
Beyond Open Source
RELEASING THE MIND @ ALFA LAVAL
PROFESSOR PER RUNESON, LTH

Background – Open Source Software

• 1960/70’s – software into the
bargain

• 1980’s – political movement
• 1990’s – commercial (Linux)
• 2000’s – databases

(MySQL), Android
• 2010’s – everywhere

OPEN SOURCE EXPANDED
EDITOR DIRK RIEHLE

Friedrich Alexander-University of Erlangen Nürnberg;dirk.riehle@fau.de

T he concept of “free software” (with free as in free-

dom) dates from the early 1980s. The term open

source is much younger, from the late 1990s.

But before free and open source software (FOSS)

existed as such, some programs were paving the way. In

fact, until the late 1960s, most software worked as FOSS:

it was shared with relative ease between people who took

care of computers. Only a few companies manufactured

computers, with IBM being, by a
large margin, the market leader.

For all of them, software was just a
companion to hardware: as long as

you paid for maintenance, you had
access to the software catalog of the

manufacturer. User groups, such as
SHARE (IBM) and the DECUS [Digital

Equipment Corp. (DEC)] favored soft-
ware sharing. To some extent, prior

to 1970, software was just an add-on
to hardware, not something consid-

ered valuable in itself.The situation changed in 1969,
when IBM announced the unbun-

dling of software: part of its catalog

was to be sold separately. From that moment on, users had

to purchase some of the software they needed. Various

companies began to flourish with a business model based

on producing software to be run on hardware sold by oth-

ers. This kicked off the software market and, with it, the

change of software’s status. Vendors implemented techni-

cal and legal means to limit sharing, modifying, and even

studying programs. During the mid-1970s, proprietary

(non-FOSS) software was already the norm. However, by

the early 1980s, some programs were distributed in ways

similar to what we now consider FOSS, among them, SPICE

Digital Object Identifier 10.1109/MC.2020.3041887

Date of current version: 11 February 2021

A Brief History of Free, Open Source Software and Its CommunitiesJesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos
Free, open source software (FOSS) has a long history, beginning with

the origins of software itself, when the terms free software and open

source software were not yet defined. Learning about the milestones

of this history may help to understand FOSS today.

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E

P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y F E B R U A R Y 2 0 2 1 75

https://dx.doi.org/10.1109/MC.2020.3041887

Usage of Open Source in Commercial Software

Product Development – Findings from a Focus

Group Meeting
Martin Höst, Alma Oručević-Alagić, and Per Runeson

Department of Computer Science, Lund University

P.O. Box 118, SE-211 00 Lund, Sweden

{martin.host,alma.orucevic-alagic,per.runeson}@cs.lth.se

http://serg.cs.lth.se/
Abstract. Open source components can be used as one type of software

component in development of commercial software. In development using

this type of component, potential open source components must first be

identified, then specific components must be selected, and after that

selected components should maybe be adapted before they are included

in the developed product. A company using open source components

must also decide how they should participate in open source project

from which they use software. These steps have been investigated in a

focus group meeting with representatives from industry. Findings, in the

form of recommendations to engineers in the field are summarized for

all the mentioned phases. The findings have been compared to published

literature, and no major di↵erences or conflicting facts have been found.

Keywords: open source, industrial, o↵-the-shelf components
1 Introduction

Open source software denotes software that is available with source code free

of charge, according to an open source license [1]. Depending on the license

type, there are possibilities to include open source components in products in

the same way as other components are included. That is, in a large software

development projects, open source software can be used as one type of component

as an alternative to components developed in-house or components obtained from

external companies.There are companies that have experience from using well known open source

projects. Munga et al. [2], for example, investigate business models for companies

involved in open source development in two case studies (Red Hat and IBM)

and concludes that ”the key to their success was investing resources into the

open source development community, while using this foundation to build stable,

reliable and integrated solutions that were attractive to enterprise customers”.

This type of development, using open source software, is of interest for several

companies. If open source components are used in product development there are

OSS is more than the code

…the maturity of the community.
…if here is a ”backing organization”
taking a long-term responsibility.
…what type of participants in the
community that are active.
The roadmap of the open source
project…

Höst et al, 2011
https://dx.doi.org/10.1007/978-3-642-21843-9_13

Open source – products and tools

• OSS in products
– Linux
– MySQL
– ROS

• OSS tools
– Git
– Gerrit
– Jenkins
– TensorFlow
– R CC BY-NC-ND 2.0 Hindrik Sijens @ Flickr

Strategies for open tools

Strategy

Proactive

Reactive

Contents lists available at ScienceDirectInformation and Software Technologyjournal homepage: www.elsevier.com/locate/infsof
A theory of openness for software engineering tools in software

organizations
Hussan Munir⁎,a, Per Runesona, Krzysztof Wnukb
aDepartment of Computer Science, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

bSoftware Engineering Research Lab, Blekinge Institute of Technology, SE-371 79 Karlskrona, SwedenA R T I C L E I N F O
Keywords:
Open InnovationOpen Source SoftwareOSS tools
Openness
Theory creation

A B S T R A C T
Context: The increased use of Open Source Software (OSS) affects how software-intensive product development

organizations (SIPDO) innovate and compete, moving them towards Open Innovation (OI). Specifically, software

engineering tools have the potential for OI, but require better understanding regarding what to develop in-

ternally and what to acquire from outside the organization, and how to cooperate with potential competitors.

