 2012 object
detection benchmark.

2 Related Work

One class of efficient detectors focuses on the use of branch­and­bound heuristics [4] to pri­
oritize exploration of the search space towards promising image regions. Unlike the present
work, such techniques are only applicable to confidence function classes for which strong
bounds are available. Additionally, in the absence of the target in the image, methods in
this class degenerate to exhaustive search. Motivated by these limitations, other authors
have proposed to use cascades of classifiers [5, 6, 7, 8] to progressively narrow the search
space, where weak but fast classifiers are applied early to eliminate regions unlikely to con­
tain the target, while investing computational resources to run more complex classifiers on

56

promising regions. Such methods drastically reduce the computation cost, but classifiers
early in the cascade still have to be applied exhaustively over all image regions. Instead of
focusing on region exploration strategies, others have sought to optimize the evaluation
of the confidence function. This includes sharing computation among neighboring image
regions [9, 10] or among the different classifiers for multi­class detection problems [11].

Recent trends in object detection focus on a rapid content­based reduction of the set of
candidates – in earlier methods, windows, cropped at different positions, and of different
aspect ratios, in an image – to a smaller set (still thousands of hypotheses in most methods)
which exhibits the statistical regularities of the objects found in the real world. Typical
methodologies include parametric figure­ground segmentation with Gestalt, ‘object­like’
filtering [12], superpixels [13, 14] or edge­based cues [15]. In this work we will rely on the
parametric segmentation method of Carreira et al. [12] to generate a set of free­form figure­
ground proposals that capture most objects of interest, although our method can use any
other state­of­the­art proposal generation method [13, 14, 15].

In contrast to methods based on branch and bound and cascades of classifiers, sequen­
tial search methods like [16] attempt to sparsely sample the image through a local search
guided by the contextual relations among regions, previously shown to improve detection
accuracy [17, 18, 19, 20]. Gonzalez­Garcia et al. [16] propose search policies that map
contextual windows to the ground truth target location based on random forests, whereas
[21, 22] learn a mapping from images to bounding box masks using a cascaded deep learn­
ing model. Palleta et al. [23] and Butko and Movellan [24] developed remarkable early
sequential models based on POMDPs for recognition and face detection. However, those
models are not fully trainable and require a complete and accurate specification of the en­
vironment, which makes them challenging to apply in complex multi­class visual detection
setups. More recently, reinforcement learning [25] has been applied to visual analysis prob­
lems like image classification [26, 27, 28], face detection [29], tracking and recognizing
objects in video [30], learning a sequential policy for RGB­D semantic segmentation [31],
and scanpath prediction [32].

In independent work performed in parallel with ours [33], [34] also focus on object
detection using reinforcement Q­learning. We differ, among others, in using policy search
based on an analytic gradient computation with continuous as opposed to discrete reward
(both in a supervised and weakly­supervised image labeling setup [33]), by operating on
regions instead of deforming bounding boxes, in using different actions (infinite set via
function approximation vs. 9 discrete actions in [34]), a different state representation (a
set of 10 boxes in [34] vs. our manipulation of disjoint sets), and in the training pro­
cedure based on reinforcement learning with delayed rewards as opposed to an additional
apprenticeship signal in [34]. This results in a different model behavior in both training
and testing, as [34] requires the control of actions via short steps in order to prevent the ap­
prenticeship learning process to immediately locate the target from any position. In testing
[34] use 10 steps to locate the target, whereas our model takes 3.1 steps on average.

Relevant to our work is also the one of Karayev et al. [35] who differently however, fo­

57

cus on object detection in an anytime recognition framework where a multi­class detector
can be stopped, asynchronously, during its execution. Karayev et al. sequentially schedule
multi­class models, optimizing the order of applying sliding window object detectors (ex­
haustively evaluated at all image locations, in a cascade), stopping short of running detectors
for some classes. In contrast, we spatially optimize each specific sequential class detector
(stopping short of searching all image locations) and run the detectors for all classes in the
standard way. Methodologically, there are significant differences: [35] use Q­learning and
regress expected value of (state, action), we do policy search with analytic gradient to dir­
ectly optimize expected reward. We have infinite action spaces (any image location), [35]
operate over finite actions (1+#detector­classes in [35], or 1+#feature­types in [27, 36]);
[35] can stop anytime, whereas we learn a stopping condition for each class. From a sys­
tem viewpoint the methods are complementary, as one can benefit both from an efficient
ordering of class detectors [35] and from efficient individual class detectors, as we propose,
but we will not investigate this here.

3 Problem Formulation

Given an input image, we formulate object detection as the problem of maximizing a con­
fidence function fc : R→ R over a set of image regions R:

r∗ = argmax
r∈R

fc(r). (2.1)

The set of image regions R can be defined either at the coarse level of bounding boxes
or at the finer level of free­form image regions obtained with a state­of­the­art proposal
generation method [12, 13, 14]. Good choices for the confidence function fc that achieve
state­of­the­art performance are associated with a high computational price tag. Therefore,
solving the optimization problem (2.1) can still be expensive even for the comparatively
smaller (versus e.g. bounding boxes) set of region proposals R obtained by a segmentation
algorithm. To address this issue, in Section 3.1 we present a model to learn efficient search
strategies, rigorously formulated in a reinforcement learning setup. Our model operates in
an integrate, fixate and evaluate regime, and only explores a few locations before deciding
on the presence of a target.

3.1 Sequential Detection Model

In this section we present the key components of our optimal sequential model for im­
age exploration.¹ Our model is given a set of image regions R indexed by the set B =
{1, . . . , |R|} (with | · | the set cardinality), the confidence function as introduced in (2.1),
fc(r) = θ⊤

c q(r) with parameters θc, and a feature extractor q : R → Rm of dimen­
sionality m. The objective of the model is to locate the target with a minimal number of
evaluations of these two computationally expensive functions.

¹See the supplementary material for detailed derivations.

58

reward signal (eq. 13)

1

0

See algorithm 1.

See algorithm 2.

Figure 2.1: Sequential detector based on rein­
forcement learning. At each time step, the model
may terminate search (dt = 1) based on the his­
tory Ht of observed regions (Algorithm 1) and
produce a detection hypothesis bt with confid­
ence ct, receiving a reward measuring the detec­
tion quality. Otherwise, an evidence region et is
chosen from the set Ht \Et of unselected regions
and used to predict the next fixation location zt.
The setOt of all regions in the neighborhood of zt

become observed (Algorithm 2) and a negative re­
ward is received, reflecting the computational cost
of extracting features for these regions.

At each time step t during a detection
sequence (except the last step), our model
generates a fixate action Af

t based on its
internal state St. Each fixation action spe­
cifies a location in the image that the model
decides to explore and results in a set of ob­
servations Ot, which is a set of image re­
gions in the proximity of this location. The
observed regions are the only ones that are
inspected by the algorithm. In particular,
they are the only regions on which the con­
fidence function fc and feature extractor q
need to be evaluated. The observations Ot

are then used to update the state St, sum­
marizing all past observations and actions.

When enough information has been
collected about the image, the model is­
sues a special done action, indicating that it
has decided on the location of the detection
target. The done action is associated with a
detection target bounding box bt and con­
fidence ct. The model has a set of trainable
parameters θ = (θc,θd,θe,θp,Σp, σc)
controlling, respectively, the detector re­
sponse confidence, the stopping criteria, the informativeness of an image region with re­
spect to the target location, the image location of the most probable next fixation and its
variance, and the variance of the confidence ct associated to the model output.

Each fixate action may reduce the uncertainty in localizing the detection target, but is
associated with a computational cost due to the need to integrate the set of observations
Ot into the state. The goal of our model is to balance the conflicting needs of information
gathering (fixate actions) with the need to correctly locate the target (done actions).

3.2 Model Structure

We now proceed to describe in detail the actions, states, observations, and decision process
of our model. The model components are shown in Figure 2.1 and several examples of
search patterns are illustrated in Figure 2.2.

States. The state of our model is represented as a tuple with three elements: the observed
region historyHt, the selected evidence region historyEt, and the fixation history Ft. This
tuple St = (Ht, Et, Ft) summarizes the history of observations and actions since the be­

59

Figure 2.2: Sequences of fixation locations zt (orange circles) generated by our model, together
with the corresponding evidence regions et (green boxes), and the final detected bounding box bt
(yellow), for several images. The model may terminate the search early, if the target is found by
the first central fixation (first image in the second row). When the target has not yet been found,
regions that do not contain it are often exploited to guide the search to new promising locations (e.g.
the street provides the context for finding the bus). When a small target lies inside a wider region
(e.g. the bird in the tree), the model uses the wider region as a contextual cue to find the target,
in a coarse­to­fine fashion. Similarly, fine­to­coarse search strategies involving several exploratory
fixations are used to provide the foveal coverage needed to observe large targets (e.g. the airplane).
See Table 2.1 for quantitative results and Section 4 for discussion.

ginning of the search sequence.

The observed region history Ht: At each time step t, the model keeps track of a history
Ht ⊆ B of image regions observed so far. The confidence function fc is evaluated on these
regions alone and is used to decide when to terminate the search. The history Ht is also
used by the model to decide on promising locations to fixate during the next step, as these
might provide context to guide the search.

The selected evidence region history Et: The model decides on the next location to fixate
based on an evidence region et ∈ Ht from the observation history. This evidence region
is deemed by the model to provide the necessary context that is indicative of the target’s
location. However, to encourage diversity during search, each region should be used as
evidence at most once. For this reason, the model keeps track of the set Et ⊆ Ht of re­
gions selected so far, and evidence regions are always selected from the set Ht \ Et.

The fixation history Ft: The set of observed regions at each time step t depends on the
history Ft of past fixation locations, cf. (2.2). We thus include this history in the state St.

60

Actions. Actions in our model are represented as tuples. There are two kinds of actions,
distinguished by their first element, which can be one of two discrete symbols: fixate or
done. Fixate actions are represented as a three element tuple Af

t = (fixate, et, zt), where
et ∈ B represents the index of the evidence region and zt ∈ R2 is the image coordinate of
the next fixation. Done actions are represented as Ad

t = (done, bt, ct) where bt ∈ B is the
index of the region representing the detection output and ct ∈ R represents the detection
confidence. To summarize, the action space of our model consists of the union of all fixate
and done tuples, i.e. A = Af ∪ Ad.

Observations. Following a fixate action, the set Ot of image regions in the neighborhood
of the fixation location zt become observed. To define this neighborhood, we use a circular
area of radius TR around the fixation center zt. We say that a pixel is fixated at time t if it
falls within the area associated with zt. In order for a region r to become observed at time
t, a sufficiently large fraction h(r) of its pixels must have been fixated during the current
or previous steps:

h(r) =
|{x ∈ r|∃z ∈ Ft, ∥z − x∥2 ≤ TR}|

|r|
, (2.2)

Ot = {i ∈ B | h(ri) ≥ TF } , (2.3)

where Ft = {z1, . . . , zt} is the history of locations fixated by the model up to time step t,
and TF is a threshold that controls the minimum fraction of fixated pixels in an observed
segment.

3.3 Stochastic Policy

The model decides on the next action to take based on the current state. Its stochastic
decision policy πθ(St,At) proceeds in three phases, each having its own set of learned
parameters. The model first evaluates whether to terminate search (termination decision).
If positive, a done action is performed, else a fixate action follows. We will review each of
these next.

Termination decision. The model may decide to terminate search at any given time step,
based on the current state St, and produce a detection result. Rather than using an ad­hoc
termination policy, e.g. a preset number of fixations (search locations), our model uses a
learnt decision function that balances detection confidence against computational load:

• Detection confidence: If the model has already observed a region which is deemed to
contain the detection target with high confidence, it may decide to terminate the
search early. To capture this aspect we compute the maximum confidence over the
regions observed so far, i.e. asmax

(
{fc (ri)}i∈Ht

)
, where asmax(X) =

∑
x∈X xeαx∑
x∈X eαx

for any set X and smoothness hyperparameter α.

61

• Computational load: The running cost of our detector has two components: first, the
number of confidence function evaluations performed so far, which is proportional
to the ratio |Ht| / |R| of regions observed at the current time step t; second, the
number of search policy evaluations. Since the policy is evaluated once per time
step, this cost is proportional to the number of time steps t.

In order to allow the model to balance these termination criteria, we define a four­element
feature vector for the current state:

v (St) =
[
asmax

(
{fc (ri)}i∈Ht

)
t
|Ht|
|R|

1

]⊤
. (2.4)

The search termination probability (done action) is given by a logistic classifier with para­
meters θd:

pθ(dt = 1|St) = sigm
[
θ⊤
d v (St)

]
, (2.5)

where dt is an binary variable indicating the decision to terminate the search at the current
time step and sigm(x) = (1 + e−x)

−1 is the sigmoid function.

Done action. Upon termination (dt = 1), the model outputs a bounding box bt from
the set Ht of observed regions, to represent the detection target location, together with
a confidence score ct. We use a soft maximum bounding box selection criterion, with
smoothness hyperparameter α:

pθ(bt = k|dt = 1,St) =
eαfc(rk)∑

i∈Ht
eαfc(ri)

. (2.6)

The corresponding confidence ct is normally distributed around the confidence for the
selected bounding box, i.e.

pθ(ct|dt = 1, bt = k,St) = N(ct|fc(rk), σc). (2.7)

where σc ∈ R is a model parameter that controls the variance of the confidence of the
predictions. Finally, the probability of a done action is given by

πθ (At = (done, bt, ct) |St) = pθ (dt = 1|St) pθ(bt|dt = 1,St)pθ(ct|dt = 1, bt,St).
(2.8)

Fixate action. If the search is not terminated (dt = 0), the model selects a new evidence
region et ∈ Ht \ Et from the set of observed regions, that it deems informative for the
target location. We define an evidence function fe : B → R, fe (i) = exp

[
θ⊤
e q(ri)

]
that

evaluates the informativeness of image region i with respect to the target location, where
θe are learned model parameters. We pick the region et from a multinomial distribution

62

defined by the evidence function over the set Ht \Et of image regions not selected during
previous steps:

pθ(et|St) =
fe(et)∑

i∈Ht\Et
fe(i)

. (2.9)

Once selected, the evidence region et is used to define a Gaussian probability distribution
for the next fixation location zt ∈ R2. For convenience, let us denote by

µ(et) =
x1(et) + x2(et)

2
(2.10)

the center of the bounding box tightly enclosing the evidence region ret , defined by its
top­left and bottom­right corners x1(et) and x2(et), respectively. Similarly, let

∆(et) = diag
(
x1(et)− x2(et)

2

)
(2.11)

be the diagonal matrix encoding half the width and height of this bounding box. Then,
the probability for the next fixation location zt is given by

pθ(zt|St, et) = N
(
zt|fp(et),∆(et)

⊤Σp∆(et)
)
, (2.12)

where Σp is a learned covariance matrix that controls the spread of fixations, and the Gaus­
sian center fp(et) is based on a linear combination of the evidence region features q(ret)
with learned parameters θp:

fp(et) = ∆(et)θ
⊤
p q(et) + µ(et). (2.13)

We make the position function fp invariant to the scale of the image region ret by nor­
malizing with respect to its bounding box size, defined by the top­left and bottom­right
corners, cf. first term in (2.13), and relative to the bounding box center (second term in
(2.13)). Summarizing, the probability of a fixate action is given by

πθ (At = (fixate, et, zt) |St) = pθ (dt = 0|St) pθ (et|dt = 0,St) pθ (zt|dt = 0, et,St) .
(2.14)

The model policy is completely specified by equations (2.8) and (2.14), which define a prob­
ability distribution over all possible actions At. Note that out policy is highly (deeply)
non­linear in the features and the parameters. The stochastic policy is given by a Gaussian
distribution on top of highly non­linear predictions (in contrast, note that methodologies
like [29, 34] are deterministic).

63

Algorithm 1 Policy sampling algorithm
1: procedure SAMpLE (St = (Ht, Et, Ft))
2: dt ∼ p(dt|St) using (2.4), (2.5)
3: if dt = 1 then
4: bt ∼ p(bt|St, dt) using (2.6).
5: ct ∼ p(ct|St, dt, bt) using (2.7)
6: return At = (done, bt, ct)
7: else
8: et ∼ p(et|St, dt) using (2.9)
9: zt ∼ p(zt|St, dt, et) using (2.12)

10: return At = (fixate, et, zt)
11: end if
12: end procedure

Algorithm 2 State transition algorithm
1: procedure OBSERvE (St = (Ht, Et, Ft) , At = (fixate, et, zt))
2: Ot ← {i ∈ B | h(ri) ≥ TF }
3: Ht+1 ← Ht ∪Ot

4: Et+1 ← Et ∪ {et}
5: Ft+1 ← Ft ∪ {zt}
6: return St+1 = (Ht+1, Et+1, Ft+1)
7: end procedure

3.4 Inference and Learning

Inference is carried out by repeated sampling of the policy πθ (At|St), until a done action
is achieved (Algorithm 1). At each step the state St is updated according to the action
At (Algorithm 2). When the search is finished, the region bt and the confidence ct are
generated and returned as the detector output.

For learning we are given a set of images, represented as sets of regions Bj , together
with confidence function fc aimed to be maximal at target locations. For notational sim­
plicity, without loss of generality, we will consider the equations for one image, containing
n (possibly 0) detection targets, and the corresponding ground truth regions {gi}

n
i=1.

We wish to find the model parameters θ = (θc,θd,θe,θp,Σp, σc) maximizing the
target detection accuracy based on the detected target location bt and confidence ct at the
last step (when dt = 1). At the same time, we aim to minimize the number of region
evaluations. To capture this trade­off, and to avoid explicitly instructing the model how
to achieve it, we formulate the training objective as a delayed reward, as typical in a rein­
forcement learning setup. Our reward function is sensitive to the detection location and

64

the confidence at the final state, and incurs a penalty for each region evaluation:

rt (St,At) =


−β · |Ot \Ht| if dt = 0

sigm (ct) · [maxi=1,n IoU (gi, rbt)] if dt = 1 ∧ n > 0

−sigm (ct) if dt = 1 ∧ n = 0,

(2.15)

where IoU(·, ·) is the intersection­over­union function on regions and β is a penalty paid by
the model for each confidence function evaluation.We found it straightforward to estimate
the exploitation­exploration trade­off parameters, for each class detector, based on cross­
validation. Typical values are e.g. β = 10−3 and α = 30 (cf. (2.6)).

The first branch in (2.15) associates a negative reward to each fixate action, proportional
to the computational cost of evaluating the newly observed region set Ot \ Ht. The last
two branches correspond to the done action, with different rewards for images in which
the target is present and absent. In the former case (branch 2), the model receives a re­
ward that is proportional to its confidence and the ground truth overlap. In the latter case
(branch 3), the location is ignored, and the model receives a higher reward if its confidence
is smaller. Concluding, the reward function defined in (2.15) balances detection accuracy
and computational complexity.

In training, we maximize the expected reward function on the training set, defined as:

J(θ) = Epθ(s)

 |s|∑
t=1

rt

− λ

2
θ⊤θ, (2.16)

where s = ((S0,A0), . . . , (Sk,Ak), . . .) represents a variable length sequence of states,²
sampled by running the model (Algorithm 1 and 2), starting from an initial state S0 =
(H0, E0, F0) and λ is an L2­regularizer. We set the initial H0 to the set of segments
observed by fixating the image center, and both E0 and F0 to ∅.

For one image, the gradient of the expected reward (2.16) is approximated as [37, 25]:

∇θJ(θ) =
1

M

M∑
i=1

|si|∑
t=1

∇θlogπθ(Ai
t|Sit)

 |si|∑
t=1

rit

+ λθ, (2.17)

where si = ((Si0,Ai
0), . . . , (Sik,Ai

k), . . .) and rit, represent sequences of states, actions
and corresponding rewards, sampled by model simulation (total of M sampled sequences).

Training our sequential model involves computing the expected reward and its gradient,
cf. (2.17) ­ (2.16). For each image, this involves simulating the model until the search is
terminated, by generating sequences in the state­action space. At each time step t, an action
At is sampled from the policy, using Algorithm 1. More precisely, first the distribution

²As the model decides when to terminate search, individually, for each search path.

65

pθ(dt|St) is sampled to decide whether the search is to be terminated (done action, i.e.
dt = 1). If so, then the output region index bt and the confidence ct are sampled from
pθ(bt|dt = 1,St) and pθ(ct|dt = 1, bt,St), respectively. Otherwise (not done, i.e. dt =
0), an evidence region is selected by sampling pθ(et|dt = 0,St), and then the next fixation
location is sampled from pθ(zt|dt = 0, et,St). Finally, the state of the model is updated
as described in Algorithm 2. Multiple sample sequences are generated in this way, for each
image, and are used to estimate the expectations.³

4 Experiments and Results

In this section we present experiments to validate our search method on the challenging
Pascal VOC 2012 object detection benchmark [38], over the withheld test set available via
the evaluation server. In most of our experiments, the region space R consists of all seg­
ments extracted using a figure­ground region proposal method, and any state­of­the­art
method applies. Without loss of generality, we select the CPMC algorithm [12] as their
segments can be mapped with reasonable accuracy to detection targets (according to our
studies, the average intersection­over­union overlap of the best segment enclosing rectangle
with the ground truth bounding box, is 0.687).

Pipelines. To quantify the performance of different standard search models, we either
solve the maximization problem (2.1) exactly, by performing exhaustive sliding window
search (SW), exhaustive search over the CPMC region proposal set (RP), or by using our
sequential reinforcement learning search model (RL).

4.1 Experimental Procedure

We now present and discuss the details of our experiments.

Proposal generation. To obtain our RP hypotheses, we run the public implementation
[12] over the input image. For the sliding window (SW) baseline, region hypotheses are
windows obtained by iterating over various window sizes and aspect ratios, and, for each
scale and aspect ratio setting, by sliding the window with a fixed stride over the image.
Our sliding window enumeration strategy results in 25, 000 windows per image. For re­
gion proposal, we use an optimized version of CPMC, which operates on a reduced search
space formed by free­form regions. Note however that the optimization only applies to the
segment generation step. Therefore, as of recent trends in region proposal­based detection,
we work with larger pools typically having thousands of segments, and avoid the expensive
segment filtering and ranking steps.

³For a training set of images, we will naturally aggregate (sum over) such estimates, for each image.

66

Feature extraction. For our feature extractor q, we use the deep neural network of Kr­
izhevsky et al. [39]. For a region, we invoke the network over the contents of the bounding
box, and to capture context, on the entire image where the bounding box has been masked
out (filled by its mean color). For each neural network evaluation, we record the output of
the last fully connected layer. We concatenate the resulting feature vector with a represent­
ation of the bounding box size and aspect ratio, and obtain a final vector of 8, 204 values.
Deep neural networks can be refined to further increase detection accuracy [1, 40], but in
this work we have focused on optimal search models and have therefore opted to illustrate
our model with a simpler linear SVM model trained using a generic feature extractor [39].
Note however that our method is sufficiently general to operate in conjunction with any
confidence function.

Training the sequential reinforcement learning detector. We find the optimal para­
meter vector θ that maximizes the expected reward (2.16) on the training set of the Pascal
VOC 2012 Object detection challenge, using a BFGS optimizer. However, due to the high
number of parameters the model is prone to overfit the data. Therefore, in practice we have
chosen to initialize our confidence function parameters θc by pre­training using a linear
SVM where positive instances are ground truth bounding boxes and negative instances are
sampled from other image locations (from the region proposal set R).

We initialize θp by performing a regression from image regions to the centers of ground
truth bounding boxes. We bias θc towards their initial values while the rest of the para­
meters (θd,θe, σc,Σp) are initialized by uniform random sampling, in the range [0, 1]
and optimized using a zero­mean quadratic penalty, cf. (2.16). We validate the observation
model parameters TR as in (2.2) and TF as in (2.3) on the Pascal VOC validation set, set­
ting them to 64 pixels and 0.25, respectively. In practice the sensitivity associated to these
parameters is not high; even if the model runs for several fixations, only a small fraction of
the the total number of regions is observed. Empirically, we found the model to produce
fairly short and effective search patterns with a number of 3.1 image locations inspected
on average. As our policy is stochastic, multiple object instances can be found. Moreover,
in evaluation, all visited regions above a threshold (e.g. all attended regions) are identified
(locate and restart strategies are also possible).

4.2 Computational Efficiency and Accuracy

The running time and accuracy of our method is shown in Table 2.1. The accuracy of our
sequential detector is close to that of the much more expensive sliding window baseline,
although it is more than 70 times faster on an Intel Xeon 2.2Ghz CPU. This speedup
takes into account the overhead of the RP algorithm (6.1 seconds) and the small overhead
needed to sample the policy of our sequential detector (32 ms). We explicitly chose to give
speedups in running times (as opposed to e.g. number of inspected locations or detector
evaluations) as these also cover the overheads (e.g. in our case the additional work for the

67

segment proposal generation step or estimating the next action), for fair comparisons with
sliding windows or region proposal methods.

Besides comparisons with the SW and RP baselines, presented in Table 2.1, it could
be useful to relate to other efficient search methods like [16]. As code is not available and
there are quite significant methodological as well as region and feature representation dif­
ferences, one can still consider overall speedups reported for similar datasets. For example,
by operating over free­form regions obtained from selective search [13], [16] achieve a 9x ac­
celeration, respectively, over sliding­windows methods in the PASCAL VOC 2007 dataset.
Both us and [16] could additionally benefit from embedding our accelerated spatial class
detectors into the complementary, effective multi­class detector scheduling mechanism for
anytime recognition proposed in [35]. This could further produce a 2x speedup at roughly
similar AP loss.

4.3 Qualitative Analysis

We note that the length of the search sequence is greatly dependent on the image (see
Figure 2.2). If the target is close to the image center (e.g. the bicycle in Figure 2.2), the
method tends to terminate the search after the first fixation, as it has already confidently
located the object. If the target is located near the periphery, our model tends to continue
the search over a longer time horizon. This behavior illustrates the model’s capacity to adapt
the search sequence length to the input image, as opposed to other fixed­lenght search
methods in the literature.

Our visualizations of the results reveal three ways in which an evidence region (shown
in green in Figure 2.2) may guide the search: i) The contextual region may not contain the
target, but instead provide cues on its location (e.g. the ocean for the boat, or the road for
the bus). In this case the model navigates from the surrounding context to the object itself.
ii) The contextual region may include the target (e.g. the tree branches in which the bird
is hiding), and inform the model to fixate a subregion likely to represent it. This situation
corresponds to a coarse­to­fine search for the target. iii) Finally, the target may be too big,
and fixations inside its region may initially not foveate it sufficiently for an observation to
be made. In such cases, object subparts are often chosen as evidence regions to guide the
search to other subparts (e.g. the various features of the front of the train engine), until the
object is included in the observation set and therefore the confidence function is evaluated
on its full extent. In this case, the model behavior resembles a perceptual grouping process
in which smaller scale parts are integrated to deduce the extent of a large object.

5 Conclusions

We have presented a reinforcement learning model for visual object detection. In con­
trast to methods that operate exhaustively over a hypothesis space, we have derived a fully
trainable sequential model that can efficiently sample only a few image locations in order

68

to accumulate evidence on the target location. Our model is image and category specific
and can explicitly balance the trade­off between exploration (improving accuracy) and ex­
ploitation (efficiently terminating search when sufficient evidence has been gathered). Our
methodology is general and applicable to any detector response function. We report en­
couraging results in the PASCAL VOC 2012 object detection dataset, showing that the
proposed methodology achieves almost two orders of magnitude speedup over sliding win­
dow methods.

Acknowledgments: Work partly supported by CNCS­UEFISCDI under PCE­2011­3­
0438, JRP­RO­FR­2014­16.

©2016 IEEE. Reprinted, with permission, from [41].

69

Ta
bl
e
2.
1:

D
et

ec
tio

n
ac

cu
ra

cy
(r

ep
or

te
d

as
Av

er
ag

eP
re

ci
sio

n,
AP

)a
nd

ru
nn

in
g

tim
es

of
di

ffe
re

nt
m

et
ho

ds
in

th
et

es
ts

et
as

so
ci

at
ed

to
th

eP
AS

C
AL

V
O

C
20
12

ob
je

ct
de

te
ct

io
n

be
nc

hm
ar

k.
Sh

ow
n

ar
er

es
ul

ts
fo

rt
he

pr
op

os
ed

se
qu

en
tia

ld
et

ec
tio

n
m

od
el

(R
L)

as
w

el
la

st
he

cl
as

sic
al

sli
di

ng
w

in
do

w
(S

W
)a

nd
re

gi
on

pr
op

os
al

(R
P)

ap
pr

oa
ch

.Th
ea

ve
ra

ge
ru

nn
in

g
tim

eo
fo

ur
sli

di
ng

w
in

do
w

ba
se

lin
ei

s2
,6
9
1

se
co

nd
s,

re
ga

rd
le

ss
of

th
ec

la
ss

.I
n

th
e

cu
rr

en
te

xp
er

im
en

ts,
w

ec
ho

se
to

op
tim

ize
sp

ee
du

p
to

ob
ta

in
a
sp

ee
du

p
of

al
m

os
tt

w
o

or
de

rs
of

m
ag

ni
tu

de
ov

er
sli

di
ng

w
in

do
w

s,
bu

to
ur

m
et

ho
d

ca
n

al
so

be
tu

ne
d

fo
ra

cc
ur

ac
y,

cf
.(

2.
15

).
Fo

ri
ns

ta
nc

e,
sim

ila
ra

cc
ur

ac
y

w
ith

ex
ha

us
tiv

e
se

ar
ch

m
et

ho
ds

ca
n

be
ac

hi
ev

ed
w

ith
an

1
8
x

sp
ee

du
p.

m
et
ho

d
m
et
ri
c

aero

bike

bird

boat

bottle

bus

car

cat

chair

cow

table

dog

horse

moto

person

plant

sheep

sofa

train

tv

mean

SW
A
P
(%

)
49

.2
46

.1
21

.8
12

.8
6.

7
46

.8
25

.4
50

.4
9.

4
27

.1
21

.3
47

.9
39

.5
47

.7
22

.4
10

.9
26

.4
25

.1
45

.1
41

.4
31

.2
R
P

A
P
(%

)
44

.5
36

.3
28

.0
14

.4
3.

6
44

.7
27

.0
57

.6
8.

8
26

.6
20

.2
47

.7
39

.7
45

.1
22

.6
8.

7
25

.6
23

.6
42

.1
39

.2
30

.3

R
L

A
P
(%

)
47

.4
31

.4
21

.0
9.

5
2.

5
44

.7
19

.4
50

.3
6.

1
18

.1
21

.1
46

.8
35

.8
40

.4
18

.7
8.

5
17

.8
18

.6
41

.5
38

.8
27

.0
ev
al
ua
te
d
re
gi
on

s
10

2
10

5
11

0
10

9
11

9
99

11
5

10
3

12
0

98
11

2
10

6
11

3
10

1
10

7
11

1
10

5
11

0
10

3
10

2
10

7
ru
nn

in
g
ti
m
e
(s
)

37
.6

38
.8

40
.0

39
.8

41
.9

36
.4

40
.8

37
.1

42
.3

36
.6

39
.9

38
.0

40
.2

36
.5

38
.2

39
.5

37
.6

39
.3

36
.9

37
.0

38
.7

sp
ee
du

p
(S
W

)
69

.4
69

.3
67

.3
67

.6
64

.2
73

.3
66

.0
72

.5
63

.6
71

.2
67

.4
70

.9
66

.9
73

.7
70

.3
68

.1
71

.6
68

.4
72

.9
72

.8
69

.6
sp
ee
du

p
(R

P
)

8.
3

8.
1

7.
9

7.
8

7.
3

8.
5

7.
5

8.
3

7.
3

8.
6

7.
7

8.
1

7.
6

8.
4

8.
0

7.
8

8.
1

7.
8

8.
2

8.
3

8.
0

70

References

[1] R. Girschick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac­
curate object detection and semantic segmentation,” in CVPR, 2014.

[2] N. Shapovalova, M. Raptis, L. Sigal, and G. Mori, “Action is in the eye of the beholder:
Eye­gaze driven model for spatio­temporal action localization,” in NeurIPS, 2013.

[3] L. Itti, G. Rees, and J. K. Tsotsos, Neurobiology of attention. Elsevier, 2005.

[4] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyond sliding windows: Object
localization by efficient subwindow search,” in CVPR, 2008.

[5] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels for object
detection,” in ICCV, 2009.

[6] P. F. Felzenszwalb, R. B. Girschick, and D. McAllester, “Cascade object detection with
deformable part models,” in CVPR, 2010.

[7] H. Harzallah, F. Jurie, and C. Schmid, “Combining efficient object localization and
image classification,” in ICCV, 2009.

[8] M. Pedersoli, A. Vedaldi, and J. Gonzales, “A coarse­to­fine approach for fast deform­
able object detection,” in CVPR, 2011.

[9] Y. Wei and L. Tao, “Efficient histogram­based sliding window,” in CVPR, 2010.

[10] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky, “Learning hierarchical models
of scenes, objects, and parts,” in ICCV, 2005.

[11] I. Kokkinos, “Shufflets: Shared mid­level parts for fast object detection,” in ICCV,
2013.

