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An Adaptive Approach for Taskdriven BCI Calibration
Frida Heskebeck1,* and Carolina Bergeling1

1Department of Automatic Control, Lund University, Lund, Sweden
*Email: frida.heskebeck@control.lth.se

Introduction One of the most significant obstacles for the everyday use of systems based on BrainComputer Inter
faces (BCIs) is the tediousness of calibration. Successful improvements on calibration, particularly the time needed
and the userexperience, have been made with, e.g., transfer learning, gamification, and task estimation [1, 2, 3]. In
this work, we present an adaptive approach to BCI systems’ calibration with a model that evaluates if more calibration
is needed. We inspect the model in its simplest form to showcase its versatility.
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Figure 1: Graphical outline for the model.
The opaque parts are the simplest form of the
model.

Material, Methods, and Results The model is built as a Markov Decision Pro
cess (MDP) with actions in each state and transition probabilities after each action
(see Figure 1) [4]. The states ssi and sdi represent if the user is satisfied or dissat
isfiedwith the BCI system’s outcome. The number of updates of the classification
algorithm is denoted through the index i. Two actions are possible: ae  listen to
the user intent and respond accordingly, and au  update the classification algo
rithm. Transition probabilities reflect the accuracy of the classification algorithm.
In the case of model analysis, these can be estimated from data. There is an as
sociated reward for each state transition: positive if reaching any of the states
ssi and negative otherwise. Moreover, action au is considered expensive since it
includes collecting more training data and training the classification algorithm.

Based on this model, the aim is to construct a policy (choice of action in
each state) by which the system reaches any of the states ssi with maximum total
reward. The best action to take will depend on the rewards and the expected value
for the transition probabilities. Given the simplest model (opaque in Figure 1),
one reaches inequality (1) with γ denoting the discount factor. Action au is best
in state sd0 if (1) is true. The results from this analysis are intuitive. Given
the rewards as stated above, (1) is true if q > p, i.e., action au is best if the
classification algorithm is better at classifying the user intent after an update.

The model description is independent of the task to be solved, the BCI
paradigm, and the classification method. A more tailored model could be con
structed if these aspects were accounted for. The model is not intended to choose the best classification algorithm or
preprocessing methods for the BCI system. Instead, it adapts the calibration to the current situation.
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Discussion The simplest model can be extended
in several ways (see transparent parts in Figure
1). For instance: 1) the user can change their
mind, 2) the classification accuracy is not improved after the action au, 3) action au is possible also from a state ssi,
and 4) n number of classification algorithm updates are possible (more states). Finally, it is not necessarily true that
the BCI system knows the current state. This can be addressed through the theory of Partially Observable MDPs [5, 6].
The approach of reinforcement learning is also compelling for the extended model [7].

Significance The model facilitates the decision of when to use the BCI system and when to calibrate it. We believe
that it can be combined with other calibration approaches to create the nextgeneration autonomous BCI systems.
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