Aim: This paper aims at synthesizing a theory of openness for software engineering tools in SIPDOs, that can be

utilized by managers in defining more efficient strategies towards OSS communities.

Method: We synthesize empirical evidence from a systematic mapping study, a case study, and a survey, using a

narrative method. The synthesis method entails four steps: (1) Developing a preliminary synthesis, (2) Exploring

the relationship between studies, (3) Assessing the validity of the synthesis, and (4) Theory formation.

Result: We present a theory of openness for OSS tools in software engineering in relation to four constructs: (1)

Strategy, (2) Triggers, (3) Outcomes, and (4) Level of openness.

Conclusion: The theory reasons that openness provides opportunities to reduce the development cost and de-

velopment time. Furthermore, OI positively impacts on the process and product innovation, but it requires

investment by organizations in OSS communities. By betting on openness, organizations may be able to sig-

nificantly increase their competitiveness.
1. Introduction

The introduction of Open Source Software (OSS) in commercial

settings have opened new possibilities for innovation in software-in-

tensive product development organizations (SIPDOs).1 This shift im-

plies that the internal research and development (R&D) is no longer the

only strategic asset for the companies in creating products and services.

Access to, and interplay with, external sources and actors provide new

opportunities but also create new challenges.
One specific type of OSS is software engineering tools used in the

development of software-intensive products. The tools themselves are

not the core business of the SIPDOs, but they rely heavily on them to be

efficient in their software development. Further, the costs of improving

the tools and keeping them up to date may be significant, and thus

SIPDOs may want to share the costs with other organizations.
In 2003, Chesbrough proposed the term Open Innovation (OI), later

defined as “a distributed innovation process based on purposively managed

knowledge flows across organizational boundaries, using pecuniary and non-

pecuniary mechanisms in line with the organization’s business model” [8].

Cheshbrough’s definition of openness hints at valuable ideas that can

emerge and commercialize from inside and outside the organization. OI

entails various activities, e.g., inbound (also called inside-out), out-

bound (also called outside-in) and coupled activities [23], and each of

these activities can be more or less open. Dahlander and Gann [12]

defined inbound versus outbound OI, and pecuniary versus non-pe-

cuniary interactions. Researchers have used the term inside-out/out-

bound and outside-in/inbound synonymously in the OI literature. The

terms used in this paper are defined in Table 1.
This paper uses the openness classification by Huizingh [27] who

categorized processes and outcomes as closed or open, see Table 2.

Open processes deal with either using the input from outside the or-

ganizations, or by externally exploiting an internally developed in-

novation. This is in contrast to closed processes, where the innovation

process is kept in-house [27]. On the other hand, open outcomes entail

devoting the scarce resources to innovation, and then giving away the

outcome (e.g., proprietary solutions) for free to OSS communities, in

contrast to closed outcomes where organizations keep their solution in-

house.

https://doi.org/10.1016/j.infsof.2017.12.008
Received 29 June 2017; Received in revised form 23 November 2017; Accepted 19 December 2017

⁎Corresponding author.E-mail addresses: hussan.munir@cs.lth.se (H. Munir), per.runeson@cs.lth.se (P. Runeson), krzysztof.wnuk@bth.se (K. Wnuk).

1 SIPDO refers to organizations developing products or services with a substantial amount of software defining the product/service behavior, mostly embedded in physical products.

,QIRUPDWLRQ�DQG�6RIWZDUH�7HFKQRORJ\�������������²��

$YDLODEOH�RQOLQH����'HFHPEHU�����������������������(OVHYLHU�%�9��$OO�ULJKWV�UHVHUYHG�

7

WhyCost saving Inspirational

Laggards
(Business as usual)

Leverage
(Resource optimization)

Lucrativeness
(Think tank)

Leaders
(Growth through ecosystems)

https://doi.org/10.1016/j.infsof.2017.12.008

Triggers of Openness – why engage?

• Access to skilled workforce
• Faster development speed
• Low license costs and switching costs
• Flexibility in tool usage and adaptations
• Shared cost with the ecosystem
• Governing ecosystem

How Companies UseOSS Tools Ecosystemsfor Open InnovationHussan MunirLund University
Per Runeson
Lund University

Krzysztof WnukBlekinge Institute of Technology

Abstract—Moving toward the open innovation (OI) model requires multifaceted

transformations within companies. It often involves giving away the tools for product

development or sharing future product directions with open tools ecosystems. Moving

from the traditional closed innovation model toward an OI model for software

development tools shows the potential to increase software development competence

and efficiency of organizations. We report a case study in software-intensive company

developing embedded devices (e.g., smartphones) followed by a survey in OSS

communities such as Gerrit, Git, and Jenkins. The studied branch focuses on developing

Android phones. This paper presents contribution strategies and triggers for openness.

These strategies include avoid forking OSS tools, empower developers to participate in

the ecosystem, steer ecosystems through contributions, create business through

differentiation, and create new ecosystems. The triggers of openness are from 30

different companies with examples. Finally, openness requires a cultural change aligned

with strategies and business models.
& OPEN INNOVATION PENETRATES several indus-
tries such as manufacturing, finance, automotive,
mining and construction, telecommunication,
and software engineering.1,9 Companies have

discovered that their business may benefit from
sharing knowledge with other companies (e.g.,
Sony Mobile, Intel, Ericsson, IBM etc.).2,3 In OI,
the knowledge may flow both inside-out and out-
side-in and be attached to monetary transac-
tions, or not.1 Tools for software engineering is
an area to which companies apply OI principles.
For example, in the Jenkins and Gerrit

Digital Object Identifier 10.1109/MITP.2019.2893134
Date of current version 6 November 2019.