[12] J. Carreira and C. Sminchisescu, “CPMC: Automatic Object Segmentation Using
Constrained Parametric Min­Cuts,” PAMI, 2012.

[13] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search
for object recognition,” IJCV, vol. 104, 2013.

[14] P. Rantalankila, J. Kannala, and E. Rahtu, “Generating object segmentation proposals
using global and local search,” in CVPR, 2014.

[15] P. Krahenbuhl and V. Koltun, “Learning to propose objects,” in CVPR, 2015.

[16] A. Gonzalez­Garcia, A. Vezhnevets, and V. Ferrari, “An active search strategy for effi­
cient object class detection,” in CVPR, 2015.

71

[17] M. Choi, J. Lim, A. Torralba, and A. Willsky, “Exploiting hierarchical context on a
large database of object categories,” in CVPR, 2010.

[18] C. Desai, D. Ramanan, and C. Fowlkes, “Discriminative models for multi­class object
layout,” in ICCV, 2009.

[19] G. Heitz and D. Koller, “Learning spatial context: Using stuff to find things,” in
ECCV, 2008.

[20] A. Rabinovich, A. Vedaldi, C. Calleguillos, E. Wiewiora, and S. Belongie, “Objects
in context,” in ICCV, 2007.

[21] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,”
in NeurIPS, 2013.

[22] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using
deep neural networks,” in CVPR, 2014.

[23] G. F. Lucas Paletta and C. Seifert, “Q­learning of sequential attention for visual object
recognition from informative local descriptors,” in ICML, 2005.

[24] N. J. Butko and J. R. Movellan, “Infomax control of eye movements,” IEEE TAMD,
vol. 2, no. 2, 2010.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning. MIT Press, 1998.

[26] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses with a third­
order boltzmann machine,” in NeurIPS, 2009.

[27] S. Karayev, M. Fritz, and T. Darrell, “Anytime recognition of objects and scenes,” in
CVPR, 2014.

[28] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual
attention,” in NeurIPS, 2014.

[29] B. Goodrich and I. Arel, “Reinforcement learning based visual attention with applic­
ation to face detection,” in CVPR, 2012.

[30] L. Bazzani, d. N. Freitas, H. Larochelle, and V. Muriono, “Learning attentional
policies for tracking and recognition in video with deep networks,” in ICML, 2011.

[31] D. Banica and C. Sminchisescu, “Second­Order Constrained Parametric Proposals
and Sequential Search­Based Structured Prediction for Semantic Segmentation in
RGB­D Images,” in CVPR, 2015.

[32] S. Mathe and C. Sminchisescu, “Action from still image dataset and inverse optimal
control to learn task specific visual scanpaths,” in NeurIPS, 2013.

72

[33] S. Mathe and C. Sminchisescu, “Multiple instance reinforcement learning for efficient
weakly­supervised detection in images,” CoRR, vol. abs/1412.0100, 2014.

[34] J. Caicedo and S. Lazebnik, “Active object localization with deep reinforcement learn­
ing,” in ICCV, 2015.

[35] S. Karayev, T. Baumgartner, M. Fritz, and T. Darrell, “Timely object recognition,” in
NeurIPS, 2012.

[36] G. Dulac­Arnold, L. Denoyer, N. Thome, M. Cord, and P. Gallinari, “Sequentially
generated instance­dependent image representations for classification,” ICLR, 2014.

[37] R. Williams, “Simple statistical gradient­following algorithms for connectionist rein­
forcement learning,” Machine Learning, 1992.

[38] M. Everingham, L. V. Gool, C. K. Williams, J. Winn, and A. Zisserman, “The PAS­
CAL Visual Object Classes Challenge 2012 (VOC2012) Results.” http://www.pascal­
network.org/challenges/VOC/voc2012/.

[39] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep con­
volutional neural networks,” in NeurIPS, 2012.

[40] R. Shaoqing, H. Kaiming, R. Girshick, and J. Sun, “Faster R­CNN: Towards Real­
Time Object Detection with Region Proposal Networks,” in NeurIPS, 2015.

[41] S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning for visual object
detection,” in CVPR, 2016.

73

A Supplementary Material

Training our sequential model involves computing the expected reward and its gradient,
cf. (2.16) ­ (2.17) from the main paper. For each image, this involves simulating the
model until the search is terminated, by generating sequences in the state­action space
s = ((S0,A0), . . . , (St,At), . . .). At each time step t, an action At is sampled from
the policy, using Algorithm 1. More precisely, first the distribution pθ(dt|St) is sampled
to decide whether the search is to be terminated (done action, i.e. dt = 1). If so, then
the output region index bt and the confidence ct are sampled from pθ(bt|dt = 1,St) and
pθ(ct|dt = 1, bt,St), respectively. Otherwise (not done, i.e. dt = 0), an evidence region
is selected by sampling pθ(et|dt = 0,St), and then the next fixation location is sampled
from pθ(zt|dt = 0, et,St). Finally, the state of the model is updated, as described in
Algorithm 2. In practice, multiple sample sequences are generated in this way, for each
image, and are used to estimate the required expectations.⁴ To evaluate the objective func­
tion gradient (see (2.17) in the main paper), one also needs to compute, at each time step
t, the gradient of the log likelihood of each sampled action At under the current policy
πθ(At|St), with respect to the model parameters θ. In the following, we present the ana­
lytical derivations that lead to a closed form expression for this gradient.

A.1 Useful Identities

The following identities will be useful during derivations:

d log sigm(x)

dx
= 1− sigm(x), (2.18)

d log [1− sigm(x)]

dx
= −sigm(x), (2.19)

∂asmax
(
{xj}nj=1

)
∂xi

=
eαxi∑n
j=1 e

αxj

[
1 + α

[
xi − asmax

(
{xj}nj=1

)]]
, (2.20)

where asmax(X) =
∑

x∈X xeαx∑
x∈X eαx . For any symmetric matrix W ∈ Rd×d and for any

x ∈ Rd×1, Y ∈ Rd×d, A ∈ Rd×n, b ∈ Rn×1, the following identity holds:

∂

∂A
(x− Y Ab)⊤W (x− Y Ab) = −2Y ⊤W (x− Y Ab) b⊤. (2.21)

Furthermore, for any symmetric positive definite matrix A ∈ Rd×d, the following holds:

∂ log |A|
∂A

= A−1. (2.22)

⁴For a training set of images, we will naturally aggregate (sum over) such estimates, for each image.

75

Finally, for any symmetric invertible matrix X ∈ Rd×d and for any a, b ∈ Rd×1, the
following identity holds:

∂a⊤X−1b

∂X
= −X−1ab⊤X−1. (2.23)

A.2 Model Equations

For convenience, let us denote by µ(r) = x1(r)+x2(r)
2 the center of the bounding box

tightly enclosing region r, defined by its top­left and bottom­right corners x1(r) and
x2(r), respectively. Similarly, let ∆(r) = diag

(
x1(r)−x2(r)

2

)
be the diagonal matrix en­

coding the half width and height of this bounding box. We reproduce below the equations
defining the model from the main body of the paper. They shall be referenced as needed
for the derivations in section Section A.3.

pθ(dt = 1|St) = sigm
[
θ⊤
d v (St)

]
, (2.24)

pθ(bt = k|dt = 1,St) =
eαfc(rk)∑

i∈Ht
eαfc(ri)

, (2.25)

pθ(ct|dt = 1, bt = k,St) = N(ct|fc(rk), σc), (2.26)

pθ(et|dt = 0,St) =
fe(et)∑

i∈Ht\Et
fe(i)

, (2.27)

pθ(zt|dt = 0, et,St) = N
(
zt | fp(et),∆(ret)

⊤Σp∆(ret)
)
, (2.28)

where

v (St) =
[
asmax

(
{fc (ri)}i∈Ht

)
t
|Ht|
|R|

1

]⊤
, (2.29)

fc(ri) = θ⊤
c q(ri), (2.30)

fe (et) = exp
[
θ⊤
e q(ret)

]
, (2.31)

fp(et) = ∆(ret)θ
⊤
p q(ret) + µ(ret). (2.32)

76

A.3 Gradient Derivations

A.3.1 Termination decision

The probability for terminating the search depends only on the confidence function regres­
sion parameters (θc) and on the termination decision parameters (θd):

∂ log p(dt = 1|St)
∂θc

= [1− p(dt = 1|St)]
∂

∂θc

[
θ⊤
d v(St)

]
[(2.24), (2.18)]

= [1− p(dt = 1|St)] θd,1
∂

∂θc

[
asmax

(
{fc (ri)}i∈Ht

)]
[(2.29)]

= [1− p(dt = 1|St)] θd,1

·

∑
i∈Ht

eαθ
⊤
c q(ri)

[
1 + α

[
θ⊤
c q (ri)− asmax

({
θ⊤
c q (rj)

}
j∈Ht

)]]
∑

i∈Ht
eαθ

⊤
c q(ri)

· q (ri) , [(2.20)]

∂ log p(dt = 1|St)
∂θd

= [1− p(dt = 1|St)]
∂

∂θd

[
θ⊤
d v(St)

]
[(2.24), (2.18)]

= [1− p(dt = 1|St)]v(St).

The derivatives corresponding to the probability for continuing the search can be similarly
derived as:

∂ log p(dt = 0|St)
∂θc

= −p(dt = 1|St)
∂

∂θc

[
θ⊤
d v(St)

]
[(2.24), (2.19)]

= −p(dt = 1|St)θd,1
∂

∂θc

[
asmax

(
{fc (ri)}i∈Ht

)]
[(2.29)]

= −p(dt = 1|St)θd,1

·

∑
i∈Ht

eαθ
⊤
c q(ri)

[
1 + α

[
θ⊤
c q (ri)− asmax

({
θ⊤
c q (rj)

}
j∈Ht

)]]
∑

i∈Ht
eαθ

⊤
c q(ri)

· q (ri) , [(2.20)]

∂ log p(dt = 0|St)
∂θd

= −p(dt = 1|St)
∂

∂θd

[
θ⊤
d v(St)

]
[(2.24), (2.19)]

= −p(dt = 1|St)v(St).

77

A.3.2 Bounding Box Selection

Given termination, the bounding box selection depends on the confidence function regres­
sion parameters (θc):

∂ log p(bt = k|dt = 1,St)
∂θc

=
∂

∂θc

[
αθ⊤

c q(rk)− log

[∑
i∈Ht

eαθ
⊤
c q(ri)

]]
[(2.25)]

= α

[
q(rk)−

∑
i∈Ht

eαθ
⊤
c q(ri)q(ri)∑

i∈Ht
eαθ

⊤
c q(ri)

]
.

The confidence value generated upon termination depends only on the confidence function
regression parameters (θc) and on the confidence function standard deviation (σc):

∂ log p(ct = c|dt = 1, bt = k,St)
∂θc

=
c− θ⊤

c q(rk)

σ2
c

q(rk), [(2.26)]

∂ log p(ct = c|dt = 1, bt = k,St)
∂σc

= − 1

σc
+

[
c− θ⊤

c q(rk)
]2

σ3
c

. [(2.26)]

A.3.3 Evidence Region Selection

Given that the search is not terminated, the probability of selecting a specific region et at
step t depends only on the evidence parameters θe:

∂ log p(et = j|dt = 0,St)
∂θe

=
∂

∂θe

θ⊤
e q(rj)− log

 ∑
i∈Ht\Et

eθ
⊤
e q(ri)

 [(2.27)]

= q(rj)−
∑

i∈Ht\Et
eθ

⊤
e q(ri)q(ri)∑

i∈Ht\Et
eθ

⊤
e q(ri)

.

A.3.4 Position Selection

Given that the search has not been terminated and evidence region e has been selected, the
likelihood for fixating location zt depends on the position regression parameters θp and
on the covariance matrix Σp:

pθ(zt|dt = 0, et = e,St) = N
(
zt

∣∣∣∆(re)θ
⊤
p q(re)µ(re),∆(re)Σp∆(re)

)
.

(2.33)

78

The gradient of the log­likelihood is given by

∂ log p(zt = z|dt = 0, et = e,St)
∂θp

= −1

2

∂

∂θp

[[
z − µ(re)−∆(re)θ

⊤
p q(re)

]⊤
·∆(re)

−1Σ−1
p ∆(re)

−1
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]]
[(2.33)]

= −1

2

[
∂

∂θp

[
z − µ(re)−∆(re)θ

⊤
p q(re)

]⊤
· ∆(re)

−1Σ−1
p ∆(re)

−1
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]]⊤
=
[
∆(re)∆(re)

−1Σ−1
p ∆(re)

−1
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]
q(re)

⊤
]⊤

[(2.21)]

= q(re)
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]⊤
∆(re)

−1Σ−1
p ,

∂ log p(zt = z|dt = 0, et = e,St)
∂Σp

= −1

2
Σ−1

p −
1

2

∂

∂Σp

[[
z − µ(re)−∆(re)θ

⊤
p q(re)

]⊤
·∆(re)

−1Σ−1
p ∆(re)

−1
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]]
[(2.33), (2.22)]

= −1

2
Σ−1

p −
1

2

∂

∂Σp

[[
∆(re)

−1
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]]⊤
·Σ−1

p

[
∆(re)

−1
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]]]
= −1

2
Σ−1

p +
1

2
Σ−1

p ∆(re)
−1
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]
·
[
z − µ(re)−∆(re)θ

⊤
p q(re)

]⊤
∆(re)

−1Σ−1
p . [(2.23)]

79

A.3.5 Centralized results

The final derivatives of action likelihoods with respect to model parameters are summarized
below:

∂ log p(dt = 1, bt = k, ct = c|St)
∂θc

= [1− p(dt = 1|St)] θd,1

·

∑
i∈Ht

eαθ
⊤
c q(ri)

[
1 + α

[
θ⊤
c q (ri)− asmax

({
θ⊤
c q (rj)

}
j∈Ht

)]]
∑

i∈Ht
eαθ

⊤
c q(ri)

· q (ri)

+ α

[
q(rk)−

∑
i∈Ht

eαθ
⊤
c q(ri)q(ri)∑

i∈Ht
eαθ

⊤
c q(ri)

]
+

c− θ⊤
c q(rk)

σ2
c

q(rk),

∂ log p(dt = 1, bt = k, ct = c|St)
∂σc

=− 1

σc
+

[
c− θ⊤

c q(rk)
]2

σ3
c

,

∂ log p(dt = 1, bt = k, ct = c|St)
∂θd

= [1− p(dt = 1|St)]v(St),

∂ log p(dt = 1, bt = k, ct = c|St)
∂θe

= 0,

∂ log p(dt = 1, bt = k, ct = c|St)
∂θp

= 0,

∂ log p(dt = 1, bt = k, ct = c|St)
∂Σp

= 0,

∂ log p(dt = 0, et = k, zt = z|St)
∂θc

= −p(dt = 1|St)θd,1

·

∑
i∈Ht

eαθ
⊤
c q(ri)

[
1 + α

[
θ⊤
c q (ri)− asmax

({
θ⊤
c q (rj)

}
j∈Ht

)]]
∑

i∈Ht
eαθ

⊤
c q(ri)

· q (ri) ,

∂ log p(dt = 0, et = k, zt = z|St)
∂σc

= 0,

80

∂ log p(dt = 0, et = k, zt = z|St)
∂θd

=− p(dt = 1|St)v(St),

∂ log p(dt = 0, et = k, zt = z|St)
∂θe

= q(rk)−
∑

i∈Ht\Et
eθ

⊤
e q(ri)q(ri)∑

i∈Ht\Et
eθ

⊤
e q(ri)

,

∂ log p(dt = 0, et = k, zt = z|St)
∂θp

= q(rk)
[
z − µ(rk)−∆(rk)θ

⊤
p q(rk)

]⊤
·∆(rk)

−1Σ−1
p ,

∂ log p(dt = 0, et = k, zt = z|St)
∂Σp

= −1

2
Σ−1

p +
1

2
Σ−1

p ∆(rk)
−1

·
[
z − µ(rk)−∆(rk)θ

⊤
p q(rk)

] [
z − µ(rk)−∆(rk)θ

⊤
p q(rk)

]⊤
∆(rk)

−1Σ−1
p .

81

Paper II

Deep Reinforcement Learning of
Region Proposal Networks for Object Detection

Aleksis Pirinen1 Cristian Sminchisescu1,2

1Centre for Mathematical Sciences, Lund University
2Institute of Mathematics of the Romanian Academy

Abstract

We propose drl­RPN, a deep reinforcement learning­based visual recognition model consisting of
a sequential region proposal network (RPN) and an object detector. In contrast to typical RPNs,
where candidate object regions (RoIs) are selected greedily via class­agnostic NMS, drl­RPN op­
timizes an objective closer to the final detection task. This is achieved by replacing the greedy RoI
selection process with a sequential attention mechanism which is trained via deep reinforcement
learning (RL). Our model is capable of accumulating class­specific evidence over time, potentially
affecting subsequent proposals and classification scores, and we show that such context integration
significantly boosts detection accuracy. Moreover, drl­RPN automatically decides when to stop the
search process and has the benefit of being able to jointly learn the parameters of the policy and
the detector, both represented as deep networks. Our model can further learn to search over a wide
range of exploration­accuracy trade­offs, which makes it possible to specify or adapt the exploration
extent at test time. The resulting search trajectories are image­ and category­dependent, yet rely
only on a single policy over all object categories. Results on the MS COCO and PASCAL VOC
challenges show that our approach outperforms established, typical state­of­the­art object detection
pipelines.

85

1 Introduction

Visual object detection focuses on localizing each instance within a pre­defined set of object
categories in an image, most commonly by estimating bounding boxes with associated
confidence values. Accuracy on this task has increased dramatically over the last years [13, 14,
15], reaping the benefits of increasingly deep and expressive feature extractors [16, 17, 18, 19].
Several contemporary state­of­the­art detectors [14, 15, 20] follow a two­step process. First
bottom­up region proposals are obtained, either from an internal region proposal network
(RPN) [14], trained alongside the detection network, or from an external one [21, 22, 23,
24, 25]. In the second step proposals are classified and their localization accuracy may be
fine­tuned.

There has recently been an increased interest in active, sequential search methods [26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 4, 36]. This class of approaches, to which our model belongs,
seek to only inspect parts of each image sequentially. In this work we aim to make active
recognition models more flexible, as characterized by i) a finely­tuned active search process
where decisions of where to look next and when to stop searching are image­ and category­
dependent; ii) context information is aggregated as search proceeds and is used in decision
making and to boost detection accuracy; iii) the detector and search policy parameters are
tightly linked into a single deep RL­based optimization problem where they are estimated
jointly; iv) the search process can be adapted to a variety of exploration­accuracy trade­
offs during inference; and v) learning to search is only weakly supervised, as we indicate
the model what success means without telling it exactly how to achieve it – there is no
apprenticeship learning or trajectory demonstration.

Methodologically we propose drl­RPN, a sequential region proposal network combin­
ing an RL­based top­down search strategy, implemented as a convolutional gated recur­
rent unit, and a two­stage bottom­up object detector. Notably, our model is used for
class­agnostic proposal generation but leverages class­specific information from earlier time
steps when proposing subsequent regions (RoIs). This context aggregation is also used to
increase detection accuracy. Our model offers the flexibility of jointly training the policy
and detector, both represented as deep networks, which we perform in alternation in the
framework of deep RL. We emphasize that drl­RPN can be used, in principle, in conjunc­
tion with any exhaustive two­stage state­of­the­art object detector operating on a set of
object proposals, such as Faster R­CNN (Fr R­CNN) [14] or R­FCN [15].

2 Related Work

Among the first to use deep feature extractors for object detection was [37], whereas [13]
combined the power of smaller and more plausible region proposal sets with such deep
architectures. This was followed up in [20, 14, 15, 38] with impressive results. There is
also a recent trend towards solutions where bounding box and classification predictions are

86

produced in one shot [39, 40, 41]. Such methods increase detection speed, but sometimes
at the cost of a lower accuracy.

The general detection pipeline above is characterized by its exhaustive, non­sequential
nature: even if the set of windows to classify is reduced a­priori, all windows are still clas­
sified simultaneously and independently of each other. In contrast, sequential methods
for object detection can in principle be designed to accumulate evidence over time to po­
tentially improve accuracy at the given task. Such approaches can coarsely be divided as
RL­based [26, 27, 28, 29, 30, 31, 35, 4, 36] and non­RL­based [32, 33, 34]. Our drl­RPN
model is of the former category.

Orthogonally from us, [4] propose anytime models where a detector can be stopped
asynchronously during inference: multi­class models are scheduled sequentially and the
order of exhaustively applying sliding window detectors is optimized, potentially without
running detectors for some classes. Our drl­RPN is also a multi­class detector but instead
avoids searching all image locations. In [26] a class­specific agent observes the entire im­
age, then performs a sequence of bounding box transformations until tightly enclosing the
object. Results were improved in [29] where a joint multi­agent Q­learning system [42] is
used and sub­agents cooperate to find several objects. In contrast, [27] use policy gradients
to train a ’saccade­and­fixate’ search policy over pre­computed RoIs that automatically de­
termines when to stop searching. The formulation in [27] is however one­versus­all, not
entirely deep, and is primarily designed for single instance detection. On the contrary, the
deep model we propose detects multiple instances and categories and thus circumvents the
need to train multiple search policies as in [26, 27]. Fast R­CNN [20] is coupled with a
tree­structured search strategy in [28] and results exceed or match the basic Fast R­CNN.
Differently from us however, [28] manually specify the number of proposals during infer­
ence (hence stopping is not automatic but preset) and the detector is not refined jointly
with the search policy.

Notable non­RL­based active search approaches include [32, 33, 34]. A soft attention
mechanism is learned in [32] where directions for the next step are predicted, akin to a
gradual shift in attention; [33] apply a search strategy for partial image exploration guided
by statistical relations between regions; and [34] use adjacency and zoom prediction to focus
processing on sub­regions likely to contain objects.

3 Two­Step Proposal­based Detection

We now briefly review those standard two­step proposal­based object detection compon­
ents which will form some of the building blocks of our sequential drl­RPN model. Such
detectors take as input an image of size h0×w0×3 and process it through a base network.
We use the same VGG­16 base network [17] as in [14]. The base network outputs the base
feature map with dimension h×w×d, where h andw depend on h0 andw0, and d = 512
for VGG­16. The network then separates into two branches: RoI generation followed by
RoI pooling and classification.

87

Classification

Base Feat.

Map

RL Base

Policy

Conv-GRU

Fix

Updated
REG

Volume

update class-specific history

Final

Detections

done action – terminate search

fixate
action

RoI

Pooling
Offset PredictionCLS

Volume

Base Processing Sequential Network
𝜽𝜽𝑝𝑝𝑝𝑝𝑝𝑝(𝜽𝜽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

𝜽𝜽𝑑𝑑𝑑𝑑𝑑𝑑
𝒉𝒉 𝒙𝒙 𝒘𝒘 𝒙𝒙 𝟏𝟏𝟏𝟏𝒉𝒉 𝒙𝒙 𝒘𝒘 𝒙𝒙 𝟓𝟓𝟓𝟓𝟓𝟓

𝒉𝒉 𝒙𝒙 𝒘𝒘 𝒙𝒙 𝟑𝟑𝟑𝟑

𝒉𝒉 𝒙𝒙 𝒘𝒘 𝒙𝒙 𝟓𝟓𝟓𝟓𝟓𝟓

𝑺𝑺𝒕𝒕State

𝒛𝒛𝒕𝒕

𝒉𝒉 𝒙𝒙 𝒘𝒘 𝒙𝒙 𝟗𝟗

𝑹𝑹𝒕𝒕Obs Vol

Input

Image

𝒉𝒉𝟎𝟎 𝒙𝒙 𝒘𝒘𝟎𝟎 𝒙𝒙 𝟑𝟑

(𝜽𝜽𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜽𝜽𝑑𝑑𝑑𝑑𝑑𝑑)

Figure 3.1: Overview of our proposed drl­RPN model. The base processing is illustrated on the
left and shows how the initial state S0 is formed. Each time step t, the agent decides whether to
terminate search based on its stochastic policy πθ(at|st), cf. (3.1) ­ (3.8). As long as search has
not terminated, a fixate action aft is issued and a new location zt is visited; the RoI observation
volume Rt is updated in an area centered at zt. All corresponding RoIs are sent to the RoI pooling
module followed by classification and class­specific bounding box offset predictions. The class­
specific probability vectors are inserted to the history volume V 4

t which is merged with the RL
base state volume St. Based on the updated state, a new action is taken at time step t+ 1 and the
process is repeated until the done action adt is issued; then all the selected predictions throughout
the trajectory are collected. The trainable parts of the network (including the feature extraction,
classification and regression models, and policy) are highlighted in gray. See also Figure 3.4 for
some visualizations of drl­RPN search strategies.

A region proposal network (RPN) is used for generating RoIs, where a d­dimensional
feature vector is produced at each spatial location on the base feature map and is sent
through two class­agnostic layers: box­regression (reg) and box­classification (cls). To in­
crease object recall, several proposals are predicted relative to k anchor boxes (we use the
same k = 9 anchors as [14]). The last task of the RPN is to reduce the number of RoIs for­
warded to RoI pooling and classification. This is performed by class­agnostic NMS based
on the objectness scores in cls. All RoIs forwarded by the RPN are converted to small spa­
tially fix­sized feature maps by means of RoI max pooling and are subsequently sent to two
fully­connected layers which perform class probability and bounding box offset predictions.

4 Sequential Region Proposal Network

We now present the architecture of drl­RPN, consisting of an object detector and a policy
πθ, see Figure 3.1. For the detector we use a publicly available TensorFlow [43] imple­
mentation¹ of Fr R­CNN, on top of which we implement our drl­RPN model. In prin­
ciple however, drl­RPN can be integrated with any RPN­based detector, such as [15]. The
search policy is based on a convolutional gated recurrent unit (Conv­GRU) which replaces
fully­connected components of the GRU [44] with convolutions.

¹https://github.com/smallcorgi/Faster-RCNN_TF

88

https://github.com/smallcorgi/Faster-RCNN_TF

The input to the Conv­GRU at time t is the RL base state volume St (see Section 4.1)
and the previous hidden state Ht−1. The output is a two­channel action volume At.
The spatial extent of all inputs and outputs are h × w. We denote by ∗ the convolution
operator and ⊙ denotes element­wise multiplication. Weights and biases are denoted W
and b, respectively, and σ [·] is the logistic sigmoid function. Below are the equations of
our Conv­GRU agent:

Ot = σ [W so ∗ St +W ho ∗Ht−1 + bo] , (3.1)

H̃t = W sh ∗ St +W hh ∗ (Ot ⊙Ht−1) + bh, (3.2)
Zt = σ [W sz ∗ St +W hz ∗Ht−1 + bz] , (3.3)

Ht = (1−Zt)⊙Ht−1 +Zt ⊙ tanh[H̃t], (3.4)

Ãt = relu[W hã ∗Ht + bã], (3.5)

At = tanh[W ãa ∗ Ãt + ba]. (3.6)

The output At of the Conv­GRU corresponds to two possible actions, see Section 4.1.
We let θ denote all parameters of the system where drl­RPN is used, which can be

decomposed as θbase, θdet and θpol. Here θbase are the parameters of the base network
and the original RPN; θdet are the parameters of the classifier and bounding box offset
predictor; and θpol are the search policy parameters, cf. (3.1) ­ (3.8). The joint training of
θ = [θbase;θdet;θpol] is described in Section 5.

4.1 States and Actions

The state at time t is the tuple st = (Rt,St,Ht), where Rt ∈ {0, 1}h×w×k is the RoI
observation volume, St ∈ Rh×w×(d+2k+N+1) is the base state and Ht ∈ Rh×w×300 is
the hidden state of the Conv­GRU. Here N is the number of object categories considered.
There are two types of actions, corresponding to one channel each of At in (3.6): a fixate
action aft and the done action adt . The done action is binary, where adt = 1 corresponds to
terminating search. A fixate action aft = zt is issued if adt = 0, where zt is the (h × w)­
plane coordinate of the next fixation. We next define Rt and explain how it relates to
fixate actions aft , after which we present St and explain its connection to Rt. Finally, we
describe how actions are sampled using our parametric stochastic policy πθ.

RoI observation volume. The drl­RPN agent maintains a binary volume Rt of size
h × w × k in which the (i, j, l):th entry is equal to 1 if and only if the corresponding
RoI is part of the region proposal set forwarded to the RoI pooling / classification module
of the network. We initialize Rt as an all­zeros volume. After a fixate action aft , a part of
Rt in a neighborhood of the fixation location zt is updated. This neighborhood is a rect­
angular area centered at zt, in which the side lengths hrect and wrect are a fraction each of h
and w, respectively (we set hrect = h/4 and wrect = w/4). We set all entries of Rt inside

89

this rectangle to 1 to indicate that these RoIs have been selected. Note that we here restrict
our algorithm to determine at what spatial locations to sample RoIs in the (h×w)­plane,
so all k anchor candidates are used per spatial location.

Base state volume. The state St consists of V 1
t ∈ Rh×w×d, V 2

t ,V
3
t ∈ Rh×w×k, and

V 4
t ∈ Rh×w×(N+1). We set V 1

0 to the base feature map (conv5_3) and V 2
0 to the ob­

jectness layers (in cls) of the RPN. The reg volume of the RPN is used for V 3
t , where V 3

0 is
set to the magnitude of the [0, 1]­normalized offsets [∆x1,∆y1,∆x2,∆y2]. We use Rt

to update these volumes, setting the corresponding locations in V 1
t , V

2
t and V 3

t to −1 to
indicate that those locations have been inspected.

The volume V 4
t is a class­specific history of what has been observed so far (V 4

0 = 0).
After a fixation the selected RoIs are sent to class­specific predictors. Then local class­specific
NMS is applied to the classified RoIs to get the most salient information at that location.
As we have final bounding box predictions for the surviving RoIs, we map them to certain
spatial locations of V 4

t . Specifically, the input image is divided into L × L bins of size
≈ h0/L×w0/L to get a coarse representation of where the agent has looked by assigning
each NMS­survivor to the bin containing its center coordinates (L = 3). The history V 4

t

at these locations is updated with those class probability vectors as a running average.
We use 3× 3 convolutional kernels for the base input V 1

t since the effective receptive
field is already wide given that we are operating on deep feature maps. For the auxiliary
input V 2

t ­ V 4
t we apply larger 9× 9 kernels.

Stochastic policy. We now describe how At in (3.6) is used to select actions. Let Ad
t and

Af
t denote the first (done) and second (fixate) layers of At, respectively. The done layer

Ad
t is bilinearly re­sized to 25× 25 and stacked as a vector dt ∈ R625. The probability of

terminating in state st is then given by

πθ

(
adt = 1|st

)
= σ

[
w⊤

d dt + t
]
, (3.7)

where wd is a trainable weight vector. The fixation layer Af
t is transformed to a probability

map Â
f
t by applying a spatial softmax to Af

t . The probability of fixating location zt =

(i, j) given that the agent did not terminate is Â
f
t [zt], where Â

f
t [zt] is the (i, j):th entry

of Â
f
t . The probability of fixating location zt in state st is thus given by

πθ

(
adt = 0, aft = zt|st

)
=
(
1− σ

[
w⊤

d dt + t
])

Â
f
t [zt]. (3.8)

4.2 Contextual Class Probability Adjustment

Typical detection pipelines classify all regions simultaneously and independently of each
another, which is simple and efficient but limits information exchange between regions. We

90

argue for an alternative where the search process and the classification of candidate proposals
are unified into a single system, creating synergies between both tasks. We already explained
how classified regions are used to guide the search process and now augment drl­RPN to
use context accumulation also to perform a posterior update of its detection probabilities
based on the search trajectory. Note that we update detections after terminating search
which gives also early detections an opportunity of being adjusted. In principle however,
one could update detections as search proceeds based only on past detections.

The augmented model uses a summary of all object instances discovered during search
to refine the final class probability scores for these detections. For this we use the history
aggregation described in Section 4.1. Given the up to L2 history vectors, we stack them
as an L2(N +1)­dimensional vector xhist and represent non­observed regions by zeros in
xhist. The final classification layer softmax(Wx + b) is replaced with softmax(Wx +
b + fhist(xhist)) to account for the search trajectory. We use a one­layer activation
fhist(xhist) = tanh(W histxhist + bhist).

5 Training

Training the full model (detector and policy) proceeds in alternation. Recall that we dis­
tinguish between three sets of parameters: θ = [θbase;θdet;θpol], where [θbase;θdet] are
the parameters of the original Fr R­CNN. We use a pre­trained network as initialization
of [θbase;θdet], where in the pre­training we use the same settings as [14], including an
additional anchor scale of 642 pixels for MS COCO. Xavier initialization [45] is used for
the search policy parameters θpol. We next explain how to learn θpol via deep RL; the joint
training of the full system is described in Section 5.3.

5.1 Reward Signal

There are two criteria which the agent should balance. First, the chosen RoIs should yield
high overlap with ground truth object instances, and second, the number of RoIs should
be as low as possible to reduce the number of false positives and to maintain a manageable
processing time.