Feature Article
Feature Article

40 1520-9202 ! 2019 IEEE

Published by the IEEE Computer Society

IT Professional

https://doi.org/10.1109/MITP.2019.2893134

Open products

Commodity

Differentiation

Innovation Eco-system

 34 COMPUTER

Published by the IEEE Computer Society
0018-9162/13/$31.00 © 2013 IEEE

COVER FE ATURE

Jan Bosch, Chalmers University of Technology, Sweden
Increased system complexity has histori-

cally been treated as an inevitable con-

sequence of architecture evolution over

time. The three-layer product model offers

an innovative framework for managing

system growth that encourages greater

efficiency, nimbler responsiveness, and

more opportunities for innovation during

all stages of the software development life

cycle.

P rior research, particularly the work of David

Parnas1 and of Dewayne Perry and Alexander

Wolf,2 has clearly established that architectures

erode as they age over time. Systems become less

and less amenable to necessary adaptation and change,

often resulting in significantly higher maintenance costs.

Although precise definitions differ, both researchers and

practitioners point to increased complexity as the primary

challenge of dealing with long-lived software systems.

This complexity has two main facets: that of the sys-

tem’s original design (the problem level) and further

complexity at the solution level, where architects and

engineers add new structures, design rules, and design

constraints to ensure that, over time, products continue to

satisfy customer needs and preferences. As systems evolve,

complexity at the problem level remains relatively con-

stant, but complexity at the solution level inevitably grows;

added functionalities fail to match original structures

while, in the absence of refactoring, older rules and con-

straints remain in place, despite the fact that they are no

longer relevant.In recent years two other sources of complexity have

emerged: the broad adoption of software platforms to run

applications on top of common shared software and the

developing concept of software ecosystems as a way of

articulating the relationships among system components.3

Although both separate platforms and clean interface

design theoretically provide a powerful decoupling mecha-

nism, in practice they more often have an opposite result:

previously unrelated development teams become more de-

pendent on one another to coordinate their activities, the

software artifacts these individual teams inherit become

correspondingly interdependent, and interfaces become

more complex as teams struggle to maintain backward

compatibility.Analysts and practitioners concerned with software

system complexity generally treat complexity as an un-

avoidable rather than a manageable system quality. This

is partly because existing approaches fail to distinguish

three distinct layers of system functionality:
 • commoditized functionality that over time has become

so integral to a system it no longer adds real value;

z� differentiating functionality that offers newer, more

specialized advantages and clearly has customer value

(functionality at the commoditized layer most often

starts as differentiating); and
 • innovative and experimental functionality that is under

various stages of development and thus does not cur-

rently add value but has potential to do so.

Achieving Simplicity with the Three-Layer Product Model

Productize

Commoditize

Value focus

Cost focus

Novelty focus

https://dx.doi.org/10.1109/MC.2013.295

Commodity vs openess
Lundell et al. Commodification of
Industrial Software: A Case for Open
Source, IEEE Software, 26(04):77-83,
2009. doi: 10.1109/MS.2009.88

 July/August 2009 I E E E S O F T W A R E 79

This approach is basically an open way to develop
software, but with a more restricted scope—that
is, the !rst two columns of Figure 1. Similarly to
open source development, inner-source develop-
ment applies an open, concurrent, collaboration
model. It implies distributed ownership and con-
trol of code, early and frequent releasing, and
many continuous feedback channels. It exploits ex-
isting organization mechanisms—for example, for
dealing with con"ict escalation or setting up road-
maps. Inner-source development enables "exibility
in starting, stopping, and changing collaborations
and in timing and setting priorities of development
teams across organizational (and geographical)
boundaries.

Open Source Development:
Two Case Studies
The following case studies illustrate how large
European companies have leveraged open source
practices to address the shift toward open collabo-
ration. In particular, we describe the related soft-
ware’s evolution through the landscape of Figure 1.

Philips, Agfa, and the DICOM
Validation Toolset
Medical imaging for diagnostic purposes has
been subject to standards since the end of the
1980s. David Clunie, a surgeon, needed to in-
terchange images made on equipment from dif-
ferent manufacturers. He started the standard-
ization of medical-image interchange, which
resulted in the Digital Imaging and Communi-
cations in Medicine Standard (DICOM, http://
medical.nema.org).

Around 1995, most medical-imaging soft-
ware didn’t support DICOM, and interoperabil-
ity wasn’t standard. So, DICOM support was an
added value for medical-equipment companies.
Each company made its own implementation re-
garding image transmission, reception, and stor-
age according to the standard. At that moment,
DICOM support was at the top left of Figure 1.

Around 2000, the companies’ clients all
needed interoperability and expected DICOM
support; without it, the clients wouldn’t buy their
products. Because interoperability was important
for clients (hospitals), it was useful for everybody
to be able to exchange images with any equip-
ment from any company. So, the software moved
to the middle row in Figure 1—it became basic
for business. To deal with this situation, develop-
ment also needed to move from the left column
to the middle column in Figure 1 (that is, from
intracompany to intercompany development).

In 2001, Philips and Agfa started to develop a
reference implementation of a DICOM standard
validation toolkit (DVTk) and make it available
as free binary (freeware), to be shared with com-
petitors. (DVTk checks DICOM conformance,
and its functionality is necessary for any company
that supports DICOM interoperability. With the
toolkit, checking for interoperability with com-
petitors’ equipment takes less effort.) This move
meant that two companies shared development
and maintenance and that everybody could check
conformance to DICOM in the same way. How-
ever, at that time, the toolkit’s development was
still proprietary.

A few years later, DVTk no longer provided
added value to products. It became a commod-
ity; that is, it resided at the bottom row of Fig-
ure 1. Validation software was still crucial, but in
principle everyone could do it. So, a move to the
right column (to open source software) was also
appropriate.

In 2005, Philips and Agfa made the toolkit
source code open source (www.dvtk.org) un-
der the LGPL (the GNU Lesser General Public
License) on SourceForge. This enables sharing
development and maintenance on a much wider
scale. In particular, this move led to faster
development and maintenance, especially for
those parts of DICOM that were more generic
and not targeted speci!cally at Philips’ and
Agfa’s needs. This software is still domain spe-
ci!c, but the involved companies regard it as a
commodity. For instance, Paul Nagy lists it as
an important piece of OSS for medical digital-
imaging systems.14

Differentiating
Te

ch
no

lo
gy

Basic for
the business

Commodity

Intracompany Intercompany Open CollaborationsWasting valuable
engineering

resources

Intercompany
collaboration

Gated communities
Losing

intellectual
property

COTS
Open source

Technology life cycle

Figure 1. The landscape
of effective and ef!cient
software development.
Technology
commodi!cation makes
open collaboration
valuable.

Innovation

Differentiation

Recommended strategies
– for open software

1. Establish legal framework and
contribution processes

2. Set contributions strategy – look
beyond the code

3. Share now or later

The Journal of Systems and Software 135 (2018) 17–36 Contents lists available at ScienceDirect The Journal of Systems and Software
journal homepage: www.elsevier.com/locate/jss

Motivating the contributions: An Open Innovation perspective on

what to share as Open Source Software
J. Linåker a , ∗, H. Munir a , K. Wnuk b , C.E. Mols c

a Lund University, Box 118, 221 00 Lund, Sweden
b Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

c Sony Mobile, Mobilvägen 10, Lund, Sweden
a r t i c l e i n f o Article history: Received 10 October 2016 Revised 8 September 2017 Accepted 30 September 2017 Available online 2 October 2017 Keywords: Open innovation Open Source Software Software ecosystem Contribution strategy Product planning Product strategy

a b s t r a c t
Open Source Software (OSS) ecosystems have reshaped the ways how software-intensive firms develop

products and deliver value to customers. However, firms still need support for strategic product planning

in terms of what to develop internally and what to share as OSS. Existing models accurately capture com-

moditization in software business, but lack operational support to decide what contribution strategy to

employ in terms of what and when to contribute. This study proposes a Contribution Acceptance Process

(CAP) model from which firms can adopt contribution strategies that align with product strategies and

planning. In a design science influenced case study executed at Sony Mobile, the CAP model was itera-

tively developed in close collaboration with the firm’s practitioners. The CAP model helps classify artifacts

according to business impact and control complexity so firms may estimate and plan whether an artifact

should be contributed or not. Further, an information meta-model is proposed that helps operationalize

the CAP model at the organization. The CAP model provides an operational OI perspective on what firms

involved in OSS ecosystems should share, by helping them motivate contributions through the creation of

contribution strategies. The goal is to help maximize return on investment and sustain needed influence

in OSS ecosystems.

© 2017 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction
Open Innovation (OI) has attracted scholarly interest from

a wide range of disciplines since its introduction (West and

Bogers, 2013), but remains generally unexplored in software engi-

neering (Munir et al., 2015). A notable exception is that of Open

Source Software (OSS) ecosystems (Jansen et al., 2009a; West,

2003; West and Gallagher, 2006). Directly or indirectly adopting

OSS as part of a firm’s business model (Chesbrough and Apple-

yard, 2007) may help the firm to accelerate its internal innovation

process (Chesbrough, 2003). One reason for this lies in the access

to an external workforce, which may imply that costs can be re-

duced due to lower internal maintenance and higher product qual-

ity, as well as a faster time-to-market (Stuermer et al., 2009; Ven

and Mannaert, 2008). A further potential benefit is the inflow of

features from the OSS ecosystem. This phenomenon is explained
∗

Corresponding author. E-mail addresses: johan.linaker@cs.lth.se (J. Linåker), hussan.munir@cs.lth.se (H.

Munir), krw@bth.se (K. Wnuk), carl-eric.mols@sonymobile.com (C.E. Mols).

by Joy’s law as “no matter who you are, not all smart people work

for you”.
From an industry perspective, these benefits are highlighted

in a recent study of 489 projects from European organizations

that showed projects of organizations involving OI achieved a bet-

ter financial return on investment compared to organizations that

did not involve OI (Du et al., 2014). Further, two other studies

(Laursen and Salter, 2006; Munir et al., 2017) have shown that

organizations with more sources of external knowledge achieved

better product and process innovation for organization’s propri-

etary products. Moreover, a recent survey study (Chesbrough and

Brunswicker, 2014) in 125 large firms of EU and US showed that

78% of organizations in the survey are practicing OI and neither

of them has abandoned it since the introduction of OI in the or-

ganization. This intense practicing of OI also leads 82% of the or-

ganizations to increase management support for it and 53% of the

organizations to designate more than 5 employees working full-

time with OI. Moreover, the evidence suggests that 61% of the or-

ganizations have increased the financial investment and 22% have

increased the financial investment by 50% in OI.

https://doi.org/10.1016/j.jss.2017.09.032
0164-1212/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://itea3.org/news/new-book-by-itea-project-
scalare-principles-for-industrial-open-source.html

https://doi.org/10.1016/j.jss.2017.09.032

Recommended practices – how to engage?