Fixate action reward. To balance the above trade­off we give a small negative reward −β
for each fixate action (we set β = 0.075), but the agent also receives a positive reward for
fixations yielding increased intersection­over­union (IoU) with any ground truth instances
gi for the current image. For each object instance gi we keep track of the so­far maximum
IoU­yielding² RoIs selected by the agent at previous time steps 0, . . . , t − 1. Let this be
denoted IoUi and note that IoUi = 0 at t = 0. When t ≥ 1 we compute the maximum
IoU for all ground truth instances gi given by RoIs from that particular time step, denoted

²This refers to IoU after class­specific bounding box adjustments to ensure that the objective lies as close as
possible to the final detection task.

91

IoUi
t, and check if IoUi

t > IoUi ≥ τ , where we set τ = 0.5 in accordance with the pos­
itive threshold for PASCAL VOC. For each ground truth gi satisfying this condition we
give the positive reward (IoUi

t − IoUi)/IoUi
max, after which we set IoUi = IoUi

t. Here
IoUi

max is the maximum IoU that gi has with any of all hwk possible regions. Hence the
fixation reward rft at time t is given by

rft = −β +
∑
i

1
[
gi : IoU

i
t > IoUi ≥ τ

] IoUi
t − IoUi

IoUi
max

. (3.9)

Done action reward. Upon termination the agent receives a final reward reflecting the
quality of the full search trajectory:

rdt =
∑
i

1
[
gi : IoU

i
max ≥ τ

] IoUi − IoUi
max

IoUi
max

. (3.10)

Here IoUi is the maximum IoU­yielding RoI (with gi) selected by the agent in the entire
trajectory. Note that (3.10) evaluates to zero if all gi are maximally covered and otherwise
becomes increasingly negative depending on how severely the ground truths are missed.

5.1.1 Separation of Rewards

Although drl­RPN is a single­agent system taking one action per time step via the policy
specified in (3.7) ­ (3.8), it may be viewed as consisting of two subagents agt_d and agt_f
with some shared and some individual parameters. The agent agt_d, governed by (3.7),
decides whether to keep searching, whereas agt_f is governed by (3.8) and controls where
to look given that agt_d has not terminated search. We argue that agt_d should not ne­
cessarily be rewarded based on the performance of agt_f. For example, early in training
agt_f may choose poor fixation locations, thus missing the objects. In a standard re­
ward assignment both agt_f and agt_d receive negative reward based on the behavior of
agt_f. However, only agt_f should be penalized in this situation as it alone is responsible
for not localizing objects despite the opportunity given by agt_d.

Instead of giving the actual fixation reward rft in (3.9) to agt_dwe define an optimistic
corresponding reward as

r̃ft = −β + max
IoU≥τ

IoU− IoUi

IoUi
max

. (3.11)

The reward (3.11) reflects the maximum increase of IoU of one single ground truth in­
stance gi attainable by any fixate action. Note that (3.11) may not always be optimistic; the
true fixation reward (3.9) can be higher in images with several objects (by covering mul­
tiple instances in one fixation). Early in training however, (3.11) is often higher than (3.9).
Therefore we give max(rft , r̃

f
t) as fixation reward to agt_d.

92

This separation of rewards between agt_d and agt_f helped drl­RPN find a reasonable
termination policy; it otherwise tended to stop the search process too early. Separation of
rewards does not increase computational cost and is easy to implement, making it a simple
adjustment for improving learning efficiency. It is applicable in any RL problem where
actions have similar hierarchical dependencies.

5.1.2 Adaptive Exploration­Accuracy Trade­Off

So far we have described drl­RPN with a fixed exploration penalty β in training, cf. (3.9).
After training the exploration extent is hard­coded into the policy parameters. By treating
β as an input we can instead obtain a goal­agnostic agent whose exploration extent may be
specified at test time. Goal­agnostic agents have also been proposed in different contexts
in contemporary work; see e.g. [46, 47].

Specifically, an adjustment is performed between equations (3.5) ­ (3.6), where a con­
stant β­valued feature map is appended to Ãt. In training we define a set of β­values the
model is exposed to and for each trajectory we randomly sample a β from this set. In testing
we simply specify β, which does not have to be from the set of β­values seen in training.

5.2 Objective Function

To learn the policy parameters we maximize the expected cumulative reward on the training
set, given by J(θ) = Es∼πθ

[∑|s|
t=1 rt

]
, where s represents a trajectory of states and

actions, sampled by running the model from the initial state s0 (cf. Section 4.1). A sample­
based approximation to the gradient [48] of the objective function J(θ) is obtained using
REINFORCE [49]. We use 50 search trajectories to approximate the true gradient, forming
one batch in our gradient update (one image per batch), and update the policy parameters
via backpropagation using Adam [50]. To increase sample efficiency we use the return
normalization in [30], where cumulative rewards for each episode are normalized to mean
0 and variance 1 over the batch. The maximum trajectory length is set to 12.

5.3 Joint Training of Policy and Detector

As we use one image per batch it is straightforward to also tune the detector parameters
[θbase;θdet]. Once θpol has been updated for an image (with [θbase;θdet] frozen³) we fix
θpol and produce one more search trajectory for that image. The RoIs selected by drl­RPN
during this trajectory are used as RoIs in Fr R­CNN instead of RoIs from the standard RPN,
but otherwise the detector is updated as in [14]. Once the full drl­RPN model has been
trained it is simple to also learn (refine) the parameters of the posterior class probability
predictor in Section 4.2. Specifically, we jointly train W , W hist, b and bhist as for the
original Fr R­CNN model, except that drl­RPN is used for generating RoIs. The remaining
parameters are kept frozen at this stage, although it is possible to alternate.

³We keep θbase frozen throughout as tuning the base network did not increase performance.

93

6 Experiments

We now compare our proposed drl­RPN to Fr R­CNN⁴ on the MS COCO [51] and PAS­
CAL VOC [52] detection challenges. Unless otherwise specified we refer by drl­RPN to the
model using the posterior class probability adjustments introduced in Section 4.2. We re­
port results mainly for drl­RPN models trained with a fixed exploration penalty β = 0.075;
results for the goal­agnostic model presented in Section 5.1.2 are found in Section 6.3.

For PASCAL VOC we repeat the alternating training in Section 5.3 for 70k iterations
on VOC 07+12 train­val (for VOC 2012we include the 2007 test set in training, as typical).
The learning rate for θpol is initially 2 · 10−5 (4 · 10−6 after 50k iterations) and θdet has
corresponding learning rates 2.5 · 10−4 and 2.5 · 10−5. We use the same settings for MS
COCO (trained on COCO 2014 train­val) but alternate for 350k iterations and update
the learning rate after 250k iterations.

We compare drl­RPN to Fr R­CNN using the standard RPN and also investigate some
variants of drl­RPN. Specifically, we compare to a model using the class­specific history
only to guide the search process but not for posterior class probability adjustments (np);
to a model completely void of a class­specific history (nh); and to a model enforcing 12
fixations per image (12­fix). Adaptively stopping (ads) variants of drl­RPN are used if not
otherwise specified. For the various drl­RPN models we also show the average fraction
of RoIs forwarded for class­specific predictions (called exploration, reported in %) and the
average number of fixations per image.

6.1 Results on MS COCO

Results on MS COCO 2015 test­std and test­dev are shown in Table 3.1, together with
PASCAL VOC 2007 and 2012 results for these models. On MS COCO the mAP of drl­
RPN is 1.1 higher than for Fr R­CNN. Comparing with the ads­np and ads­nh models,
the posterior class probability adjustments yield mAP boosts of 0.7 and 0.9, respectively.
Enforcing 12 fixations marginally improves mAP by 0.1, while significantly increasing ex­
ploration by 25%. Also, drl­RPN increases mean average recall (mAR) by 0.6. As for
PASCAL VOC, drl­RPN outperforms Fr R­CNN by 1.1 and 0.8 mAP on VOC 2012 and
2007, respectively. The class­specific history yields 0.5 and 0.7 mAP boosts respectively on
VOC 2012 and 2007. Enforcing 12 fixations leads to negligible mAP improvements.

Overall, drl­RPN consistently outperforms the baseline Fr R­CNN model. We also
see that the class­specific history with posterior adjustments yields significantly improved
accuracy and that the adaptive stopping condition provides a drastic reduction in average
exploration, yet matches the mAP of the corresponding 12­fixation policy.

⁴We report results obtained for the implementation we used, which are often higher than in [14]; this was
achieved by training for more iterations.

94

Ta
bl
e
3.
1:

D
et

ec
tio

n
re

su
lts

on
th

e
M

S
C

O
C

O
20
15

te
st

se
ts,

as
w

el
la

st
he

PA
SC

AL
V

O
C
2
0
1
2

an
d
2
0
0
7

te
st

se
ts

(tw
o

rig
ht

­m
os

tc
ol

um
ns

).
Th

efi
rs

tr
ow

of
ea

ch
dr

l­R
PN

m
od

ifi
ca

tio
n

sh
ow

st
he

de
te

ct
io

n
pe

rfo
rm

an
ce

(m
AP

or
m

AR
)a

nd
th

es
ec

on
d

ro
w

sh
ow

sa
ve

ra
ge

ex
pl

or
at

io
n

(%
of

fo
rw

ar
de

d
Ro

Is
)a

nd
av

er
ag

e
nu

m
be

ro
ffi

xa
tio

ns
pe

ri
m

ag
e.

m
od

el
se
tt
in
gs

m
A
P
@
.5

te
st
­d
ev

m
A
P
@
.7
5

te
st
­d
ev

m
A
P
@
[.5

,.
95

]
te
st
­d
ev

m
A
R
@
[.5

,.
95

]
te
st
­d
ev

m
A
P
@
.5

te
st
­s
td

m
A
P
@
.7
5

te
st
­s
td

m
A
P
@
[.5

,.
95

]
te
st
­s
td

m
A
R
@
[.5

,.
95

]
te
st
­s
td

m
A
P
@
.5

vo
c1
2­
te
st

m
A
P
@
.5

vo
c0
7­
te
st

R
P
N

de
fa
ul
t

42
.7

21
.4

22
.3

32
.3

42
.7

21
.1

22
.3

32
.3

73
.0

75
.6

dr
l­

R
P
N

ad
s

43
.3

23
.0

23
.4

32
.9

43
.3

23
.0

23
.4

32
.9

74
.1

76
.4

40
.9

%
,8

.1
40

.9
%

,8
.1

40
.9

%
,8

.1
40

.9
%

,8
.1

40
.7

%
,8

.0
40

.7
%

,8
.0

40
.7

%
,8

.0
40

.7
%

,8
.0

37
.7

%
,7

.1
39

.9
%

,7
.6

12
­fi
x

43
.6

23
.1

23
.5

33
.3

43
.6

23
.1

23
.5

33
.3

74
.2

76
.4

51
.7

%
,1

2
51

.7
%

,1
2

51
.7

%
,1

2
51

.7
%

,1
2

51
.6

%
,1

2
51

.6
%

,1
2

51
.6

%
,1

2
51

.6
%

,1
2

50
.4

%
,1

2.
0

51
.1

%
,1

2.
0

ad
s,

np
43

.2
22

.0
22

.8
33

.1
43

.0
21

.9
22

.7
33

.2
73

.7
76

.1
40

.9
%

,8
.1

40
.9

%
,8

.1
40

.9
%

,8
.1

40
.9

%
,8

.1
40

.7
%

,8
.0

40
.7

%
,8

.0
40

.7
%

,8
.0

40
.7

%
,8

.0
37

.7
%

,7
.1

39
.9

%
,7

.6
12

­fi
x,

np
43

.4
22

.2
23

.0
33

.5
43

.3
22

.0
22

.8
33

.5
74

.0
76

.0
51

.7
%

,1
2

51
.7

%
,1

2
51

.7
%

,1
2

51
.7

%
,1

2
51

.6
%

,1
2

51
.6

%
,1

2
51

.6
%

,1
2

51
.6

%
,1

2
50

.4
%

,1
2.

0
51

.1
%

,1
2.

0
ad
s,

nh
43

.1
21

.8
22

.6
33

.0
42

.9
21

.7
22

.5
33

.2
73

.6
75

.7
39

.0
%

,7
.5

39
.0

%
,7

.5
39

.0
%

,7
.5

39
.0

%
,7

.5
38

.9
%

,7
.5

38
.9

%
,7

.5
38

.9
%

,7
.5

38
.9

%
,7

.5
34

.7
%

,6
.4

37
.0

%
,7

.0

95

1 2 3 4 5 6 7 8 9 10 11 12

fixations

55

60

65

70

75

m
A

P
 (

%
)

Fr R-CNN

drl-RPN-ads

drl-RPN-fix

0 1 2 3 4 5 6 7 8 9 10

min. # objects in image

50

55

60

65

70

75

80

m
A

P
 (

%
)

Fr R-CNN

drl-RPN-ads

drl-RPN-ads-nh

0.5 0.55 0.6 0.65 0.7 0.75 0.8

IoU-threshold (positive)

30

35

40

45

50

55

60

65

70

75

80

m
A

P
 (

%
)

Fr R-CNN

drl-RPN-ads

Figure 3.2: Additional results on the PASCAL VOC 2007 test set. Left: Using a constant, preset
number of fixations per image requires almost twice as many fixations per image to reach the same
detection accuracy as the adaptively stopping model. Middle: The mAP of drl­RPN compared to
Fr R­CNN is relatively higher in more crowded scenes and the class­specific history appears more
useful in such scenes. Right: The relative performance of drl­RPN compared to Fr R­CNN generally
increases with increased IoU­threshold (cf. Figure 3.3).

6.2 Results on PASCAL VOC

Table 3.2: Detection results on the PASCAL
VOC 2007 and 2012 test sets. We also show drl­
RPN’s average exploration and average number of
fixations per image

model settings mAP ­ 2007 mAP ­ 2012

RPN
default 73.5 70.4

drl­RPN det 73.6 70.6
all RoIs 74.2 70.7

drl­
RPN

ads | 22.9%, 4.0 75.2 70.8
12­fix | 40.3%, 12.0 76.4 72.2
ads, np | 22.9%, 4.0 74.5 70.4

12­fix, np | 41.7%, 12.0 75.5 71.8
ads, nh | 22.1%, 3.9 74.3 70.1

Table 3.2 shows results on PASCAL VOC
2007 and 2012. To show the effect of joint
policy­detector training we also present Fr
R­CNN results using the drl­RPN tuned
detector parameters (drl­RPN det). For
VOC 2007, drl­RPN­ads achieves 1.7
mAP above Fr R­CNN. By enforcing 12
fixations drl­RPN more significantly out­
performs the Fr R­CNN baseline by 2.9
mAP. Moreover, both the ads­ and 12­
fix drl­RPN models achieve higher mAP
compared to an exhaustive variant of Fr
R­CNN which forwards all RoIs (without
class­agnostic NMS), so increasing mAP is not merely a matter of detecting more RoIs. The
Fr R­CNN results change negligibly when replacing the class­specific detector parameters
to those of the tuned drl­RPN detector. We also tried drl­RPN without detector tuning,
which caused an mAP drop of 2.0 (see the supplementary material). Hence, unsurprisingly,
it is crucial to perform detector tuning jointly with the policy learning. Furthermore, the
class­specific history yields considerably better results – see also Section 6.3 and Figure 3.2
(middle). Similar results apply to PASCAL VOC 2012. The adaptive stopping drl­RPN­
ads improves upon Fr R­CNN by 0.4 mAP; it also surpasses the exhaustive ”all RoIs”
variant. At 12 fixations drl­RPN significantly outperforms Fr R­CNN by 1.8 mAP.

Comparing the VOC and COCO results, search trajectories for VOC are about 50%
shorter on average. This is not surprising given that COCO scenes are significantly more
crowded and complex; indeed, this further shows the benefit of an adaptive search with

96

Figure 3.3: The drl­RPN attention (right) is more object­centric and less scattered over the image
compared to the standard RPN (middle), resulting in fewer false positives. The respective input
images are shown in the left column. These visualizations are shown in gray for clarity.

automatic stopping condition.
In Figure 3.2 (left) we show results on VOC 2007 when enforcing exactly n fixations

per image for n = 1, . . . , 12. The mAP increases with the number of fixations and sur­
passes drl­RPN­ads for n ≥ 7 and Fr R­CNN for n ≥ 5. Drawn is also a vertical line
corresponding to the mean number of fixations of drl­RPN­ads (4.0). Comparing to the
model with a preset number of fixations clearly shows the benefit of the automatic stopping
(3.0 mAP difference).

6.3 Additional Results

To further investigate our model we evaluate drl­RPN and Fr R­CNN in a few settings on
the PASCAL VOC 2007 test set. Some visualizations of drl­RPN search strategies and final
detections are shown in Figure 3.4.

mAP vs. number of objects per image. Comparing drl­RPN­ads to drl­RPN­ads­nh
in Figure 3.2 (middle) shows that class­specific context aggregation becomes increasingly
useful in crowded scenes, which is quite expected (exceptions for 6, 7 objects). Also, drl­
RPN­ads outperforms Fr R­CNN at all object counts and the improvement gets more
pronounced in more crowded scenes.

mAP vs. IoU­threshold. Figure 3.2 (right) shows that the relative performance of drl­
RPN increases with box IoU­threshold τ , despite using the standard τ = 0.5 during
training. Comparing the COCO­style mAP scores (mAP@[.5, .95]), drl­RPN even more

97

Figure 3.4: Upscaled fixation areas in white (cf. Rt in Section 4.1) generated by drl­RPN and
detection boxes (colored) for a few PASCAL VOC 2007 test images. We also show the time step
each area was observed. The sizes of the fixation areas are not related to the sizes of the selected
RoIs; they simply determine where RoIs are being forwarded for class­specific predictions. More
visualizations are provided in the supplementary material.

significantly outperforms Fr R­CNN with 44.3 against 41.3 mAP. See also the attention
comparison in Figure 3.3 showing where (spatially) RoIs are forwarded for class­specific
predictions. For drl­RPN this corresponds to the upscaled fixation areas (cf. Rt in Sec­
tion 4.1). For the standard RPN we locate where the survivors of the class­agnostic NMS
end up spatially and upsample those locations to match the image size.

0.2 0.4 0.6 0.8

avg. runtime / image (sec)

73.5

74

74.5

75

75.5

76

76.5

m
A

P
 (

%
)

Fr R-CNN

Fr R-CNN-all-RoIs

drl-RPN-ads

drl-RPN-ads-nms

drl-RPN-12fix

drl-RPN-12fix-nms

drl-RPN-ads-np

drl-RPN-ads-nh

Figure 3.5: mAP vs. runtime for evaluated models
on the VOC 2007 test set. Fr R­CNN, while fast,
offers very limited tuning of the speed­accuracy
trade­off, whereas drl­RPN can be adapted to a
wide range of requirements on accuracy or speed.
See also Figure 3.6.

Runtime and mAP comparisons. Fig­
ure 3.5 shows mAP and runtime compar­
isons between various models evaluated in
this work. These results are reported using
a Titan X GPU. Our drl­RPN model out­
performs Fr R­CNN in detection accuracy
but not in speed. This is mainly because
drl­RPN forwards a larger set of RoIs (even
though this set is much more spatially com­
pact, cf. Figure 3.3). The sequential pro­
cessing, based on the Conv­GRU described
in Section 4, also adds an overhead of about
13ms per fixation. Applying class­agnostic
NMS to gate the drl­RPN proposals yields
runtimes closer to that of Fr R­CNN while
still improving mAP. Also, drl­RPN out­

performs the exhaustive Fr R­CNN variant in both speed and accuracy.

Exploration­accuracy trade­off. Figure 3.6 shows results⁵ for the goal­agnostic exten­
sion of drl­RPN which takes the exploration penalty β as an additional input (cf. Sec­
tion 5.1.2), evaluated for the set {0.025, 0.050, . . . , 0.750} of β­values used in training.
We also compare to a model using class­agnostic NMS to gate the drl­RPN proposals. With

⁵We here use the model without posterior class probability adjustments.

98

0.025 0.15 0.3 0.45 0.6 0.75

exploration penalty β

64

65

66

67

68

69

70

71

72

73

74

75

76

m
A

P
 (

%
)

Fr R-CNN

drl-RPN-fix- β

drl-RPN-fix- β-nms

drl-RPN-ad- β

drl-RPN-ad- β-nms

0.025 0.15 0.3 0.45 0.6 0.75

exploration penalty β

0.1

0.2

0.3

0.4

0.5

ru
n

ti
m

e
 /

 i
m

a
g

e
 (

s
e

c
)

Fr R-CNN

drl-RPN-fix- β

drl-RPN-fix- β-nms

drl-RPN-ad- β

drl-RPN-ad- β-nms

0.025 0.15 0.3 0.45 0.6 0.75

exploration penalty β

15

20

25

30

35

40

e
x
p

lo
ra

ti
o

n
 (

%
)

drl-RPN-ad- β

exp. fit

Figure 3.6: Investigation of exploration­accuracy trade­off on the PASCAL VOC 2007 test set.
Left: For small β the goal­agnostic agents outperform the fixed­β counterparts as well as Fr R­
CNN, while mAP expectedly decreases as β increases. Middle: Average runtime also decreases with
increased β; at β = 0.15 (twice the β used for fixed­β models) the goal­agnostic models become
faster than the fixed­β counterparts. Right: Exploration vs. β with a fitted two­term exponential
ae−bβ+ce−dβ . The accurate functional fit allows for specifying the exploration extent at test time.

this straightforward extension we obtain models which can be adjusted to a wide range of
speed­accuracy trade­offs.

7 Conclusions

We have presented drl­RPN, a sequential deep reinforcement learning model of ‘where to
look next’ for visual object detection, which automatically determines when to terminate
the search process. The model produces image­ and category­dependent search trajectories,
yet it features a single policy over all object categories. All the (deep) parameters – includ­
ing the fixation policy, stopping conditions, and object classifiers – can be trained jointly
and experiments show that such joint refinement improves detection accuracy. Overall,
drl­RPN achieves results superior to exhaustive, typical state­of­the­art methods and is par­
ticularly accurate in applications demanding higher IoU­thresholds for positive detections.

Results showing the advantages of a class­specific memory and context­aggregation
within drl­RPN have also been presented. This offers a mechanism to incrementally accu­
mulate evidence at earlier visited image regions and detections to guide the search process
and boost detection accuracy. As expected, such a mechanism leads to even more dramatic
improvements in more crowded scenes. Finally, we have shown that drl­RPN can learn to
operate across a wide variety of exploration­accuracy trade­offs, which makes it possible to
specify the exploration extent at test time.

Acknowledgments: This work was supported by the European Research Council Consol­
idator grant SEED, CNCS­UEFISCDI PN­III­P4­ID­PCE­2016­0535, the EU Horizon
2020 Grant DE­ENIGMA, and SSF.

©2018 IEEE. Reprinted, with permission, from [53].

99

References

[1] G. F. Lucas Paletta and C. Seifert, “Q­learning of sequential attention for visual object
recognition from informative local descriptors,” in ICML, 2005.

[2] N. J. Butko and J. R. Movellan, “Infomax control of eye movements,” IEEE Transac­
tions on Autonomous Mental Development, vol. 2, no. 2, 2010.

[3] S. Karayev, M. Fritz, and T. Darrell, “Anytime recognition of objects and scenes,” in
CVPR, 2014.

[4] S. Karayev, T. Baumgartner, M. Fritz, and T. Darrell, “Timely object recognition,” in
NeurIPS, 2012.

[5] H. Larochelle and G. E. Hinton, “Learning to combine foveal glimpses with a third­
order boltzmann machine,” in NeurIPS, 2009.

[6] B. Goodrich and I. Arel, “Reinforcement learning based visual attention with applic­
ation to face detection,” in CVPR, 2012.

[7] L. Bazzani, d. N. Freitas, H. Larochelle, and V. Muriono, “Learning attentional
policies for tracking and recognition in video with deep networks,” in ICML, 2011.

[8] S. Mathe and C. Sminchisescu, “Action from still image dataset and inverse optimal
control to learn task specific visual scanpaths,” in NeurIPS, 2013.

[9] X. Chen and A. Gupta, “An implementation of faster rcnn with study for region
sampling,” arXiv preprint arXiv:1702.02138, 2017.

[10] S. Singh, D. Hoiem, and D. Forsyth, “Learning a sequential search for landmarks,”
in CVPR, 2015.

[11] X. Chen and A. Gupta, “Spatial memory for context reasoning in object detection,”
in ICCV, 2017.

[12] T. Kong, F. Sun, A. Yao, H. Liu, M. Lu, and Y. Chen, “Ron: Reverse connection with
objectness prior networks for object detection,” in CVPR, 2017.

[13] R. Girschick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac­
curate object detection and semantic segmentation,” in CVPR, 2014.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r­cnn: Towards real­time object de­
tection with region proposal networks,” in NeurIPS, 2015.

[15] J. Dai, Y. Li, K. He, and J. Sun, “R­fcn: Object detection via region­based fully
convolutional networks,” in NeurIPS, 2016.

100

[16] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep con­
volutional neural networks,” in NeurIPS, 2012.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large­scale
image recognition,” ICLR, 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van­
houcke, and A. Rabinovich, “Going deeper with convolutions,” in CVPR, 2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

[20] R. Girshick, “Fast r­cnn,” in ICCV, 2015.

[21] J. Carreira and C. Sminchisescu, “CPMC: Automatic Object Segmentation Using
Constrained Parametric Min­Cuts,” PAMI, 2012.

[22] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search
for object recognition,” IJCV, vol. 104, 2013.

[23] P. Rantalankila, J. Kannala, and E. Rahtu, “Generating object segmentation proposals
using global and local search,” in CVPR, 2014.

[24] P. Arbeláez, J. Pont­Tuset, J. T. Barron, F. Marques, and J. Malik, “Multiscale com­
binatorial grouping,” in CVPR, 2014.

[25] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from edges,” in
ECCV, 2014.

[26] J. Caicedo and S. Lazebnik, “Active object localization with deep reinforcement learn­
ing,” in ICCV, 2015.

[27] S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning for visual object
detection,” in CVPR, 2016.

[28] Z. Jie, X. Liang, J. Feng, X. Jin, W. Lu, and S. Yan, “Tree­structured reinforcement
learning for sequential object localization,” in NeurIPS, 2016.

[29] X. Kong, B. Xin, Y. Wang, and G. Hua, “Collaborative deep reinforcement learning
for joint object search,” CVPR, 2017.

[30] K. Hara, M.­Y. Liu, O. Tuzel, and A.­M. Farahmand, “Attentional network for visual
object detection,” arXiv preprint arXiv:1702.01478, 2017.

[31] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual
attention,” in NeurIPS, 2014.

101

[32] D. Yoo, S. Park, K. Paeng, J.­Y. Lee, and I. S. Kweon, “Action­driven object detection
with top­down visual attentions,” arXiv preprint arXiv:1612.06704, 2016.

[33] A. Gonzalez­Garcia, A. Vezhnevets, and V. Ferrari, “An active search strategy for effi­
cient object class detection,” in CVPR, 2015.

[34] Y. Lu, T. Javidi, and S. Lazebnik, “Adaptive object detection using adjacency and zoom
prediction,” in CVPR, 2016.

[35] Z. Li, Y. Yang, X. Liu, F. Zhou, S. Wen, and W. Xu, “Dynamic computational time
for visual attention,” in ICCV Workshops, 2017.

[36] X. S. Chen, H. He, and L. S. Davis, “Object detection in 20 questions,” in WACV,
2016.

[37] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,” in
ICLR, 2014.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” in ECCV, 2014.

[39] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed, “Ssd: Single shot multibox
detector,” ECCV, 2016.

[40] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real­time object detection,” in CVPR, 2016.

[41] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” CVPR, 2017.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” in NeurIPS Deep
Learning Workshop, 2013.

[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large­scale machine learning on het­
erogeneous distributed systems,” in USENIX Symposium on Operating Systems Design
and Implementation, 2016.

[44] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recur­
rent neural networks on sequence modeling,” NeurIPS Workshop on Deep Learning,
2014.

[45] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks.,” in Aistats, 2010.

102

[46] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” ICLR, 2017.

[47] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei­Fei, and A. Farhadi, “Target­
driven visual navigation in indoor scenes using deep reinforcement learning,” in ICRA,
2017.

[48] R. S. Sutton and A. G. Barto, Reinforcement Learning. MIT Press, 1998.

[49] R. Williams, “Simple statistical gradient­following algorithms for connectionist rein­
forcement learning,” Machine Learning, 1992.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

[51] T.­Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in ECCV, 2014.

[52] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser­
man, “The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.”
http://www.pascal­network.org/challenges/VOC/voc2007/workshop/index.html.

[53] A. Pirinen and C. Sminchisescu, “Deep reinforcement learning of region proposal
networks for object detection,” in CVPR, 2018.

103

A Supplementary Material

In this supplementary material we provide additional results for our drl­RPN agent. We
also show several visualizations of drl­RPN operating on images in Figure 3.7 ­ 3.9.

Tables 3.3 and 3.4 show per­category results for drl­RPN and Faster R­CNN (Fr R­
CNN) on the PASCAL VOC 2007 and 2012 test sets, respectively. The corresponding
results showing only the mean average precisions (mAPs) are given in Table 3.2 of the main
paper. As a reminder, for the Fr R­CNN model using a standard region proposal network
(RPN), these are the various model settings we evaluate (which were also evaluated in the
main paper):

• default is the standard Fr R­CNN detector;

• drl­RPN det is the standard Fr R­CNN detector, but with drl­RPN tuned parameters
for the detector head;

• all RoIs is an exhaustive variant of the standard Fr R­CNN detector, which does not
use any class­agnostic NMS (i.e. it forwards all RoIs from the RPN).

We also evaluate drl­RPN in several different settings. The first four were evaluated already
in the main paper, whereas the latter three are new to this supplementary material – see the
bottom three rows of Table 3.3. The different drl­RPN settings we evaluate are as follows:

• ads denotes the adaptively stopping variant;

• 12­fix denotes a variant which always performs 12 fixations per image;

• np denotes a variant which uses a class­specific history only to guide the search process
but not for posterior class probability adjustments;

• nh denotes a variant which is completely void of a class­specific history;

• nt denotes a variant which has not tuned the detection head in parallel with the
fixation policy learning;

• ads­rng is an adaptively stopping variant with a uniform random fixation policy (we
ensure it does not visit the same region multiple times);

• ads­obj is an adaptively stopping variant with a heuristic fixation policy. Specifically,
it extracts the objectness layer of the RPN and attends spatial locations in descending
order of objectness (we ensure that the same locations are not visited multiple times
by setting objectness values to 0 at already explored regions).

As evident in Table 3.3, performing joint detector and policy training is superior to only
training the policy (drl­RPN­nt yields mAP 1.9 points below that of the fully tuned drl­
RPN model, despite exploring more). Conversely, the Fr R­CNN results change only

105

marginally (from mAP 73.5 to 73.6) if we replace the class­specific detector parameters
to those of the tuned drl­RPN detector. Hence, unsurprisingly, it is crucial to perform
detector tuning jointly with the policy learning.

The fully reinforcement learnt drl­RPN­ads significantly outperforms the simpler drl­
RPN­obs and drl­RPN­rng baselines with 2.4 and 4.6 mAP points, respectively, despite
exploring much less (e.g. almost half the amount of fixations compared to drl­RPN­rng).
Thus, a finely tuned search strategy – jointly trained with the adaptive stopping conditions
– is essential for efficient and accurate exploration and detection. The reason why drl­RPN­
obs is significantly worse than drl­RPN­ads could be because the objectness scores are often
high also where there are no objects; see Figure 3.3 in the main paper.

106

Ta
bl
e
3.
3:

D
et

ec
tio

n
re

su
lts

fo
rd

iff
er

en
tm

et
ho

ds
on

th
e
PA

SC
AL

V
O

C
20
07

te
st

se
t.