• Avoid forking open tools
• Empower developers to participate
• Steer ecosystems through contributions
• Create business through differentiation
• Create new ecosystems

How Companies UseOSS Tools Ecosystemsfor Open InnovationHussan MunirLund University
Per Runeson
Lund University

Krzysztof WnukBlekinge Institute of Technology

Abstract—Moving toward the open innovation (OI) model requires multifaceted

transformations within companies. It often involves giving away the tools for product

development or sharing future product directions with open tools ecosystems. Moving

from the traditional closed innovation model toward an OI model for software

development tools shows the potential to increase software development competence

and efficiency of organizations. We report a case study in software-intensive company

developing embedded devices (e.g., smartphones) followed by a survey in OSS

communities such as Gerrit, Git, and Jenkins. The studied branch focuses on developing

Android phones. This paper presents contribution strategies and triggers for openness.

These strategies include avoid forking OSS tools, empower developers to participate in

the ecosystem, steer ecosystems through contributions, create business through

differentiation, and create new ecosystems. The triggers of openness are from 30

different companies with examples. Finally, openness requires a cultural change aligned

with strategies and business models.
& OPEN INNOVATION PENETRATES several indus-
tries such as manufacturing, finance, automotive,
mining and construction, telecommunication,
and software engineering.1,9 Companies have

discovered that their business may benefit from
sharing knowledge with other companies (e.g.,
Sony Mobile, Intel, Ericsson, IBM etc.).2,3 In OI,
the knowledge may flow both inside-out and out-
side-in and be attached to monetary transac-
tions, or not.1 Tools for software engineering is
an area to which companies apply OI principles.
For example, in the Jenkins and Gerrit

Digital Object Identifier 10.1109/MITP.2019.2893134
Date of current version 6 November 2019.

Feature Article
Feature Article

40 1520-9202 ! 2019 IEEE

Published by the IEEE Computer Society

IT Professional

https://doi.org/10.1109/MITP.2019.2893134

Summary of our findings – on OSS tools

Beyond open source software…

CC BY-SA 2.0 by Kai Schreiber @ Flickr

…is Open Data

• Data is the new oil
Clive Humby, 2006
(maybe more lubrication than fuel)

• Value comes from data being
brought together, and that
requires organisations to let
others use the data they hold.

Doyle et al 2020

• Governmental
• Corporate
• Crowdsourced

(CC BY-SA 2.0) Gerd Leonhard

of different kinds

Data challenges and opportunities

• Costs for data maintenance,
quality assurance and
annotation is an upcoming
challenge

• Data will gradually become
commodity for some
functionality

Open data
ecosystems?

 July/August 2009 I E E E S O F T W A R E 79

This approach is basically an open way to develop
software, but with a more restricted scope—that
is, the !rst two columns of Figure 1. Similarly to
open source development, inner-source develop-
ment applies an open, concurrent, collaboration
model. It implies distributed ownership and con-
trol of code, early and frequent releasing, and
many continuous feedback channels. It exploits ex-
isting organization mechanisms—for example, for
dealing with con"ict escalation or setting up road-
maps. Inner-source development enables "exibility
in starting, stopping, and changing collaborations
and in timing and setting priorities of development
teams across organizational (and geographical)
boundaries.

Open Source Development:
Two Case Studies
The following case studies illustrate how large
European companies have leveraged open source
practices to address the shift toward open collabo-
ration. In particular, we describe the related soft-
ware’s evolution through the landscape of Figure 1.

Philips, Agfa, and the DICOM
Validation Toolset
Medical imaging for diagnostic purposes has
been subject to standards since the end of the
1980s. David Clunie, a surgeon, needed to in-
terchange images made on equipment from dif-
ferent manufacturers. He started the standard-
ization of medical-image interchange, which
resulted in the Digital Imaging and Communi-
cations in Medicine Standard (DICOM, http://
medical.nema.org).

Around 1995, most medical-imaging soft-
ware didn’t support DICOM, and interoperabil-
ity wasn’t standard. So, DICOM support was an
added value for medical-equipment companies.
Each company made its own implementation re-
garding image transmission, reception, and stor-
age according to the standard. At that moment,
DICOM support was at the top left of Figure 1.

Around 2000, the companies’ clients all
needed interoperability and expected DICOM
support; without it, the clients wouldn’t buy their
products. Because interoperability was important
for clients (hospitals), it was useful for everybody
to be able to exchange images with any equip-
ment from any company. So, the software moved
to the middle row in Figure 1—it became basic
for business. To deal with this situation, develop-
ment also needed to move from the left column
to the middle column in Figure 1 (that is, from
intracompany to intercompany development).

In 2001, Philips and Agfa started to develop a
reference implementation of a DICOM standard
validation toolkit (DVTk) and make it available
as free binary (freeware), to be shared with com-
petitors. (DVTk checks DICOM conformance,
and its functionality is necessary for any company
that supports DICOM interoperability. With the
toolkit, checking for interoperability with com-
petitors’ equipment takes less effort.) This move
meant that two companies shared development
and maintenance and that everybody could check
conformance to DICOM in the same way. How-
ever, at that time, the toolkit’s development was
still proprietary.

A few years later, DVTk no longer provided
added value to products. It became a commod-
ity; that is, it resided at the bottom row of Fig-
ure 1. Validation software was still crucial, but in
principle everyone could do it. So, a move to the
right column (to open source software) was also
appropriate.

In 2005, Philips and Agfa made the toolkit
source code open source (www.dvtk.org) un-
der the LGPL (the GNU Lesser General Public
License) on SourceForge. This enables sharing
development and maintenance on a much wider
scale. In particular, this move led to faster
development and maintenance, especially for
those parts of DICOM that were more generic
and not targeted speci!cally at Philips’ and
Agfa’s needs. This software is still domain spe-
ci!c, but the involved companies regard it as a
commodity. For instance, Paul Nagy lists it as
an important piece of OSS for medical digital-
imaging systems.14

Differentiating

Te
ch

no
lo

gy

Basic for
the business

Commodity

Intracompany Intercompany Open CollaborationsWasting valuable
engineering

resources

Intercompany
collaboration

Gated communities
Losing

intellectual
property

COTS
Open source

Technology life cycle

Figure 1. The landscape
of effective and ef!cient
software development.
Technology
commodi!cation makes
open collaboration
valuable.

Alfa Laval, 1999 CODEN: LUTEDX (TETS -ss46)/l-62)l(1999) & rocat 2

Master Thesis:

Process Monitoring
A study of interfaces involved in a Process Monitoring System

January,1999
by

Tobias Fjälting Axel Holtåse93tf" e94aho@efd lth.se

Heat Exchanger Modem

+
LAN

Database Application progam

+
Direct

+

Figure 4.5. Possible ways of accessing Heat Exchanger data

Due to the limited supply of file transfer programs supporting communication
between Windows andOSl2, a program with a graphical user interface had to be
utilised. The only way to manoeuvre the program is to send keystrokes to the program
window. This procedure increases the risk of system malfunction since keystrokes
might end up in other application windows than the intended one. Howeveq it is
possible to minimise the risk for system malfunction.

+

28

Protocol solution system overview

Windows Computer

Modem

H.E. MonH.E. Mon H.E. Mon

Figure 4.2. Overview of the ISMAL system (the protocol solution).

4.3.2 OS/2 Platform Solution

Another way of transferring the Heat Exchanger datato a Windows environment is to
keep the OS/2 system as a collection unit. The Insight program can be triggered to
autómatically generate reports for all desired Heat Exchangers and then transfer these
reports to a Microsoft Windows based computer via a fúe transfer program. Today,
Insight can generate reports where all measurements for a selected Heat Exchanger
can be written. These reports can be displayed on the Monitor, saved as a file or
printed. All reports are given specific names by the user and are stored in a specific
àirectory. It is also available to specify over which time range the report should span.
The only available data outside the Insight program are the reports written to file.
Through a command entered in the OS/2 environment, reports can be automatically
generated outside Insight. Aschedule program using the OS/2 operating system can
tngger this command, for instance, once a day at a specific time.

This solution contains advantages and disadvantages. OSl2 is proven to be a very
stable operating system. At Alfa LavalThermal, Insight has been running
continuôusly on an OS/2 computer for almost ayear with no occurring system crashes
or malfunctions. Because data security must be upheld, some kind of firewall need to
protect the company LAN from outside intrusion, see subsection3.2.7. From this
point of view the OS/2 computer suits this function perfectly, i.e. there is no way an
òutside intruder could get hold of information from the company LAN when dialling
up the OS/2 computer modem. Economically, the OS/2 platform solution is more
pieferable to Alfa Laval Thermal due to the lower phone bills caused by the H.E.
ilIonitors dialling up the OS/2 computer. System development time is also reduced if
choosing this solutiõn because no implementation ofthe modem transfer protocol is
needed. An important aspect is that the ISMAL system is independent of the system,
which Insight is running on. If Landis & Staefa decide to develop Insight in a
Windows environment, the only changes needed is purchasing a

24

ESS Control System Data Lab –
A proposed architecture for data ecosystem

ESS Control SystemESS Control System
Data Lab

Internal
data

Internal
meta dataShared

data +
meta data

Data
user

GatewayAccess
control

Tobin@Flickr CC BY-SA 2.0

ESS Control System

Digital Twin

Supplier

Internal
data

Internal
meta data

Data
user

Data
user

(ESS) Control System
Data Lab

NN Control System ESS Control System

Internal
data

Internal
meta data

Shared
data +

meta data

Gateway

Data
user

Access
control

Tobin@Flickr CC BY-SA 2.0

ESS Control System

NN Control System

Internal
data

Internal
meta data

Gateway

Supplier

Internal
data

Internal
meta data

Gateway

Gateway

Vision

Differences between data and data

• Type:
– Natural/legal persons
– Natural/designed phenomena

• Currentness:
– Continuous flow of real-time data
– Event-based
– On demand batches of data

• Source
– Crowdsourcing
– Public collection

Initial recommendations
for data ecosystems

CC BY-SA 2.0 Jocelyn Kinghorn @ Flickr

Value
• There must be a business value in the data or

the collaboration
Intrinsics
• Consider data type, standardize format and

establish legal framework
Governance
• Define level of openness and platform ownership
Evolution
• Advance business models and tool support

Future research:
B2B Data Sharing for Industry 4.0 Machine Learning

Business models
Professor Christian Kowalkowski,
industrial marketing, LiU

• Value creation
• Value capture
• Key resources and processes
• Ecosystem dynamics