Al
lm

od
el

sw
er

e
tr
ai

ne
d

on
V

O
C
0
7
+1
2

tr
ai

n­
va

l.
Sh

ow
n

ar
er

es
ul

ts
fo

rF
rR

­C
N

N
,u

sin
g

ei
th

er
dr

l­R
PN

or
th

eo
rig

in
al

R
PN

.S
ho

w
n

is
al

so
av

er
ag

ee
xp

lo
ra

tio
n

an
d

av
er

ag
en

um
be

ro
ffi

xa
tio

ns
pe

ri
m

ag
e.

m
od

el
se
tt
in
gs

aero

bike

bird

boat

bottle

bus

car

cat

chair

cow

table

dog

horse

moto

person

plant

sheep

sofa

train

tv

mean

R
P
N

de
fa
ul
t

76
.9

79
.2

73
.1

61
.4

59
.8

81
.6

84
.7

86
.7

55
.7

81
.8

70
.4

83
.0

84
.6

78
.2

77
.9

41
.8

71
.9

71
.9

77
.0

72
.1

73
.5

dr
l­
R
P
N
de
t

76
.5

78
.3

72
.5

59
.7

60
.6

82
.3

84
.3

86
.8

55
.5

81
.4

70
.1

83
.9

84
.5

78
.2

78
.2

42
.1

71
.6

72
.3

77
.5

72
.0

73
.6

al
lR

oI
s

77
.0

84
.5

74
.7

68
.4

59
.5

87
.4

86
.5

85
.7

59
.2

81
.9

69
.3

84
.8

86
.3

77
.2

78
.4

43
.3

75
.5

72
.2

82
.7

72
.3

75
.3

dr
l­

R
P
N

23
.2
%
,4

.0
ad
s

79
.2

80
.1

70
.4

67
.7

57
.3

86
.6

84
.9

86
.4

57
.3

83
.6

73
.9

84
.2

87
.4

79
.3

78
.9

44
.7

74
.1

77
.8

83
.2

67
.0

75
.2

40
.3
%
,1

2.
0

12
­fi
x

79
.3

80
.3

74
.5

69
.4

60
.6

86
.9

85
.9

87
.3

58
.4

83
.7

73
.2

85
.6

87
.8

79
.4

79
.0

45
.2

75
.9

77
.7

84
.3

72
.9

76
.4

23
.2
%
,4

.0
ad
s,
np

78
.6

79
.4

70
.3

66
.9

56
.3

87
.1

85
.0

80
.8

56
.9

81
.8

73
.0

85
.3

87
.6

78
.0

78
.2

43
.5

76
.7

75
.8

83
.0

65
.6

74
.5

40
.3
%
,1

2.
0

12
­fi
x,
np

78
.2

80
.0

74
.6

65
.7

59
.5

87
.4

86
.4

86
.7

57
.2

82
.7

72
.5

85
.3

87
.5

78
.3

78
.3

43
.3

76
.8

75
.3

83
.6

69
.6

75
.5

23
.3
%
,4

.2
ad
s,
nh

77
.8

79
.8

69
.2

67
.0

55
.6

87
.6

85
.3

81
.4

58
.2

82
.3

73
.7

83
.4

86
.7

78
.0

78
.6

41
.7

75
.8

75
.6

84
.1

64
.9

74
.3

24
.8
%
,4

.4
ad
s,
nt

73
.6

79
.6

69
.8

67
.1

54
.2

86
.1

80
.5

86
.8

56
.1

81
.8

69
.5

83
.3

86
.8

77
.1

78
.5

42
.5

75
.7

74
.0

78
.9

63
.5

73
.3

26
.9
%
,5

.2
ad
s­
ob

j
77

.0
79

.7
69

.9
66

.4
56

.6
86

.0
79

.8
81

.0
56

.5
77

.5
71

.7
78

.8
86

.6
78

.2
77

.9
42

.3
75

.3
75

.4
79

.4
59

.6
72

.8

35
.4
%
,7

.4
ad
s­
rn
g

70
.7

78
.8

68
.6

61
.1

48
.5

85
.5

77
.7

80
.6

56
.2

75
.2

70
.9

79
.0

84
.8

76
.7

70
.5

41
.3

68
.9

74
.6

78
.8

63
.2

70
.6

107

Ta
bl
e
3.
4:

D
et

ec
tio

n
re

su
lts

fo
r
di

ffe
re

nt
m

et
ho

ds
on

th
e

PA
SC

AL
V

O
C

20
12

te
st

se
t.

Al
lm

od
el

sw
er

e
tr
ai

ne
d

on
th

e
un

io
n

of
V

O
C

0
7
+1
2

tr
ai

n­
va

la
nd

V
O

C
07

te
st.

Sh
ow

n
ar

e
re

su
lts

fo
rF

rR
­C

N
N

,u
sin

g
ei

th
er

dr
l­R

PN
or

th
e

or
ig

in
al

R
PN

.S
ho

w
n

is
al

so
av

er
ag

e
ex

pl
or

at
io

n
an

d
av

er
ag

e
nu

m
be

ro
ffi

xa
tio

ns
pe

ri
m

ag
e.

m
od

el
se
tt
in
gs

aero

bike

bird

boat

bottle

bus

car

cat

chair

cow

table

dog

horse

moto

person

plant

sheep

sofa

train

tv

mean

R
P
N

de
fa
ul
t

84
.9

79
.8

74
.3

53
.9

49
.8

77
.5

75
.9

88
.5

45
.6

77
.1

55
.3

86
.9

81
.7

80
.9

79
.6

40
.1

72
.6

60
.9

81
.2

61
.5

70
.4

dr
l­
R
P
N
de
t

82
.6

79
.9

72
.4

53
.7

52
.8

78
.0

76
.4

88
.0

48
.6

74
.8

55
.6

84
.8

80
.7

81
.1

79
.6

44
.8

72
.0

61
.0

80
.9

64
.4

70
.6

al
lR

oI
s

83
.5

79
.6

71
.3

55
.6

51
.1

77
.5

76
.6

89
.5

50
.3

74
.5

55
.0

85
.7

78
.7

81
.7

80
.9

43
.6

71
.7

60
.7

80
.1

66
.7

70
.7

dr
l­

R
P
N

22
.5
%
,4

.0
ad
s

82
.7

79
.7

72
.0

57
.0

51
.4

76
.9

76
.2

87
.7

48
.7

75
.1

57
.6

85
.4

81
.2

82
.4

80
.6

45
.3

72
.8

63
.5

81
.9

57
.8

70
.8

40
.3
%
,1

2.
0

12
­fi
x

84
.4

80
.6

72
.8

57
.5

53
.0

78
.9

77
.3

89
.5

49
.8

76
.5

56
.5

86
.4

81
.5

83
.1

81
.3

47
.7

73
.2

64
.3

83
.2

65
.9

72
.2

22
.5
%
,4

.0
ad
s,
np

81
.7

80
.0

72
.1

56
.1

51
.0

77
.7

76
.5

88
.0

48
.8

74
.8

57
.5

85
.6

80
.7

81
.6

80
.5

44
.1

71
.9

61
.7

80
.9

57
.3

70
.4

43
.0
%
,1

2.
0

12
­fi
x,
np

84
.1

80
.8

72
.3

56
.6

52
.5

79
.5

77
.5

89
.5

50
.2

76
.7

56
.5

86
.5

80
.9

82
.1

81
.2

46
.8

72
.6

62
.1

82
.3

65
.3

71
.8

20
.9
%
,3

.6
ad
s,
nh

82
.3

79
.4

72
.2

56
.0

50
.6

75
.0

75
.4

88
.4

48
.0

74
.7

56
.4

84
.7

80
.7

81
.9

80
.7

43
.7

71
.9

61
.6

80
.1

58
.1

70
.1

108

Figure 3.7: Upscaled fixation areas (attention boxes, white) generated by our sequential search model
drl­RPN, together with final detection boxes (colored), for several images from the PASCAL VOC
2007 test. Each attention box has an associated number, showing at which time­step t ≥ 1 the
corresponding area in the feature map was observed. Depending on the complexity of a scene,
such as the number and layout of objects, the model automatically determines when to stop the
search process. The top two rows show examples of short search trajectories, in which only a few
object instances exist in the image. In contrast, longer trajectories are shown in the bottom two
rows, corresponding to images with more object instances and/or categories. As such, the number
of fixate actions is not necessarily equal to the number of object instances, but depends also on the
layout of the objects (e.g. how close objects are to each other). For example, in the top­mid image,
only one fixate action is necessary to simultaneously locate the bus and the car, whereas an additional
fixation is produced for the image to the right on the second row. Overall however, the number of
fixations typically increases with the number of object instances, as would be expected. Note that
the fix­sized attention boxes are not related to the sizes of the RoIs being forwarded for class­specific
predictions. These boxes only correspond to what subset (and where) of RoIs are selected.

109

Figure 3.8: Additional visualizations of successful search strategies of our drl­RPN model on the
PASCAL VOC 2007 test, c.f. Figure 3.7. Depending on the complexity of a scene, such as the
number and layout of objects, the model automatically determines when to stop the search process.
The top two rows show examples of short search trajectories, in which only one or a few object
instances exist in the image. In contrast, longer trajectories are shown in the bottom two rows,
corresponding to images containing more object instances and/or categories. Note how our model
is able to adapt its strategy to a variety of situations. For example, in the top­mid image the large
train and tiny person are both captured, and in the poorly illuminated image to the top­right both
the bus and person are discovered in what appears to be the smallest possible number of fixations.
The distance between different fixation locations can vary quite drastically too. An example of this
is seen in left image of the third row: the agent moves its view from the cluster of bicycles (fixations
1 ­ 2) to the barely visible person sitting in the shadow (fixation 3), and then back to investigating
the bicycles (fixation 4).

110

Figure 3.9: Similar visualizations of search strategies as in Figure 3.7 ­ 3.8; in this case a few examples
of slightly less successful and/or unexpected search trajectories are shown (above dashed line) on the
PASCAL VOC 2007 test. The model sometimes appears to do one or a few additional, unnecessary
fixations (such as in the image of the dog to the top­right, in which the dog is detected already at
the first fixation). It may also be the case that the additional fixations occur at locations which are
object­like in a more generic sense (’stuff’). An example of this can be seen in the image of the cat
to the top­left, with two additional fixations at the kitchen counter, which contains several items
that are not labeled in the training data. Similarly, on the mid­left the agent searches among all
the tiny boats in the distance, of which only a few are detected in the end. Finally, the model may
occasionally stop the search too early, as is apparent in the top­mid figure, in which the man to the
right is not detected. Below the dashed line are the corresponding top images where the stopping
condition has manually been altered to perform more/less fixations.

111

Paper III

Domes to Drones: Self­Supervised Active Triangulation
for 3D Human Pose Reconstruction

Aleksis Pirinen1* Erik Gärtner1* Cristian Sminchisescu1,2

1Centre for Mathematical Sciences, Lund University
2Google Research

Abstract

Existing state­of­the­art estimation systems can detect 2d poses of multiple people in images quite
reliably. In contrast, 3d pose estimation from a single image is ill­posed due to occlusion and depth
ambiguities. Assuming access to multiple cameras, or given an active system able to position itself
to observe the scene from multiple viewpoints, reconstructing 3d pose from 2d measurements be­
comes well­posed within the framework of standard multi­view geometry. Less clear is what is an
informative set of viewpoints for accurate 3d reconstruction, particularly in complex scenes where
people are occluded by others or scene objects. In order to address the view selection problem in
a principled way, we here introduce ACTOR, an active triangulation agent for 3d human pose recon­
struction. Our fully trainable agent consists of a 2d pose estimation network (any of which would
work) and a deep reinforcement learning­based policy for camera viewpoint selection. The policy
predicts observation viewpoints, the number of which varies adaptively depending on scene content,
and the associated images are fed to an underlying pose estimator. Importantly, training the view
selection policy requires no annotations – given a pre­trained 2d pose estimator, ACTOR is trained
in a self­supervised manner. In extensive evaluations on complex multi­people scenes filmed in a
Panoptic dome, under multiple viewpoints, we compare our active triangulation agent to strong
multi­view baselines, and show that ACTOR produces significantly more accurate 3d pose recon­
structions. We also provide a proof­of­concept experiment indicating the potential of connecting
our view selection policy to a physical drone observer.

*Denotes equal contribution, order determined by coin flip.

115

1 Introduction

Estimating 2d and 3d human pose from given images or video is an active research area,
with deep learning playing a prominent role in most of today’s state­of­the­art pose and
shape estimation models [1, 2, 3, 4, 5, 6, 7]. Monocular 3d pose estimation is however
ill­posed [8] due to depth ambiguities, and these cannot always be resolved by priors or
by increasing a feedforward model’s predictive power. Given access to multiple cameras, or
given an active observer which can capture images from multiple viewpoints, reconstructing
3d pose from 2d estimates however becomes tractable within the framework of standard
multi­view geometry. An active setup for triangulating 2d estimates also addresses many
common practical issues, such as partial observability due to occlusion, either self­induced
or due to other people or objects.

Given sufficiently many viewpoints, 3d pose reconstructions from 2d estimates can be
made robust and accurate, and such results have even been used as (pseudo­)ground truth
[9, 10]. While inferring 3d reconstructions from tens or hundreds of viewpoints works in
carefully constructed setups, it is not always practical or desirable to rely on so many cam­
eras. In this work we take a different approach, introducing ACTOR, an active triangulation
agent for obtaining 3d human pose reconstructions. ACTOR consists of a 2d pose (human
body joints) estimation network – any of which could be used – and a deep reinforcement
learning­based policy for observer (i.e. camera location and pose) prediction, within a fully
trainable system. Instead of operating exhaustively over all cameras, ACTOR is able to
select a much smaller set of cameras, yet still produces accurate 3d pose reconstructions.

Our proposed methodology is implemented in the Panoptic multi­view framework
[10], where the scene can be observed in time­freeze, from a dense set of viewpoints, and
over time, providing a proxy for an active observer. In evaluations using Panoptic we show
that our system learns to select camera locations that yield more accurate 3d pose recon­
structions compared to strong multi­view baselines. We also provide a proof­of­concept
experiment indicating the potential of connecting ACTOR to a physical drone observer.
Training our policy for view selection requires no 2d or 3d pose annotations – given a pre­
trained 2d pose estimator, ACTOR can be trained in a self­supervised manner.

2 Related Work

In addition to recent literature focusing on extracting 3d human representations from a
single image or video [11, 2, 12, 1, 13, 3, 4, 5, 14], a parallel line of work concentrates on lift­
ing 2d estimates to 3d. Chen et al. [15] present an unsupervised approach for recovering 3d
human pose from 2d estimates in single images. This is achieved by a self­consistency loss
based on a lift­reproject­lift process, relying on a network that discriminates between real
and fake 2d poses in the reprojection step. Related ideas based on an adversarial framework
[16] are also pursued in [17]. A self­supervised learning methodology for monocular 3d hu­
man pose estimation is described in [18]. During training, the system leverages multi­view

116

2d pose estimates and epipolar geometry to obtain 3d pose estimates, which are then used
to train the monocular 3d pose prediction system. These weakly­supervised methods for
monocular 3d pose estimation eliminate the need for expensive 3d ground truth annotations
but tend to not be as accurate as their fully­supervised counterparts.

Multi­view frameworks can, on the other hand, rely on triangulation in order to obtain
accurate 3d pose reconstructions given 2d estimates. In contrast to methods performing
exhaustive fusion over all cameras, ACTOR actively selects a smaller subset of viewpoints
over which to triangulate. Our approach can be considered as a generalization of next­
best­view (NBV) selection, and is superficially similar to other NBV­works [19, 20, 21,
22, 23, 24, 25]. Differently from them, the number of viewpoints explored by our agent
varies adaptively based on the complexity of the scene. Also, NBV approaches typically
decide the next view by greedily and locally evaluating some hand­crafted utility function
exhaustively over a set of candidates – we instead frame the task as a deep RL problem where
the policy is trained to maximize an explicit global objective, searching over entire sequences
of viewpoints, and by triangulating as many joints as possible. In a broader sense, ACTOR
relates to work on active agents trained to perform various tasks in 3d environments [26,
27, 28, 29, 30, 31]. We are not aware of any prior work that tackles the problem of active
triangulation in multi­view setups.

3 Human Pose Reconstruction from Active Triangulation

We here describe the terminology and concepts of 3d human pose reconstruction from act­
ive triangulation. The proposed framework is applicable to any number of people as we
aim for a system able to actively reconstruct all people in the scene, the number of which
may vary. We study the active triangulation problem in the CMU Panoptic multi­camera
framework [10] since its data consists of real videos of people and allows for reproducible ex­
periments. The subjects are filmed by densely positioned time­synchronized HD­cameras
as they perform movements ranging from basic pose demonstrations to different social
interactions. Panoptic offers 2d and 3d joint annotations, but as we will show no such an­
notations are required for training our viewpoint selection system. See Figure 4.1 for an
overview of our active 3d human pose reconstruction model.

Terminology. Triangulation of 3d pose reconstructions from 2d estimates requires ob­
serving the targets from several cameras, each capturing an image vti (referred to as a view
or viewpoint) indexed by time­step t and camera i. The set {vt1, . . . , vtN} of all views in a
time­step t is called a time­freeze. A subset of these is an active­view, Vt = {vt1, . . . , vtk},
which contains k cameras selected (by some agent or heuristic) from the time­freeze at
time t. A sequence of temporally contiguous active­views is referred to as an active­sequence,
S1: T = {V1,V2, . . . ,VT }, where T is its length. Unless the context requires both indices
we will omit the time superscript t to simplify notation, which implies that all elements
belong to the same time step. The set of all predicted 2d pose estimates corresponding to

117

Policy

Triangulation

next camera location (𝜙#, 𝜙%)

done

𝒀∗)

2d Pose Network

𝑿+)

𝑩)

Temporal

Fusion

𝒀∗)-.
…𝑿.) 𝑿+-.)

Figure 4.1: Overview of ACTOR, our proposed active triangulation agent for 3d human pose recon­
struction. A random view is initially given and the image is fed to a 2d body joint predictor, which
produces estimates for all visible people (Xt

i) and the core of the agent’s state (Bt). The policy
network predicts camera locations until all joints have been triangulated and then switches to the
next active­view at time t+ 1. A predicted camera location is encoded via spherical angles relative
to the agent’s location on the viewing sphere, and the closest camera is selected. When the agent
is done it outputs Y t

⋆, the final 3d reconstructions of all people in the scene, which are obtained
by a combination of spatial fusion (triangulation of 2d poses Xt

1, . . . ,X
t
k) and temporal fusion

with Y t−1
⋆ on a per­joint basis. As described in Section 4.2, we train the viewpoint selection policy

using self­supervision.

a view vi is denoted Xi = [x1, . . . ,xM] ∈ R30×M , where x denotes a single 2d pose
estimate, based on detecting 15 human body joints, and M is the number of people ob­
served from that viewpoint.

Task description. Active triangulation for 3d human pose reconstruction is the task of produ­
cing active­views with corresponding accurate fused 3d pose reconstructions for all people
present, Y ⋆ = [y1⋆, . . . ,yM⋆], given 2d pose estimates X1, . . . ,Xk associated with the
active­view. These active­views then form an active­sequence of accurate 3d pose recon­
structions. As it is challenging to select appropriate viewpoints for satisfactory triangula­
tion, especially in crowded scenes where people are often occluding each other, the task
is considered completed once each individual’s joint has been observed from at least two
different viewpoints (the minimum requirement for performing a triangulation), or after a
given exploration budget is exceeded.

Matching and triangulating people. The active triangulation system must tackle the prob­
lems of tracking and identifying people across various views and through time. The agent
receives appearance models¹ for the different people at the beginning of an active­sequence.
For each view, the agent compares the people detected by the 2d pose estimator with the
given appearance models and matches them across space and time using the Hungarian
algorithm. To reconstruct 3d poses from 2d estimates associated with the selected view­

¹Instance­sensitive features generated using a VGG­19 based [32] siamese instance classifier, trained with a
contrastive loss to differentiate people on the training set. More details are found in the supplement.

118

points, we compute triangulation between each pair of viewpoints [33, 34] and perform
per­body­joint fusion (averaging) of the associated 3d reconstructions. More sophisticated
triangulation methods would be possible; here we selected pairwise averaging due to com­
putational efficiency which is important during training.

4 Active Triangulation Agent

We now introduce our active triangulation agent, ACTOR, and describe its state repres­
entation and action space in Section 4.1. In Section 4.2 we describe the annotation­free
reward signal for training ACTOR to efficiently triangulate the joints of all people.

In the first active­view V1, the agent is given an initial random view v11 . It then pre­
dicts camera locations v12, . . . , v1k until the active­view is completed. An active­view is
considered completed once the agent has triangulated the joints of all people within the
time­freeze, or after a given exploration budget has been exceeded. The 2d pose estimator
is computed for images collected at every visited viewpoint vti , yielding estimates Xt

i for all
visible people. Camera locations are specified by the relative azimuth and elevation angles
(jointly referred to as spherical angles) on the viewing sphere.

Once the agent has triangulated the joints of all people within a time­freeze, it continues
to the next active­view Vt+1. At this time the triangulated 3d pose reconstructions Y t

are temporally fused with the reconstructions Y t−1
⋆ from the previous active­view, Y t

⋆ =
f(Y t−1

⋆ ,Y t). As the 2d pose estimator we use in this work is accurate we have opted for a
straightforward temporal fusion. We define I = Itri ∪ Imiss, where I indexes all joints, Itri
indexes the successfully triangulated joints in the current time­step, and Imiss indexes joints
missed in the current time­step. Then we set Y t

⋆[Itri] = Y t[Itri] for the joints that were
successfully triangulated in the current time­step, and Y t

⋆[Imiss] = Y t−1
⋆ [Imiss]. Hence

we temporally propagate from the previous time­step only those joint reconstructions that
were missed in the current time­step. The initial viewpoint vt+1

1 for Vt+1 is set to the
final viewpoint vtk of Vt, i.e. vt+1

1 = vtk. The process repeats until the end of the active­
sequence. Figure 4.1 shows a schematic overview of ACTOR.

4.1 State­Action Representation

In this section, while describing the state and action representations, we will assume that
the agent acts in a single time­freeze. This allows us to simplify notation and index steps
within the active­view by t. The state is represented as a tuple st = (Bt,Ct,ut), where
Bt ∈ RH×W×C is the deep feature map from the 2d pose estimator. Ct ∈ Nw×h×2 is a
camera history, which encodes² the previously visited cameras on the rig. It also contains a
representation of the distribution of cameras on the rig. Finally, the auxiliary array ut ∈

²The camera history consists of w bins in the azimuth direction and h bins in the elevation direction. It is
agent­centered, i.e. relative to the agent’s current viewpoint. We set w = 9 and h = 5.

119

R17 contains the number of actions taken, the number of people detected, as well as a
binary vector indicating which joints have been triangulated for all people.

A deep stochastic policy πθ(ct|st) parametrized by θ is used to predict the next camera
location ct = (ϕt

a, ϕ
t
e), were (ϕt

a, ϕ
t
e) is the azimuth­elevation angle pair encoding the

camera location. To estimate the camera location probability density, the base feature map
Bt is processed through two convolutional blocks. The output of the second convolutional
block is concatenated with Ct and ut and fed to the policy head, which consists of three
fully connected layers with tanh activations.

As the policy predicts spherical angles, we choose to sample these from the period­
ical von Mises distribution. We use individual distributions in the azimuth and elevation
directions. The probability density function for the azimuth angle is given by

πθ
(
ϕt
a|st
)
=

1

2πI0(ma)
exp{ma cos(ϕ

t
a − ϕ̃a(w

⊤
a z

t
a + ba))}, (4.1)

where the zeroth­order Bessel function I0 normalizes (4.1) to a probability distribution
on the unit circle. Here ϕ̃a is the mean of the distribution (parameterized by the deep
network), ma is the precision parameter,³ and wa and ba are trainable weights and bias,
respectively. The second to last layer of the policy head outputs zt

a. For the azimuth
prediction, the support is the full circle. Therefore we set

ϕ̃a(w
⊤
a z

t
a + ba) = π tanh(w⊤

a z
t
a + ba). (4.2)

The probability density for the elevation prediction has the same form (4.1) as the azimuth.
As there are no cameras below the ground­plane of the rig, nor cameras directly above the
people (cf. Figure 4.1), we limit the elevation angle range to [−κ, κ], where κ = π/6.
Thus the mean elevation angle becomes

ϕ̃e(w
⊤
e z

t
e + be) = κ tanh(w⊤

e z
t
e + be). (4.3)

4.2 Reward Signal for Self­Supervised Active Triangulation

As explained in Section 4, ACTOR predicts camera locations until the individual body
joints of all people have been detected from at least two different views (minimum require­
ment for 3d triangulation) or after a given exploration budgetB is exceeded; we setB = 10
during training. We use the indicator variable dt to denote whether or not the agent has
triangulated all joints (dt = 1 if all joints have been triangulated). We want to encourage
the agent to fulfill the task while selecting as few camera locations as possible, which gives
rise to the reward design in (4.4) below. Note that our reward is not based on ground truth

³The precision parameters ma and me are treated as constants, but we anneal them over training as the
policy becomes better at predicting camera locations.

120

pose annotations – it relies solely on automatic 2d pose (body joint) detections.

rt =


−β/M, if dt = 0, t < B and camera not already visited
−β/M − ϵ, if dt = 0, t < B and camera already visited
1, if dt = 1, t ≤ B

τmin, if dt = 0, t = B.

(4.4)

The first and second rows of (4.4) reflect intermediate rewards, where the agent receives a
penalty ϵ (we set ϵ = 2.5) if it predicts a previous camera location. To encourage efficiency
the agent also receives a time­step penalty β for not yet having completed the triangulation
(β is set to 0.2). This penalty is normalized by the number of peopleM for scaling purposes,
as we expect more cameras are typically required to triangulate multiple people. The third
and fourth rows represent rewards the agent obtains at the end of the active­view. It receives
+1 if it triangulates the joints of allM persons within its exploration budgetB. The fourth
row defines the reward if the agent fails to triangulate some joints within the exploration
budget. It then receives the minimum fraction of covered joints for any person, τmin.

Policy gradients are used to learn ACTOR’s policy parameters, where we maximize ex­
pected cumulative reward on the training set with the objective J(θ) = Es∼πθ

[∑|s|
t=1 r

t
]
,

where s denotes state­action trajectories. This objective function is approximated using
REINFORCE [35].

5 Experiments

Dataset. We consider both multi­people scenes (namedMafia andUltimatum in Panoptic)
and single­people ones (Pose). The scenes with multiple people are expected to be partic­
ularly challenging for the agent, as occlusions are common. Panoptic data comes as 30
FPS time­synchronized videos. To make the size more manageable and increase movement
between frames we downsample the data to 2 FPS. We use the HD cameras, of which there
are about 30 per scene, since they provide better image quality than VGA and are suffi­
ciently dense, yet spread apart far enough to make each viewpoint unique. We select 20
scenes (343k images) which are split randomly into training, validation and test sets with
10, 4, and 6 scenes, respectively. There is no overlap of scenes between the three sets, which
forces the agent to learn a fairly general policy.

Implementation details. ACTOR is implemented on top of the OpenPose 2d pose es­
timation system [6], though any 2d pose predictor would work. As described in Section 4,
temporal fusion of 3d reconstructions across active­views ensures that missed joints are in­
stead covered by the associated estimates from an earlier point in time. In case there is no
previous estimate for a missing joint, it is set to the average of the successfully triangulated
ones (to be able to compute errors). We use per­joint median averaging for fusing 3d pose

121

reconstructions across views and temporal steps.

Training. We train the policy network with batches consisting of experiences from 5
active­sequences, each of length 10. Adam [36] is used for parameter updates. We nor­
malize cumulative rewards for each episode to zero mean and unit variance over each batch
to reduce variance in the policy updates. The exploration budget B (maximum traject­
ory length) is set to 10 camera locations per active­view, including the initial camera. The
policy is trained for 75k episodes with learning rate initially set to 5 ·10−7, which is halved
after 720k steps and again after 1440k steps. The precision parameters (ma,me) of the von
Mises distributions are linearly annealed from (1, 10) to (25, 50) during training, which
makes the camera prediction increasingly deterministic as the training progresses.

Baselines. We evaluate ACTOR against several multi­view baselines. They use the same
2d pose estimator, matching algorithm, triangulation method and temporal fusion. All
methods receive the same initial random camera at the start of an active­sequence. We
compare to the following baselines: i) Random: Selects random cameras (it never selects
the same camera twice); Max­Azim: The first three views are selected at 90, 180 and 270
degrees azimuth relative to the initial view, so the four first views are at 90 degrees azimuth
from each other. The subsequent four views are also selected at 90 degrees azimuth from
each other, but at a 45 degree azimuth offset relative to the first four views. At each azi­
muth, it samples a random elevation angle. The last two cameras are selected randomly,
and we ensure each camera is different. This baseline produces a wide coverage of the view­
ing sphere without the need to know in advance how many cameras will be selected; iii)
Oracle: Before selecting the next camera, this baseline computes the improvement in 3d
pose reconstruction error associated with all available cameras. It then selects the camera
that maximally decreases the error. In addition to cheating when it selects views, the oracle
is also impractically slow since it exhaustively computes errors for all cameras in each step.
Thus it is only shown as a gold standard.

5.1 Main Results

Our ACTOR agent is compared to the baselines on the Panoptic test sets on active­sequences
consisting of 10 active­views. We train ACTOR with 5 different random network initial­
izations and report average results with standard errors of the means (we early stop training
separately for each network initialization based on errors on the validation set). For the
non­deterministic heuristic baselines (Random and Max­Azim; the oracle is deterministic)
we report results across 5 seeds, including standard errors of the means. In Table 4.1 we
report 3d pose reconstruction errors for auto stopping and for a fixed number of views.
ACTOR is more accurate and uses fewer cameras on average, compared to the heuristics.

Figure 4.2 shows 3d pose reconstruction error versus number of views. ACTOR sig­
nificantly outperforms the heuristic baselines, especially for complex multi­person scenes

122

Table 4.1: Mean 3d reconstruction error (mm/joint) for ACTOR and baselines on the Panoptic
test sets. Multi denotes multi­people data (union of Mafia and Ultimatum); single is the single­
person Pose split. We show total errors which include translation errors (top) and hip­aligned errors
(bottom). Columns indicate the number of cameras inspected, ranging from 2 to 10. We also show
results for auto­mode, where camera location selection terminates when the joints of all people have
been triangulated, but using 10 cameras at most. For this column we also show the average number
of cameras inspected in parentheses. ACTOR outperforms both the heuristic baselines on all types
of scenes. The advantage of a trained system is most pronounced for complex multi­people scenes
where selecting informative viewpoints is important. ACTOR­ob and ACTOR­ntf denote ablated
versions of our agent, cf. Section 5.2.

Model Data Auto 2 3 4 5 6 7 8 9 10

ACTOR
multi 125.6 (8.84) 502.4 281.5 201.0 168.4 151.6 141.2 132.1 126.1 122.1

96.2 (8.84) 247.2 179.3 146.4 131.1 118.5 111.6 101.9 95.2 92.3

single 74.6 (4.28) 172.1 107.5 81.9 71.2 67.1 64.9 63.3 62.1 61.3
60.5 (4.28) 151.3 92.8 68.9 59.4 55.6 53.2 51.3 49.9 49.0

ACTOR­
ob

multi 148.9 (8.79) 555.2 372.9 276.4 217.4 185.2 166.6 154.0 146.1 142.5
108.1 (8.79) 299.6 305.7 231.2 182.4 155.9 131.9 119.4 112.3 109.3

single 80.2 (4.58) 187.3 122.6 95.1 80.6 72.4 68.9 67.4 67.0 66.8
67.3 (4.58) 159.7 104.4 77.7 64.2 56.6 53.3 52.3 51.8 51.6

ACTOR­
ntf

multi 138.9 (8.84) 925.7 565.2 353.1 242.8 196.5 172.2 154.8 143.7 136.6
102.0 (8.84) 334.4 258.0 198.4 159.1 138.4 124.5 112.0 102.9 98.3

single 75.9 (4.28) 274.0 151.4 99.6 79.3 71.8 67.9 65.5 63.9 62.7
61.6 (4.28) 228.1 132.4 85.3 66.9 59.8 55.9 53.3 51.5 50.3

Random
multi 142.7 (9.34) 570.1 469.9 316.1 259.9 269.3 238.5 220.2 198.8 188.3

125.9 (9.34) 347.3 406.4 350.1 278.0 263.0 218.8 196.2 179.5 160.0

single 82.6 (4.90) 203.6 139.4 107.2 89.9 81.1 75.1 71.0 67.9 65.8
68.7 (4.90) 178.0 125.7 93.8 76.4 67.6 61.3 56.8 53.4 51.0

Max­
Azim

multi 132.0 (9.01) 479.3 375.8 288.4 226.0 195.7 170.2 149.2 137.7 128.6
102.7 (9.01) 259.4 282.1 235.0 200.0 196.8 158.2 131.3 114.1 103.7

single 75.5 (4.41) 185.7 119.5 88.0 79.5 73.7 68.8 64.5 63.2 62.1
63.61 (4.41) 161.2 106.3 76.5 67.7 61.0 56.3 52.0 50.0 48.5

Oracle
multi 94.5 (6.67) 254.4 147.6 113.1 98.2 90.3 86.4 84.1 82.8 81.9

74.0 (6.67) 163.1 110.3 89.2 78.8 72.8 69.0 66.4 64.5 63.0

single 54.0 (2.97) 123.0 60.2 49.2 45.3 43.6 42.8 42.3 42.2 42.4
48.1 (2.97) 108.2 54.5 43.3 39.5 37.5 36.2 35.2 34.6 34.2

(e.g. 103 and 78mm/joint improvements overMax­Azim at 3 and 6 cameras, respectively).
Multi­people scenes are more difficult to analyze due to occlusions and thus require intelli­
gent view selection – one clearly sees the advantages of a learned system in such scenarios.

Figure 4.3 shows how the exploration budget B (max number of views) affects 3d re­
construction error. At smaller budgets ACTOR’s improvements over the heuristic baselines
are even larger, which shows that our trained system is significantly more efficient at find­
ing good views over which to triangulate the body joints. Runtimes versus number of
cameras are shown in column 3 of Figure 4.2 and versus number of people in column 3
of Figure 4.3. OpenPose runs at about 0.134 seconds per image, while the policy network
adds an overhead of 0.005 seconds per action, which is negligible compared to the 2d pose

123

2 3 4 5 6 7 8 9 10
cameras

75

125

175

225

275

325

375

425

m
ea

n
er

ro
r

(m
m

 /
jo

in
t)

ACTOR
ACTOR-ob
ACTOR-ntf
Random
Max-Azim
Oracle

2 3 4 5 6 7 8 9 10
cameras

45

65

85

105

125

145

165

185

m
ea

n
er

ro
r

(m
m

 /
jo

in
t)

ACTOR
Random
Max-Azim
Oracle

2 3 4 5 6 7 8 9 10

cameras

1

2

3

5

7
9

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

ACTOR

Random

Max-Azim

Oracle

Figure 4.2: Columns 1 ­ 2: Mean 3d reconstruction error per joint vs number of cameras on
the test sets (means and standard errors over 5 seeds). Column 1: Multi­people data. Column
2: Single­people data. ACTOR decreases errors faster than the heuristic baselines, particularly for
multi­people data with occlusions. The oracle uses 3d ground truth and is shown as a gold stand­
ard. ACTOR also outperforms the ablated variants ACTOR­ob and ACTOR­ntf, cf. Section 5.2.
Ablated models are not plotted in the single­people setting to avoid clutter – see Table 4.1 for these
results. Column 3: Runtime (log­scale) per active­view vs number of cameras for a 3­people scene.
The oracle computes errors for all views and persons to select its next camera, so it very slow.

5 7 9 11 13 15
exploration budget

70

100

130

160

190

220

250

280

m
ea

n
er

ro
r

(m
m

 /
jo

in
t)

ACTOR
Random
Max-Azim
Oracle

5 7 9 11 13 15
exploration budget

50

55

60

65

70

75

80

85

m
ea

n
er

ro
r

(m
m

 /
jo

in
t)

ACTOR
Random
Max-Azim
Oracle

1 2 3 4 5 6 7

people

1

2

3

4

6

8

10

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

ACTOR

Random

Max-Azim

Oracle

Figure 4.3: Columns 1 ­ 2: Mean 3d reconstruction error per joint vs exploration budget B (max­
imum number of cameras) on the test sets. As mentioned in Section 4.2, ACTOR was trained solely
at budget B = 10. Column 1: Multi­people data. Column 2: Single­people data. The relative
gain to the baselines is higher at smaller exploration budgets (e.g. 93 mm/joint improvement over
Max­Azim on multi­people data at B = 5), where the system quickly needs to select cameras trian­
gulating the joints of all people. The accuracy curves are flatter for single­people data, as in general
the systems need fewer cameras to triangulate the joints of a single person – the models hence tend
to stop before their budget is exhausted. Column 3: Runtime (log­scale) when varying the number
of people in a scene while keeping the the number of selected cameras constant at 6 per active­view.

estimator. For visualizations⁴ of ACTOR operating in various scenes, see Figure 4.5 ­ 4.6.

5.2 Ablation Studies

In this section we study how ACTOR is affected by i) removing all state features except
the deep feature blob Bt (ACTOR­ob; ob stands for only blob), and ii) using no temporal
fusion of 3d pose reconstructions (ACTOR­ntf). Similarly as for the main ACTOR model,

⁴In this case we equip ACTOR with an OpenPose system that estimates detailed faces, hands and feet. We
do not refine the pre­trained ACTOR model that was trained using the standard OpenPose estimator.

124

ACTOR­ob is trained over 5 different network initializations with individual early stop­
ping on the validation set (ACTOR­ntf uses the same parameters as ACTOR but without
temporal fusion during inference). The results are shown in Table 4.1 and Figure 4.2 (left).
The full ACTOR agent outperforms the ablated variants for all data splits. For multi­
people data, ACTOR drastically outperforms ACTOR­ob, which indicates the need for
representing earlier visited cameras (Ct) as part of the state space. For single­people data,
ACTOR­ob is almost as good as ACTOR, but this data is very simple and occlusion­free
and does not require too sophisticated camera selection. Finally, the full agent significantly
outperforms ACTOR­ntf when operating using few cameras, which makes sense as there
is a big risk of the system missing to triangulate some joints, in which case a backup from
earlier active­views may help.

5.3 From Domes to Drones

The dense Panoptic multi­camera dome provides an idealization in which we can generate
controllable and reproducible experiments. It is also useful for training ACTOR, as we
do not actually have to move a camera around. However, in many practical scenarios one
does not have access to a multi­view setup and may instead have to resort to a single but
moving camera. One such scenario is that of a drone circling a set of people, which aims
to reconstruct their 3d poses.

To test ACTOR’s drone­controlling capacity, we captured three small scenes where a
drone circles around two people performing various poses. We then fine­tuned ACTOR
with learning rate 10−6 for 3k episodes (15 minutes) on two scenes, keeping all other
hyperparameters the same, and ran the model on the third scene. In Figure 4.4, ACTOR
selects 5 different views to reconstruct the targets. It should be noted that the setting of
this drone experiment differs drastically from that of Panoptic. For example, the drone’s
camera quality is worse (VGA rather than HD), and the loop generated by the drone has a
much smaller radius than Panoptic’s viewing sphere (about 1.5 meters for the drone versus
about 3 meters for Panoptic), so there are fewer views where e.g. the feet are visible. In
future work we plan to more tightly integrate ACTOR in the loop, so as to direct the drone
to observe targets from informative views.

6 Conclusions

We have presented ACTOR, a deep RL­based agent to actively reconstruct 3d poses from 2d
estimates via triangulation. Training the viewpoint selection policy requires no annotations
and only uses an off­the­shelf 2d human pose estimator for self­supervision. We evaluated
the model in complex scenarios with multiple interacting people and showed that by intel­
ligently selecting informative views the agent outperforms strong multi­view baselines in
both speed and accuracy. We also provided proof­of­concept results which indicate that
ACTOR can be used in single­camera settings, e.g. to control a physical drone observer.

125

initial view
(no joints triangulated yet)

Figure 4.4: Proof­of­concept experiment illustrating that ACTOR can be connected to an active
drone observer to reconstruct 3d poses from informative viewpoints. Above the dashed line to the
left we show the drone’s loop (the sharp peak is due to take­off and landing), with sampled camera
locations as green arrows. We also show the 3d pose reconstructions obtained by triangulating from
all 33 sampled camera locations. The 9­by­9 cm Crazyflie drone used is shown in the very top
left corner; it can be used safely due to its small size and weight. Sample locations of the drone
are also shown above the line (drone locations are highlighted with red circles in images). Below
the line we show views seen by ACTOR and aggregated 3d pose reconstructions. After observing
5 viewpoints, the two bodies are fully 3d reconstructed, with an average 2d reprojection error of
11.5 pixels (averaged over all 33 cameras), significantly better than the exhaustively triangulated
reconstructions to the left, with an average reprojection error of 35.4 pixels.

Acknowledgments: This work was supported by the European Research Council Consol­
idator grant SEED, CNCS­UEFISCDI PN­III­P4­ID­PCE­2016­0535 and PCCF­2016­
0180, the EU Horizon 2020 Grant DE­ENIGMA, Swedish Foundation for Strategic Re­
search (SSF) Smart Systems Program, as well as the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. We
would also like to thank Patrik Persson for support with the drone experiments.

126

Fi
gu

re
4.
5:

AC
TO

R
op

er
at

in
g

in
tw

o
di

ffe
re

nt
m

ul
ti­

pe
op

le
sc

en
es

.V
isu

al
iza

tio
ns

ar
es

ho
w

n
fo

ri
ni

tia
la

ct
iv

e­
vi

ew
sa

nd
th

us
ha

ve
no

pr
op

ag
at

ed
3d

po
se

es
tim

at
es

fro
m

ea
rli

er
tim

e
ste

ps
.

Ea
ch

ex
am

pl
e

sh
ow

st
he

vi
ew

ss
el

ec
te

d
by

AC
TO

R
,i

nc
lu

di
ng

2d
po

se
es

tim
at

es
(fi

rs
tv

ie
w

ra
nd

om
ly

gi
ve

n)
.B

el
ow

th
es

e
w

e
sh

ow
ag

gr
eg

at
ed

3d
po

se
re

co
ns

tr
uc

tio
ns

.T
op

:3
­p

er
so

n
sc

en
e.

O
ne

of
th

e
pe

rs
on

si
sr

ec
on

str
uc

te
d

al
re

ad
y

at
th

e
se

co
nd

vi
ew

;a
ll

of
th

em
ar

er
ec

on
str

uc
te

d
at

th
efi

fth
vi

ew
.Th

em
ea

n
3d

re
co

ns
tr

uc
tio

n
er

ro
rd

ec
re

as
es

fro
m

2
6
8

to
5
1

m
m

/jo
in

tb
et

w
ee

n
th

es
ec

on
d

an
d

la
st

vi
ew

.B
ot

to
m

:5
­p

er
so

n
sc

en
e,

w
he

re
3d

po
se

re
co

ns
tr

uc
tio

ns
im

pr
ov

e
ov

er
th

e
6

vi
ew

s.
Th

e
er

ro
rd

ec
re

as
es

fro
m

2
9
6

to
6
8

m
m

/jo
in

t.

127

Fi
gu

re
4.
6:

AC
TO

R
op

er
at

in
g

in
a
6­

pe
rs

on
sc

en
e

w
he

re
pe

op
le

sta
nd

qu
ite

cl
os

e
to

ea
ch

ot
he

r,
w

hi
ch

m
ak

es
it

di
ffi

cu
lt

to
tr
ia

ng
ul

at
e

al
lj

oi
nt

s
du

e
to

oc
cl

us
io

ns
.A

C
TO

R
ob

se
rv

es
th

e
sc

en
e

fro
m

8
di

ve
rs

e
vi

ew
s,

an
d

th
e

er
ro

rd
ec

re
as

es
fro

m
3
4
2

to
6
9

m
m

/jo
in

t.

128

References

[1] H. Rhodin, N. Robertini, D. Casas, C. Richardt, H.­P. Seidel, and C. Theobalt, “Gen­
eral automatic human shape and motion capture using volumetric contour cues,” in
ECCV, 2016.

[2] A.­I. Popa, M. Zanfir, and C. Sminchisescu, “Deep multitask architecture for integ­
rated 2d and 3d human sensing,” in CVPR, 2017.

[3] A. Zanfir, E. Marinoiu, and C. Sminchisescu, “Monocular 3d pose and shape es­
timation of multiple people in natural scenes–the importance of multiple scene con­
straints,” in CVPR, 2018.

[4] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.­P. Seidel, W. Xu,
D. Casas, and C. Theobalt, “Vnect: Real­time 3d human pose estimation with a single
rgb camera,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, 2017.

[5] B. Tekin, P. Márquez­Neila, M. Salzmann, and P. Fua, “Learning to fuse 2d and 3d
image cues for monocular body pose estimation,” in ICCV, 2017.

[6] Z. Cao, G. Hidalgo, T. Simon, S.­E. Wei, and Y. Sheikh, “OpenPose: realtime multi­
person 2D pose estimation using Part Affinity Fields,” in CVPR, 2017.

[7] A. Arnab, C. Doersch, and A. Zisserman, “Exploiting temporal context for 3d human
pose estimation in the wild,” in CVPR, 2019.

[8] C. Sminchisescu and B. Triggs, “Building Roadmaps of Minima and Transitions in
Visual Models,” IJCV, vol. 61, no. 1, 2005.

[9] Z. Yu, J. S. Yoon, P. Venkatesh, J. Park, J. Yu, and H. S. Park, “Humbi 1.0: Human
multiview behavioral imaging dataset,” arXiv preprint arXiv:1812.00281, 2018.

[10] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and
Y. Sheikh, “Panoptic studio: A massively multiview system for social motion capture,”
in ICCV, 2015.

[11] S.­E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma­
chines,” in CVPR, 2016.

[12] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J. Black, “Keep it
SMPL: Automatic estimation of 3d human pose and shape from a single image,” in
ECCV, 2016.

[13] G. Rogez, P. Weinzaepfel, and C. Schmid, “Lcr­net: Localization­classification­
regression for human pose,” in CVPR, 2017.

129

[14] A. Zanfir, E. Marinoiu, M. Zanfir, A.­I. Popa, and C. Sminchisescu, “Deep network
for the integrated 3d sensing of multiple people in natural images,” in NeurIPS, 2018.

[15] C.­H. Chen, A. Tyagi, A. Agrawal, D. Drover, R. MV, S. Stojanov, and J. M. Rehg,
“Unsupervised 3d pose estimation with geometric self­supervision,” in CVPR, 2019.

[16] I. Goodfellow, J. Pouget­Abadie, M. Mirza, B. Xu, D. Warde­Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in NeurIPS, 2014.

[17] D. Drover, C.­H. Chen, A. Agrawal, A. Tyagi, C. P. Huynh, et al., “Can 3d pose be
learned from 2d projections alone?,” in ECCV, Springer, 2018.

[18] M. Kocabas, S. Karagoz, and E. Akbas, “Self­supervised learning of 3d human pose
using multi­view geometry,” in CVPR, 2019.

[19] J. I. Vasquez­Gomez, L. E. Sucar, R. Murrieta­Cid, and E. Lopez­Damian, “Volu­
metric next­best­view planning for 3d object reconstruction with positioning error,”
IJARS, vol. 11, no. 10, 2014.

[20] S. Haner and A. Heyden, “Covariance propagation and next best view planning for
3d reconstruction,” in ECCV, 2012.

[21] D. Jayaraman and K. Grauman, “Learning to look around: Intelligently exploring
unseen environments for unknown tasks,” in CVPR, 2018.

[22] B. Xiong and K. Grauman, “Snap angle prediction for 360 panoramas,” in ECCV,
2018.

[23] E. Johns, S. Leutenegger, and A. J. Davison, “Pairwise decomposition of image se­
quences for active multi­view recognition,” in CVPR, 2016.

[24] D. Jayaraman and K. Grauman, “Look­ahead before you leap: end­to­end active re­
cognition by forecasting the effect of motion,” in ECCV, 2016.

[25] X. Han, Z. Zhang, D. Du, M. Yang, J. Yu, P. Pan, X. Yang, L. Liu, Z. Xiong, and
S. Cui, “Deep reinforcement learning of volume­guided progressive view inpainting
for 3d point scene completion from a single depth image,” in CVPR, 2019.

[26] P. Ammirato, P. Poirson, E. Park, J. Košecká, and A. C. Berg, “A dataset for developing
and benchmarking active vision,” in ICRA, 2017.

[27] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and A. Farhadi, “Iqa:
Visual question answering in interactive environments,” in CVPR, 2018.

[28] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied question
answering,” in CVPR, 2018.

130

[29] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson env: Real­world
perception for embodied agents,” in CVPR, 2018.

[30] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei­Fei, and A. Farhadi, “Target­
driven visual navigation in indoor scenes using deep reinforcement learning,” in ICRA,
2017.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in CoRL, 2017.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large­scale
image recognition,” in ICLR, 2015.

[33] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understand­
ing, vol. 68, no. 2, 1997.

[34] M. Lourakis, “Stereo triangulation.” https://www.mathworks.com/
matlabcentral/fileexchange/67383-stereo-triangulation, Nov
2018. Retrieved May 22, 2019.

[35] R. Williams, “Simple statistical gradient­following algorithms for connectionist rein­
forcement learning,” Machine Learning, 1992.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

131

https://www.mathworks.com/matlabcentral/fileexchange/67383-stereo-triangulation
https://www.mathworks.com/matlabcentral/fileexchange/67383-stereo-triangulation

A Supplementary Material

This supplementary material provides more insights to our ACTOR model and experi­
mental setup. Section A.1 describes the details of the network architecture, implementa­
tion, and hyperparameters. Section A.2 elaborates on how we match 2d pose estimates in
space and time using instance features. In Section A.3 we provide 2d reprojection errors
onto 2d OpenPose [1] estimates on the Panoptic test splits. Finally, Section A.4 describes
further dataset details.

A.1 Model Architecture

See Figure 4.7 for a full description of the ACTOR network architecture. ACTOR was
implemented in Caffe [2] and MATLAB. We used an open­source TensorFlow [3] im­
plementation of OpenPose.⁵ All code and pre­trained weights have been made publicly
available.⁶

!"
CNN

Rig + Aux

FC FC FC

OpenPose

('(, '*)MaxPool CNN

Policy Head

Figure 4.7: ACTOR policy architecture. A multi­people 2d pose estimation system (here Open­
Pose, but any similar deep system would would work) processes an input image. The deep feature
maps Bt produced by OpenPose (conv4_4_CPM) is fed into the ACTOR policy network and is
processed by two convolutional layers with ReLU­activations. The first and second convolutional
layers both have 3×3 kernels with stride 1. Their output dimensions are 8×39×21 and 4×18×9,
respectively. The max pooling layer has a 2 × 2 kernel with stride 2. The output from the second
convolutional layer is then concatenated with agent­centric camera rig information about previously
visited cameras relative to current position (Rig), and auxiliary information such as the number of
joints triangulated and number of people detected in the view (Aux). The flattened and concaten­
ated data is then fed into three fully connected layers with tanh­activations with 1024, 512 and 2
neurons respectively. The final output is scaled by two constants to produce radial angles on the
viewing sphere.

A.1.1 Hyperparamters

Hyperparameter search was performed using two powerful workstations equipped with sev­
eral NVIDIA Titan V100 GPU:s. Training a single model for 40k episodes took about 32
hours using one GPU and to speed up results while searching for optimal hyperparameters
we trained several model configurations in parallell using Hyperdock [4]. The most im­
portant parameters for training ACTOR were learning rate, precision of the the von Mises

⁵https://gist.github.com/alesolano/b073d8ec9603246f766f9f15d002f4f4
⁶https://github.com/ErikGartner/actor

133

https://gist.github.com/alesolano/b073d8ec9603246f766f9f15d002f4f4
https://github.com/ErikGartner/actor

Table 4.2: The values tested for the most important hyperparameters when training ACTOR. The
final and best values are highlighted in bold. For the von Mises precisions, the arrow indicates linear
annealing performed during training (e.g. from (ma,me) = (1, 10) to (ma,me) = (25, 50) for
the best configuration).

Hyperparameter Attempted values
Learning Rate {1e­7, 5e­7, 1e­6, 5e­6}

von Mises precision {(1, 10)→ (25, 50), (10, 50)→ (20, 100), (10,50)→ (100, 500)}

(ma, me), and the annealing rate of the precision. See Table 4.2 for a summary of the
values tested for these hyperparameters. In total we trained around 10 different versions of
the final model with varying hyperparameters and evaluated each of them on the validation
set. Finally, the best model was evaluated on the test set and retrained with four additional
random seeds to measure the model’s sensitivity to the random seed (the model is not very
sensitive as indicated in Figure 4.2 of the main paper).

A.2 Matching Multiple People

ACTOR reconstructs multiple people in both space and time from 2d pose estimates. In
order to track and match these estimates we compute instance sensitive features. These
deep features can then be stably matched to each other using the Hungarian algorithm,
where the L2­distance is used to compute the matching cost.

We trained an instance classifier structured as a siamese network [5] using a contrastive
loss [6] that aims to produce 50­dimensional features for each person that can be used to
distinguish individuals. As input the instance classifier takes VGG­19 [7] features from the
bounding box of the 2d pose estimate. The instance classifier is trained for 40k iterations on
the training set with a minibatch size of 16, where half contains positive pairs and the other
half contains negative pairs. The training examples are sampled randomly in both space
and time, which yields a robust classifier. Lastly, the instance classifier is fine­tuned for 2k
iterations on each scene, creating scene­specific versions of the classifier that are slightly
adapted to the environment of those scenes. This tuning is performed outside the range of
the active­sequence in which the agent operates.

At the start of an active­sequence the agents is given an appearance model for each
target it should reconstruct. These appearance models are averages of K different instance
features computed for each target in the scene but from time­freezes that are not part of the
current active­sequence. We denote the i:th instance feature for the l:th person by ul

i, with
i = 1, . . . ,K. In practice we use K = 10. Then we set as appearance model ml:

ml = median(ul
1, . . . ,u

l
K). (4.5)

For each camera location we compute the distance between the instance features of each
detected person to all appearance models in that scene. This gives us a cost matrix whose

134

2 3 4 5 6 7 8 9 10
cameras

80

110

140

170

200

230

260

290
m

ea
n

pi
xe

l e
rr

or
ACTOR
Random
Max-Azim
Oracle

2 3 4 5 6 7 8 9 10
cameras

30

36

42

48

54

60

66

72

m
ea

n
pi

xe
l e

rr
or

ACTOR
Random
Max-Azim
Oracle

Figure 4.8: Mean 2d reprojection errors per joint relative to OpenPose 2d estimates vs number of
cameras on the test sets. Left: Multi­people data. Right: Single­people data. ACTOR reduces the
2d reprojection error faster than the heuristic baselines, particularly for multi­people data. Single­
person scenes are easier to reconstruct, especially when using many cameras – also note that all
models converge close to the error of the oracle in this case.

elements are cj,l = ∥uj −ml∥22, i.e. the cost to match detection j to person l. Given this
matrix we assign detections according to the Hungarian algorithm. Since there might be
false detections by the 2d pose estimator and not all people are visible from every camera
location, we filter out matches with a cost larger than a threshold C, such that all matches
satisfy cj,l ≤ C (we set C = 0.5).

If a person is never detected in an active­view, and if it does not have a previous temporal
backup to use as 3d pose reconstruction (cf. Section 4 and the implementation details in
Section 5 of the main paper), we set each joint estimate to the ground truth center hip
location. Obviously, this estimate is implausible and highly inaccurate – it is used only
to compute average errors (not including such an estimate when computing average errors
would be another option, but this would not penalize missed persons).

A.3 Reprojection Errors onto OpenPose 2d Estimates

The 3d ground truth in Panoptic is generated from exhaustive triangulation of 2d pose
estimates [8], but those 2d pose estimates are not from OpenPose. Thus it is relevant to
also look at reprojection errors onto the OpenPose 2d estimates, since these errors are not
affected by any potential incorrect bias in the 3d ground truth. Such reprojection errors
are shown in Figure 4.8. We note that ACTOR is more accurate relative to the oracle in
this metric. For single­people data the agent converges close to the oracle, while the oracle
is still slightly better for multi­people data due to its more difficult nature with occlusions.
ACTOR yields lower reprojection errors than the heuristic baselines (exception at 2 cameras
for multi­people data, where Max­Azim is more accurate). Note that ACTOR was not
trained to produce accurate estimates at any fixed number of cameras, but rather to quickly
triangulate all joints. Despite this we outperform the baselines in the vast majority of cases.

135

Table 4.3: The number of images in our dataset categorized by scene type and subset type (training,
validation, testing). Note that Mafia and Ultimatum are complex multi­people scenes and that they
account for more than half of the dataset.

Training Validation Testing All

Mafia 53,100 27,900 33,728 114,728

Ultimatum 27,960 4,340 55,825 88,125

Pose 51,079 29,672 59,288 140,039

All 132,139 61,912 148,841 342,892

A.4 Additional Dataset Insights

Table 4.3 shows the size and split of the Panoptic dataset [8] into training, validation and
test sets. The data was created using scripts that downsampled from 30 FPS to 2 FPS to
increase movement between frames.

136

References

[1] Z. Cao, G. Hidalgo, T. Simon, S.­E. Wei, and Y. Sheikh, “OpenPose: realtime multi­
person 2D pose estimation using Part Affinity Fields,” in CVPR, 2017.

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Pro­
ceedings of the 22nd ACM international conference on Multimedia, 2014.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large­scale machine learning on het­
erogeneous distributed systems,” in USENIX Symposium on Operating Systems Design
and Implementation, 2016.

[4] E. Gärtner, “Hyperdock.” https://github.com/ErikGartner/Hyperdock,
2019.

[5] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification
using a” siamese” time delay neural network,” in NeurIPS, 1994.

[6] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an in­
variant mapping,” in CVPR, 2006.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large­scale
image recognition,” in ICLR, 2015.

[8] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and
Y. Sheikh, “Panoptic studio: A massively multiview system for social motion capture,”
in ICCV, 2015.

137

https://github.com/ErikGartner/Hyperdock

Paper IV

Deep Reinforcement Learning for
Active Human Pose Estimation

Erik Gärtner1* Aleksis Pirinen1* Cristian Sminchisescu1,2,3

1Centre for Mathematical Sciences, Lund University
2Institute of Mathematics of the Romanian Academy

3Google Research

Abstract

Most 3d human pose estimation methods assume that input – be it images of a scene collected
from one or several viewpoints, or from a video – is given. Consequently, they focus on estimates
leveraging prior knowledge and measurement by fusing information spatially and/or temporally,
whenever available. In this paper we address the problem of an active observer with freedom to move
and explore the scene spatially – in ‘time­freeze’ mode – and/or temporally, by selecting informat­
ive viewpoints that improve its estimation accuracy. Towards this end, we introduce Pose­DRL, a
fully trainable deep reinforcement learning­based active pose estimation architecture which learns
to select appropriate views, in space and time, to feed an underlying monocular pose estimator. We
evaluate our model using single­ and multi­target estimators with strong results in both settings.
Our system further learns automatic stopping conditions in time and transition functions to the
next temporal processing step in videos. In extensive experiments with the Panoptic multi­view
setup, and for complex scenes containing multiple people, we show that our model learns to se­
lect viewpoints that yield significantly more accurate pose estimates compared to strong multi­view
baselines.

*Denotes equal contribution, order determined by coin flip.

141

1 Introduction

Existing human pose estimation models, be them designed for 2d or 3d reconstruction, typ­
ically assume that viewpoint selection is outside the control of the estimation agent. This
problem is usually solved by a human, either once and for all, or by moving around and
tracking the elements of interest in the scene. Consequently, the work is split between suf­
ficiency (e.g. instrumenting the space with as many cameras as possible in motion capture
setups), minimalism (work with as little as possible, ideally a single view, as given), or prag­
matism (use whatever is available, e.g. a stereo system and lidar in a self­driving car). While
each of these scenarios and their underlying methodologies make practical or conceptual
sense in their context of applicability, none covers the case of an active observer moving in
the scene in order to reduce uncertainty, with emphasis on trading accuracy and computa­
tional complexity. There are good reasons for this, as experimenting with an active system
faces the difficulty of linking perception and action in the real world, or may have to resort
on simulation, which can however lack visual appearance and motion realism, especially
for complex articulated and deformable structures such as people.

In this work we consider 3d human pose estimation from the perspective of an active
observer, and operate with an idealization that allows us to distill the active vision concepts,
develop new methodology, and test it on real image data. We work with a Panoptic massive
camera grid [1], where we can both observe the scene in time­freeze, from a dense variety
of viewpoints, and process the scene temporally, thus being able to emulate a moving ob­
server. An active setup for 3d human pose estimation addresses the incomplete body pose
observability in any monocular image due to depth ambiguities or occlusions (self­induced
or produced by other people or objects). It also enables adaptation with respect to any
potential limitations of the associated monocular pose estimation system, by sequentially
selecting views that when combined yield accurate pose predictions.

In this context we introduce Pose­DRL, a deep reinforcement learning (RL) based active
pose estimation architecture operating in a dense camera rig, which learns to select appro­
priate viewpoints to feed an underlying monocular pose predictor. Moreover, our model
learns when to stop viewpoint exploration in time­freeze, or continue to the next temporal
step when processing video. In evaluations using Panoptic we show that our system learns
to select sets of views which yield more accurate pose estimates compared to strong multi­
view baselines. The results not only show the advantage of intelligent viewpoint selection,
but also that often ‘less is more’, as fusing too many possibly incorrect viewpoint estimates
leads to inferior results.

As our model consists of a deep RL­based active vision module on top of a task mod­
ule, it can be easily adjusted for other visual routines in the context of a multi­camera setup
by simply replacing the task module and retraining the active vision component, or refin­
ing them jointly in case of access and compatibility. We show encouraging results using
different pose estimators and task settings.

142

2 Related Work

Extracting 2d and 3d human representations from given images or video is a vast research
area, recently fueled by progress in keypoint detection [2, 3], semantic body parts segment­
ation [4], 3d human body models [5], and 3d motion capture data [6, 7]. Deep learning
plays a key role in most human pose and shape estimation pipelines [8, 9, 4, 10, 11, 12, 13, 14],
sometimes in connection with non­linear refinement [8, 12]. Systems integrating detailed
face, body and hand models have also been proposed [15]. Even so, the monocular 3d case
is challenging due to depth ambiguities, which motivated the use of additional ordering
constraints during training [16].

In addition to recent literature for static pipelines, the community has recently seen an
increased interest in active vision tasks, including RL­based visual navigation [17, 18, 19, 20].
In [17], a real­world dataset of sampled indoor locations along multiple viewing directions is
introduced. An RL­agent is trained to navigate to views in which a given instance detector
is accurate, similar in spirit to what we do, but in a different context and task. A joint
gripping and viewing policy is introduced in [21], also related to us in seeking policies that
choose occlusion­free views. The authors of [22] introduce an active view selection system
and jointly learn a geometry­aware model for constructing a 3d feature tensor, which is fused
together from views predicted by a policy network. In contrast to us, their policy predicts
one of eight adjacent discrete camera locations, they do not consider moving objects, their
model does not automatically stop view selection, and they do not use real data.

In [23, 24], active viewpoint selection is considered for panoramic completion and pan­
orama projection, respectively. Differently from us, their viewpoint selection policies op­
erate on discretized spheres and do not learn automatic stopping conditions. An approach
for active multi­view object recognition is proposed in [25], where pairs of images in a view­
point trajectory are sequentially fed to a CNN for recognition and for next­best­view pre­
diction. Optimization is done over discretized movements and pre­set trajectory lengths,
in contrast to us.

Most related to us is [26], who also consider active view selection in the context of
human pose estimation. However, they work with 2d joint detectors and learn to actively
triangulate those into 3d pose reconstructions. Thus we face different challenges – while
[26] only require each joint to be visible in two views for triangulation, our model has to
consider which views yield accurate fused estimates. Furthermore, their model does not
learn a stopping action that trades accuracy for speed, and they do not study both the
single­target and multi­target cases, as we do in this paper.

Aside from active vision applications in real or simulated environments, reinforcement
learning has also been successfully applied to other vision tasks, e.g. object detection [27,
28], object tracking [29, 30] and visual question answering [31].

143

3 Active Human Pose Estimation

cameras
1 5 10 15 20 25 29

m
ea

n
er

ro
r

(m
m

 /
jo

in
t)

100

125

150

175

200

225

250

275
Maf - Random
Maf - Sort
Ult - Random
Ult - Sort

Figure 5.1: Mean per­joint pose reconstruction
error for the monocular human pose estimator
DMHS vs. number of viewpoints, both when
randomly choosing views, and when using a sort­
ing strategy which selects views in ascending order
of reconstruction error. Results shown for multi­
people data (Mafia, Ultimatum) on the CMU
Panoptic dataset. For a good viewpoint selection
policy such as Sort, estimation accuracy improves
when adding only a few extra cameras, but then
begins to deteriorate. This indicates the need to
adaptively terminate view selection early enough.

In this section we describe our active hu­
man pose estimation framework, arguing
it is a good proxy for a set of problems
where an agent has to actively explore to
understand the scene and integrate task rel­
evant information. For example, a single
view may only contain parts of the hu­
man body (or be absent of the person al­
together) and the agent needs to find a
better view to capture the person’s pose.
Pose estimators are often trained on a lim­
ited set of viewing angles and yield lower
performance for others. Our setup forces
the agent to also take any estimation lim­
itations into account when selecting mul­
tiple views. In particular, we show in Sec­
tion 5.1 that learning to find good views
and fusing them is more important than re­
lying on a large number of random ones, or
the full available set, as standard – see also
Figure 5.1. Concepts in the following sec­
tions will, for simplicity, be described as­
suming the model is estimating the pose
of a single target person (though scenes may
contain multiple people occluding the target). The setting in which all people are recon­
structed simultaneously is described in Section 4.4.

3.1 Active Pose Estimation Setup

We idealize our active pose estimation setup using CMU’s Panoptic installation [1] as it
captures real video data of scenes with multiple people and cameras densely covering the
viewing sphere. This allows us to simulate an active agent observing the scene from mul­
tiple views, without the complexity of actually moving a camera. It also enables control­
lable and reproducible experiments. The videos are captured in a large spherical dome fitted
with synchronized HD cameras.¹ Inside the dome several human actors perform a range of
movements, with 2d and 3d joint annotations available. The dataset is divided into a num­
ber of scenes, video recordings from all synchronized cameras capturing different actors and

¹There are about 30 cameras per scene. The HD cameras provide better image quality than VGA and are
sufficiently dense, yet spread apart far enough to make each viewpoint unique.

144

types of movements, ranging from simple pose demonstrations to intricate social games.

Terminology. We call a time­freeze {vt1, . . . , vtN} the collection of views from all N time­
synchronized cameras at time t, with vti the image (referred to as view or viewpoint) taken
by camera i at time t. A subset of a time­freeze is an active­view Vt = {vt1, . . . , vtk},
containing k selected views from the time­freeze. A temporally contiguous sequence of
active­views is referred to as an active­sequence, S1: T = {V1,V2, . . . ,VT }. We will often
omit the time superfix t unless the context is unclear; most concepts will be explained at
the level of time­freezes. The image corresponding to a view vi can be fed to a 3d pose
predictor to produce a pose estimate xi ∈ R45 (15× 3d joints).