Collaboration tools
Professor Per Runeson,
software engineering, LU

• Protect data
• Control access
• Support change
• Enhance data

Beyond open source…

• Open source software
products and tools

– established practice
– define strategy
– for commodity software

• Open data
– emerging practice
– innovation potential

 July/August 2009 I E E E S O F T W A R E 79

This approach is basically an open way to develop
software, but with a more restricted scope—that
is, the !rst two columns of Figure 1. Similarly to
open source development, inner-source develop-
ment applies an open, concurrent, collaboration
model. It implies distributed ownership and con-
trol of code, early and frequent releasing, and
many continuous feedback channels. It exploits ex-
isting organization mechanisms—for example, for
dealing with con"ict escalation or setting up road-
maps. Inner-source development enables "exibility
in starting, stopping, and changing collaborations
and in timing and setting priorities of development
teams across organizational (and geographical)
boundaries.

Open Source Development:
Two Case Studies
The following case studies illustrate how large
European companies have leveraged open source
practices to address the shift toward open collabo-
ration. In particular, we describe the related soft-
ware’s evolution through the landscape of Figure 1.

Philips, Agfa, and the DICOM
Validation Toolset
Medical imaging for diagnostic purposes has
been subject to standards since the end of the
1980s. David Clunie, a surgeon, needed to in-
terchange images made on equipment from dif-
ferent manufacturers. He started the standard-
ization of medical-image interchange, which
resulted in the Digital Imaging and Communi-
cations in Medicine Standard (DICOM, http://
medical.nema.org).

Around 1995, most medical-imaging soft-
ware didn’t support DICOM, and interoperabil-
ity wasn’t standard. So, DICOM support was an
added value for medical-equipment companies.
Each company made its own implementation re-
garding image transmission, reception, and stor-
age according to the standard. At that moment,
DICOM support was at the top left of Figure 1.

Around 2000, the companies’ clients all
needed interoperability and expected DICOM
support; without it, the clients wouldn’t buy their
products. Because interoperability was important
for clients (hospitals), it was useful for everybody
to be able to exchange images with any equip-
ment from any company. So, the software moved
to the middle row in Figure 1—it became basic
for business. To deal with this situation, develop-
ment also needed to move from the left column
to the middle column in Figure 1 (that is, from
intracompany to intercompany development).

In 2001, Philips and Agfa started to develop a
reference implementation of a DICOM standard
validation toolkit (DVTk) and make it available
as free binary (freeware), to be shared with com-
petitors. (DVTk checks DICOM conformance,
and its functionality is necessary for any company
that supports DICOM interoperability. With the
toolkit, checking for interoperability with com-
petitors’ equipment takes less effort.) This move
meant that two companies shared development
and maintenance and that everybody could check
conformance to DICOM in the same way. How-
ever, at that time, the toolkit’s development was
still proprietary.

A few years later, DVTk no longer provided
added value to products. It became a commod-
ity; that is, it resided at the bottom row of Fig-
ure 1. Validation software was still crucial, but in
principle everyone could do it. So, a move to the
right column (to open source software) was also
appropriate.

In 2005, Philips and Agfa made the toolkit
source code open source (www.dvtk.org) un-
der the LGPL (the GNU Lesser General Public
License) on SourceForge. This enables sharing
development and maintenance on a much wider
scale. In particular, this move led to faster
development and maintenance, especially for
those parts of DICOM that were more generic
and not targeted speci!cally at Philips’ and
Agfa’s needs. This software is still domain spe-
ci!c, but the involved companies regard it as a
commodity. For instance, Paul Nagy lists it as
an important piece of OSS for medical digital-
imaging systems.14

Differentiating

Te
ch

no
lo

gy

Basic for
the business

Commodity

Intracompany Intercompany Open CollaborationsWasting valuable
engineering

resources

Intercompany
collaboration

Gated communities
Losing

intellectual
property

COTS
Open source

Technology life cycle

Figure 1. The landscape
of effective and ef!cient
software development.
Technology
commodi!cation makes
open collaboration
valuable.

Ny Teknik 8/2021, 29 april

4

NY TEKNIK · 29 APRIL 2021 · NR 8Debatt

4

TYCK TILL!
KOMMENTERA PÅ NYTEKNIK.SE

MEST DISKUTERADE PÅ NYTEKNIK.SE

	■ E-post: debatt@nyteknik.se
	■ Webb: nyteknik.se/debatt

Om du vill delta i debatten, tänk på detta:	■ Texten ska vara unik för Ny Tekniks läsare.	■Max 4!000 tecken inklusive mellanslag.	■Undvik förkortningar och utropstecken.	■ Peka ut och beskriv ett problem eller en möjlighet, samt hur du vill lösa problemet eller ta vara på möjligheten.
	■Var tydlig med vem du debatterar med och varför.

/Debatt

”Industrins data
leder till innovationer – om den delas”

Enligt ai-agendan för Sverige ska myndigheter göra data tillgänglig för att öka innovation i näringslivet. Vi saknar dock datadelning i den andra riktningen – att industrin och de stora forsknings anläggningarna ESS och Max IV kan bidra till innovation genom att dela data.

DEBATT

T eknikens ”big five” (Fa-cebook, Amazon, Apple, Microsoft och Google) bygger sina framgångs-rika affärer på data från konsumenter. De låser in oss an-vändare och våra data och kan därigenom innovera på nya om-råden.
För industriföretag som inte samlar konsumentdata är läget ett annat. Data som behövs för ai motsvaras inte av vad ett enskilt före tag själv kan samla in, förädla och underhålla.