Task definition. We define the task of active pose estimation at each time step as selecting
views from a time­freeze to generate an active­view. The objective is to produce an accur­
ate fused estimate x⋆ from pose predictions x1, . . . ,xk associated with the active­view
(k may vary between active­views). The deep pose estimation network is computationally
demanding and therefore working with non­maximal sets of views decreases processing
time. Moreover, it improves estimates by ignoring obstructed views, or those a given pose
predictor cannot accurately handle. The goal of the full active pose estimation task is to pro­
duce accurate fused pose estimates over the full sequence, i.e. to produce an active­sequence
with accurate corresponding fused pose estimates.

3.2 Detection and Matching of Multiple People

To solve active human pose estimation the model must address the problems of detecting,
tracking, and distinguishing people in a scene. It must also be robust to variations in ap­
pearance since people are observed over time and from different viewpoints. We use Faster
R­CNN [32] for detecting people. At the start of an active­sequence the agent is given ap­
pearance models, consisting of instance­sensitive features for each person. For each visited
view, the agent computes instance features for all detected persons, comparing them with
the given appearance models to identify the different people.

Obtaining appearance models. A generic instance classifier, implemented as a VGG­19
based [33] siamese network, is trained for 40k iterations on the training set with a contrast­
ive loss to distinguish between different persons. Each minibatch consists of 16 randomly
sampled pairs of ground truth crops of people in the training set. We ensure that the
training is balanced by sampling pairs of person crops such that the probability of the two
crops containing the same person is the same as that of containing two different persons.
The people crops are sampled uniformly across scenes, spatially and temporally, yielding a
robust instance classifier.

Once the instance classifier has been trained, we fine­tune it for 2k iterations for each
scene and then use it to construct appearance models at the beginning of an active­sequence.

145

For each person, we sample L instance features from time­freezes from the same scene, but
outside of the time span of the current active­sequence to limit overfitting. Denote by ul

i

the i:th instance feature for the l:th person, with i = 1, . . . , L. Then we compute the
appearance model as

ml = median(ul
1, . . . ,u

l
L). (5.1)

We set L = 10 to obtain a diverse set of instance features for each person, yielding a robust
appearance model.

Stable matching of detections. In each visited viewpoint during an active­sequence, the
agent computes instance features for all detected persons, comparing them with the given
appearance models to identify the different people. To ensure a stable matching, we use
the Hungarian algorithm. Specifically, the cost cj,l of matching the j:th detection with in­
stance feature uj in the current viewpoint to the appearance model ml of the l:th person is
cj,l = ∥uj−ml∥22. Since the target person may not be visible in all viewpoints throughout
the active­sequence, we specify a cost threshold, C = 0.5, such that if the assignment cost
cj,l of the target is above it (i.e. cj,l > C), we consider the person to not be visible in the
view. In that case the associated pose is not fused into the final estimate.

4 Deep Reinforcement Learning Model

We now introduce our Pose­DRL agent for solving the active human pose estimation task
and first explain the agent’s state representation and actions, then define the reward signal
for training an agent which selects views that yield an accurate fused pose estimate while
keeping down the processing time.

4.1 Overview of the Pose­DRL Agent

The agent is initiated at a randomly selected view v11 in the first active­view V1 of an active­
sequence S1: T . Within the current active­view Vt, the agent issues viewpoint selection
actions to progressively select a sequence of views vt2, . . . , vtk, the number of which may
vary between active­views. At each view vti the underlying pose estimator predicts the pose
xt
i. As seen in Figure 5.2 the cameras are approximately located on a partial sphere, so

a viewpoint can be specified by the azimuth and elevation angles (referred to as spherical
angles). Thus for viewpoint selection the Pose­DRL agent predicts spherical angles relative
to its current location and selects the camera closest to those angles.

Once the agent is done exploring viewpoints associated to a particular time­freeze it
issues the continue action and switches to the next active­view Vt+1, at which time the
collection of individual pose estimates xt

i from the different viewpoints are fused together
with the estimate xt−1

⋆ from the previous active­view Vt−1:

xt
⋆ = f(xt−1

⋆ ,xt
1,x

t
2, . . . ,x

t
k). (5.2)

146

Policy

Network

Pose

Fusion

next viewpoint selection (𝜙𝑎, 𝜙𝑒)

done
𝒙∗
𝑡

3d Pose Network

𝒙1
𝑡

𝒙𝑖
𝑡

𝒙∗
𝑡−1

…

𝑩𝑡

Figure 5.2: Overview of our Pose­DRL agent for active human pose estimation. The agent initially
observes the scene from a randomly given camera on the rig. In each visited viewpoint, the associated
image is processed by a 3d pose estimation network, producing the base state Bt of the agent and
pose estimate(s) xt

i. The pose estimate is fused together with estimates from previous viewpoints
xt
1, . . . ,x

t
i−1 and the previous temporal step xt−1

⋆ . Both the current and fused estimate are fed as
additional features to the agent. At each step the policy network outputs the next viewpoint, until
it decides it is done and continues to next active­view at time t+1. The viewpoint selection action
predicts spherical angles relative to the agent’s current location on the camera rig, and the closest
camera associated with the predicted angles is visited next. When the agent is done it outputsxt

⋆, the
per­joint fusion of the individual pose estimates seen during the current active­view and the fused
pose estimate from the previous active­view, cf. (5.2). Pose­DRL can be used either to reconstruct a
target person, or to reconstruct all people in a scene. The underlying pose estimator is exchangeable
– we show strong results using two different ones in Section 5.1.

Including the previous time step estimate xt−1
⋆ in the pose fusion as in (5.2) often improves

results (see Section 5.2). After returning the fused pose estimate xt
⋆ for the current active­

view, the agent continues to the next active­view Vt+1. The initial view vt+1
1 for Vt+1 is set

to the final view vtk of Vt, i.e. vt+1
1 = vtk. The process repeats until the end of the active­

sequence. Figure 5.2 and 5.3 show model overviews for active­views and active­sequences,
respectively.

4.2 State­Action Representation

To simplify notation we here describe how the agent operates in a given time­freeze and in
this context we will use t to index actions within the active­view, as opposed to temporal
structures. The state at step t is the tuple st = (Bt,Xt,Ct,ut). Here Bt ∈ RH×W×C

is a deep feature map associated with the underlying 3d pose estimation architecture, and
Xt = {xt, x̃,x

hist
⋆ }, wherext is the current individual pose estimate, x̃ = f(x1, . . . ,xt)

is the current partially fused pose estimate, andxhist
⋆ is a history of fused predictions from 4

previous active­views. The two­channel matrixCt ∈ Nw×h×2 consists of an angle canvas, a
discretized encoding² of the previously visited regions on the camera rig, as well as a similar

²The camera sphere is discretized intow bins in the azimuth direction and h bins in the elevation direction,
appropriately wrapped to account for periodicity. We set w = 9 and h = 5.

147

𝒙⋆#vi
ew

se
le
ct
io
n

Pose-DRL

𝑣%# 𝑣&#

active-view 1

𝒙⋆#'%Pose-DRL

𝑣%#'%

vi
ew

se
le
ct
io
n

active-view 2

𝑣(#'%

… …

Figure 5.3: Illustration of how Pose­DRL operates on an active­sequence, here for a single­person
scenario. Fused pose estimates are fed to subsequent active­views within the active­sequence, both
as additional state representation for action selection, and for fusing poses temporally.

encoding of the camera distribution over the rig. Finally, ut ∈ R2 is an auxiliary vector
holding the number of actions taken and the number of people detected.

For action selection we use a deep stochastic policy πθ(at|st) parametrized by θ which
predicts the action at = {ϕt

a, ϕ
t
e, c

t}. Here (ϕt
a, ϕ

t
e) is the azimuth­elevation angle pair,

jointly referred to as viewpoint selection, and ct is a Bernoulli variable indicating whether
to continue to the next active­view (occurs if ct = 1), referred to as the continue action.
To produce action probabilities, the base feature map Bt is fed through two convolutional
blocks which are shared between the viewpoint selection and continue actions. The out­
put of the second convolutional block is then concatenated with Xt, Ct and ut and fed
to viewpoint selection­ and continue­branches with individual parameters. Both action
branches consist of three fully connected layers with tanh activations. The probability of
issuing the continue action is computed using a sigmoid layer:

πθ(c
t = 1|st) = σ

[
w⊤

c z
t
c + bc

]
, (5.3)

where wc and bc are trainable weights and bias, and zt
c is the output from the penultimate

fully connected layer of the continue action branch.
Due to the periodic nature of the viewpoint prediction task we rely on von Mises distri­

butions for sampling the spherical angles. We use individual distributions for the azimuth
and elevation angles. The probability density function for the azimuth is given by:

πθ
(
ϕt
a|st
)
=

1

2πI0(ma)
exp{ma cos(ϕ

t
a − ϕ̃a(w

⊤
a z

t
a + ba))}, (5.4)

where I0 is the zeroth­order Bessel function, normalizing (5.4) to a proper probability distri­
bution over the unit circle [−π, π]. Here ϕ̃a is the mean of the distribution (parametrized
by the neural network), ma is the precision parameter,³ wa and ba are trainable weights

³We treat the precision parameters as constants but increase them over training to focus the policy on
high­reward viewpoints.

148

and bias, respectively, and zt
a comes from the penultimate fully connected layer of the

viewpoint selection action branch. The support for the azimuth angle should be on a full
circle [−π, π], and hence we set

ϕ̃a(w
⊤
a z

t
a + ba) = π tanh(w⊤

a z
t
a + ba). (5.5)

The probability density function for the elevation angle has the same form (5.4) as that for
the azimuth. However, as seen in Figure 5.2, the range of elevation angles is more limited
than for the azimuth angles. We denote this range [−κ, κ] and the mean elevation angle
thus becomes

ϕ̃e(w
⊤
e z

t
e + be) = κ tanh(w⊤

e z
t
e + be), (5.6)

with notation analogous to that of the azimuth angle, cf. (5.5). In practice, when sampling
elevation angles from the von Mises, we reject samples outside the range [−κ, κ].

4.3 Reward Signal for Policy Gradient Objective

The agent should strike a balance between choosing sufficiently many cameras so that the
resulting 3d pose estimate becomes as accurate as possible, while ensuring that not too
many cameras are visited, to save processing time. As described earlier, the two types of ac­
tions are viewpoint selection and continue. We will next cover the reward functions for them.

Viewpoint selection reward. At the end of an active­view we give a reward which is in­
versely proportional to the ratio between the final and initial reconstruction errors within
the active­view. We also give a penalty ϵ = 2.5 each time the agent moves to an already
visited viewpoint. Thus the viewpoint selection reward is:

rtv =


0, if ct = 0 and view not visited
−ϵ, if ct = 0 and view visited before
1− εk

ε1
, if ct = 1,

(5.7)

where k is the number of views visited prior to the agent issuing the continue action
(ct = 1), ε1 is the reconstruction error associated with the initial viewpoint, and εk de­
notes the final reconstruction error, i.e. εk = ∥x⋆−xgt∥22. Here x⋆ is the final fused pose
estimate for the active­view, cf. (5.2), andxgt is the ground truth 3d pose for the time­freeze.

Continue action reward. The continue action has two purposes: i) ensure that not too
many viewpoints are visited, to reduce computation time, and ii) stop before suboptimal
viewpoints are explored, which could happen if the agent is forced to visit a preset number
of viewpoints. Therefore, the continue action reward is:

rtc =

1−
min

j∈{t+1,...,k}
εj

εt − τ, if ct = 0

1− εk

ε1
, if ct = 1.

(5.8)

149

At each step that the agent decides not to continue to the next active­view (ct = 0), the
agent is rewarded relative to the ratio between the error at the best future stopping point
within the active­view (with lowest reconstruction error) and the error at the current step.
If in the future the agent selects viewpoints that yield lower reconstruction error the agent
is rewarded, and vice versa if the best future error is higher. In addition, the agent gets
a penalty τ at each step, which acts as an improvement threshold, causing the reward to
become negative unless the ratio is above the specified threshold τ . This encourages the
agent not to visit many viewpoints in the current active­view unless the improvement is
above the given threshold. On the validation set we found τ = 0.07 to provide a good
balance.

Policy gradient objective. We train the Pose­DRL network in a policy gradient frame­
work, maximizing expected cumulative reward on the training set with objective

J(θ) = Es∼πθ

 |s|∑
t=1

rt

 , (5.9)

where s denotes state­action trajectories, and the reward signal rt = rtv + rtc, cf. (5.7) ­
(5.8). We approximate the gradient of the objective (5.9) using REINFORCE [34].

4.4 Active Pose Estimation of Multiple People

So far we have explained the Pose­DRL system that estimates the pose of a target person,
assuming it is equipped with a detection­based single person estimator. This system can in
principle estimate multiple people by generating active­sequences for each person individu­
ally. However, to find a single active­sequence that reconstructs all persons, one can equip
Pose­DRL with an image­level multi­people estimator instead. The state representation is
then modified to use the image level feature blob from the multi­people estimator (Bt in
Figure 5.2). The reward signal used when learning to reconstruct all people is identical to
(5.7) ­ (5.8), except that the rewards are averaged over the individual pose estimates. Thus
Pose­DRL is very adaptable in that the underlying pose estimator can easily be changed.

5 Experiments

Dataset. We use diverse scenes for demonstrating our active pose estimation system, con­
sidering complex scenes with multiple people (Mafia, Ultimatum) as well as single person
ones (Pose). The motions range from basic poses to various social games. Panoptic provides
data as 30 FPS­videos which we sample to 2 FPS, which makes the data more manageable
in size. It also increases the change in pose between consecutive frames.

The data we use consists of the same 20 scenes as in [26]. The scenes are randomly split
into training, validation and test sets with 10, 4 and 6 scenes, respectively. Since we split

150

the data over the scenes the agent needs to learn a general look­around­policy which adapts
to various circumstances (scenarios and people differ between scenes). All model selection
is performed exclusively on the training and validation sets; final evaluations are performed
on the test set. The data consists of 343k images, where 140k are single­person and 203k
are multi­person scenes.

Implementation details. We attach Pose­DRL on top of the DMHS monocular pose es­
timation system [4]. In the multi­people setting (cf. Section 4.4) we instead use MubyNet
[35]. Both estimators were trained on Human3.6M [6]. To avoid overfitting we do not to
fine­tune these on Panoptic, and instead emphasize how Pose­DRL can select good views
with respect to the underlying estimation system (but joint training is possible). We use
an identical set of hyperparameters when using DMHS and MubyNet, except the improve­
ment threshold τ (−0.07 for DMHS and−0.04 for MubyNet). Thus Pose­DRL is robust
with respect to the pose estimator used. We use median averaging for fusing poses, cf. (5.2).

Training. We use 5 active­sequences, each of length 10, to approximate the policy gradi­
ent, and update the policy parameters using Adam [36]. As standard, to reduce variance
we normalize cumulative rewards for each episode to zero mean and unit variance over the
batch. The maximum trajectory length is set to 8 views including the initial one (10 in the
multi­target mode, as it may require more views to reconstruct all people). The viewpoint
selection and continue actions are trained jointly for 80k episodes. The learning rate is ini­
tially set to 5·10−7 and is halved at 720k and 1440k training steps. We linearly increase the
precision parameters ma and me of the von Mises distributions from (1, 10) to (25, 50)
in training, making the viewpoint selection increasingly focused on high­rewarding regions
as training proceeds.

Baselines. To evaluate our active human pose estimation system we compare it to several
baselines, similar to [26]. For fair comparisons, the baselines use the same pose estimator,
detector and matching approach. All methods also obtain the same initial random view as
the agent at the start of the active­sequence. We design the following baselines: i) Random:
Selects k different random views; ii)Max­Azim: Selects k different views equidistantly with
respect to the azimuth angle. At each azimuth angle it selects a random elevation angle; iii)
Oracle: Selects as next viewpoint the one that minimizes the fused 3d pose reconstruction
when combined with pose estimates from all viewpoints observed so far (averaged over all
people in the multi­target setting). This baseline cheats by extensively using ground truth
information, and thus it shown as a lower bound with respect to reconstruction error. In
addition to cheating during viewpoint selection, the oracle is also impractically slow since it
requires computing pose estimates for all available viewpoints and exhaustively computing
errors for all cameras in each step.

151

1 2 3 4 5 6 7 8
cameras

100

125

150

175

200

225

250
m

ea
n

er
ro

r
(m

m
 /

jo
in

t)

Pose-DRL-S
Random-S
Max-Azim-S
Oracle-S

1 2 3 4 5 6 7 8 9 10
cameras

100

125

150

175

200

225

m
ea

n
er

ro
r

(m
m

 /
jo

in
t)

Pose-DRL-M
Random-M
Max-Azim-M
Oracle-M

1 2 3 4 5 6 7 8
cameras

1

2

4

8

15

25

ru
nt

im
e

(s
ec

on
ds

)

Pose-DRL-S
Random-S
Max-Azim-S
Oracle-S

Figure 5.4: How the number of views affects pose estimation error and runtimes of Pose­DRL and
baselines on multi­people data (union of Mafia and Ultimatum test sets). We show mean and 95%
confidence intervals over 5 seeds. Left: Reconstructing a single target person. Estimation error
reduces with added viewpoints, and the agent consistently outperforms the non­oracle baselines.
The automatic continue action (dashed line at 3.8 views on average) yields significantly lower re­
construction errors than any fixed viewpoint schemes. Hence the auto­model clearly provides the
best speed­accuracy trade­off. Middle: Simultaneously reconstructing all persons. The agent out­
performs the heuristic baselines in this setting too. Adaptively determining when to continue to
the next active­view (6.8 views on average) yields better results than fusing from 7 cameras all the
time. The gain is not as pronounced as in the single­target case, since inspecting more viewpoints
typically leads to increased estimation accuracy for some of the persons. Right: Runtime of the
Pose­DRL agent and baselines vs. number of views (log scale). The oracle always needs to evaluate
the deep pose estimation system and detector for all cameras due to its need to sort from best to
worst, independently of the number of views, which explains its high runtime. Our agent is as fast
as the heuristic baselines.

5.1 Quantitative Results

We report results both for the Pose­DRL agent that tracks and reconstructs a single target
person (possibly in crowded scenes) and for the Pose­DRL model which actively estimates
poses for all persons in the scene, cf. Section 4.4. Pose­DRL is trained over 5 different ran­
dom initializations of the policy network, and we report average results. In each case, train­
ing the model 80k steps gave best results on the validation set, so we use that. Also, for the
heuristic baselines we report average results over 5 seeds (the oracle is deterministic). When
computing errors, we first hip­align pose estimates with their respective ground truths. Our
agent is compared to the baselines on the Panoptic test set on active­sequences consisting
of 10 active­views. Table 5.1 presents reconstruction errors. Figure 5.4 shows how the the
number of selected views affects accuracy and runtimes. For visualizations of Pose­DRL,
see Figure 5.5 ­ 5.7 (in these visualizations we use SMPL [5] for the 3d shape models).

152

Ta
bl
e
5.
1:

Re
co

ns
tr

uc
tio

n
er

ro
r(

m
m

/jo
in

t)
fo

rP
os

e­
D

R
L

an
d

ba
se

lin
es

on
ac

tiv
e­

se
qu

en
ce

so
n

th
es

el
ec

te
d

Pa
no

pt
ic

te
st

sp
lit

s.
Re

su
lts

ar
es

ho
w

n
bo

th
fo

rt
he

se
tti

ng
w

he
re

th
e

ag
en

td
ec

id
es

th
e

nu
m

be
ro

fv
ie

w
s(

au
to

),
an

d
w

he
n

us
in

g
a

fix
ed

nu
m

be
ro

fv
ie

w
s.

In
th

e
la

tte
rc

as
e,

th
e

nu
m

be
r

of
vi

ew
si

ss
et

to
th

ec
lo

se
st

in
te

ge
rc

or
re

sp
on

di
ng

to
th

ea
ve

ra
ge

in
au

to
­m

od
e,

ro
un

de
d

up
.Th

eb
as

el
in

es
ar

ea
lso

ev
al

ua
te

d
at

th
is

pr
es

et
nu

m
be

r
of

vi
ew

s.
Th

e
av

er
ag

e
nu

m
be

ro
fv

ie
w

sa
re

sh
ow

n
in

pa
re

nt
he

se
s.

Po
se

­D
R

L
m

od
el

sw
hi

ch
au

to
m

at
ic

al
ly

se
le

ct
th

e
nu

m
be

ro
fv

ie
w

so
ut

pe
rfo

rm
th

e
he

ur
ist

ic
ba

se
lin

es
an

d
fix

ed
Po

se
­D

R
L

m
od

el
s

on
al

ld
at

a
sp

lit
s,

de
sp

ite
fu

sin
g

es
tim

at
es

fro
m

fe
w

er
vi

ew
s

on
av

er
ag

e.
Le

ft:
Si

ng
le

­ta
rg

et
m

od
e

(S
),

us
in

g
D

M
H

S
as

po
se

es
tim

at
or

.
Th

e
ag

en
ts

ig
ni

fic
an

tly
ou

tp
er

fo
rm

s
th

e
ba

se
lin

es
(e

.g
.
3
5

m
m

/jo
in

ti
m

pr
ov

em
en

to
ve

r
M
ax
­A
zi
m

on
m

ul
ti­

pe
op

le
da

ta
M
af

+
U
lt)

.
R

ig
ht

:
M

ul
ti­

ta
rg

et
m

od
e

(M
),

us
in

g
M

ub
yN

et
as

po
se

es
tim

at
or

.
M

ub
yN

et
is

a
m

or
e

re
ce

nt
an

d
ac

cu
ra

te
es

tim
at

or
,s

o
th

e
av

er
ag

e
er

ro
rs

ar
e

ty
pi

ca
lly

lo
w

er
th

an
th

e
D

M
H

S­
co

un
te

rp
ar

ts.
Au

to
m

at
ic

te
rm

in
at

io
n

is
us

ef
ul

in
th

e
m

ul
ti­

ta
rg

et
se

tti
ng

as
w

el
l,

al
th

ou
gh

it
do

es
no

tp
ro

vi
de

as
dr

as
tic

ga
in

sa
si

n
th

e
sin

gl
e­

ta
rg

et
se

tu
p.

M
od

el
#
V
ie
w
s

M
af

U
lt

Po
se

M
af
+
U
lt

A
ll

M
od

el
#
V
ie
w
s

M
af

U
lt

Po
se

M
af
+
U
lt

A
ll

Po
se
­D

R
L­
S

au
to

13
0.

3
13

5.
4

13
5.

3
13

4.
2

13
5.

0

Po
se
­D

R
L­
M

au
to

11
4.

8
11

6.
4

10
4.

6
11

5.
9

11
0.

7
(4

.6
)

(3
.4

)
(3

.7
)

(3
.8

)
(3

.7
)

(7
.5

)
(6

.6
)

(2
.1

)
(6

.8
)

(4
.5

)

fix
ed

14
4.

7
15

7.
5

13
5.

1
15

5.
5

14
0.

4
fix

ed
11

4.
8

11
8.

0
10

6.
7

11
7.

6
11

2.
8

(5
.0

)
(4

.0
)

(4
.0

)
(4

.0
)

(4
.0

)
(8

.0
)

(7
.0

)
(3

.0
)

(7
.0

)
(5

.0
)

R
an
d­
S

fix
ed

16
0.

2
17

8.
3

14
5.

7
17

5.
6

15
7.

1
R
an
d­
M

fix
ed

12
8.

8
13

4.
9

11
5.

9
13

1.
4

12
6.

0
(5

.0
)

(4
.0

)
(4

.0
)

(4
.0

)
(4

.0
)

(8
.0

)
(7

.0
)

(3
.0

)
(7

.0
)

(5
.0

)

M
ax
­A
zi
m
­S

fix
ed

15
6.

3
17

1.
4

13
9.

9
16

9.
4

15
0.

3
M
ax
­A
zi
m
­M

fix
ed

12
3.

5
13

1.
2

11
6.

3
13

1.
6

12
6.

4
(5

.0
)

(4
.0

)
(4

.0
)

(4
.0

)
(4

.0
)

(8
.0

)
(7

.0
)

(3
.0

)
(7

.0
)

(5
.0

)

O
ra
cl
e­
S

fix
ed

10
3.

4
10

8.
9

10
6.

5
10

8.
5

10
5.

4
O
ra
cl
e­
M

fix
ed

98
.6

10
2.

4
90

.2
10

1.
6

92
.6

(5
.0

)
(4

.0
)

(4
.0

)
(4

.0
)

(4
.0

)
(8

.0
)

(7
.0

)
(3

.0
)

(7
.0

)
(5

.0
)

153

Single­target estimation. It is clear from Table 5.1 (left) and Figure 5.4 (left) that Pose­
DRL outperforms the heuristic baselines, which is particularly pronounced for multi­people
data. In such scenes the view selection process is more delicate, as it requires avoiding cam­
eras where the target is occluded. We note that the automatically stopping agent yields by
far the most accurate estimates, which shows that it is able to continue to the next active­
view when it is likely that the current one does not provide any more good views. Thus it
is often better to fuse a few accurate estimates than including a larger set of poorer ones.

Multi­target estimation. From Table 5.1 (right) and Figure 5.4 (middle) we see that the
agent outperforms the heuristic baselines as in the case with a single target. Automatic view
selection termination does not yield as big improvements in accuracy as in the single­target
case. In the single­target setting the agent stops early to avoid occluded and bad views, but
when reconstructing all people there is more reason to keep selecting additional views to
find some views which provide reasonable estimates for each person. This also explains the
decreased gaps between the various methods – there may be many sets of cameras which
together provide a fairly similar result when averaged over all people in the scene (a fu­
ture improvement of Pose­DRL could include selectively fusing a subset of estimates in
each view). Running in auto­mode still yields more accurate estimates than fixed schemes
which use a larger number of views.

Runtimes. The runtimes⁴ of Pose­DRL and baselines are shown in Figure 5.4 (right).
DMHS and Faster R­CNN require 0.50 and 0.11 seconds per viewpoint, respectively,
which constitutes the bulk of the processing time. The policy network has a negligible
overhead of about 0.01 seconds per action.

5.2 Ablation Studies

In this section we compare the full agent to versions lacking key parts of the model: i)
providing only the base feature map Bt, and ii) not propagating the fused reconstruction
xt
⋆ to the next active­view (reset), cf. (5.2). The results are given in Table 5.2 and show

that the full model outperforms the stripped­down versions for multi­people data (Mafia,
Ultimatum), while simpler single­people data (Pose) is not sensitive to removing some parts
of the model. There is significantly more room for intelligent decision making for complex
multi­people data where the model has to avoid occlusions, and thus it requires a stronger
state description and fusion approach. In contrast, selecting viewpoints in single­people
scenes is less fragile to the particular camera choices as there is no risk of choosing views
where the target is occluded.

⁴Shown for DMHS­based systems. Using MubyNet (which requires 1.01 seconds per image) gives runtime
curves which look qualitatively similar.

154

Table 5.2: Ablations on the test sets, showing the effect of removing certain components of the
DMHS­based Pose­DRL system. Results (errors, mm/joint) are for models that select a fixed num­
ber of views (shown in parentheses), where the number of views are the same as in Table 5.1.
Providing more information than the base feature map Bt is crucial for crowded scenes with mul­
tiple people (Mafia, Ultimatum), as is including previous pose estimates in the current pose fusion.

Model Settings Mafia Ultimatum Pose

Pose­DRL
full model 144.7 (5) 157.5 (4) 135.1 (4)
Bt only 153.5 (5) 166.9 (4) 134.4 (4)
reset 152.5 (5) 160.8 (4) 133.4 (4)

Figure 5.5: Visualizations of Pose­DRL reconstructing a given target person (red bounding box)
in scenes with multiple people. Left: A Mafia test scene. The target is viewed from behind and
is partially visible in the first view, producing the poor first estimate. As the agent moves to the
next view, the person becomes more clearly visible, significantly improving the estimate. The last
view from the front further increases accuracy. The agent decides to terminate after three views
with error decreasing from 200.1 to 120.9 mm/joint. Right: An Ultimatum test scene where the
agent only requires two viewpoints prior to automatically continuing to the next active­view. The
target person is only partially visible in the initial viewpoint, and the right arm that is not visible
results in a non­plausible configuration in the associated estimate. As the agent moves to the next
viewpoint the person becomes fully visible, and the final fused estimate is both physically plausible
and accurate. The reconstruction error reduces from 160 to 104 mm/joint.

6 Conclusions

In this paper we have presented Pose­DRL, a fully trainable deep reinforcement­learning
based active vision model for human pose estimation. The agent has the freedom to move
and explore the scene spatially and temporally, by selecting informative views that improve
its accuracy. The model learns automatic stopping conditions for each moment in time, and
transition functions to the next temporal processing step in video. We showed in extensive
experiments – designed around the dense Panoptic multi­camera setup, and for complex
scenes with multiple people – that Pose­DRL produces accurate estimates, and that it is
robust with respect to the underlying pose estimator used. Moreover, the results show that

155

our model learns to select an adaptively determined number of informative viewpoints
which result in considerably more accurate pose estimates compared to strong multi­view
baselines.

Practical developments of our methodology would include e.g. real­time intelligent
processing of multi­camera video feeds or controlling a drone observer. In the latter case
the model would further benefit from being extended to account for physical constraints,
e.g. a single camera and limited speed. Our paper is a key step since it presents fundamental
methodology required for future applied research.

Acknowledgments: This work was supported by the European Research Council Consol­
idator grant SEED, CNCS­UEFISCDI PN­III­P4­ID­PCE­2016­0535 and PCCF­2016­
0180, the EU Horizon 2020 Grant DE­ENIGMA, Swedish Foundation for Strategic Re­
search (SSF) Smart Systems Program, as well as the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. Fi­
nally, we would like to thank Alin Popa, Andrei Zanfir, Mihai Zanfir and Elisabeta Oneata
for helpful discussions and support.

156

Figure 5.6: Visualization of how Pose­DRL performs multi­target pose estimation in an Ultimatum
test scene. In this example the agent sees six viewpoints prior to automatically continuing to the
next active­view. The mean error decreases from 358.9 to 114.6 mm/joint. Only two people are
detected in the initial viewpoint, but the number of people detected increases as the agent inspects
more views. Also, the estimates of already detected people improve as they get fused from multiple
viewpoints.

Figure 5.7: Visualization of how Pose­DRL performs multi­target pose estimation in an Ultimatum
validation scene. The agent chooses four viewpoints prior to automatically continuing to the next
active­view. The mean error decreases from 334.8 to 100.9 mm/joint. Only one of the persons is
visible in the initial viewpoint, and from a poor angle. This produces the first, incorrectly tilted
pose estimate, but the estimate improves as the agent inspects more viewpoints. The two remaining
people are successfully reconstructed in subsequent viewpoints.

157

References

[1] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and
Y. Sheikh, “Panoptic studio: A massively multiview system for social motion capture,”
in ICCV, 2015.

[2] S.­E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma­
chines,” in CVPR, 2016.

[3] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and
K. Murphy, “Towards accurate multi­person pose estimation in the wild,” in CVPR,
2017.

[4] A.­I. Popa, M. Zanfir, and C. Sminchisescu, “Deep multitask architecture for integ­
rated 2d and 3d human sensing,” in CVPR, 2017.

[5] M. Loper, N. Mahmood, J. Romero, G. Pons­Moll, and M. J. Black, “SMPL: A
skinned multi­person linear model,” SIGGRAPH, vol. 34, no. 6, 2015.

[6] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments,”
PAMI, vol. 36, no. 7, 2014.

[7] T. von Marcard, R. Henschel, M. Black, B. Rosenhahn, and G. Pons­Moll, “Recover­
ing accurate 3d human pose in the wild using imus and a moving camera,” in ECCV,
2018.

[8] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J. Black, “Keep it
SMPL: Automatic estimation of 3d human pose and shape from a single image,” in
ECCV, 2016.

[9] H. Rhodin, N. Robertini, D. Casas, C. Richardt, H.­P. Seidel, and C. Theobalt, “Gen­
eral automatic human shape and motion capture using volumetric contour cues,” in
ECCV, 2016.

[10] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse­to­fine volumetric
prediction for single­image 3d human pose,” in CVPR, 2017.

[11] G. Rogez, P. Weinzaepfel, and C. Schmid, “Lcr­net: Localization­classification­
regression for human pose,” in CVPR, 2017.

[12] A. Zanfir, E. Marinoiu, and C. Sminchisescu, “Monocular 3d pose and shape es­
timation of multiple people in natural scenes–the importance of multiple scene con­
straints,” in CVPR, 2018.

158

[13] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.­P. Seidel, W. Xu,
D. Casas, and C. Theobalt, “Vnect: Real­time 3d human pose estimation with a single
rgb camera,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, 2017.

[14] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End­to­end recovery of human
shape and pose,” in CVPR, 2018.

[15] H. Joo, T. Simon, and Y. Sheikh, “Total capture: A 3d deformation model for tracking
faces, hands, and bodies,” in CVPR, 2018.

[16] G. Pavlakos, X. Zhou, and K. Daniilidis, “Ordinal depth supervision for 3D human
pose estimation,” in CVPR, 2018.

[17] P. Ammirato, P. Poirson, E. Park, J. Košecká, and A. C. Berg, “A dataset for developing
and benchmarking active vision,” in ICRA, 2017.

[18] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied question
answering,” in CVPR, 2018.

[19] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson env: Real­world
perception for embodied agents,” in CVPR, 2018.

[20] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei­Fei, and A. Farhadi, “Target­
driven visual navigation in indoor scenes using deep reinforcement learning,” in ICRA,
2017.

[21] R. Cheng, A. Agarwal, and K. Fragkiadaki, “Reinforcement learning of active vision
for manipulating objects under occlusions,” in CoRL, 2018.

[22] R. Cheng, Z. Wang, and K. Fragkiadaki, “Geometry­aware recurrent neural networks
for active visual recognition,” in NeurIPS, 2018.

[23] D. Jayaraman and K. Grauman, “Learning to look around: Intelligently exploring
unseen environments for unknown tasks,” in CVPR, 2018.

[24] B. Xiong and K. Grauman, “Snap angle prediction for 360 panoramas,” in ECCV,
2018.

[25] E. Johns, S. Leutenegger, and A. J. Davison, “Pairwise decomposition of image se­
quences for active multi­view recognition,” in CVPR, 2016.

[26] A. Pirinen, E. Gärtner, and C. Sminchisescu, “Domes to drones: Self­supervised act­
ive triangulation for 3d human pose reconstruction,” in NeurIPS, 2019.

[27] J. Caicedo and S. Lazebnik, “Active object localization with deep reinforcement learn­
ing,” in ICCV, 2015.

159

[28] A. Pirinen and C. Sminchisescu, “Deep reinforcement learning of region proposal
networks for object detection,” CVPR, 2018.

[29] D. Zhang, H. Maei, X. Wang, and Y.­F. Wang, “Deep reinforcement learning for
visual object tracking in videos,” arXiv preprint arXiv:1701.08936, 2017.

[30] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi, “Action­driven visual object tracking
with deep reinforcement learning,” IEEE transactions on neural networks and learning
systems, vol. 29, no. 6, 2018.

[31] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra, “Learning cooperative visual
dialog agents with deep reinforcement learning,” in CVPR, 2017.

[32] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r­cnn: Towards real­time object de­
tection with region proposal networks,” in NeurIPS, 2015.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large­scale
image recognition,” in ICLR, 2015.

[34] R. Williams, “Simple statistical gradient­following algorithms for connectionist rein­
forcement learning,” Machine Learning, 1992.

[35] A. Zanfir, E. Marinoiu, M. Zanfir, A.­I. Popa, and C. Sminchisescu, “Deep network
for the integrated 3d sensing of multiple people in natural images,” in NeurIPS, 2018.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

160

A Supplementary Material

In this supplemental we provide additional insights to our Pose­DRL model. Details of
the network architecture are provided in Section A.1. Further model insights are provided
in Section A.2. A description of how we handle missed detections or failed matchings are
given in Section A.3. Additional visualizations are shown in Section A.4. Finally, in Sec­
tion A.5 we show proof­of­concept results when using Pose­DRL to control a smartphone
camera in the context of active human pose estimation.

A.1 Model Architecture

See Figure 5.8 for a description of the Pose­DRL architecture. The underlying pose estim­
ation networks, DMHS [1] and MubyNet [2], as well as our agent were implemented in
Caffe [3] and MATLAB. For the Faster R­CNN detector [4] we used a publicly available
Tensorflow [5] implementation,⁵ with ResNet­101 [6] as base feature extractor.

A.2 Additional Insights and Details

Table 5.3: Pose­DRL agent’s selection statistics of good / bad viewpoints on the test set splits. The
agent consistently chooses a high percentage of good cameras while avoiding bad cameras. Note
that randomly choosing cameras would result in always having 10% chosen among the 10% best
cameras, and similar for the 10% worst cameras.

10% best 10% worst Rest
Mafia 52 % 2% 46%

Ultimatum 67% 1% 32%
Pose 24% 2% 74%
All 43% 2% 55%

More about runtimes. All experiments reported in this supplementary material and in the
main paper were performed using an Ubuntu workstation using a single Titan V100. Train­
ing the Pose­DRL policy from scratch took about 70 hours after having pre­computed all
DMHS / MubyNet features, Faster R­CNN bounding boxes and instance features. When
presenting the runtimes (see Figure 5.4 in the main paper) we include the time needed to
compute these detections and features.

Quality of selected viewpoints. To obtain further insights to which types of cameras
the agent selects on average, we tracked how often it selects good vs bad viewpoints for the
DMHS­based model. Specifically, for each selected camera in the various test set splits, we

⁵https://github.com/smallcorgi/Faster-RCNN_TF

161

https://github.com/smallcorgi/Faster-RCNN_TF

Pose Estimator

"# CNN CNNMaxPool

$%#

Hist + Rig + Aux

FC FC FC

FC FC FC

Policy Head

Continue

Mean
Angles

Figure 5.8: Pose­DRL network architecture. The pose estimator is shown to the left (we have
shown results for two different pose estimators, DMHS and MubyNet, but any other moncoular
pose estimator would work). When using the single person pose estimator DMHS, the input is a
bounding box containing the target person, and its convolutional feature map Bt forms the base
state of the agent. For the multi­person estimator MubyNet, the full image is instead fed as input and
the associated feature map Bt is used as the base state. Next, Bt is processed by two convolutional
layers with ReLU­activations (first conv: 3 × 3 kernel, stride 1, output dimension 21 × 21 × 8;
max pool: 2× 2 kernel, stride 2, output dimension 11× 11× 8; second conv: 3× 3 kernel, stride
1, output dimension 9 × 9 × 4). It is then concatenated with the pose prediction information xt

i

for the current active­view, a history of the last 4 fused pose estimates from previous active­views
(Hist), camera rig information (Rig), containing both a description of the camera rig as well as the
agent’s current and previously visited viewpoints within the rig, and auxiliary information (Aux)
with the number of actions taken and number of people detected. Note that pose information is
used in the single­target mode only; for the multi­person setting we omit pose information in the
state space as there may be a variable number of persons per scene. However, in this setting the
agent instead has access to image level information. See more about the state space in Section 4.2 of
the main paper. The concatenated state is subsequently fed to the two action branches: the continue
branch (top) and the viewpoint selection branch (bottom). Both branches use tanh­activations for
the hidden fully connected (FC) layers. For the continue action branch, the output is turned into a
continue probability through a sigmoid­layer, cf. (5.3) in the main paper. For the viewpoint selection
action branch, the azimuth and elevation mean angles are produced by a scaled tanh­layer, cf. (5.5)
­ (5.6) in the main paper. In the continue action branch the three FC­layers have 512, 512, and 1
output neurons each respectively, while the viewpoint selection action branch’s three FC­layers have
1024, 512, and 2 output neurons, respectively.

sorted it into being in either the 10% best or worst cameras based on associated individual
reconstruction error. The results are shown in Table 5.3. It can be seen that the agent
typically selects among the best while avoiding the worst viewpoints. The viewpoint errors
are more uniform for the single­people Pose scenes, since there are no viewpoints where the
target is occluded; hence the camera selection statistics are also more uniform for Pose.

A.3 Handling Missed Detections or Matchings

For an overview of how we detect and match multiple people, refer to Section 3.2 in the
main paper. In this section we describe what happens in case some persons are not detected
or matched. For the detection­based DMHS­variant of Pose­DRL, if in a viewpoint there
are no detections, or if no detection has a matching cost below the threshold C, the under­

162

lying pose estimator is computed on the entire input image to obtain a base state descriptor
Bt for decision making (no associated pose is fused in this case).

It is possible that one or several persons are not detected in a single viewpoint in an
active­view. In this case the pose estimate is set to the fused estimate from the previous
active­view as a backup. In case a previous estimate also does not exist (could happen e.g.
in the initial active­view of an active­sequence), to be able to compute a reconstruction
error we set a placeholder pose estimate where each joint is equal to the center hip location
of the ground truth. Naturally, this is an extremely poor and implausible estimate, but it is
used only to be able to compute an error (another option would be to not include such an
estimate when computing average errors, but that would not penalize the fact that a person
was never detected and reconstructed).

A.4 Additional Visualizations of Pose­DRL

In Figure 5.9 ­ 5.10 we show additional visualizations of how Pose­DRL performs single­
target pose estimation in active­views from the Panoptic [7] test set we have used in this
work. We use SMPL [8] for the 3d shape models (here and in the main paper), and per­
joint median averaging for fusing poses. As it is referenced in the visualizations, we repeat
the equation for a partially fused pose (for the first j steps) within an active­view⁶ below:

x̃ = f(x1, . . . ,xi). (5.10)

A.5 Using Pose­DRL in the Wild

The dense CMU Panoptic studio provides a useful environment for training and evaluating
our proposed model. However, it is also interesting to test the model’s applicability in the
the real world. To this end we captured data with an off­the­shelf smartphone and used
internal sensors to estimate the camera pose matrix for each image. This simple process of
walking around subjects while they stand still emulates the time­freeze setup in Panoptic
and allows us to test our model in the real world. Note that neither the 3d pose estimation
network nor the policy was re­trained; only the instance detector was refined to produce
accurate appearance models for the detected people. See Figure 5.11 for resulting visualiz­
ations. Finally, note that we obtained consent from the people shown.

⁶For active­sequence processing, the agent also fuses temporally by adding the previous fused estimate; see
(5.2) in the main paper

163

Figure 5.9: Visualization of how Pose­DRL performs single­target reconstruction on an active­view
(set of viewpoints for a time­freeze) in a Mafia test scene. In this case the agent sees three viewpoints
prior to automatically continuing to the next active­view. The reconstruction error reduces from
168 to 107 mm/joint. Left: Viewpoints seen by the agent, where blue marks the current viewpoint
(camera) and red marks previous viewpoints. Note that the initial camera was given randomly.
Middle: Input images associated to the viewpoints, also showing the detection bounding box of
the target person in red – detections for the other people are left out to avoid visual clutter. Right:
SMPL visualizations of the partially fused poses, cf. (5.10). The target person is only partially
visible in the initial viewpoint, and the associated pose estimate is inaccurate with the reconstruction
incorrectly tilting forward. As the agent visits more viewpoints, the stance of the reconstruction
becomes straighter and more correct. The person is fully visible in the final viewpoint, and the
associated final fused estimate is plausible and accurate.

164

Figure 5.10: Visualization of how Pose­DRL performs single­target reconstruction on an active­
view in anUltimatum test scene. The target person is viewed from a suboptimal direction in the first
viewpoint, which causes the associated pose estimate to be incorrectly tilted. As the agent moves
to the next viewpoint to get a better view of the person, the underlying detection and matching
system suggests an incorrect detection to feed the pose estimator, which causes the fused estimate
to deteriorate severely. However, the agent is able to remedy this by selecting two more good and
diverse viewpoints where the target is clearly visible, which yields a considerably better fused pose
estimate. In this example the agent sees four viewpoints prior to automatically continuing to the
next active­view. The reconstruction error reduces from 149 to 119 mm/joint.

165

1

1

2

Figure 5.11: People standing in various poses, captured with a smartphone camera from different
viewpoints. Note that this data is significantly different from that obtained from Panoptic, with
more challenging outdoor lighting conditions, human­imposed errors from holding and directing
the smartphone camera, and so on. We show two visualization of how Pose­DRL operates in dif­
ferent scenarios. Pose­DRL was not re­trained on this data; we use the same model weights as for
producing the results in the main paper. In each scenario we also show the 3d configuration of the
scene, as well as which viewpoints are selected by the agent and in what order (pink circles). Left:
In this example the agent sees two views before terminating viewpoint selection. The initial ran­
domly given viewpoint produces a pose estimate where the arms are not accurate, which is corrected
for in the second and final viewpoint. Right: The agent receives a very good initial viewpoint and
decides to terminate viewpoint selection immediately, producing an accurate pose estimate. See
Section A.5 for more details about these visualizations.

166

References

[1] A.­I. Popa, M. Zanfir, and C. Sminchisescu, “Deep multitask architecture for integrated
2d and 3d human sensing,” in CVPR, 2017.

[2] A. Zanfir, E. Marinoiu, M. Zanfir, A.­I. Popa, and C. Sminchisescu, “Deep network
for the integrated 3d sensing of multiple people in natural images,” in NeurIPS, 2018.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Pro­
ceedings of the 22nd ACM international conference on Multimedia, 2014.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r­cnn: Towards real­time object detec­
tion with region proposal networks,” in NeurIPS, 2015.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large­scale machine learning on het­
erogeneous distributed systems,” in USENIX Symposium on Operating Systems Design
and Implementation, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

[7] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and
Y. Sheikh, “Panoptic studio: A massively multiview system for social motion capture,”
in ICCV, 2015.

[8] M. Loper, N. Mahmood, J. Romero, G. Pons­Moll, and M. J. Black, “SMPL: A
skinned multi­person linear model,” SIGGRAPH, vol. 34, no. 6, 2015.

167

Paper V

Embodied Visual Active Learning
for Semantic Segmentation

David Nilsson1,2 Aleksis Pirinen1 Erik Gärtner1,2 Cristian Sminchisescu1,2

1Centre for Mathematical Sciences, Lund University
2Google Research

Abstract

We study the task of embodied visual active learning, where an agent is set to explore a 3d environment
with the goal to acquire visual scene understanding by actively selecting views for which to request
annotation. While accurate on some benchmarks, today’s deep visual recognition pipelines tend to
not generalize well to certain real­world scenarios, or to unusual viewpoints. Robotic perception, in
turn, requires the capability to refine the recognition capabilities for the conditions where the mobile
system operates, including cluttered indoor environments or poor illumination. This motivates the
proposed task, where an agent is placed in a novel environment with the objective of improving
its visual recognition capability. To study embodied visual active learning, we develop a battery of
agents – both learnt and pre­specified – and with different levels of knowledge of the environment.
The agents are equipped with a semantic segmentation network and seek to acquire informative
views, move and explore in order to propagate annotations in the neighborhood of those views,
then refine the underlying segmentation network by online retraining. The trainable method uses
deep reinforcement learning with a reward function that balances two competing objectives: task
performance, represented as visual recognition accuracy, which requires exploring the environment,
and the necessary amount of annotated data requested during active exploration. We extensively
evaluate the proposed models using the photorealistic Matterport3D simulator and show that a
fully learnt method outperforms comparable pre­specified counterparts, even when requesting fewer
annotations.

171

1 Introduction

Imagine a household robot in a home in which it has never been before and equipped with
a visual sensing module to perceive its environment and localize objects. If the robot fails
to recognize some objects, or to adapt to changes in the environment, over time, it may not
be able to properly perform its tasks. Much of the recent success of visual perception has
been achieved by deep CNNs, e.g. in image classification [1, 2, 3], semantic segmentation
[4, 5] and object detection [6, 7]. Such systems may however be challenged by unusual
viewpoints or domains, as noted e.g. by [8] and [9]. Moreover, a mobile household robot
should ideally operate with lightweight, re­trainable and task­specific perception models,
rather than large and comprehensive ones, which could be demanding computationally
and not tailored to the needs of a specific house.

In practice, even in closed but large environments, developing robust scene understand­
ing by exhaustive approaches may be difficult, as looking everywhere requires an excessive
amount of annotation labor. All views are however not equally informative, as a view con­
taining many diverse objects is likely more useful than one covering a single semantic class,
e.g. a wall. This suggests that in learning visual perception one does not have to label ex­
haustively. As new, potentially difficult arrangements appear in an evolving environment,
it would be useful to identify those automatically, based on the task and demand, rather
than programmatically, by periodically re­training a complete model. Moreover, the agent
could make the most out of its embodiment by propagating a given ground truth annota­
tion using motion – as measured by the perceived optical flow – in that neighborhood.
The agent can then self­train, online, for increased performance. The key questions are
how should one explore the environment, how to select the most informative views to an­
notate, and how to make the most out of them. We analyze these questions in an embodied
visual active learning framework, illustrated in Figure 6.1.

To ground the embodied visual active learning task, in this work we measure visual per­
ception ability as semantic segmentation accuracy. The agent is equipped with a semantic
segmentation system and must move around and request annotations in order to refine it.
After exploring the scene the agent should be able to accurately segment all views in the
explored area. This requires an exploration policy covering different objects from diverse
viewpoints and selecting sufficiently many annotations to train the perception model. The
agent can also propagate annotations to different nearby viewpoints using optical flow and
then self­train. We develop a battery of methods, ranging from pre­specified ones to a fully
trainable deep reinforcement learning­based agent, which we evaluate extensively in the
photorealistic Matterport3D environment [10].

In summary, our main contributions are:

• We study the task of embodied visual active learning, where an agent should explore
a 3d environment to acquire visual scene understanding by actively selecting views
for which to request annotation. The agent then propagates information by moving
in the neighborhood of those views and self­trains.

172

3d Environment Observation Perception

Explore

Agent

Request
annotation

Refine

?

??
…

Figure 6.1: Embodied visual active learning. An agent in a 3d environment must explore and
occasionally request annotation to efficiently refine its visual perception. The navigation component
makes this task significantly more complex than traditional active learning, where the data pool over
which the agent queries annotations, either in the form of image collections or pre­recorded video
streams, is static and given.

• In our setup, visual learning and exploration can inform and guide one another since
the recognition system is selectively and gradually refined during exploration, instead
of being trained at the end of a trajectory on a full set of densely annotated views.

• We develop a variety of methods, both learnt and pre­specified, to tackle our task in
the context of semantic segmentation.

• We perform extensive evaluation in a photorealistic 3d environment and show that
a fully learnt method outperforms comparable pre­specified ones.

2 Related Work

The embodied visual active learning setup leverages several computer vision and machine
learning concepts, such as embodied navigation, active learning and active vision. There is
substantial recent literature on embodied agents navigating in real or simulated 3d envir­
onments, especially given the recent emergence of large­scale simulators [11, 12, 13, 14, 15].
In Embodied Question Answering [16, 17, 18], an agent is given a question, such as ”What
color is the car?”. The agent must then explore the environment, often quite extensively,
in order to be able to answer. Zhu et al. [19] and Mousavian et al. [20] task agents with
reaching a target viewpoint in as few steps as possible. The agents receive the current view
and the target as inputs in each step. In point­goal navigation [21, 22, 11, 23] the agent is
given coordinates of a target to reach using visual information and ego­motion. In visual
exploration [24, 25, 26, 27, 28, 29] the task is to explore an unknown environment as quickly
as possible, by covering the whole scene area. In [8, 9], an agent is tasked to navigate an
environment to increase the accuracy of a pre­trained recognition model, for example by
moving around occluded objects. This is in contrast to our work where the goal is to collect
views for training a perception model. Whereas in [8, 9] the agent is spawned close to the

173

target object, we cannot make such assumptions, as our task is not only to accurately recog­
nize a single object or view, but to do so for all views in the potentially large area explored
by the agent.

There are relations also to curiosity­driven learning [30, 31], in that we also seek an agent
which visits novel views (states). In [30], exploration is aided by giving rewards based on
the prediction error of a self­supervised inverse­dynamics model. This is a task­independent
exploration strategy useful to search 2d or 3d environments during training. In our setup,
exploration is task­specific in that it is aimed specifically at refining a visual recognition sys­
tem in a novel environment. Moreover, we use semi­dense rewards for both visual learning
and for exploration. Hence we are not operating using entirely sparse rewards where curi­
osity approaches often outperform other methods.

Our work is also related to [32, 33, 34, 35]. Different from us, [32] uses hand­crafted
annotation and exploration strategies, aiming to label all voxels in a 3d reconstruction by
selecting a subset of frames covering all voxels. This is a form of exhaustive annotation and
a visual perception system is not trained. Hence the system can only analyze objects in
annotated voxels. In our setup the agent is instead tasked with both exploration and the
selection of views to annotate, and we learn a perception module aiming to generalize to
unseen views. In contrast to us, [33, 34, 35] do not consider an agent choosing where to
move in the environment, nor which parts to label. Instead they use all views seen when
following a pre­specified path for training a visual recognition system. Pot et al. [33] use
an object detector obtained by self­supervised learning and clustering, while Zhong et al.
[34] and Wang et al. [35] use constraints from SLAM to improve a given segmentation
model. The latter approaches could in principle complement our label propagation, and
are orthogonal to our main contributions.

Next­best­view (NBV) prediction [36, 37, 38, 39, 40, 41] is superficially similar to our
task. In [36] an agent is trained to reveal parts of a panorama and a model is built to com­
plete all views of the panorama. Our setup allows free movement in an environment, hence
it features a navigation component which makes our task more comprehensive. While NBV
typically integrates information from all predicted views, our task requires the adaptive se­
lection of only a subset of the views encountered during the agent’s navigation trajectory.

Active learning [42, 43, 44, 45, 46, 47] can be seen as the static version of our setup,
as it considers approaches for learning what parts of a larger pre­existing and static training
set should be fed into the training procedure, and in what order. We instead consider the
active learning problem in an embodied setup, where an agent can move and actively select
views for which to request annotation. Embodiment makes it possible to use motion to
propagate annotations, hence effectively generate new ones at no additional annotation
cost. In essence, our work lays groundwork towards marrying the active vision and active
learning paradigms.

174

!"($|&)

Movement
action

Perception
action

Update
position

Training data

Annotate

Collect

Segmentation
Network

Propagate
annotation

Policy input

Figure 6.2: Embodied visual active learning for semantic segmentation. A first­person agent is
placed in a room and a deep network predicts the semantic segmentation of the agent’s view. Based
on the view and its segmentation, the agent can either select a movement action to change position
and viewpoint, or select a perception action (Annotate or Collect). Annotate adds the current
view and its ground truth segmentation to the pool of training data for the segmentation network,
while Collect is a cheaper version (no additional supervision required) where the current view and
the last annotated view – propagated to the agent’s current position using optical flow – is added to
the training set. The propagated annotation is also a policy input for the learnt agent described in
Section 3.3. After a perception action, the segmentation network is refined on the current training
set. The embodied visual active learning process is considered successful if, after selecting a limited
number of Annotate actions or an exploration budget is exhausted, the segmentation network can
accurately segment any other view in the environment where the agent operates. Note that the map
(left) is not provided as input to the learnt agent in Section 3.3.

3 Embodied Visual Active Learning

Embodied visual active learning is an interplay between a first­person agent, a 3d environ­
ment and a trainable perception module. See Figure 6.1 for a high­level abstraction and
Figure 6.2 for details of the particular task considered in this paper. The perception module
processes images (views) observed by the agent in the environment. The agent can request
annotations for views in order to refine the perception module. It should ideally request
few annotations as these are costly. The agent can also generate more annotations for free
by neighborhood exploration using label propagation, such that when trained on that data
the perception module becomes more accurate in the explored environment. To assess how
successful an agent is on the task, we test how accurate the perception module is on mul­
tiple random viewpoints selected uniformly in the area explored by the agent.

Task overview. The agent begins each episode randomly positioned and rotated in a 3d en­
vironment, with a randomly initialized semantic segmentation network. The ground truth
segmentation mask for the first view is given for the initial training of the segmentation net­
work. The agent can choose movement actions (MoveForward, MoveLeft, MoveRight,
RotateLeft, RotateRight, with 25 cm movements and 15 degree rotations), or percep­
tion actions (Annotate, Collect). If the agent moves or rotates, the ground truth mask is
propagated using optical flow. The agent may at any time choose to insert the propagated

175

annotation into its training set with the Collect action, or to ask for a new ground truth
mask with the Annotate action. After an Annotate action the propagated annotation
mask is re­initialized to the ground truth annotation. After each perception action, the
segmentation network S is refined on the training set, which is first expanded with the
newly acquired data point.

The agent’s performance is evaluated at the end of the episode. The goal is to maximize
the mIoU and mean accuracy of the segmentation network on the views in the area explored
by the agent. Specifically, a set of reference views are randomly sampled within a disc of
radius r centered at the starting location, and the segmentation network is evaluated on
these. Hence to perform well the agent is required to explore its surroundings, and it
should refine its perception module in regions of high uncertainty.

3.1 Methods for the Proposed Task

We develop several methods to evaluate and study the embodied visual active learning task.
All methods except the RL­agent issue the Collect action when 30% of the propagated
labels are unknown and Annotate when 85% are unknown. The intuition is that the pre­
specified methods should request annotation when most pixels are unlabeled. The specific
hyperparameters of all models were set based on a validation set.

Random. Selects uniform random movement actions. This baseline is thus a lower bound
in terms of embodied exploration performance for this task.

Rotate. Continually rotates left. This method is useful in comparing with agents that
move and explore, i.e. to monitor what improvements can be expected from embodiment.

Bounce. Explores by walking straight forward until it hits a wall, then samples a new
random direction and moves forward until it collides with a new wall, and so on. This
agent quickly explores the environment.

Frontier exploration. This method builds a map, online, by using using depth and motion
from the simulator [48]. All pixels with depth within a 4m threshold are back­projected
in 3d and then classified as either obstacles or navigable, based on height relative to the
ground plane. This agent is confined to move within the reference view radius r, which is
a choice to its advantage,¹ as annotated views will more likely be similar to reference views
that reside within that same radius.

RL­agent. This fully trainable method that we develop jointly learns exploration and per­
ception actions in a reinforcement learning framework. See full description in Section 3.3.

¹This ensures it is evaluated under ideal conditions, in contrast to the RL­agent in Section 3.3.

176

Figure 6.3: An example of a space filling curve in a
Matterport3D floor plan. The space filler baseline
assumes complete spatial knowledge of the envir­
onment.

Space filler. Follows a shortest space filling
curve within the reference view radius r,
and as r increases the entire environment
is explored. This baseline makes strong and
somewhat less general (or depending on the
application, altogether unrealistic) assump­
tions in order to create a path: knowing the
floor plan in advance, as well as which loc­
ations are reachable from the start. Also,
it only moves within the reference view
radius, and knows the shortest geodesic
paths to take on the curve. Hence this
method can be considered an upper bound
to which other methods are compared.

The space filling curve is computed by placing a grid of nodes onto the floor plan (1m
resolution, using a sampling and reachability heuristic), and then finding the shortest path
around it with an approximate traveling salesman solver. Figure 6.3 shows a space filling
curve in a Matterport3D floor plan.

3.2 Semantic Segmentation Network

Each method uses the same FCN­inspired deep network [4] for semantic segmentation.
The network consists of 3 blocks of convolutional layers, each containing 3 convolutional
layers with kernels of size 3×3. The first convolutional layer in each block uses a stride of 2,
which halves the resolution. For each block the number of channels doubles, using 64, 128
and 256 channels respectively. Multiple predictions are made using the final convolutional
layers of each block. The multi­scale predictions are resized to the original image resolution
using bilinear interpolation and are then summed up, resulting in the final segmentation
estimate. Note that we have deliberately chosen to make the network small so that it can
be efficiently refined on new data.

At the beginning of each episode the parameters are initialized randomly, and we train
the network on the very first view, for which we always supply the ground truth segment­
ation. Each time Annotate or Collect is selected, we refine the network. Minibatches
of size 8, which always include the latest added labeled image, are used in training. We
use random cropping and scaling for data augmentation. The network is refined either
until it has trained for 1, 000 iterations or until the accuracy of a minibatch exceeds 95%.
We use a standard cross­entropy loss averaged over all pixels. The segmentation network is
trained using stochastic gradient descent with learning rate 0.01, weight decay 10−4 and
momentum 0.9.

To propagate semantic labels we compute optical flow between consecutive viewpoints
using PWC­Net [49]. The optical flow is computed bidirectionally and only pixels where

177

the difference between the forward and backward displacements is less than 2 pixels are
propagated [50] (we found that labels were reliably tracked over several frames when using
2 pixels as a threshold).

3.3 Reinforcement Learning Agent

To present the reinforcement learning agent for our task, we begin with an explanation of
the state­action representation and policy network, followed by the reward structure and
finally policy training.

Actions, states and policy. The agent is represented as a deep stochastic policy πθ(at|st)
which samples an action at in state st at time t. The actions are MoveForward, MoveLeft,
MoveRight, RotateLeft, RotateRight, Annotate and Collect. The full state is
st = {It,St,P t,F t} where It ∈ R127×127×3 is the image, St = St(It) ∈ R127×127×3

is the semantic segmentation mask predicted by the deep network St (this network is re­
fined over an episode; t indexes the network parameters at time t), P t ∈ R127×127×3 is the
propagated annotation, and F t ∈ R7×7×2048 is a deep representation of It (a ResNet­50
backbone feature map).

The policy consists of a base processor, a recurrent module and a policy head. The base
processor consists of two learnable components: ϕimg and ϕres. The 4­layer convolutional
network ϕimg takes as input the depth­wise concatenated triplet {It,St,P t}, producing
ϕimg(It,St,P t) ∈ R512. Similarly, the 2­layer convolutional network ϕres yields an
embedding ϕres(F t) ∈ R512 of the ResNet features F t. An LSTM [51] with 256 cells
constitutes the recurrent module, which takes as input ϕimg(It,St,P t) and ϕres(F t).
The input has length 1024. The hidden LSTM state is fed to the policy head, consisting
of a fully­connected layer followed by a 7­way softmax which produces action probabilities.

Rewards. In training, the main reward is related to the mIoU improvement of the final
segmentation network ST over the initial S0 on a reference setR. The setR is constructed
at the beginning of each episode by randomly selecting views within a geodesic distance
r from the agent’s starting location, and contains views with corresponding ground truth
semantic segmentation masks. At the end of an episode of length T , the underlying percep­
tion module is evaluated on R. Specifically, after an episode of T steps the agent receives
as final reward:

RT = mIoU(ST ,R)−mIoU(S0,R). (6.1)

To obtain a denser signal, which is tightly coupled with the final objective, we also give a
reward proportional to the improvement of S on the reference setR after each Annotate
(ann) and Collect (col) action:

Rann
t = mIoU(St,R)−mIoU(St−1,R)− ϵann, (6.2)

Rcol
t = mIoU(St,R)−mIoU(St−1,R). (6.3)

178

To ensure that the agent does not request costly annotations too frequently, each Annotate
action is penalized with a negative reward −ϵann (we set ϵann = 0.01), as seen in (6.2).
Such a penalty is not given for the free Collect action. Moreover, the dataset we use has
40 different semantic classes, but some are very rare and apply only to small objects, and
some might not even be present in certain houses. We address this imbalance by computing
the mIoU using only the 10 largest classes, ranked by the number of pixels in the set of
reference views for the current episode.

While the rewards (6.1) ­ (6.3) should implicitly encourage the agent to explore the
environment in order to request annotations for distinct, informative views, we empirically
found it useful to include an additional explicit exploration reward. Denote by {xi}t−1

i=1 =
{(xi, yi)}t−1

i=1 the positions the agent has visited up to time t − 1 in its current episode,
and let xt = (xt, yt) denote its current position. We define the exploration (exp) reward
based on a kernel density estimate of the agent’s visited locations:

Rexp
t = a− bpt(xt) := a− b

t− 1

t−1∑
i=1

k(x,xi), (6.4)

where a and b are hyperparameters (both set to 0.003). Here pt(xt) is a Gaussian kernel
estimate of the density with bandwidth 0.3m. It is large for previously visited positions
and small for unvisited positions, thereby encouraging the agent’s expansion towards new
places in the environment. The exploration reward is only given for movement actions.
Note that the pose xi is only used to compute the reward Rexp

t and is not available to the
policy via the state space.

Policy training. The policy network is trained using PPO [52] based on the RLlib re­
inforcement learning package [53], as well as OpenAI Gym [54]. For optimization we use
Adam [55] with batch size 512, learning rate 10−4 and discount rate 0.99. During train­
ing, each episode consists of 256 actions. The agent is trained for 4k episodes, which totals
1024k steps.

Our system is implemented in TensorFlow [56], and it takes about 3 days to train an
agent using 4 Nvidia Titan X GPUs. An episode of length 256 took on average about
3 minutes using a single GPU, and during training we used 4 workers with one GPU
each, collecting rollouts independently. The runtime per episode varies depending on how
frequently the agent decides to annotate, as training the segmentation network is the bot­
tleneck and accounts for approximately 90% of the runtime. We use optical flow from the
simulator to speed up policy training. For evaluation, the RL­agent and all other methods
use PWC­Net to compute optical flow. The ResNet­50 feature extractor is pre­trained on
ImageNet [57] with weights frozen during policy training.

179

4 Experiments

In this section we provide empirical evaluations of various methods. The primary metrics
are mIoU and segmentation accuracy but we emphasize that we test the exploration and an­
notation selection capability of policies – the mIoU and accuracy measure how well agents
explore in order to refine their perception. Different from accuracy, the mIoU does not
become excessively high by simply segmenting large background regions (such as walls),
and hence it is more representative of overall semantic segmentation quality.

Experimental setup. We evaluate the methods on the Matterport3D dataset [10] using
the embodied agent framework Habitat [11]. This setup allows the agent to freely explore
photorealistic 3d models of large houses, that have ground truth annotations with 40 di­
verse semantic classes. Hence it is a suitable environment for evaluation. To assess the
generalization capability of the RL­agent we train and test it in different houses. We use
the same 61, 11 and 18 houses for training, validation and testing as [10]. The RL­agent
and all pre­specified methods except the space filler are comparable in terms of assumptions,
cf. Section 3.1. The space filler assumes full spatial knowledge of the environment (ground
truth map) and hence has inherent advantages over the other methods.