Därför behöver svensk industri dela data. Det finns några spiran-de initiativ i det Vinnova-finan-sierade Piia-programmet och AI Sweden, men Finland och Tysk-land ligger före med Industrial Data Sharing och Open Manufac-turing.
I sin bok Ingenjörerna noterar Gunnar Wetterberg med exempel från SKF och Asea hur kunskap delades mellan företag i kon-sultliknande uppdrag i början av 1900-talet. ”På så vis skaffade sig Asea kunskaper om processtyr-ning hos en rad olika kunder, och kunde använda insikterna i nya uppdrag.”

Ett sekel senare stavas denna kunskap ”data”, men tyvärr är företagen inte alltid lika benägna att dela med sig. Vi menar att det finns affärsmöjligheter – på lik-nande sätt som för öppen källkod

– där tillgången till data effekti-viseras genom att fler delar på insamlings-, förädlings- och un-derhållskostnaderna och att nya innovationer kan skapas utanför de organisationer där data sam-lats in.

Naturligtvis ska vissa data hållas strikt inom företagen, men inte all data har direkt affärsvärde. Däre-mot kan data skapa affärsvärde i samverkan med andra. Vi har studerat fyra framväx-ande ekosystem för datadelning i Sverige:

■	I processindustrin delas drift-data från ESS, European Spalla-tion Source, för träning av maskin-inlärning i Industri 4.0-tillämp-ningar. Detta går att genomföra utan att skapa säkerhetsrisker för anläggningen.
■	I trafiksektorn delas videosek-venser från trafiksituationer och annotering av dessa. Här är gdpr och användarlicenser en faktor som behöver hanteras.
■	I arbetsmarknadssektorn ska - par Arbetsförmedlingens Job-tech-projekt en samverkansplatt-form med öppen källkod. Via denna kan arbetsförmedlande aktörer öka sin synlighet under bibehållen konkurrens.
■	Inom gruvbranschen har vi identifierat öppna och decentrali-serade affärsmodeller med data-delning mellan gruvföretag och utrustningsleverantörer. Intresset

är stort och de långsiktiga relatio-nerna mellan företagen bäddar för öppen innovation.
Exemplen visar hur datadelning kan skapa ömsesidiga värden och innovation, men också på ut-vecklingsbehov. Gemensamt är att någon central aktör – företag, myndighet, offentligt finansierad forskning eller innovationsverk-samhet – finns med som drivkraft i ekosystemet.
Vi uppmanar därför:

■	Industriföretag, särskilt i pro-cessindustrin, att etablera data-delning som praxis för att möjlig-göra innovation kring data.
■	Vinnova, att i sitt uppdrag att stödja forskningsinfrastruktur av särskilt värde för svenskt närings-liv, inkludera data från driften av ESS och Max IV som innovations-katalysator för processindustrin. ■	Myndigheter, i sina digitalise-ringsuppdrag, att utveckla öppen källkod och öppna data för att öka transparens och innovationskraft för Sverige, samt minska inlås-ningseffekter.

Genom att dela data, och därmed kostnaden för insamling, föräd-ling och underhåll, kan såväl fö-retag som myndigheter bidra till effektivisering.
Data bidrar då till öppen inno-vation som en motkraft mot att ”the big five” tar sig in i nya domä-ner. ■

Per Runeson, professor, Lunds universitet.

Karin Rathsman, teknisk doktor, European Spallation Source.

Eric Thomas Olsson, tek-nisk doktor, Rise – Research Institutes of Sweden.

”Data bidrar
till öppen inno-
vation som en
motkraft till
’the big five’.”

MER DEBATT
PÅ NYTEKNIK.SE

”Lägg in fem
minuter bio-
break i slutet
av varje möte.
Mötet skall av-slutas fem minuter tidi-gare än vad som står i bokningen!”

Signaturen pacman_42 kommenterar artikel på nyteknik.se om varför vi blir trötta av videomöten - och ger tips för bättre möten.

CITATET
LÄSARKOMMENTAR

”Digitalt utanförskap leder till nytt klassamhälle”
	■”Gapet mellan de mest och minst digi-taliserade grupperna i Sverige ökar dra-matiskt. Om insatser inte görs nu riskerar vi ett nytt klassamhälle”, skriver Nexers vd Lars Kry och Microsofts Sverigechef Hélène Barnekow.

”Patentsystemet ger inget skydd till de kapitalsvaga”
	■”April 2021 är en månad där goda och dåliga nyheter om immaterialrätten kom-mit tätt. Den bristande rättssäkerheten visas tydligt”, skriver Peter A Jörgensen och Kjell Jegefors, Uppfinnarkollegiet.

Bromma flygplats i västra Stockholm bör läggas ned, anser regeringen.

F
R

E
D

R
IK

 SA
N

D
B

E
R

G
/T

T

De ”lurade” Teslan att köra själv – krav på utredning
Två döda efter krasch med Tesla utan förare
De delar på 126 miljoner för lagring av koldioxid i betong
Minskat intresse för
dieselbilar i Europa
Regeringen vill lägga ner Bromma flygplats

A
N

D
E

R
S F

R
IC

K

5

http://www.lth.se/digitalth

WE ARE OPEN

per.runeson@cs.lth.se
http://www.lth.se/digitalth