During RL­agent training we randomly sample starting positions and rotations from
the training houses at the start of each episode. An episode ends after 256 actions. Hy­
perparameters of the learnt and pre­specified agents are tuned on the validation set. For
validation and testing we use 3 and 4 starting positions per scene, respectively, so each agent
is tested for a total of 33 episodes in validation and 72 episodes in testing. The reported
metrics are the mean over all these runs. All methods are evaluated on the same starting
positions in the same houses. The reference views used to evaluate the semantic segmenta­
tion performance are obtained by sampling 32 random views within a 5m geodesic distance
of the agent’s starting position at the beginning of each episode. In training the reference
views are sampled randomly. During validation and testing, for fairness, we sample the
same views for a given starting position when we test different agents. Note that there
is no overlap between reference views during policy training and testing, since training,
validation and testing houses are non­overlapping.

Recall that the RL­agent’s policy parameters are denoted θ. We now let θseg denote
the parameters of the underlying semantic segmentation network, in order to clarify when
we reset, freeze and refine θ and θseg, respectively. In RL­training we refine θ during
policy estimation in the training houses. When we evaluate the policy on the validation
or test houses we freeze θ and only use the policy for inference. The parameters of the
segmentation network θseg are always reset at the beginning of an episode, regardless of
which house we deploy the agent in and whether the policy network is training or not.
During an episode we refine θseg exactly when the agent selects the Annotate or Collect
actions (this applies to all methods described in Section 3.1). Thus annotated views in an
episode are used to refine θseg in that episode only, and are not used in any other episodes.

180

Table 6.1: Comparison of different agents for a fixed episode length of 256 actions on the Matter­
port3D test scenes. The RL­agent gets higher mIoU using far fewer annotations than comparable
pre­specified methods, implying that the RL­agent selects more informative views to annotate.

Method mIoU Accuracy # Annotations # Collects
Space filler 0.439 0.769 24.7 23.9
RL­agent 0.394 0.727 16.7 15.2

Frontier exploration 0.385 0.735 24.2 21.6
Bounce 0.357 0.708 29.6 26.0
Rotate 0.295 0.661 34.3 32.7

Random 0.204 0.566 29.1 19.5

0 50 100 150 200 250
Steps

0.15

0.20

0.25

0.30

0.35

0.40

0.45

m
Io

U

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

0 50 100 150 200 250
Steps

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

Figure 6.4: Mean segmentation accuracy and mIoU versus number of actions (steps), evaluated on
the Matterport3D test scenes. The RL­agent was trained on 256­step episodes. This agent fairly
quickly outperforms all other comparable pre­specified agents. Rotate is strong initially since it
quickly gathers many annotations in a 360 degree arc, but is eventually outperformed by most
other methods that move around in the houses. Frontier exploration yields similar accuracy as
the RL­agent after about 170 steps, but uses significantly more annotations (cf. Table 6.1) and
assumes perfect pose and depth information. The space filler, which assumes full knowledge of the
environment, yields the best results after about 100 steps.

4.1 Main Results

We measure the performances of the agents in two settings: i) with unlimited annotations
but limited total actions (max 256, as during RL­training), or ii) for a limited annotation
budget (max 100) but unlimited total actions. All methods were tuned on the validation
set in a setup similar to i) with 256­step episodes. Note however that the number of an­
notations can differ for different methods in a 256­step episode. The setup ii) is used to
assess how the different methods compare for a fixed number of annotations.

Fixed episode length. Table 6.1 and Figure 6.4 show results on the test scenes for episodes
of length 256. The RL­agent outperforms the comparable pre­specified methods in mIoU
and accuracy, although frontier exploration – which uses perfect pose and depth informa­
tion, and is idealized to always move within the reference view radius – yields similar accur­
acy after about 170 steps. The RL­agent uses much fewer annotations than other methods,

181

Table 6.2: Comparison of different agents for a fixed budget of 100 annotations on Matterport3D
test scenes. The RL­agent gets a higher mIoU than comparable pre­specified agents, despite not
being trained in this setting.

Method mIoU Accuracy # Steps # Collects
Space filler 0.600 0.863 1048 91
RL­agent 0.507 0.796 1541 94

Frontier exploration 0.485 0.796 998 84
Bounce 0.464 0.776 861 87
Rotate 0.303 0.668 752 96

Random 0.242 0.595 910 64

0 20 40 60 80 100
Annotations

0.1

0.2

0.3

0.4

0.5

0.6

m
Io

U

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

0 20 40 60 80 100
Annotations

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

Figure 6.5: Mean segmentation accuracy and mIoU vs. number of requested annotations, evaluated
on the Matterport3D test scenes. The RL­agent outperforms all comparable pre­specified methods
(although frontier exploration matches it in accuracy after about 40 annotations), indicating that
it has learnt an exploration policy which generalizes to novel scenes. The space filler outperforms
the RL­agent as expected, except for less than 15 annotations. Thus the RL­agent is best before and
around its training regime, where it on average annotates 16.7 times per episode, cf. Table 6.1.

hence those annotated views are more informative. The space filler, which assumes perfect
knowledge of the map, outperforms the RL­agent but uses significantly more annotations.
Note that the Rotate baseline saturates, supporting the intuition that an agent has to move
around in order to increase performance in complex environments.

Fixed annotation budget. In Table 6.2 and Figure 6.5 we show test results when the
annotation budget is limited to 100 images per episode. As expected, the space filler yields
the best results, although the RL­agent gets comparable performance when using up to 15
annotations. The RL­agent outperforms comparable pre­specified methods in mIoU and
accuracy. Frontier exploration obtains similar accuracy. We also see that the episodes of
the RL­agent are longer.

Qualitative examples. Figure 6.6 shows examples of views for which the RL­agent requests
annotations. The agent explores large parts of the space and the annotated views are diverse,
both in their spatial locations and in the types of semantic classes they contain. Figure 6.7

182

Table 6.3: Ablation study of different RL­based model variants for 256­step episodes on the val­
idation set. The full RL­agent outperforms all ablated models at a comparable or lower number of
requested annotations.

Variant mIoU Accuracy # Annotations # Collects
Full model 0.427 0.732 16.4 16.4

No collect nor P t 0.415 0.727 17.9 0.0
Only exploration 0.411 0.727 16.1 14.4

Rexp
t = 0 0.401 0.719 17.7 47.4

No ϕimg 0.378 0.696 14.3 3.8
No ResNet 0.375 0.705 23.3 0.3

shows how the segmentation network’s performance on two reference views improves dur­
ing an episode. The two views are initially poorly segmented, but as the agent explores and
acquires annotations for novel views, the accuracy on the reference views increases.

4.2 Ablation Studies of the RL­agent

Ablation results for the RL­agent on the validation set are in Table 6.3. We compare to the
following versions: i) policy without visual features ϕimg; ii) policy without ResNet features
ϕres; iii) no additional exploration reward (6.4), i.e. Rexp

t = 0; iv) no Collect action and
P t is not an input to ϕimg; and v) only exploration trained, using the heuristic strategy for
annotations. We trained the ablated models for 4k episodes as for the full model.

Both the validation accuracy and mIoU are higher for the full RL­model compared
to all ablated variants, justifying design choices. The model not relying on propagating
annotations and using the Collect action performs somewhat worse than the full model
despite a comparable amount of annotations. The learnt annotation strategy yields higher
mIoU and accuracy compared to the heuristic one, at a comparable number of annotations.
The exploration reward is important in encouraging the agent to navigate to unvisited po­
sitions – without it performance is worse, despite a comparable number of annotations.
Moreover, the agent trained without the exploration reward uses an excessive number of
Collect actions, so this agent often stands still instead of moving. Finally, omitting either
visual or ResNet features from the policy significantly harms accuracy for the resulting per­
ception system.

4.3 Analysis of Annotation Strategies

In this section we examine how different annotation strategies affect the task performance
on the validation set for the space filler and bounce methods, on episodes of length 256.
Specifically, the annotation strategies are:

• Threshold perception. This is the variant evaluated in Section 4.1, i.e. it issues the
Collect action when 30% of the propagated labels are unknown and Annotate

183

when 85% are unknown.

• Learnt perception. We train a simplified RL­agent where the movement actions
are restricted to follow the exploration trajectory of the baseline method (space filler
and bounce, respectively). This model has three actions: move along the baseline
exploration path, Annotate and Collect. All other training settings are identical
to the full RL­agent.

• Random perception. In each step, this variant follows the baseline exploration tra­
jectory with 80% probability, while annotating views and collecting propagated la­
bels with 10% probability each.

As can be seen in Table 6.4, the best results for the space filler are obtained by using
the threshold strategy, which also annotates slightly less frequently than other variants. Us­
ing learnt perception actions yields better results compared to random perception actions,
and uses slightly fewer annotations per episode. Similar results carry over to the bounce
method in Table 6.5, i.e. the best results are again obtained by the threshold variant. The
model with a learnt annotation strategy fails to converge to anything better than heuristic
perception strategies. In fact, it converges to selecting Collect almost 40% of the time,
which indicates a lack of movement for this variant.

In Table 6.3 we saw that a learnt exploration method with a heuristic annotation
strategy yields worse results than a fully learnt model. Conversely, the results from Table 6.4
­ 6.5 show that a heuristic exploration method using a learnt annotation strategy yields
worse results than an entirely heuristic model. Together these results indicate that it is
necessary to learn how to annotate and explore jointly to provide the best results, given
comparable environment knowledge.

Table 6.4: Results on the validation set for different model variants of the space filler method. The
threshold perception strategy – which is the one used in the main evaluations in Section 4.1 – yields
the best results.

Variant mIoU Accuracy # Annotations # Collects
Threshold perception 0.472 0.770 20.8 19.9

Learnt perception 0.454 0.755 22.8 37.4
Random perception 0.446 0.747 24.2 24.4

Table 6.5: Results on the validation set for different model variants of the bounce method. The
threshold perception strategy – which is the one used in the main evaluations in Section 4.1 –
yields the best results, but also uses the largest amount of annotations on average.

Variant mIoU Accuracy # Annotations # Collects
Threshold perception 0.388 0.706 27.4 24.5

Learnt perception 0.375 0.699 14.6 98.8
Random perception 0.379 0.698 25.9 24.6

184

Table 6.6: Results on the validation set of different training regimes for the semantic segmentation
network. A pre­trained segmentation network generalizes poorly to unseen environments (first row),
and there is relatively little gain for the RL­agent by having a pre­trained segmentation network
(third row). Note that pre­training uses over 1000x more annotations compared to performing
embodied active visual learning from scratch.

Variant mIoU Accuracy # Annotations # Colllects
Pre­train, no RL 0.208 0.549 20k 0.0
No pre­train, RL 0.427 0.732 16.4 16.4

Pre­train, RL 0.461 0.780 20k+14.4 13.3

4.4 Pre­training the Segmentation Network

Recall that our semantic segmentation network is randomly initialized at the beginning of
each episode. In this section we evaluate the effect of instead pre­training the segmentation
network² on the 61 training houses using about 20, 000 random views. In Table 6.6 we
compare using this pre­trained segmentation network as initialization for the RL­agent with
the case of random initialization, on episodes of length 256. We also show results when
not further fine­tuning the pre­trained segmentation network, i.e. when not performing
any embodied visual active learning.

The weak result obtained when not fine­tuning (first row) indicates significant appear­
ance differences between the houses. This is further suggested by the fact that the RL­agent
gets a surprisingly modest boost from pre­training the segmentation network (third row vs
second row). Note the different number of annotated views used here – the agent without
pre­training uses only 16.4 views on average, while the other one uses about 20, 000+14.4
annotated views, if we count all the images used for pre­training. Due to the relatively
marginal gains for a large number of annotated images, we decided to evaluate all agents
without pre­training the segmentation network.

5 Conclusions

In this paper we have explored the embodied visual active learning task for semantic seg­
mentation and developed a diverse set of methods, both pre­designed and learning­based,
in order to address it. The agents can explore a 3d environment and improve the accuracy
of their semantic segmentation networks by requesting annotations for informative view­
points, propagating annotations via optical flow at no additional cost by moving in the
neighborhood of those views, and self­training. We have introduced multiple baselines as
well as a more sophisticated fully learnt model, each exposing different assumptions and
knowledge of the environment. Through extensive experiments in the photorealistic Mat­
terport3D environment we have thoroughly investigated the various methods and shown

²In this pre­training experiment, we use the same architecture and hyperparameters for the segmentation
network as when it is trained and deployed in the embodied visual active learning task.

185

that the fully learning­based method outperforms comparable non­learnt approaches, both
in terms of accuracy and mIoU, while relying on fewer annotations.

Acknowledgments: This work was supported in part by the European Research Council
Consolidator grant SEED, CNCS­UEFISCDI PN­III­P4­ID­PCE­2016­0535 and PCCF­
2016­0180, the EU Horizon 2020Grant DE­ENIGMA, Swedish Foundation for Strategic
Research (SSF) Smart Systems Program, as well as the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

186

1
2

3
4

5

6

1
2

3
4

5
6

Fi
gu

re
6.
6:

Th
e

fir
st

six
re

qu
es

te
d

an
no

ta
tio

ns
by

th
e

R
L­

ag
en

ti
n

a
ro

om
fro

m
th

e
te

st
se

t.
Le

ft:
M

ap
sh

ow
in

g
th

e
ag

en
t’s

tr
aj

ec
to

ry
an

d
th

e
six

fir
st

re
qu

es
te

d
an

no
ta

tio
ns

(g
re

en
ar

ro
w

s)
.Th

e
in

iti
al

ly
gi

ve
n

an
no

ta
tio

n
is

no
ti

nd
ic

at
ed

w
ith

a
nu

m
be

r.
Bl

ue
ar

ro
w

si
nd

ic
at

e
Co
ll
ec
t

ac
tio

ns
.

R
ig

ht
:F

or
ea

ch
an

no
ta

tio
n

(n
um

be
re

d
1

­6
)t

he
fig

ur
es

sh
ow

th
ei

m
ag

es
ee

n
by

th
ea

ge
nt

an
d

th
eg

ro
un

d
tr

ut
h

re
ce

iv
ed

w
he

n
th

ea
ge

nt
re

qu
es

te
d

an
no

ta
tio

ns
.A

sc
an

be
se

en
,t

he
ag

en
tq

ui
ck

ly
ex

pl
or

es
th

e
ro

om
an

d
re

qu
es

ts
an

no
ta

tio
ns

co
nt

ai
ni

ng
di

ve
rs

e
se

m
an

tic
cl

as
se

s.

187

1

23

a

b
1

2
3

a b

R
eq

ue
st

ed
 A

nn
ot

at
io

ns
R

ef
er

en
ce

 V
ie

w
s

1
2

3
P

re
di

ct
ed

 S
eg

m
en

ta
tio

ns

Fi
gu

re
6.
7:

Ex
am

pl
e

of
th

e
R

L­
ag

en
t’s

vi
ew

po
in

ts
el

ec
tio

n
an

d
ho

w
its

pe
rc

ep
tio

n
im

pr
ov

es
ov

er
tim

e.
W

e
sh

ow
re

su
lts

of
tw

o
re

fe
re

nc
e

vi
ew

s
af

te
rt

he
fir

st
th

re
e

an
no

ta
tio

ns
of

th
e

R
L­

ag
en

t.
Le

ft:
Ag

en
t’s

m
ov

em
en

tp
at

h
is

dr
aw

n
in

bl
ac

k
on

th
e

m
ap

.Th
e

an
no

ta
tio

ns
(g

re
en

ar
ro

w
s)

ar
e

nu
m

be
re

d
1

­3
,a

nd
th

ea
ss

oc
ia

te
d

vi
ew

sa
re

sh
ow

n
im

m
ed

ia
te

ly
rig

ht
of

th
em

ap
(th

ei
ni

tia
lly

gi
ve

n
an

no
ta

tio
n

is
no

ts
ho

w
n)

.R
ed

ar
ro

w
sl

ab
el

ed
a

­b
in

di
ca

te
th

e
re

fe
re

nc
e

vi
ew

s.
R

ig
ht

:R
ef

er
en

ce
vi

ew
sa

nd
gr

ou
nd

tr
ut

h
m

as
ks

,f
ol

lo
w

ed
by

pr
ed

ic
te

d
se

gm
en

ta
tio

n
af

te
ro

ne
,t

w
o

an
d

th
re

e
an

no
ta

tio
ns

.N
ot

e
th

e
cl

ea
rs

eg
m

en
ta

tio
n

im
pr

ov
em

en
ts

as
th

e
ag

en
tr

eq
ue

sts
m

or
e
an

no
ta

tio
ns

.S
pe

ci
fic

al
ly,

no
te

ho
w

re
fe

re
nc

e
vi

ew
a

im
pr

ov
es

dr
as

tic
al

ly
w

ith
an

no
ta

tio
n

#2
as

th
eb

ed
is

vi
sib

le
in

th
at

vi
ew

,a
nd

w
ith

an
no

ta
tio

n
#3

w
he

re
th

ed
ra

w
er

is
se

en
.A

lso
no

te
ho

w
th

es
eg

m
en

ta
tio

n
im

pr
ov

es
fo

rr
ef

er
en

ce
vi

ew
b

af
te

rt
he

do
or

is
se

en
in

an
no

ta
tio

n
#3

.

188

References

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep con­
volutional neural networks,” in NeurIPS, 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large­scale
image recognition,” ICLR, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in CVPR, 2015.

[5] L.­C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” PAMI, vol. 40, no. 4, 2017.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r­cnn: Towards real­time object de­
tection with region proposal networks,” in NeurIPS, 2015.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real­time object detection,” in CVPR, 2016.

[8] P. Ammirato, P. Poirson, E. Park, J. Košecká, and A. C. Berg, “A dataset for developing
and benchmarking active vision,” in ICRA, 2017.

[9] J. Yang, Z. Ren, M. Xu, X. Chen, D. J. Crandall, D. Parikh, and D. Batra, “Embodied
amodal recognition: Learning to move to perceive objects,” in ICCV, 2019.

[10] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb­d data in indoor environ­
ments,” International Conference on 3D Vision, 2017.

[11] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu,
V. Koltun, J. Malik, et al., “Habitat: A platform for embodied ai research,” in ICCV,
2019.

[12] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon,
Y. Zhu, A. Gupta, and A. Farhadi, “AI2­THOR: An Interactive 3D Environment for
Visual AI,” arXiv preprint arXiv:1712.05474, 2017.

[13] F. Xia, A. R. Zamir, Z.­Y. He, A. Sax, J. Malik, and S. Savarese, “Gibson env: real­
world perception for embodied agents,” in CVPR, 2018.

189

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in CoRL, 2017.

[15] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun, “MI­
NOS: Multimodal indoor simulator for navigation in complex environments,”
arXiv:1712.03931, 2017.

[16] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied question
answering,” in CVPR, 2018.

[17] E. Wijmans, S. Datta, O. Maksymets, A. Das, G. Gkioxari, S. Lee, I. Essa, D. Parikh,
and D. Batra, “Embodied Question Answering in Photorealistic Environments with
Point Cloud Perception,” in CVPR, 2019.

[18] L. Yu, X. Chen, G. Gkioxari, M. Bansal, T. L. Berg, and D. Batra, “Multi­target
embodied question answering,” in CVPR, 2019.

[19] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei­Fei, and A. Farhadi, “Target­
driven visual navigation in indoor scenes using deep reinforcement learning,” in ICRA,
2017.

[20] A. Mousavian, A. Toshev, M. Fišer, J. Košecká, A. Wahid, and J. Davidson, “Visual
representations for semantic target driven navigation,” in ICRA, 2019.

[21] D. Mishkin, A. Dosovitskiy, and V. Koltun, “Benchmarking classic and learned nav­
igation in complex 3d environments,” arXiv preprint arXiv:1901.10915, 2019.

[22] A. Sax, B. Emi, A. R. Zamir, L. J. Guibas, S. Savarese, and J. Malik, “Mid­level visual
representations improve generalization and sample efficiency for learning visuomotor
policies.,” in CoRL, 2019.

[23] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping
and planning for visual navigation,” in CVPR, 2017.

[24] S. K. Ramakrishnan, D. Jayaraman, and K. Grauman, “An exploration of embodied
visual exploration,” IJCV, 2021.

[25] K. Fang, A. Toshev, L. Fei­Fei, and S. Savarese, “Scene memory transformer for em­
bodied agents in long­horizon tasks,” in CVPR, 2019.

[26] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for navigation,” in
ICLR, 2019.

[27] W. Qi, R. T. Mullapudi, S. Gupta, and D. Ramanan, “Learning to move with afford­
ance maps,” in ICLR, 2020.

190

[28] L. Zheng, C. Zhu, J. Zhang, H. Zhao, H. Huang, M. Niessner, and K. Xu, “Act­
ive scene understanding via online semantic reconstruction,” in Computer Graphics
Forum, vol. 38, 2019.

[29] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov, “Learning to
explore using active neural slam,” in ICLR, 2020.

[30] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity­driven exploration by
self­supervised prediction,” in ICML, 2017.

[31] H.­K. Yang, P.­H. Chiang, K.­W. Ho, M.­F. Hong, and C.­Y. Lee, “Never for­
get: Balancing exploration and exploitation via learning optical flow,” arXiv preprint
arXiv:1901.08486, 2019.

[32] S. Song, L. Zhang, and J. Xiao, “Robot in a room: Toward perfect object recognition
in closed environments,” CoRR, abs/1507.02703, 2015.

[33] E. Pot, A. Toshev, and J. Kosecka, “Self­supervisory signals for object discovery and
detection,” arXiv preprint arXiv:1806.03370, 2018.

[34] F. Zhong, S. Wang, Z. Zhang, and Y. Wang, “Detect­slam: Making object detection
and slam mutually beneficial,” in WACV, pp. 1001–1010, IEEE, 2018.

[35] K. Wang, Y. Lin, L. Wang, L. Han, M. Hua, X. Wang, S. Lian, and B. Huang, “A
unified framework for mutual improvement of slam and semantic segmentation,” in
ICRA, 2019.

[36] D. Jayaraman and K. Grauman, “Learning to look around: Intelligently exploring
unseen environments for unknown tasks,” in CVPR, 2018.

[37] B. Xiong and K. Grauman, “Snap angle prediction for 360 panoramas,” in ECCV,
2018.

[38] E. Johns, S. Leutenegger, and A. J. Davison, “Pairwise decomposition of image se­
quences for active multi­view recognition,” in CVPR, 2016.

[39] D. Jayaraman and K. Grauman, “Look­ahead before you leap: end­to­end active re­
cognition by forecasting the effect of motion,” in ECCV, 2016.

[40] S. Song, A. Zeng, A. X. Chang, M. Savva, S. Savarese, and T. Funkhouser,
“Im2pano3d: Extrapolating 360 structure and semantics beyond the field of view,”
in CVPR, 2018.

[41] E. Gärtner, A. Pirinen, and C. Sminchisescu, “Deep reinforcement learning for active
human pose estimation.,” in AAAI, 2020.

191

[42] B. Settles, “Active learning literature survey,” tech. rep., University of Wisconsin­
Madison Department of Computer Sciences, 2009.

[43] M. Fang, Y. Li, and T. Cohn, “Learning how to active learn: A deep reinforcement
learning approach,” in EMNLP, 2017.

[44] E. Lughofer, “Single­pass active learning with conflict and ignorance,” Evolving Sys­
tems, vol. 3, no. 4, 2012.

[45] M. Woodward and C. Finn, “Active one­shot learning,” NeurIPS Deep RL Workshop,
2016.

[46] A. Pardo, M. Xu, A. Thabet, P. Arbelaez, and B. Ghanem, “Baod: Budget­aware object
detection,” arXiv preprint arXiv:1904.05443, 2019.

[47] D. Feng, X. Wei, L. Rosenbaum, A. Maki, and K. Dietmayer, “Deep active learning
for efficient training of a lidar 3d object detector,” in 2019 IEEE Intelligent Vehicles
Symposium (IV), 2019.

[48] B. Yamauchi, “A frontier­based approach for autonomous exploration,” in CIRA,
1997.

[49] D. Sun, X. Yang, M.­Y. Liu, and J. Kautz, “Pwc­net: Cnns for optical flow using
pyramid, warping, and cost volume,” in CVPR, 2018.

[50] N. Sundaram, T. Brox, and K. Keutzer, “Dense point trajectories by gpu­accelerated
large displacement optical flow,” in ECCV, 2010.

[51] S. Hochreiter and J. Schmidhuber, “Long short­term memory,” Neural computation,
vol. 9, no. 8, 1997.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[53] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez,
M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed reinforcement learning,”
in ICML, 2018.

[54] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

192

[56] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large­scale machine learning on het­
erogeneous distributed systems,” in USENIX Symposium on Operating Systems Design
and Implementation, 2016.

[57] Jia Deng, Wei Dong, R. Socher, Li­Jia Li, Kai Li, and Li Fei­Fei, “ImageNet: A large­
scale hierarchical image database,” in CVPR, 2009.

193

A Supplementary Material

This supplementary material provides additional insights and results for our proposed em­
bodied visual active learning framework.

A.1 Model Architectures

Figure 6.8 and Figure 6.9 contain details of the semantic segmentation network and the
RL­agent’s policy network, respectively.

A.2 Pseudo Code

The full procedure of our RL­model for embodied visual active learning for semantic seg­
mentation is described in Algorithm 1.

A.3 Additional Variants of Bounce

We tried three additional annotation strategies of the bounce baseline on the validation set
and in Table 6.7 present the results. The three variants are:

• New direction 1. Recall that the bounce method samples a random rotation after
bouncing in a wall and then moves in that direction. This version annotates prior to
walking in a new direction. It issues no Collect actions.

• New direction 2. Issues Annotate after rotating towards a new direction, and issues
Collect four steps (1m) after that.

• New direction 3. Issues Annotate after rotating towards a new direction, and issues
Annotate and Collect with 10% probability each when walking forward.

We see that the third version – with more frequent annotations and collects compared
to versions 1 and 2 – obtains the best performance in terms of accuracy and mIoU on the
validation set for 256­step episodes. It does not outperform the threshold strategy, although
it annotates significantly less freqently.

Table 6.7: Results for different model variants of the bounce method (mean on the validation
scenes). Threshold perception (used in the main paper) yields the highest mIoU and accuracy.

Variant mIoU Accuracy # Annotations # Collects
Threshold perception 0.388 0.706 27.4 24.5

New direction 1 0.353 0.677 11.4 0.0
New direction 2 0.372 0.695 9.8 9.6
New direction 3 0.381 0.701 20.0 10.4

195

Block 1
64 channels

1/2 resolution
Block 2

128 channels
1/4 resolution

Block 3
256 channels
1/8 resolution

Figure 6.8: Architecture of the deep network we use for semantic segmentation. The input image
is processed sequentially through three blocks, each containing three convolutional layers. The first
convolutional layer in each block uses a stride of 2, which halves the resolution for each block, and
at the same time the number of channels is doubled. The semantic segmentation is predicted for
multiple resolutions and are summed together to predict the semantic segmentation.

CNN CNN CNN

ResNet50

FC

FC

LSTM 𝜋(𝑎|𝑠)

CNN

Figure 6.9: The policy network architecture for the RL­agent. The network has three in­
puts: the current RGB image I ∈ R127×127×3 (bottom), the current segmentation prediction
S ∈ R127×127×3 (top), and the current optical flow propagated ground truth segmentation
P ∈ R127×127×3 (middle). All three inputs are stacked depth­wise and then processed by three
convolutional layers and a fully connected layer (this processing subnetwork is called ϕimg in Sec­
tion 3.3 of the main paper). The first layer has 32 filters, kernel size 8× 8, and stride 4. The second
layer has 64 filters, kernel size 4 × 4, and stride 2. The third layer has 64 filters, kernel size 3 × 3,
and stride 1. Finally, the fully connected layer has 512 outputs. In addition, the RGB image is
passed through an image feature extractor (ResNet­50), called ϕres with output F t in the main
paper. The deep features F t are subsequently passed through a convolutional layer with 128 filters,
kernel size 2 × 2 and stride 2. Finally, these features are processed by a fully connected layer with
512 outputs. These two input branches are then concatenated and fed to an LSTM with 256 cells.
The hidden state of the LSTM is finally passed to a softmax layer to produce the action distribution.

196

Algorithm 1 Procedural code for the RL­agent in the embodied visual active learning for
semantic segmentation task.

1: Initialize parameters of the segmentation network S
2: Initialize location (x1, y1) and rotation ϕ1 randomly and let x1 = (x1, y1, ϕ1)
3: Extract image I1 and receive associated annotation mask A1 at x1; initialize training

set D = {(I1,A1)}
4: Perform initial training of S on D
5: Initialize propagated annotation P 1 = A1

6: Compute segmentation S1 = S(I1) and deep features F 1

7: Initialize agent state s1 = (I1,S1,P 1,F 1)
8: for t = 1, . . . , T do
9: Sample action at ∼ πθ(·|st)

10: if at ∈ {MoveForward, MoveLeft, MoveRight, RotateLeft, RotateRight}
then

11: Set xt+1 according to movement
12: Propagate annotation P t+1 = flow(P t)
13: else
14: Set xt+1 = xt

15: Set P t+1 = P t

16: end if
17: Obtain view It+1 associated to xt+1

18: if at = Annotate then
19: Obtain annotation mask At+1 at xt+1

20: Update training set D = D ∪ {(It+1,At+1)}
21: Refine S on D
22: Reset propagated annotation P t+1 = At+1

23: else if at = Collect then
24: Update training set D = D ∪ {(It+1,P t+1)}
25: Refine S on D
26: end if
27: Compute segmentation St+1 = S(It+1) and deep features F t+1

28: Update agent state st+1 = (It+1,St+1,P t+1,F t+1)
29: end for
30: return S⋆ (trained segmentation network)

197

	Abstract
	Popular Summary
	Populärvetenskaplig sammanfattning
	List of Publications
	Acknowledgements
	Overview and Preliminaries
	Introduction
	Computer Vision and Machine Learning Concepts
	Images and Cameras
	Training, Testing and Validation Sets
	Linear Classification with Support Vector Machines
	Basics of Deep Learning
	Basics of Reinforcement Learning

	Visual Perception Tasks Studied in this Thesis
	Object Detection
	Human Pose Estimation
	Semantic Segmentation

	Summary of Contributions and Ideas for Future Work
	Overview of Scientific Papers

	Scientific Publications
	Paper I: Reinforcement Learning for Visual Object Detection
	Introduction
	Related Work
	Problem Formulation
	Sequential Detection Model
	Model Structure
	Stochastic Policy
	Inference and Learning

	Experiments and Results
	Experimental Procedure
	Computational Efficiency and Accuracy
	Qualitative Analysis

	Conclusions
	Supplementary Material
	Useful Identities
	Model Equations
	Gradient Derivations

	Paper II: Deep Reinforcement Learning of Region Proposal Networks for Object Detection
	Introduction
	Related Work
	Two-Step Proposal-based Detection
	Sequential Region Proposal Network
	States and Actions
	Contextual Class Probability Adjustment

	Training
	Reward Signal
	Objective Function
	Joint Training of Policy and Detector

	Experiments
	Results on MS COCO
	Results on PASCAL VOC
	Additional Results

	Conclusions
	Supplementary Material

	Paper III: Domes to Drones: Self-Supervised Active Triangulation for 3D Human Pose Reconstruction
	Introduction
	Related Work
	Human Pose Reconstruction from Active Triangulation
	Active Triangulation Agent
	State-Action Representation
	Reward Signal for Self-Supervised Active Triangulation

	Experiments
	Main Results
	Ablation Studies
	From Domes to Drones

	Conclusions
	Supplementary Material
	Model Architecture
	Matching Multiple People
	Reprojection Errors onto OpenPose 2d Estimates
	Additional Dataset Insights

	Paper IV: Deep Reinforcement Learning for Active Human Pose Estimation
	Introduction
	Related Work
	Active Human Pose Estimation
	Active Pose Estimation Setup
	Detection and Matching of Multiple People

	Deep Reinforcement Learning Model
	Overview of the Pose-DRL Agent
	State-Action Representation
	Reward Signal for Policy Gradient Objective
	Active Pose Estimation of Multiple People

	Experiments
	Quantitative Results
	Ablation Studies

	Conclusions
	Supplementary Material
	Model Architecture
	Additional Insights and Details
	Handling Missed Detections or Matchings
	Additional Visualizations of Pose-DRL
	Using Pose-DRL in the Wild

	Paper V: Embodied Visual Active Learning for Semantic Segmentation
	Introduction
	Related Work
	Embodied Visual Active Learning
	Methods for the Proposed Task
	Semantic Segmentation Network
	Reinforcement Learning Agent

	Experiments
	Main Results
	Ablation Studies of the RL-agent
	Analysis of Annotation Strategies
	Pre-training the Segmentation Network

	Conclusions
	Supplementary Material
	Model Architectures
	Pseudo Code
	Additional Variants of Bounce

